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Abstract 

The median-effect equation has been widely used to describe the dose-response relationship and identify 

compounds that activate or inhibit specific disease targets in contemporary drug discovery. However, the 

experimental data often contain extreme responses, which may significantly impair the estimation 

accuracy and impede valid quantitative assessment in the standard estimation procedure. To improve the 

quantitative estimation of the dose-response relationship, we introduce a novel approach based on 

robust beta regression. Substantive simulation studies under various scenarios demonstrate solid 

evidence that the proposed approach consistently provides robust estimation for the median-effect 

equation, particularly when there are extreme outcome observations. Moreover, simulation studies 

illustrate that the proposed approach also provides a narrower confidence interval, suggesting a higher 

power in statistical testing. Finally, to efficiently and conveniently perform common lab data analyses, we 

develop a freely accessible web-based analytic tool to facilitate the quantitative implementation of the 

proposed approach for the scientific community. 

 

Keywords: Robust Beta regression, Dose-response estimation, ED50, IC50, Median effect equation, Sigmoid 

function    
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Introduction 

The median-effect equation is a unified theory in medicine to describe the dose-response relationship and 

identify agents or their combinations that activate or inhibit specific disease targets1. It is a fundamental 

method established based on the pharmacological principle of mass-action law2. As the common link for 

many biomedical systems, it has been used extensively to analyze in vitro experimental data and evaluate 

the potency of related drugs3–6. 

In practice, the median-effect equation can be estimated for drug efficacy or pathway inhibition from 

normalized data generated from experimental studies. Without knowing the true dose-effect curve during 

the experimental design and data collection, it is common to observe extreme values of (un)affected cell 

fraction that is close to the response of either 0 or 100% in the analytic dataset. Quantitatively, it poses a 

special analytic challenge to estimate the median-effect question in practice. The standard estimation 

approach, often based on a linear regression model after a logit transformation7,8, could suffer badly from 

poor estimation in such situations. Figure 1 illustrates a preliminary example in that the standard 

approach is deficient in describing the median effect curve with a perturbation in one extreme data point. 

The variation in real experimental data, mostly caused by unavoidable measurement error, often at a 

much larger degree, therefore challenges the reliability of result presentation and interpretation for many 

drug assessment studies.  

Additionally, the modeling strategy by deleting extreme values may not be feasible in many situations9. 

For example, a meaningful drug concentration could consist of high inhibition (>90%) or low cell viability 

(<10%) in cancer research. It is not logical to ignore extreme observations when they are indeed 

biologically relevant for the target effect, not even to mention an associated loss of power and accuracy 

by leaving fewer data points for estimation. As illustrated in Figure 2, deleting the extreme values couldn’t 

eliminate the estimation bias, but only impaired the efficiency of interval estimation with wider nominal 

95% confidence intervals (C.I.) and harmed the estimation accuracy with worse coverage probabilities.  
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Furthermore, it is dubious to apply the constant error variance, a default assumption in standard linear 

regression modeling, in dose-response estimation. As an assumption can be examined with repeated 

measures, many dose-response data have indicated either a constant variance before logit transformation 

or a positive correlation with drug dose. It is incongruous to apply linear regression if the assumption is 

violated due to error heteroscedasticity10,11. Therefore, it is essential to develop a robust quantitative 

approach to estimating the median-effect equation.  

Here, we introduce a novel approach to improving the quantitative assessment of dose-response 

relationship and drug potency, together with a user-friendly web-based analytic tool to facilitate the 

implementation. The proposed method to estimate the median-effect equation is established in the 

robust beta regression framework, which not only takes the beta law to account for non-normality and 

heteroskedasticity12, but also minimizes the average density power divergence (DPD) using a tuning 

parameter, which compensates for the lack of robustness against outliers under the standard beta 

regression13. Results from simulation studies under various scenarios confirm that the proposed approach 

consistently gives robust estimation for the median-effect equation. Particularly, we examine two 

important measures for drug binding affinity: the Hill coefficient, which signifies the sigmoidicity of the 

curve, and overall effect, indicated by dose concentration for a specified (e.g., 50%) response14,15. When 

there are extreme outcome observations, the improvement of robust beta regression in estimation 

accuracy could be substantial. Moreover, simulation studies further illustrate that the proposed approach 

provides a narrower confidence interval, which in turn suggests a higher efficiency to achieve better 

power in statistical testing even without acquiring additional experimental data. Illustrative examples 

using real-world data for cancer research and SARS-CoV-2 treatment are provided. The analyses are 

implemented using the freely accessible web-based application REAP, developed based on the Shiny 

package of R language, with which research scientists could conveniently upload their drug experiment 

dataset and perform the data analysis.  
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Results 

REAP Shiny App 

We developed a user-friendly analytic tool, coined “REAP” (Robust and Efficient Assessment of Potency), 

for convenient application of the robust dose-response estimation to real-world data analysis. It is 

established in an agile modeling framework under the parameterization of the beta law to describe a 

continuous response variable with values in a standard unit interval (0,1). We further exploited a robust 

estimation method of the beta regression, named the minimum density power divergence estimators 

(MDPDE)13, for dose-response estimation, with the tuning parameter optimized by a data-driven 

method21. The technical details are provided in the Methods. 

