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Adipocytes contribute to metabolic disorders such as obesity,

diabetes, and atherosclerosis. Prior characterizations of the

transcriptional network driving adipogenesis overlook tran-

siently acting transcription factors (TFs), genes, and regulatory

elements that are essential for proper differentiation. More-

over, traditional gene regulatory networks provide neither

mechanistic details about individual RE-gene relationships

nor temporal information needed to define a regulatory hi-

erarchy that prioritizes key regulatory factors. To address

these shortcomings, we integrate kinetic chromatin accessi-

bility (ATAC-seq) and nascent transcription (PRO-seq) data to

generate temporally resolved networks that describe TF bind-

ing events and resultant effects on target gene expression. Our

data indicate which TF families cooperate with and antagonize

each other to regulate adipogenesis. Compartment modeling of

RNA polymerase density quantifies how individual TFs mech-

anistically contribute to distinct steps in transcription. Glu-

cocorticoid receptor activates transcription by inducing RNA

polymerase pause release while SP and AP1 factors affect RNA

polymerase initiation. We identify Twist2 as a previously un-

appreciated effector of adipocyte differentiation. We find that

TWIST2 acts as a negative regulator of 3T3-L1 and primary

preadipocyte differentiation. We confirm that Twist2 knockout

mice have compromised lipid storage within subcutaneous and

brown adipose tissue. Previous phenotyping of Twist2 knockout

mice and Setleis syndrome (Twist2-/-
) patients noted deficien-

cies in subcutaneous adipose tissue. This network inference

framework is a powerful and general approach for interpreting

complex biological phenomena and can be applied to a wide

range of cellular processes.
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Introduction
Mature adipocytes contribute to a multitude of metabolic
processes by regulating energy balance, producing hor-
mones, and providing structural and mechanical support
(Rosen and Spiegelman 2006). Adipocyte hyperplasia
downstream of increased adipogenesis is associated with
pathogenesis of obesity, type 2 diabetes, and cardiovas-
cular disease (Unamuno et al. 2018; Van Kruijsdijk et al.
2009). Adipogenic factors represent opportunities for inter-
vention and possible mitigation of obesity-related sequelae
(Ahmad et al. 2020; Ghaben and Scherer 2019). Adipocyte
maturation is a tightly regulated process involving many
chromatin and transcriptional changes downstream of TF
binding (Madsen et al. 2020; Rauch et al. 2019; Siersbæk

et al. 2011; Thompson et al. 2016; Tsankov et al. 2015).
While prior studies have extensively characterized the TFs
and gene expression changes required for adipogenesis
(Lefterova and Lazar 2009; Rosen and MacDougald 2006;
Siersbæk et al. 2012), this work relied on measurements
taken hours or days apart on cells undergoing adipogenesis.
Molecular events, such as TF binding, chromatin remodel-
ing, and redistribution of RNA polymerase, occur on a time
scale of seconds to minutes (Chen et al. 2014; Duarte et al.
2016; McNally et al. 2000). Therefore, previous examina-
tions of adipogenic signaling likely omitted multiple waves
of signaling and potential regulatory factors that may be
critical to the process.

Molecular genomics assays can query transcriptional
events with extremely high temporal resolution. While each
assay delivers a tremendous amount of information, each
is limited in the biology that it measures. ChIP-seq directly
quantifies chromatin occupancy of proteins, but the assay
is dependent upon availability of antibodies and limited
to a single factor at a time. ATAC-seq and DNase-seq as-
says quantify chromatin accessibility, which is an indirect
measure of regulatory element activity (Boyle et al. 2008;
Buenrostro et al. 2015). Combining accessibility data with
TF motif analyses can accurately infer TF binding without
the need for factor and species-specific antibodies (Vierstra
et al. 2020; Wu et al. 1979). Kinetic experiments can further
increase the sensitivity of inferring dynamic TF binding,
since changes in TF binding modulate local chromatin struc-
ture and accessibility (Guertin and Lis 2010, 2013; Siersbæk
et al. 2011, 2014). However, these assays do not directly
inform on changes in transcription and RNA polymerase
dynamics. While RNA-seq is a popular approach for mea-
suring transcription, the assay relies on accumulation of
mature RNA species over hours, making it inappropriate
for rapid measurements. In addition, it is difficult to de-
convolve mechanistic insights from RNA-seq data, which
measures secondary and compensatory transcription as well
as long-lived RNA species predating initial measurements.
Alternatively, nascent transcription profiling with PRO-seq
captures RNA polymerase density genome-wide at high spa-
tial and temporal resolution (Kwak et al. 2013). PRO-seq,
like RNA-seq, is limited in its ability to identify potential
upstream regulatory elements (REs) and regulatory tran-
scription factors. Only by combining multiple approaches
can one fully capture the signaling dynamics driving tran-
scription regulatory cascades.
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Differential TF activity defines cell identity and drives
cellular responses to environmental stimuli by enforcing
gene regulatory programs (Takahashi and Yamanaka 2006).
Sequence-specific TFs bind to conserved motifs (Ptashne
1967) in REs within promoters and enhancers to regulate
different mechanistic steps in transcription (Fuda et al.
2009). TFs recruit cofactors such as chromatin remodel-
ers, acetyltransferases, methyltransferases, and general tran-
scription machinery to REs. TFs are generally character-
ized as activators or repressors based upon their interaction
partners, and recent studies more specifically describe TFs
based upon their molecular function and which mechanistic
steps they regulate (Danko et al. 2013; Duarte et al. 2016;
Hah et al. 2011; Neumayr et al. 2022; Sathyan et al. 2019;
Scholes et al. 2017). For example, pioneer transcription
factors specialize in chromatin opening (Zaret and Carroll
2011). In addition to chromatin opening and RNA poly-
merase recruitment, many transcription steps are precisely
regulated, such as RNA polymerase pausing, elongation,
and termination. RNA Polymerase II (PolII) pauses ≥30-
50 base pairs downstream of the transcription start site
(TSS) (Rasmussen and Lis 1993; Rougvie and Lis 1988)
and the vast majority of genes exhibit promoter-proximal
PolII pausing (Core et al. 2008; Muse et al. 2007; Zeitlinger
et al. 2007). Further modifications to the PolII complex trig-
gers pause release and productive elongation (Marshall and
Price 1995). Defining the steps regulated by TFs is neces-
sary to understand how TFs coordinate with one another
productively or antagonistically to regulate complex gene
expression programs.

Transcriptional networks consist of multiple rapid waves
of signaling through time with potential regulatory feedback
and signal propagation through activation and repression of
regulatory factors. These complex regulatory cascades are
not captured in traditional gene regulatory networks. Dif-
ferentiating one wave from the next requires observations at
multiple, closely spaced time points. In this study, we per-
form ATAC-seq and PRO-seq on 3T3-L1 cells at seven time
points within the first four hours of adipogenesis. We incor-
porate accessibility and transcription changes into a multi-
wave signaling network and identify TF families driving the
regulatory cascade. We identified Twist2 as a highly inter-
connected node within the adipogenesis network. Perturba-
tion of TWIST2 in in vitro, ex vivo, and in vivo validated the
regulatory role of TWIST2 in adipogenesis. This novel net-
work framework also infers individual regulatory relation-
ships among TFs, REs, and target genes. The network infers
TF binding events and potential mechanistic interactions be-
tween specific REs and genes. The network is designed so
that one can easily identify key regulatory TF or RE hubs,
determine a set of target genes for specific TFs, assess TF
cooperativity, and develop testable hypotheses. We find that
different transcription factor families regulate distinct mech-
anistic steps in the transcription cycle and coordinate with
one another to orchestrate the adipogenic transcriptional
cascade.

Results
TFs from at least 14 families are associated with dy-
namic chromatin accessibility in 3T3-L1 differentia-
tion.
TFs bind promoters and enhancers to modify chromatin
structure and influence transcription of nearby genes. To
identify dynamic REs and potential TFs that regulate adi-
pogenic differentiation, we induced adipogenesis in 3T3-L1
mouse preadipocytes (see Methods), harvested samples at 8
time points, and performed genome-wide chromatin acces-
sibility assays (ATAC-seq) (Figure 1A). Chromatin accessi-
bility is a molecular measurement used to infer TF binding
and RE activity. We identified over 230,000 accessibility
peaks and differentiation time is the major driver of varia-
tion among the samples (Figure S1A). Approximately 13%
of all peaks change significantly over the time course (Fig-
ure S1B). We clustered dynamic peaks based on kinetic pro-
files (Figure S1C), which resulted in five general response
classes (Figure 1B). To identify candidate sequence-specific
TFs that drive RE dynamics, we performed de novo mo-
tif analysis on dynamic peaks (Bailey et al. 2015). This
approach yielded 14 potential TF family motifs including
CEBP, TWIST, SP, KLF, AP1, and the steroid hormone
receptor motif (Figure 1C & S1D). TF families comprise
multiple proteins containing paralogous DNA binding do-
mains that recognize very similar sequence motifs (Figure
1C). For example, multiple factors including androgen re-
ceptor, mineralocorticoid receptor, progesterone receptor,
and glucocorticoid receptor (GR) bind to the steroid hor-
mone receptor motif. However, GR is the only factor gene
that is expressed in 3T3-L1 cells (Figure S1E). Therefore,
we refer to the steroid hormone receptor binding consen-
sus sequence as the GR motif. We identified AP1, CEBP,
and GR, which are known positive effectors of adipogen-
esis (Distel et al. 1987; Flodby et al. 1996; Freytag et al.
1994; Moitra et al. 1998; Ramji and Foka 2002; Rubin et al.
1978; Siersbæk et al. 2011; Steger et al. 2010; Tanaka et al.
1997; Wang et al. 1995; Yeh et al. 1995). Members of the
KLF and SP families are known to be associated with both
pro-adipogenic (Birsoy et al. 2008; Inuzuka et al. 1999; Li
et al. 2005; Mori et al. 2005; Oishi et al. 2005; Pei et al.
2011) and anti-adipogenic functions (Banerjee et al. 2003;
Kawamura et al. 2006; Sue et al. 2008; Tang et al. 1999).
The TWIST family of TFs have previously unappreciated
roles in adipogenesis, but have been shown to be important
for differentiation of other mesenchymal cell types, such as
osteoblasts (Bialek et al. 2004; Yousfi et al. 2001). Members
of all these factor families are expressed in 3T3-L1 cells
(Figure S1E).

