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Abstract 
We describe the analysis of whole genome sequences (WGS) of 150,119 individuals from the 
UK biobank (UKB). This constitutes a set of high quality variants, including 585,040,410 
SNPs, representing 7.0% of all possible human SNPs, and 58,707,036 indels. The large set of 
variants allows us to characterize selection based on sequence variation within a population 
through a Depletion Rank (DR) score for windows along the genome. DR analysis shows that 
coding exons represent a small fraction of regions in the genome subject to strong sequence 
conservation. We define three cohorts within the UKB, a large British Irish cohort (XBI) and 
smaller African (XAF) and South Asian (XSA) cohorts. A haplotype reference panel is 
provided that allows reliable imputation of most variants carried by three or more 
sequenced individuals. We identified 895,055 structural variants and 2,536,688 
microsatellites, groups of variants typically excluded from large scale WGS studies. Using 
this formidable new resource, we provide several examples of trait associations for rare 
variants with large effects not found previously through studies based on exome sequencing 
and/or imputation. 
 

Introduction 
 
Detailed knowledge of how diversity in the sequence of the human genome affects 
phenotypic diversity depends on a comprehensive and reliable characterization of both 
sequences and phenotypic variation. Over the past decade insights into this relationship 
have been obtained from whole exome (WES) and WGS of large cohorts with rich 
phenotypic data1,2.  
 
The UK biobank (UKB)3 documents phenotypic variation of 500,000 subjects across the 
United Kingdom, with a healthy volunteer bias4. The UKB WGS consortium is sequencing the 
whole genomes of all the participants to an average depth of at least 23.5x. Here, we report 
on the first data release consisting of a vast set of sequence variants, including single 
nucleotide polymorphisms (SNPs), short insertions/deletions (indels), microsatellites and 
structural variants (SVs), based on WGS of 150,119 individuals. All variant calls were 
performed jointly across individuals, allowing for consistent comparison of results. The 
resulting dataset provides an unparalleled opportunity to study sequence diversity in 
humans and its impact on phenotype variation. 
 
Previous studies of the UKB have produced genomewide SNP array data5 and WES data6,7. 
While SNP arrays typically only capture a small fraction of common variants in the genome, 
when combined with a reference panel of WGS individuals8, a much larger set of variants in 
these individuals can be surveyed through imputation. Imputation however misses variants 
private to the individuals typed only on SNP arrays and provides unreliable results for 
variants with insufficient haplotype sharing between carriers in the reference and 
imputation sets. Poorly imputed variants are typically rare, highly mutable or in genomic 
regions with complicated haplotype structure, often due to structural variation. 
 
WES is mainly limited to regions known to be translated and consequently reveals only a 
small proportion (2-3%) of sequence variation in the human genome. It is relatively 
straightforward to assign function to variants inside protein coding regions, but there is 
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abundant evidence that variants outside of coding exons are also functionally important9–11, 
explaining a large fraction of the heritability of traits12,13. In particular, numerous variants 
are known to impact disease and other traits through their effects on non-coding genes or  
RNA14 and protein15,16 expression. 
 
Large scale sequencing efforts have typically focused on identifying SNPs and short indels. 
While these are the most abundant types of variants in the human genome, other types, 
including structural variants (SVs) and microsatellites, affect a greater number of base-pairs 
(bps) and consequently are more likely to have a functional impact17,18. Even the SVs that 
overlap exons are difficult to ascertain with WES due to the much greater variability in the 
depth of sequence coverage in WES studies than in WGS due to the capture step of targeted 
sequencing. Microsatellites, polymorphic tandem repeats of 1 to 6 bps, are also commonly 
not examined in large scale sequence analysis studies. These variants have a higher 
mutation rate than SNPs and indels19, can affect gene expression20 and contribute to a range 
of diseases21. 
 
Here, we highlight some of the insights gained from this vast new resource of WGS data that 
would be challenging or impossible to ascertain from WES and SNP array datasets. First, we 
show that exons account for a small fraction of the genomic regions displaying sequence 
constraint due to functional importance. Second, we describe three ancestry-based cohorts 
within the UKB; with 431,805, 9,633 and 9,252 individuals with British-Irish, African and 
South Asian ancestries, respectively.  Third, using the rich UKB phenotype collection, we 
report novel findings from genomewide associations (GWAS) – shedding light on the impact 
of very rare SNPs, indels, microsatellites and structural variants on diseases and other traits. 
 

Results  
 

SNPs and indels  
 
The whole genomes of 150,119 UKB participants were sequenced to an average coverage of 
32.5x (at least 23.5x per individual, Fig. S1) using Illumina NovaSeq sequencing machines at 
deCODE Genetics (90,667 individuals) and the Wellcome Trust Sanger Institute (59,452 
individuals). Individuals were pseudorandomly selected from the set of UKB participants and 
divided between the two sequencing centers. All 150,119 individuals were used in variant 
discovery, 13 were sequenced in duplicate, 11 individuals withdrew consent from time of 
sequencing to time of analysis and microarray data were not available to us for 135 
individuals, leaving 149,960 individuals for subsequent analysis. 
 
Sequence reads were mapped to human reference genome GRCh3822 using BWA23. SNPs 
and short indels were jointly called over all individuals using both GraphTyper24 and GATK 
HaplotypeCaller25, resulting in 655,928,639 and 710,913,648 variants, respectively.  We used 
several approaches to compare the accuracy of the two variant callers, including 
comparison to curated datasets26 (Table S1, Fig. S2), transmission of alleles in trios (Table S2, 
Table S3), comparison of imputation accuracy (Table S4) and comparison to WES data (Table 
S5). These comparisons suggested that GraphTyper provided more accurate genotype calls. 
For example, despite there being 7.7% fewer GraphTyper variants, we estimated that 
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GraphTyper called 4.5% more true positive variants in trios and had 9.4% more reliably 
imputing variants than GATK.  We therefore restricted subsequent analyses of short variants 
to the GraphTyper genotypes, although further insights might be gained from exploring 
these call sets jointly.  To contain the number of false positives, GraphTyper employs a 
logistic regression model that assigns each variant a score (AAscore) predicting the 
probability that it is a true positive. We focus on the 643,747,446 (98.14%) high quality 
GraphTyper variants, indicated by an AAscore above 0.5, hereafter referred to as 
GraphTyperHQ.  
 
The American College of Medical Genetics and Genomics (ACMG) recommends reporting 
actionable genotypes in a list of genes associated with diseases that are highly penetrant 
and for which a well-established intervention is available27. We find that 4.1% of the 
149,960 individuals carry an actionable genotype in one of 73 genes according to ACMG27 
v3.0.  Using WES28 and ACMG v2.0 (59 genes), 2.0% were reported to carry an actionable 
genotype, when restricting our analysis to ACMG v2.0 and same criteria we find 2.5% based 
on WGS. Increasing the number of actionable genotypes detected in a large cohort, to the 
extent that it could have a significant impact on societal disease burden. 
 
The number of variants identified per individual is 40 times larger than the number of 
variants identified through the WES studies of the same UKB individuals (Table 1, Methods). 
Although referred to as “whole exome sequencing” we find that WES primarily captures 
coding exons and misses most variant in exons that are transcribed but not translated, 
missing 72.2% and 89.4%, of the 5’ and 3’ untranslated region (UTR) variants, respectively. 
Even inside of coding exons currently curated by Encode9, we estimate that 10.7% of 
variants are missed by WES (Table 1). Manual inspection of the missing variants in WES 
suggests these are missing due to both missing coverage in some regions as well as 
genotyping filters. Conversely, almost all variants identified with WES are found by WGS 
(Table 1).  
 

Identification of functionally important regions 
  
The number of SNPs discovered in our study corresponds to an average of one every 4.8 bp, 
in the regions of the genome that are mappable with short sequence reads.  This amounts 
to detection of 7.0% of all theoretically possible SNPs in these regions (a measure of 
saturation). We observe 81.5% of all possible autosomal CpG>TpG variants, 11.8% of other 
transitions and only 4.0% of transversions (Table S6). Restricting the analysis to 17,902,255 
autosomal CpG dinucleotides methylated in the germline10, we observe transition variants 
at 89.1% of all methylated CpGs. As CpG mutations are so heavily saturated (Fig. 1) the ratio 
of transitions to transversions (1.66) is lower than found in smaller WGS sets1 and de novo 
mutation (DNM) studies29.  
 
The vast majority of all variants identified are rare (Table S7), 46.0% and 40.6% of all SNPs 
and short indels, respectively, are singletons (carried by a single sequenced individual), and 
96.6% and 91.7% have frequency below 0.1%.  Inference of haplotypes and imputation 
typically involves identifying variants that are shared due to a common ancestor - are 
identical by descent. Due to the scale of the UKB WGS data, an observation of the same 
allele in unrelated individuals does not always imply identity by descent. A clear indication 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

of this is that only 14% of the highly saturated CpG>TpG variants are singletons, in contrast 
to 47% for other SNPs (Fig. 1b). These recurrence phenomena have been described in other 
sample sets using sharing of rare variants between different subsets2,11.  We used a DNM set 
from 2,976 trios in Iceland29 to assess recurrence directly, as variants present in both that 
set and the UKB must be derived from at least two mutational events. Out of the 194,687 
Icelandic DNMs we find 53,859 (27.7%) in the UKB set providing a direct observation of 
sequence variants derived from at least two mutational events. As expected, we find that 
CpG>TpG mutations are the most enriched mutation class in the overlap, due to their high 
mutation rate30 and saturation in the UKB set (Fig. 1b).   
 
The rate and pattern of variants in the genome is informative about the mutation and 
selection processes that have shaped the genome31. The number of sequence variants in the 
exome has been used to rank genes according to their tolerance of loss-of-function (LoF) 
and missense variation11,32. The focus on the exome is due to the availability of WES 
datasets and the relatively straightforward functional interpretation of coding variants. 
Conservation across a broad range of species33 is used to infer the impact of selection 
beyond the exome, leveraging the extensive accumulation of mutations over millions of 
years. However, such statistics are only partially informative about sequence conservation 
specific to humans34. Sequence variation in humans35,36 can be used to characterize human 
specific conservation, but large sample sizes are required for accurate inference, as much 
fewer mutations separate pairs of humans than different species. 
 
