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Abstract

The median-effect equation has been widely used to describe the dose-response relationship and identify
compounds that activate or inhibit specific disease targets in contemporary drug discovery. However, the
experimental data often contain extreme responses, which may significantly impair the estimation
accuracy and impede valid quantitative assessment in the standard estimation procedure. To improve the
guantitative estimation of the dose-response relationship, we introduce a novel approach based on
robust beta regression. Substantive simulation studies under various scenarios demonstrate solid
evidence that the proposed approach consistently provides robust estimation for the median-effect
equation, particularly when there are extreme outcome observations. Moreover, simulation studies
illustrate that the proposed approach also provides a narrower confidence interval, suggesting a higher
power in statistical testing. Finally, to efficiently and conveniently perform common lab data analyses, we
develop a freely accessible web-based analytic tool to facilitate the quantitative implementation of the

proposed approach for the scientific community.

Keywords: Robust Beta regression, Dose-response estimation, EDsg, 1Cso, Median effect equation, Sigmoid
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Introduction

The median-effect equation is a unified theory in medicine to describe the dose-response relationship and
identify agents or their combinations that activate or inhibit specific disease targets®. It is a fundamental
method established based on the pharmacological principle of mass-action law?. As the common link for
many biomedical systems, it has been used extensively to analyze in vitro experimental data and evaluate
the potency of related drugs®™®.

In practice, the median-effect equation can be estimated for drug efficacy or pathway inhibition from
normalized data generated from experimental studies. Without knowing the true dose-effect curve during
the experimental design and data collection, it is common to observe extreme values of (un)affected cell
fraction that is close to the response of either 0 or 100% in the analytic dataset. Quantitatively, it poses a
special analytic challenge to estimate the median-effect question in practice. The standard estimation
approach, often based on a linear regression model after a logit transformation’, could suffer badly from
poor estimation in such situations. Figure 1 illustrates a preliminary example in that the standard
approach is deficient in describing the median effect curve with a perturbation in one extreme data point.
The variation in real experimental data, mostly caused by unavoidable measurement error, often at a
much larger degree, therefore challenges the reliability of result presentation and interpretation for many
drug assessment studies.

Additionally, the modeling strategy by deleting extreme values may not be feasible in many situations®.
For example, a meaningful drug concentration could consist of high inhibition (>90%) or low cell viability
(<10%) in cancer research. It is not logical to ignore extreme observations when they are indeed
biologically relevant for the target effect, not even to mention an associated loss of power and accuracy
by leaving fewer data points for estimation. As illustrated in Figure 2, deleting the extreme values couldn’t
eliminate the estimation bias, but only impaired the efficiency of interval estimation with wider nominal

95% confidence intervals (C.I.) and harmed the estimation accuracy with worse coverage probabilities.
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Furthermore, it is dubious to apply the constant error variance, a default assumption in standard linear
regression modeling, in dose-response estimation. As an assumption can be examined with repeated
measures, many dose-response data have indicated either a constant variance before logit transformation
or a positive correlation with drug dose. It is incongruous to apply linear regression if the assumption is
violated due to error heteroscedasticity’®!!. Therefore, it is essential to develop a robust quantitative
approach to estimating the median-effect equation.

Here, we introduce a novel approach to improving the quantitative assessment of dose-response
relationship and drug potency, together with a user-friendly web-based analytic tool to facilitate the
implementation. The proposed method to estimate the median-effect equation is established in the
robust beta regression framework, which not only takes the beta law to account for non-normality and
heteroskedasticity!?, but also minimizes the average density power divergence (DPD) using a tuning
parameter, which compensates for the lack of robustness against outliers under the standard beta
regression®. Results from simulation studies under various scenarios confirm that the proposed approach
consistently gives robust estimation for the median-effect equation. Particularly, we examine two
important measures for drug binding affinity: the Hill coefficient, which signifies the sigmoidicity of the
curve, and overall effect, indicated by dose concentration for a specified (e.g., 50%) response’**>. When
there are extreme outcome observations, the improvement of robust beta regression in estimation
accuracy could be substantial. Moreover, simulation studies further illustrate that the proposed approach
provides a narrower confidence interval, which in turn suggests a higher efficiency to achieve better
power in statistical testing even without acquiring additional experimental data. lllustrative examples
using real-world data for cancer research and SARS-CoV-2 treatment are provided. The analyses are
implemented using the freely accessible web-based application REAP, developed based on the Shiny
package of R language, with which research scientists could conveniently upload their drug experiment

dataset and perform the data analysis.
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Results

