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Abstract

We describe the analysis of whole genome sequences (WGS) of 150,119 individuals from the
UK biobank (UKB). This constitutes a set of high quality variants, including 585,040,410
SNPs, representing 7.0% of all possible human SNPs, and 58,707,036 indels. The large set of
variants allows us to characterize selection based on sequence variation within a population
through a Depletion Rank (DR) score for windows along the genome. DR analysis shows that
coding exons represent a small fraction of regions in the genome subject to strong sequence
conservation. We define three cohorts within the UKB, a large British Irish cohort (XBI) and
smaller African (XAF) and South Asian (XSA) cohorts. A haplotype reference panel is
provided that allows reliable imputation of most variants carried by three or more
sequenced individuals. We identified 895,055 structural variants and 2,536,688
microsatellites, groups of variants typically excluded from large scale WGS studies. Using
this formidable new resource, we provide several examples of trait associations for rare
variants with large effects not found previously through studies based on exome sequencing
and/or imputation.

Introduction

Detailed knowledge of how diversity in the sequence of the human genome affects
phenotypic diversity depends on a comprehensive and reliable characterization of both
sequences and phenotypic variation. Over the past decade insights into this relationship
have been obtained from whole exome (WES) and WGS of large cohorts with rich
phenotypic data’?.

The UK biobank (UKB)? documents phenotypic variation of 500,000 subjects across the
United Kingdom, with a healthy volunteer bias*. The UKB WGS consortium is sequencing the
whole genomes of all the participants to an average depth of at least 23.5x. Here, we report
on the first data release consisting of a vast set of sequence variants, including single
nucleotide polymorphisms (SNPs), short insertions/deletions (indels), microsatellites and
structural variants (SVs), based on WGS of 150,119 individuals. All variant calls were
performed jointly across individuals, allowing for consistent comparison of results. The
resulting dataset provides an unparalleled opportunity to study sequence diversity in
humans and its impact on phenotype variation.

Previous studies of the UKB have produced genomewide SNP array data® and WES data®’.
While SNP arrays typically only capture a small fraction of common variants in the genome,
when combined with a reference panel of WGS individuals®, a much larger set of variants in
these individuals can be surveyed through imputation. Imputation however misses variants
private to the individuals typed only on SNP arrays and provides unreliable results for
variants with insufficient haplotype sharing between carriers in the reference and
imputation sets. Poorly imputed variants are typically rare, highly mutable or in genomic
regions with complicated haplotype structure, often due to structural variation.

WES is mainly limited to regions known to be translated and consequently reveals only a
small proportion (2-3%) of sequence variation in the human genome. It is relatively
straightforward to assign function to variants inside protein coding regions, but there is
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abundant evidence that variants outside of coding exons are also functionally important®1,
explaining a large fraction of the heritability of traits'>'3. In particular, numerous variants
are known to impact disease and other traits through their effects on non-coding genes or
RNA and protein®® expression.

Large scale sequencing efforts have typically focused on identifying SNPs and short indels.
While these are the most abundant types of variants in the human genome, other types,
including structural variants (SVs) and microsatellites, affect a greater number of base-pairs
(bps) and consequently are more likely to have a functional impact!”-*8. Even the SVs that
overlap exons are difficult to ascertain with WES due to the much greater variability in the
depth of sequence coverage in WES studies than in WGS due to the capture step of targeted
sequencing. Microsatellites, polymorphic tandem repeats of 1 to 6 bps, are also commonly
not examined in large scale sequence analysis studies. These variants have a higher
mutation rate than SNPs and indels'?, can affect gene expression?® and contribute to a range
of diseases?!.

Here, we highlight some of the insights gained from this vast new resource of WGS data that
would be challenging or impossible to ascertain from WES and SNP array datasets. First, we
show that exons account for a small fraction of the genomic regions displaying sequence
constraint due to functional importance. Second, we describe three ancestry-based cohorts
within the UKB; with 431,805, 9,633 and 9,252 individuals with British-Irish, African and
South Asian ancestries, respectively. Third, using the rich UKB phenotype collection, we
report novel findings from genomewide associations (GWAS) — shedding light on the impact
of very rare SNPs, indels, microsatellites and structural variants on diseases and other traits.

Results

SNPs and indels

The whole genomes of 150,119 UKB participants were sequenced to an average coverage of
32.5x (at least 23.5x per individual, Fig. S1) using lllumina NovaSeq sequencing machines at
deCODE Genetics (90,667 individuals) and the Wellcome Trust Sanger Institute (59,452
individuals). Individuals were pseudorandomly selected from the set of UKB participants and
divided between the two sequencing centers. All 150,119 individuals were used in variant
discovery, 13 were sequenced in duplicate, 11 individuals withdrew consent from time of
sequencing to time of analysis and microarray data were not available to us for 135
individuals, leaving 149,960 individuals for subsequent analysis.

Sequence reads were mapped to human reference genome GRCh3822 using BWA?3, SNPs
and short indels were jointly called over all individuals using both GraphTyper?* and GATK
HaplotypeCaller?, resulting in 655,928,639 and 710,913,648 variants, respectively. We used
several approaches to compare the accuracy of the two variant callers, including
comparison to curated datasets?® (Table S1, Fig. S2), transmission of alleles in trios (Table S2,
Table S3), comparison of imputation accuracy (Table S4) and comparison to WES data (Table
S5). These comparisons suggested that GraphTyper provided more accurate genotype calls.
For example, despite there being 7.7% fewer GraphTyper variants, we estimated that
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GraphTyper called 4.5% more true positive variants in trios and had 9.4% more reliably
imputing variants than GATK. We therefore restricted subsequent analyses of short variants
to the GraphTyper genotypes, although further insights might be gained from exploring
these call sets jointly. To contain the number of false positives, GraphTyper employs a
logistic regression model that assigns each variant a score (AAscore) predicting the
probability that it is a true positive. We focus on the 643,747,446 (98.14%) high quality
GraphTyper variants, indicated by an AAscore above 0.5, hereafter referred to as
GraphTyperHQ.

The American College of Medical Genetics and Genomics (ACMG) recommends reporting
actionable genotypes in a list of genes associated with diseases that are highly penetrant
and for which a well-established intervention is available?’. We find that 4.1% of the
149,960 individuals carry an actionable genotype in one of 73 genes according to ACMG?’
v3.0. Using WES?® and ACMG v2.0 (59 genes), 2.0% were reported to carry an actionable
genotype, when restricting our analysis to ACMG v2.0 and same criteria we find 2.5% based
on WGS. Increasing the number of actionable genotypes detected in a large cohort, to the
extent that it could have a significant impact on societal disease burden.

The number of variants identified per individual is 40 times larger than the number of
variants identified through the WES studies of the same UKB individuals (Table 1, Methods).
Although referred to as “whole exome sequencing” we find that WES primarily captures
coding exons and misses most variant in exons that are transcribed but not translated,
missing 72.2% and 89.4%, of the 5’ and 3’ untranslated region (UTR) variants, respectively.
Even inside of coding exons currently curated by Encode®, we estimate that 10.7% of
variants are missed by WES (Table 1). Manual inspection of the missing variants in WES
suggests these are missing due to both missing coverage in some regions as well as
genotyping filters. Conversely, almost all variants identified with WES are found by WGS
(Table 1).

Identification of functionally important regions

The number of SNPs discovered in our study corresponds to an average of one every 4.8 bp,
in the regions of the genome that are mappable with short sequence reads. This amounts
to detection of 7.0% of all theoretically possible SNPs in these regions (a measure of
saturation). We observe 81.5% of all possible autosomal CpG>TpG variants, 11.8% of other
transitions and only 4.0% of transversions (Table S6). Restricting the analysis to 17,902,255
autosomal CpG dinucleotides methylated in the germline®®, we observe transition variants
at 89.1% of all methylated CpGs. As CpG mutations are so heavily saturated (Fig. 1) the ratio
of transitions to transversions (1.66) is lower than found in smaller WGS sets! and de novo
mutation (DNM) studies®.

The vast majority of all variants identified are rare (Table S7), 46.0% and 40.6% of all SNPs
and short indels, respectively, are singletons (carried by a single sequenced individual), and
96.6% and 91.7% have frequency below 0.1%. Inference of haplotypes and imputation
typically involves identifying variants that are shared due to a common ancestor - are
identical by descent. Due to the scale of the UKB WGS data, an observation of the same
allele in unrelated individuals does not always imply identity by descent. A clear indication
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of this is that only 14% of the highly saturated CpG>TpG variants are singletons, in contrast
to 47% for other SNPs (Fig. 1b). These recurrence phenomena have been described in other
sample sets using sharing of rare variants between different subsets>!!., We used a DNM set
from 2,976 trios in Iceland?® to assess recurrence directly, as variants present in both that
set and the UKB must be derived from at least two mutational events. Out of the 194,687
Icelandic DNMs we find 53,859 (27.7%) in the UKB set providing a direct observation of
sequence variants derived from at least two mutational events. As expected, we find that
CpG>TpG mutations are the most enriched mutation class in the overlap, due to their high
mutation rate3® and saturation in the UKB set (Fig. 1b).

The rate and pattern of variants in the genome is informative about the mutation and
selection processes that have shaped the genome3!. The number of sequence variants in the
exome has been used to rank genes according to their tolerance of loss-of-function (LoF)
and missense variation!'32, The focus on the exome is due to the availability of WES
datasets and the relatively straightforward functional interpretation of coding variants.
Conservation across a broad range of species®? is used to infer the impact of selection
beyond the exome, leveraging the extensive accumulation of mutations over millions of
years. However, such statistics are only partially informative about sequence conservation
specific to humans3“. Sequence variation in humans3>3¢ can be used to characterize human
specific conservation, but large sample sizes are required for accurate inference, as much
fewer mutations separate pairs of humans than different species.

The extensive saturation of CpG>TpG variants at methylated CpGs in large WES cohorts has
been used to identify genomic annotation or loci where their absence could be indicative of
negative selection?®%’, In line with previous reports! we see less saturation of stop-gain
CpG>TpG variants than those that are synonymous (Fig. 1c). Synonymous mutations are
often assumed to be unaffected by selection (neutral)®>” however we find that synonymous
CpG>TpG mutations are less saturated (85.7%) than those that are intergenic (89.9%),
supporting the hypothesis that human codon usage is constrained2.

Extending this approach, we used sequence variant counts in the UKB to seek conserved
regions in 500bp windows across the human genome. More specifically, we tabulated the
number of variants in each window and compared this number to an expected number
given the heptamer nucleotide composition of the window and the fraction of heptamers
with a sequence variant across the genome and their mutational classes. We then assigned
a rank (Depletion Rank, DR) from 0 (most depletion) to 100 (least depletion) for each 500bp
window. As expected, coding exons have low DR (mean DR = 28.4), but a large number of
non-coding regions show even lower DR (more depletion), including non-coding regulatory
elements. Among the 1% of regions with lowest DR, 13.0% are coding and 87.0% are non-
coding, with an overrepresentation of splice, UTR, gene upstream and downstream regions
(Fig. 1d). DR increases with distance from coding exons (Fig. 1e). After removing coding
exons, among the 1% of regions with lowest and highest DR score we see a 3.2 and 0.4-fold
overrepresentation of GWAS variants, respectively (Table 2), suggesting that DR score could
be a useful prior in GWAS analysis®>. ENCODE candidate cis-regulatory elements (cCREs)
are more likely than expected by chance to be found in depleted (low DR) regions (Table 2).
Notably cCREs located in close proximity to transcription start sites, i.e. proximal enhancer-
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like and promoter-like sequences (pELS and PLS, respectively), are more enriched among
depleted regions than distal enhancer-like sequences (dELSs).

Regions under strong negative selection are expected to have a greater fraction of rare
variants (FRV, defined here as variants carried by at most 4 WGS individuals) than the rest of
the genome3®. We observe a greater FRV in the most depleted regions (DR<5) than in the
least depleted regions (DR>95) 74.8% vs 69.1% (Fig. 1f, Fig. S3). This is also seen when
limiting to only non-coding regions (74.6% vs 69.2%). Using the FRV of annotated coding
variants as a reference (Fig. 1f) we found the most depleted regions (DR < 1) to have a FRV
comparable to missense mutations (75.5%).

Overall there is a weak correlation between DR and interspecies conservation as measured
by GERP33 (linear regression (Ir) r? = 0.0050, two-sided (2s) p < 2.2-103%, Fig. 1g).
Interestingly, we find a stronger correlation between DR and GERP within coding exons (Ir r?
=0.0498, 2s p < 2.2-:103%) than outside them (Ir r>=0.0012, 2s p < 2.2-:103%8). Indicating that
the correlation between DR and GERP is mostly due to the most highly conserved elements,
such as coding exons, in the 36 mammalian species used to calculate GERP, with much
weaker correlation in less conserved regions.

To determine whether DR reflects human specific negative selection that is not captured by
GERP, we aggregated DR across the exons and compared it to the LOEUF metric from
Gnomad?!? (Fig. 1h), which measures intolerance to loss-of-function mutations. We found
that DR is correlated with LOEUF (Ir r>=0.085, 2s p < 2.2-10°%). LOEUF is correlated with
genes demonstrating autosomal dominant inheritance®?, in line with this we find that DR is
correlated with autosomal dominant genes as reported by OMIM#° (Table S8). Modelling the
LOEUF metric as a function of GERP and extracting the residuals from a linear fit, we obtain
a measure human specific loss-of-function intolerance (LOEUF | GERP). We find DR is
correlated with LOEUF|GERP (Ir r?=0.024, 2s p < 2.2-10%5, Fig. 1i), indicating that DR
measures human specific sequence constraint not captured by GERP. We compared DR with
CDTS?*, a measure of sequence constraint analogous to the one presented here and CADD*,
Eigen*? and LINSIGHT#?, measures of functional impact that incorporate interspecies
conservation (Fig. S4). The constraint metrics that use interspecies conservation form one
correlation block (GERP, CADD, Eigen and LINSIGHT) that is less correlated with the DR and
CDTS correlation block (Table S9). The regions with the lowest DR score show similar
enrichment across all metrics (Fig. S4). Overall, our results show that DR can be used to help
identify genomic regions under constraint across the entire genome and as such provides a
valuable resource for identifying non-coding sequence of functional importance.

Multiple cohorts within UKB

Many GWAS* using the UKB data have been based on a prescribed® Caucasian subset of
409,559 participants who self-identified as “White British”. To better leverage the value of a
wider range of of UKB participants, we defined three cohorts encompassing 450,690
individuals (Table S10), based on genetic clustering of microarray genotypes informed by
self-described ethnicity and supervised ancestry inference (Methods). The largest cohort,
XBI (Fig. S6), contains 431,805 individuals, including 99.6% of the 409,559 prescribed
Caucasian set, along with around 23,900 additional individuals previously excluded because
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they did not identify as "White British" (thereof 13,000 who identified as "White Irish"). A
principal components analysis (PCA) of the 132,000 XBI individuals with WGS data
(Methods), based on 4.6 million loci, reveals an extraordinarily fine-scaled differentiation by
geography in the British—Irish Isles gene pool (Fig. S5).

We defined two other cohorts based on ancestry: African (XAF, N=9,633,Fig. S7) and South
Asian (XSA, N=9,252, Fig. S8) (Fig. 2a,b,c). The 37,598 UKB individuals who do not belong to
XBI, XAF or XSA were assigned to the cohort OTH (others). The WGS data of the XAF cohort
represents one of the most comprehensive surveys of African sequence variation to date,
with reported birthplaces of its members covering 31 of the 44 countries on mainland sub-
Saharan Africa (Fig. S7). Due to the considerable genetic diversity of African populations,
and resultant differences in patterns of linkage disequilibrium, the XAF cohort may prove
valuable for fine-mapping association signals due to multiple strongly correlated variants
identified in XBI or other non-African populations.

We crossed GraphTyperHQ variants with exon annotations and found that on average
around one in thirty individuals is homozygous for rare (minor allele frequency, MAF < 1%)
LoF mutations in the homozygous state and the median number of heterozygous rare LoF is
24 per individual. We detect rare LoF variants in 19,105 genes, whereof 2,017 genes had
homozygous carriers of rare LoFs (n individuals = 5,102). A marked difference in the number
of homozygous LoFs carriers was found between the cohorts, with XSA having the largest
fraction of homozygous LoF carriers (Fig. S9b). A notable feature of the XSA cohort is
elevated genomic inbreeding, likely due to endogamy*, particularly among self-identified
Pakistanis*® (Fig. S9a).

On average, individuals carried alternative alleles for 3,410,510 SNPs and indels (Fig. 3a), per
haploid genome. A greater number of variants are generally found in individuals born
outside of Europe (Fig. S10), because the human reference genome is primarily derived from
individuals of European ancestry??. XAF individuals carry the greatest number of alternative
alleles (Fig. 3a). We constructed cohort specific DRs and find that XAF shows greater
depletion around exons than XBI and XSA (Fig. S11). Largely due to variation in the number
of individuals sampled, the average number of singletons per individual varies considerably
by ancestry (Fig. 3a). Thus, individuals from the XBI, XAF and XSA cohorts have an average of
1,330, 9623 and 8340 singleton variants, respectively. In XBI, singleton counts (Fig. 2d)
indicate that the expected number of new variants discovered per genome is still
substantial, but varies geographically, averaging around 1,000 in Northern England and
2,000 South-Eastern England. This pattern is largely explained by denser sampling of some
regions (Fig. 2e,f) rather than regional ancestry differences.

Imputation

We were able to reliably impute variants into the entire UKB sample set down to very low
frequency (Fig. 3b). We imputed phased genotypes which permit analysis that depend on
phase such as identification of compound LoF heterozygotes. A single reference panel was
used to impute into the genomes of all participants in UKB, but results are presented
separately for the three cohorts (Table S11). This reference panel can be used for accurate
imputation in individuals from the UK and many other populations. In the XBI cohort, 98.5%
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of variants with frequency above 0.1% and 65.8% of variants in the frequency category of
0.001-0.002% (representing 3-5 WGS carriers) could be reliably imputed (Fig. 3b). Variants
were also imputed with high accuracy in XAF and XSA (Fig. 3b), where 97.5% and 94.9% of
variants in frequencies 1-5% and 56.6% and 48.9% of variants carried by 3-5 sequenced
individuals could be imputed, respectively. A larger number of variants, particularly rare
ones, are imputed for all cohorts than when using a alternate imputation panel® (Table S12).
It is thus likely that the UKB reference panel provides one of the best available option for
imputing genotypes into population samples from Africa and South Asia.

We found a number of clinically important variants that can now be imputed from the
dataset. These include rs63750205 (NM_000518.5(HBB):c.*110_*111del) in the 3 UTR of
HBB, a variant that has been annotated in ClinVar*’ as likely pathogenic for beta
Thalassemia. rs63750205-TTA has 0.005% frequency (freq) in the imputed XBI cohort
(imputation information (imp info) 0.98) and is associated with lower mean corpuscular
volume by 2.88 s.d. (95% Cl 2.43-3.33, 2s p = 1.5:1073, 2).

In the XSA cohort we found rs563555492-G, a previously reported*® missense variant in
PIEZO1 (freq = 3.65% XSA, 0.046% XAF, 0.0022% XBI) associated with higher haemoglobin
concentration, effect 0.36 s.d. (95% Cl 0.28-0.44, 2s p = 8.9-:10%°, x?). The variant can be
imputed into the XSA population with imp info of 0.99.

In the XAF cohort we found the stop gain variant rs28362286-C (p.Cys679Ter) in PCSK9 (freq
=0.93% XAF, 0.00016% XBI, 0.0070% XSA) imputed in the XAF cohort with imp info 0.93.
The variant lowers non-HDL cholesterol by 0.92 s.d. (95% CI 0.75-1.09, 2s p = 2.3-10°%6, x2).
We found a single homozygous carrier of this variant, which has 2.5 s.d. lower non-HDL
cholesterol than the population mean, is 61 years old and appears to be healthy.

SNP and indel associations not present in WES data

We highlight three examples of associations of SNPs and indels associated with traits in the
XBI cohort that could not be easily identified in WES or SNP array data.