The extensive saturation of CpG>TpG variants at methylated CpGs in large WES cohorts has 
been used to identify genomic annotation or loci where their absence could be indicative of 
negative selection11,37. In line with previous reports11 we see less saturation of stop-gain 
CpG>TpG variants than those that are synonymous (Fig. 1c). Synonymous mutations are 
often assumed to be unaffected by selection (neutral)37 however we find that synonymous 
CpG>TpG mutations are less saturated (85.7%) than those that are intergenic (89.9%), 
supporting the hypothesis that human codon usage is constrained38. 
 
Extending this approach, we used sequence variant counts in the UKB to seek conserved 
regions in 500bp windows across the human genome. More specifically, we tabulated the 
number of variants in each window and compared this number to an expected number 
given the heptamer nucleotide composition of the window and the fraction of heptamers 
with a sequence variant across the genome and their mutational classes. We then assigned 
a rank (Depletion Rank, DR) from 0 (most depletion) to 100 (least depletion) for each 500bp 
window. As expected, coding exons have low DR (mean DR = 28.4), but a large number of 
non-coding regions show even lower DR (more depletion), including non-coding regulatory 
elements. Among the 1% of regions with lowest DR, 13.0% are coding and 87.0% are non-
coding, with an overrepresentation of splice, UTR, gene upstream and downstream regions 
(Fig. 1d). DR increases with distance from coding exons (Fig. 1e).  After removing coding 
exons, among the 1% of regions with lowest and highest DR score we see a 3.2 and 0.4-fold 
overrepresentation of GWAS variants, respectively (Table 2), suggesting that DR score could 
be a useful prior in GWAS analysis39.  ENCODE10 candidate cis-regulatory elements (cCREs) 
are more likely than expected by chance to be found in depleted (low DR) regions (Table 2).  
Notably cCREs located in close proximity to transcription start sites, i.e. proximal enhancer-
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like and promoter-like sequences (pELS and PLS, respectively), are more enriched among 
depleted regions than distal enhancer-like sequences (dELSs).   
 
Regions under strong negative selection are expected to have a greater fraction of rare 
variants (FRV, defined here as variants carried by at most 4 WGS individuals) than the rest of 
the genome36.  We observe a greater FRV in the most depleted regions (DR<5) than in the 
least depleted regions (DR>95) 74.8% vs 69.1% (Fig. 1f, Fig. S3). This is also seen when 
limiting to only non-coding regions (74.6% vs 69.2%). Using the FRV of annotated coding 
variants as a reference (Fig. 1f) we found the most depleted regions (DR < 1) to have a FRV 
comparable to missense mutations (75.5%). 
 
Overall there is a weak correlation between DR and interspecies conservation as measured 
by GERP33 (linear regression (lr) r2 = 0.0050, two-sided (2s) p < 2.2∙10-308, Fig. 1g). 
Interestingly, we find a stronger correlation between DR and GERP within coding exons (lr r2 

= 0.0498, 2s p < 2.2∙10-308) than outside them (lr r2 = 0.0012, 2s p < 2.2∙10-308). Indicating that 
the correlation between DR and GERP is mostly due to the most highly conserved elements, 
such as coding exons, in the 36 mammalian species used to calculate GERP, with much 
weaker correlation in less conserved regions.  
 
To determine whether DR reflects human specific negative selection that is not captured by 
GERP, we aggregated DR across the exons and compared it to the LOEUF metric from 
Gnomad11 (Fig. 1h), which measures intolerance to loss-of-function mutations. We found 
that DR is correlated with LOEUF (lr r2=0.085, 2s p < 2.2∙10-16). LOEUF is correlated with 
genes demonstrating autosomal dominant inheritance11, in line with this we find that DR is 
correlated with autosomal dominant genes as reported by OMIM40 (Table S8). Modelling the 
LOEUF metric as a function of GERP and extracting the residuals from a linear fit, we obtain 
a measure human specific loss-of-function intolerance (LOEUF|GERP). We find DR is 
correlated with LOEUF|GERP (lr r2=0.024, 2s p < 2.2∙10-16, Fig. 1i), indicating that DR 
measures human specific sequence constraint not captured by GERP. We compared DR with 
CDTS35, a measure of sequence constraint analogous to the one presented here and CADD41, 
Eigen42 and LINSIGHT43, measures of functional impact that incorporate interspecies 
conservation (Fig. S4). The constraint metrics that use interspecies conservation form one 
correlation block (GERP, CADD, Eigen and LINSIGHT) that is less correlated with the DR and 
CDTS correlation block (Table S9). The regions with the lowest DR score show similar 
enrichment across all metrics (Fig. S4). Overall, our results show that DR can be used to help 
identify genomic regions under constraint across the entire genome and as such provides a 
valuable resource for identifying non-coding sequence of functional importance. 
 

Multiple cohorts within UKB 
 
Many GWAS44 using the UKB data have been based on a prescribed5 Caucasian subset of 
409,559 participants who self-identified as “White British”. To better leverage the value of a 
wider range of of UKB participants, we defined three cohorts encompassing 450,690 
individuals (Table S10), based on genetic clustering of microarray genotypes informed by 
self-described ethnicity and supervised ancestry inference (Methods). The largest cohort, 
XBI (Fig. S6), contains 431,805 individuals, including 99.6% of the 409,559 prescribed 
Caucasian set, along with around 23,900 additional individuals previously excluded because 
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they did not identify as "White British" (thereof 13,000 who identified as "White Irish"). A 
principal components analysis (PCA) of the 132,000 XBI individuals with WGS data 
(Methods), based on 4.6 million loci, reveals an extraordinarily fine-scaled differentiation by 
geography in the British–Irish Isles gene pool (Fig. S5). 
 
We defined two other cohorts based on ancestry: African (XAF, N=9,633,Fig. S7) and South 
Asian (XSA, N=9,252, Fig. S8) (Fig. 2a,b,c). The 37,598 UKB individuals who do not belong to 
XBI, XAF or XSA were assigned to the cohort OTH (others). The WGS data of the XAF cohort 
represents one of the most comprehensive surveys of African sequence variation to date, 
with reported birthplaces of its members covering 31 of the 44 countries on mainland sub-
Saharan Africa (Fig. S7). Due to the considerable genetic diversity of African populations, 
and resultant differences in patterns of linkage disequilibrium, the XAF cohort may prove 
valuable for fine-mapping association signals due to multiple strongly correlated variants 
identified in XBI or other non-African populations.  
 
We crossed GraphTyperHQ variants with exon annotations and found that on average 
around one in thirty individuals is homozygous for rare (minor allele frequency, MAF < 1%) 
LoF mutations in the homozygous state and the median number of heterozygous rare LoF is 
24 per individual. We detect rare LoF variants in 19,105 genes, whereof 2,017 genes had 
homozygous carriers of rare LoFs (n individuals = 5,102). A marked difference in the number 
of homozygous LoFs carriers was found between the cohorts, with XSA having the largest 
fraction of homozygous LoF carriers (Fig. S9b). A notable feature of the XSA cohort is 
elevated genomic inbreeding, likely due to endogamy45, particularly among self-identified 
Pakistanis46 (Fig. S9a).  
 
On average, individuals carried alternative alleles for 3,410,510 SNPs and indels (Fig. 3a), per 
haploid genome. A greater number of variants are generally found in individuals born 
outside of Europe (Fig. S10), because the human reference genome is primarily derived from 
individuals of European ancestry22. XAF individuals carry the greatest number of alternative 
alleles (Fig. 3a). We constructed cohort specific DRs and find that XAF shows greater 
depletion around exons than XBI and XSA (Fig. S11). Largely due to variation in the number 
of individuals sampled, the average number of singletons per individual varies considerably 
by ancestry (Fig. 3a). Thus, individuals from the XBI, XAF and XSA cohorts have an average of 
1,330, 9623 and 8340 singleton variants, respectively. In XBI, singleton counts (Fig. 2d) 
indicate that the expected number of new variants discovered per genome is still 
substantial, but varies geographically, averaging around 1,000 in Northern England and 
2,000 South-Eastern England. This pattern is largely explained by denser sampling of some 
regions (Fig. 2e,f) rather than regional ancestry differences. 
 

Imputation  
 
We were able to reliably impute variants into the entire UKB sample set down to very low 
frequency (Fig. 3b). We imputed phased genotypes which permit analysis that depend on 
phase such as identification of compound LoF heterozygotes. A single reference panel was 
used to impute into the genomes of all participants in UKB, but results are presented 
separately for the three cohorts (Table S11). This reference panel can be used for accurate 
imputation in individuals from the UK and many other populations. In the XBI cohort, 98.5% 
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of variants with frequency above 0.1% and 65.8% of variants in the frequency category of 
0.001-0.002% (representing 3-5 WGS carriers) could be reliably imputed (Fig. 3b). Variants 
were also imputed with high accuracy in XAF and XSA (Fig. 3b), where 97.5% and 94.9% of 
variants in frequencies 1-5% and 56.6% and 48.9% of variants carried by 3-5 sequenced 
individuals could be imputed, respectively. A larger number of variants, particularly rare 
ones, are imputed for all cohorts than when using a alternate imputation panel5 (Table S12). 
It is thus likely that the UKB reference panel provides one of the best available option for 
imputing genotypes into population samples from Africa and South Asia. 
  
We found a number of clinically important variants that can now be imputed from the 
dataset. These include rs63750205 (NM_000518.5(HBB):c.*110_*111del) in the 3‘ UTR of 
HBB, a variant that has been annotated in ClinVar47 as likely pathogenic for beta 
Thalassemia.  rs63750205-TTA has 0.005% frequency (freq) in the imputed XBI cohort 
(imputation information (imp info) 0.98) and is associated with lower mean corpuscular 
volume by 2.88 s.d. (95% CI 2.43-3.33, 2s p = 1.5∙10-36, χ2).  
 
In the XSA cohort we found rs563555492-G, a previously reported48 missense variant in 
PIEZO1 (freq = 3.65% XSA, 0.046% XAF, 0.0022% XBI) associated with higher haemoglobin 
concentration, effect 0.36 s.d. (95% CI 0.28-0.44, 2s p = 8.9∙10-19, χ2). The variant can be 
imputed into the XSA population with imp info of 0.99. 
 