REAP Shiny App

We developed a user-friendly analytic tool, coined “REAP” (Robust and Efficient Assessment of Potency),
for convenient application of the robust dose-response estimation to real-world data analysis. It is
established in an agile modeling framework under the parameterization of the beta law to describe a
continuous response variable with values in a standard unit interval (0,1). We further exploited a robust
estimation method of the beta regression, named the minimum density power divergence estimators
(MDPDE)*3, for dose-response estimation, with the tuning parameter optimized by a data-driven
method?!. The technical details are provided in the Methods.

REAP presents a straightforward analytic environment for robust estimation of dose-response curve and
assessment of key statistics, including implementation of statistical comparisons and delivery of
customized output for graphic presentation (Figure 3). The dose-response curve is a time-honored tool to
convey the pharmacological activity of a compound. Through dose-response curves, we can compare the
relative activity of a compound on different assays or the sensitivity of different compounds on an assay.
REAP aims to make this job simple, estimation efficient, and results robust.

There are three sections in REAP: Introduction, Dataset and Output. Users can have both overview and
instruction of REAP in the Introduction. Dataset is uploaded in the Dataset section. The input dataset is
mandated to be in a csv file format and contains three columns of data respectively for drug
concentration, response effect and group name, in a specific order. It is recommended that users
normalize the response variable to the range of (0,1) by themselves. Otherwise, REAP automatically will
truncate the values exceeding the boundaries to (0,1) using a truncation algorithm (see Supplementary
Notes). In the Output section, it generates a dose-response plot, along with tabulation for effect and
model estimations. We also enable hypothesis testing for comparisons of effect estimations, slopes and

models (i.e., comparing both intercepts and slopes) (see Methods). By default, the x-axis of the dose-
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response plot is log-scaled. In the plot, users can choose to add mean values and confidence intervals for
data points under the same agent and dose level. Both plots and estimation tables are downloadable on
REAP to plug in presentations and manuscripts for result dissemination.

The open-sourced REAP is freely available and accessible at https://xinying-fang.shinyapps.io/REAP/. We

demonstrated it in two real-world examples, after presenting the simulation results, to illustrate the

functionality of REAP.

Simulations

We conducted simulation studies to investigate the robust beta regression model, in comparison to the
linear regression model with data transformation, to characterize the median-effect equation under
different scenarios. Details on the simulation setting are described in the Supplementary Notes.

Figure 4 shows the results with data simulated using normal error terms. When the standard deviation
(SD) is set to 0.005 under constant precision parameter setting, which refers to well-controlled
experiments with only small systematic error, the point estimations of 1Csg, 1Cs0, f7and 8, are close to the
pre-defined true values under all scenarios when using the robust beta regression. Compared to the linear
regression, the robust beta regression shows small estimation bias and estimation error, and reasonable
coverage probability in the estimates of ICsq, ICs0, f1and S, (Supplementary Table 1). Meanwhile, the 95%
Cls are much narrower (Figure 4), especially under the condition when data includes extreme values,
indicating the efficiency of robust beta regression model in dose-response estimation. As SD increases,
which hints the experiments may contain more errors, robust beta regression consistently performs well
in estimating median-effect equation, considering the small bias and error in point estimation to true
values and narrower 95% Cl. For the scenarios where data do not include extreme values, robust beta
regression is still better with improvement to a lesser extent. Lastly, substantive improvements are also

observed when variances of error are non-constant but dose-dependent.
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In parallel, similar results are obtained consistently with data simulated using beta error term, which
induces heteroscedasticity (smaller on the two ends and bigger in the middle) at different dose levels
(Supplementary Figure 1, Supplementary Table 2). All the results above demonstrate the sensitivity of
standard regression model in dealing with datasets including extreme values. In addition, the result
comparisons between the seven-dose set and the six-dose set with the largest or smallest dose eliminated
display the potential worse influence of deleting extreme values directly in modeling dose-response using
linear regression, which further notarizes the robustness and efficiency of the proposed robust beta
regression.