REAP presents a straightforward analytic environment for robust estimation of dose-response curve and 

assessment of key statistics, including implementation of statistical comparisons and delivery of 

customized output for graphic presentation (Figure 3).	The dose-response curve is a time-honored tool to 

convey the pharmacological activity of a compound. Through dose-response curves, we can compare the 

relative activity of a compound on different assays or the sensitivity of different compounds on an assay. 

REAP aims to make this job simple, estimation efficient, and results robust. 

There are three sections in REAP: Introduction, Dataset and Output. Users can have both overview and 

instruction of REAP in the Introduction. Dataset is uploaded in the Dataset section. The input dataset is 

mandated to be in a csv file format and contains three columns of data respectively for drug 

concentration, response effect and group name, in a specific order. It is recommended that users 

normalize the response variable to the range of (0,1) by themselves. Otherwise, REAP automatically will 

truncate the values exceeding the boundaries to (0,1) using a truncation algorithm (see Supplementary 

Notes). In the Output section, it generates a dose-response plot, along with tabulation for effect and 

model estimations. We also enable hypothesis testing for comparisons of effect estimations, slopes and 

models (i.e., comparing both intercepts and slopes) (see Methods). By default, the x-axis of the dose-
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response plot is log-scaled. In the plot, users can choose to add mean values and confidence intervals for 

data points under the same agent and dose level. Both plots and estimation tables are downloadable on 

REAP to plug in presentations and manuscripts for result dissemination.  

The open-sourced REAP is freely available and accessible at https://xinying-fang.shinyapps.io/REAP/. We 

demonstrated it in two real-world examples, after presenting the simulation results, to illustrate the 

functionality of REAP.  

 

Simulations 

We conducted simulation studies to investigate the robust beta regression model, in comparison to the 

linear regression model with data transformation, to characterize the median-effect equation under 

different scenarios. Details on the simulation setting are described in the Supplementary Notes. 

Figure 4 shows the results with data simulated using normal error terms. When the standard deviation 

(SD) is set to 0.005 under constant precision parameter setting, which refers to well-controlled 

experiments with only small systematic error, the point estimations of IC50, IC90, 𝛽!and 𝛽" are close to the 

pre-defined true values under all scenarios when using the robust beta regression. Compared to the linear 

regression, the robust beta regression shows small estimation bias and estimation error, and reasonable 

coverage probability in the estimates of IC50, IC90, 𝛽!and 𝛽" (Supplementary Table 1). Meanwhile, the 95% 

CIs are much narrower (Figure 4), especially under the condition when data includes extreme values, 

indicating the efficiency of robust beta regression model in dose-response estimation. As SD increases, 

which hints the experiments may contain more errors, robust beta regression consistently performs well 

in estimating median-effect equation, considering the small bias and error in point estimation to true 

values and narrower 95% CI. For the scenarios where data do not include extreme values, robust beta 

regression is still better with improvement to a lesser extent. Lastly, substantive improvements are also 

observed when variances of error are non-constant but dose-dependent. 
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In parallel, similar results are obtained consistently with data simulated using beta error term, which 

induces heteroscedasticity (smaller on the two ends and bigger in the middle) at different dose levels 

(Supplementary Figure 1, Supplementary Table 2). All the results above demonstrate the sensitivity of 

standard regression model in dealing with datasets including extreme values. In addition, the result 

comparisons between the seven-dose set and the six-dose set with the largest or smallest dose eliminated 

display the potential worse influence of deleting extreme values directly in modeling dose-response using 

linear regression, which further notarizes the robustness and efficiency of the proposed robust beta 

regression.  

Overall, the simulation study suggests that the robust beta regression model produces well-calibrated 

dose-response curves while being more robust and powerful than the standard regression model in 

estimating the median effect equation. 

 

B-cell lymphoma data  

The first example of REAP application is dose-response curve estimation of the same agent under different 

cell lines. The data was originally from a study on using a drug called auranofin in treating B-cell 

lymphomas such as relapsed or refractory mantle cell lymphoma (MCL)24. As an FDA-approved for 

treatment of rheumatoid arthritis, auranofin targets thioredoxin reductase-1 (Txnrd1), and was 

repurposed as a potential anti-tumor drug to effectively induce DNA damage, reactive oxygen species 

(ROS) production, cell growth inhibition, and apoptosis in aggressive B-cell lymphomas, especially in TP53-

mutated or PTEN-deleted lymphomas.  