TF binding or dissociation from DNA leads to enrichment
of cognate motifs in dynamic peaks. The biological func-
tions of the TFs determine whether binding or dissociation
results in increased or decreased accessibility. Binding of
TFs that recruit activating cofactors, such as histone acetyl-
transferses or remodeling enzymes that eject nucleosomes,
can increase accessibility; dissociation of these factors de-
creases chromatin accessibility. Likewise, binding and dis-
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sociation of factors that recruit deacetylases, repressive
methyltransferases, or DNA methyltransferases can affect
accessibility. We found that the majority of peaks containing
CEBP, KLF, GR, or AP1 motifs increase accessibility, while
peaks containing TWIST or SP motifs decrease accessibil-
ity (Figure 1D). We performed the reciprocal analysis and
plotted the density of motif instances relative to the sum-
mits of increased, decreased, and nondynamic peak classes
to confirm the classification (Figure 1E & S1F). AP1, GR,
and CEBP motifs are strongly enriched around summits of
increased peaks, while TWIST and SP motifs are enriched

around summits of decreased peaks. SP and KLF families
have paralogous DNA binding domains and recognize sim-
ilar motif sequences; however, we confidently associate
chromatin decondensation to KLF factors and chromatin
condensation to SP factors (Figure S1G). The SP family is
composed of canonical activators (McKnight and Kings-
bury 1982), therefore SP TFs are likely dissociating from
the chromatin to reduce accessibility. Although we ascribe
opening and closing functions to the KLF and SP families, it
is impossible to determine the relative contribution of KLF
and SP factors at any individual motif. We believe that the
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Fig. 1. CEBP, TWIST, SP, KLF, GR, and AP1 TF families drive either increased or decreased chromatin accessibility in adipogenesis. A) Preadipocyte fibroblast
3T3-L1 cells were treated with an adipogenesis cocktail and harvested at the indicated time points for ATAC-seq and PRO-seq experiments. B) Temporal classification of
ATAC-seq peaks revealed five major dynamic classes. Each dynamic ATAC peak is a red or blue trace with the number of peaks in the class indicated in the lower right;
the x-axis represents time and the y-axis indicates normalized accessibility. C) De novo motif analysis identified the top six DNA motifs enriched within dynamic peaks.
The individual TFs listed in the wedge below the seqLogo recognize the respective DNA motifs. The heatmap quantifies the local protein sequence alignment of the DNA
binding domains for the genes, as determined by the Smith-Waterman algorithm (Farrar 2007). D) Dynamic ATAC-seq peaks are classified by the presence of each DNA
motif. The red bars represent the number of dynamic ATAC-seq peaks within the Immediate Increase, Transient Increase, and Gradual Increase categories; the blue bars
correspond to the Transient Decrease and Gradual Decrease classes. E) Red, blue, and grey traces are composite motif densities relative to ATAC peak summits for the
increased, decreased, and nondynamic peak classes. The y-axis quantifies the density of the indicated position-specific weight matrix and each motif instance is weighted
by its conformity to a composite motif. F) Dynamic traces of peaks that exclusively contain the specified motif indicate that CEBP, GR, and AP1 associate with increasing
accessibility; SP and TWIST associate with decreasing accessibility. Peak traces are colored as in panel (B). These conclusions are consistent with the reciprocal analysis
from panel (E).
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dual enrichment of KLF motifs at both increased and de-
creased peak summits is due to erroneous classification of
SP-bound REs as KLF-bound REs. This complication is not
limited to closely related motifs, as many dynamic peaks
contain multiple factor binding motifs, making it difficult
to isolate the contribution of individual factors. To address
this complication, we plotted the changes in accessibility
at dynamic peaks that contain only a single motif (Figure
1F). This confirmed that the majority of isolated AP1, GR,
CEBP, and KLF motif-containing peaks increase in acces-
sibility, while TWIST and SP motif-containing peaks de-
crease. The biological interpretation of these results is that
the adipogenic cocktail activates members of the AP1, GR,
CEBP, and KLF TF families both directly and through tran-
scriptional activation of family member genes, leading to
RE binding and chromatin decondensation. SP and TWIST
motifs are associated with decreased accessibility. TFs can
act as repressors by binding to chromatin and recruiting
chromatin modifiers such as deacetylases. Alternatively,
dissociation of an activating TF can lead to gene repression.
These results confirm the importance of several TF families
and suggest that previously unappreciated TF families, such
as TWIST, contribute to adipogenesis.

SP, NRF, E2F6, KLF, and AP1 factor motifs are asso-
ciated with bidirectional transcription at regulatory
elements.
Coordinate TF binding ultimately results in the recruit-
ment of RNA polymerases and initiation of transcription.
In mammals, core promoters and enhancers often lack se-
quence information that consistently orient initiating RNA
polymerases (Core et al. 2014). Therefore we sought to
identify bidirectional transcription signatures as a comple-
ment to chromatin accessibility assays to identify REs (Core
et al. 2008; Danko et al. 2013; Seila et al. 2008). We cap-
tured the short lived divergent transcripts found at active
REs with PRO-seq in parallel with the ATAC-seq adipo-
genesis time points (Figure 1A). We used discriminative
regulatory-element detection (dREG) to identify peaks of
bidirectional transcription from our PRO-seq data (Wang
et al. 2019). We identified over 180,000 dREG peaks (Fig-
ure 2A & B) and 18% change significantly over the time
course (Figure S2A). ATAC-seq and PRO-seq measure
distinct but related biological phenomenon, therefore they
identify different but overlapping sets of REs. Approxi-
mately 22% of dynamic dREG peaks overlap with dynamic
ATAC-seq peaks, compared to 20% of dynamic ATAC-seq
peaks in the inverse comparison. To further analyze the two
classes of REs, we separated the dynamic dREG and ATAC-
seq peaks into intragenic, intergenic, and promoter regions
(Figure 2C). Both methods effectively identify REs within
promoters (Figure S2B). We find PRO-seq more sensitively
detects intragenic REs relative to the other categories, while
ATAC-seq efficiently detects intergenic REs. We closely
evaluated the overlap between ATAC and dREG peaks by
plotting PRO-seq signal at ATAC peaks and vice versa (Fig-
ure S2C). We observe the distinctive bidirectional transcrip-
tion signature at ATAC peaks irrespective of whether or not

the ATAC peaks intersect dREG peaks. The signature is less
intense at ATAC-seq peaks that do not overlap dREG peaks.
Likewise, ATAC-seq signal is enriched at dREG-peaks that
do not overlap ATAC-seq peaks (Figure S2D). Moreover,
dREG peaks within intergenic, intragenic, or promoter re-
gions that do not overlap with ATAC-seq peaks have less
bidirectional transcription (Figure S2E). Although we find
that bidirectional transcription and accessibility do not per-
fectly correlate, we are likely underestimating the extent of
accessibility and bidirectional transcription overlap.

We sought to identify TFs that drive bidirectional tran-
scription by further characterizing PRO-seq-defined REs.
We hypothesized that different sets of TF motifs are en-
riched within REs defined by ATAC-seq and PRO-seq. For
instance, the cognate motifs of TFs that recruit initiation
machinery may be preferentially enriched at dREG-defined
REs. We performed de novo motif analysis on dynamic
dREG peaks and found enrichment of AP1, SP, KLF, NRF,
and E2F6 motifs (Figure 2D). Of these, only the E2F6 mo-
tif was not also enriched in ATAC-seq peaks. We plotted
motif density around the summits of either dynamic ATAC
or dREG peaks to further differentiate ATAC and dREG-
defined REs (Figure 2E & Figure S2F). Of the motifs found
de novo in dREG peaks, only E2F6, NRF, and SP were
more enriched in dynamic dREG versus dynamic ATAC-
seq peaks. We hypothesize that these three factor families
regulate bidirectional transcription in adipogenesis. The SP
motif is found in over 25% of human and mouse promot-
ers, making the SP motif the most enriched cis-regulatory
element (RE) within promoters (Benner et al. 2013). To de-
termine whether divergent transcription signatures found at
SP motifs are dominated by SP factors within promoters,
we plotted plus and minus strand nascent transcription at all
SP motif instances (Figure 2F top). Indeed, when SP motifs
within promoters are removed from the composite input, di-
vergent transcription peaks collapse (Figure 2F bottom). We
also observe this phenomenon with E2F6 and NRF motifs
(Figure S2G), implying that these factors and SP preferen-
tially regulate divergent transcription at promoters. Next,
we wanted to determine whether SP, NRF, and E2F6 motifs
within promoters associate with increasing or decreasing
divergent transcription. We find that bidirectional transcrip-
tion tends to decrease in REs with dREG-enriched motifs
as opposed to those without dREG-enriched motifs (Fig-
ure 2G). This further supports the previous conclusions that
SP and NRF motifs associate with decreases in RE activity
(Figure 1E & Figure S1G). Although ATAC-seq and PRO-
seq are both orthogonal methods to identify putative REs,
we find that ATAC-seq is more sensitive at identifying distal
regulatory TFs and PRO-seq primarily captures functional
TFs within promoters.

Defining predicted TF binding events as trans-edges
in the network.
We determined candidate functional TFs within the set of
REs by searching for over-represented sequence motifs and
determining the expression levels of TF family members.
However, inferring TF binding from accessibility, motif, and

4 | bioR‰iv Dutta et al. | Twist2 regulates adipogenesis

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2021.11.17.469040doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469040
http://creativecommons.org/licenses/by/4.0/


expression data at any individual site remains a challenge
(Guertin et al. 2012; Li et al. 2019). In addition to chromatin
accessibility, expression of the TF, and presence of the TF’s
cognate motif, we leverage the change in accessibility over
the time course to infer TF binding and dissociation events
in adipogenesis. We term these predicted changes in TF
occupancy, which are directed linkages from TFs to REs,
as trans-edges in our networks. For simplicity, we refer to
trans-edges as factor binding or dissociation events.

We define the following rules for trans-edge inference:
1) The RE must first be defined as an ATAC-seq peak at any
time point. 2) The binding motif of the upstream TF must
be present in RE. 3) Chromatin accessibility must change
significantly between two time points to infer binding or
dissociation. 4) The direction of accessibility changes must
match with the molecular function of the TF as defined in
Figure 1. 5) Members of the TF family must be expressed

at the appropriate time point; for example, the TF must be
expressed at the later time point for binding and the ear-
lier time point for dissociation. 6) GR, AP1, and CEBP are
directly activated by the adipogenic cocktail, so we infer
edges from expressed family members to REs from 0-20
minutes. We necessitate that the nascent RNA expression
of the other TFs changes significantly to infer trans edges
from their genic node to an RE node. Mechanistically, TFs
have short residency times on DNA and they are continu-
ally binding and dissociating from their sites in vivo (Chen
et al. 2014; McNally et al. 2000). When we refer to inferred
binding and dissociation within the network, we are strictly
referring to overall changes in occupancy at a genomic site
within the population of cells.