Overall, the simulation study suggests that the robust beta regression model produces well-calibrated
dose-response curves while being more robust and powerful than the standard regression model in

estimating the median effect equation.

B-cell lymphoma data

The first example of REAP application is dose-response curve estimation of the same agent under different
cell lines. The data was originally from a study on using a drug called auranofin in treating B-cell
lymphomas such as relapsed or refractory mantle cell lymphoma (MCL)**. As an FDA-approved for
treatment of rheumatoid arthritis, auranofin targets thioredoxin reductase-1 (Txnrd1), and was
repurposed as a potential anti-tumor drug to effectively induce DNA damage, reactive oxygen species
(ROS) production, cell growth inhibition, and apoptosis in aggressive B-cell ymphomas, especially in TP53-
mutated or PTEN-deleted lymphomas.

In the experiment, the effect of auranofin was evaluated in six MCL cell lines (Z-138, JVM-2, Mino, Maver-
1, Jeko-1, and Jeko-R) with auranofin in concentrations ranging from 0 to 5 uM for 72 h and tested cell
viability using a luminescent assay. The confidence interval bars of observed dose-response in Figure 5

show that the sample variance of error from repeated measurements decreased with the increase of
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auranofin concentrations. To account for the heteroscedasticity and asymmetry in the variance, we
enable a dose-dependent precision (proportional to inverse variance) in REAP, adding log(dose) as an
additional regressor for the precision parameter. Figure 5 shows the fitted dose-response curves with the
dose-dependent precision. The test for homogeneity (p-value < 0.0001) suggests distinct dose-response
between cell lines. The estimation of intercepts, hill coefficients and pairwise comparisons of 1Cso

estimations are provided in Supplementary Table 3.

SARS-CoV-2 data

The second example is on the dose-response curve estimation in antiviral drug development for
coronavirus disease 2019 (COVID-19). At the beginning of 2020, COVID-19 broke out at an unprecedented
pace internationally, but there were limited therapeutic options for treating this disease. Therefore, many
compounds and their combinations were rapidly tested in vitro against the SARS-CoV-2 virus to identify
potentially effective treatments and prioritize clinical investigation.

In the data®, the benchmark compound collection consists of five known antivirals, including remdesivir,
E64d (aloxistatin), chloroquine, calpain Inhibitor IV and hydroxychloroquine. The in vitro experiment was
performed using the same biological batch of SARS-CoV-2 virus and conducted in biosafety level-3. In the
original publication?, the dose-response curves were fitted by linear regression, which could yield
inconclusive estimation (e.g., hydroxychloroquine in Fig. 1G of Bobrowski et al. (2020)%), while the
estimated inhibition tends to exceed 1 when concentration is larger than 10 uM. REAP gives reasonable
estimation for the dose-response curves (Figure 6). The hypothesis testing results show that at least one
slope estimation is different from other antivirals (p-value = 0.0003) and at least one ECsp estimation is
different from others (p-value = 0.003). Calpain Inhibitor IV shows a higher potency than other agents

including hydroxychloroquine (p-value = 0.0038, Supplementary Table 4).
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Discussion

Quantifying the potency of a compelling substance is always a central topic in life sciences®. It is a vital
component of research in pharmacology, but also prevalent in the fields of toxicology, environmental
science, agrochemistry, and medicine, among many others. For instance, the description of dose-response
curves can provide the initial toxicological risk assessment?’, and guide in silico modeling of toxic doses to

humans and the environment?®

. Based on proper identification of dose-response relationship from in vitro
assays, studies can successfully predict systemic toxicological effects in vivo without additional in silico
modelling?. Nevertheless, it necessitates accurate and reliable description of the dose-response curve,
which further demands robust and efficient modeling strategies to account for embedded variability in
observed response and to derive solid inference with valid quantification of uncertainty.