In the experiment, the effect of auranofin was evaluated in six MCL cell lines (Z-138, JVM-2, Mino, Maver-

1, Jeko-1, and Jeko-R) with auranofin in concentrations ranging from 0 to 5 μM for 72 h and tested cell 

viability using a luminescent assay. The confidence interval bars of observed dose-response in Figure 5 

show that the sample variance of error from repeated measurements decreased with the increase of 
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auranofin concentrations. To account for the heteroscedasticity and asymmetry in the variance, we 

enable a dose-dependent precision (proportional to inverse variance) in REAP, adding log(𝑑𝑜𝑠𝑒) as an 

additional regressor for the precision parameter. Figure 5 shows the fitted dose-response curves with the 

dose-dependent precision. The test for homogeneity (p-value < 0.0001) suggests distinct dose-response 

between cell lines. The estimation of intercepts, hill coefficients and pairwise comparisons of IC50 

estimations are provided in Supplementary Table 3. 

 

SARS-CoV-2 data 

The second example is on the dose-response curve estimation in antiviral drug development for 

coronavirus disease 2019 (COVID-19). At the beginning of 2020, COVID-19 broke out at an unprecedented 

pace internationally, but there were limited therapeutic options for treating this disease. Therefore, many 

compounds and their combinations were rapidly tested in vitro against the SARS-CoV-2 virus to identify 

potentially effective treatments and prioritize clinical investigation.  

In the data25, the benchmark compound collection consists of five known antivirals, including remdesivir, 

E64d (aloxistatin), chloroquine, calpain Inhibitor IV and hydroxychloroquine. The in vitro experiment was 

performed using the same biological batch of SARS-CoV-2 virus and conducted in biosafety level-3. In the 

original publication25, the dose-response curves were fitted by linear regression, which could yield 

inconclusive estimation (e.g., hydroxychloroquine in Fig. 1G of Bobrowski et al. (2020)25), while the 

estimated inhibition tends to exceed 1 when concentration is larger than 10 𝜇M. REAP gives reasonable 

estimation for the dose-response curves (Figure 6). The hypothesis testing results show that at least one 

slope estimation is different from other antivirals (p-value = 0.0003) and at least one EC50 estimation is 

different from others (p-value = 0.003). Calpain Inhibitor IV shows a higher potency than other agents 

including hydroxychloroquine (p-value = 0.0038, Supplementary Table 4). 
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Discussion  

Quantifying the potency of a compelling substance is always a central topic in life sciences26. It is a vital 

component of research in pharmacology, but also prevalent in the fields of toxicology, environmental 

science, agrochemistry, and medicine, among many others. For instance, the description of dose-response 

curves can provide the initial toxicological risk assessment27, and guide in silico modeling of toxic doses to 

humans and the environment28. Based on proper identification of dose-response relationship from in vitro 

assays, studies can successfully predict systemic toxicological effects in vivo without additional in silico 

modelling29. Nevertheless, it necessitates accurate and reliable description of the dose-response curve, 

which further demands robust and efficient modeling strategies to account for embedded variability in 

observed response and to derive solid inference with valid quantification of uncertainty.  

The dose-response estimation could be substantially biased by the standard regression modeling. In the 

illustrative example (Figure 1), the estimated IC50 dose indeed effects the 70% fraction of cell affected, 

while the estimated response at the true IC50 dose is only 22%. Such a large discrepancy is sourced by a 

small (<0.5%) single measurement error, which is common and inevitable in any regular in vivo 

experiment, but could engender profound impact to assessment of drug potency and determination of 

synergy in drug combinations. In addition, the modeling strategy of deleting those extreme values (e.g., 

Figure 2, or 6noL and 6noS datasets in Figure 4 and Supplementary Figure 1) is futile to improve the poor 

performance of standard regression model, but may further impair the estimation efficiency and accuracy. 

In general, it fails to reduce bias but only introduces larger uncertainty in estimation of dose 

concentration, especially at extreme responses (e.g., IC90). 

We develop REAP for assessment of drug potency to address concerns in this regard. It has substantial 

advantages over existing methods by reducing the impact of random errors due to implicit variations in 

the experimental data. To our best knowledge, it is also for the first time that beta regression is introduced 

to dose-response estimation. The underlying modified robust beta regression model estimated by the 
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data-driven tuning parameter is resilient to estimation bias caused by extreme observations, which is a 

routinely encountered situation for deficient dose-response estimation using the standard estimation 

approach. The proposed approach is also efficient in quantitative characterization of dose-response 

curves with narrower confidence intervals for key estimators. Furthermore, REAP can simultaneously 

model the data heterogeneity with a dose-dependent precision component (Figure 5). It is simply 

different from other dose-response methods, in which a vector of weights have to be (possibly mis-

)specified externally. REAP is an open-source and user-friendly platform, developed for diverse non-

computational scientists for hands-on wet-laboratory data analysis in regular use, and can be hosted 

within R shiny environment under Windows, Linux, and Mac system or deployed in Docker available as a 

web server.  

Our work potentially can be useful in applications of drug screening. The proposed method and the 

developed REAP App allow for the robust and efficient estimation and accounting for outliers as well, 

making it fitted particularly in a high-throughput setting. As the result of a complex and dynamic cascade 

of events, exposure time is another important factor ultimately affecting the dose-response. For in vitro 

experiments measured at different time-points in a choice of cell-lines and expressed by a variety of 

assays30, the proposed modeling framework can be naturally extended to model time-dependent 

cytotoxicity while controlling for fixed or random effects. Furthermore, the application of robust and 

efficient dose-response estimation can be integrated into methods to identify drug interaction effect6,31. 