The first is an association in the XBI cohort between a rare variant rs117919628-A (freq =
0.32%; imp info = 0.90) in the promoter region of GHRH, encoding the growth hormone-
releasing hormone close to one of its TSS (Transcription start site) and less height (effect = -
0.32 s.d. (95% C1 0.27-0.36), 2s p = 1.6-10°3°, x2). GHRH is a neuropeptide secreted by the
hypothalamus to stimulate the synthesis of growth hormone (GH). We note that the effect
(-0.32 s.d. or -3cm) of rs117919628 is greater than any variants reported in large height
GWAS (~1200 associated variants)*®=1, In addition to reducing height, rs117919628-A is
associated with lower IGF-1 serum levels (Insulin-growth factor 1, effect =-0.36 s.d. (95% ClI
0.32-0.40), 2s p = 3.2:10%, x?). The production of IGF-1 is stimulated by GH and mediates
the effect of GH on childhood growth, further supporting GHRH being the gene mediating
the effects of rs117919628-A. Due to its location around 50 bp upstream of the GHRH
5‘UTR, this variant is not targeted by the UKB WES, and neither is the only strongly
correlated variant rs372043631 (intronic). The height associations of these two variants
have not been reported, presumably because they are absent from all versions of the 1,000
Genomes data®? and in imputations based on the haplotype reference consortium/UK 10K>3
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(HRC/UK10K) these two variants have low imp info (0.54) and may thus fail quality checks.
rs117919628-A is not correlated with rs763014119-C (no individuals carry the minor allele of
both variants), a previously reported>* very rare frameshift deletion in GHRH
(Phe7Leufster2; freq = 0.0092%), associated with reduced height and IGF-1 levels (height
effect =-0.63 s.d (95% Cl 0.36-0.89), 2s p = 4.6-10°®; IGF-1 effect = -0.74 s.d. (95% Cl 0.49-
0.99), 2s p =4.9-10°, x2).

The second example is rs939016030-A a rare 3‘ UTR essential splice acceptor variant in the
gene encoding tachykinin 3 (TAC3; freq = 0.033%; ¢.*2-1G>T in NM_001178054.1 and
NM_013251.3). The XBI cohort has 89 WGS carriers and 281 in the imputation set. This
variant is not found in WES of the UKB>3 and neither are the two highly correlated variants,
one intronic (rs34711498) and one intergenic (rs368268673). These 3 variants were absent
from the HRC/UK10K>® imputation, and are only present in Europeans, with highest
frequency in the UK according to Gnomad?t. The minor allele of this 3‘UTR essential splice
variant rs939016030-A is associated with later age of menarche, with an effect of 0.57 s.d.
(95% Cl 0.41-0.74) or 11 months (2s p = 1.0-10%, x?). Rare coding variants in TAC3 and its
receptor TACR3 are reported to cause hypogonadotropic hypogonadism>® under autosomal
recessive inheritance. However, in the UKB, the association of the 3"UTR splice acceptor
variant, is only driven by heterozygotes (~ 1 in 1500 individuals) with no homozygotes
detected. We replicated this finding in a set of 39,360 Danes, with an effect of 0.70 s.d.
(95% C1 0.34-1.06, freq = 0.05%, 2s p = 0.00014, x?).

The third example is a rare variant (rs1383914144-A; freq = 0.40%) near the centromere of
chromosome 1 (start of 1q), that associates with lower uric acid (UA) levels (effect =-0.43
s.d. (95% Cl 0.40-0.46) or -0.58 mg/dL (95% Cl 0.54-0.62), 2s p = 8.1-:10%7%, x?) and protection
against gout (OR = 0.36 (95% Cl 0.28-0.46), 2s p = 4.2-:10%%, x2). A second variant
rs1189542743, 4Mb downstream at the end of 1p is strongly correlated with rs1383914144
(r> =0.68) and yields a similar association with uric acid. Neither variant is targeted by UKB
WES nor imputed by the HRC/UK10K and no association was reported in this region in the
uric acid GWAS>’. The effect of rs1383914144-A on uric acid is larger than for any variant
reported in the latest GWAS meta-analysis of this trait. We replicate these findings in
Iceland (rs1383914144-A, freq = 0.47%; 2s p (UA) = 8.0-10°%, x? and effect (UA) = - 0.51 s.d.
(95% Cl1 0.43-0.59), 2s p (Gout) = 0.0018, x?, OR (Gout) 0.31 (95% Cl 0.15-0.64)) and
(rs1383914144-A, freq = 0.47%; 2s p (UA) = 1.1-10°%6, x2 and effect (UA) = - 0.51 s.d. (95% ClI
0.43-0.59), 2s p (Gout) = 0.0018, x?, OR (Gout) 0.31 (95% Cl 0.15-0.64)).

Structural variants play an important role in human genetics

We identified structural variants (SVs) in each individual using Manta>® and combined these
with variants from a long read study”® and the assemblies of seven individuals®®. We
genotyped the resulting 895,055 SVs (Fig. 3¢c) with GraphTyper®, of which 637,321 were
considered reliable.

On average we identified 7,963 reliable SVs per individual, 4,185 deletions and 3,778
insertion (Fig. 3a). These numbers are comparable to the 7,439 SVs per individual found by
Gnomad-SV®!, another short read study, but considerably smaller than the 22,636 high
quality SVs found in a long read sequencing study®°, mostly due to an underrepresentation
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of insertions and SVs in repetitive regions. SVs show a similar frequency distribution as SNPs
and indels and a similar distribution of variants across cohorts (Fig. 3a).

We present four examples of phenotype associations with structural variants, not easily
found in WES data. First, a rare (freq=0.037%) 14,154 bp deletion that removes the first
exon in PCSK9, previously discovered using long read sequencing in the Icelandic population
and is associated with lower non-HDL cholesterol levels>®. There were thirty two WGS
carriers in the XBI cohort (freq 0.012%) and 72 carriers in the XBl imputed set (freq 0.0087%)
who had 1.22 s.d. (95% CI 0.90-1.55) lower non-HDL cholesterol levels than non-carriers (2s
p=1.2-10"13, x2).

The second example is a 4,160 bp deletion, (freq = 0.037% in XBI), that removes the
promoter region from 4,300 to 140 bp upstream of the ALB gene that encodes Albumin. Not
surprisingly, carriers of this deletion have markedly lower serum albumin levels (effect 1.50
s.d. (95% Cl 1.35-1.62) 2s p = 9.5-10°8, ¥). The variant is also associated with traits
correlated with albumin levels; carriers had lower calcium and cholesterol levels: 0.62 s.d.
(95% Cl1 0.50-0.75, 2s p = 2.9:10%, x?) and 0.45 s.d. (95% Cl1 0.30-0.59, 2s p = 1.1:107°, x?),
respectively.

The third SV example is a 16,411 bp deletion (freq = 0.0090% in XBI) that removes the last
two exons (4 and 5) of GCSH, that encodes Glycine cleavage system H protein. Carriers of
this deletion have markedly higher Glycine levels in the UKB metabolomics dataset (effect
1.45 s.d. (95% Cl 1.01-1.86), 2s p = 1.2:10°%0, x2).

The final example is a rare (freq 0.892% in XBI) 754bp deletion overlapping exon 6 of
NMRK2, encoding nicotinamide riboside kinase 2 that removes 72 bp from the transcribed
RNA that corresponds to a 24 amino acid inframe deletion in the translated protein. Carriers
of this deletion have a 0.22 s.d. (95% Cl 0.18-0.27) earlier age at menopause (2s p =1.1-10
26 ¥2). Nearby is the variant rs147068659, reported to be associated with this trait®?, with an
effect 0.20 s.d. (95% CI 0.16-0.24) earlier age at menopause (2s p = 2.0-102%, x2) in the XBI
cohort. The deletion and rs147068659 are correlated (r?> =0.67), after conditional analysis
the deletion remains significant (2s p = 6.4-108, x?) whereas rs147068659 does not (2s p =
0.39, x?), indicating the deletion is the lead variant for the locus. NMRK2 is primarily
expressed in heart and muscle tissue®. In our dataset of right atrium heart tissue, one
individual out of a set of 169 RNA sequenced individuals is a carrier of this deletion. As
expected we observe decreased expression of exon 6 in this individual (Fig. $12) and an
increase in the fraction of transcript fragments skipping exon 6 (Fig. S13).

Microsatellites are commonly overlooked

We identified 14,321,152 alleles at 2,536,688 microsatellite loci using popSTR®* in the
150,119 WGS individuals, who carry on average of 810,606 non-reference microsatellite
alleles. The number of non-reference alleles carried per individual shows a similar
distribution across the UKB cohorts as other variant types characterized in this study (Fig.
3a). Microsatellites are among the most rapidly mutating variants in the human genome and
a source of genetic variation that is usually overlooked in GWAS. Repeat expansions are
known to associate with a number of phenotypes, including Fragile X syndrome®. We are
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able to impute microsatellites down to a very low frequency (Fig. S14) in all three cohorts,
providing one of the first large scale datasets of imputed microsatellites.

We genotyped a microsatellite within the CACNA1A gene that encodes voltage-gated
calcium channel subunit alpha 1A. Individuals who have twenty or more repeats of this
microsatellite generally suffer from lifelong conditions that affect the brain, including
Familial hemiplegic migraine (FHM1), Epilepsy, Episodic Ataxia Type 2 (EA2) and
Spinocerebellar ataxia type 6 (SCA6)°67%9, Carriers in the XBI cohort of 22 copies of the
microsattelite repeat were at greater risk for hereditary ataxia (freq = 0.0071%, OR = 304, 2s
p=1.1-1031, 2).

We also confirm an association between a microsatellite within the 3 UTR of DMPK,
encoding DM1 protein kinase, and myotonic dystrophy in the XBI cohort. Expression of
DMPK is negatively correlated with the number of repeats of the microsatellite’®. The risk of
myotonic dystrophy increases with copy number of the repeats, rising rapidly with the
number of repeats carried by an individual up to an odds ratio of 161 for individuals carrying
39 or more repeats (Table S13, Fig. S15).

Variants that are not imputed

Although the vast majority of WGS variants can be imputed to the larger set of SNP array
genotyped individuals it is interesting to examine the variants that are not imputed. A
subset of these variants are in regions where there are no nearby variants present in the
SNP array data and regions where there are disagreements between the GRCh3822 and
CHM137! assemblies. Lifting variants over to the CHM13 assembly may allow us to impute a
subset of these variants. The failure of those variants to impute on GRCh38 can presumably
be attributed to a misassembly on GRCh38. In addition, we identify a number of variants
that are most likely recurrently somatic, such as the gain of function mutations in JAK272-74
and CALR’* know to be associated with myeloproliferative disorders, including
polycythaemia vera and essential thrombocythemia.

Discussion

The dataset provided by sequencing the whole genomes of 150 thousand UKB participants
is unparalleled in its size and provides the most extensive characterization of the sequence
diversity in the germline genomes of a single population to date. The UK population is
diverse in its genetic ancestry and includes individuals born in countries all over the globe.
The African and South Asian ancestry cohorts each number over 9,000 individuals, represent
some of the largest available WGS sets of these ancestries and which are likely to have an
impact both clinically and in further characterizing the relationship between sequence and
traits.

We characterized an extensive set of sequence variants in the WGS individuals, providing
two sets of SNP and indel data, as well as microsatellite and SV data, variant classes that are
frequently not interrogated in GWAS. We give examples of how these variants play a role in
the relationship between sequence and phenotypic variation. Further discoveries may be
made by relating the variants presented here to alternate annotations (Table $S14), but more
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importantly we believe there are many other discoveries to be made. The number of SNPs
and indels are 40-fold greater than from WES of the same individuals. Even within
annotated coding exons WES misses 10.7% of variants, found through WGS. WES misses
most of the remainder of the genome, including functionally important UTR, promoter
regions and exons yet to be annotated. The importance of these regions is exemplified by
the discovery of rare non-coding sequence variants with larger effects on height and
menarche than any variants described in GWAS to date.

The DR score presented here is an important resource for identifying genomic regions of
functional importance. Although coding exons are clearly under strong purifying selection,
as represented by a low DR score, they represent only a small fraction of the regions with
low DR score. Clinical geneticists typically focus on coding exons and have only been able to
identify the causal variant in fewer than half of clinical cases studied. Currently, 98.4% of
variants annotated as pathogenic in the ClinvVar®’ database are within coding exons. Greater
attention should be given to other regions of the genome, particularly those with low DR
score, where non-coding exons (UTRs), enhancer and promoter regions are
overrepresented.

There are still some sequence variants that are not found with short read WGS, including
VNTRs, repetitive regions and regions that have only recently been captured by human
genome assemblies’?. Improved assembly’>7>, sequencing and representation of the
genome and its variation will have important implications for advancing our understanding
of the relationship between sequence diversity and human diseases and other traits.

A near complete sequence of the human genome has been known for over twenty years.
Genome scientists have yet to assign function to a large fraction of this sequence and have
had only partial success in understanding the genetic source of phenotypic diversity. The
large-scale sequencing described here, as well as the continued effort in sequencing the
entire UKB, promises to vastly increase our understanding of the function and impact of the
non-coding genome. When combined with the extensive characterization of phenotypic
diversity in the UKB, these data should greatly improve our understanding of the
relationship between human genome variation and phenotype diversity.
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Fig. 1 Functionally important regions a) Fraction of SNP's in each mutation class, for all SNP's in our dataset, singletons in
our dataset, and in an Icelandic set of de novo mutations (DNMs) respectively. b) Saturation levels of mutations in each
class, split into singleton variants (blue) and more common variants (red).c) Saturation levels of transitions at methylated
CpG sites across genomic annotations and predicted consequence categories. The horizontal line is the average across all
methylated CpG-sites.. d) Fraction of regions falling into functional annotation classes, as defined by Ensembl gene map, as
a function of DR. e) DR score as a function of distance from exon and LOEUF decile f) Fraction of rare (with 4 or fewer
carriers) variants (FRV) as a function of DR. g) Average GERP score in 500bp windows as a function of DR, red line
represents average GERP score, blue and green line 95-th percentile. h) LOUEF and i) LOEUF|GERP as a function of DR.
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Fig. 2 Cohort characteristics a) The number of WGS samples analyzed for phenotypes in our study. b) UMAP plot generated
from the first 40 principal components of all UKB participants, colored by self-reported ethnicity: blue shades for ethnic
labels under the White category, red shades for Black, and green shades for South Asian; for full color legend see Fig. S28.
c) Joint frequency spectrum of variants on chr20 between all pairs of populations. Panels d, e and f show characteristic of
XBI cohort across Great Britain and Ireland d) Number of singletons carried by individuals in the XBI cohort as a function of
place of birth. e) Mean number of 3 degree relatives by administrative division f) Location of UKB assessment centers and
estimated fraction of surrounding population recruited to the UKB. Differences in singleton counts and number of third
relatives are likely a result of denser sampling of individuals living near UKB assessment centers.
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Fig. 3 Variant call set a) Number of SNPs, Indels, microsatellites, SV insertions, SV deletions and singleton SNPs carried per
diploid genome of individuals in the overall set and partitioned by population. b) Imputation accuracy in the three
populations, XBIl, XAF and XSA. A variant was considered imputed if “Leave one out r2” of phasing was greater than 0.5 and
imputation information was greater than 0.8. x-axis splits variants into frequency classes based on the number of carriers in
the sequence dataset. Variants are split by variant type. c) Number of structural variants (SVs) discovered in the dataset by
variant type. d) Length distribution of SVs, from 50-1,000 bp, 1,000-10,000bp and 10,000-100,000bp.
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Tables
WGS N Unique Present Missing Present Missing
WGS WES WES to WES WES WES WGS WGS

coding 6,380,795 5,781,829 5,686,934 94,895 89.29% 10.71%  98.53% 1.47%
splice 445,499 397,226 388,961 8,265 87.54% 12.46%  98.18% 1.82%
Sutr 2,125,413 590,484 572,996 17,488 27.56% 72.44%  99.18% 0.82%
3utr 7,214,427 764,864 743,790 21,074 10.57% 89.43%  99.71% 0.29%
proximal 249,702,570 6,189,465 5,952,145 237,320 2.48% 97.52%  99.91% 0.09%
intergenic 292,259,782 91,836 83,360 8,476 0.03% 99.97% >99.99% <0.01%

Table 1 Overlap of WES and WGS data. Results are computed for the 109,618 samples present in both datasets and is
limited to those variants that are present in at least one individual in either dataset. Numbers refer to number of variants
found in dataset. WGS refers to the GraphTyperHQ dataset and WES refers to a set of 200k WES sequenced indivdiduals®.
Missing and present percentages are computed from the number of variants in the union of the two datasets.
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A)
DR of non-coding regions Enrichment 95%ClI P-value
DR 1% 3.22 2.44-4.07 <0.0004
DR 99% 0.45 0.23-0.70 <0.0004
DR 5% 2.25 1.86-2.69 <0.0004
DR 95% 0.61 0.47-0.70 <0.0004
B)
Candidate Cis-Regulatory . Enrichment, OR (95%Cl)
Elements (cCREs)* %Genome DR 1% DR 5%
pELS, CTCF-bound 0,53 6,35 (6,04-6,68) 3,49 (3,37-3,61)
PLS, CTCF-bound 0,15 6,37 (6-6,75) 3,34 (3,19-3,49)
PLS 0,05 2,77 (2,53-3,03) 1,9 (1,79-2,03)
pELS 0,53 2,49 (2,39-2,63) 1,96 (1,9-2,02)
DNase H3K4me3, CTCF-bound 0,07 1,92 (1,67-2,19) 1,48 (1,38-1,59)
dELS, CTCF-bound 1,86 1,65 (1,58-1,71) 1,53 (1,5-1,57)
dELS 4,11 1,17 (1,13-1,2) 1,27 (1,25-1,3)
DNase H3K4me3 0,15 1,15 (1,04-1,27) 1,03 (0,974-1,08)
CTCF-only 0,47 0,878 (0,83-0,925) 0,96 (0,933-0,987)

Table 2 DR enrichment analysis A) Over- and underrepresentation of GWAS variants in low and high DR regions. Windows
overlapping coding exons were removed. Lower DR scores indicate greater sequence conservation. B) Enrichment of
ENCODE's candidate cis-regulatory elements (cCREs) among low DR regions defined at the 1st and 5th percentile. The % of
the genome covered by cCREs are indicated for each type of cCRE. *Exons of protein coding genes found in overlap with
cCRE regions were removed.
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Fig. S5 Geographic distribution of the loadings of the first four principal components of a PCA of the XBI population.
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Fig. S9 Loss-of-function a) Correlation between the number of LoF genes per sample and fraction of genome with runs of
homozygosity. b) Number of homozygous loss-of-function (LoF) genes per sample. Count of homozygous genes annotated
as high impact with frequency <1%. Results are presented for XBl, XAF, XSA excluding individuals self-identified as Pakistani,
individuals self-identified as Pakistani from the XSA cohort and Others.
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Fig. S10: Alternative alleles by region. Numbers in brackets beneath region names indicate count of whole genome
sequenced individuals with birthplaces in that region. Assignment of countries to regions is almost identical to the
categorization displayed in the cohort cartogram pie figures, with the exception that all European regions are combined
into one region in this figure. Vertical lines underneath density curves represent Oth, 25th, 50th, 75th, and 100th
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Fig. S12 Coverage plot of RNA-sequenced reads from heart tissue from 169 heart tissue samples over the gene NMRK2. One
individual is a carrier of a 754bp deletion depicted with gray rectangle that includes exon 6 of NMRK2. The RNA-coverage of
the carrier (blue) is lower over exon 6 compared to median coverage of non-carriers (green). Shading marks the deleted
region.
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Fig. S13 Histogram of fraction of RNA-sequenced fragments skipping exon 6 in NMRK2 out of all fragments aligning from
the donor site of exon 5 to either acceptor site of exon 6 or exon 7. The median fraction fragments skipping for wild-type
individuals is 0.035 and 0.57 for the carrier of the 754bp deletion.
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Fig. S14 Imputation and phasing accuracy across variant datasets in the three populations. A variant is considered imputed
if Leave one out r2 (L1or2) of phasing was greater than 0.5 and imputation information was greater than 0.8. x-axis splits
variants into frequency classes based on the frequency in each cohort.
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Fig. S15 Odds ratio for risk of myotonic dystrophy as a function of repeat length in microsatellite at the 3’ untranslated

region of DMPK. Carriers of at least 39.7 copies of the microsatellite repeat motif have a 162-fold increased risk of myotonic

dystrophy.
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Fig. S16 Process outline for UKB sequencing pipeline at deCODE genetics.
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Fig. S17 Pipeline for processing of sequence data at deCODE genetics.
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QC_VERDICT = 'PASS'

if freemix_percentage >= 1.0:
QC_VERDICT = 'REVIEW'

if coverage < 26:
QC_VERDICT = 'REVIEW'

if freemix_percentage >=5.0:
QC_VERDICT = "FAIL'

if prc_proper_pairs < 95.0:
QC_VERDICT = "FAIL'

if prc_auto_ge_15x < 95.0:
QC_VERDICT = "FAIL'

if discordance_prcis not -1 and discordance_prc >= 2.0:

QC_VERDICT = 'FAIL'
Fig. S18 Logic used to compute PASS/FAIL for a WGS cram file.
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Fig. S19 Average sequence coverage per base pair across the genome. The average coverage is computed from 1,000
randomly selected samples.
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Fig. S22 a) Variant allele frequencies (VAF) of singletons. b) Mutation classes of singletons. Results are for the GATK and
GraphTyper callsets on 500 randomly selected regions.
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Fig. S23 Fraction of variants by mutation type in the GATK, GraphTyper and GraphTyper HQ sets.
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Fig. S25 Manhattan plots, quantile-quantile (QQ) plots and histograms of inverse-normal transformed values after
adjustment for covariates age, sex and 40 principal components, when applicable, for quantitative traits with significant
results reported in this manuscript. For Manhattan plots, the x-axis represents chromosome locations and the y-axis shows
the —log10 significance levels of the associations. For QQ plots, the inflation (A) is shown in the title of each graph, for all
variants and for rare variants only (A_maf<0.01). For the histograms, the x-axis shows the value range of the inverse-normal
transformed points and the y-axis shows the count of individuals within value ranges.

a) Total cholesterol, structural variant analysis, European ancestry (N=412,119)
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b) Calcium levels, structural variant analysis, European ancestry (N=378,246)
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c) Albumin levels, structural variant analysis, European ancestry (N=378,395)
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d) Standing height, SNV analysis, European ancestry (N=430,136)
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e) IGF-1levels, SNV analysis, European ancestry (N=409,982)
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f) Mean corpuscular volume, SNV analysis, European ancestry, male sex (N=182,270)
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g) Age at menopause, structural variant analysis, European ancestry, female sex
(N=141,129)
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h) Non-high density lipoprotein, structural variant analysis, European ancestry
(N=378,146)
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i) Non-high density lipoprotein, SNV analysis, African ancestry (N=8,359)
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j)  Hemoglobin concentration, SNV analysis, Asian ancestry (N=8,842)
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k) Age at menarche, SNV analysis, European ancestry (N=226,436)
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[) Urate levels, SNV analysis, European ancestry (N=411,640)
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m) Glycine, metabolomics analysis, European ancestry (N=411,640)
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Fig. 26 Manhattan plots and quantile-quantile (QQ) plots for case-control phenotypes with significant results reported in
this manuscript. For Manhattan plots, the x-axis represents chromosome locations and the y-axis shows the —log10
significance levels of the associations. For QQ plots, the inflation (A) is shown in the title of each graph, for all variants and
for rare variants only (A_maf<0.01)

a) Hereditary ataxia, microsatellite analysis, European ancestry (Ncases=335,
Ncontrols=430,603)
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b) Myotonic disorders, microsatellite analysis, European ancestry (Ncases=99,
Ncontrols=430,839)
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c) Gout, SNV analysis, European ancestry (Ncases=16,353, Ncontrols=414,694)
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Fig. S27 Locus plot for A) Uric acid and B) Age at menarche associations.
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White unspecified (n = 545)
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White and Black Caribbean (n = 597)
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Chinese {n = 1504)

Orther ethnic group (n = 4356)

Fig. 28 UMAP and ethnicity. 40 genetic principal components provided by UKB reduced to a latent space of 2 dimensions
using UMAP (x and y axes). Individuals are colored according to self-identified ethnicity. The regions defined to delineate

the three cohorts XAF, XBI, and XSA are indicated.
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Fig. S29 Cohort mean ADMIXTURE. Mean proportion of each of five 1000 Genome Project ancestry components assigned by
ADMIXTURE (columns). Error bars represent 99.9% confidence intervals. CEU (Northern Europeans from Utah), CHB (Han
Chinese in Beijing), ITU (Indian Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in Ibadan, Nigeria).
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Fig. S30 UMAP ADMIXTURE. 40 genetic principal components provided by UKB reduced to a latent space of 2 dimensions
using UMAP (x and y axes). Individuals are colored according to proportion of ancestry assigned by supervised ADMIXTURE
from five 1000GP training populations (facet headings): CEU (Northern Europeans from Utah), CHB (Han Chinese in Beijing),
ITU (Indian Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in Ibadan, Nigeria).
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Fig. S31 The first six principal components of the XBI cohort, plots show PC1 vs PC2, PC3 vs PC4 and PC5 vs PC6. Points
represent individuals, colored by place of birth. To show geographic structure in the UK more clearly, we do not show
individuals who report being born in urban areas with many internal migrants (Tyne & Wear, Merseyside, Greater
Manchester, West Midlands, Bristol, London) or places outside the British-Irish Isles.
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Fig. S32 The first six principal components of the XAF cohort, plots show PC1 vs PC2, PC3 vs PC4 and PC5 vs PC6. Points

represent individuals, colored by place of birth.
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Fig. S33 The first six principal components of the XSA cohort, plots show PC1 vs PC2, PC3 vs PC4 and PC5 vs PC6. Points

represent individuals, colored by place of birth.
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Supplementary Tables

A) SNP+Indel
GATK GraphTyper
GIAB sample  #Variants  Sensitivity Precision Fl-score Sensitivity Precision Fl-score
HGO001 30,717 98.09% 98.90% 98.49% 98.97% 99.29% 99.13%
HG002 29,802 98.14% 99.03% 98.59% 98.84% 99.36% 99.10%
HGO003 28,379 98.16% 99.10% 98.63% 99.02% 99.21% 99.11%
HGO004 28,539 98.11% 99.02% 98.56% 99.03% 99.48% 99.26%
HGO005 26,846 98.47% 99.02% 98.74% 99.08% 99.48% 99.28%
HGO006 27,546 98.77% 99.11% 98.94% 99.22% 99.28% 99.25%
HG007 28,798 98.63% 99.21% 98.92% 99.14% 99.29% 99.21%
Average 28,661 98.34% 99.06% 98.70% 99.04% 99.34% 99.19%
B) SNP
GATK GraphTyper
GIAB sample  #Variants  Sensitivity Precision Fl-score Sensitivity Precision Fl-score
HGO001 26,377 99.50% 99.07% 99.28% 99.63% 99.29% 99.46%
HGO002 25,747 99.45% 99.09% 99.27% 99.46% 99.36% 99.41%
HGO003 24,450 99.43% 99.19% 99.31% 99.56% 99.20% 99.38%
HGO004 24,428 99.47% 99.16% 99.31% 99.60% 99.48% 99.54%
HGO005 23,465 99.60% 99.14% 99.37% 99.44% 99.49% 99.46%
HGO006 24,226 99.63% 99.18% 99.40% 99.61% 99.27% 99.44%
HGO007 25,257 99.59% 99.30% 99.44% 99.53% 99.29% 99.41%
Average 24,850 99.52% 99.16% 99.34% 99.55% 99.34% 99.44%
C) Indel
GATK GraphTyper
GIAB sample  #Variants  Sensitivity Precision Fl-score Sensitivity Precision Fl-score
HG001 4,340 89.46% 97.30% 93.21% 94.94% 99.59% 97.21%
HGO002 4,055 89.81% 98.42% 93.92% 94.85% 99.42% 97.08%
HGO003 3,929 90.26% 98.12% 94.03% 95.61% 99.54% 97.54%
HGO004 4,111 89.93% 97.68% 93.64% 95.59% 99.43% 97.47%
HGO005 3,381 90.47% 97.80% 93.99% 96.50% 99.34% 97.90%
HGO006 3,320 92.45% 98.35% 95.31% 96.34% 99.65% 97.97%
HGO007 3,541 91.68% 98.25% 94.85% 96.28% 99.51% 97.87%
Average 3,811 90.58% 97.99% 94.14% 95.73% 99.50% 97.58%

Table S1 Genome in a bottle (GIAB) v3.3.2 truth set comparison of GATK and GraphTyper in 500 random regions F1-score is

the harmonic mean of Sensitivity and Precision. A) all variant types, B) SNPs only C) Indels only.
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A)

Method FDR TP #Variants

GATK 9.97% 17,140,110 19,038,309

GraphTyper 6.31% 17,915,210 19,123,669

GraphTyperHQ 1.45% 16,768,945 17,016,415
B)

Method ICPM Non-ref consistency  Number of non-ref calls
GATK 78.1 95.21% 68,537,823
GraphTyper 70.3 95.81% 70,442,413

GraphTyperHQ 11.8 99.22% 63,556,940

Table S2 A) Estimate of false discovery rate (FDR) and number of true positive (TP) variants among the 28 parent-offspring
trios. The estimates are determined from the allele transmission ratios from parent to offspring. B) Genotype consistency
across among the 14 monozygotic twin pairs. ICPM = number of inconsistent genotypes per 1Mb.
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A)
Method Total checks Error rate
GATK 1,277,130 1.19%

GraphTyper 1,339,337 1.12%

B)
GATK  GraphTyper
Total variants 166,315 162,773
SNPs only 137,277 125,282
Indels only 29,038 37,491
True positive estimate 145,882 151,838
SNPs only 119,682 117,659
Indels only 26,200 34,179
False discovery rate estimate 12.28% 6.72%
SNPs only 12.82% 6.08%
Indels only 9.77% 8.83%
9)
Method Non-Ref Variants Consistent Error rate
GATK 597,882 564,031 5.66%
GraphTyper 603,589 578,763  4.11%

Table S3 Analysis of variant transmission of related samples in the 500 randomly selected 50kb test regions. A) Number of
inheritance errors among the 28 parent-offspring trios. B) Estimates of number True Positives and False discovery rate in
GATK and GraphTyper datasets in the trios. The estimates are determined from the allele transmission ratios from parent to

offspring. C) Genotype consistency among the 14 pairs of monozygote twins.
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GATK GraphTyper
Minimum
Frequency N N Imputed N N Imputed
number of . . . .
] threshold imputed markers ratio imputed markers ratio
carriers

SNPs 54001 200471 26.9% 58494 197508 29.6%
2640 1.0% 3157 3439 91.7% 3380 3500 96.5%
264 0.1% 2480 3225 76.8% 2623 2770 94.6%
26 0.01% 7436 10467 71.0% 7859 9367 83.9%
13 0.005% 5491 7557 72.6% 5857 7331 79.8%
6 0.002% 11326 17013 66.5% 12230 16884 72.4%
3 0.001% 16503 33921 48.6% 18095 33851 53.4%
1 0.0002% 7608 124849 6.0% 8450 123805 6.8%
Indels 6124 21720 30.4% 7876 20218 39.0%
2640 1.0% 842 935 90.0% 1132 1254 90.2%
264 0.1% 602 854 70.4% 790 917 86.1%
26 0.01% 1037 1861 55.7% 1327 1723 77.0%
13 0.005% 570 1054 54.0% 673 966 69.6%
6 0.002% 1038 1954 53.1% 1172 1800 65.1%
3 0.001% 1352 3377 40.0% 1521 3096 49.1%
1 0.0002% 683 11685 5.8% 743 10462 7.1%

Table S4 Comparison of imputation of variants from the GATK and GraphTyper call sets on chr22 10-11Mb in the XBI
dataset. A variant is considered imputed if phasing Leave-on-out-r2 (L1or2) is greater than 0.5 and imputation info is

greater than 0.8.
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A)
Method WES AF>0.01% WES AF>0.1%
GATK 21,662 (1.81%) 8,973 (2.54%)
GraphTyper 5,310 (0.44%) 1,903 (0.54%)
GraphTyperHQ 16,774 (1.60%) 7,693 (2.17%)
B)
Present in
WES 200k GATK GraphTyper GraphTyperHQ
WES WES WES WES WES WES WES WES
Type AF>0.01% AF>0.1% AF>0.01% AF>0.1% AF>0.01% AF>0.1% AF>0.01% AF>0.1%
A>C 71,587 24,700 1,948 824 580 166 1,511 643
A>G 380,627 127,772 6,260 2,740 1,681 665 5,600 2,650
A>T 44,040 15,489 1,368 620 357 126 908 397
C>G 101,848 34,675 2,640 1,085 706 242 2,097 941
C>T 377,729 126,438 7,649 2,963 1,462 526 5,188 2,425
G>T 71,556 24,815 1,797 741 524 178 1,470 637
TilTv 2.62 2.55 1.79 1.74 1.45 1.67 1.80 1.94

Table S5 A) Number of variants in the WES 200k dataset that are missing from GATK, GraphTyper and GraphTyperHQ
datasets, conditioned on the frequency in WES 200k. The fractions of missing variants are inside the parenthesis. B) Total
number of SNP types present in WES 200K conditioned on frequency and how many of those are missing from our WGS
datasets, stratified by variant type. Ti = number of transitions, Tv = number of transversions.

80


https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.16.468246; this version posted March 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Mutation Mutations Mutations Opportunities Opportunities % % %
type Autosomes ChrX Autosomes ChrX Total Autosomes ChrX
C>A 60,519,838 2,659,969 1,077,457,583 56,309,185 5.57% 5.62% 4.72%
C>G 57,676,447 2,854,929 1,077,457,583 56,309,185 5.34% 5.35% 5.07%
C>T 144,136,629 6,328,598 1,025,477,941 54,075,891 13.94% 14.06% 11.70%
CpG>TpG 42,363,944 1,843,388 51,979,642 2,233,294 81.54% 81.50% 82.54%
T>A 43,430,412 1,907,408 1,555,084,506 87,170,953  2.76% 2.79%  2.19%
T>C 159,740,935 6,892,088 1,555,084,506 87,170,953 10.15% 10.27%  7.91%
T>G 47,169,431 2,098,996 1,555,084,506 87,170,953  3.00% 3.03% 2.41%

Table S6 Mutation saturation, results presented for autosomes and chrX separately. Table shows the number of observed
mutations in the GraphTyperHQ dataset and the number of possible mutation opportunities in regions of the genome
amenable to short read sequence analysis.
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A)

Method Num variants  Missing call rate Informative calls

GATK 710,913,648 2.57% 103,979,678,355,013

GraphTyper 655,928,639 0.14% 98,332,325,114,654

GraphTyperHQ 643,747,446 0.07% 96,570,956,991,770

B)

Method SNPs Transitions (Ti)  Transversions (Tv)  Ti/Tv

GATK 618,290,855 375,860,520 242,430,335 1.550

GraphTyper 593,953,779 369,120,364 224,833,415 1.642
GraphTyperHQ 585,040,410 364,859,729 220,180,681 1.657

o)

Method Common % Rare % Singleton %
GATK 31,501,254 (4.4%) 367,745,957 (51.7%) 311,666,437 (43.9%)
SNP 23,275,707 (3.8%) 317,087,938 (51.3%) 277,927,210 (44.9%)
Non-SNP 8,225,547  (8.9%) 50,658,019 (54.7%) 33,739,227 (36.4%)
GraphTyper 26,445,377 (4.0%) 335,241,409 (51.1%) 294,241,853 (44.9%)
SNP 20,261,132 (3.4%) 303,621,290 (51.1%) 270,071,357 (45.5%)
Non-SNP 6,184,245 (10.0%) 31,620,119 (51.0%) 24,170,496 (39.0%)
GraphTyperHQ 22,975,922 (3.6%) 327,718,095 (50.9%) 293,053,429 (45.5%)
SNP 18,124,082 (3.1%) 297,709,581 (50.9%) 269,206,747 (46.0%)
Non-SNP 4,851,840 (8.3%) 30,008,514 (51.1%) 23,846,682 (40.6%)

Table S7 A) Number of variants in GATK, GraphTyper and GraphTyperHQ dataset. B) Variants split by transitions and
transversions. C) Common = variants with frequency > 0.1%, rare = carried by more than one individual and frequency <
0.1%, singleton = carried by a single individual.

82


https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.16.468246; this version posted March 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Description Beta R? P-value

Autosomal dominant genes from OMIM -0.0407 0.00265 6.60E-12
Recessive genes from OMIM -0.0063 9.90E-05 0.1850
Cell essential genes 0.0259 0.00247  8.26E-10
Present in Cell essential genes -0.0907 0.02636 4.31E-105
Hand curated list of Human lethal KO genes -0.0204 0.00020 0.0627
Hand curated list (more permissive) of Human lethal KO genes -0.0221 0.00040 0.0074
List of lethal KO genes in mice -0.0425 0.00770 1.07E-31
List of lethal het. KO genes in mice -0.0275 0.00017 0.0824

Table S8 Regression of average DR overlapping gene exons on annotations from Gene discovery informatics toolkit*.
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DR GERP RS CADD Eigen LINSIGHT

Data set score score score score score cDTS
DR score 1.000 0.005 0.038 0.029 0.011 0.158
GERP RS score 0.005 1.000 0.577 0.284 0.506 0.010
CADD score 0.039 0.577 1.000 0.554 0.547 0.075
Eigen score 0.029 0.284 0.554 1.000 0.690 0.065
LINSIGHT score 0.011 0.506 0.547 0.690 1.000 0.029
CDTS 0.158 0.010 0.075 0.064 0.029 1.000

Table S9 Pearson correlation coefficient between DR score and measures of sequence constraint and functional impact,
computed over all autosomal chromosomes. For each one of the 500bp overlapping windows in which the DR score (dr) is
defined we compute the average value of the published scores (ps) in that window and then conduct linear regression
analysis (ps ~ dr). The values shown in the table are the squared correlation coefficients of that regression. The correlation
between the published datasets is computed from a set of 50bp non-overlapping windows using the average score within
each window. A similar regression is conducted between each of the published datasets to obtain the squared correlation
coefficient. Note, that the p-value for the linear regression fit is below computational threshold (2.2 x 1073°8) for each pair
of data sets in the table. CADD, Eigen and LINSIGHT all incorporate GERP into their annotation and are consequently not
independent of each other or GERP. DR score and CDTS employ an analogous methodology, but scores are derived
independently of each other and the other metrics.
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Cohort ChipN WGSN WGS%

XBI 431,805 132,169 30.6
XAF 9,633 2,963 30.8
XSA 9,252 3,047 32.8
OTH 37,598 11,781 31.9

Table S10 Number of individuals in the three cohorts described in this study.
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Threshold  Threshold XBI XAF XSA