The following examples highlight implementations of
these rules. The Nr3c1 gene, which encodes GR, decreases
expression immediately upon treatment (Figure S3A). We
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Fig. 2. SP, NRF, and E2F6 TF families drive bidirectional transcription dynamics at regulatory regions within gene bodies and promoters. A) The heatmap illus-
trates over 200,000 putative REs with a bidirectional transcription signature. B) Both dREG and ATAC-seq identify a RE within the promoter of Cops8. The intragenic RE is
only identified by its bidirectional PRO-seq signature while the upstream intergenic RE is only identified by ATAC-seq. C) Dynamic ATAC-seq and dREG-defined REs largely
overlap in promoter regions. Intragenic regions are defined based on primary transcript annotation of PRO-seq data, promoters are between 150 bp upstream and 50 bp
downstrean of TSSs, and intergenic regions are the remainder of the genome. D) Dynamic ATAC-seq peaks are enriched for a more diverse set of TF motifs than dynamic
dREG peaks. E) Motif density distinguishes TFs associated with dynamic bidirectional transcription from those associated with dynamic accessibility. For example, TWIST
and GR motifs are enriched within dynamic ATAC-seq peaks but are rarely found within dynamic dREG peaks. F) SP is only associated with bidirectional transcription at
promoters and not distal REs. The top plot shows the average normalized PRO-seq signal for plus and minus strands around all 1,135,731 SP motif instances while the
bottom plot displays all SP motifs excluding those in promoters (1,118,185). The distinct dual peak profile of bidirectional transcription collapses when only considering SP
motifs outside promoters. G) Dynamic bidirectional transcription peaks found in promoters are stratified by the presence or absence of TF motifs. The left plot quantifies
the total number of peaks and the right plot scales to the proportion of peaks in each category. The x-axis factor motif categories are defined by the presence or absence of
ATAC-associated factors (AP1, CEBP, GR, KLF, and TWIST) and dREG-associated factors (SP, E2F6, and NRF). dREG-associated factor motifs are enriched in peaks that
decrease bidirectional transcription, suggesting a link between SP, NRF, and E2F6 factors and an early and pervasive decrease in promoter initiation at their target genes.
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suggest that the rapid transcriptional repression of Nr3c1 is
the reason GR-associated increases in accessibility are tran-
sient. Therefore, we restrict binding edges attributed to GR
to the first 40 minutes of the time course. We attribute any
significant decreases in accessibility at inferred GR binding
REs observed at later time points to dissociation of GR. We
label these edges with a dissociation attribute. In the case
of SP, we find that Sp1, Sp3, and Sp4 are all repressed early
in the time course (Figure S3B). We hypothesize that the
delayed accessibility decrease associated with SP motifs is
due to transcriptional repression and natural turnover of the
SP pool, which results in overall dissociation of SP on chro-
matin (Figure 1F). We restrict trans-edges for SP to the later
part of the time course. Conversely, we observe Twist2 gene
activation early in the time course (Figure S3C). Therefore,
we predict that TWIST-associated repression is a result of
increased TWIST binding and recruitment of negative co-
factors. Twist2 expression levels have returned to baseline in
mature adipocytes (Figure S3D), suggesting that TWIST’s
effects are transient and can only be captured with an early,
high-resolution time course. By focusing only on the REs
that change accessibility and integrating with transcription
data, we infer TF binding and dissociation events that drive
adipogenesis.

We integrated publicly available TF ChIP-seq datasets
to assess the performance of trans-edge inference. Specifi-
cally, we incorporated ChIP-seq profiling of AP1 (cJun and
JunB), KLF (KLF4 and KLF5), CEBP—, and GR (Siersbæk
et al. 2011, 2014). All these experiments were performed
in 3T3-L1 preadipocytes at 4 hours of differentiation. We
found that 60-70% of the inferred binding events for these
factors overlap called ChIP-seq peaks (Figure S3E). The one
exception was for GR, which exhibited a much lower de-
gree of overlap (35%). This is consistent with our network,
which suggests that GR binds and dissociates rapidly from
the chromatin at many sites. ChIP-seq experiments per-
formed at 4 hours may be too late to capture these transient
binding events. Furthermore, CEBP, GR, and KLF regula-
tory elements that exhibit sustained high accessibility (i.e.
nonattenuated) displayed a higher degree of overlap with
ChIP-seq peaks than those that did not, suggesting that our
ATAC-seq dynamics captured fluctuations in factor binding.
In addition, we plotted composite ChIP signal at our pre-
dicted binding sites and found a strong enrichment in signal
at REs that overlap with ChIP-seq peaks (Figure S3F). We
also observed a weaker enrichment of ChIP signal around
inferred binding events that do not overlap with ChIP-seq
peaks, suggesting weaker binding events at these locations
was overlooked in ChIP-seq peak calling. Direct measure-
ment of factor binding by ChIP-seq validates the predictive
power of using dynamic ATAC signal and the presence of
sequence motifs to infer factor binding.

Proximal changes in accessibility are tightly linked to
transcription.
Chromatin accessibility positively correlates with local gene
transcription. We confirmed this assertion by quantifying
transcription of genes within 10 kilobases (kb) of dynamic

ATAC-seq peak sets that exclusively increase or decrease
accessibility (Figure 3A). The majority of genes (63%) with
one proximal increasing ATAC-seq peak are activated, like-
wise 68% of genes proximal to a single decreasing ATAC-
seq peak are repressed. Genes near two or more increased
accessibility peaks are much more likely to be associated
with transcription activation, and vice versa (Figure 3A).
To further validate this association and explore the relation-
ship between RE and target gene distance, we focused on
all genes near one dynamic peak and stratified gene/peak
pairs based on distance between the TSS and peak summit
(Figure S3G-I). The closer the peak and the gene, the more
likely gene transcription and peak accessibility correlate
in the same direction. This result indicates that proximal
REs have a greater impact on gene expression than distal
elements. Moreover, we plotted change in gene transcrip-
tion against distance-scaled local accessibility changes and
observed the expected positive correlation between tran-
scription and accessibility at both early and late phases of
the time course (Figure S3J & K). These findings indicate
that both accessibility dynamics and distance are important
factors when considering the relationship between REs and
genes.

We incorporated the distance between REs and genes as
well as covariation in their accessibility and transcription
to infer functional links, termed cis-edges, in our networks.
We define cis-edges as predicted regulatory relationships
between REs and genes. For example, if GR binds a regu-
latory element within a gene’s promoter and induces gene
activation, we would draw a cis-edge between the RE and
the gene. Within the network, we assign GR as an attribute
to the edge. To confidently infer and annotate cis-edges,
we must assess whether a class of TFs is associated with
increasing or decreasing transcription. Since the distance
between a RE and a gene influences the likelihood that ac-
cessibility and transcription will covary, we classified the
function of a TF class within the context of adipogenesis by
determining if peaks with a cognate TF motif are closer to
activated or repressed gene classes. We expected that fac-
tor families associated with decreases in accessibility, like
SP, would be closer to repressed genes on average. To test
this hypothesis, we first categorized genes as significantly
activated, repressed, or unchanged for each pairwise com-
parison within the time course. For example, Klf5 (Figure
3B left panel) is one of a subset of 4225 genes immediately
activated from 0 to 20 minutes (Figure 3B right panel). Plot-
ting the cumulative distribution function (CDF) for genes
against the distance between the closest peak summit and
the gene TSS shows that GR peaks tend to be closer to
the 4225 activated genes compared to the repressed or un-
changed genes (Figure 3C). To estimate the maximum range
that a factor can act, we plotted the difference between the
repressed gene class CDF against the unchanged gene class
CDF against distance between gene and peak (Figure 3C
inset). We find that the difference in the CDFs plateaus at
around 114 kb, meaning that inferred GR binding events
accumulate at the same rate for activated and unchanged
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genes at distances greater than 114 kb. This distance con-
straint represents an empirical observation that suggests a
maximum regulatory distance in this system. It is possible
that we would detect a different constraint in another cellu-
lar context due to differences in genomic architecture and
regulatory environment. Immediately repressed genes like
Stat1 are closer to SP peaks than control gene sets (Figure
3D & E). This analysis indicates that SP acts very proxi-
mal to its target genes, with an actionable range of less than
2 kb (Figure 3E inset). This finding is consistent with our
previous conclusions that decreased SP peaks are primar-
ily found in promoters (Figure 2F). Our observed maximal
distances represent a hypothesized maximal actionable dis-
tance for factor activity in 3T3-L1s. However, we anticipate
that optimal distance for most factors is much closer to tar-
get genes than these maxima. Therefore we apply a closer
distance threshold when inferring regulatory relationships
between individual REs and genes as described in the next
section. The lower thresholds increase our confidence in our
predicted cis-edges.

Linking REs to target genes.
We incorporate these biological principles into logical rules
to define cis-edge predictions within an adipogenesis net-
work. We develop our rules to maximize confidence in our
predicted regulatory interactions. First, a gene and regula-
tory element must be within 10 kb to infer a cis-edge. Sec-
ond, RE accessibility and gene transcription must covary

over the same time range. These two logical rules provision-
ally link REs and genes, then we employ additional rules
that reflect the biology of individual TFs. For instance, the
10 kb distance metric is made more strict for factors like SP,
for which the functional distance constraint as determined in
Figure 3E is less than 10 kb. Temporal rules also influence
edge predictions. For instance, GR-bound REs are only sig-
nificantly closer to genes activated in comparison to the 0
minute time point such as the 20 vs. 0 comparison (Figure
3C), meaning that genes activated later in the time course
cannot be directly activated by GR binding in the network.
Therefore, as with trans-edges, we only infer cis-edges be-
tween GR-bound REs and genes that change early in the
time course. Incorporating these observations into our cis-
edge rules we infer direct functional relationships between
regulatory elements, bound TFs, and changes in target gene
expression.

Constrained networks identify genes regulated com-
binatorially or by individual TF families.
Quantifying nascent transcription with PRO-seq maps the
position and orientation of RNA polymerase with base-pair
resolution. Nascent transcriptional profiling captures en-
gaged RNA polymerase species throughout the genome,
including intragenic features such as the proximal promoter
and gene body. We can infer regulatory mechanisms of gene
sets by quantifying relative changes in RNA polymerase
density within the pause region and gene body. For instance,
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Fig. 3. Chromatin accessibility, transcription dynamics, and proximity guide inference of cis-edges between REs and target genes. A) Change in gene expression
correlates with local accessibility change over the first hour. Each data point represents a gene within 10 kb of either only increased (red) or decreased (blue) peaks. The
y-axis indicates the number of increased or decreased accessibility peaks near the gene and the x-axis represents the normalized change in gene transcription over the first
hour. B) Klf5 (left) is part of a cluster of 1717 immediately and transiently activated genes (gray traces on the right). C) Cumulative distribution plots showing distance be-
tween GR-bound REs and genes either activated (red), repressed (blue), or unchanged (grey) over the first hour of the time course. The left-shift of the red curve suggests
that ATAC-seq peaks with GR motifs are closer to the 20 vs. 0 min activated gene class. The inset plot reports the difference in cumulative distribution between the activated
and unchanged gene classes as distance from the TSS increases. The leveling off of the traces at 114 kb from the TSSs suggests that GR-mediated transcription activation
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if the rate of RNA polymerase pause release increases be-
tween conditions, we expect that the signal in the pause re-
gion to decrease and the gene body signal to increase. Previ-
ous studies focus on biological systems where one TF dom-
inates the response, such as ER, HSF, and NF-ŸB (Danko
et al. 2013; Duarte et al. 2016; Hah et al. 2011). In these
systems, the composite RNA polymerase signals at activated
genes highlight differences in densities between pause and
gene body compartments (Danko et al. 2013; Duarte et al.
2016; Hah et al. 2011; Sathyan et al. 2019). A complication
in our system is that multiple TFs cooperate to drive tran-
scription changes, making it difficult to identify the target
steps (i.e. initiation, pause release) that TFs regulate. In or-
der to address this complication, we identified genes that are
predominantly regulated by a single TF in our network.