The dose-response estimation could be substantially biased by the standard regression modeling. In the
illustrative example (Figure 1), the estimated ICso dose indeed effects the 70% fraction of cell affected,
while the estimated response at the true ICso dose is only 22%. Such a large discrepancy is sourced by a
small (<0.5%) single measurement error, which is common and inevitable in any regular in vivo
experiment, but could engender profound impact to assessment of drug potency and determination of
synergy in drug combinations. In addition, the modeling strategy of deleting those extreme values (e.g.,
Figure 2, or 6nol and 6noS datasets in Figure 4 and Supplementary Figure 1) is futile to improve the poor
performance of standard regression model, but may further impair the estimation efficiency and accuracy.
In general, it fails to reduce bias but only introduces larger uncertainty in estimation of dose
concentration, especially at extreme responses (e.g., ICs0).

We develop REAP for assessment of drug potency to address concerns in this regard. It has substantial
advantages over existing methods by reducing the impact of random errors due to implicit variations in

the experimental data. To our best knowledge, it is also for the first time that beta regression is introduced

to dose-response estimation. The underlying modified robust beta regression model estimated by the
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data-driven tuning parameter is resilient to estimation bias caused by extreme observations, which is a
routinely encountered situation for deficient dose-response estimation using the standard estimation
approach. The proposed approach is also efficient in quantitative characterization of dose-response
curves with narrower confidence intervals for key estimators. Furthermore, REAP can simultaneously
model the data heterogeneity with a dose-dependent precision component (Figure 5). It is simply
different from other dose-response methods, in which a vector of weights have to be (possibly mis-
)specified externally. REAP is an open-source and user-friendly platform, developed for diverse non-
computational scientists for hands-on wet-laboratory data analysis in regular use, and can be hosted
within R shiny environment under Windows, Linux, and Mac system or deployed in Docker available as a
web server.

Our work potentially can be useful in applications of drug screening. The proposed method and the
developed REAP App allow for the robust and efficient estimation and accounting for outliers as well,
making it fitted particularly in a high-throughput setting. As the result of a complex and dynamic cascade
of events, exposure time is another important factor ultimately affecting the dose-response. For in vitro
experiments measured at different time-points in a choice of cell-lines and expressed by a variety of
assays®’, the proposed modeling framework can be naturally extended to model time-dependent
cytotoxicity while controlling for fixed or random effects. Furthermore, the application of robust and
efficient dose-response estimation can be integrated into methods to identify drug interaction effect®3!.
There is a venerable history that multi-agent combination therapies demonstrate great advantages in
improving therapeutic efficacy and revolutionize patient outcomes in a wide range of diseases. Robust
and efficient estimation of the dose-response curve would be crucial in investigation of adequate drug
combinations.

The developed method has limitations. We presented a model of the median effect equation for dose-

response curve estimation based on mass action law. While in specific scenarios other laws may be
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considered more suitable to describe the biomedical systems, the current modeling framework can be
naturally adapted for other dose-response functions like probit (via cumulative normal distribution) and
Weibull model®?, or any other continuous distribution functions. In addition, the median-effect equation
to characterize pharmacological activity assumes the compound can affect all the cells. From a
guantitative perspective, a compound that cannot reach high binding affinity will yield an over-
conservative estimation for median effective dose of a drug. However, in comparison to the sensitivity of
different compounds in an assay, it is not harmful because the less effective compounds will be more
easily identified. If it is a concern that the maximal effects of candidate compounds are different and the
aim is to accurately model the dose-response curve, the Emax model could be a better choice®.
Furthermore, the robust beta regression approach in REAP cannot handle values equal or less than O, or
equal or greater than 1. Thus, we developed a sequential data truncation algorithm in REAP to overcome
the limitation of the conventional transformation (y * (n-1) + 0.5) / n, which could be too rough in dose-
response curve estimation particularly when the sample size n for each group is relatively small. Although
empirically we have validated it using simulated data, the algorithm could be improved by future work to
retain information more efficiently.