In the XAF cohort we found the stop gain variant rs28362286-C (p.Cys679Ter) in PCSK9 (freq 
= 0.93% XAF, 0.00016% XBI, 0.0070% XSA) imputed in the XAF cohort with imp info 0.93. 
The variant lowers non-HDL cholesterol by 0.92 s.d. (95% CI 0.75-1.09, 2s p = 2.3∙10-26, χ2). 
We found  a single homozygous carrier of this variant, which has 2.5 s.d. lower non-HDL 
cholesterol than the population mean, is 61 years old and appears to be healthy. 
 

SNP and indel associations not present in WES data 
 
We highlight three examples of associations of SNPs and indels associated with traits in the 
XBI cohort that could not be easily identified in WES or SNP array data. 
 
The first is an association in the XBI cohort between a rare variant rs117919628-A (freq = 
0.32%; imp info = 0.90) in the promoter region of GHRH, encoding the growth hormone-
releasing hormone close to one of its TSS (Transcription start site) and less height (effect = -
0.32 s.d. (95% CI 0.27-0.36), 2s p = 1.6∙10-39, χ2). GHRH is a neuropeptide secreted by the 
hypothalamus to stimulate the synthesis of growth hormone (GH). We note that the effect 
(-0.32 s.d. or -3cm) of rs117919628 is greater than any variants reported in large height 
GWAS (~1200 associated variants)49–51. In addition to reducing height, rs117919628-A is 
associated with lower IGF-1 serum levels (Insulin-growth factor 1, effect = -0.36 s.d. (95% CI 
0.32-0.40), 2s p = 3.2∙10-58, χ2). The production of IGF-1 is stimulated by GH and mediates 
the effect of GH on childhood growth, further supporting GHRH being the gene mediating 
the effects of rs117919628-A. Due to its location around 50 bp upstream of the GHRH 
5‘UTR, this variant is not targeted by the UKB WES, and neither is the only strongly 
correlated variant rs372043631 (intronic). The height associations of these two variants 
have not been reported, presumably because they are absent from all versions of the 1,000 
Genomes data52 and in imputations based on the haplotype reference consortium/UK 10K53 
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(HRC/UK10K) these two variants have low imp info (0.54) and may thus fail quality checks. 
rs117919628-A is not correlated with rs763014119-C (no individuals carry the minor allele of 
both variants), a previously reported54 very rare frameshift deletion in GHRH 
(Phe7Leufster2; freq = 0.0092%), associated with reduced height and IGF-1 levels (height 
effect = -0.63 s.d (95% CI 0.36-0.89), 2s p = 4.6∙10-6; IGF-1 effect = -0.74 s.d. (95% CI 0.49-
0.99), 2s p = 4.9∙10-9, χ2).  
 
The second example is rs939016030-A a rare 3‘ UTR essential splice acceptor variant in the 
gene encoding tachykinin 3 (TAC3; freq = 0.033%; c.*2-1G>T in NM_001178054.1 and 
NM_013251.3). The XBI cohort has 89 WGS carriers and 281 in the imputation set. This 
variant is not found in WES of the UKB53 and neither are the two highly correlated variants, 
one intronic (rs34711498) and one intergenic (rs368268673). These 3 variants were absent 
from the HRC/UK10K55 imputation, and are only present in Europeans, with highest 
frequency in the UK according to Gnomad11. The minor allele of this 3‘UTR essential splice 
variant rs939016030-A is associated with later age of menarche, with an effect of 0.57 s.d. 
(95% CI 0.41-0.74) or 11 months (2s p = 1.0∙10-11, χ2). Rare coding variants in TAC3 and its 
receptor TACR3 are reported to cause hypogonadotropic hypogonadism56 under autosomal 
recessive inheritance. However, in the UKB, the association of the 3´UTR splice acceptor 
variant, is only driven by heterozygotes (~ 1 in 1500 individuals) with no homozygotes 
detected.  We replicated this finding in a set of 39,360 Danes, with an effect of 0.70 s.d. 
(95% CI 0.34-1.06, freq = 0.05%, 2s p = 0.00014, χ2). 
 
The third example is a rare variant (rs1383914144-A; freq = 0.40%) near the centromere of 
chromosome 1 (start of 1q), that associates with lower uric acid (UA) levels (effect = -0.43 
s.d. (95% CI 0.40-0.46) or -0.58 mg/dL (95% CI 0.54-0.62), 2s p = 8.1∙10-170, χ2) and protection 
against gout (OR = 0.36 (95% CI 0.28-0.46), 2s p = 4.2∙10-15, χ2). A second variant 
rs1189542743, 4Mb downstream at the end of 1p is strongly correlated with rs1383914144 
(r2 = 0.68) and yields a similar association with uric acid. Neither variant is targeted by UKB 
WES nor imputed by the HRC/UK10K and no association was reported in this region in the 
uric acid GWAS57. The effect of rs1383914144-A on uric acid is larger than for any variant 
reported in the latest GWAS meta-analysis of this trait. We replicate these findings in 
Iceland (rs1383914144-A, freq = 0.47%; 2s p (UA) = 8.0∙10-37, χ2 and effect (UA) = - 0.51 s.d. 
(95% CI 0.43-0.59), 2s p (Gout) = 0.0018, χ2, OR (Gout) 0.31 (95% CI 0.15-0.64)) and 
(rs1383914144-A, freq = 0.47%; 2s p (UA) = 1.1∙10-36, χ2 and effect (UA) = - 0.51 s.d. (95% CI 
0.43-0.59), 2s p (Gout) = 0.0018, χ2, OR (Gout) 0.31 (95% CI 0.15-0.64)). 
 

Structural variants play an important role in human genetics   
 
We identified structural variants (SVs) in each individual using Manta58 and combined these 
with variants from a long read study59 and the assemblies of seven individuals60. We 
genotyped the resulting 895,055 SVs (Fig. 3c) with GraphTyper60, of which 637,321 were 
considered reliable.   
 
On average we identified 7,963 reliable SVs per individual, 4,185 deletions and 3,778 
insertion (Fig. 3a). These numbers are comparable to the 7,439 SVs per individual found by 
Gnomad-SV61, another short read study, but considerably smaller than the 22,636 high 
quality SVs found in a long read sequencing study59, mostly due to an underrepresentation 
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of insertions and SVs in repetitive regions. SVs show a similar frequency distribution as SNPs 
and indels and a similar distribution of variants across cohorts (Fig. 3a). 
 
We present four examples of phenotype associations with structural variants, not easily 
found in WES data. First, a rare (freq=0.037%) 14,154 bp deletion that removes the first 
exon in PCSK9, previously discovered using long read sequencing in the Icelandic population 
and is associated with lower non-HDL cholesterol levels59. There were thirty two WGS 
carriers in the XBI cohort (freq 0.012%) and 72 carriers in the XBI imputed set (freq 0.0087%) 
who had 1.22 s.d. (95% CI 0.90-1.55) lower non-HDL cholesterol levels than non-carriers (2s 
p = 1.2∙10-13, χ2). 
 
The second example is a 4,160 bp deletion, (freq = 0.037% in XBI), that removes the 
promoter region from 4,300 to 140 bp upstream of the ALB gene that encodes Albumin. Not 
surprisingly, carriers of this deletion have markedly lower serum albumin levels (effect 1.50 
s.d. (95% CI 1.35-1.62) 2s p = 9.5∙10-118, χ2). The variant is also associated with traits 
correlated with albumin levels; carriers had lower calcium and cholesterol levels: 0.62 s.d. 
(95% CI 0.50-0.75, 2s p = 2.9∙10-22, χ2) and 0.45 s.d. (95% CI 0.30-0.59, 2s p = 1.1∙10-9, χ2), 
respectively. 
 
The third SV example is a 16,411 bp deletion (freq = 0.0090% in XBI) that removes the last 
two exons (4 and 5) of GCSH, that encodes Glycine cleavage system H protein. Carriers of 
this deletion have markedly higher Glycine levels in the UKB metabolomics dataset (effect 
1.45 s.d. (95% CI 1.01-1.86), 2s p = 1.2∙10-10, χ2). 
 
The final example is a rare (freq 0.892% in XBI) 754bp deletion overlapping exon 6 of 
NMRK2, encoding nicotinamide riboside kinase 2 that removes 72 bp from the transcribed 
RNA that corresponds to a 24 amino acid inframe deletion in the translated protein. Carriers 
of this deletion have a 0.22 s.d. (95% CI 0.18-0.27) earlier age at menopause (2s p = 1.1∙10-

26, χ2). Nearby is the variant rs147068659, reported to be associated with this trait62, with an 
effect 0.20 s.d. (95% CI 0.16-0.24) earlier age at menopause (2s p = 2.0∙10-20, χ2) in the XBI 
cohort.  The deletion and rs147068659 are correlated  (r2 = 0.67), after conditional analysis 
the deletion remains significant (2s p = 6.4∙10-8, χ2) whereas rs147068659 does not (2s p = 
0.39, χ2), indicating the deletion is the lead variant for the locus. NMRK2 is primarily 
expressed in heart and muscle tissue63. In our dataset of right atrium heart tissue, one 
individual out of a set of 169 RNA sequenced individuals is a carrier of this deletion. As 
expected we observe decreased expression of exon 6 in this individual (Fig. S12) and an 
increase in the fraction of transcript fragments skipping exon 6 (Fig. S13). 
 

Microsatellites are commonly overlooked 
 
We identified 14,321,152 alleles at 2,536,688 microsatellite loci using popSTR64 in the 
150,119 WGS individuals, who carry on average of 810,606 non-reference microsatellite 
alleles. The number of non-reference alleles carried per individual shows a similar 
distribution across the UKB cohorts as other variant types characterized in this study (Fig. 
3a). Microsatellites are among the most rapidly mutating variants in the human genome and 
a source of genetic variation that is usually overlooked in GWAS. Repeat expansions are 
known to associate with a number of phenotypes, including Fragile X syndrome65. We are 
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able to impute microsatellites down to a very low frequency (Fig. S14) in all three cohorts, 
providing one of the first large scale datasets of imputed microsatellites. 
 