We constructed a bipartite network inferring changes in
TF binding (trans edges) that regulate downstream changes
in transcription (cis edges). Genes and REs can be regu-
lated or bound by either one or a combination of TFs. For
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Fig. 4. Constrained networks downstream of AP1, GR, and SP identify genes
regulated by individual factors. Simplified networks highlight the number of REs
and genes that are combinatorially or individually regulated by (A) AP1, (B) GR,
and (C) SP. Factors bind / dissociate from REs (purple circles) and regulate genes
(blue squares). Colored arrows and numbers indicate the contribution of non-lead
factors to RE activity. Combinatorially regulated REs are bound by the lead TF and
either one or more of the other TFs. Composite PRO-seq signal is plotted relative
to the promoter-proximal pause peak of (D) 1224 genes solely regulated by AP1,
(E) 174 genes regulated by GR, and (F) 1127 genes regulated by SP. Inset violin
plot illustrate the change in pause index for the gene set for the indicated time
points. Each data point is a gene and all genes were input from the composite.

example, we constructed a constrained network with RE
and gene nodes downstream of individual TFs, including
AP1. In this network, 1224 genes are solely activated by
AP1 and 1847 genes activated by AP1 and at least one other
factor (Figure 4A). Most REs downstream of AP1, both
individually and combinatorially bound, are not linked to
any downstream genes (12608 v. 4829). This network high-
lights a paradigm in the transcription field that a minority
of TF binding events lead to changes in gene expression
(Spradling et al. 1975; Westwood et al. 1991). We con-
structed similar networks for GR (Figure 4B), SP (Figure
4C), CEBP (Figure S4A), KLF (Figure S4B), and TWIST
(Figure S4C). These networks illustrate the interconnectivity
of gene regulation, while simultaneously identifying genes
that are predominantly regulated by individual factors.

To extract mechanistic information from genes regulated
by only one TF, we plotted composite RNA polymerase
density from our PRO-seq data around pause peak summits
at different time points for the isolated genes (Figure 4D, E,
F & Figure S4D, E, F). The resulting traces show the char-
acteristic pause peak centered around 0 followed by release
of the RNA polymerase into the gene body. Examining
RNA polymerase density traces of genes only activated by
AP1 at 60 and 40 minutes show an increase in density in the
pause region, suggesting increased RNA polymerase recruit-
ment to AP1-activated genes (Figure 4D). These time points
were chosen because AP1 peaks are closest to genes acti-
vated between 60 and 40 minutes, suggesting that AP1 ex-
erts the most transcriptional control during this time range.
At first glance we see a similar result for GR when compar-
ing traces from 0 and 20 minutes (Figure 4E). However the
situation becomes more complex when considering the ratio
of pause density to gene body density, or pause index (PI).
The PI for genes regulated solely by AP1 increases on aver-
age from 40 minutes to 60 minutes (Figure 4D inset). Con-
versely, the PI for 71% of genes regulated solely by GR de-
creases on average between 0 and 20 minutes. This suggests
that GR primarily activates transcription by inducing pause
release (Figure 4E inset). The affected step is unique to the
factor, as isolated AP1 genes don’t exhibit the decrease in
pause index from 0 to 20 minutes observed with isolated
GR genes (Figure S4G inset). Isolated GR genes show in-
creases in pause index later in the time course, likely due
to GR dissociation from the genome after the early phase
of the time course and an associated decrease in pause re-
lease rate (Figure S4H). As for repressed genes, we find a
decrease in pause peak and gene body intensity in predicted
SP and TWIST target genes (Figure 4F & Figure S4F). We
find that SP genes demonstrate a more symmetrical distri-
bution of pause indices (Figure 4F inset). While it is likely
that these factors affect PolII recruitment, we sought to de-
velop a more rigorous approach to determine how changes
in initiation and pause release rates can account for observed
changes in PolII density.

Modeling changes in regulatory transcription steps.
We developed a mathematical model to further characterize
how TFs target specific steps in the transcription cycle. Our
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model breaks up the gene unit into two compartments: a
pause region and gene body region. PRO-seq directly mea-
sures RNA polymerase density within these regions for each
gene. We define a series of differential equations to model
polymerase density as measured by PRO-seq within the two
compartments (Figure 5A). We establish rate constants rep-
resenting different transcriptional steps, namely RNA poly-
merase recruitment / transcription initiation (kinit), prema-
ture termination (kpre), pause release (krel), and elongation
(kelong) The values of the rate constants determine the pre-
dicted density within the two compartments. We vary the
rate constants for kinit, kpre, and krel over two orders of
magnitude and vary kelong rate from 600 to 6000 bases per
minute to determine the effect on pause and gene body den-
sity and how the model compares to observed changes. We
make the assumption that kelong remains constant between
time points. Since kpre and kinit are opposing rates in the
model, we cannot distinguish an increase in one rate from
a decrease in another. To simplify the model, we keep kpre

constant between time points. We determine how changes in
kinit combined with krel changes can account for the aver-
age density changes for the 174 isolated GR-regulated genes
from Figure 4E. A wide range of rate parameters can de-
scribe the initial pause and gene body densities, but regard-
less of the initial rates, a narrow fold-change in these rates
can account for the observed changes between time points
(Figure 5B). We find that a ≥1.07-fold increase in recruit-
ment / initiation and a ≥1.50-fold increase in pause release
explain the changes in compartment occupancy between 0
and 20 minutes (Figure 5B left). We calculated the absolute

rate of initiation and residency time of PolII in the pause
region based on the models and plotted a simulated PolII
profile (Figure 5C). For this simulation, we chose the pa-
rameter set with an elongation rate closest to the established
consensus rate of approximately 2500 bases per minute
(Ardehali and Lis 2009; Jonkers and Lis 2015). Estimated
pause residency time drops from 29 seconds to 19 seconds
between 0 and 20 minutes as a result of the rate constant
changes. Taking a similar approach, an ≥0.78-fold decrease
in recruitment / initiation rate with a ≥0.94-fold change in
pause release rate produces observed changes in PolII occu-
pancy between 60 and 120 minutes for the 1127 isolated SP
genes (Figure 5B middle). This corresponds to a initiation
/ recruitment rate reduction from 15.1 to 11.9 polymerase
molecules per minute (Figure 5D). If SP factors normally
stimulate initiation, then mass action would explain disso-
ciation of SP factors upon transcriptional repression of SP
genes. Previous studies link SP1 to transcriptional initiation
through interaction with the TFIID general TF (Gill et al.
1994). The observed changes in RNA polymerase com-
posite profiles between 40 and 60 minutes at AP1 target
genes are explained by 1.27 to 1.39-fold increases in initi-
ation rate and 0.85 to 0.93-fold decreases in pause release
rate (Figure 5B right). These relative changes in kinit and
krel for AP1 targets do result in gene activation, but it was
unexpected that the profiles are explained by a decrease in
krel. Since composite profiles represent the average of all
included genes, it is possible that the composite represents
a diverse set of genes that are regulated by different AP1
family members. We speculate that we could gain a more
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Differential equations relate rate constants to the rate of change of polymerase density in the compartments. B) We use the compartment model to estimate how rate con-
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occupancy in the pause and body regions. C-D) We simulated composite profiles for a set of parameters from (B left) and (B middle).
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clear insight if we were able to deconstruct the AP1 targets
and identify gene targets of specific AP1 factors. The above
analyses indicate that we can deconvolve complex transcrip-
tional networks to identify gene targets of individual TFs
and determine which steps in the transcription cycle each TF
preferentially regulates.

We applied this model and approach to a separate PRO-
seq dataset of the C7 B-cell line treated with dexamethasone
to determine whether GR regulates pause release within a
different system in which GR is specifically activated. We
identified 70 genes activated by dexamethasone treatment.
The pause index of 80% of these genes decrease between
0 and 60 minutes (Figure S5A). Compartment modeling
of these genes showed that a ≥1.33-fold increase in pause
release rate explained the observed changes in PolII density
at the activated genes (Figure S5B & C). These validation
results support the role of GR regulating pause release and

highlight the power of predicting the molecular function of
transcription factors within complicated regulatory cascade
networks generated from kinetic PRO and ATAC data.

TFs cooperate to bind REs and activate gene expres-
sion.
AP1, CEBP, GR, and KLF bind REs either individually or
in combination in order to activate expression. We classify
REs based on the combination of factors that bind and drive
accessibility changes. Likewise, we classify genes based on
which TFs are immediately upstream in the network. Genes
activated by the same combination of factors can be down-
stream of different classes of REs. We use genes activated
by all 4 of AP1, CEBP, GR, and KLF to illustrate potential
regulatory scenarios. These genes may be downstream of
a single RE that binds all factors (Figure 6A orange). Al-
ternatively, the gene may be downstream of a pair of REs
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binding patterns that can lead to activation of gene targets: all 4 factors bind to a single RE (orange), 2 REs each bound by 2 factors (purple), 3 factors bind one RE and 1
factor binds another (blue), and a more complex combination with redundant factor contributions at multiple REs (green). B) A wide network depicts cooperation between
TFs. Top squares indicate GR, AP1, CEBP, and KLF TF families. Second row circles represent 15 classes of REs each bound by a different combinations of factors. Third
row squares represent 15 classes of genes each regulated by a different combination of factors. There are multiple potential combinations of REs that can produce the
same gene class, as illustrated in (A). The middle square representing the 82 genes activated by all 4 factors is an example of variable regulatory combinations. Colored
arrows and numbers correspond to RE combinations as depicted in (A). C) Genes were sorted into categories based on proximity to AP1 motifs, proximity to GR motifs,
and activation status. We calculated 95% confidence intervals for odds ratios based on contingency tables consisting of genes stratified by their proximity to inferred AP1
and GR regulatory elements and by whether the genes were dynamic. The confidence interval for genes that are not proximal to inferred AP1 regulatory elements is 0.97
to 1.49. The confidence interval for genes that are proximal to inferred AP1 regulatory elements is 2.3 to 2.89. The increase in odds ratio prediction suggests that activated
genes proximal to AP1 are significantly more likely to be proximal to GR than non activated genes. D) The confidence interval for genes not proximal to GR is 0.96 to 1.27.
The confidence interval for genes proximal to GR is 1.94 to 2.87. Again, the increase indicates that AP1 and GR factors coordinate to activate transcription. E) The fraction
of repressed genes proximal to TWIST increases regardless of the presence of SP with odds ratio confidence intervals of 2.2-3.07 and 2.21-2.79 when not proximal and
proximal to SP peaks respectively. F) We find a lower proportion of repressed genes proximal to SP motifs both in the presence and absence of TWIST. The odds ratio
confidence intervals do not change with the presence of TWIST, going from 0.71-0.89 to 0.64-0.9 when in proximity to predicted TWIST REs.
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each binding 2 factors (Figure 6A purple), 3 and 1 (Figure
6A blue), or more complicated regulatory schemes (Fig-
ure 6A green). All 15 possible classes of REs contribute
to activation of the 82 genes downstream of AP1, CEBP,
GR, and KLF (Figure 6B & S6A). The largest population
of RE classes is isolated AP1 peaks with 8794, while peaks
bound by all activating factors is the smallest with 74. The
distribution of gene classes generally mirrors the distribu-
tion of RE classes, with isolated AP1 genes being the largest
class. As discussed above, all factors activate more genes in
combination than in isolation. There are comparatively few
combinatorially-regulated genes without AP1 contribution
(1924 with AP1 v. 149 without). This finding, along with
the high number of genes regulated by AP1, underscores
the importance of the AP1 family in the network. While the
bulk of negatively regulated genes are downstream of ei-
ther SP or TWIST, approximately 20% are affected by both
TWIST-mediated repression and SP-mediated attenuation
(Figure S6B).