There is a venerable history that multi-agent combination therapies demonstrate great advantages in 

improving therapeutic efficacy and revolutionize patient outcomes in a wide range of diseases. Robust 

and efficient estimation of the dose-response curve would be crucial in investigation of adequate drug 

combinations. 

The developed method has limitations. We presented a model of the median effect equation for dose-

response curve estimation based on mass action law. While in specific scenarios other laws may be 
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considered more suitable to describe the biomedical systems, the current modeling framework can be 

naturally adapted for other dose-response functions like probit (via cumulative normal distribution) and 

Weibull model32, or any other continuous distribution functions. In addition, the median-effect equation 

to characterize pharmacological activity assumes the compound can affect all the cells. From a 

quantitative perspective, a compound that cannot reach high binding affinity will yield an over-

conservative estimation for median effective dose of a drug. However, in comparison to the sensitivity of 

different compounds in an assay, it is not harmful because the less effective compounds will be more 

easily identified. If it is a concern that the maximal effects of candidate compounds are different and the 

aim is to accurately model the dose-response curve, the Emax model could be a better choice33. 

Furthermore, the robust beta regression approach in REAP cannot handle values equal or less than 0, or 

equal or greater than 1. Thus, we developed a sequential data truncation algorithm in REAP to overcome 

the limitation of the conventional transformation (y * (n−1) + 0.5) / n, which could be too rough in dose-

response curve estimation particularly when the sample size n for each group is relatively small. Although 

empirically we have validated it using simulated data, the algorithm could be improved by future work to 

retain information more efficiently. 

In summary, a good modeling strategy must effectively characterize the nature of the observed dose-

response pattern16. Rapid advances in novel drug development and considerable deficiency in modeling 

data with extreme values offer an appealing opportunity for next-generation quantitative approaches. 

While many aspects of the techniques discussed here fit in the statistical framework of robust beta 

regression, our aim is to clearly apply and rigorously customize the analytic considerations, to reduce bias 

and ameliorate efficiency in routinely used dose-effect estimation, and to facilitate the convenient 

analytic implementation and dissemination. Experimental conditions and candidate drug potency could 

inevitably vary in practice, but REAP provides a great tolerance for points with extreme values, solid 

support for accurate and efficient dose-response curve estimation, and useful reference to the future 
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development of methodology in drug investigation. Overall, we anticipate that our work will contribute 

more to quantitative analysis in assessment of drug potency in pre-clinical research.  

 

Methods 

Median-effect equation and dose-response curve 

The median-effect equation describes a popular model of the dose-response relationship based on the 

median effect principle of the mass action law in various biological systems2. Assume 𝑓# and 𝑓$ are the 

fractions of the system affected and unaffected by a drug concentration 𝑑. The median-effect equation 

states that 

𝑓#
𝑓$
= (

𝑑
𝐷%

)%,																																																																						(1) 

where 𝑚 is the Hill coefficient signifying the sigmoidicity of the dose-effect curve and 𝐷% is the dose of a 

drug required to produce the median effect, which is analogous to the more familiar 𝐼𝐶&"  (drug 

concentration that causes 50% of the maximum inhibitory effect), 𝐸𝐷&" (half-maximum effective dose), 

or 𝐿𝐷&" (median lethal dose) values 13. For example, if an inhibitory substance is of interest, the parameter 

𝑚 measures the cooperativity in the binding of multiple ligands to linked binding sites, and the parameter 

𝐷% = 𝐼𝐶&", defined by the concentration that causes 50% of the maximum inhibitory effect.  

Given 𝑓# + 𝑓$ = 1, the median-effect equation (1) is equivalent to 

logit(𝑓#) = log
𝑓#
𝑓$
= −logit(𝑓$) = −log

𝑓$
𝑓#
= 𝑚(log 𝑑 − log 	𝐷%),														(2) 

where logit(𝑝)  denotes the logit function log '
!('

. The equation (2) shows a log-linear relationship 

between the drug dose 𝑑 and its effect 𝑓# (or 𝑓$, if it is, for example, the % survival of interest) after a logit 

transformation. Because from a modeling perspective the identical strategy can be applied to model both 

𝑓# and 𝑓$, for the effect on cell fraction 𝐸, we can re-write equation (2) to be: 
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logit(𝐸) = log
𝐸

1 − 𝐸
= 𝛽! log 𝑑 + 𝛽"																																															(3) 

where 𝛽" is the intercept and 𝛽! the slope of the response curve. In this presentation, the median effect 

dose  

𝐷% = 	𝑒𝑥𝑝 ?−
𝛽"
𝛽!
@,																																																																	(4) 

the Hill coefficient  

𝑚 = B 𝛽!−𝛽!
       if        

𝐸 = 𝑓#
𝐸 = 𝑓$

  																																																							(5) 

and the dose-response curve  

𝐸 = logit(!(𝛽! log 𝑑 + 𝛽"),																																																								(6) 

where logit(!(𝑥) = )*+	(.)
!0)*+	(.)

 is the inverse-logit function. 