% XBl % XAF,XSA Snp/Indel sV MSat Snp/Indel sV MSat Snp/Indel SV MSat
1% 5% Phased 11189434 15569 2491240 10782733 15214 2388595 7941383 11773 1812461
Imputed 11184312 15518 2488009 10728154 14606 2354675 7865444 11211 1743407

n 11297050 18044 2600902 10864088 17276 2453893 7993858 13415 1859421

0.1% 1% Phased 6590616 7234 1068743 8365507 9301 1166814 3739563 4230 816116
Imputed 6586277 7223 1066743 8315664 9140 1129348 3633830 4072 699673

n 6819668 9185 1329131 8555777 11074 1310478 3852601 5235 896908

0.01% 0.5% Phased 23598990 24317 1581904 3950291 4139 391700 2122454 2168 369854
Imputed 23453107 24037 1558812 3914244 4077 369608 2008801 2062 271659

n 24556101 31246 2330992 4114602 5187 504462 2280485 2808 442328

0.005% 0.2% Phased 19864378 19181 482916 4386799 4263 354516 2642260 2558 380537
Imputed 19440299 18735 457453 4316711 4136 319739 2409667 2297 235403

n 21059670 25103 850280 4722651 5635 515106 2982169 3624 488799

0.002% 0.1% Phased 43902487 41664 600207 6892163 6336 448483 5032021 4717 539656
Imputed 41679009 39448 542137 6627483 6041 366561 4292840 3964 260599

n 50063971 55664 1214690 8424367 9507 772036 6418472 7497 786098

0.001% 0.04% Phased 52975884 49438 437379 6495546 5681 337279 5944556 5125 428185
Imputed 47238234 44171 363952 5861702 5106 240464 4635202 3933 162809

n 72522701 74342 1092057 10462313 10807 713472 9539163 10093 745160

0.0002% 0.008% Phased 40518700 36567 292304 16233640 12769 569083 12625599 8801 715628
Imputed 31988313 29453 189966 12109642 10130 321072 6563488 4830 190230

n 263633284 261011 1935535 59096600 52531 1654282 52146463 47256 1671469

Table S11 Imputation and phasing accuracy as a function of frequency within each cohort. Phased refers to number of
variants with Leave-one-out-r2 value > 0.5 and imputed refers to phased variants that also have imputation info > 0.8.
Numbers are for variants at frequency above the given threshold and not included in frequency thresholds in earlier lines,
e.g., in the XBI population 72,522,701 variants have frequency between 0.001 and 0.002%, of which 52,975,884 could be
phased and 47,238,234 could be imputed.
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AF Threshold XBI XAF XSA
Panel n present % n present % n present %
>102% Bycroft 9,675,179 57.1% 9,049,185 54.4% 8,782,729 55.4%
150k WGS 16,838,810 99.3% 16,500,186 99.3% 15,728,295 99.1%
Both 9,555,642 56.3% 8,924,920 53.7% 8,645,958 54.5%
Either 16,958,347 100% 16,624,451 100% 15,865,066 100%
>103 Bycroft 5,150,551 40.8% 4,321,491 37.0% 1,509,037 23.8%
<10?% 150k WGS 12,497,109 99.1% 11,609,254 99.3% 6,276,519 98.8%
Both 5,031,517 39.9% 4,236,985 36.2% 1,432,690 22.6%
Either 12,616,143 100% 11,693,760 100% 6,352,866 100%
>10* Bycroft 4,635,660 12.7% 7,894,440 34.0% 1,637,838 17.8%
<10® 150k WGS 36,247,790 99.1% 22,801,909 98.2% 8,903,892 96.5%
Both 4,299,464 11.8% 7,474,332 32.2% 1,315,077 14.3%
Either 36,583,986 100% 23,222,017 100% 9,226,653 100%
<10* Bycroft 1,786,117 0.9% 4,951,605 8.8% 2,001,548 5.3%
150k WGS 196,375,197 99.6% 54,623,218 97.1% 37,019,802 97.4%
Both 942,249 0.5% 3,315,555 59% 1,024,799 2.7%
Either 197,219,065 100% 56,259,268 100% 37,996,551 100%

Table S12 Number of markers that impute (Imp Info >.8) in 500k set of UKB using the imputation panel presented here
(150k WGS) and an imputation by Bycroft et al.>. Both represents number of markers imputed by both panels, either the
number of markers in either panel.
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#
repeats Frequency Effect P-value
4.7 5.98E-05 0.02 8.84E-01
5.7 3.64E-01 0.41  3.95E-07
6 1.45E-06 0.02 9.84E-01
6.7 9.99E-04 4.96 2.16E-01
7.7 4.16E-04 0.02 6.94E-01
8.7 7.46E-03 0.69 6.95E-01
9.7 1.21E-03 4.27 2.54E-01
10.7 9.27E-03 0.54 5.10E-01
11.7 1.20E-01 1.45 7.33E-02
12 1.95E-06 0.02 9.81E-01
12.7 1.24E-01 0.85 4.98E-01
13 1.17E-06 0.02 9.87E-01
13.7 1.78E-01 0.77 2.08E-01
14.7 6.30E-02 0.82 5.26E-01
15.7 8.18E-03 0.73 7.43E-01
16.7 9.16E-03 0.01 7.66E-02
17.7 4.88E-03 1.06 9.54E-01
18.7 2.15E-03 0.02 3.72E-01
19.7 4.39E-03 1.44 7.34E-01
20.7 1.81E-02 2.02 1.32E-01
21.7 2.69E-02 1.12 8.27E-01
22.7 1.41E-02 2.4 1.38E-01
23.7 8.77E-03 2.18 3.15E-01
24.7 6.90E-03 2.44  2.59E-01
25.7 7.05E-03 4.06 4.74E-02
26.7 5.17E-03 6.62  1.40E-02
27.7 4.55E-03 9.82  1.50E-03
28.7 3.38E-03 17.93  1.24E-04
29.7 2.33E-03 19.75 4.08E-04
30.7 1.55E-03 30.02 6.02E-05
31.7 1.03E-03  48.35 4.33E-09
32.7 6.98E-04 42.04  1.30E-04
33.7 4.04E-04 74.03 8.07E-06
34.7 3.05E-04 68.27 5.01E-05
35.7 1.48E-04 141.58 1.29E-10
36.7 1.50E-04 45.23  3.35E-02
37.7 9.60E-05 51.68  2.49E-01
38.7 1.04E-04 92.19 3.64E-03

>=39.7 4.32E-05 161.74  1.09E-07

Table S13 Association of number of repeat copies of microsatellite in 3° UTR in DMPK with myotonic dystrophy. Individuals
carrying 39.7 or more copies of the repeat are grouped together by popSTR®4.
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A)
Gene Number of Allelic = OMIM Phenotype with allelic variants *
variants in OMIM (Mode of inheritance) **

ALB 61 Analbuminemia (AR)

CACNA1A 37 Episodic ataxia, type 2 (AD) ; Migraine, familial hemiplegic, 1 (AD);
Epileptic encephalopathy, early infantile, 42 (AD); Spinocerebellar ataxia
6 (AD)

HBB 540 Delta-beta thalassemia(AD); Erythrocytosis 6 (AD) ; Heinz body anemia
(AD); Hereditary persistence of fetal hemoglobin (AD);
Methemoglobinemia, beta type(AD); Sickle cell anemia (AR);
Thalassemia-beta, dominant inclusion-body (AD)

PCSK9 8 Hypercholesterolemia, familial, 3 (AD)

PIEZO1 16 Dehydrated hereditary stomatocytosis(AD); Lymphedema, hereditary, llI
(AR)

GHRH 0 None

DMPK 1 Myotonic dystrophy 1 (AD)

GCSH 1 None

TAC3 2 Hypogonadotropic hypogonadism 10 with or without anosmia (AR)

NMRK2 0 None

B)

Gene N Drug *** Indications *** Link

ALB None

CACNA1A 5 7 https://platform.opentargets.org/target/ENSG00000141837

HBB 3 11 https://platform.opentargets.org/target/ENSG00000244734

PCSK9 6 28 https://platform.opentargets.org/target/ENSG00000169174

PIEZO1 None

GHRH None

DMPK None

GCSH None

TAC3 None

NMRK2 None

Table S14 Information on genes presented. A) Phenotypes and allelic variants in OMIM for selected genes. B) Known drug
data and in open targets for selected targets. *Excluding the ones with provisional phenotype gene relationship "?";
multifactorial diseases"{ }'" and non diseases"[ ]" ** Mode of inheritance : AD Autosomal dominant; AR Autosomal
recessive. ***Known drug data according to Open Targets”’.
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Data showcase

Phenotype field Extra information
Age at 3581 Adjusted for year of birth and 20 principal components,
menopause then inverse-normal transformed
Age of 2714 Adjusted for year of birth and 20 principal components,
menarche then inverse-normal transformed
Albumin 30600 Adjusted for age, age? and 20 principal components, then
combined and inverse-normal transformed
Calcium 30680 Adjusted for age, age? and 20 principal components, then
combined and inverse-normal transformed
Glycine 23462 Metabolomics
Height 50 Adjusted for year of birth, sex and 20 principal components
for males and females separately, then combined and
inverse-normal transformed
Hemoglobin 30060 Adjusted for age, age? and 45 principal components for
concentration, males and females separately, then combined and inverse-
Asian ancestry normal transformed
IGF-1 serum 30770 Adjusted for age, age? and 20 principal components
levels
Mean 30040 Adjusted for age, age? and 20 principal components for
corpuscular males and females separately, then combined and inverse-
volume normal transformed
Non-HDL Field 30690 minus  Adjusted for age, age? and 20 principal components; lipid-
cholesterol, field 30670 (HDL) lowering drug users had their measurements divided by
European 0.8, then combined and inverse-normal transformed
ancestry
Non-HDL Field 30690 minus Adjusted for age, age? and 20 principal components; lipid-
cholesterol, field 30670 (HDL) lowering drug users had their measurements divided by
African 0.8, then combined and inverse-normal transformed
ancestry
Total 30690 Adjusted for age, age? and 20 principal components; lipid-
cholesterol lowering drug users had their measurements divided by
0.8, then combined and inverse-normal transformed
Uric acid 30880 Adjusted for age, age? and 20 principal components, then
combined and inverse-normal transformed
Gout ICD-19 code M10* Adjusted for year of birth, sex and 20 principal components
on fields 41270,
41271 and 42040
Hereditary ICD-10 code G11 Adjusted for year of birth, sex and 20 principal components
ataxia on fields 41270,
41271 and 42040
Myotonic ICD-10 code G71.1 Adjusted for year of birth, sex and 20 principal components
dystrophy on fields 41270,

41271 and 42040

Table S15 Phenotypes used in this study, their field in the UKB data showcase and adjustments performed prior to

association analysis
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Information
Parameter Requested Definition
prc_auto_ge_15x Coverage PCT_15X from .wgsmetrics_autosome in QCPreview
MEAN_COVERAGE * (1.0 - PCT_EXC_DUPE -
autosomal PCT_EXC_OVERLAP - PCT_EXC_ADAPTER) / (1.0 -

coverage

genetic_sex

yield

read_haps_error_percentage

freemix_percentage

prc_proper_pairs

discordance_prc

mean coverage

Sex

Yield

Read_haps

Freemix/Verify
Bam ID

Proportion of
mapped read
pairs

NRD
Genotyping

PCT_EXC_TOTAL) from .wgsmetrics_autosome in
QCPreview

if NX<=0.3 then "Female" else if NX>=0.7 then "Male"
else "Undetermined" from .sexcheck output file in
QCStats

GENOME_TERRITORY * MEAN_COVERAGE * (1.0 -
PCT_EXC_DUPE - PCT_EXC_OVERLAP -
PCT_EXC_ADAPTER) / (1.0 - PCT_EXC_TOTAL) from
.wgsmetrics output file in QCPreview

100*DOUBLE_ERROR_FRACTION from .contamination
output file in QCStats

100 * FREEMIX from .verifyBamld.selfSM output
file in QCStats

100 * (reads_properly_paired/reads_mapped) from
.stats output file in QCPreview

100 * (1.0 - NON_REF_GENOTYPE_CONCORDANCE)
from .genotype_concordance_summary_metrics in
Concords or -1 if chip genotypes are not available

Table S16 QA/QC metrics derived from the files delivered to the UKB. The result is written to a file, qagc_metric.
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Column Min Max Flag Explanation
SAMPLE_ID Read group ID

LANE Lane ID (=Read group ID)
FAILURE_FLAGS Failure flag

JOINT_CALLING_FLAGS

STRICT_FLAGS

TOTAL_BPS 3e8 le14 C
TOTAL_READ_PAIRS

READ_LENGTH

Joint calling failure flag
Strict failure flag

Total basepairs

Total read pairs

Read length

MEAN_BASE_QUAL_PER_READ 30 100 Q Mean of base calling quality
STD_BASE_QUAL_PER_READ -1 10 Q Std dev of mean base calling quality
MEAN_N_COUNT_PER_READ -1 10 N Mean Percentage N
STD_N_COUNT_PER_READ -1 30 N Std dev of Percentage N
MEAN_GC_CONTENT_PER_READ 39 45 G Mean percentage of GC bases
STD_GC_CONTENT_PER_READ -1 15 G Std dev of Percentage GC
MEAN_BASE_QUAL_PER_POSITION 30 100 Q Mean of mean base calling quality
STD_BASE_QUAL_PER_POSITION -1 6 Q Std dev of mean base calling quality
MEAN_N_PER_POSITION -1 10 N Mean Percentage N
STD_N_PER_POSITION -1 10 N Std dev of Percentage N

MEAN_A PER_POSITION 25 35 B Mean Percentage A
STD_A_PER_POSITION -1 10 B Std dev of Percentage A
MEAN_C_PER_POSITION 15.5 25 B Mean Percentage C
STD_C_PER_POSITION -1 10 B Std dev of Percentage C
MEAN_G_PER_POSITION 17 24 B Mean Percentage G
STD_G_PER_POSITION -1 10 B Std dev of Percentage G
MEAN_T_PER_POSITION 25 33 B Mean Percentage T
STD_T_PER_POSITION -1 10 B Std dev of Percentage T
32_MER_ERROR_RATE Estimated 32-mer error rate
ADAPTER_8_MERS -1 5 A Percentage of Universal adapter 8-mers
MARKED_DUPLICATE -1 60 D Percentage marked as duplicate
UNMAPPED -1 20 U Percentage unmapped reads
BOTH_UNMAPPED -1 30 U Percentage both reads in pair unmapped
FIRST_UNMAPPED -1 30 U Percentage only first unmapped in pair
SECOND_UNMAPPED -1 30 U Percentage only second unmapped in pair
PROPER_PAIRS Percentage proper pairs
PROPER_PAIRS_AUTOSOME 95 1000 P Percentage proper pairs autosome
FF_RR_PAIRS -1 0.1 o] Percentage FF/RR oriented pairs
MEAN_COVERAGE 0.1 100000 C Mean coverage

STD_COVERAGE -1 100000 C Std dev of coverage
MEAN_INSERT_SIZE -1 10000 I Mean insert size

STD_INSERT_SIZE Std dev of insert size
ADAPTER_INSERT_SIZE -1 20 A Percent insert size < read length
MAPPING_QUAL_60 Percentage reads with mapping quality <60
MAPPING_QUAL_40 Percentage reads with mapping quality <40
MAPPING_QUAL_20 Percentage reads with mapping quality <20
MEAN_MISMATCHES -1 5 m Mean mismatches per read pair
MEAN_DELETIONS Mean deletions per read pair
MEAN_INSERTIONS Mean insertions per read pair
NZ_DELETIONS -1 0.1 d Fraction or reads that have a deletion
NZ_INSERTIONS -1 0.1 I Fraction of reads that have an insertion
CLIPPED_5_PRIME -1 6 c Percentage of reads clipped at 5'-end
CLIPPED_3_PRIME -1 30 c Percentage of reads clipped at 3'-end
C>A 0.3 0.7 O C>A triplet conversion rate

G>A 0.4 0.6 O G>A triplet conversion rate

T>A 0.3 0.7 O T>A triplet conversion rate

A>C 0.3 0.7 @] A>C triplet conversion rate

G>C 0.3 0.7 @] G>C triplet conversion rate

T>C 0.3 0.7 @) T>C triplet conversion rate

Table S17 Metrics collected for each lane by bamqc_summary. If any flag is raised, the lane is excluded from the merge
process. The values, per read group, are collected in the file .bamgc_summary.
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A)
Method #Variants Common (>0.1%) Rare (<0.1%) Singleton
GATK 6,221,575 284,303 3,259,421 2,677,851
GraphTyper 5,569,026 224,715 2,855,132 2,489,179
B)

Method #Variants  SNPs Non-SNPs

GATK 6,221,575 5,400,679 820,896
GraphTyper 5,569,026 5,040,466 528,560

C)

Method Missing genotypes #Informative calls
GATK 3.26% 903,536,315,740
GraphTyper 0.11% 835,097,232,768
D)

Method Transitions (Ti) Transversion (Tv) Ti/Tv

GATK 3,246,174 2,154,505 1.507

GraphTyper 3,130,524 1,909,942 1.639

Table S18 Results for 500 random test regions. A) Number of variants called by GATK and GraphTyper conditioned on
frequency class. B) Number of variants conditioned on variant type. C) Fraction of missing variant calls. D) Number of
transitions and transversions.
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A)

Method Total common Failed %

GATK 284,303 21,234 7.47%

GraphTyper 224,715 2,277 1.01%

B)

Failed count

Test GATK GraphTyper
Sanger Vanguard vs. Sanger Main 13,440 999
Sanger Vanguard vs. deCODE 16,751 1,825
Sanger Main vs. deCODE 13,510 1,141

Table $19 Number of common variants (frequency >.1%) that showed significant association with sequencing center in the
500 random regions test set., A) Total number of variants that failed in any test. B) Number of failed variants stratified by
sequencing protocol. Variant is considered “Failed” if p-value < 1e-6, Fisher’s exact test.
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A)
Method Common SaMvs.deC SaVvs.deC SaVvs.SaM
GATK 31,501,254 1,202,575 1,164,682 810,105
GraphTyper 26,445,377 166,371 175,144 66,838
GraphTyperHQ 22,975,922 28,432 36,283 8,096
B)
Method Common Any test p<10®  Anytestp <101°
GATK 31,501,254 1,792,003 (5.69%) 1,197,839 (3.80%)
GraphTyper 26,445,377 257,860 (0.97%) 136,521 (0.52%)
GraphTyperHQ 22,975,922 46,556 (0.20%) 22,307 (0.10%)

Table S20 Number of common variants (frequency > 0.1%) that show significant association to sequencing center, indicating
batch effects, using a Fisher’s exact test, for common (> 0.1% frequency) variants. A) Number of failed variants stratified by
test using p < 10°®. deC = samples sequenced at deCODE genetics. SaV = samples sequenced using the Sanger Vanguard
processing pipeline. SaM = samples sequenced using the Sanger main phase pipeline. B) Total number of variants that
failed in any test, using both p < 10® and p < 101°.
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Absent from and  Fraction of missing

Shared with  Specific = Absent same carrier in  variants with same
Dataset

both other to from both other carrier in both
datasets datasets
GATK 6,608,669 230,808 15,567 12,700 81.58%
GraphTyperHQ 6,608,669 54,909 87,773 56,052 63.86%
WES200k 6,608,669 28,039 498,181 476,195 95.59%

Table S21 Three-way comparison between the GraphTyperHQ, GATK and WES200k® call analyzed inside WES capture
regions within the set of 109,618 individuals present in both the WES200k call set an our set of 150,119 individuals.
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XBI P-value MaF > 0.01 MaF 0.01 - 0.001 MaF < 0.001

Unfiltered >0.05 17.0-17.5M (89-91%) 9.27-9.33M (93-94%) 208-215M (94-97%)
0.005-0.05  1.05-1.13M (5.5-5.9%) 481-497K (4.9-5.0%) 5.60-12.4M (2.5-5.6%)
5e-4-0.005 238-258K (1.2-1.3%) 64.1-77.8K (0.65-0.78%) 443-848K (0.2-0.38%)
5e-8-5e-4  214-324K (1.1-1.7%) 28.9-49.9K (0.29-0.5%) 36.8-65.6K (0.017-0.03%)

<5e-8 127-540K (0.66-2.8%) 7.74-49.2K (0.078-0.5%) 364-3697 (0.00016-0.0017%)

Filtered >0.05 16.0-16.1M (94-94%) 8.94-8.96M (94-95%) 207-214M (94-97%)
0.005-0.05  808-839K (4.7-4.9%) 435-445K (4.6-4.7%) 5.57-12.3M (2.5-5.6%)
5e-4-0.005 103-122K (0.6-0.72%) 46.9-55.5K (0.5-0.59%) 439-840K (0.2-0.38%)
5e-8-5e-4  36.1-78.4K (0.21-0.46%) 10.1-16.7K (0.11-0.18%) 36.1-60.7K (0.016-0.028%)

<5e-8 11.2-68.9K (0.066-0.4%) 2.37-11.5K (0.025-0.12%) 115-463 (5.2e-05-0.00021%)

XAF P-value MaF > 0.01 MaF 0.01 - 0.001 MaF < 0.001

Unfiltered >0.05 29.7-29.9M (94-95%) 22.5-22.9M (93-95%) 80.8-84.6M (95-99%)
0.005-0.05  1.43-1.48M (4.5-4.7%) 1.04-1.44M (4.3-6.0%) 0.717-4.41M (0.84-5.2%)
5e-4-0.005 152-189K (0.48-0.6%) 79.6-143K (0.33-0.59%) 10.6-118K (0.012-0.14%)
5e-8-5e-4  20.4-73.6K (0.065-0.23%) 6.87-18.2K (0.029-0.076%) 1-5392 (1.2e-06-0.0063%)

<5e-8 732-29023 (0.0023-0.092%) 62-335 (0.00026-0.0014%) 0-1 (0.0-1.2e-06%)