We genotyped a microsatellite within the CACNA1A gene that encodes voltage-gated 
calcium channel subunit alpha 1A. Individuals who have twenty or more repeats of this 
microsatellite generally suffer from lifelong conditions that affect the brain, including 
Familial hemiplegic migraine (FHM1), Epilepsy, Episodic Ataxia Type 2 (EA2) and 
Spinocerebellar ataxia type 6 (SCA6)66–69. Carriers in the XBI cohort of 22 copies of the 
microsattelite repeat were at greater risk for hereditary ataxia (freq = 0.0071%, OR = 304, 2s 
p = 1.1∙10-31, χ2).  
 
We also confirm an association between a microsatellite within the 3‘ UTR of DMPK, 
encoding DM1 protein kinase, and myotonic dystrophy in the XBI cohort. Expression of 
DMPK is negatively correlated with the number of repeats of the microsatellite70. The risk of  
myotonic dystrophy increases with copy number of the repeats, rising rapidly with the 
number of repeats carried by an individual up to an odds ratio of 161 for individuals carrying 
39 or more repeats (Table S13, Fig. S15).  
 

Variants that are not imputed 
 
Although the vast majority of WGS variants can be imputed to the larger set of SNP array 
genotyped individuals it is interesting to examine the variants that are not imputed. A 
subset of these variants are in regions where there are no nearby variants present in the 
SNP array data and regions where there are disagreements between the GRCh3822 and 
CHM1371 assemblies. Lifting variants over to the CHM13 assembly may allow us to impute a 
subset of these variants. The failure of those variants to impute on GRCh38 can presumably 
be attributed to a misassembly on GRCh38. In addition, we identify a number of variants 
that are most likely recurrently somatic, such as the gain of function mutations in JAK272–74 
and CALR74 know to be associated with myeloproliferative disorders, including 
polycythaemia vera and essential thrombocythemia. 

Discussion 
 
The dataset provided by sequencing the whole genomes of 150 thousand UKB participants 
is unparalleled in its size and provides the most extensive characterization of the sequence 
diversity in the germline genomes of a single population to date. The UK population is 
diverse in its genetic ancestry and includes individuals born in countries all over the globe. 
The African and South Asian ancestry cohorts each number over 9,000 individuals, represent 
some of the largest available WGS sets of these ancestries and which are likely to have an 
impact both clinically and in further characterizing the relationship between sequence and 
traits.  
 
We characterized an extensive set of sequence variants in the WGS individuals, providing 
two sets of SNP and indel data, as well as microsatellite and SV data, variant classes that are 
frequently not interrogated in GWAS. We give examples of how these variants play a role in 
the relationship between sequence and phenotypic variation. Further discoveries may be 
made by relating the variants presented here to alternate annotations (Table S14), but more 
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importantly we believe there are many other discoveries to be made. The number of SNPs 
and indels are 40-fold greater than from WES of the same individuals. Even within 
annotated coding exons WES misses 10.7% of variants, found through WGS. WES misses 
most of the remainder of the genome, including functionally important UTR, promoter 
regions and exons yet to be annotated.  The importance of these regions is exemplified by 
the discovery of rare non-coding sequence variants with larger effects on height and 
menarche than any variants described in GWAS to date.   
 
The DR score presented here is an important resource for identifying genomic regions of 
functional importance. Although coding exons are clearly under strong purifying selection, 
as represented by a low DR score, they represent only a small fraction of the regions with 
low DR score. Clinical geneticists typically focus on coding exons and have only been able to 
identify the causal variant in fewer than half of clinical cases studied. Currently, 98.4% of 
variants annotated as pathogenic in the ClinVar47 database are within coding exons. Greater 
attention should be given to other regions of the genome, particularly those with low DR 
score, where non-coding exons (UTRs), enhancer and promoter regions are 
overrepresented.  
 
There are still some sequence variants that are not found with short read WGS, including 
VNTRs, repetitive regions and regions that have only recently been captured by human 
genome assemblies71. Improved assembly71,75, sequencing and representation of the 
genome and its variation will have important implications for advancing our understanding 
of the relationship between sequence diversity and human diseases and other traits. 
 
A near complete sequence of the human genome has been known for over twenty years. 
Genome scientists have yet to assign function to a large fraction of this sequence and have 
had only partial success in understanding the genetic source of phenotypic diversity. The 
large-scale sequencing described here, as well as the continued effort in sequencing the 
entire UKB, promises to vastly increase our understanding of the function and impact of the 
non-coding genome. When combined with the extensive characterization of phenotypic 
diversity in the UKB, these data should greatly improve our understanding of the 
relationship between human genome variation and phenotype diversity. 
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Fig. 1 Functionally important regions a) Fraction of SNP's in each mutation class, for all SNP's in our dataset, singletons in 
our dataset, and in an Icelandic set of de novo mutations (DNMs) respectively. b) Saturation levels of mutations in each 
class, split into singleton variants (blue) and more common variants (red).c) Saturation levels of transitions at methylated 
CpG sites across genomic annotations and predicted consequence categories. The horizontal line is the average across all 
methylated CpG-sites.. d) Fraction of regions falling into functional annotation classes, as defined by Ensembl gene map, as 
a function of DR. e) DR score as a function of distance from exon and LOEUF decile f) Fraction of rare (with 4 or fewer 
carriers) variants (FRV) as a function of DR. g) Average GERP score in 500bp windows as a function of DR, red line 
represents average GERP score, blue and green line 95-th percentile. h) LOUEF and i) LOEUF|GERP as a function of DR.  
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Fig. 2 Cohort characteristics a) The number of WGS samples analyzed for phenotypes in our study.  b) UMAP plot generated 
from the first 40 principal components of all UKB participants, colored by self-reported ethnicity: blue shades for ethnic 
labels under the White category, red shades for Black, and green shades for South Asian; for full color legend see Fig. S28.  
c) Joint frequency spectrum of variants on chr20 between all pairs of populations. Panels d, e and f show characteristic of 
XBI cohort across Great Britain and Ireland d) Number of singletons carried by individuals in the XBI cohort as a function of 
place of birth. e) Mean number of 3rd degree relatives by administrative division f) Location of UKB assessment centers and 
estimated fraction of surrounding population recruited to the UKB. Differences in singleton counts and number of third 
relatives are likely a result of denser sampling of individuals living near UKB assessment centers. 
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Fig. 3  Variant call set a) Number of SNPs, Indels, microsatellites, SV insertions, SV deletions and singleton SNPs carried per 
diploid genome of individuals in the overall set and partitioned by population. b) Imputation accuracy in the three 
populations, XBI, XAF and XSA. A variant was considered imputed if “Leave one out r2” of phasing was greater than 0.5 and 
imputation information was greater than 0.8. x-axis splits variants into frequency classes based on the number of carriers in 
the sequence dataset. Variants are split by variant type. c) Number of structural variants (SVs) discovered in the dataset by 
variant type. d) Length distribution of SVs, from 50-1,000 bp, 1,000-10,000bp and 10,000-100,000bp. 
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Tables 

 

Table 1 Overlap of WES and WGS data. Results are computed for the 109,618 samples present in both datasets and is 
limited to those variants that are present in at least one individual in either dataset. Numbers refer to number of variants 
found in dataset.  WGS refers to the GraphTyperHQ dataset and WES refers to a set of 200k WES sequenced indivdiduals76. 
Missing and present percentages are computed from the number of variants in the union of the two datasets. 

  

  WGS WES 

WGS ∩ 

WES 

Unique 

to WES 

Present 

WES 

Missing 

WES 

Present 

WGS 

Missing 

WGS 

coding 6,380,795 5,781,829 5,686,934 94,895 89.29% 10.71% 98.53% 1.47% 

splice 445,499 397,226 388,961 8,265 87.54% 12.46% 98.18% 1.82% 

5utr 2,125,413 590,484 572,996 17,488 27.56% 72.44% 99.18% 0.82% 

3utr 7,214,427 764,864 743,790 21,074 10.57% 89.43% 99.71% 0.29% 

proximal 249,702,570 6,189,465 5,952,145 237,320 2.48% 97.52% 99.91% 0.09% 

intergenic 292,259,782 91,836 83,360 8,476 0.03% 99.97% >99.99% <0.01% 
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A) 

DR of non-coding regions Enrichment 95%CI P-value 

DR 1%  3.22  2.44-4.07 <0.0004 

DR 99%  0.45  0.23-0.70 <0.0004 

DR 5%  2.25  1.86-2.69 <0.0004 

DR 95%  0.61  0.47-0.70 <0.0004 

B) 

Candidate Cis-Regulatory  
Elements (cCREs)* 

%Genome 
Enrichment, OR (95%CI) 

DR 1% DR 5% 

pELS, CTCF-bound 0,53 6,35 (6,04-6,68) 3,49 (3,37-3,61) 

PLS, CTCF-bound 0,15 6,37 (6-6,75) 3,34 (3,19-3,49) 

PLS 0,05 2,77 (2,53-3,03) 1,9 (1,79-2,03) 

pELS 0,53 2,49 (2,39-2,63) 1,96 (1,9-2,02) 

DNase H3K4me3, CTCF-bound 0,07 1,92 (1,67-2,19) 1,48 (1,38-1,59) 

dELS, CTCF-bound 1,86 1,65 (1,58-1,71) 1,53 (1,5-1,57) 

dELS 4,11 1,17 (1,13-1,2) 1,27 (1,25-1,3) 

DNase H3K4me3 0,15 1,15 (1,04-1,27) 1,03 (0,974-1,08) 

CTCF-only 0,47 0,878 (0,83-0,925) 0,96 (0,933-0,987) 

Table 2 DR enrichment analysis A) Over- and underrepresentation of GWAS variants in low and high DR regions.  Windows 
overlapping coding exons were removed. Lower DR scores indicate greater sequence conservation. B) Enrichment of 
ENCODE´s candidate cis-regulatory elements (cCREs) among low DR regions defined at the 1st and 5th percentile.  The % of 
the genome covered by cCREs are indicated for each type of cCRE.  *Exons of protein coding genes found in overlap with 
cCRE regions were removed. 
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Supplementary material:  

The sequences of 150,119 genomes in the UK biobank 
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Supplementary Figures 