In summary, a good modeling strategy must effectively characterize the nature of the observed dose-
response pattern?®. Rapid advances in novel drug development and considerable deficiency in modeling
data with extreme values offer an appealing opportunity for next-generation quantitative approaches.
While many aspects of the techniques discussed here fit in the statistical framework of robust beta
regression, our aim is to clearly apply and rigorously customize the analytic considerations, to reduce bias
and ameliorate efficiency in routinely used dose-effect estimation, and to facilitate the convenient
analytic implementation and dissemination. Experimental conditions and candidate drug potency could
inevitably vary in practice, but REAP provides a great tolerance for points with extreme values, solid

support for accurate and efficient dose-response curve estimation, and useful reference to the future
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development of methodology in drug investigation. Overall, we anticipate that our work will contribute

more to quantitative analysis in assessment of drug potency in pre-clinical research.

Methods

Median-effect equation and dose-response curve

The median-effect equation describes a popular model of the dose-response relationship based on the
median effect principle of the mass action law in various biological systems?. Assume f, and f;, are the
fractions of the system affected and unaffected by a drug concentration d. The median-effect equation
states that

fo _,d
- o

)™, (1)
where m is the Hill coefficient signifying the sigmoidicity of the dose-effect curve and D, is the dose of a
drug required to produce the median effect, which is analogous to the more familiar ICs, (drug
concentration that causes 50% of the maximum inhibitory effect), EDs, (half-maximum effective dose),
or LDg, (median lethal dose) values 2. For example, if an inhibitory substance is of interest, the parameter
m measures the cooperativity in the binding of multiple ligands to linked binding sites, and the parameter

Dy, = ICs,, defined by the concentration that causes 50% of the maximum inhibitory effect.

Given f, + f, = 1, the median-effect equation (1) is equivalent to

logit(fy) = logf

JTa = —logit(f,,) = —IOg% = m(logd — log Dy,), (2)

where logit(p) denotes the logit function 1og%. The equation (2) shows a log-linear relationship

between the drug dose d and its effect f, (or f,, if itis, for example, the % survival of interest) after a logit
transformation. Because from a modeling perspective the identical strategy can be applied to model both

fa and f,, for the effect on cell fraction E, we can re-write equation (2) to be:
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E
logit(E) = log 1= Bilogd + B, 3
where [, is the intercept and f5; the slope of the response curve. In this presentation, the median effect

dose

Dy, = exp (— —), (4)

the Hill coefficient

i ~ 5
B, E=f, )
and the dose-response curve

E = logit (B, logd + By), (6)

exp (x)

where logit_l(x) = 1+exp (x)

is the inverse-logit function.

Beta regression model for dose-response curve estimation

We will review the beta regression model which for the first time will be applied in dose-response
estimation. The effect E and the parameters § = (f,, 1) in equation (3) cannot be directly observed,
but they can be estimated using experimental data, in which the observed sample cell fraction y produced
by the drug dose d is a random variable with mean E. It is clear that effective estimation must properly
account for random variation and be based upon a model that not only matches the nature of the
response variable, but adequately characterizes the observed dose-response pattern?®.

Among all the unknown quantities, the parameters f§ could be first estimated and play a fundamental role

in supporting the inference for others. In the standard estimation procedure based on linear regression,

logit(y) = log% is regressed on log d to get the inference on parameters 3. Subsequently, the dose-

response curve can be estimated by equation (6), and (D,,, m) can be derived based on equations (4) and

(5) for median-effect equation (2). Because the extreme values of y close to 0 or 1 could yield very large
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values of logit(y) (approaching to —oo or +oo, respectively, if y = 0 or 1), and induce significant bias in
estimation of 5, the accuracy of the estimated dose-response curve and median-effect equation is in
qguestion when there exist extreme values in the dataset.