Filtered >0.05 27.4-27.4M (95-95%) 21.8-22.2M (93-95%) 80.1-83.9M (95-99%)
0.005-0.05  1.26-1.30M (4.4-4.5%) 0.994-1.39M (4.3-6.0%) 0.709-4.38M (0.84-5.2%)
5e-4-0.005 127-133K (0.44-0.46%) 75.7-135K (0.33-0.58%) 10.5-117K (0.012-0.14%)
5e-8-5e-4  13.4-23.8K (0.046-0.083%) 6.36-15.3K (0.027-0.066%) 1-5294 (1.2e-06-0.0063%)

<5e-8 28-5752 (9.7e-05-0.02%) 0-166 (0.0-0.00071%) 0-0 (0.0-0.0%)

XSA P-value MaF > 0.01 MaF 0.01 - 0.001 MaF < 0.001

Unfiltered >0.05 18.9-19.1M (94-95%) 14.1-14.5M (94-96%) 73.9-76.5M (95-99%)
0.005-0.05  919-989K (4.6-4.9%) 521-817K (3.5-5.4%) 1.00-3.58M (1.3-4.6%)
5e-4-0.005 99.7-142K (0.5-0.71%) 32.1-92.3K (0.21-0.61%) 17.3-83.7K (0.022-0.11%)
5e-8-5e-4  13.2-67.8K (0.066-0.34%) 2.97-12.7K (0.02-0.085%) 358-3980 (0.00046-0.0051%)

<5e-8 665-30416 (0.0033-0.15%) 92-278 (0.00061-0.0018%) 0-2 (0.0-2.6e-06%)

Filtered >0.05 17.0-17.0M (95-95%) 13.6-13.9M (94-96%) 73.3-75.9M (95-99%)
0.005-0.05  796-809K (4.4-4.5%) 494-778K (3.4-5.4%) 0.994-3.56M (1.3-4.6%)
5e-4-0.005 82.4-87.9K (0.46-0.49%) 30.6-85.5K (0.21-0.59%) 17.1-82.8K (0.022-0.11%)
5e-8-5e-4  9.29-15.8K (0.052-0.088%) 2.75-10.1K (0.019-0.07%) 331-3865 (0.00043-0.005%)

<5e-8 16-4327 (8.9e-05-0.024%) 1-142 (6.9e-06-0.00098%) 0-0 (0.0-0.0%)

Table S22 Batch effects for sequencing center in the raw genotype calls. Six phenotypes for batch effects are tested. Results
are conditioned on marker minor allele frequency (MAF). Table shows the minimum and maximum number and fraction of
markers, across the six phenotypes) with p-value in each p-value range. E.g., when considering the unfiltered dataset and
the XSA cohort, MAF > 0.01, between 919 and 989k markers have p-value between 0.005 and 0.05, corresponding to 4.6-
4.9% of markers with MAF > 0.01.
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XBI P-value MaF > 0.01 MaF 0.01 - 0.001 MaF < 0.001

Unfiltered >0.05 16.8-17.1M (92-94%) 9.47-9.55M (94-95%) 254-266M (93-98%)
0.005-0.05  887-910K (4.9-5.0%) 472-495K (4.7-4.9%) 6.30-17.3M (2.3-6.3%)
5e-4-0.005 113-155K (0.62-0.85%) 54.4-71.4K (0.54-0.71%) 466-942K (0.17-0.35%)
5e-8-5e-4  40.2-137K (0.22-0.75%) 10.4-40.5K (0.1-0.4%) 38.5-74.5K (0.014-0.027%)

<5e-8 15.9-180K (0.087-0.99%) 925-27218 (0.0092-0.27%) 85-1389 (3.1e-05-0.00051%)

Filtered >0.05 15.4-15.4M (95-95%) 8.78-8.79M (95-95%) 216-225M (93-97%)
0.005-0.05  733-738K (4.5-4.5%) 418-421K (4.5-4.6%) 5.63-14.7M (2.4-6.4%)
5e-4-0.005 72.5-82.8K (0.45-0.51%) 42.1-44.9K (0.46-0.49%) 425-848K (0.18-0.37%)
5e-8-5e-4  8.07-24.2K (0.05-0.15%) 4.74-6.31K (0.051-0.068%) 35.4-64.2K (0.015-0.028%)

<5e-8 117-11166 (0.00072-0.069%) 0-592 (0.0-0.0064%) 0-7 (0.0-3e-06%)

XAF P-value MaF > 0.01 MaF 0.01 - 0.001 MaF < 0.001

Unfiltered >0.05 27.9-28.0M (95-95%) 19.6-19.8M (94-95%) 77.1-79.6M (96-99%)
0.005-0.05  1.30-1.34M (4.4-4.5%) 0.950-1.13M (4.6-5.4%) 0.670-3.04M (0.84-3.8%)
5e-4-0.005 132-148K (0.45-0.5%) 72.6-124K (0.35-0.59%) 16.1-107K (0.02-0.13%)
5e-8-5e-4  13.8-32.8K (0.047-0.11%) 5.97-14.3K (0.029-0.068%) 300-5385 (0.00037-0.0067%)

<5e-8 92-5922 (0.00031-0.02%) 36-136 (0.00017-0.00065%) 0-3 (0.0-3.7e-06%)

Filtered >0.05 25.3-25.3M (95-95%) 17.6-17.8M (94-95%) 60.3-62.2M (96-99%)
0.005-0.05  1.16-1.19M (4.4-4.5%) 856-996K (4.6-5.3%) 0.556-2.42M (0.89-3.9%)
5e-4-0.005 110-118K (0.41-0.44%) 64.7-106K (0.35-0.57%) 13.9-85.6K (0.022-0.14%)
5e-8-5e-4  11.6-13.5K (0.043-0.051%) 5.14-10.9K (0.027-0.058%) 258-4427 (0.00041-0.0071%)

<5e-8 1-104 (3.8e-06-0.00039%) 0-1 (0.0-5.3e-06%) 0-0 (0.0-0.0%)

XSA P-value MaF > 0.01 MaF 0.01 - 0.001 MaF < 0.001

Unfiltered >0.05 17.7-17.8M (95-95%) 13.8-14.1M (94-96%) 67.2-68.7M (97-99%)
0.005-0.05  836-876K (4.5-4.7%) 506-780K (3.5-5.3%) 0.674-2.14M (0.97-3.1%)
5e-4-0.005 84.3-103K (0.45-0.55%) 33.4-84.6K (0.23-0.58%) 14.8-71.5K (0.021-0.1%)
5e-8-5e-4  9.70-26.1K (0.052-0.14%) 2.83-10.0K (0.019-0.068%) 531-3555 (0.00077-0.0051%)

<5e-8 83-6253 (0.00044-0.033%) 26-94 (0.00018-0.00064%) 0-11 (0.0-1.6e-05%)

Filtered >0.05 15.6-15.6M (95-95%) 10.8-11.0M (94-96%) 40.0-40.9M (97-99%)
0.005-0.05  718-736K (4.4-4.5%) 412-603K (3.6-5.3%) 0.478-1.38M (1.2-3.3%)
5e-4-0.005 71.8-76.5K (0.44-0.47%) 25.4-65.0K (0.22-0.57%) 11.0-49.4K (0.027-0.12%)
5e-8-5e-4  8.02-9.39K (0.049-0.057%) 2.14-6.70K (0.019-0.058%) 394-2561 (0.00095-0.0062%)

<5e-8 0-47 (0.0-0.00029%) 0-0 (0.0-0.0%) 0-0 (0.0-0.0%)

Table S23 Batch effects for sequencing center in the imputed genotype calls. Six phenotypes for batch effects are tested.
Results are conditioned on marker minor allele frequency (MAF). Table shows the minimum and maximum number and
fraction of markers, across the six phenotypes) with p-value in each p-value range. E.g., when considering the unfiltered
dataset and the XSA cohort, MAF > 0.01, between 836 and 876k markers have p-value between 0.005 and 0.05,

corresponding to 4.5-4.7% of markers with MAF > 0.01.
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Mean A
LD score X2 A unadj Attenuation
Phenotype intercept unadj unadj maf<0.01 ratio Method Marker

Age at 1.051 1.463 1.048 1.005 0.110 BOLT-LMM chr19:3939254

menopause

Age of 1.095 2.081 1.048 1.028 0.088 BOLT-LMM chr12:57010289

menarche

Albumin 1.236 2.028 1.094 1.017 0.229 BOLT-LMM chr4:73399955

Calcium 1.166 1.985 1.078 1.011 0.169 BOLT-LMM chr4:73399955

Glycine 0.976 1.457 1.016 0.983 -0.053 BOLT-LMM chr16:81069345

Height 1.825 5.222 1.150 1.107 0.195 BOLT-LMM chr20:37261871

Hemoglobin 1.008 1.015 1.001 0.998 0.574 Linear chr16:88716656

concentration, regression

Asian ancestry

IGF-1 serum 1.320 2,995 1.079 1.053 0.160 BOLT-LMM chr20:37261871

levels

Mean 1.215 1.896 1.033 1.018 0.240 BOLT-LMM chr11:5225486

corpuscular

volume

Non-HDL 1.786 2465 1.082 1.010 0.537 BOLT-LMM chr1:55029214

cholesterol,

European

ancestry

Non-HDL 1.000 1.005 1.005 1.004 0.072 Linear chr1:55063542

cholesterol, regression

African ancestry

Total 1.739 2.568 1.082 1.009 0.471 BOLT-LMM chr4:73399955

cholesterol

Uric acid 0.803 4,198 1.059 1.036 -0.062 BOLT-LMM chr1:125079549,

chr1:121062032

Gout 1.008 1.336 0.847 0.838 0.024 Logistic chr1:125079549,
regression chr1:121062032

Hereditary 1.019 1.017 0.262 0.154 1.142 Logistic chr19:13207859

ataxia regression

Myotonic 1.050 1.036 0.119 0.053 1.408 Logistic chr19:45770205

dystrophy regression

Table S24 Correction factors and inflation metrics from phenotypes used in this study; LD score intercept, mean chi-squared
unadjusted value, unadjusted lambda value, unadjusted lambda value for rare (< 1% MAF) markers and attenuation ratio.
Marker represents the ID of the association reported.
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R? SaM SaV
imp vs vs. SaM vs. vS. deCODE deC vs.
Marker raw  others SaV others vs. Sa SanM deC vs. SaV
chr1:55063542 0.997 0.098 0.294 0.746 0.211 0.1120 0.9887
chr19:13207859 0995 0.176 0.317 0.496 0.390 0.2105 0.6639
chr19:45770205 0.879 0.292 0.583 0.731 0.394 0.3174 0.8304
chr11:5225486 1.000 0.436 0.984 0.730 0.349 0.3726 0.6142
chr12:57010289 1.000 0.429 0.006 0.006 0.634 0.7400 0.0090
chr1:121062032 0.997 0.060 0.413 0.896 0.080 0.0563 0.8189
chr1:125079549 0.998 0.103 0.317 0.620 0.186 0.1133 0.8276
chr20:3726187 0.995 0.682 0.116 0.133 0.714 0.897 0.1720
chr19:3939254 0.999 0.811 0.653 0.484 0.556 0.707 0.4582
chr1:55029214 1.000 0.352 0.091 0.042 0.092 0.235 0.0318
chr4:73399955 1.000 0.547 0.815 0.624 0.407 0.479 0.5579
chr16:88716656 0.995 0.057 0.031 0.059 0.460 0.113 0.1034
chr16:81069345 1.000 0.012 0.245 0.907 0.023 0.012 0.735

Table S25 R? between raw genotypes and imputed markers in the XBI cohort. p-value for batch effect in the XBI cohort for

markers presented in this study. deC = samples sequenced at deCODE genetics. SaV = samples sequenced using the Sanger
Vanguard processing pipeline. SaM = samples sequenced using the Sanger main phase pipeline. Sa = samples sequenced at
Sanger. Relationship between marker IDs and phenotypes can be seen in Table S24.
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Methods

Datasets

UKB data

The UKB phenotype and genotype data were collected following an informed consent
obtained from all participants. The North West Research Ethics Committee reviewed and
approved UKB’s scientific protocol and operational procedures (REC Reference Number:
06/MRE08/65). Data for this study were obtained and research conducted under the UKB
applications license numbers 24898 and 68574.

Phenotypes were downloaded from the UKB, and we provide information corresponding to
how we processed the resources and created phenotype lists with reference to the field
identity available in the UKB data showcase (Table S15Table S15).

Icelandic data

The gout sample set’?, a total of 1740 Icelanders, was recruited through multiple sources. A
subset of these individuals were regular users of anti-gout medication corresponding to the
Anatomical Therapeutic Chemical Classification System class M04 (ATC-MO04). Individuals
using ATC-M04 were identified through questionnaires at the time of entry into genetics
projects at deCODE and provided by the Directorate of Heahth from entry in the
Prescription Medicines Register (2005-2020) or the Register of RAlI Assessments and
Minimum Data Set (MDS) for residents and applicants of nursing homes (1993-2018).
Furthermore, about half had received a clinical diagnosis of gout (International Classification
of Disease: ICD- 9 code 274 or ICD-10 code M10) between 1984 and 2019 at Landspitali, the
National University Hospital of Iceland or at two rheumatology clinics, or such a diagnosis
was determined by examining RAl and MDS medical records.

Serum uric acid levels in blood samples from 95,086 Icelanders were obtained from
Landspitali, the National University Hospital of Iceland and the Icelandic Medical Center
(Laeknasetrid) Laboratory in Mjodd (RAM) between 1990 and 2020. Serum uric acid levels
were normalized to a standard normal distribution using quantile-quantile normalization
and then adjusted for sex, year of birth and age at measurement. For individuals for whom
more than one measurement was available, we used the average of the normalized value.
Serum uric acid levels are determined from an enzymatic reaction in which uricase oxidizes
urate to allantoin and hydrogen peroxide, which with the aid of peroxidase and a dye forms
a colored complex that can be measured in a photometer at a wavelength of 670 nm.

All participating individuals who donated blood signed informed consent. The identities of
participants were encrypted using a third-party system approved and monitored by the
Icelandic Data Protection Authority. The study was approved by was approved by the
National Bioethics Committee of Iceland (Approval no. VSN-15-023) following evaluation of
the Icelandic Data Protection Authority. All data processing complies with the instructions of
the Data Protection Authority (PV_2017060950PS).

RNA sequence data analysis was approved by the Icelandic Data Protection Authority and
the National Bioethics Committee of Iceland (no. VSNb2015030021).

Danish data

Data was provided from the Danish Blood Donor Study (DBDS)”°. The DBDS genetic study
has been approved by the Danish National Committee on Health Research Ethics (NVK-
1700407) and by the Danish Capital Region Data Protection Office (P-2019-99).
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WGS data quality specification.

Sequencing was performed at the two sequencing providers, deCODE genetics and the
Wellcome Trust Sanger Institute, according to the specifications set forth in the material
transfer agreement for UKB Access application nr. 52293 — Summarized as follows:

QC parameter

Sample level

Batch level

Sequencer type

Illumina NovaSeq6000 or better with
standard 151 base, parired-end
chemistry

Sequencing library

PCR-free, uniquely dual-indexed in
multiplexed pools

Read-length

>100bp

Proper-pairs

% of mapped read-pairs from the
same DNA fragment with appropriate
orientation and separation:

295% PASS

<95% FAIL

Coverage

% of autosome covered >15x:
>95% PASS
<95% FAIL

The mean sample genome
coverage across the
monthly sequencing batch
is expected to be
approximately 30X across
the genome with a
minimum coverage of 26X.

Contamination level
1
(Freemix)

Freemix sample contamination level
as measured by VerifyBamID?°:

>5% FAIL

>1% and <5% further analyzed with
Read_haps®?

<1% PASS

<4 samples per 96 sample
sequencing plate
<1% per monthly
sequencing batch

Contamination level
2
(Read_haps)

For samples with Freemix values 1-
5%, contamination is verified by
Read_haps

Sample Identity
Concordance

Discordance at non-reference
genotypes 22% FAIL
<2% PASS

Sample identity
concordance failures
within each monthly
sequencing batch must be
<0.05%

Montly seq batch
overall failure rate

Repeat Sample requests
are no more than 1% of

the monthly sequencing
batch

All calculations of data quantity (yield) and coverage must exclude duplicate reads,
adaptors, overlapping bases from reads from the same fragment, soft-clipped bases
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Whole genome sequencing

DNA samples were selected by UK Biobank using its picking algorithm which ensures
pseudo-randomisation of recruitment centres and collection times across batches, to avoid
potential batch effects and shipped on dry-ice to the sequencing centers at Welcome Sanger
Institute in Cambridgeshire, UK (WSI) and deCODE genetics in Reykjavik, Iceland (deCODE).
The samples were in 70 pL aliquots in Fluid-X 0.3 mL, externally threaded 2D barcoded tubes
in 96-well racks with linear barcodes (Brooks Life Sciences) at a normalized, target DNA
concentration of 12 ng/uL in 1x TE buffer (10 mM Tris-HCI, 1.0mM EDTA, pH 8.0). Upon
arrival, samples/plates were registered in the respective Laboratory Information
Management System (LIMS) and stored until use at -20 °C. DNA concentration was
confirmed by UV/VIS spectrophotometry (Trinean DropSense system or equivalent).
Sequencing libraries were prepared using the NEBNext Ultra™ Il PCR-free kit (New England
Biolabs). In short, 500 ng of genomic DNA was fragmented to a mean target size of 450-500
bp using high frequency Adaptive Focused Acoustics Technology (AFA) from Covaris Inc
(LE220plus instruments and 96-well TPX-AFA plates) . End repair and A-tailing was
performed in a single step followed by ligation of unique dual indexed sequencing adaptors
(IDT for lllumina) and two rounds of SPRI-bead purification (0.6X) using an automatic 96/8-
channel liquid handler (Hamilton Microlab STAR and Tecan Freedom EVO). Quality
(concentration and insert size) of sequencing libraries was determined using the LabChip GX
(96-samples) instrument (Perkin ElImer). Sequencing libraries were pooled appropriately
using automatic 8-channel liquid handlers and sequenced using lllumina’s NovaSeq6000
instruments. Paired-end sequencing on the S4 flowcell (v1.0 chemistry) was performed with
a read length of 2x151 cycles of incorporation and imaging, in addition to 2*8 index cycles to
a mean coverage of at least 26X per sample. Real-time analysis (RTA) involved conversion of
image data to base-calling in real-time. All steps in the workflow were monitored using the
in- LIMS with barcode tracking of all samples/plates and reagents.
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Sequence processing pipeline

The deCODE pipeline (Fig. S16, Fig. S17) for UKB consists of the following steps. An
automated pipeline monitors the data coming off the sequencers and starts processing the
data when the sequence run folder is ready. The steps taken are:

1. bcl2fastqis run on the sequencer run folder to demultiplex the data and convert
each (lane,index) combination into fastq pairs. A checksum is generated for each
fastq pair and stored for future reference. The reads in the fastq files are counted
and compared against the expected counts coming from the sequencer. The
Undetermined read files are inspected, looking for reads that haven't been
accounted for.

2. Each pair of fastq files is processed to create a CRAM file. The steps are

a. Align against GRCh38

b. Fix mate pair information

c. Mark duplicates.

d. Sortin genomic order

e. calculate checksum and compare with fastq checksum. Failure if they don't

match and process is rerun

3. CRAM file is compared with chip genotypes for same sample. Result reported back to
the lab. Failure if mismatch rate >2% (potential sample error)

4. QC stats are collected and thresholds applied (Fig. S18). Results are reported back to
the lab and CRAM is failed if it doesn't pass all quality parameter thresholds. Failed
lanes are archived and not used in further processing.

5. A merge process monitors the (lane,index) data and merges the data when it is likely
that sufficient data have been collected for a sample. The merge process injects all
the necessary header information into the file making it ready for export to UKB.

6. When the file has been created, a checksum is generated for each read group and
compared with the corresponding checksums for the fastq files. Failure if the don't
match and the merge process is rerun.

7. The merged CRAM file is archived and the upstream data are marked for deletion.

8. Variant calling is performed on the CRAM file and the result is prepared for export to
UKB. This includes the production of the BQSR?° table as well as a gVCF file.