Interestingly, there is not a significant relationship be-
tween magnitude of RE accessibility change and number
of regulatory factors (Figure S6C). We found that the rel-
ative change in transcription positively correlates with the
number of immediate upstream activators in the network
(Figure S6D). Normalizing transcriptional change by local
accessibility change eliminates the observed correlation be-
tween transcription and number of regulatory factors (Figure
S6E). We confirmed this observation by plotting transcrip-
tion of all predicted target genes against total local acces-
sibility stratified by the number of regulatory factors and
peaks (Figure S7). We find that more local regulatory peaks,
which corresponds greater total local accessibility, corre-
lates with a greater magnitude of transcription. However,
the number of regulatory factors largely does not affect tran-
scription. Therefore, we find that transcription is positively
correlated with total local accessibility change, regardless
of the number of factors effecting that change. We conclude
that if a gene is regulated in the network, the magnitude of
expression change is independent from the number of up-
stream TFs.

Since the degree of activation and repression are unre-
lated to the number of upstream factors, we asked if having
multiple TFs upstream in the network influences whether
a gene is dynamic. To determine whether two TFs cooper-
ate with one another we considered genes close to dynamic
peaks with either a single TF motif or both TF motifs. We
determine if the fraction of dynamic and nondynamic genes
proximal to a TF is influenced by the presence of another
TF. We define TF-proximal genes as genes that are close to
dynamic ATAC peaks containing the TF motif. We find that
there is no difference between the fraction of GR-proximal
activated genes in the absence of AP1. However, there is an
increase in the fraction of activated genes proximal to GR
in the presence of AP1 (Figure 6C). The reciprocal analysis
shows that AP1 is a more effective activator in the pres-
ence of GR (Figure 6D). These results support the model
that AP1 and GR coordinate with one another to increase

the likelihood of gene activation. The repressive factors
TWIST and SP do not seem to work together in this way.
The fraction of repressed genes proximal to TWIST in-
creases regardless of the presence of SP (Figure 6E). This
suggests that TWIST functions largely independently of SP,
supporting our hypothesis that the two TFs result in gene re-
pression through unrelated mechanisms (Figure S3B & C).
Interestingly, we find a lower proportion of repressed genes
proximal to SP motifs both in the presence and absence of
TWIST (Figure 6F). We speculate that these genes tolerate
dissociation of SP and maintain their expression levels de-
spite local decreases in chromatin accessibility. In support
of this explanation, we find higher basal transcription and
lower magnitude of repression in genes proximal to SP, sug-
gesting these genes are more actively transcribed before loss
of SP (Figure S6F & G). These results highlight the com-
plexity of gene regulatory control and how kinetic networks
reveal coordinate and independent relationships between
transcription factors.

Multi-wave networks incorporate molecular dynamics
and kinetic information.
We further interrogate the adipogenesis gene regulatory net-
work by leveraging temporal information to infer multiple
waves of accessibility and transcriptional changes through-
out the time course. The importance of TFs can be inferred
by the number of predicted direct target genes (Figure 6) or
the total number of connected downstream genes. The lat-
ter is captured by temporal multi-wave network depictions.
We assembled a representative multi-wave deep network
(Figure 7A). The differentiation cocktail induces AP1 and
GR binding to thousands of REs to activate thousands of
genes; binding at 4 of these REs results in activation of the
Twist2 gene (Figure 7A & B). The resulting TWIST2 pro-
tein returns to the nucleus and binds hundreds of REs and
represses its target genes. Among the hundreds of repressed
TWIST2 target genes are the late (40+ minutes) acting fac-
tors Sp1 and Sp3 (Figure 7C). The decreased occupancy of
SP transcription factors from the genome leads to decreases
in RE accessibility and attenuation of gene expression. Our
network suggests that SP1/3 dissociation and TWIST2 bind-
ing leads to repression of Srf (Figure 7D). We hypothesize
that if we were to extend the time course, we would identify
the SRF binding motif in REs decreasing in accessibility
beyond 4 hours as result of attenuated transcription.

Many genes activated in the early phase of the time
course are repressed later on, either through active repres-
sion or factor dissociation. We detect these negative feed-
back loops for each activating TF (Figure S8A). About
63% of AP1, 74% of CEBP, and 80% of GR cis-edges are
transient. Only 27% of KLF cis-edges are attenuated, sug-
gesting that KLF-mediated activation is less transient and
less dependent on the extracellular stimuli found in the
adipogenic cocktail. Similarly, a minority of TWIST cis-
edges and no SP cis-edges are attenuated, indicating that SP
and TWIST factors mediate sustained repression. A much
smaller proportion of trans-edges are attenuated, implying
that accessibility changes downstream of factor binding and
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Fig. 7. Variations in TF gene expression lead to downstream changes in accessibility and transcription. A) A deep network highlights temporal components of the
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dissociation are more stable (Figure S8B) than changes in
nascent transcription.

We find that regulatory potential for each TF varies
greatly throughout the time course. AP1, CEBP, and GR
activate the most genes during the initial phase of the time
course, indicating that these TFs precipitate the initial wave
of signaling during the first 20 minutes. Transcriptional ac-
tivation of TWIST and KLF family genes by the initial fac-
tors leads to the next wave of signaling after 20 minutes
(Figure 7B and Figure S8C). We begin to detect changes
in accessibility at KLF- and TWIST-bound REs as early as
20 minutes (Figure S8D), however these presumptive bind-
ing events do not manifest as detectable changes in nascent
transcription until 40 minutes (Figure 7E). Although we had
originally expected changes in accessibility and transcrip-
tion to be observed concomitantly, these data show that we
have the sensitivity to detect changes in RE accessibility

before changes in transcription.

In addition to the TFs whose activity is stimulated by the
adipogenesis cocktail, we identify transcriptionally regu-
lated TF genes that are highly connected nodes within the
network. The Twist2 gene is the most highly connected node
and directly affects accessibility and transcription of thou-
sands of downstream nodes by binding REs and repressing
proximal genes (Figure 7F). TWIST2 acts through interme-
diate factors, such as SP, AP1, GR, to repress thousands of
additional genes. In the case of SP, TWIST2 mediated re-
pression of Sp1 and Sp3, results in SP dissociation and acti-
vation attenuation of downstream genes. TWIST2-mediated
repression of AP1 factors causes AP1 dissociation and at-
tenuation of AP1-mediated activation. The cumulative result
from both direct TWIST2 action and indirect dissociation
/ attenuation of TWIST2-targeted TF families affects ac-
cessibility at 12662 REs and 4574 genes. We believe that
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tiation. shTwist2.v1 is a single shRNA construct while shTwist2.v2 is a combination of shRNAs targeting Twist2. B) Expression of predicted TWIST2 target genes that are
repressed in the RNA-seq time course before addition of the adipogenic cocktail. Y-values indicate fold change of gene expression in Twist2 knockdown versus control. X-
values indicate basal expression of each gene. The majority of genes are expressed to a higher degree in the knockdown samples, suggesting that loss of basal TWIST2
leads to derepression of target genes. C) Each data point represents one of the 520 predicted TWIST2 target genes that are repressed in the RNA-seq time course. We
identified the time point comparison for which each gene exhibits the greatest degree of repression. X-values represent fold change for the relevant comparison in the
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replicate. Inset plot displays the difference in absorbance between the indicated shRNA treatment and the control knockdown for each replicate. TWIST2 depletion causes
an increase in fat uptake, implicating the TF as a negative regulator of differentiation. E) 3T3-L1s overexpressing either LacZ or TWIST2 were stained with Oil Red O after
6 days of differentiation. TWIST2 overexpression causes a decrease in fat uptake, supporting the conclusion that TWIST2 is a negative regulator of adipogenesis. Lines
and inset plot are used as in (D). F) Primary WAT preadipocytes harvested from P3 mice were induced to differentiate for 6 days and stained with Oil Red O. We pooled
preadipocytes from animals with the same genotype. Wild type and heterozygous samples consist of preadipocytes pooled from 2 and 6 animals respectively. The pooled
samples were plated in triplicate for the experiment. Preadipocytes harvested from Twist2+/- pups exhibit increased Oil Red O staining compared to those harvested from
wild type mice. G) Hematoxylin and eosin staining of skin shows collapse of dermal (purple bars) and subcutaneous WAT (orange bar) in P3 Twist2+/- mice compared to
wild type. Scale bars indicate 200 µm. H) Hematoxylin and eosin staining of interscapular brown fat shows reduced fat droplets (large white/light colored circles) in P14
Twist2-/- mice compared to wild type. Images taken at either 40x (top) or 63x (bottom) magnification.

TWIST2 may have been overlooked as an important adi-
pogenic TF because Twist2 is only transiently activated
(Figure S3C), but this kinetic network implicates TWIST2
as a critical intermediary in the adipogenesis cascade.

TWIST2 represses predicted target genes.
We tested whether inferred TWIST2-repressed target genes
from the network increase expression upon Twist2 deple-
tion. We used two different shRNA sequences (v1 & v2) to
knockdown Twist2 and harvested RNA for RNA-seq at 0,
1, 2, and 4 hours after switching cells into differentiation
media. We observed a ≥50%-75% reduction of Twist2 ex-
pression prior to differentiation (Figure 8A & Figure S9A).
Unlike PRO-seq, RNA-seq requires mature mRNA accumu-
lation above baseline signal to detect activation and RNA
degradation to detect repression. Therefore many observed
transcriptional changes at nascent RNA level take much
longer to be detected at the mature RNA level. For RNA-seq
analysis we only focused on the 520 predicted TWIST2 tar-
gets that are significantly repressed in both the PRO-seq and
RNA-seq time courses. The other 547 predicted TWIST2
target genes from the network are not detected as repressed

by conventional RNA-seq, so we would have no power to
detect derepression upon Twist2 depletion. Approximately
66% of the examined genes were expressed at higher lev-
els at baseline in the Twist2 knockdown as compared to the
control, supporting our hypothesis that TWIST2 directly re-
presses the majority of our predicted targets (Figure 8B &
Figure S9B). This result is likely an underestimate of the
specificity of our network, because the cells can compensate
for chronic RNAi-mediated depletion of Twist2.