The beta regression model describes a response variable y with continuous values restricted to the open

standard unit interval*”®

. In a classic beta regression framework, the beta regression model uses a
parameterization of the beta law that is indexed by the mean parameter u, and the precision parameter
¢ that controls the overall variation®. To model the dose-response relationship for the cell fraction E, we
assume that the response y is a beta-distributed random variable and its mean ¢ = E has the form of
equation (6), where d is the dose producing effect E, 8; and [, are the regression parameters. Estimation
of regression parameters f can be performed using maximum likelihood method to derive point estimate
£ and covariance matrix 2.

Beta regression is resistant to extreme values and provides reliable estimations (Fig. 1). Compared with
the standard approach, which applies a non-linear transformation in the response for an approximation
to the normal distribution, the beta density can take on a variety of shapes to account for non-normality
and skewness®. In the presence of heteroskedasticity and asymmetry, two common problems frequently

observed in limited range continuous response data, an empirical study showed that the beta regression

provided the best estimation among several alternatives®.

Robust beta regression model with MDPDE

We will present a modified robust beta regression approach in REAP implementation, which is established
based on density power divergence for robust estimation®3, but further improved after we introduce a
data-driven method to identify the optimal tuning parameter. The standard beta regression potentially

could still be sensitive against outliers because its inference is based on the maximum likelihood
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estimation. Ghosh'® developed the robust minimum density power divergence estimators (MIDPDE) that

address the problem by minimizing the average density power divergence (DPD)

1+« 1
do(g,9) = Jg““— = fégudg““,

4((G.9) = lim da(3.,9) = [ g108(5). )
between the empirical density gand the beta model density function g = Beta(u¢, (1 —p)¢). ais a
non-negative tuning parameter, smoothly connecting the likelihood disparity (at @ = 0) to the L;-
Divergence (at a = 1). The parameter of interest 5 is estimated by minimizing the DPD measure between

gi and the density, g;, estimated by data:
n
Y dg (i), i 0)) ()
i=1

or equivalently, minimizing the objective function using the estimation equations:

n

1
Hua(8) =0t ) K,0(8) — —— g,(7,,0)%] ©

i=1

B((1+a)puip,(1+a)(A—p)p—a)
B(ui¢,(1—u)p)®

where K; ,(0) =

MDPDE improves the standard beta regression with the DPD measure and a fixed tuning parameter. The
recommended a is around 0.3 to 0.4, but simply assigning a fixed a in [0.3,0.4] is not applicable in many
cases. Here we adopted a data-driven method?! to identify the optimal a. The search for the optimal a
starts with a grid of @ and a pre-defined a,,,4, and grid size p, which generates a sequence of equally
spaced {a}io (0 = @g < @1 < *** < Ay, < Amax)- MDPDE calculates the corresponding 6 and se(0)

with each a so that we get a vector of standardized estimates:

~ ~ T
L 0, or.
(2973 \/ﬁse(é\;k) ) ey \/Ese(é\é)k) .

The standardized quadratic variations (SQV) are defined by:
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SQVay, = P |Zay, — Za, |-
We compare each SQV,, with a pre-defined threshold L (L > 0). If all a;, satisfy the stability condition of
SQVy, <L, then the optimal @ equals the minimal @ in ;. Otherwise, restart the search with a new grid
of ay. The new grid of the same size p is picked from the sequence {a; }j-, starting from the largest a;
that fails the stability condition. Repeat searching until the current grid satisfies the stability condition or
Umax IS reached. If the stability condition is satisfied before a,,,, is reached, then optimal a equals the
minimal value in the grid of ay. If a,,,4, is reached, then optimal a equals 0, which is equivalent to the

maximum likelihood estimation.

Point estimate and its confidence interval for drug activity measurements

The objective of analysis is to characterize the dose-response curves in equation (2) and quantify in vitro
drug potency. Popular drug activity measurements include Hill coefficient m and median effect dose D,,,.
In some circumstances, other measurements such as instantaneous inhibitory potential (//P), which
directly quantifies the log decrease in single-round infection events caused by a drug at a clinically relevant
concentration, are of special interest?2.