 
Fig. S1 Histogram of average sequence coverage per sample in the 150,119 WGS samples. 
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Fig. S2 Sensitivity and precision for GATK and GraphTyper callsets in 500 regions benchmarking dataset across the seven 
Genome in a bottle (GIAB) v3.3.2 truth sets. 
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Fig. S3 Fraction of rare variants (FRV) as a function of the definition of “rare”, varying the allele count cutoff from at most 1 
to at most 10 carriers. Note that homozygous carriers have an allele count of 2. 
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Fig. S4 Average score in 500bp windows as a function of Depletion Rank for a) CADD b) Eigen c) CDTS and d) LINSIGHT. 
Green line represents average score, blue and red line 95-th percentile 
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Fig. S5 Geographic distribution of the loadings of the first four principal components of a PCA of the XBI population. 
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Fig. S6 Cartogram-pies indicating the proportion of individuals born in each country (name shown on top of pies) in the XBI 
cohort. Pies are placed roughly according to their country’s position on a world map. Grey and white squares represent sea 
and land respectively. 
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Fig. S7 Cartogram-pies indicating the proportion of individuals born in each country (name shown on top of pies) in the XAF 
cohort. Pies are placed roughly according to their country’s position on a world map. Grey and white squares represent sea 
and land respectively. 
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Fig. S8 Cartogram-pies indicating the proportion of individuals born in each country (name shown on top of pies) in the XSA 
cohort. Pies are placed roughly according to their country’s position on a world map. Grey and white squares represent sea 
and land respectively.  
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Fig. S9 Loss-of-function a) Correlation between the number of LoF genes per sample and fraction of genome with runs of 
homozygosity. b) Number of homozygous loss-of-function (LoF) genes per sample. Count of homozygous genes annotated 
as high impact with frequency <1%. Results are presented for XBI, XAF, XSA excluding individuals self-identified as Pakistani, 
individuals self-identified as Pakistani from the XSA cohort and Others. 
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Fig. S10: Alternative alleles by region. Numbers in brackets beneath region names indicate count of whole genome 
sequenced individuals with birthplaces in that region. Assignment of countries to regions is almost identical to the 
categorization displayed in the cohort cartogram pie figures, with the exception that all European regions are combined 
into one region in this figure. Vertical lines underneath density curves represent 0th, 25th, 50th, 75th, and 100th 
percentiles. 
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Fig. S11 DR as a function of distance from coding exon partitioned by LOEUF11 deciles.  Results are shown separately for the 
overall dataset (All) and the individual cohorts, XBI, XAF and XSA. 

 
 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


40 
 

 
Fig. S12 Coverage plot of RNA-sequenced reads from heart tissue from 169 heart tissue samples over the gene NMRK2. One 
individual is a carrier of a 754bp deletion depicted with gray rectangle that includes exon 6 of NMRK2. The RNA-coverage of 
the carrier (blue) is lower over exon 6 compared to median coverage of non-carriers (green). Shading marks the deleted 
region. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


41 
 

 
Fig. S13 Histogram of fraction of RNA-sequenced fragments skipping exon 6 in NMRK2 out of all fragments aligning from 
the donor site of exon 5 to either acceptor site of exon 6 or exon 7. The median fraction fragments skipping for wild-type 
individuals is 0.035 and 0.57 for the carrier of the 754bp deletion.   
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Fig. S14 Imputation and phasing accuracy across variant datasets in the three populations.  A variant is considered imputed 
if Leave one out r2 (L1or2) of phasing was greater than 0.5 and imputation information was greater than 0.8. x-axis splits 
variants into frequency classes based on the frequency in each cohort. 
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Fig. S15 Odds ratio for risk of myotonic dystrophy as a function of repeat length in microsatellite at the 3’ untranslated 
region of DMPK. Carriers of at least 39.7 copies of the microsatellite repeat motif have a 162-fold increased risk of myotonic 
dystrophy.  
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Fig. S16 Process outline for UKB sequencing pipeline at deCODE genetics. 
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Fig. S17 Pipeline for processing of sequence data at deCODE genetics. 
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QC_VERDICT = 'PASS' 
   
    if freemix_percentage >= 1.0: 
        QC_VERDICT = 'REVIEW' 
  
    if coverage < 26: 
        QC_VERDICT = 'REVIEW' 
  
    if freemix_percentage >= 5.0: 
        QC_VERDICT = 'FAIL' 
   
    if prc_proper_pairs < 95.0: 
        QC_VERDICT = 'FAIL' 
   
    if prc_auto_ge_15x < 95.0: 
        QC_VERDICT = 'FAIL' 
   
    if discordance_prc is not -1 and discordance_prc >= 2.0: 
         QC_VERDICT = 'FAIL' 

Fig. S18 Logic used to compute PASS/FAIL for a WGS cram file. 
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Fig. S19 Average sequence coverage per base pair across the genome.  The average coverage is computed from 1,000 
randomly selected samples. 
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Fig. S20 Number of variants per region in the 500 regions test set for the GATK and GraphTyper callsets, presented as a 
histogram a) and ordered by region b). 
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Fig. S21 Distribution of indel sizes in GATK and GraphTyper callsets. Negative size indicates a deletion. 
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Fig. S22 a) Variant allele frequencies (VAF) of singletons. b) Mutation classes of singletons. Results are for the GATK and 
GraphTyper callsets on 500 randomly selected regions. 
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Fig. S23 Fraction of variants by mutation type in the GATK, GraphTyper and GraphTyper HQ sets. 
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 Fig. S24 Imputation accuracy for variants with AAscore > 0.9 in the three populations, Top left: XBI, Top Right: XAF, Bottom: 
XSA. A variant was considered imputed if Leave one out r2 of phasing was greater than 0.5 and imputation information was 
greater than 0.8. x-axis splits variants into frequency classes based on the number of carriers in the sequence dataset, with 
the number representing the minimum number of carriers in the frequency class. Variants are split by variant type. 
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Fig. S25 Manhattan plots, quantile-quantile (QQ) plots and histograms of inverse-normal transformed values after 
adjustment for covariates age, sex and 40 principal components, when applicable, for quantitative traits with significant 
results reported in this manuscript. For Manhattan plots, the x-axis represents chromosome locations and the y-axis shows 
the –log10 significance levels of the associations. For QQ plots, the inflation (λ) is shown in the title of each graph, for all 
variants and for rare variants only (λ_maf<0.01). For the histograms, the x-axis shows the value range of the inverse-normal 
transformed points and the y-axis shows the count of individuals within value ranges. 

a) Total cholesterol, structural variant analysis, European ancestry (N=412,119) 
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b) Calcium levels, structural variant analysis, European ancestry (N=378,246) 

 
  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


55 
 

c) Albumin levels, structural variant analysis, European ancestry (N=378,395) 
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d) Standing height, SNV analysis, European ancestry (N=430,136) 

 
  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


57 
 

e) IGF-1 levels, SNV analysis, European ancestry (N=409,982) 
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f) Mean corpuscular volume, SNV analysis, European ancestry, male sex (N=182,270) 
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g) Age at menopause, structural variant analysis, European ancestry, female sex 

(N=141,129) 
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h) Non-high density lipoprotein, structural variant analysis, European ancestry 

(N=378,146) 
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i) Non-high density lipoprotein, SNV analysis, African ancestry (N=8,359) 
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j) Hemoglobin concentration, SNV analysis, Asian ancestry (N=8,842) 
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k) Age at menarche, SNV analysis, European ancestry (N=226,436) 
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l) Urate levels, SNV analysis, European ancestry (N=411,640) 
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m) Glycine, metabolomics analysis, European ancestry (N=411,640) 
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Fig. S26 Manhattan plots and quantile-quantile (QQ) plots for case-control phenotypes with significant results reported in 
this manuscript. For Manhattan plots, the x-axis represents chromosome locations and the y-axis shows the –log10 
significance levels of the associations. For QQ plots, the inflation (λ) is shown in the title of each graph, for all variants and 
for rare variants only (λ_maf<0.01) 

a)  Hereditary ataxia, microsatellite analysis, European ancestry (Ncases=335, 

Ncontrols=430,603) 
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b) Myotonic disorders, microsatellite analysis, European ancestry (Ncases=99, 

Ncontrols=430,839) 
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c) Gout, SNV analysis, European ancestry (Ncases=16,353, Ncontrols=414,694) 
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A) 

 
B) 

  
Fig. S27 Locus plot for A) Uric acid and B) Age at menarche associations. 
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Fig. S28 UMAP and ethnicity.  40 genetic principal components provided by UKB reduced to a latent space of 2 dimensions 
using UMAP (x and y axes). Individuals are colored according to self-identified ethnicity. The regions defined to delineate 
the three cohorts XAF, XBI, and XSA are indicated. 
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Fig. S29 Cohort mean ADMIXTURE. Mean proportion of each of five 1000 Genome Project ancestry components assigned by 
ADMIXTURE (columns). Error bars represent 99.9% confidence intervals. CEU (Northern Europeans from Utah), CHB (Han 
Chinese in Beijing), ITU (Indian Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in Ibadan, Nigeria). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


72 
 

 
Fig. S30 UMAP ADMIXTURE. 40 genetic principal components provided by UKB reduced to a latent space of 2 dimensions 
using UMAP (x and y axes). Individuals are colored according to proportion of ancestry assigned by supervised ADMIXTURE 
from five 1000GP training populations (facet headings): CEU (Northern Europeans from Utah), CHB (Han Chinese in Beijing), 
ITU (Indian Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in Ibadan, Nigeria). 
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Fig. S31 The first six principal components of the XBI cohort, plots show PC1 vs PC2, PC3 vs PC4 and PC5 vs PC6. Points 
represent individuals, colored by place of birth. To show geographic structure in the UK more clearly, we do not show 
individuals who report being born in urban areas with many internal migrants (Tyne & Wear, Merseyside, Greater 
Manchester, West Midlands, Bristol, London) or places outside the British-Irish Isles. 
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Fig. S32 The first six principal components of the XAF cohort, plots show PC1 vs PC2, PC3 vs PC4 and PC5 vs PC6. Points 
represent individuals, colored by place of birth.  
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Fig. S33 The first six principal components of the XSA cohort, plots show PC1 vs PC2, PC3 vs PC4 and PC5 vs PC6. Points 
represent individuals, colored by place of birth.  

 

 

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


76 
 

  

Supplementary Tables 
A) SNP+Indel 

 
B) SNP 

 
C) Indel 

Table S1 Genome in a bottle (GIAB) v3.3.2 truth set comparison of GATK and GraphTyper in 500 random regions F1-score is 
the harmonic mean of Sensitivity and Precision. A) all variant types, B) SNPs only C) Indels only. 