9. QC stats for the merged file are collected and thresholds applied. Results are
reported back to the lab.

a. If the file fails on quantity only, the file is held, the lab initiates a top-up run
which is processed as described above and upon completion is merged with
the held CRAM file into a new merged CRAM file. That new merged CRAM file
is then processed again as described above

b. If the file fails on other quality parameters, the file is failed and the sample is
flagged in the lab. The lab must decide the appropriate action (abandon
sample, request a new library)

10. The merged CRAM file, along with variant calling and auxiliary data are sent to UK
Biobank

Pipeline details

Alignment
Each read group is alighed to GRCh38 reference (GRCh38 reference with alt contigs plus
additional decoy contigs and HLA genes) with bwa mem (v0.7.17)%3 using parameters '-K
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100000000 -Y -t 24'. To add MC and MQ tags, samblaster®? (v0.1.24) is used with
parameters '-a --addMateTags'. Duplicates are marked using Picard MarkDuplicates
(v2.20.3) with parameters "ASSUME_SORT_ORDER=queryname READ_NAME_REGEX='[a-zA-
Z0-9-]+:[0-9]+:[a-zA-Z0-9]+:[0-9]:([0-9]+):([0-9]+):([0-9]+)", then the results are coordinate
sorted using samtools® (v1.9).

Merging

Internal thresholds are set for total sequence yield and read count, GC fraction (first and
second read in pair) and bias compared to reference, flagging of base conversions in sample
preparation, where certain trinucleotides are more commonly observed in sequencing than
their reverse complement, flagging of base conversions in sample preparation, where
certain trinucleotides are more commonly observed in sequencing than their reverse
complement, percentage aligned library read pairs, library insert fragment size

distribution, sequencing adapter contamination level, sequence run base call quality
values, genotype concordance rate against supplied genome-wide genotype data supplied
by UKB for each participant sample, sequence error rate, sequence contamination rate and
genome coverage. Read group bam files are assessed for these parameters and those that
pass all the thresholds are merged using samtools®? merge (v1.9) and converted to CRAM
format.

Single sample variant calling

A base quality recalibration table is created using GATK BaseRecalibrator (v4.0.12) with
known sites files dbSNP138, Mills and 1000G gold standard indels, and known indels from
GATK resource bundle and parameters "--preserve-qscores-less-than 6 -L chrl .. -L

chr22". For each chromosome in chrl .. chr22, chrX, chrY, the resulting base recalibration
table is applied using GATK ApplyBQSR (v4.0.12) with parameters "--preserve-gscores-less-
than 6 --static-quantized-quals 10 --static-quantized-quals 20 --static-quantized-quals 30 --
create-output-bam-index" and then variants are called using GATK?> HaplotypeCaller
(v4.0.12) with parameters "-ERC GVCF". The resulting 24 chromosome g.vcf files are then
combined using Picard?> MergeVcfs (v2.20.3).

Quality assessment reports

Reports (Table S16) to assess the data quality are created using the following programs (in
the steps Lane QC, QCPreview and QCStats):

e BamQC (v1.0.0) run on each lane before merge (Table S17).

e samtools®? stats (v1.9) using parameters "-d -p" , i.e. excluding duplicates and
overlapping basepairs

e Picard CollectWGSMetrics (v2.20.3) is run with parameters
"USE_FAST_ALGORITHM=True MINIMUM_BASE_QUALITY=0
MINIMUM_MAPPING_QUALITY=0 COVERAGE_CAP=1000" once for whole genome,
once for autosomes only

e Genotypes are called from .g.vcf files using GATK GenotypeGVCFs (v4.0.12)

e Sample contamination is assessed by running verifyBaml|d®® (v1.1.3) with parameters
"--ignoreRG --chip-none --free-full --maxDepth 100 --precise" using 1000G phase 3
autosomal SNPs with European MAF > 0.01

e Sample contamination is accessed again using read_haps® "-q30-mqg30-c1-w
1000"

e Genetic sex is determined using a set of some 100 000 chrX SNPs from gnomad with
Non-Finnish European MAF > 0.2. For each variant, the genotype is called using
GATK GenotypeGVCFs. Then the ratio of observed to expected heterozygosity
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assuming diploidy is computed. If ratio > 0.7 the sample is called female, if ratio < 0.3
the sample is called male, otherwise undetermined. Implemented using in-house
script gvcf_sexcheck.py

e Picard® Genotypeconcordance (v2.20.3) is run with parameter "MIN_GQ=30" to
determine concordance with genotypes for quality variants from a chip array.
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Sequence coverage

Our design was to have at least 95% of the genome covered to at least 15x coverage in each
sample. Nearly half of the variants detected in this study are singletons, detected in only
one sample and a large majority of the variants are rare. GraphTyper requires that at least 4
high quality reads be observed at position for a marker to be called. At 15x coverage the
probability that a variant observed in a single individual would be misclassified due to
random sampling is 3.5%. Sequence coverage across the genome computed over 1,000
randomly selected samples can be seen in Fig. S19.
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SNP and indel calling with GraphTyper

Prior to running GraphTyper we preprocessed all input CRAI indices by extracting a large
single file containing all CRAI index entries with sample_id for a 50kb window (with 1 kb
padding at each side of the region) for all samples. For each region, we then created a
chopped CRAI for each sample by processing the large file for the corresponding region,
substantially reducing the amount of CRAI index entries read.

Further, we created a sequence cache of the reference FASTA file using the
‘seq_cache_populate.pl script distributed with samtools 1.9. In each region we copied the
corresponding sequence cache to the local disk and used it for reading the CRAM files by
setting the 'REF_CACHE" environment variable.

We ran GraphTyper (v2.7.1) using the ‘genotype’ subcommand. The full command we ran

was in the format:

graphtyper genotype ${UKBIO REFERENCE}
--sams=$ {SAMS}
--sams_index=${CRAI TMP}/crai filelist.txt
--avg_cov_by readlen=${COVERAGES}
--region=${REGION}
--threads=${THREADS}
--verbose

Where UKBIO REFERENCE is the GRCh38 full analysis set plus decoy hla FASTA
sequence file, saums is a list of all input BAM/CRAM files, crRaT TMP is a path to the chopped
CRAI files on the local disk, COVERAGES is the coverage divided by the read length for each
input file, REGION is the genotyping region and THREADS is the number of threads to use.

Running time

All jobs were run using 12 cors with 60GB of reserved RAM. Approximately 1% of jobs were
rerun using 24 cores with 120GB reserved RAM. A few jobs requiring more cores and
memory, with a single job finishing with 48 cores and 1000GB of RAM. Total reserved CPU
time on cluster was 5.8M CPU hours and total effective compute time 5.0M CPU hours. The
difference in these numbers is explained by the fact that not all cores reserved for the
program may not utilize all at the same time.
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SNP and indel calling with Calling with GATK

We used GATK versions 4.1.7.0 for all regions. Regions that failed were rerun with version
4.1.8.1.

The process starts by slicing the 50kb region (padded with 1kb) of every sample file with
tabix (from htslib® version 1.9) onto local disk and then builds a GenomicsDB with GATK

GenomicsDBImport. The command we ran was the following:
gatk --java-options "-Xmx${JAVAMEM TOTAL}G
-Xms$ { JAVAMEM TOTAL}G
-DGATK _STACKTRACE ON USER_EXCEPTION=true"
GenomicsDBImport
--genomicsdb-workspace-path ${GDB}
--intervals ${REGION_ PADDED}
-—tmp-dir ${GDB_TMP}
--sample-name-map ${SNMAP}
--batch-size ${BATCH SIZE}
—--reader-threads ${RTHREADS}
where snMaP is the tab-delimited text file of sample names and paths to samples. The
parameters --batch-size and --reader-threads are used to reduce memory usage.
We then split the padded region into as many smaller regions as the number of threads, and
pad those regions again with 1kb. The GenotypeGVCFs command was then ran wrapped in
GNU parallel
parallel --halt=now, fail=1
--jobs=${NTHREADS }
--xapply
"${GATK_WITH_OPTS} GenotypeGVCFEs
--genomicsdb-use-vcf-codec
-R ${REF}
-V gendb://${GDB}
-—tmp-dir=S${tmpdir}
-L {1}
-0 {2} &&
${GATK WITH OPTS} SelectVariants -R ${REF}
-V {2}
-L {3}
_O {4 } "
${REGIONS PADDED} ${SPLITFILES PADDED} ${REGIONS} ${SPLITFILES}
where REF is the reference, REGIONS PADDED is a file containing the padded subregions,
SPLITFILES PADDED is a file containing the intermediate padded output file paths, REGIONS
is a file containing the subregions and sPLITFILES is a file containing the intermediate
output file paths after selecting the variants.
We then run the following command to combine the intermediate output files
gatk --java-options "-Djava.io.tmpdir=$tmpdir
-Xmx$ { JAVAMEM TOTAL}G
-Xms$ { JAVAMEM TOTAL}G
GatherVcfs -R ${REF}
-0 ${OUT}
--arguments file ${VARARGS}

where VARARGS is a file containing arguments for all input intermediate vcfs.

It should be noted that running GATK out of the box will cause every job to read the entire
gVCF index file (.tbi) for each of the 150,119 samples. The average size of the index files is
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4.15MB, so each job would have to read 4.15*150,126 = 623GB of data on top of the actual
gVCF slice data. For 60,000 jobs, this would amount to 623GB*60,000 = 37PB or 25.2GB/sec
of additional read overhead if the jobs are run on 20,000 cores in 17 days. This read
overhead will definitely prevent 20,000 cores from being used simultaneously. However,
this problem was avoided by pre-processing the .tbi files and modifying the software
reading the gVCF files from the central storage in a similar fashion as we did for GraphTyper
and the CRAM index files (.crai).

All jobs were run initially with 6 cores and 100GB of RAM. Jobs that failed due to memory
were rerun with more memory, up to a maximum of 1,458GB. Calling for 320 of the 50kb
regions failed using GATK version 4.1.7.0, either due to 1,458GB of memory being insuffient
or program failure. These regions were split into 3,066 5kb regions (regions at the end of
chromosomes were smaller than 50kb) and rerun with GATK version 4.1.8.1. 320 regions,
representing 1.6Mb, of the 3,066 regions again failed calling with GATK version 4.1.8.1. No
further attempt was made to call these regions. Total reserved CPU time on cluster was
9.6M CPU hours and total effective compute time 4.0M CPU hours. The difference in these
numbers is explained by the fact that while 6 cores reserved for the program it may not
utilize all at the same time.
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Evaluation of SNP and indel callers across 500 random regions

Prior to running variant calling on the whole dataset, we evaluated joint variant callers for
the UKB sequencing effort. We evaluated the quality of the genotype calls and feasibility of
variant calling 150,000 or more WGS samples. There were some minor differences between
this call set and the final set, for example we included seven Genome in a Bottle (GIAB)
samples for evaluation purposes in the evaluation set. However, we believe these
differences should have minimal effects on the results.

Input data
The evaluation was run on the set of 150,126 WGS samples including 7 WGS samples
obtained from the GIAB Consortium (websites).

All of the GIAB BAM files were down sampled to approximately 30x coverage using
samtools view -s 42.FRAC option with seed 42 and FRAC was the fraction of reads to
keep such that 30x was obtained to represent more closely the target coverage of the other
input files. Samtools version 1.9 was used.

We evaluated 500 regions (50kb each). We selected the regions at random by listing all such
regions (only excluding regions which contained only Ns) and using the first 500 regions
from the output of sort -R.

SNP and indel calling with GraphTyper

We ran GraphTyper as described for the whole dataset, with the additional option --
normal and no variant overlapping. This was done to simplify the comparison to the
GIAB truth sets using the files which contained no variant overlaps as rtg vcfeval
sometimes misinterprets overlapping variants. This option however should normally be
omitted to generate only a set where variants may overlap. We used the non-overlapping
set when comparing to the GIAB truth sets but in all other analysis of GraphTyper variants
we used the "normal" variants set.

Resource Requirements

GraphTyper

The GraphTyper jobs were run on 12 cores and 60GB of memory reserved for each job
(5GB/core). Average CPU time was 82 hours and average elapsed walltime was 7.8 hours,
resulting in average reserved core time (walltime*12) of 93.6 hours. For 150k samples and
the entire genome (60,000 50kb slices), this translates to overall compute time of
93.6*60,000 = 5.62M hours, or 12 days if the jobs are run in parallel on 20,000 cores.

The input data to GraphTyper are CRAM files. The average size of an input CRAM file is
17.8GB, so the total size of data to be read is 17.8GB*150,126 = 2.7PB. Reading those data
once over a period of 12 days was estimated to result in average sustained read rate of
2.6GB/sec, assuming no overhead.

GATK HaplotypeCaller

The GATK jobs were run on 6 cores and 80GB of memory reserved for each job
(13.33GB/core). With these settings, 488 of the 500 jobs completed. The 12 remaining jobs
finished when given more memory. The average cpu time was 53.4 hours and average
elapsed walltime was 22.5 hours, resulting in average reserved core time (walltime*6) of
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135.0 hours. For 150k samples and the entire genome (60,000 50kb slices), this translates to
overall compute time of 135*60,000 = 8.1M hours, or 17 days if the jobs are run in parallel
on 20,000 cores.

Output sizes

Both programs return a gzip compressed vcf file (.vcf.gz), one for each region. The average
file size for GATK is 12.0GB while for GraphTyper it is 7.6GB. For 150k samples and the entire
genome, this translates to a total estimated output size of 12GB*60,000 = 720TB for GATK,
while the output for GraphTyper was 7.6GB*60,000 = 445TB. This difference in size may in
part be explained by the fact that GATK reports more variants and in part by the fact that
GATK does not cap genotype likelihoods at 255 like GraphTyper, thus resulting in worse
compression ratio.

Comparison to the GIAB truth sets

In both sets we genotyped seven GIAB samples. We extracted the calls made in each of
those sample in the 150k sample run and compared to their v3.3.2 truth set in high
confidence regions. Variant callers do not generally have the same output when genotyping
a single sample compared to extracting the sample from a multi-sample run.

We ran the tool RTG-vcfeval®* to make the comparison to the truth set in the high
confidence regions which overlapped the 500 regions. For all of the samples, GraphTyper
had both higher sensitivity and precision than GATK on the full sets (Table S1). The
difference between the two callers was small (99.44% vs. 99.34%,Table S1) for SNPs but
more marked for indels (97.58% vs. 94.14%, Table S1), were both methods performed much
worse on indels only compared to single sample calling, indicating that indel calling is
particularly difficult when genotyping a large population.

Overview of genotyping results

We analyzed the evaluation set to further learn the differences between the two genotyping
datasets. In this analysis, all of the variants from the VCF were analyzed on per alternative
allele basis. Therefore the number of variants we report here is higher than the number of
VCF records due to multi-allelic variants.

Variant counts

We counted the number of variants in each dataset (Table S18, Fig. S20). We saw that there
were more variants in the GATK dataset. However, GATK also had greater number of
missing calls (genotype quality = 0 in the VCF). It is expected that the ratio of SNP
transitions to transversion is roughly 2.1-2.3 in humans genome-wide. We saw lower ratios
in the call sets, but it was higher in the GraphTyper set (1.639) than in the GATK set (1.507).
Indel sizes were limited to 100 bp in the GraphTyper dataset but had a larger range in the
GATK set (Fig. S21).

Batch Effect by Sequence Center

Further, we investigated how many common variants had genotype calls which were highly
correlated to the sequence center for which the sample was sequenced in. As the batches

had a highly different amount of samples we randomly selected 10,000 samples from each

batch and restricted our analysis to those sample. We tested whether there were more
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alternative calls (either ref/alt or alt/alt calls) compared to the number of reference calls in
each set using Fisher’s exact test. Only common variants were tested, as we expect fewer
rare markers to be rejected due to smaller sample size. We used a p-value threshold of 107®,
any variants with a lower p-value in any of three tests were considered as failed.

To our surprise, we saw that a large fraction of the common variants are highly correlated
with the sequence center (Table S19), on average of 7.47% and 1.01% of variants for GATK
and GraphTyper, respectively.

Singletons variants
Fig. S22a) shows the distribution of singletons by mutation classes between and the variant
allele frequency (VAF) of singletons. A VAF of 50% is expected for singletons.

Parent-Offspring Trio Analysis

There were 28 parent-offspring trios in the dataset. We analyzed Mendelian errors in the
trios as well as the rate of transmission of alternative alleles from parent to offspring. We
assume that the alleles transmit from parent to child with equal likelihood and use the
transmission rate to estimate false discovery rate and number of germline variants in the
datasets. More info on the method is described?%.

Mendelian Errors
We measured non-reference Mendelian errors by checking for Mendelian consistency when
a parent had an alternative genotype (ref/alt or alt/alt) (Table S3).

Estimating FDR and number of TP in trios

Using transmission rate in trios we estimate both false discovery rate (FDR) and the number
of true positive (TP) variants?*. We also stratified the results by variant type. We estimated
that GraphTyper finds slighlty more true positive variants across all variant types with a
much lower false discovery rate than GATK (Table S3). GATK finds more true positive SNPs,
but GraphTyper more true positive indels.

Monozygotic Twin Non-Ref Error Rate

There were 14 pairs of monozygotic twins in the dataset. We checked how many of the non-
reference variants were consistent between a pair of monozygotic twins. We considered a
variant to be non-ref if either twin had an alternative allele in their genotyped. GraphTyper
had lower error rate between monozygotic twins (Table S3C).

Summary

Overall, we find that GraphTyper performs consistently slightly better than GATK in the
variant quality experiments. Despite that GATK reports more variants than GraphTyper, we
estimate that GraphTyper’s sensitivity is better in both the GIAB truth set comparison and
family trio analysis. There appears to be larger gap between the methods in terms of noise,
GATK performs worse in precision in the GIAB comparison, in the family trios we estimated
that GATK’s false discovery rate is twice as much as GraphTyper’s, and 7-fold more common
GATK variants failed the batch effect test compared to GraphTyper.
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Comparison of final GraphTyper and GATK call sets.
In addition to the two callsets, we also define the set "GraphTyperHQ" as the set of
GraphTyper alternative alleles with AAScore above 0.5.

Variant counts and frequency classes

We counted total number of variants in the sets (Table S7). When counting the number of
"variants" in any context hereafter, we are referring to alternative alleles excluding the
alleles that are denoted as '*' in the VCF.

An informative call is one with non-zero quality (GQ > 0). We saw that GATK had more
variants but also much more missing calls. We split the sets into three frequency classes:
Common (Allele frequency (AF) > 0.1%), rare (AF <0.1%, excluding singletons) and singletons
(one called carrier in the set). A vast majority of the datasets (95.6% - 96.0%) are have an
allele frequency below 0.1%. Singletons account for nearly half of the variants (43.9-45.5%)
(Table S7).

The transition transversion ratio was 1.550, 1.642 and 1.657 for the GATK, GraphTyper and
GraphTyperHQ datasets, respectively (Table S7B, Fig. S23).

Batch effect by sequence center

We investigated how many common variants had genotype calls which were highly
correlated to the sequence center, i.e. the location which the sample was sequenced at.

We randomly selected 10,000 samples from each sequencing center analysis pipeline and
restricted our analysis to those samples. We tested whether there were more alternative
calls (either ref/alt or alt/alt calls) compared to the number of reference calls in each set
using Fisher's exact test. Only common variants were tested, as we expect rare variants are
less likely to be rejected due to limited sample size. The same variant often fails multiple
tests, 5.69%, 0.97% and 0.20% of common variants associate with sequencing center for the
GATK, GraphTyper and GraphTyperHQ datasets, respectively (Table S20).

Variant transmission in parent-offspring trios and monozygotic twin pairs

There were 28 parent-offspring trios in the dataset. We analyzed the rate of transmission of
alternative alleles from parent to offspring. We assume that the alleles transmit from parent
to child with equal likelihood and use the transmission rate to estimate false discovery rate
(FDR) and number of germline true positive (TP) variants in the datasets?*. From the family
trios we estimate that GraphTyper has more true positive variants while also having lower
rate of false positive ones. GraphTyperHQ has considerably lower false discovery rate than
the GATK call set (Table S2).