 

Beta regression model for dose-response curve estimation 

We will review the beta regression model which for the first time will be applied in dose-response 

estimation. The effect 𝐸 and the parameters 𝛽 = (𝛽", 𝛽!)  in equation (3) cannot be directly observed, 

but they can be estimated using experimental data, in which the observed sample cell fraction 𝑦 produced 

by the drug dose 𝑑 is a random variable with mean 𝐸. It is clear that effective estimation must properly 

account for random variation and be based upon a model that not only matches the nature of the 

response variable, but adequately characterizes the observed dose-response pattern16. 

Among all the unknown quantities, the parameters 𝛽 could be first estimated and play a fundamental role 

in supporting the inference for others. In the standard estimation procedure based on linear regression, 

logit(𝑦) = log 1
!(1

 is regressed on log 𝑑 to get the inference on parameters 𝛽. Subsequently, the dose-

response curve can be estimated by equation (6), and (𝐷%, 𝑚) can be derived based on equations (4) and 

(5) for median-effect equation (2). Because the extreme values of 𝑦 close to 0 or 1 could yield very large 
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values of logit(𝑦) (approaching to −∞ or +∞, respectively, if 𝑦 → 0 or 1), and induce significant bias in 

estimation of	𝛽, the accuracy of the estimated dose-response curve and median-effect equation is in 

question when there exist extreme values in the dataset. 

The beta regression model describes a response variable 𝑦 with continuous values restricted to the open 

standard unit interval17,18. In a classic beta regression framework, the beta regression model uses a 

parameterization of the beta law that is indexed by the mean parameter 𝜇, and the precision parameter 

𝜙 that controls the overall variation12. To model the dose-response relationship for the cell fraction 𝐸, we 

assume that the response 𝑦 is a beta-distributed random variable and its mean 𝜇 = 𝐸 has the form of 

equation (6), where 𝑑 is the dose producing effect 𝐸, 𝛽! and 𝛽" are the regression parameters. Estimation 

of regression parameters 𝛽 can be performed using maximum likelihood method to derive point estimate 

𝛽J  and covariance matrix 𝛴.  

Beta regression is resistant to extreme values and provides reliable estimations (Fig. 1). Compared with 

the standard approach, which applies a non-linear transformation in the response for an approximation 

to the normal distribution, the beta density can take on a variety of shapes to account for non-normality 

and skewness19. In the presence of heteroskedasticity and asymmetry, two common problems frequently 

observed in limited range continuous response data, an empirical study showed that the beta regression 

provided the best estimation among several alternatives20. 

 

Robust beta regression model with MDPDE  

We will present a modified robust beta regression approach in REAP implementation, which is established 

based on density power divergence for robust estimation13, but further improved after we introduce a 

data-driven method to identify the optimal tuning parameter. The standard beta regression potentially 

could still be sensitive against outliers because its inference is based on the maximum likelihood 
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estimation. Ghosh13 developed the robust minimum density power divergence estimators (MDPDE) that 

address the problem by minimizing the average density power divergence (DPD) 

𝑑2(𝑔M, 𝑔) = 	N𝑔!02 −
1 + 𝛼
𝛼

N𝑔M𝑔2 +
1
𝛼
N𝑔M!02 ,	 

𝑑"((𝑔M, 𝑔) = 	 lim2→"𝑑2(𝑔M, 𝑔) = N𝑔M log ?
𝑔M
𝑔@
,																																											(7) 

between the empirical density 𝑔Mand the beta model density function 𝑔 ≡ 𝐵𝑒𝑡𝑎(𝜇𝜙, (1 − 𝜇)𝜙). 𝛼 is a 

non-negative tuning parameter, smoothly connecting the likelihood disparity (at 𝛼  = 0) to the L2-

Divergence (at 𝛼 = 1). The parameter of interest 𝛽 is estimated by minimizing the DPD measure between 

𝑔4  and the density, 𝑔M4, estimated by data: 

𝑛(!W𝑑2(
5

46!

𝑔M4(∙), 𝑔4(∙, 𝜽))																																																							(8) 

or equivalently, minimizing the objective function using the estimation equations: 

𝐻5,2(𝜽) = 𝑛(!W[𝐾4,2(𝜽) −
1 + 𝛼
𝛼

𝑔4(𝑦4 , 𝜽)2]
5

46!

																																					(9) 

where 𝐾4,2(𝜽) =
8((!02)9!:,(!02)(!(9!):(2)

8(9!:,(!(9!):)"
.  

MDPDE improves the standard beta regression with the DPD measure and a fixed tuning parameter. The 

recommended 𝛼 is around 0.3 to 0.4, but simply assigning a fixed 𝛼 in [0.3,0.4] is not applicable in many 

cases. Here we adopted a data-driven method21 to identify the optimal 𝛼. The search for the optimal 𝛼 

starts with a grid of 𝛼 and a pre-defined 𝛼%#.  and grid size 𝑝, which generates a sequence of equally 

spaced {𝛼;};6"% 	(0 = 𝛼" < 𝛼! < ⋯ < 𝛼% ≤ 𝛼%#.). MDPDE calculates the corresponding 𝜽 and 𝑠𝑒(𝜽) 

with each 𝛼 so that we get a vector of standardized estimates:  

𝑧2# = g
𝜃i2#
! 	