  

  GATK GraphTyper 

GIAB sample #Variants Sensitivity Precision F1-score Sensitivity Precision F1-score 

HG001 30,717 98.09% 98.90% 98.49% 98.97% 99.29% 99.13% 

HG002 29,802 98.14% 99.03% 98.59% 98.84% 99.36% 99.10% 

HG003 28,379 98.16% 99.10% 98.63% 99.02% 99.21% 99.11% 

HG004 28,539 98.11% 99.02% 98.56% 99.03% 99.48% 99.26% 

HG005 26,846 98.47% 99.02% 98.74% 99.08% 99.48% 99.28% 

HG006 27,546 98.77% 99.11% 98.94% 99.22% 99.28% 99.25% 

HG007 28,798 98.63% 99.21% 98.92% 99.14% 99.29% 99.21% 

Average 28,661 98.34% 99.06% 98.70% 99.04% 99.34% 99.19% 

  GATK GraphTyper 

GIAB sample #Variants Sensitivity Precision F1-score Sensitivity Precision F1-score 

HG001 26,377 99.50% 99.07% 99.28% 99.63% 99.29% 99.46% 

HG002 25,747 99.45% 99.09% 99.27% 99.46% 99.36% 99.41% 

HG003 24,450 99.43% 99.19% 99.31% 99.56% 99.20% 99.38% 

HG004 24,428 99.47% 99.16% 99.31% 99.60% 99.48% 99.54% 

HG005 23,465 99.60% 99.14% 99.37% 99.44% 99.49% 99.46% 

HG006 24,226 99.63% 99.18% 99.40% 99.61% 99.27% 99.44% 

HG007 25,257 99.59% 99.30% 99.44% 99.53% 99.29% 99.41% 

Average 24,850 99.52% 99.16% 99.34% 99.55% 99.34% 99.44% 

  GATK GraphTyper 

GIAB sample #Variants Sensitivity Precision F1-score Sensitivity Precision F1-score 

HG001 4,340 89.46% 97.30% 93.21% 94.94% 99.59% 97.21% 

HG002 4,055 89.81% 98.42% 93.92% 94.85% 99.42% 97.08% 

HG003 3,929 90.26% 98.12% 94.03% 95.61% 99.54% 97.54% 

HG004 4,111 89.93% 97.68% 93.64% 95.59% 99.43% 97.47% 

HG005 3,381 90.47% 97.80% 93.99% 96.50% 99.34% 97.90% 

HG006 3,320 92.45% 98.35% 95.31% 96.34% 99.65% 97.97% 

HG007 3,541 91.68% 98.25% 94.85% 96.28% 99.51% 97.87% 

Average 3,811 90.58% 97.99% 94.14% 95.73% 99.50% 97.58% 
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 A) 

Method FDR TP #Variants 

GATK 9.97% 17,140,110 19,038,309 

GraphTyper 6.31% 17,915,210 19,123,669 

GraphTyperHQ 1.45% 16,768,945 17,016,415 

 
B) 

Method ICPM Non-ref consistency Number of non-ref calls 

GATK 78.1 95.21% 68,537,823 

GraphTyper 70.3 95.81% 70,442,413 

GraphTyperHQ 11.8 99.22% 63,556,940 

Table S2 A) Estimate of false discovery rate (FDR) and number of true positive (TP) variants among the 28 parent-offspring 
trios. The estimates are determined from the allele transmission ratios from parent to offspring. B) Genotype consistency 
across among the 14 monozygotic twin pairs. ICPM = number of inconsistent genotypes per 1Mb. 
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A) 

Method Total checks Error rate 

GATK 1,277,130 1.19% 

GraphTyper 1,339,337 1.12% 

 
B) 

 
C) 

Method Non-Ref Variants Consistent Error rate 

GATK 597,882 564,031 5.66% 

GraphTyper 603,589 578,763 4.11% 

Table S3 Analysis of variant transmission of related samples in the 500 randomly selected 50kb test regions. A) Number of 
inheritance errors among the 28 parent-offspring trios. B) Estimates of number True Positives and False discovery rate in 
GATK and GraphTyper datasets in the trios. The estimates are determined from the allele transmission ratios from parent to 
offspring. C) Genotype consistency among the 14 pairs of monozygote twins.  

 GATK GraphTyper 

Total variants 166,315 162,773 

    SNPs only 137,277 125,282 

    Indels only 29,038 37,491 

True positive estimate 145,882 151,838 

    SNPs only 119,682 117,659 

    Indels only 26,200 34,179 

False discovery rate estimate 12.28% 6.72% 

    SNPs only 12.82% 6.08% 

    Indels only 9.77% 8.83% 
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Table S4 Comparison of imputation of variants from the GATK and GraphTyper call sets on chr22 10-11Mb in the XBI 
dataset. A variant is considered imputed if phasing Leave-on-out-r2 (L1or2) is greater than 0.5 and imputation info is 
greater than 0.8. 

 
  

   GATK   GraphTyper  

 

Minimum 

number of 

carriers 

Frequency 

threshold 

N 

imputed 

N 

markers 

Imputed 

ratio 

N 

imputed 

N 

markers 

Imputed 

ratio 

SNPs  54001 200471 26.9% 58494 197508 29.6% 

 2640 1.0% 3157 3439 91.7% 3380 3500 96.5% 

 264 0.1% 2480 3225 76.8% 2623 2770 94.6% 

 26 0.01% 7436 10467 71.0% 7859 9367 83.9% 

 13 0.005% 5491 7557 72.6% 5857 7331 79.8% 

 6 0.002% 11326 17013 66.5% 12230 16884 72.4% 

 3 0.001% 16503 33921 48.6% 18095 33851 53.4% 

 1 0.0002% 7608 124849 6.0% 8450 123805 6.8% 

Indels  6124 21720 30.4% 7876 20218 39.0% 

 2640 1.0% 842 935 90.0% 1132 1254 90.2% 

 264 0.1% 602 854 70.4% 790 917 86.1% 

 26 0.01% 1037 1861 55.7% 1327 1723 77.0% 

 13 0.005% 570 1054 54.0% 673 966 69.6% 

 6 0.002% 1038 1954 53.1% 1172 1800 65.1% 

 3 0.001% 1352 3377 40.0% 1521 3096 49.1% 

 1 0.0002% 683 11685 5.8% 743 10462 7.1% 
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A) 

Method WES AF>0.01% WES AF>0.1% 

GATK 21,662 (1.81%) 8,973 (2.54%) 

GraphTyper 5,310 (0.44%) 1,903 (0.54%) 

GraphTyperHQ 16,774 (1.60%) 7,693 (2.17%) 

 
B) 

 
Present in  
WES 200k 

 
GATK 

 
GraphTyper 

 
GraphTyperHQ 

Type 
WES 

AF>0.01% 
WES 

AF>0.1% 
WES 

AF>0.01% 
WES 

AF>0.1% 
 WES 

AF>0.01% 
WES 

AF>0.1% 
 WES 

AF>0.01% 
WES 

AF>0.1% 

A>C 71,587 24,700 1,948  824   580  166   1,511  643  

A>G 380,627 127,772 6,260  2,740   1,681  665   5,600  2,650  

A>T 44,040 15,489 1,368  620   357  126   908  397  

C>G 101,848 34,675 2,640  1,085   706  242   2,097  941  

C>T 377,729 126,438 7,649  2,963   1,462  526   5,188   2,425  

G>T 71,556 24,815 1,797  741   524  178   1,470  637  

Ti/Tv 2.62 2.55 1.79 1.74   1.45 1.67  1.80  1.94  

Table S5 A) Number of variants in the WES 200k dataset that are missing from GATK, GraphTyper and GraphTyperHQ 
datasets, conditioned on the frequency in WES 200k. The fractions of missing variants are inside the parenthesis. B) Total 
number of SNP types present in WES 200K conditioned on frequency and how many of those are missing from our WGS 
datasets, stratified by variant type. Ti = number of transitions, Tv = number of transversions. 
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Mutation 
type 

Mutations 
Autosomes 

Mutations 
ChrX 

Opportunities 
Autosomes 

Opportunities 
ChrX 

% 
Total 

% 
Autosomes 

%  
ChrX 

C>A 60,519,838 2,659,969 1,077,457,583 56,309,185 5.57% 5.62% 4.72% 

C>G 57,676,447 2,854,929 1,077,457,583 56,309,185 5.34% 5.35% 5.07% 

C>T 144,136,629 6,328,598 1,025,477,941 54,075,891 13.94% 14.06% 11.70% 

CpG>TpG 42,363,944 1,843,388 51,979,642 2,233,294 81.54% 81.50% 82.54% 

T>A 43,430,412 1,907,408 1,555,084,506 87,170,953 2.76% 2.79% 2.19% 

T>C 159,740,935 6,892,088 1,555,084,506 87,170,953 10.15% 10.27% 7.91% 

T>G 47,169,431 2,098,996 1,555,084,506 87,170,953 3.00% 3.03% 2.41% 
Table S6 Mutation saturation, results presented for autosomes and chrX separately. Table shows the number of observed 
mutations in the GraphTyperHQ dataset and the number of possible mutation opportunities in regions of the genome 
amenable to short read sequence analysis. 
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A) 

Method Num variants Missing call rate Informative calls 

GATK 710,913,648 2.57% 103,979,678,355,013 

GraphTyper 655,928,639 0.14% 98,332,325,114,654 

GraphTyperHQ 643,747,446 0.07% 96,570,956,991,770 

 
B) 

Method SNPs Transitions (Ti) Transversions (Tv) Ti/Tv 

GATK 618,290,855 375,860,520 242,430,335 1.550 

GraphTyper 593,953,779 369,120,364 224,833,415 1.642 

GraphTyperHQ 585,040,410 364,859,729 220,180,681 1.657 

 
C) 
Method Common % Rare % Singleton % 

GATK 31,501,254 (4.4%) 367,745,957 (51.7%) 311,666,437 (43.9%) 

    SNP 23,275,707 (3.8%) 317,087,938 (51.3%) 277,927,210 (44.9%) 

    Non-SNP 8,225,547 (8.9%) 50,658,019 (54.7%) 33,739,227 (36.4%) 