There were 14 pairs of monozygotic twins in the dataset. We checked how many
inconsistent genotypes in the twins were on average in a 1MB region (ICPM). We also
calculate the total non-reference consistency rate among, by checking for consistency
among all calls where either twin had a call with an alternative allele. The raw GATK and
GraphTyper datasets have many inconsistent calls between monozygotic twins but the
filtered GraphTyper dataset is much more consistent (Table S2).
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Batch effects in final dataset

Sequencing was performed in three batches; individuals sequenced at deCODE genetics
(deCODE), sequenced at the Welcome Trust Sanger Institute processed using Vanguard
phase pipeline (Sanger Vanguard), sequenced at the Welcome Trust Sanger Instititute using
the main phase pipeline (Sanger Main). From the lists of individuals, we constructed six
different phenotypes, comparing each sequencing batch both to the two other sequencing
batches both jointly and separately. Association tests were performed per cohort and both
for the raw genotypes and the imputed dataset, following the protocol describe in
subsection “Association testing”. Association results are presented for both a filtered and
an unfiltered dataset. For the raw genotypes the filtered set refers to markers with AAscore
> 0.5, or the GraphTyper HQ set. For the imputed genotypes the filtered set refers to
markers markers with AAscore > 0.5 and Imp info > 0.8.

Batch effects for sequencing center are shown in Table S22 for raw genotypes and in Table
S23 for imputed genotypes, with results conditioned on frequency and association p-value.
Considerable batch effects can be observed in all datasets. As expected, lower levels of
batch effects were detected for the filtered dataset. More common variants show higher
levels of batch effects. We note that marker batch effect is conflated with missing data in
genotype calling.

For the purpose of the Table S22 and Table S23 frequency is computed from genotype
likelihoods, where the likelihoods are transformed into probabilities that the individual is a
carrier. In this way an individuals with no sequence reads is assigned frequency 50%,
upweighing rare markers where a large fraction of markers have missing data. Alternatively
frequencies can be computed from the carrier status of individuals without missing data.
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Overlap with UKBB WES SNPs

Comparison based on minor allele frequency

A recent UKB WES dataset has 200,000 individuals (WES200k’®). In the dataset there are
1,047,397 SNPs with WES AF >0.01% and 353,889 with WES AF >0.1%. We checked how
many of those were not found in the WGS datasets. 1.81, 0.44 and 1.60% of variants with
frequency > 0.01% in the WES200k dataset were missing the in the GATK, GraphTyper and
GraphTyperHQ datasets, respectively (Table S5).

Variant normalization

To reliably compare two datasets (the result of different samples, technologies or tools), the
data needs to be in a standardized format. The commonly used VCF format is unfortunately
very ambiguous:

1. Two variation events may be represented as a single multi-allelic VCF record in one
set or as two VCF records in another.

2. Asingle variation event has many equivalent representations, i.e. variants are not
required to be left-aligned and parsimonious®.

3. While records are required to be ordered by POS, two records with the same POS
have no defined order. This makes line-wise comparisons and merges difficult. In
particular, the order generated by bcftools norm is not alphabetical.

4. Different conventions exist for how to name chromosomes ("Chr1" vs "1"; "ChrX" vs
"Chr23" vs "23").

5. IDs are absent from some files, making it more difficult to return to the original entry
after changes have happened.

Our normalization pipeline employs bcftools norm to split multi-allelic variants and to left-
align and trim them. It enforces a naming convention for the chromosomes ("Chr1" ...
"ChrX") and adds an ID-String if missing. Finally, the data is split into 50KB regions and
sorted by "Chrom,Pos,Ref,Alt". Since normalization may influence the POS field of a VCF
record, it may fall into a different 50KB bin than before; these cases are handled.

Once all datasets are normalized, a merged dataset is created from them. This consists of
one set of VCF files where all INFO fields from the original datasets are included with a set-
specific prefix, e.g. "GATK_AF" instead of "AF". The original datasets' ID, QUAL and FILTER
fields are also included in the merged files' INFO fields as "GATK_ID", "GATK_QUAL" etc. This
representation of the data is sparse because missing entries do not take up space. For
analysis purposes, a TSV or GOR[Z] file can be created for individual regions or full
chromosomes. The transformation from .VCF.GZ files to .GORZ and further operations (e.g.
JOINSs) are efficiently possible, because our VCF records are already fully sorted.

Comparison of WES and WGS call sets on the same sets of samples

In an attempt to make a judicial comparison between WES and WGS as well as between the
GraphTyperHQ and GATK call sets we analyzed seperately the calls made for a subset of
109,618 individuals included in our dataset as well as the 200k release of WES data from the
UKB’®.

Variants not present in any of the 109,618 indivdiuals were removed from analysis, resulting
in 558,128,486 GraphTyperHQ variants and 13,815,704 WES variants. We then split the
variants by functional annotation and tabulated the number of variants shared between the
two call sets and the number of variants absent from the other call set (Table 1).
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To further explore the accuracy of genotype callers we analyzed specifically variants inside
regions that are purportedly captured by exome sequencing (websites,Table S21), 6,608,669
variants are found in all three call sets. Variants in one call set and not another may be
either true or false positives. A priori, we would expect that variants found in two call sets
to be a strong indication of the variant being a true positive. This analysis is complicated by
the fact that although we have filtered the set of GraphTyper variants GATK variants have
not been filtered for true positives.

A total of 87,773 variants are found by both GATK and WES but missed by GraphTyperHQ.
32,875 of these variants were present in the unfilterd GraphTyper dataset but filtered due
to low AAscore. 56,909 out of the 87,773 variants have the same primary carrier in both
datasets, while the remaining 30,864 are found by both callers but not in the same sample.
These variants represent a shared tendancy of false positive calls at the same variant (but in
different samples) across both datasets. Best practices use of GATK recommends filtering of
variants based on a number of factors. While we have not computed all of these, we
computed for these variants what we believe are some of the most common causes of
failure; failing variants that have variant allele frequency (VAF) below 25%, failing variants
that are not supported by reads from both strands and failing variant that are not supported
by both a read that is first in pair and one that is second in pair. Applying these three filters
removed 69.3% of the 56,909 variants, suggesting at most a small fraction of the variants
found by both GATK and WES, but not GraphTyper, are in fact called reliably enough to be
used in a recommended genetic analysis.

Cursory analysis of the variants found by both GraphTyper and WES, but not GATK
suggested that these were similarly possibly problematic.

Analysis of variants found by both GATK and GraphTyper however suggested that these
were in large part true positives. We considered the distribution of the 898,764 singletons
shared between the callers and found their distribution (XAF 78,229 (8.70%), XBI 564,346
(62.79%), XSA 71,823 (8.00%), OTH 184,366 (20.51%)), to be similar to that of the
distribution of singleton calls overall (XAF 746,289 (8.40%), XBI 5,731,044 (64.50%), XSA
707,379 (7.96%), OTH 1,701,318 (19.15%)). We would expect false positive calls due to
sequencing artifacts would be similar to the fraction of individuals from each cohort in our
intersected sequencing set (XAF 2.05%, XBI 87.89%, XSA 2.08%, OTH 7.99%).
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SV calling with Manta and GraphTyper

We ran a structural variant (SV) genotyping pipeline similar to the one we had previously
applied to 49,962 Icelanders®. In summary, we ran Manta>® v1.6 to discover SVs on all
150,119 individuals in the genotyping set. We also created a set of highly confident common
SVs (imputation info above 0.95 with frequency above 0.1%) from our previous studies using
both Illumina short reads®® and Oxford Nanopore long-read data®°. Finally, we inferred a set
of SVs from six publicly available assembly datasets using dipcall®®, as described previously®°.
We used svimmer®® to merge these different SV datasets and we called the resulting SVs
using GraphTyper® version 2.7.1. By incorporating data from long read data and high quality
assemblies, we are able call more true SVs compared using short reads only, particularly for
common SVs.

A total of 895,054 variants were called, of which 637,321 variants were annoted as , Pass”.
Variant counts are presented for variants annoted by GraphTyper as ,,Pass”, unless
otherwise noted.

The majority of the SVs are deletions (81.3%), however we observe only slightly more
deletions than insertions and duplications on average per individual (Fig. 3a). This is because
the source for many insertions are long reads and assembly data, and thus many rare
insertions are missing. Deletions are typically easier to discover in short read data.
Individuals that belong in the XAF cohort carry more SVs than in the other cohorts (Fig. 3b).
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Microsatellite calling with popSTR

We followed the protocol described above for Graphtyper before we ran PopSTR(v2.0) and
created chopped CRAI indices for all samples as well as a reference sequence cache for each
processed region.

We scanned all CRAM files in 50kb regions using the popSTR subcommand
computeReadAttributes.

The format of the command was:
POpSTR computeReadAttributes ${CRAI TMP}/samplelList.txt ${RESULT TMP}
markerList flanking <(readLength-2*flanking) “.” longRepeats N

Results over a predetermined set of microsatellites from chr21(our kernel) were used to
estimate a slippage rate for each individual using the popSTR subcommand
computePnSlippageDefault.

The format of the command was:

PopSTR computePnSlippageDefault

-PL $sample

—-AD ${RESULT_TMP}/attributes/cher/
-OF ${outDir}/pnSlippage

-FP S$sampleIDx

-MS ${codeDir}/kernelSlippageRates
-MD ${codeDir}/kernel/kernelModels

Combining CRAM analysis results and sample slippage rates we performed genomewide
genotyping using the popSTR subcommand msGenotyperDefault

The format of the command was:

PopSTR msGenotyperDefault -ADCN ${RESULT TMP}/attributes/${chrom}/ -PNS
pnSlippage -MS ${RESULT TMP}/markerSlipps/${chrom}/markerSlippage -VD
${RESULT TMP} -VN vcfName -ML markerList -I $idx -FP 1

CRAI TMP is a path to the chopped CRAI files on the local disk, REsuLT TMP is a folder on
the local disk to store results, flanking is a parameter specifying the number of bps
required to anchor a read to the microsatellite, readrength is the length of reads in the
CRAM file, markerList is a list of all microsatellites in the 50kb region being

analysed, outDir is a directory to store sample slippage results, sampleIDx is the index of
the sample being analysed in the sampleList.txt, codeDir isthe directory where popSTR
and its dependencies are stored and $idx is the index of the region being analyzed.

Filtering of microsatellites
We recommend the following best practice filtering guidelines.

Filter marker where:
average coverage < 10 or average coverage > 75
command: bcftools query -f
‘SCHROM\ t%POS\t%$INFO/nReads\t%INFO/nPnsWithReads\n' $file |
awk ‘{print $1,5%2,$3/$4}" | awk ‘{if ($3>10 && $3<75) {print
SI\t$2}1} ' > pass; bcftools view -T pass -o filtered ${file} -O
z $file; tabix filtered ${file}
average genotype quality < 20
command: bcftools query -f
YSCHROMAtSPOS[\t3GT\t%GO]\n" $file | awk ‘{sum=0; miss=0;
avail=0; for (i=4;1<=NF;1i+=2){1if ($(1i-
1)=="./.") {miss+=1l}else{sum+=$i; avail+=1}}
if (avail>0) {mean=sum/avail}lelse{mean=0} print $1,$2,mean}‘ |
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awk ‘{if ($3>20) {print $1\t$2}}' > pass; bcftools view -T pass
-o filtered S${file} -0 z S$file; tabix filtered S${file}
number of individuals with reads < 75,000
command: bcftools query -f
‘SCHROM\t$POS\t$INFO/nPnsWithReads\n' $file |awk ‘{if
($3>75000) {print $1\t$2}}' > pass; bcftools view -T pass -0
filtered ${file} -0 z $file; tabix filtered ${file}
number of reads not supporting genotype/number of reads available > 0.3
command: bcftools query -f
‘$CHROM\ t$POS\t$INFO/nNonSupportReads\t$INFO/nReads\n" $file |
awk ‘{if ($3/$4<0.3) {print $1\t$2}}' > pass; bcftools view -T
pass -o filtered ${file} -0 z $file; tabix filtered S${file}

A total of 2,393,292 variants pass these filters.
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Imputation and phasing

The UKB samples were SNP chip genotyped with a custom-made Affymetrix chip, UK BiLEVE
Axiom in the first 50,000 individuals®’, and the Affymetrix UKB Axiom array®® in the
remaining participants. We used the existing long-range phasing of the SNP chip genotyped
samples®.

We excluced SNP and indel sequence variants where at least 50% of the samples had no
coverage (GQ score = 0), if the Hardy Weinberg p-value was less than 1030 or if
heterozygous excess was less than 0.5 or greater than 1.5.

We used the remaining sequence variants and the long-range phased chip data to create a
haplotype reference panel using inhouse tools*#°. We then imputed the haplotype
reference panel variants into the chip genotyped samples using inhouse tools and methods
described previously®#.

The imputation consists of estimating, for each haplotype, haplotype sharing with
haplotypes in the haplotype reference panel, giving haplotype weights for each haplotype.
These weights along with allele probabilities for each haplotype in the haplotype reference
panel allow imputation with a Li and Stephens®® model similar to the one used in
IMPUTE2°L. Estimation of haplotype weights was based on long-range phased chip
haplotypes.

Sequence variant phasing consists of iteratively imputing the phase in each sequenced
sample based on the other sequenced samples and the estimated phase from last iteration.
The imputed genotypes, along with the original genotypes are weighted together to
estimate new allele probabilites for the haplotypes. Imputation is done as described above.

We compute a leave-one-out r-squared score (L1oR2) as the squared correlation (r? value)
of the original genotype calls with the genotypes imputed for each sample when excluding
the original genotype of the sample from the imputation input.

Imputation results
We refer to a variant as being reliably imputed if its LLoR2 score is greater than 0.5 and
imputation info® was above 0.8.

Imputation and phasing accuracy of SNPs and indels for the GraphTyperHQ set is shown in
(Fig. 2, Fig. S14, Table S11). GraphTyperHQ filters variants based on an AAscore of 0.5.
Requiring higher AAscore allows a higher fraction of variants to be imputed (Fig. S24). We
found that variants located > 100kb from a chip genotyped variant and variants in regions
that were placed on different chromosomes on GRCh3822 and CHM137! imputed less
accurately than others.

SVs and microsatellites are imputed less accurately than SNPs and indels (Fig. S14), in part

due to difficulty in genotyping those variants. For microsatellites, this may in part be
attributed to the high mutation rate of microsatellites and in part to the fact that the results
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are presented for the unfiltered microsatellite set, we expect that a higher fraction of
microsatellites would impute after filtering.

Comparison of imputation from GATK and GraphTyper variants

We imputed all variants genotyped by GATK and GraphTyper across chr22, 10-11Mb. We
define a variant to be imputed if the phasing leave-one-out r2* (L1or2) was at least 0.5 and
imputation info® was at least 0.5. We present the number of variants that could be imputed
as a function of frequency and variant type (Table S4). Although more variants are called by
GATK, there are more variants called by GraphTyper that can be imputed, across all
frequency classes and variant types.
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Genome annotation

We downloaded Refseq and Ensembl gene map annotations from Ensembl®?, version 100
database. The gene maps were transformed to segments with each position in GRCh38
annotated as at least one of 3'utr, 5'utr, coding, downstream, intergenic, intronic,
spliceregion, splicesite, upstream.

These regions were grouped and ordered by precedence:

1 - coding — coding

2 —splice — spliceregion, splicesite

3-5UTR-5‘UTR

4-3‘UTR-3‘UTR

5 — proximal — upstream, downstream, intronic

6 — intergenic — intergenic

Each position was then given annotation according to its lowest precedence rank
annotation, e.g. a position annotated as both spliceregion and 5‘UTR was given the
annotation ,splice”.
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Identification of functionally important regions

To identify functionally important regions, we start by estimating whether reliable basecalls
can be expected to be made at each site in the genome. The sequence coverage at each bp
in GRCh38 was computed for each of 1,000 randomly selected individuals. At each bp we
then computed the mean and s.d. of coverage across the 1,000 individuals. Bps with mean
coverage at least 20 and s.d. of coverage at most 12 were considered reliable bps. Only
variants in GraphTyperHQ (AAscore > 0.5) were considered in the analysis.

Recurrent mutations, and spectra under saturation

Using the classification of SNP variants from above, we calculate the ratio of all SNP’s in
GraphTyperHQ that falls into each category. Then we do the same restricting to singletons,
i.e. calculate the proportion of singletons falling into each mutation class. For comparison,
we calculate the fractions of each SNP class in all 181,258 SNP’s from a curated list of
194,687 de novo mutations in 2,976 Icelandic trios?°. We use this distribution on mutation
classes to calculate the transitons/tranversions ratio in each case.

To get a list of recurrent mutations, we join this list of de novo mutations with
GraphTyperHQ. This overlap is almost certainly cases of the same alleles originating from
separate mutation events.

Saturation for general mutation classes

We restrict our analysis to the reliable bps described above and group bps and their
complement and consider each A or T base in the genome as a mutation opportunity for
T>A, T>C or T>G mutations. Similarly, we consider each G or C base as potential C>A, C>G or
C>T mutation, splitting C>T into two classes based on whether they occur in a CpG context
or not. We then compute the saturation ratio as the number of observed mutations in
GraphTyperHQ divided by the number of mutation opportunities at reliable bps.
Computation is done separately for the autosomes and chromosome X. 95% Cls are
computed using a normal approximation to the binomial distribution, treating each site as
an independent observation.

Sites methylated in the germline

We determine sites on GRCh38 that are methylated in the germline using ENCODE Whole
Genome Bisulfite Sequencing®® (WGBS) data from samples of human testes and ovaries.
More precisely we use sample ENCFF946UQB and ENCFF157ZPP for testes and
ENCFF561KYJ, ENCFF545XYI and ENCFF51500Q for ovaries.

We assume that methylation is strand symmetric and compute methylation ratio for each
CpG dinucleotide in a given tissue type by tabulating the number of reads supporting
methylation or non-methylation in each dinucleotide, summing over all samples of a given
tissue type and then compute the fraction of reads that support methylation.

We consider a site in a CpG dinucleotide on the reference genome methylated in the
germline if its methylation ratio is at least 0.7 in both testes and ovaries, and the combined
depth is at least 20 for testes and 30 for ovaries, or 10 times the number of samples in each
tissue type. This resulted in a list of 17,902,255 CpG dinucleotides, harboring 35,804,510
CpG>TpG mutation opportunities.

Saturation at methylated CpG sites

For each potential CoG>TpG at a methylated site we assessed its most significant potential
consequence with Variant Effect Predictor® v. 100. In case of multiple such consequences
we chose the alphabetically last one. We also classified them based on the functional
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classifications described above. For each class we estimated the saturation as the ratio of
variants of that functional class in GraphTyperHQ divided by the number of mutation
opportunities. 95% Cls are computed using a normal approximation to the binomial
distribution, treating each site as an independent observation.

Depletion rank (DR)

We followed a methodology akin to3°. A variant depletion score is computed for an
overlapping set of 500 bp windows in the genome with 50bp step size. A total of 49,104,026
500 bp windows where at least 450 bp were considered reliable bps were considered for
further analysis. We tallied the number of occurrences of each possible heptamer (H) and
the number of times the central bp in the heptamer was observed as a SNP (S), across the
first set of non-overlapping windows. To account for regional mutational patterns in the
genome®*, we dichotomized the genome into two mutually exclusive subsets, inside and
outside of C>G enriched regions (Supplementary Table 12 in®%). The ratio S/H was then
interpreted as the expected mutation rate of the heptamer, separately for each of the two
subsets. For each window we then computed the observed number of variants (O) and then
subtracted its expected number of variants (E), given its heptamers. This difference was
divided by the square root of the expected value ((O-E)/ VE). We exclued windows from the
analysis where the average AAscore was lower than 0.85 for variants within the window.
These ((O-E)/ VE) numbers were then sorted and the window with the i-th lowest depletion
score was assigned a Depletion Rank of 100(i-0.5)/n, where n is the total number of
windows.

To compute DR restricted to the cohorts, we applied the same approach restricting to
sequence variants that are present in each of the XBI, XSA and XAF cohorts.