We then measured the effect of chronic Twist2 depletion
on differentiation-induced transcription. Twist2 was acti-
vated in both the control and the knockdown samples, sup-
porting our PRO-seq results (Figure 8A & Figure S3C). In-
terestingly, Twist2 was more strongly activated in the knock-
down sample than in the control (≥3.1-fold to ≥2-fold).
This is likely because the RNAi machinery cannot keep up
with the dynamic accumulation of Twist2 transcripts in the
hours following treatment with the differentiation cocktail.
Since we inferred that TWIST2 represses target genes in
this system, then we would expect a greater degree of re-
pression over the time course in the knockdown samples due
to the relatively greater accumulation of TWIST2 protein.
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This analysis more directly tests the accuracy of predicting
TWIST2-target genes compared to chronic knockdown. We
find that ≥75% of the predicted targets are repressed to a
greater magnitude in the shTwist2 samples compared to the
control knockdown (Figure 8C). We observe supporting re-
sults with a second, less effective knockdown (Figure S9C).
The above findings support the conclusions from the net-
work and indicate that TWIST2 is a transcriptional repressor
of predicted target genes in 3T3-L1 differentiation.

TWIST2 influences differentiation of 3T3-L1s and pri-
mary preadipocytes.
To test TWIST2’s effect on differentiation of preadipocytes,
we depleted TWIST2, induced differentiation of 3T3-L1s,
and measured lipid uptake after 6 days of differentiation.
We stained differentiated adipocytes with Oil Red O and
measured absorbance at 540nm to quantify lipid uptake.
Lipid accumulation is a cellular phenotype that acts as a
proxy measurement for adipogenesis. Lipid uptake in-
creased with shTwist2 treatment compared to shControl
within each experiment, suggesting that TWIST2 expression
negatively regulates differentiation in the 3T3-L1 system
(Figure 8D). As an orthogonal approach, we designed and
transduced a tetracycline-inducible 3xFLAG-tagged human
Twist2 construct into 3T3-L1 cells (Figure S9D). After 6
days of differentiation, 3T3-L1s overexpressing Twist2 ex-
hibited decreased Oil Red O staining (Figure 8E & Figure
S9E), supporting our previous finding that TWIST2 expres-
sion reduces 3T3-L1 differentiation.

Next, we extracted preadipocytes from inguinal white adi-
pose tissue (WAT) of 3 day old Twist2+/- pups. We induced
differentiation in the primary preadipocytes and found that
preadipocytes derived from heterozygous mice differenti-
ated to a greater extent than those derived from wild type
mice (Figure 8F & Figure S9F). The 3T3-L1 and primary
cultured preadipocyte results indicate that TWIST2 opposes
induced differentiation in both in vitro and ex vivo contexts.

We found that Twist2+/- mice have a deficiency of der-
mal and subcutaneous white adipose tissue in the skin (Fig-
ure 8G). Twist2-/- mice have fewer and smaller fat droplets
within interscapular brown adipose tissue (BAT) deposits
(Figure 8H). Other groups have reported loss of subcuta-
neous fat and a paucity of fat storage in Twist2-/- mice (Kim
et al. 2022; Šošić et al. 2003; Tukel et al. 2010). We postu-
late that TWIST2 acts as a ‘brake’ on adipogenesis, prevent-
ing cell exhaustion and apoptosis during the differentiation
process. Regulated braking of adipogenesis may be neces-
sary to allow supportive adipose tissues to sufficiently de-
velop in the mouse. Isolated preadipocytes may be able to
overcome the additional stress in vitro, but not within their
native tissue context.

Discussion
Kinetic accessibility and nascent transcriptional profiling of
developmental cascades can identify key regulatory nodes
that may be transiently active, but are nonetheless necessary
for proper cellular differentiation. We present an extremely

rapid and precise capture of chromatin and transcription
changes induced by an adipogenic cocktail. These changes
represent the first few waves of differentiation signaling and
precipitate the cellular transition process. RE accessibility
and gene transcription change within minutes of initiating
adipogenesis. By focusing only on dynamically accessible
REs, we can infer TF binding and dissociation events that
drive adipogenesis without performing hundreds of genomic
ChIP experiments. We find a multitude of enriched TF fam-
ily motifs, many of which have been previously associated
with adipogenic REs including AP1, GR, KLF, and CEBP
(Siersbæk et al. 2014). We do not identify PPAR“, the mas-
ter regulator of adipogenesis (Lefterova et al. 2014; Rosen
et al. 2002), as a driver of adipogenic signaling. This agrees
with previous conclusions that PPAR“ does not influence
adipogenesis until several days into the process (Nielsen
et al. 2008). Stable PPAR“ activity is indispensable for adi-
pogenesis and maintaining adipocyte identity, but other fac-
tors may be critically important and overlooked because
their role is transient.

Our method implicates TWIST2 as a novel contributor to
adipogenesis. The TWIST subfamily of bHLH TFs homo-
and heterodimerize with other bHLH proteins to affect gene
expression. Although TWIST family factors all recognize
the same DNA motif, different members can act as either
activators or repressors. TWIST proteins can repress tran-
scription by non-productive dimerization with TWIST fam-
ily activators, competing with TWIST family activators for
DNA motifs, or by recruiting chromatin condensers like
HDACs to the genome (Bialek et al. 2004; Gong and Li
2002; Hamamori et al. 1999; Hayashi et al. 2007; Koh et al.
2009; Lee et al. 2003; Šošić et al. 2003). Previous studies
have implicated TWIST2’s role in targeting corepressors
(Fu et al. 2011; Kim et al. 2022). While multiple mecha-
nisms may be at play in our system, we hypothesize that
our observed repressive effects are downstream of increased
TWIST2 binding. TWIST1 and TWIST2 negatively regu-
late multiple developmental pathways including myogene-
sis, osteogenesis, and myeloid differentiation (Bialek et al.
2004; Gong and Li 2002; Hebrok et al. 1994; Murray et al.
1992; Sharabi et al. 2008; Spicer et al. 1996). The role of
the TWIST TF family in adipogenesis is less clear. While
TWIST1 and TWIST2 are known regulators of mature adi-
pose tissue homeostasis, TWIST1 does not affect adipo-
genesis (Dobrian 2012; Lee et al. 2003; Pan et al. 2009).
Interestingly, homozygous Twist2 mutations cause Setleis
syndrome, a disease characterized by facial lesions lacking
subcutaneous fat (Tukel et al. 2010). Twist2 knockout mice
develop such lesions and lack lipid droplets within the liver
and brown fat tissue (Figure 8G & H) (Šošić et al. 2003;
Tukel et al. 2010). Our in vitro and ex vivo data indicate
that TWIST2 acts as a negative regulator of adipogenesis.
TWIST2’s immediate activation in 3T3-L1 differentiation
therefore indicates a negative feedback mechanism to slow
differentiation. The TWIST family is a key regulator of the
epithelial-mesenchymal transition, further supporting our
observation that TWIST2 prevents 3T3-L1 differentiation
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??. The loss of this negative feedback may result in cell
death, leading to the absence of adipose tissue observed in
vivo. Even with a well-studied system such as adipogene-
sis, these methods were able to identify Twist2 as a novel
regulator of the differentiation cascade.

Our networks define genes sets that are predominantly
regulated by a single TF. We can track changes in RNA
polymerse density within the gene sets to identify the tar-
get regulatory steps of individual TFs. Stimulated pause
release is an established cause of early gene activation in
adipogenesis (Wang et al. 2021). We find that GR is largely
responsible for the observed increase in pause release. GR
is a well-established activator of gene expression (Vockley
et al. 2016), often in combination with AP1 (Biddie et al.
2011). Other activating factors, including AP1, increase
RNA polymerase recruitment to the gene. By acting on sep-
arate steps, GR and AP1 provide non-redundant stimuli to
target genes. We find GR and AP1 are conditionally de-
pendent upon one another in their potential to activate local
genes. A recent study suggests that both AP1 and CEBP act
as pioneer factors that prime the genome for GR-induced
transcription activation (Wissink et al. 2021). We find all
three of these factor families activate the initial wave of
transcription changes, both in combination and in isolation.

We confidently differentiate primary, secondary, and ter-
tiary transcriptional changes by examining multiple, closely
spaced time points upon induced adipogenesis. ATAC-seq,
ChIP-seq, or chromatin conformation assays alone can only
suggest functional relationships between REs and genes
(Lieberman-Aiden et al. 2009; Ren et al. 2000). Similarly
PRO-seq and RNA-seq return transcription changes with lit-
tle information regarding upstream regulation. We define in-
dividual regulatory relationships more directly by focusing
only on the ATAC peaks and genes that are proximal and co-
vary in their dynamics (i.e. significantly change over in the
same direction the time course). Our bipartite directed graph
networks are unique in the gene regulation field because
each edge represents a functional interaction as opposed to
an abstract relationship between linked nodes. Trans edges
represent binding of TF proteins to cognate DNA elements
and cis edges describe regulatory interactions between REs
and target genes. These networks can define genes sets that
are predominately regulated by a single TF and identify the
target regulatory steps of the TF. Highly connected nodes
in the network are candidate key regulatory hubs in the dif-
ferentiation cascade. Moreover, these networks ascribe time
attributes to each edge, so subgraphs that respect the flow
of time are easily extracted from the larger graph. This inte-
grative genomics approach to network construction can be
applied to a multitude of cellular responses and transitions
to uncover novel biology and new hypotheses.

Methods
3T3-L1 culture and differentiation.
3T3-L1 cells were provided by Thurl Harris. 3T3-L1 cells
were cultured in high glucose DMEM (Gibco) supple-
mented with 10% newborn calf serum, 1% fetal bovine

serum (FBS), 100 U/mL Penicillin G, and 100 µ/mL strep-
tomycin. We induced adipogenesis ≥3 days after cells
reached confluency by switching cells into high glucose
DMEM supplemented with 0.25 µM Dexamethasone, 0.5
mM 3-isobutyl-1-methylxanthine, 2.5 units/mL insulin, 10%
FBS, 100 U/mL Penicillin G, and 100 µg/mL streptomycin
(Bernlohr et al. 1984; Green and Kehinde 1974). We col-
lected enough cells at the indicated time points for three
replicates of ATAC-seq and PRO-seq.

shRNA-Mediated Knockdown.
We purchased lentiviral shRNA-expressing con-
structs targeting Twist2 (Millipore Sigma clone
IDs TRCN0000086084, TRCN0000086085,
TRCN0000086086) and a non-mammalian control (Mil-
lipore Sigma SHC202). HEK-293T cells were transfected
with shRNA constructs and lentiviral packaging con-
structs pMD2.G (Addgene #12259) and psPAX2 (Addgene
#12260). We isolated and filtered supernatant after 24 and
48 hours. We transduced 3T3-L1s with virus in 8 µg/mL
polybrene. Cells were switched into puromycin-containing
selection media after 48 hours. After another 48 hours sur-
viving cells were plated for further experiments.