√𝑛𝑠𝑒k𝜃i2#
! l

, … ,
𝜃i2#
' 	

√𝑛𝑠𝑒k𝜃i2#
' l
n
<

. 

The standardized quadratic variations (SQV) are defined by: 
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𝑆𝑄𝑉2# = 𝑝(!||𝑧2# − 𝑧2#$%||. 

We compare each 𝑆𝑄𝑉2#  with a pre-defined threshold 𝐿	(𝐿 > 0). If all 𝛼; satisfy the stability condition of 

𝑆𝑄𝑉2# < 𝐿, then the optimal 𝛼 equals the minimal 𝛼 in 𝛼;. Otherwise, restart the search with a new grid 

of 𝛼;. The new grid of the same size 𝑝 is picked from the sequence {𝛼;};6"% 	starting from the largest 𝛼; 

that fails the stability condition. Repeat searching until the current grid satisfies the stability condition or 

𝛼%#. is reached. If the stability condition is satisfied before 𝛼%#. is reached, then optimal 𝛼 equals the 

minimal value in the grid of 𝛼;. If 𝛼%#. is reached, then optimal 𝛼 equals 0, which is equivalent to the 

maximum likelihood estimation. 

 

Point estimate and its confidence interval for drug activity measurements  

The objective of analysis is to characterize the dose-response curves in equation (2) and quantify in vitro 

drug potency. Popular drug activity measurements include Hill coefficient 𝑚 and median effect dose 𝐷%. 

In some circumstances, other measurements such as instantaneous inhibitory potential (IIP), which 

directly quantifies the log decrease in single-round infection events caused by a drug at a clinically relevant 

concentration, are of special interest22.  

The MDPDE for beta regression model provides a robust strategy to estimate 𝛽, from which the point 

estimates and confidence intervals of relevant drug activity measurements can be derived. 

Mathematically, those drug activity quantities can be written as functions of parameters 𝛽 with an explicit 

form. Subsequently, their point estimates and confidence intervals can be derived based on the inference 

of 𝛽. For example, given a point estimate 𝛽J = (𝛽J", 𝛽J!), the point estimate for 𝑚t , 𝐷u% as a single value, 

and 𝐸i  as a function of dose 𝑑 can be computed using equations (4 - 6).  

It is important to construct the confidence interval around the point estimate to gauge the estimation 

uncertainty. With different levels of measurement error from either well-managed or lousy experiments, 

the levels of evidence vary for statistical inference, even if it is derived the same point estimates for the 
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intercept 𝛽", slope 𝛽! and the corresponding dose-response curve. Given the point estimate 𝛽J  and its 

positive-definite covariance matrix 𝛴  to account for variability in observed response, we apply the 

multivariate delta method and approximate the variance estimate after assuming asymptotic normality23. 

As demonstrated in our simulation studies, the constructed (1 − 𝛼) × 100%  confidence interval 

consistently provides better results to quantify the (1 − 𝛼) × 100%  coverage probability. More 

importantly, the width of the constructed confidence interval was narrower than that from a linear 

regression model, suggesting that our approach is more efficient with a higher statistical power 

(Supplementary Tables 1-2). 

 

Comparison of the dose-response curves  

When we estimate multiple dose-response curves with the data collection experiments conducted in a 

similar setting, it is often of interest to statistically compare the drug potency and/or Hill coefficients. A 

typical comparison may occur when we examine the similarity of response from different drugs, explore 

the additional effect of a drug combined with certain monotherapy, or assess the homogeneity of a drug 

to different patient samples or cell lines. In the beta regression framework, the statistical comparison can 

be conducted by first comparing independent fits for each curve with a global fit that shares the common 

parameters among different groups. Subsequently, the likelihood ratio test can be applied to examine 

whether the same Hill coefficient or one dose-response curve can adequately fit all the data. The only 

exception is to assess whether median effect doses are the same in different groups, while an F test is 

used for the single parameter testing. If the global test for potency shows a significant p-value, a pairwise 

comparison can be conducted using two-sided t-test for the ordered groups with Benjamini-Hochberg 

correction for multiplicity. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.11.20.469388doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469388
http://creativecommons.org/licenses/by-nc-nd/4.0/


Funding Support: This study was supported in part by the Penn State College of Medicine Junior Faculty 

Development Award, NIH National Center for Advancing Translational Sciences Grant UL1 TR002014, MD 

Anderson B-cell Lymphoma Moon Shot Program, and NIH Cancer Center Support Grant P30 CA016672.  

 

Conflict of interest statement: The authors report no potential conflicts of interest. 

 

 

References 

1. Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and 

antagonism in drug combination studies. Pharmacological Reviews vol. 58 621–681 (2006). 