The MDPDE for beta regression model provides a robust strategy to estimate 8, from which the point
estimates and confidence intervals of relevant drug activity measurements can be derived.
Mathematically, those drug activity quantities can be written as functions of parameters f with an explicit
form. Subsequently, their point estimates and confidence intervals can be derived based on the inference
of B. For example, given a point estimate 8 = (B,, £1), the point estimate for /i, D,, as a single value,
and E as a function of dose d can be computed using equations (4 - 6).

It is important to construct the confidence interval around the point estimate to gauge the estimation
uncertainty. With different levels of measurement error from either well-managed or lousy experiments,

the levels of evidence vary for statistical inference, even if it is derived the same point estimates for the
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intercept By, slope f; and the corresponding dose-response curve. Given the point estimate [? and its
positive-definite covariance matrix X' to account for variability in observed response, we apply the
multivariate delta method and approximate the variance estimate after assuming asymptotic normality®.
As demonstrated in our simulation studies, the constructed (1 — a) X 100% confidence interval
consistently provides better results to quantify the (1 —a) X 100% coverage probability. More
importantly, the width of the constructed confidence interval was narrower than that from a linear
regression model, suggesting that our approach is more efficient with a higher statistical power

(Supplementary Tables 1-2).

Comparison of the dose-response curves

When we estimate multiple dose-response curves with the data collection experiments conducted in a
similar setting, it is often of interest to statistically compare the drug potency and/or Hill coefficients. A
typical comparison may occur when we examine the similarity of response from different drugs, explore
the additional effect of a drug combined with certain monotherapy, or assess the homogeneity of a drug
to different patient samples or cell lines. In the beta regression framework, the statistical comparison can
be conducted by first comparing independent fits for each curve with a global fit that shares the common
parameters among different groups. Subsequently, the likelihood ratio test can be applied to examine
whether the same Hill coefficient or one dose-response curve can adequately fit all the data. The only
exception is to assess whether median effect doses are the same in different groups, while an F test is
used for the single parameter testing. If the global test for potency shows a significant p-value, a pairwise
comparison can be conducted using two-sided t-test for the ordered groups with Benjamini-Hochberg

correction for multiplicity.
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Figure 1. Dose-response curve fitting with extreme observations. The original data points are on the true
curve. The first data point (boxed) is changed from 0.005 to le-6, referring to a small white noise that
cannot be visually recognized. The change leads to the obvious departure between the estimated curve
by linear regression model (dotted) and the true curve (solid), which demonstrates that standard
regression is sensitive to extreme values. The response at the true 1Cso (dotdashed, vertical, left) is only
22% from the estimated curve; the estimated ICso (dotdashed, vertical, right) corresponds to the 70%
fraction of cell affected, effecting a substantive 20% inflation (50% -> 70%) in estimation error. In contrast,
the estimated curve by beta regression model (dashed) is almost overlapped with the true curve (solid),
which shows that BRM is much more robust to extreme values. LRM: linear regression model (after logit

transformation); BRM: robust beta regression model.
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Figure 2. Comparison of estimation efficiency and accuracy using linear regression model and beta
regression model. Deleting the extreme values couldn’t eliminate the bias (panel A), but only harmed the
accuracy with worse coverage probabilities (panel B) and impaired the efficiency of interval estimation
with wider nominal 95% confidence intervals (panel C). 1000 data sets were generated following the data
simulating process described in Supplementary Notes, using the dose sets and true dose-response curve
under 7 dose setting with a precision parameter of 100. Responses < 5% or = 95% were considered
extreme responses. BRM: beta regression with extreme data points; LRM: linear regression model (after
logit transformation) with extreme data points; LRM(t): linear regression model (after logit

transformation) with truncated dataset after deleting extreme values.
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Robust and Efficient Assessment of drug Potency (REAP)
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Effect estimations 0.01 0.10 1.00 10.00
Assay concentration