Oil Red O staining.
For Oil Red O assays 3T3-L1s were cultured and differen-
tiated as described above. During differentiation media was
changed every 2 days. At day 6 of differentiation we stained
cells with Oil Red O as previously described (Kraus et al.
2016). Briefly, cells were washed with PBS, fixed with 4%
formaldehyde for 15 minutes, and stained with a 0.2% Oil
Red O and 40% 2-propanol solution. After incubating for
30 minutes adipocytes were washed five times with distilled
water and the dye was eluted with 2-propanol. Absorbance
was measured at 540 nm using 2-propanol as a blank.

RNA extraction and RNA-seq.
3T3-L1s were cultured and differentiated as described
above. At the indicated time points we harvested cells and
extracted RNA using the Direct-zol-96 RNA kit (Zymo #11-
331H). Samples were then sent to Novogene for bulk RNA-
seq.

Immunoblotting.
3T3-L1s were cultured and differentiated as described
above. Immunoblotting was performed on 7.5 µg RIPA
lysate as previously described (Janes 2015). Samples were
electrophoresed through 1.5-mm thick 12% polyacry-
lamide in tris-glycine running buffer (25 mM tris base,
250 mM glycine, and 0.1% SDS) at 130 V for 90 minutes.
Proteins were transferred to a PVDF membrane (Milli-
pore; Immobilon-FL, 0.45 mm pore size) in transfer buffer
(25 mM tris, 192 mM glycine, 0.0375% SDS, and 20%
methanol) at 100 V for 1 hour on ice. Membranes were
blocked with 0.5X Odyssey blocking buffer in TBS. Pri-
mary antibodies were diluted in 0.5X Odyssey blocking
buffer + 0.1% Tween-20. The following primary antibodies
were used: Flag (Millipore Sigma F1804, 1:2000), HSP90
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(Santa Cruz Biotechnology sc-13119, 1:2000), Tubulin (Cell
Signaling Technology 2148S 1:2000). Membranes were
washed with TBS-T and exposed to fluorophore-conjugated
secondary antibody diluted in 0.5X Odyssey blocking
buffer+ 0.1% Tween-20 + 0.01% SDS. Following another
round of washing, membranes were scanned on an Odyssey
infrared scanner (LI-COR).

Genome browser visualization.
Genome browser (Kent et al. 2002) images were taken
from the following track hub: http://guertinlab.
cam.uchc.edu/adipo_hub/hub.txt. An iden-
tical track is reproduced on a public server: https:
//data.cyverse.org/dav-anon/iplant/home/

guertin/adipo_hub/hub.txt

ATAC-seq library preparation.
We prepared ATAC-seq libraries as previously described
(Corces et al. 2017). We trypsinized and collected cells in
serum-free growth media. We counted ≥5 x 104 cells per
replicate and transferred them to 1.5 mL tubes. We cen-
trifuged cells at 500 x g for 5 minutes at 4°C and resus-
pended the pellet in 50 µL cold lysis buffer (10mM Tris-
HCl, 10mM NaCl, 3mM MgCl2, 0.1% NP-40, 0.1% Tween-
20, 0.01% Digitonin, adjusted to pH 7.4) and incubated on
ice for 3 minutes. We washed the samples with 1 mL cold
wash buffer (10mM Tris-HCl, 10mM NaCl, 3mM MgCl2,
0.1% Tween-20). We centrifuged at 500 x g for 10 min-
utes at 4°C and resuspended cells in the transposition re-
action mix (25 µL 2X TD buffer (Illumina), 2.5 µL TDE1
Tn5 transposase (Illumina), 16.5 µL PBS, 0.5 µL 1% Digi-
tonin, 0.5 µL 10% Tween-20, 5 µL nuclease-free water)
and incubated at 37°C for 30 minutes. We extracted DNA
with the MinElute kit (Qiagen). We attached sequencing
adapters to the transposed DNA fragments using the Nex-
tera XT Index Kit (Illumina) and amplified libraries with 6
cycles of PCR. We performed PEG-mediated size fractiona-
tion (Lis 1980) on our libraries by mixing SPRIselect beads
(Beckman) with our sample at a 0.55:1 ratio, then placing
the reaction vessels on a magnetic stand. We transferred
the right side selected sample to a new reaction vessel and
added more beads for a final ratio of 1.8:1. We eluted the
final size-selected sample into nuclease-free water.

ATAC-seq analyses.
We aligned reads to the mm10 mouse genome assembly
with bowtie2, sorted output BAM files with samtools,
and converted files to bigWig format with seqOutBias
(Langmead and Salzberg 2012; Li et al. 2009; Martins et al.
2018). We called accessibility peaks with MACS2 (Zhang
et al. 2008). We sort reads into peaks using the bigWig
R package and identify differentially accessible REs with
DESeq2 (Love et al. 2014; Martins 2014). We cluster dy-
namic peaks into response groups using DEGreport (Pan-
tano 2019). We performed de novo motif extraction on dy-
namic REs with MEME (e-value cutoff of 0.01) and used
TOMTOM (e-value cutoff of 0.05) to match motifs to the
HOMER, Jaspar, and Uniprobe TF binding motif databases

(Bailey et al. 2015; Heinz et al. 2010; Hume et al. 2015;
Khan et al. 2018). We use the bigWig package to assess
motif enrichment around ATAC-seq peak summits (Martins
2014).

PRO-seq library preparation.
We performed cell permeabilization as previously described
(Mahat et al. 2016). We trypsinized and collected cells in
10 mL ice cold PBS followed by washing in 5 mL buffer W
(10 mM Tris-HCl pH 7.5, 10 mM KCl, 150 mM sucrose,
5 mM MgCl2, 0.5 mM CaCl2, 0.5 mM DTT, 0.004 U/mL
SUPERaseIN RNase inhibitor (Invitrogen), protease in-
hibitors (cOmplete, Roche)). We permeabilized cells by
incubating with buffer P (10 mM Tris-HCl pH 7.5, KCl 10
mM, 250 mM sucrose , 5 mM MgCl2, 1 mM EGTA, 0.05%
Tween-20, 0.1% NP40, 0.5 mM DTT, 0.004 units/mL SU-
PERaseIN RNase inhibitor (Invitrogen), protease inhibitors
(cOmplete, Roche)) for 3 minutes. We washed cells with
10 mL buffer W before transferring into 1.5 mL tubes using
wide bore pipette tips. Finally, we resuspended cells in 500
µL buffer F (50 mM Tris-HCl pH 8, 5 mM MgCl2, 0.1 mM
EDTA, 50% Glycerol and 0.5 mM DTT). After counting
nuclei, we separated cells into 50 µL aliquots with ≥3-5 x
105 cells each. We snap froze our aliquots in liquid nitrogen
and stored them at -80°C. We prepared PRO-seq libraries
as previously described (Sathyan et al. 2019). We included
a random eight base unique molecular identifier (UMI) at
the 5Õ end of the adapter ligated to the 3Õ end of the nascent
RNA. We did not perform any size selection in an attempt to
not bias our libraries against short nascent RNAs.

PRO-seq analyses.
First we used cutadapt to remove adapters from our
reads (Martin 2011). We used fqdedup and the 3Õ UMIs
to deduplicate our libraries (Martins and Guertin 2018).
Next we removed UMIs and converted reads to their re-
verse complement with the FASTX-Toolkit (Gordon
2010). As with the ATAC-seq samples, we used bowtie2,
samtools, and seqOutBias to align, sort, and con-
vert reads to bigWig files respectively (Langmead and
Salzberg 2012; Li et al. 2009; Martins et al. 2018). We used
primaryTranscriptAnnotation to adjust gene an-
notations based on our PRO-seq data (Anderson et al. 2020).
We queried the bigWig files within the adjusted genomic co-
ordinates with the bigWig R package and UCSC Genome
Browser Utilities (Kent et al. 2010; Martins 2014). We iden-
tified differentially expressed genes with DESeq2 (Love
et al. 2014). We used dREG to define peaks of bidirectional
transcription from our bigWig files (Wang et al. 2019). As
with the ATAC-seq samples, we identified overrepresented
motifs in dREG-defined REs with MEME and TOMTOM (Bai-
ley et al. 2015). We evaluate motif enrichment around peak
summits and polymerase density in the gene body and pause
region with the bigWig package (Martins 2014). We define
the summit of the pause peak for genes by first identify-
ing the point of maximum density within 1 kb of the TSS.
We define the pause region as the 50 bp window around the
summit.
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DNA binding domain alignments.
DNA binding domains were extracted from the TFClass
database (Wingender et al. 2018) and TF paralogs that were
absent from the database were extracted from the NCBI
protein database. DNA binding domains were aligned us-
ing FASTA (Pearson and Lipman 1988) and the following
command: ssearch36 -s MD40 -m 8CBl. Although
there are six DNA motifs, the TWIST and ZNF families of
DNA binding domains recognize the same motif, despite
their lack of evolutionary conservation.

Network construction.
The bipartite directional networks with gene and RE nodes
were inferred using a data-driven rules-based approach. The
first rule to infer trans-edges from TF families to individual
REs is that the RE must contain the cognate motif for the
TF family. The second is that the peak must be dynamically
accessible over some part of the time course. The third is
that at least one gene encoding a member of the TF family
must be expressed and activated (or in the case of SP, re-
pressed) over the same time range. We restrict trans-edges
attributed to GR to the first 40 minutes of the time course
for reasons discussed in the text. Similarly, we do not draw
edges from SP before 40 minutes. Next, we drew cis-edges
between REs and proximal genes based on a different rule
set. First, REs need to be within 10 kb of gene bodies as
defined by primary transcript annotation of our PRO-seq
data. We used bedtools to find gene-RE pairs that satis-
fied this rule (Quinlan and Hall 2010). Next, the peak and
the gene need to covary in accessibility and transcription
during the same time range. For example, a gene must be
activated at the same time as its local RE is increasing in
accessibility. We refined the distance requirements by incor-
porating constraints from our CDF analysis. For each acti-
vating factor (AP1, CEBP, GR, KLF) we find a set of pair-
wise comparisons within the time course for which factor
REs are significantly closer to activated than nondynamic
genes. We find a similar set of comparisons for repressive
factors (SP, TWIST). For a gene to be linked to a factor RE
with a cis-edge, we require that the gene must be dynamic
in at least one of the comparisons identified by the CDF
analysis for that factor. In addition, our CDF analysis also
identifies the maximum distance between a factor RE and a
regulated gene for each comparison. The RE and the gene’s
TSS must be within the relevant distance threshold defined
by the CDF.