2. Chou, T. C. Derivation and properties of Michaelis-Menten type and Hill type equations for 

reference ligands. J. Theor. Biol. 59, (1976). 

3. Chou, T. C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects 

of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984). 

4. Chou, T. & Rideout, D. C. The median-effect principle and the combination index for quantitation 

of synergism and antagonism. in Synergism and Antagonism in Chemotherapy (1991). 

5. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response 

surface perspective. Pharmacol. Rev. 47, (1995). 

6. Lee, J. J. & Kong, M. Confidence Intervals of Interaction Index for Assessing Multiple Drug 

Interaction. Stat. Biopharm. Res. (2009) doi:10.1198/sbr.2009.0001. 

7. Roell, K. R., Reif, D. M. & Motsinger-Reif, A. A. An introduction to terminology and methodology 

of chemical synergy-perspectives from across disciplines. Front. Pharmacol. 8, 1–11 (2017). 

8. Gadagkar, S. R. & Call, G. B. Computational tools for fitting the Hill equation to dose-response 

curves. J. Pharmacol. Toxicol. Methods 71, 68–76 (2015). 

9. Solzin, J. et al. Action limit outlier test: A novel approach for the identification of outliers in 

bioassay dose-response curves. Bioanalysis 12, 1459–1468 (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.11.20.469388doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469388
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Schmidheiny, K. Heteroskedasticity in the Linear Model. Econometrica (2009). 

11. Williams, J. D., Birch, J. B., Woodall, W. H. & Ferry, N. M. Statistical monitoring of heteroscedastic 

dose - Response profiles from high-throughput screening. J. Agric. Biol. Environ. Stat. 12, 216–

235 (2007). 

12. Ferrari, S. L. P. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. 

Stat. 31, 799–815 (2004). 

13. Ghosh, A. Robust inference under the beta regression model with application to health care 

studies. Stat. Methods Med. Res. 28, 871–888 (2019). 

14. Shen, L. et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-

HIV drugs. Nat. Med. 14, 762–766 (2008). 

15. Sampah, M. E. S., Shen, L., Jilek, B. L. & Siliciano, R. F. Dose-response curve slope is a missing 

dimension in the analysis of HIV-1 drug resistance. Proc. Natl. Acad. Sci. U. S. A. 108, 7613–7618 

(2011). 

16. Lyles, R. H., Poindexter, C., Evans, A., Brown, M. & Cooper, C. R. Nonlinear model-based 

estimates of IC50 for studies involving continuous therapeutic dose-response data. Contemp. 

Clin. Trials 29, 878–886 (2008). 

17. Johnson, N., Kotz, S. & Balakrishnan, N. Continuous univariate distributions, volume 2. (1995). 

18. Simas, A. B., Barreto-Souza, W. & Rocha, A. V. Improved estimators for a general class of beta 

regression models. Elsevier 

https://www.sciencedirect.com/science/article/pii/S0167947309003107 (2008). 

19. Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with 

beta-distributed dependent variables. Psychol. Methods (2006) doi:10.1037/1082-989X.11.1.54. 

20. Kieschnick, R. & Mccullough, B. D. Regression analysis of variates observed on (0, 1): Percentages, 

proportions and fractions. Stat. Model. 3, 193–213 (2003). 

21. Ribeiro, T. K. A. & Ferrari, S. L. P. Robust estimation in beta regression via maximum Lq-likelihood. 

(2020). 

22. Shen, L., Rabi, S. A. & Siliciano, R. F. A novel method for determining the inhibitory potential of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.11.20.469388doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469388
http://creativecommons.org/licenses/by-nc-nd/4.0/


anti-HIV drugs. Trends Pharmacol. Sci. 30, 610–616 (2009). 

23. Bickel, P. & Doksum, K. Mathematical statistics: basic ideas and selected topics, volumes I-II 

package. (2015). 

24. Wang, J. et al. Repurposing auranofin to treat TP53-mutated or PTEN-deleted refractory B-cell 

lymphoma. Blood Cancer J. 9, (2019). 

25. Bobrowski, T. et al. Synergistic and Antagonistic Drug Combinations against SARS-CoV-2. Mol. 

Ther. 29, 873–885 (2021). 

26. Schindler, M. Theory of synergistic effects: Hill-type response surfaces as ‘null-interaction’ 

models for mixtures. Theor. Biol. Med. Model. 14, 1–16 (2017). 

27. Council, N. R. Toxicity testing in the 21st century: A vision and a strategy. Toxicity Testing in the 

21st Century: A Vision and a Strategy (National Academies Press, 2007). doi:10.17226/11970. 

28. Blaauboer, B. J. et al. The use of biomarkers of toxicity for integrating in vitro hazard estimates 

into risk assessment for humans. in Altex vol. 29 411–425 (Elsevier GmbH, 2012). 

29. Groothuis, F. A. et al. Dose metric considerations in in vitro assays to improve quantitative in 

vitro-in vivo dose extrapolations. Toxicology 332, 30–40 (2015). 