Slopes
Model Formula
Download Plot @ _——
CalpaininhibitorlV logit(E) = 0.678 + 0.725 * log(Assay.concentration)
Width Height
= = Chloroquine logit(E) = -1.013 + 0.84 * log(Assay.concentration)
Remdesivir logit(E) = -1.791 + 0.797 * log(Assay.concentration)
Hydroxychloroquine logit(E) = -1.485 + 0.562 * log(Assay.concentration)
E64d (Aloxistatin) logit(E) = -3.211 + 0.861 * log(Assay.concentration)
Hill Coefficient Effect Estimation
Estimate Pairwise
(m) Std.Err. m>1 Estimate Std.Err. comparison
CalpaininhibitorlV 0.725 0.114 0.9918 0.393 0.103
Chloroquine 0.840 0.135 0.8813 3.337 0.880 0.0038
Remdesivir 0.797 0.120 0.9553 9.469 2.638 0.0282
Hydroxychloroquine 0.562 0.075 1.0000 14.074 4.994 0.4445
E64d (Aloxistatin) 0.861 0.129 0.8587 41.610 15.473 0.1242

T m > 1: p-value based on one-sided t-test for hypothesis testing on hill coefficient > 1

2 Pairwise comparison: p-value based on ANOVA test (Cohen, 2000). Concentrations that give specified effect (default at 50%) by group were sorted from low to high.
Hypothesis testings on equal potency (i.e., concentration for ED50/IC50 by default) were conducted pairwise with the group right above (one rank lower).

395% confidence intervals can be approximated by Estimate +/- 1.96"Std.Er.

Model Comparisons

Null hypothesis Fitted models same for all the agents
Alternative hypothesis At least one fitted model is different from other agents
P-value <.0001

Figure 3. REAP App interface, with a highlight of Output section. Using the robust beta regression method,
REAP produces a dose-response curve plot with effect and model estimations. The left panel allows users
to specify model features and design plot specifics. REAP also provides hypothesis testing results to

compare effect estimations, slopes and models.
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Figure 4. Comparison of the point estimates and 95% confidence intervals using linear regression model
and robust beta regression model, with data simulated from normal error term. The vertical solid lines
indicate the true values. The point estimation by robust beta regression was consistently closer to the

true value with a narrower 95% Cl compared to the linear regression model. LRM-7: LRM under 7 dose
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dataset with extreme data points; LRM-6nolL: LRM under 6 dose dataset after removing the highest dose
data point; LRM-6n0oS: LRM under 6 dose dataset after removing the lowest dose data point; LRM-7lessE:
LRM under 7 dose dataset with less extreme data points; LRM-7NCP: LRM under 7 dose dataset with
extreme data points and dose-dependent precision; BRM-7: BRM under 7 dose dataset with extreme data
points; BRM-6nolL: BRM under 6 dose dataset after removing the highest dose data point; BRM-6noS:
BRM under 6 dose dataset after removing the lowest dose data point; BRM-7lessE: BRM under 7 dose
dataset with less extreme data points; BRM-7NCP: BRM under 7 dose dataset with extreme data points

and dose-dependent precision.
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Figure 5. Dose-response curve estimation of auranofin (uM) under different MCL cell lines. The dose-
response curve was fitted with a dose-dependent precision with log (dose) as an additional regressor for
the precision estimator. Observed dose effects are displayed with 95% confidence interval bars, which
end with arrows when estimated confidence intervals exceed (0,1). Triangles at the bottom indicate 1Cso

values for each MCL cell line. MCL: mantle cell lymphoma.
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Figure 6. Dose-response curve estimation of anti-viral drugs under the same biological batch with SARS-
CoV-2 data. The robust beta regression gives reasonable estimations to dose-response curve of
hydroxychloroquine, compared to the inconclusive dose-response curve fitted by linear regression in
Bobrowski et al. (2020). The plot is generated without selecting the option of mean and confidence

interval for observations. Triangles indicate the estimated ECso values for each drug.
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