Compartment modeling.
Detailed analysis and raw code is available at https:
//github.com/guertinlab/modeling_PRO_composites. We
calculated pause region signal by summing the PRO-
seq signal over a 50 base pair window centered on the
summit of the pause peak. The gene body RNA poly-
merase density was determined by averaging the PRO-
seq signal over the region from the end of the pause win-
dow to the transcription termination site determined by
primaryTranscriptAnnotation. We described
RNA polymerase density dynamics in each compartment

using differential equations that incorporate rates of tran-
scription initiation, premature termination, pause release,
and elongation. We determined how different rate constants
would affect hypothetical pause region and gene body den-
sities and the pause index using the pksensi package.
We varied initiation, premature termination, and pause re-
lease rate constants from 0.01 to 1 molecules per second and
varied elongation rate from 600-6000 bp/minute and cal-
culated compartment density with each parameter set. We
excluded any parameter estimates that result in more than 1
RNA polymerase molecule in the pause region at any given
time. We selected all sets of parameters that resulted in the
observed median composite pause index for all time points
from Figure 4. Next, we sought to determine if changing
the rate constants could explain observed changes in com-
partment density at different gene sets for the indicated time
point comparisons. We varied rate constants from the early
time point values to model RNA polymerase density ratio
changes between time points. We varied the initiation and
pause release constants from their initial values over a 5-
fold range in each direction and determined which sets of
constants produced the observed changes in pause density
ratio for each gene. We allowed the target ratio to vary by
5% compared to the observed. We plotted model RNA poly-
merase density curves by choosing the set of parameters
with the elongation rate closest to a consensus rate of 2500
bases / min (Ardehali and Lis 2009; Jonkers and Lis 2015),
while still accurately reproducing the composite profiles
densities within 5% of the original. In order to reproduce
composite plots, we spread the pause density over a 50 base
region and fit the density profiles to a waveform as previ-
ously described (Sathyan et al. 2019).

For the model, our only assumption is that elongation rate
of a particular gene does not change between time points.
In fact, if elongation rate was increasing in activated genes
then we would expect a decrease in gene body PRO-seq
signal. This finding has not been observed in other datasets.
Of all the rate constants in the model, it is most reasonable
to assume that the elongation rate stays constant while the
others are affected by different regulatory mechanisms.

Network construction.
The bipartite directional networks with gene and RE nodes
were inferred using a data-driven rules-based approach. The
first rule to infer trans-edges from TF families to individual
REs is that the RE must contain the cognate motif for the
TF family. The second is that the peak must be dynamically
accessible over some part of the time course. The third is
that at least one gene encoding a member of the TF family
must be expressed and activated (or in the case of SP, re-
pressed) over the same time range. We restrict trans-edges
attributed to GR to the first 40 minutes of the time course
for reasons discussed in the text. Similarly, we do not draw
edges from SP before 40 minutes. Next, we drew cis-edges
between REs and proximal genes based on a different rule
set. First, REs need to be within 10 kb of gene bodies as de-
fined by primary transcript annotation of our PRO-seq data.
We used bedtools to find gene-RE pairs that satisfied this
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rule (Quinlan and Hall 2010). Next, the peak and the gene
need to covary in accessibility and transcription during the
same time range. For example, a gene must be activated at
the same time as its local RE is increasing in accessibility.
In this context, REs / genes need to change accessibility /
transcription by at least 10% over the time range to be con-
sidered activated or repressed. If the peak and gene are both
activated or both repressed, then we draw a cis-edge be-
tween the RE and the gene. We refined the distance require-
ments by incorporating constraints from our CDF analysis.
For each activating factor (AP1, CEBP, GR, KLF) we find
a set of pairwise comparisons within the time course for
which factor REs are significantly closer to activated than
nondynamic genes. We find a similar set of comparisons for
repressive factors (SP, TWIST). For a gene to be linked to a
factor RE with a cis-edge, we require that the gene must be
dynamic in at least one of the comparisons identified by the
CDF analysis for that factor. In addition, our CDF analysis
also identifies the maximum distance between a factor RE
and a regulated gene for each comparison. The RE and the
gene’s TSS must be within the relevant distance threshold
defined by the CDF.

Mouse experiments.
All mouse experiments were performed in accordance with
the relevant guidelines and regulations of the University of
Virginia and approved by the University of Virginia Ani-
mal Care and Use Committee. Mice were housed in specific
pathogen-free conditions under standard 12-h-light/dark
cycle conditions in rooms equipped with control for temper-
ature (21±1.5°C) and humidity (50±10%). Twist2 knockout
mice were purchased from Jackson Laboratories (Strain
008712). Preadipocytes were isolated from inguinal WAT
as previously described (Galmozzi et al. 2021) from P3
mice. Preadipocyte differentiation and staining was carried
out as with 3T3-L1s. Interscapular skin and BAT samples
were isolated from P3 or P14 mice respectively. Tissue sam-
ples were fixed with 4% formaldehyde. Fixed tissues were
paraffin-embedded and H&E stained by the Research His-
tology Core at the University of Virginia.

Data Access
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Fig. S1. Detailed analyses of dynamic ATAC-seq peaks reveals potential regulatory transcription factors. A) Principal component analysis of ATAC-seq samples
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24 | bioR‰iv Dutta et al. | Twist2 regulates adipogenesis

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2021.11.17.469040doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469040
http://creativecommons.org/licenses/by/4.0/


Fo
ld

 C
ha

ng
e 

at
 D

ex
 ta

rg
et

s
 0

 −
 6

0 
m

in
ut

es

Rate

0.
5

1.
0

1.
5

−1
.5

−1
.0

−0
.5

0.0

0.5

1.0

Distance from Pause Peak

R
N

A 
Po

ly
m

er
as

e 
D

en
si

ty
1

2
3

4

0 200 400 600 800

0
60

Pause Index (PI) Ratio

lo
g 2

 (6
0m

in
 P

I /
 0

m
in

 P
I)

0 min
60 min

~ 1.00x

1.33x

 Δrates 0-60min

residency time in the 
pause region

48 sec
36 sec

Distance from Pause Peak
Si

m
ul

at
ed

 P
RO

−s
eq

 S
ig

na
l

0 100 200 300 400

A B C

Fig. S5. Dexamethsone-activated genes in C7 cells recapitulate findings at predicted GR target genes in 3T3-L1 differentiation A) Composite polymerase density
at 70 genes activated by dexamethasone treatment in C7 cells at indicated times. B) Compartment modeling of the activated genes holding kpre and krel constant. We find
an approximate 1.33-fold increase in pause release rate explains the observed changes in polymerase density. C) A simulated composite derived from the parameters
estimated in (B).
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Fig. S6. Total local accessibility influences magnitude of gene transcription changes. A) The bar plot quantifies the number of REs and genes that are activated
by the indicated number of activating factors: GR, AP1, CEBP, or KLF. B) This network depicts REs and genes downstream of TWIST binding and repression and/or SP
dissociation and attenuation. C) Data points represent all REs bound by AP1, CEBP, GR, and KLF. REs are stratified based on number of binding factors. Y-values are the
fold change in accessibility. D-F) Data points represent all genes activated by AP1, CEBP, GR, and TWIST. D) Genes are stratified based on number of upstream regulatory
factors. Y-values are the fold change in nascent transcription. There is a positive correlation between transcriptional change and number of regulatory factors. E) Genes are
stratified as in (D), but y-values represent fold change in transcription divided by fold change in local accessibility. There is no correlation between normalized transcription
and number of regulatory factors when controlling for changes in accessibility. F) Repressed genes proximal to SP motifs tend to exhibit a lower magnitude of transcriptional
change. G) Repressed genes proximal to SP motifs tend to exhibit higher basal transcription.
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Fig. S7. Number of regulatory factors does not influence magnitude of gene transcription changes. All predicted activated target genes are stratified by number of
regulatory peaks (rows) and number of regulatory factors (columns). The y-axis indicates the log fold change in transcription for each gene for the time range over which the
gene exhibits its greatest activation. Transcription change is plotted against total local accessibility change over the same comparison. Blue points represent the indicated
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Fig. S8. TF families are transiently regulated by other factors, interconnected with one another, and exhibit distinct binding and dissociation kinetics. A) The
percentage of each factor’s attenuated cis-edges highlights the transient nature of gene expression changes in adipogenesis. Early activators show the highest proportion
of attenuated edges, meaning early activation is followed by a return to baseline expression. There are no attenuated SP cis-edges, meaning genes with decreased ex-
pression downstream of SP dissociation do not return to baseline within the time course. B) The percentage of each factor’s attenuated trans-edges indicates that binding
is more stable than gene expression changes. GR trans-edges are most likely to be attenuated. There are no attenuated SP trans-edges. C) TF genes are highly inter-
connected; arrows represent direct regulatory relationships between factors. Arrows emanate from regulatory factor family and point to target factor family. Solid arrows
represent gene activation, blunt-ended arrows represent repression, and dashed arrows represent attenuation. The numbers indicate how many TF family members exhibit
the indicated regulatory relationship. For example, the arrow from AP1 to KLF represents the 7 KLF family genes activated by AP1 factors. D) Wedged bar plots quantify the
regulatory kinetics across the time course for indicated factors. The x-axis intervals represent the time range in which the specified factor regulates changes in accessibility
of the indicated number of peaks (y-axis). Wedges between bars indicate carryover peaks from previous time interval and the outer "wings" represent peaks that are not in-
cluded in the previous time interval. The top shaded purple wedges represent peaks regulated by multiple factors; bottom wedges represent peaks that are solely regulated
by the indicated factor.

28 | bioR‰iv Dutta et al. | Twist2 regulates adipogenesis

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2021.11.17.469040doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469040
http://creativecommons.org/licenses/by/4.0/


B C

35%

17%
15%

33%

−1

0

1

1 2 3 4
log10baseMean

lo
g 2F

C
 E

xp
re

ss
io

n 
(0

hr
 s

hT
w

is
t2

.v
2 

v.
 s

hC
) All Repressed Predicted TWIST Target Genes

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25
shControl FC

sh
Tw

is
t2

.v
2 

FC

All Repressed Predicted TWIST Target Genes
Repressed in:

Only shControl
Only shTwist2.v2
Both

12%

34
38

16

E

LacZ

Twist2

O
ve

re
xp

re
ss

io
n:

F

WT

Het

G
en

ot
yp

e:

0

50

100

150

200

sh
Contro

l

sh
Tw
ist
2.v
1

sh
Tw

ist
2.v

2

Knockdown

Tw
is

t2
 T

ra
ns

cr
ip

ts
 p

er
 M

ill
io

n

A

Flag (LacZ)125

HSP90100

3T
3-L

1

3x
Flag

-La
cZ

- + - + - + - + - +
Rep

1
Rep

2
Rep

3

Tubulin50

Flag (Twist2)25

3xFlag-Twist2

Dox

D

Fig. S9. Twist2 depletion derepresses target genes. A) Baseline expression of predicted TWIST2 target genes repressed in the RNA-seq time course plotted as in
Figure 8A). B) Fold change of predicted TWIST2 target genes repressed in the RNA-seq time course plotted as in Figure 8A. C). Similar results with a moderate Twist2
knockdown further support our hypothesis that TWIST2 acts as a repressor of gene expression and negative regulator preadipocyte differentiation. D) Immunoblotting
indicating our tetracycline-inducible 3xFlag-tagged TWIST2 / LacZ constructs work appropriately. HSP90 and Tubulin are used as loading controls. E & F) Images taken at
10x magnification of either (E) 3T3-L1 overexpressing the indicated protein or (F) primary preadipocytes harvested from mice with the indicated genotype.
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