30. Byrne, H. J. & Maher, M. A. Numerically modelling time and dose dependent cytotoxicity. 

Comput. Toxicol. 12, 100090 (2019). 

31. Lee, J. J., Kong, M., Ayers, G. D. & Lotan, R. Interaction index and different methods for 

determining drug interaction in combination therapy. J. Biopharm. Stat. 17, 461–480 (2007). 

32. Christensen, E. R. Dose-response functions in aquatic toxicity testing and the Weibull model. 

Water Res vol. 18 (1984). 

33. Jack Lee, J., Lin, H. Y., Liu, D. D. & Kong, M. Emax model and interaction index for assessing drug 

interaction in combination studies. Front. Biosci. - Elit. 2 E, 582–601 (2010). 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.11.20.469388doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469388
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Figure 1. Dose-response curve fitting with extreme observations. The original data points are on the true 

curve. The first data point (boxed) is changed from 0.005 to 1e-6, referring to a small white noise that 

cannot be visually recognized. The change leads to the obvious departure between the estimated curve 

by linear regression model (dotted) and the true curve (solid), which demonstrates that standard 

regression is sensitive to extreme values. The response at the true IC50 (dotdashed, vertical, left) is only 

22% from the estimated curve; the estimated IC50 (dotdashed, vertical, right) corresponds to the 70% 

fraction of cell affected, effecting a substantive 20% inflation (50% -> 70%) in estimation error. In contrast, 

the estimated curve by beta regression model (dashed) is almost overlapped with the true curve (solid), 

which shows that BRM is much more robust to extreme values. LRM: linear regression model (after logit 

transformation); BRM: robust beta regression model. 
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Figure 2. Comparison of estimation efficiency and accuracy using linear regression model and beta 

regression model. Deleting the extreme values couldn’t eliminate the bias (panel A), but only harmed the 

accuracy with worse coverage probabilities (panel B) and impaired the efficiency of interval estimation 

with wider nominal 95% confidence intervals (panel C). 1000 data sets were generated following the data 

simulating process described in Supplementary Notes, using the dose sets and true dose-response curve 

under 7 dose setting with a precision parameter of 100. Responses ≤ 5% or ≥ 95% were considered 

extreme responses. BRM: beta regression with extreme data points; LRM: linear regression model (after 

logit transformation) with extreme data points; LRM(t): linear regression model (after logit 

transformation) with truncated dataset after deleting extreme values. 

  

-0.2

-0.1

0.0

0.1

0.2

IC50 IC90 β0 β1

Bi
as

A

0.00

0.25

0.50

0.75

1.00

IC50 IC90 β0 β1

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

B

0.00

0.25

0.50

0.75

1.00

IC50 IC90 β0 β1

Le
ng

th
 o

f 9
5%

 C
.I.

Methods
BRM

LRM

LRM(t)

C

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.11.20.469388doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. REAP App interface, with a highlight of Output section. Using the robust beta regression method, 

REAP produces a dose-response curve plot with effect and model estimations. The left panel allows users 

to specify model features and design plot specifics. REAP also provides hypothesis testing results to 

compare effect estimations, slopes and models.  
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Figure 4. Comparison of the point estimates and 95% confidence intervals using linear regression model 

and robust beta regression model, with data simulated from normal error term. The vertical solid lines 

indicate the true values. The point estimation by robust beta regression was consistently closer to the 

true value with a narrower 95% CI compared to the linear regression model. LRM-7: LRM under 7 dose 
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dataset with extreme data points; LRM-6noL: LRM under 6 dose dataset after removing the highest dose 

data point; LRM-6noS: LRM under 6 dose dataset after removing the lowest dose data point; LRM-7lessE: 

LRM under 7 dose dataset with less extreme data points; LRM-7NCP: LRM under 7 dose dataset with 

extreme data points and dose-dependent precision; BRM-7: BRM under 7 dose dataset with extreme data 

points; BRM-6noL: BRM under 6 dose dataset after removing the highest dose data point; BRM-6noS: 

BRM under 6 dose dataset after removing the lowest dose data point; BRM-7lessE: BRM under 7 dose 

dataset with less extreme data points; BRM-7NCP: BRM under 7 dose dataset with extreme data points 

and dose-dependent precision. 
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Figure 5. Dose-response curve estimation of auranofin (µM) under different MCL cell lines. The dose-

response curve was fitted with a dose-dependent precision with log	(𝑑𝑜𝑠𝑒) as an additional regressor for 

the precision estimator. Observed dose effects are displayed with 95% confidence interval bars, which 

end with arrows when estimated confidence intervals exceed (0,1). Triangles at the bottom indicate IC50 

values for each MCL cell line. MCL: mantle cell lymphoma. 
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Figure 6. Dose-response curve estimation of anti-viral drugs under the same biological batch with SARS-

CoV-2 data. The robust beta regression gives reasonable estimations to dose-response curve of 

hydroxychloroquine, compared to the inconclusive dose-response curve fitted by linear regression in 

Bobrowski et al. (2020). The plot is generated without selecting the option of mean and confidence 

interval for observations. Triangles indicate the estimated EC50 values for each drug. 
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