GraphTyper 26,445,377 (4.0%) 335,241,409 (51.1%) 294,241,853 (44.9%) 

    SNP 20,261,132 (3.4%) 303,621,290 (51.1%) 270,071,357 (45.5%) 

    Non-SNP 6,184,245 (10.0%) 31,620,119 (51.0%) 24,170,496 (39.0%) 

GraphTyperHQ 22,975,922 (3.6%) 327,718,095 (50.9%) 293,053,429 (45.5%) 

    SNP 18,124,082 (3.1%) 297,709,581 (50.9%) 269,206,747 (46.0%) 

    Non-SNP 4,851,840 (8.3%) 30,008,514 (51.1%) 23,846,682 (40.6%) 

Table S7 A) Number of variants in GATK, GraphTyper and GraphTyperHQ dataset. B) Variants split by transitions and 
transversions. C) Common = variants with frequency > 0.1%, rare = carried by more than one individual and frequency < 
0.1%, singleton = carried by a single individual. 
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Description Beta R2 P-value 

Autosomal dominant genes from OMIM -0.0407 0.00265 6.60E-12 

Recessive genes from OMIM -0.0063 9.90E-05 0.1850 

Cell essential genes 0.0259 0.00247 8.26E-10 

Present in Cell essential genes -0.0907 0.02636 4.31E-105 

Hand curated list of Human lethal KO genes -0.0204 0.00020 0.0627 

Hand curated list (more permissive) of Human lethal KO genes -0.0221 0.00040 0.0074 

List of lethal KO genes in mice -0.0425 0.00770 1.07E-31 

List of lethal het. KO genes in mice -0.0275 0.00017 0.0824 
Table S8 Regression of average DR overlapping gene exons on annotations from Gene discovery informatics toolkit40. 
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Data set 
DR 

score 
GERP RS 

score 
CADD 
score 

Eigen 
score 

LINSIGHT 
score 

CDTS 

DR score 1.000 0.005 0.038 0.029 0.011 0.158 

GERP RS score 0.005 1.000 0.577 0.284 0.506 0.010 

CADD score 0.039 0.577 1.000 0.554 0.547 0.075 

Eigen score 0.029 0.284 0.554 1.000 0.690 0.065 

LINSIGHT score 0.011 0.506 0.547 0.690 1.000 0.029 

CDTS 0.158 0.010 0.075 0.064 0.029 1.000 

Table S9 Pearson correlation coefficient between DR score and measures of sequence constraint and functional impact, 
computed over all autosomal chromosomes. For each one of the 500bp overlapping windows in which the DR score (𝑑𝑟) is 
defined we compute the average value of the published scores (𝑝𝑠) in that window and then conduct linear regression 
analysis (𝑝𝑠 ~ 𝑑𝑟). The values shown in the table are the squared correlation coefficients of that regression. The correlation 
between the published datasets is computed from a set of 50bp non-overlapping windows using the average score within 
each window. A similar regression is conducted between each of the published datasets to obtain the squared correlation 
coefficient. Note, that the p-value for the linear regression fit is below computational threshold (2.2 × 10−308) for each pair 
of data sets in the table. CADD, Eigen and LINSIGHT all incorporate GERP into their annotation and are consequently not 
independent of each other or GERP. DR score and CDTS employ an analogous methodology, but scores are derived 
independently of each other and the other metrics. 
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 Cohort Chip N WGS N WGS %  

 XBI 431,805 132,169 30.6  
 XAF 9,633 2,963 30.8  
 XSA 9,252 3,047 32.8  
 OTH 37,598 11,781 31.9  

Table S10 Number of individuals in the three cohorts described in this study.  
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Threshold Threshold   XBI   XAF   XSA  
% XBI % XAF,XSA  Snp/Indel SV MSat Snp/Indel SV MSat Snp/Indel SV MSat 

1% 5% Phased 11189434 15569 2491240 10782733 15214 2388595 7941383 11773 1812461 

  Imputed 11184312 15518 2488009 10728154 14606 2354675 7865444 11211 1743407 

  n 11297050 18044 2600902 10864088 17276 2453893 7993858 13415 1859421 

0.1% 1% Phased 6590616 7234 1068743 8365507 9301 1166814 3739563 4230 816116 

  Imputed 6586277 7223 1066743 8315664 9140 1129348 3633830 4072 699673 

  n 6819668 9185 1329131 8555777 11074 1310478 3852601 5235 896908 

0.01% 0.5% Phased 23598990 24317 1581904 3950291 4139 391700 2122454 2168 369854 

  Imputed 23453107 24037 1558812 3914244 4077 369608 2008801 2062 271659 

  n 24556101 31246 2330992 4114602 5187 504462 2280485 2808 442328 

0.005% 0.2% Phased 19864378 19181 482916 4386799 4263 354516 2642260 2558 380537 

  Imputed 19440299 18735 457453 4316711 4136 319739 2409667 2297 235403 

  n 21059670 25103 850280 4722651 5635 515106 2982169 3624 488799 

0.002% 0.1% Phased 43902487 41664 600207 6892163 6336 448483 5032021 4717 539656 

  Imputed 41679009 39448 542137 6627483 6041 366561 4292840 3964 260599 

  n 50063971 55664 1214690 8424367 9507 772036 6418472 7497 786098 

0.001% 0.04% Phased 52975884 49438 437379 6495546 5681 337279 5944556 5125 428185 

  Imputed 47238234 44171 363952 5861702 5106 240464 4635202 3933 162809 

  n 72522701 74342 1092057 10462313 10807 713472 9539163 10093 745160 

0.0002% 0.008% Phased 40518700 36567 292304 16233640 12769 569083 12625599 8801 715628 

  Imputed 31988313 29453 189966 12109642 10130 321072 6563488 4830 190230 

  n 263633284 261011 1935535 59096600 52531 1654282 52146463 47256 1671469 

Table S11 Imputation and phasing accuracy as a function of frequency within each cohort. Phased refers to number of 
variants with Leave-one-out-r2 value > 0.5 and imputed refers to phased variants that also have imputation info > 0.8. 
Numbers are for variants at frequency above the given threshold and not included in frequency thresholds in earlier lines, 
e.g., in the XBI population 72,522,701 variants have frequency between 0.001 and 0.002%, of which 52,975,884 could be 
phased and 47,238,234 could be imputed. 
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AF Threshold  XBI  XAF  XSA 

       Panel n present % n present % n present % 

 ≥10-2 Bycroft 9,675,179 57.1% 9,049,185 54.4% 8,782,729 55.4% 

  150k WGS 16,838,810 99.3% 16,500,186 99.3% 15,728,295 99.1% 

  Both 9,555,642 56.3% 8,924,920 53.7% 8,645,958 54.5% 

  Either 16,958,347 100% 16,624,451 100% 15,865,066 100% 

≥10-3 Bycroft 5,150,551 40.8% 4,321,491 37.0% 1,509,037 23.8% 

< 10-2 150k WGS 12,497,109 99.1% 11,609,254 99.3% 6,276,519 98.8% 

  Both 5,031,517 39.9% 4,236,985 36.2% 1,432,690 22.6% 

  Either 12,616,143 100% 11,693,760 100% 6,352,866 100% 

≥ 10-4 Bycroft 4,635,660 12.7% 7,894,440 34.0% 1,637,838 17.8% 

< 10-3 150k WGS 36,247,790 99.1% 22,801,909 98.2% 8,903,892 96.5% 

  Both 4,299,464 11.8% 7,474,332 32.2% 1,315,077 14.3% 

  Either 36,583,986 100% 23,222,017 100% 9,226,653 100% 

< 10-4 Bycroft 1,786,117 0.9% 4,951,605 8.8% 2,001,548 5.3% 

  150k WGS 196,375,197 99.6% 54,623,218 97.1% 37,019,802 97.4% 

  Both 942,249 0.5% 3,315,555 5.9% 1,024,799 2.7% 

  Either 197,219,065 100% 56,259,268 100% 37,996,551 100% 

Table S12 Number of markers that impute (Imp Info > .8) in 500k set of UKB using the imputation panel presented here 
(150k WGS) and an imputation by Bycroft et al.5. Both represents number of markers imputed by both panels, either the 
number of markers in either panel. 
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# 
repeats Frequency Effect P-value 

4.7 5.98E-05 0.02 8.84E-01 

5.7 3.64E-01 0.41 3.95E-07 

6 1.45E-06 0.02 9.84E-01 

6.7 9.99E-04 4.96 2.16E-01 

7.7 4.16E-04 0.02 6.94E-01 

8.7 7.46E-03 0.69 6.95E-01 

9.7 1.21E-03 4.27 2.54E-01 

10.7 9.27E-03 0.54 5.10E-01 

11.7 1.20E-01 1.45 7.33E-02 

12 1.95E-06 0.02 9.81E-01 

12.7 1.24E-01 0.85 4.98E-01 

13 1.17E-06 0.02 9.87E-01 

13.7 1.78E-01 0.77 2.08E-01 

14.7 6.30E-02 0.82 5.26E-01 

15.7 8.18E-03 0.73 7.43E-01 

16.7 9.16E-03 0.01 7.66E-02 

17.7 4.88E-03 1.06 9.54E-01 

18.7 2.15E-03 0.02 3.72E-01 

19.7 4.39E-03 1.44 7.34E-01 

20.7 1.81E-02 2.02 1.32E-01 

21.7 2.69E-02 1.12 8.27E-01 

22.7 1.41E-02 2.4 1.38E-01 

23.7 8.77E-03 2.18 3.15E-01 

24.7 6.90E-03 2.44 2.59E-01 

25.7 7.05E-03 4.06 4.74E-02 

26.7 5.17E-03 6.62 1.40E-02 

27.7 4.55E-03 9.82 1.50E-03 

28.7 3.38E-03 17.93 1.24E-04 

29.7 2.33E-03 19.75 4.08E-04 

30.7 1.55E-03 30.02 6.02E-05 

31.7 1.03E-03 48.35 4.33E-09 

32.7 6.98E-04 42.04 1.30E-04 

33.7 4.04E-04 74.03 8.07E-06 

34.7 3.05E-04 68.27 5.01E-05 

35.7 1.48E-04 141.58 1.29E-10 

36.7 1.50E-04 45.23 3.35E-02 

37.7 9.60E-05 51.68 2.49E-01 

38.7 1.04E-04 92.19 3.64E-03 

>=39.7 4.32E-05 161.74 1.09E-07 
Table S13 Association of number of repeat copies of microsatellite in 3’ UTR in DMPK with myotonic dystrophy. Individuals 
carrying 39.7 or more copies of the repeat are grouped together by popSTR64. 
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A) 