125


https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.16.468246; this version posted March 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

WGS individuals carrying actionable genotypes meeting ACMG criteria

The American College of Medical Genetics and Genomics (ACMG) recommends reporting
secondary findings in a list of actionable genes associated with diseases that are highly
penetrant and for which a well-established intervention is available?’. The initial version
(ACMG SF v1.0) was published in 2013 and included 56 actionable genes but has since been
updated twice to ACMG SF v2.0 and v3.0 listing 59 and 73 actionable genes, respectively.
2.0% of the 49,960 WES individuals from the UKB were reported?® to carry an actionable
variant in at least one gene from the ACMG v2.0 list of 59 genes. Using their criteria, we
detected actionable genotypes in 2.6% of 150.119 WGS individuals. When applying the
same criteria to the ACMG v3.0 gene list (73 genes), the fraction of individuals carrying an
actionable genotype increases to 3.5%. In the ACMG v3.0 list of actionable genes, HFE
p.Cys282Tyr homozygotes are recommended to be reported, but does not fullfill the
previously described criteria?®. In the set of 150,119 WGS individuals, we observe 929 HFE
p.Cys282Tyr homozygotes (0.62%), thereby increasing the fraction of individuals carrying an
actionable genotype in one of the ACMG v3.0 genes to 4.1%.
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Genotype count of rare LoF variants

We counted the number of autosomal heterozygous and homozygous genotypes per
individual for rare LoF variants (minor allele frequency (MAF)<1% in all 3 groups, XBI, XAF
and XSA). LoF variants are those annotated by the Variant Effect predictor as having
consequence as one of: stop gained, frameshift, splice acceptor, splice donor og start loss.
Heterozygous counts were based on WGS data, and homozygous counts were based on
phased genotypes.
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GWAS enrichment analysis

We have previously described a likelihood-based inference model for estimating the
enrichment of trait-associating sequence variants on the basis of their annotations°.
Similar to our earlier work®® we defined a set of 22.8M high-quality sequence variants
identified as mono-allelic SNPs or Indels in a set 28,075 whole genome sequenced
individuals from the Icelandic population.

The high-quality SNP-indels (22.8M) were then tested for association to a selected set of
614 human diseases and other traits. For each trait, we split the genome into 10Mb
windows and selected the strongest sequence variant association from each window where
p < 1-10°. Then, for each chromosome, we sorted the selected sequence variants according
to P-value to then determine whether the second best variant still associates at p <1-107°
after adjusting the trait for the strongest variant on that same chromosome. If so, this
second best sequence variant was incorporated into a final set of ,independently
associated” variants for that trait, and the process continued for all other sequence variants
down the list —each time adjusting for ,stronger” variants on the same chromosome.

This yielded a set of 3,431 independently associated sequence variants in 322 traits. For
each of the 3,431 trait-associated variants, we searched for correlated sequence variants
(r2>0.80) in the same Icelandic population. In this way, a given trait association variant
along with its correlated variants (found in linkage disequilibrium; LD) defines an association
signal. P-values were estimated by determining how often the enrichment estimate (E) is
above or below E=1 by bootstrapping (N=5000) of the GWAS association signals.

We then annotated sequence variants according to whether or not they are found within
regions that show low and high DR scores (1st percentile versus 99th percentile; i.e. most
and least conserved regions, respectively); refered to as DR-1% and DR-99%, respectively. In
this model, we specified eleven other annotations of sequence variants: loss of function,
missense, splice-donor/acceptor, splice region, synonymous, 5kb gene-upstream, 5kb gene-
downstream, 3’'UTR, 5°UTR, intronic and the remaining sequence variants as ,,other” (not
found in any of the specified annotation categories). Similarly, we specified another model
wherein we estimated enrichment for DR-5% and DR-95%.
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Overlap with ENCODE regions

We used annotations from ENCODE'® and compute the odds ratios these annotations in
regions of different DR scores. We label each bp in the genome with a11,a12,a21 or az2, where
the first number represent that the bp was annoted with the given ENCODE annotation (1)
or not (2) and the second number represents that the DR score was above (1) or below (2) a
given threshold.

The odds ratio for the ENCODE annotation given the DR score threshold is then:

OR=a11/a21 xazz/a1n.

The marker label parameters are computed for each one of the annotations on a set of 1Mb
windows across the regions annoted with a DR score. The mean odds ratio is computed by
summing up the individual parameters for the complete set of windows. We use
bootstrapping to estimate the confidence limits for the odds ratio we, for each bootstrap
sample we sample with replacement from the complete set of 1Mb windows, sum up
individually the resulting set ajj's and compute the odds ratio for the bootstrap sample. The
odds ratio is computed for a total of 1000 bootstrap samples and the confidence intervals
defined between the 2.5% and 97.5% quantile of the resulting dataset.
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Association testing

We tested for association with quantitative traits based on the linear mixed model
implemented in BOLT-LMM?®>, We used BOLT-LMM to calculate leave-one-chromosome out
(LOCO) residuals which we then tested for association using simple linear regression. We
used logistic regression to test for the association between sequence variants and binary
traits. We tested variants for association under the additive model using the expected allele
counts as a covariate for quantitative traits and integrating over the possible genotypes for
binary traits. Sequencing status (whether the individual is one of the WGS individuals), other
available individual characteristics that correlate with the trait were additionally included in
the model; sex, age, and principal components (20 for XBIl and XAF, 45 for XSA) in order to
adjust for population stratification. Association analyses with XAF and XSA ethnicities have
sample sizes <10,000 and therefore were done with linear regression directly instead of
BOLT-LMM. The correction factor employed was the intercept of each regression analysis.

We used LD score regression to account for distribution inflation in the dataset due to
cryptic relatedness and population stratification®3. Using 1.1 million variants, we regressed
the X2 statistics from our GWASs against LD score and used the intercepts as a correction
factor. Effect sizes based on the LOCO residuals are shrunk and we rescaled them based on
the shrinkage of the 1.1 million variants used in the LD score regression. Table S24 lists
statistics for the GWAS analysis of each of the association signals presented here.
Manhattan plots, quantile-quantile (QQ) plots and histograms of inverse-normal
transformed values after adjustment for covariates age, sex and 40 principal components
can be found in Fig. S25 and Fig. S26 for quantitative and binary phenotypes, respectively.
Locus plots for Uric Acid and Menarche association can be found in Fig. S27.

All associations reported are for imputed genotypes. For comparison purposes associations
were also performed on the genotypes directly. For the association testing perfomed on the
directly genotyped markers the same set of covariates were used, apart from sequencing
status (as all individuals are sequenced) and additionaly the sequencing center (deCODE,
Sanger main, Sanger Vanguard) was used as a covariate. Table S25 shows correlation
between the raw and the imputed genotypes and batch effects for sequencing center in the
XBI cohort.

An individual was deemed to be a carrier of an allele if the probability that the individual
carried the allele was at least 0.9. The association analysis was limited to markers were at
least one (XAF, XSA), two (XBI, imputed dataset) or three (XBI, raw genotypes) individuals
carried the minor allele. As association tests are frequently limited to a subset of the
individuals in the datset the association analysis was further limited to those markers were
there was at least one carrier among the individuals in the association test. In the imputed
dataset association tests were further limited to those markers with imp info > 0.5 and in
the raw genotype set to those markers with sequencing information?® > 0.8.
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RNA sequence data

RNA sequencing was performed on samples from cardiac right atrium of 169 Icelanders. The
data and subsequent sequence alignment to GRCh38 has been described®®. To estimate the
effect of deletion of exon 6 in transcript ENST00000168977.6 of NMRK2 we counted
fragments aligning from the donor site of exon 5 to either acceptor site of exon 6 or exon 7

(Fig. S12, Fig. S13).
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Defining cohorts

Most studies of UKB data to date have been conducted on a list of around 410,000
“Caucasian” individuals created by UKB on the basis of “White British” self-identification and
clustering on genetic principal components derived from microarray genotypes®. Like some
recent studies®*°”°8, we wished to capitalize on the diversity in the UKB. To achieve this, we
defined three cohorts based on the most common ancestries identified among the
participants, using a combination of 1) UMAP dimension reduction of 40 genetic principal
components provided by UKB, 2) ADMIXTURE analysis supervised on five reference
populations and self-reported ethnicity information.

In order to define the three cohorts, we followed previous work®® and applied UMAP to the
40 genetic principal components provided by UKB. UMAP was performed in R using
umap::umap() using default parameters in v0.2.3, notably n_neighbours 15 and min_dist
0.1. UMAP placed the individuals in a two-dimensional latent space featuring several
clusters and filaments. These structures showed a correspondence with self-described
ethnicity (Fig. S28).

To provide a separate measure of ancestry that we could use to inform our interpretation of
the UMAP clusters, we superimposed results from a supervised ADMIXTURE®? analysis of
the UKB microarray genotypes (Supp Section ADMIXTURE), using five training populations
from the 1000 Genomes Project® (1000GP): CEU (Northern Europeans from Utah), CHB (Han
Chinese in Beijing), ITU (Indian Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in
Ibadan, Nigeria). We observed a clear correspondence between UMAP coordinates and
ancestry proportions assigned by ADMIXTURE (Fig. S29, Fig. S30). Using this correspondence
and guided by self-reported ethnicity information, we defined the cohorts by manually
delineating regions in the UMAP latent space that were limited to individuals with British—
Irish ancestry (XBI, N=431,805), South Asian ancestry (XSA, N=9,633), and African ancestry
(XAF, N=9,252). This left 37,598 individuals with genotype data, who were assigned to an
arbitrary cohort we refer to as OTH (short for other). The distribution of ancestry estimated
using the ADMIXTURE in each of the four cohorts (Fig. S29). Fig. S6, Fig. S7 and Fig. S8 show
the geographical distribution of birthplaces for the XBI, XAF and XSA cohorts, respectively.

The most systematic difference between the XBI cohort and the prevailing UKB-defined
“Caucasian” set is our inclusion in XBI of around 12,500 individuals identifying as White Irish.
This is clearly justified, given the known geographical and cultural proximity of the
populations of the Britain and island of Ireland. More importantly, both our analyses (and
those of previous publications) clearly reveal evidence for extensive gene flow between
them. Thus, the main Irish genetic cluster appears in PCA as an integrated component of
continuous variation in the UK (Fig. S5), and is not clearly separated from others. Another
major difference of the XBI cohort relative to the much-used Caucasian set, is the addition
of around 10,900 individuals who did not identify as White-British, but we infer to have
ancestry indistinguishable from British-Irish individuals. We note that the greater size of the
XBI cohort should provide more statistical power to detect genotype-phenotype
associations.
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Computing principal components within cohorts

Microarray data

For all cohorts, we first removed variants with missingness >3% and 135 individuals with
genomewide missingness >5%. We then removed a canonical set of long-range high-LD
regions and all indels.

For the XAF and XSA cohorts, the following procedure was followed. We first excluded both
individuals from each pair of relatives with kinship coefficient 0.0625 or greater; these
excluded individuals were later projected onto the principal components. We then pruned
for variants in complete linkage disequilibrium (r2 = 1) using plink --indep-pairwise 200 25
0.999999, and then removed all variants with MAF <1%. PCA for these two cohorts was
performed using smartpca®! with parameters numoutevec: 45, numoutlieriter: 0, Idregress:
200, and Idposlimit: 100000. We then projected all relatives using the OADP method
implemented in bigsnpr’s'®? function bed_projectSelfPCA().

A slightly different approach was used for the XBI set, due to the very large number of
individuals. We first excluded: individuals from each pair of relatives at a kinship coefficient
threshold of 0.0442 or greater; individuals with inbreeding of 0.1 or greater; individuals with
genomewide missingness 1% or greater; and all remaining individuals defined as “HetMiss”
(heterozygosity/missingness) outliers by UKB. We next removed variants with < 0.05% MAF
and a Hardy-Weinberg disequilibrium p-value (calculated with plink --hwe midp) of <1e-100.
Then LD clumping was performed using bigsnpr’s bed_clumping() function using thr.r2 =0.2
and [window] size = 500 [kb]. We calculated 30 PCs on the remaining variants and
individuals using bigsnpr’s bed_randomSVD(), and the previously excluded individuals were
projected onto these PCs using OADP.

WGS data

To prepare each WGS cohort for PCA, we first removed all variants with missingness >3%.
We then excluded individuals with genomic inbreeding over 0.1 and both individuals in any
pair of 3rd degree or closer relatives. The excluded individuals were later projected onto the
principal components. After excluding these individuals, we removed all singleton variants.
For XBI in particular, we also removed all variants with minor allele count <10, in order to
make computation more tractable and to minimise the influence of very recent genealogical
structure.

bigsnpri®! was used to remove a canonical list of long-range, high-LD regions [long-range LD
ref] and then perform LD clumping using bed_clumping() with an r2 threshold of 0.1 and a
window size of 5 megabases. We then used bed_randomSVD() in bigsnpr to calculate 50
PCs on each of the cohorts.

The first six principal components in each cohort are shown in Fig. S31, Fig. S32 and Fig. S33.

Inbreeding

Genomic inbreeding in the form of Fron (proportion of the genome in runs of homozygosity)
was calculated on microarray genotypes using PLINK% v1.9 and the same parameters
specified in ROHgen2!%: homozyg-window-snp 50; homozyg-snp 50; homozyg-kb 1500;
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homozyg-gap 1000; homozyg-density 50; homozyg-window-missing 5; homozyg-window-
het 1. Genotype data had been filtered to remove variants: that were not in the
“in_HetMiss” set defined by UKB; that had >2% cohortwide missingness; or that were found
to have highly discordant allele frequencies compared to other British—Irish datasets or to
be in apparent inter-chromosomal LD,

IBD segment computation

We called IBD segments between UKB individuals’ microarray genotypes using KING v2.2.4 -
-ibdseg!®. Genotype data was split into 90 batches and run using --projection mode to
calculate IBD between batches. Kinship coefficients quoted throughout the supplementary
refer to the ProplBD values reported by KING divided by 2. Genotype data had been filtered
to remove variants with cohortwide missingness >3%.

ADMIXTURE

We assigned proportions of continental-scale ancestry to all UKB microarray genotypes
using ADMIXTURE®. ADMIXTURE was run on --supervised mode using the 1000G
populations CEU (Northern Europeans from Utah), CHB (Han Chinese in Beijing), ITU (Indian
Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in Ibadan, Nigeria) as training
data. The 1000G training data had previously been filtered to remove close (at least 2nd
degree) relatives using KING% --kinship, to remove some apparent genomic ancestry
outliers using PCA and leave-one-out unsupervised ADMIXTURE (especially PEL individuals
with high European ancestry), and also pruned for LD using PLINK!%3 v1.9 --indep-pairwise
505 0.2. The ADMIXTURE program was run for batches of 30 UKB individuals at a time and
the results subsequently merged.

Birthplace data

All location analyses were performed in R using the sf package!%’, the sp package'®®, and the
gstat packagel®. Spatial interpolation of birthplaces was performed using linear variogram
models (gstat::vgm(), range 60,000) and ordinary kriging (gstat::krige(), nmax = 300).

For some analysis, we binned the birthplaces into the following administrative divisions: the
ceremonial counties of England; the historic counties of Wales; the 1975 local government
areas of Scotland; the Isle of Man, Northern Ireland, and the [Republic of] Ireland each as
their own divisions; and Jersey and Guernsey grouped together into a division we labelled
the Channel Islands.
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Websites:
GraphTyper
https://github.com/DecodeGenetics/graphtyper

GATK resource bundle
gs://genomics-public-data/resources/broad/hg38/v0

Svimmer
https://github.com/DecodeGenetics/svimmer

popSTR
https://github.com/DecodeGenetics/popSTR

Dipcall
https://github.com/Ih3/dipcall

RTG Tools
https://github.com/RealTimeGenomics/rtg-tools

bcl2fastq
https://support.illumina.com/sequencing/sequencing software/bcl2fastq-conversion-
software.html

Samtools
http://www.htslib.org/

samblaster
https://github.com/GregoryFaust/samblaster

BamQC
https://github.com/DecodeGenetics/BamQC

GIAB WGS samples

e HGOO01 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST NA12878 HGO
01 HiSeq 300x/NHGRI Illumina300X novoalign bams/HG001.GRCh38 full plus hs
38d1 analysis _set minus alts.300x.bam

e HGO0O02 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002 NA243
85 son/NIST HiSeq HG002 Homogeneity-
10953946/NHGRI_Illumina300X Altrio novoalign bams/HG002.GRCh38.60x.1.bam

e HGO03 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003 NA241
49 father/NIST HiSeq HG003 Homogeneity-
12389378/NHGRI _Illumina300X Altrio novoalign bams/HG003.GRCh38.60x.1.bam
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e HGOO04 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004 NA241

43 mother/NIST HiSeq HG004 Homogeneity-
14572558/NHGRI _Illumina300X Altrio novoalign bams/HG004.GRCh38.60x.1.bam

e HGOO5 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HGO05 NA24631
son/HG005 NA24631 son HiSeq 300x/NHGRI lllumina300X Chinesetrio novoalign
bams/HG005.GRCh38 full plus hs38d1 analysis set minus alts.300x.bam

e HGOO06 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006 NA24694-
huCAQ17E father/NA24694 Father HiSeg100x/NHGRI Illuminal00X Chinesetrio n
ovoalign bams/HG006.GRCh38 full plus hs38d1 analysis set minus alts.100x.ba
m

e HGO07 https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007 NA24695-
hu38168 mother/NA24695 Mother HiSeq100x/NHGRI llluminal00X Chinesetrio
novoalign bams/HG007.GRCh38 full plus hs38d1 analysis set minus alts.100x.ba
m

ENSEMBL
https://m.ensembl.org/info/data/mysal.html

Shapefiles for UK
http://discover.ukdataservice.ac.uk/catalogue/?sn=5819&tyep=Data%20catalogue
http://census.ukdataservice.ac.uk/get-data/boundary-data.aspx
https://gadm.org/

Exon capture regions
http://biobank.ndph.ox.ac.uk/ukb/ukb/auxdata/xgen plus spikein.b38.bed

ClinVar
https://www.ncbi.nlm.nih.gov/clinvar/

UKB data showcase
https://biobank.ndph.ox.ac.uk/showcase/search.cgi

GERP
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP scores.tar.gz

Eigen
http://www.funlda.com/toolkit

LINSIGHT
http://compgen.cshl.edu/LINSIGHT/

136


https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_HiSeq_HG004_Homogeneity-14572558/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG004.GRCh38.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_HiSeq_HG004_Homogeneity-14572558/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG004.GRCh38.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_HiSeq_HG004_Homogeneity-14572558/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG004.GRCh38.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_HiSeq_HG004_Homogeneity-14572558/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG004.GRCh38.60x.1.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG005_NA24631_son/HG005_NA24631_son_HiSeq_300x/NHGRI_Illumina300X_Chinesetrio_novoalign_bams/HG005.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.300x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG005_NA24631_son/HG005_NA24631_son_HiSeq_300x/NHGRI_Illumina300X_Chinesetrio_novoalign_bams/HG005.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.300x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG005_NA24631_son/HG005_NA24631_son_HiSeq_300x/NHGRI_Illumina300X_Chinesetrio_novoalign_bams/HG005.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.300x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG005_NA24631_son/HG005_NA24631_son_HiSeq_300x/NHGRI_Illumina300X_Chinesetrio_novoalign_bams/HG005.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.300x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006_NA24694-huCA017E_father/NA24694_Father_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG006.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006_NA24694-huCA017E_father/NA24694_Father_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG006.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006_NA24694-huCA017E_father/NA24694_Father_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG006.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006_NA24694-huCA017E_father/NA24694_Father_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG006.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006_NA24694-huCA017E_father/NA24694_Father_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG006.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007_NA24695-hu38168_mother/NA24695_Mother_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG007.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007_NA24695-hu38168_mother/NA24695_Mother_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG007.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007_NA24695-hu38168_mother/NA24695_Mother_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG007.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007_NA24695-hu38168_mother/NA24695_Mother_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG007.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007_NA24695-hu38168_mother/NA24695_Mother_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_novoalign_bams/HG007.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.bam
https://m.ensembl.org/info/data/mysql.html
http://discover.ukdataservice.ac.uk/catalogue/?sn=5819&tyep=Data%20catalogue
http://census.ukdataservice.ac.uk/get-data/boundary-data.aspx
https://gadm.org/
http://biobank.ndph.ox.ac.uk/ukb/ukb/auxdata/xgen_plus_spikein.b38.bed
https://www.ncbi.nlm.nih.gov/clinvar/
https://biobank.ndph.ox.ac.uk/showcase/search.cgi
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz
http://www.funlda.com/toolkit
http://compgen.cshl.edu/LINSIGHT/
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CADD
https://cadd.gs.washington.edu/download

Open Targets
https://genetics.opentargets.org/

AffiXcan
https://rdrr.io/bioc/AffiXcan/man/trainingCovariates.html

umap
https://github.com/tkonopka/umap
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