Gene Number of Allelic 
variants in OMIM 

OMIM Phenotype with allelic variants * 
(Mode of inheritance) ** 

ALB 61 Analbuminemia (AR) 

CACNA1A 37 Episodic ataxia, type 2 (AD) ; Migraine, familial hemiplegic, 1 (AD);  
Epileptic encephalopathy, early infantile, 42 (AD); Spinocerebellar ataxia 
6 (AD)  

HBB 540 Delta-beta thalassemia(AD); Erythrocytosis 6 (AD) ; Heinz body anemia 
(AD); Hereditary persistence of fetal hemoglobin (AD); 
Methemoglobinemia, beta type(AD); Sickle cell anemia (AR); 
Thalassemia-beta, dominant inclusion-body (AD) 

PCSK9 8 Hypercholesterolemia, familial, 3 (AD) 

PIEZO1 16 Dehydrated hereditary stomatocytosis(AD); Lymphedema, hereditary, III 
(AR) 

GHRH 0 None 

DMPK 1 Myotonic dystrophy 1 (AD) 

GCSH 1 None 

TAC3 2 Hypogonadotropic hypogonadism 10 with or without anosmia (AR) 

NMRK2 0 None 

 
B) 

Gene N Drug *** Indications *** Link 

ALB None   
CACNA1A 5 7 https://platform.opentargets.org/target/ENSG00000141837  

HBB 3 11 https://platform.opentargets.org/target/ENSG00000244734  

PCSK9 6 28 https://platform.opentargets.org/target/ENSG00000169174  

PIEZO1 None   
GHRH None   
DMPK None   
GCSH None   
TAC3 None   
NMRK2 None   

Table S14 Information on genes presented.  A) Phenotypes and allelic variants in OMIM for selected genes. B) Known drug 
data and in open targets for selected targets. *Excluding the ones with provisional phenotype gene relationship "?"; 
multifactorial diseases"{ }" and non diseases"[ ]" ** Mode of inheritance : AD Autosomal dominant; AR Autosomal 
recessive. ***Known drug data according to Open Targets77. 
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Phenotype 
Data showcase 

field 
Extra information 

Age at 

menopause 

3581 Adjusted for year of birth and 20 principal components, 

then inverse-normal transformed 

Age of 

menarche 

2714 Adjusted for year of birth and 20 principal components, 

then inverse-normal transformed 

Albumin 30600 Adjusted for age, age² and 20 principal components, then 

combined and inverse-normal transformed 

Calcium 30680 Adjusted for age, age² and 20 principal components, then 

combined and inverse-normal transformed 

Glycine 23462 Metabolomics 

Height 50 Adjusted for year of birth, sex and 20 principal components 

for males and females separately, then combined and 

inverse-normal transformed 

Hemoglobin 

concentration, 

Asian ancestry 

30060 Adjusted for age, age² and 45 principal components for 

males and females separately, then combined and inverse-

normal transformed 

IGF-1 serum 

levels 

30770 Adjusted for age, age² and 20 principal components 

Mean 

corpuscular 

volume 

30040 Adjusted for age, age² and 20 principal components for 

males and females separately, then combined and inverse-

normal transformed 

Non-HDL 

cholesterol, 

European 

ancestry 

Field 30690 minus 

field 30670 (HDL) 

Adjusted for age, age² and 20 principal components; lipid-

lowering drug users had their measurements divided by 

0.8, then combined and inverse-normal transformed 

Non-HDL 

cholesterol, 

African 

ancestry 

Field 30690 minus 

field 30670 (HDL) 

Adjusted for age, age² and 20 principal components; lipid-

lowering drug users had their measurements divided by 

0.8, then combined and inverse-normal transformed 

Total 

cholesterol 

30690 Adjusted for age, age² and 20 principal components; lipid-

lowering drug users had their measurements divided by 

0.8, then combined and inverse-normal transformed 

Uric acid 30880 Adjusted for age, age² and 20 principal components, then 

combined and inverse-normal transformed 

Gout ICD-19 code M10* 

on fields 41270, 

41271 and 42040 

Adjusted for year of birth, sex and 20 principal components 

Hereditary 

ataxia 

ICD-10 code G11 

on fields 41270, 

41271 and 42040 

Adjusted for year of birth, sex and 20 principal components 

Myotonic 

dystrophy 

ICD-10 code G71.1 

on fields 41270, 

41271 and 42040 

Adjusted for year of birth, sex and 20 principal components 

Table S15 Phenotypes used in this study, their field in the UKB data showcase and adjustments performed prior to 
association analysis  
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Parameter 
Information 
Requested Definition 

prc_auto_ge_15x Coverage PCT_15X from .wgsmetrics_autosome in QCPreview 

coverage 
autosomal 
mean coverage 

MEAN_COVERAGE * (1.0 - PCT_EXC_DUPE - 
PCT_EXC_OVERLAP - PCT_EXC_ADAPTER) / (1.0 - 
PCT_EXC_TOTAL) from .wgsmetrics_autosome in 
QCPreview 

genetic_sex Sex 
if NX<=0.3 then "Female" else if NX>=0.7 then "Male" 
else "Undetermined" from .sexcheck output file in 
QCStats 

yield Yield  

GENOME_TERRITORY * MEAN_COVERAGE * (1.0 - 
PCT_EXC_DUPE - PCT_EXC_OVERLAP - 
PCT_EXC_ADAPTER) / (1.0 - PCT_EXC_TOTAL) from 
.wgsmetrics output file in QCPreview 

read_haps_error_percentage Read_haps 
100*DOUBLE_ERROR_FRACTION from .contamination 
output file in QCStats 

freemix_percentage 
Freemix/Verify 
Bam ID 

100 * FREEMIX from .verifyBamId.selfSM output 
file in QCStats 

prc_proper_pairs 
Proportion of 
mapped read 
pairs 

100 * (reads_properly_paired/reads_mapped) from 
.stats output file in QCPreview 

discordance_prc 
NRD 
Genotyping 

100 * (1.0 - NON_REF_GENOTYPE_CONCORDANCE) 
from .genotype_concordance_summary_metrics in 
Concords or -1 if chip genotypes are not available 

Table S16 QA/QC metrics derived from the files delivered to the UKB. The result is written to a file, qaqc_metric. 
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Column Min Max Flag Explanation 
SAMPLE_ID 

   
Read group ID 

LANE 
   

Lane ID (=Read group ID) 
FAILURE_FLAGS 

   
Failure flag 

JOINT_CALLING_FLAGS 
   

Joint calling failure flag 
STRICT_FLAGS 

   
Strict failure flag 

TOTAL_BPS 3e8 1e14 C Total basepairs 
TOTAL_READ_PAIRS 

   
Total read pairs 

READ_LENGTH 
   

Read length 
MEAN_BASE_QUAL_PER_READ 30 100 Q Mean of base calling quality 
STD_BASE_QUAL_PER_READ -1 10 Q Std dev of mean base calling quality 
MEAN_N_COUNT_PER_READ -1 10 N Mean Percentage N 
STD_N_COUNT_PER_READ -1 30 N Std dev of Percentage N 
MEAN_GC_CONTENT_PER_READ 39 45 G Mean percentage of GC bases 
STD_GC_CONTENT_PER_READ -1 15 G Std dev of Percentage GC 
MEAN_BASE_QUAL_PER_POSITION 30 100 Q Mean of mean base calling quality 
STD_BASE_QUAL_PER_POSITION -1 6 Q Std dev of mean base calling quality 
MEAN_N_PER_POSITION -1 10 N Mean Percentage N 
STD_N_PER_POSITION -1 10 N Std dev of Percentage N 
MEAN_A_PER_POSITION 25 35 B Mean Percentage A 
STD_A_PER_POSITION -1 10 B Std dev of Percentage A 
MEAN_C_PER_POSITION 15.5 25 B Mean Percentage C 
STD_C_PER_POSITION -1 10 B Std dev of Percentage C 
MEAN_G_PER_POSITION 17 24 B Mean Percentage G 
STD_G_PER_POSITION -1 10 B Std dev of Percentage G 
MEAN_T_PER_POSITION 25 33 B Mean Percentage T 
STD_T_PER_POSITION -1 10 B Std dev of Percentage T 
32_MER_ERROR_RATE 

   
Estimated 32-mer error rate 

ADAPTER_8_MERS -1 5 A Percentage of Universal adapter 8-mers 
MARKED_DUPLICATE -1 60 D Percentage marked as duplicate 
UNMAPPED -1 20 U Percentage unmapped reads 
BOTH_UNMAPPED -1 30 U Percentage both reads in pair unmapped 
FIRST_UNMAPPED -1 30 U Percentage only first unmapped in pair 
SECOND_UNMAPPED -1 30 U Percentage only second unmapped in pair 
PROPER_PAIRS 

   
Percentage proper pairs 

PROPER_PAIRS_AUTOSOME 95 1000 P Percentage proper pairs autosome 
FF_RR_PAIRS -1 0.1 o Percentage FF/RR oriented pairs 
MEAN_COVERAGE 0.1 100000 C Mean coverage 
STD_COVERAGE -1 100000 C Std dev of coverage 
MEAN_INSERT_SIZE -1 10000 I Mean insert size 
STD_INSERT_SIZE 

   
Std dev of insert size 

ADAPTER_INSERT_SIZE -1 20 A Percent insert size < read length 
MAPPING_QUAL_60 

   
Percentage reads with mapping quality <60 

MAPPING_QUAL_40 
   

Percentage reads with mapping quality <40 
MAPPING_QUAL_20 

   
Percentage reads with mapping quality <20 

MEAN_MISMATCHES -1 5 m Mean mismatches per read pair 
MEAN_DELETIONS 

   
Mean deletions per read pair 

MEAN_INSERTIONS 
   

Mean insertions per read pair 
NZ_DELETIONS -1 0.1 d Fraction or reads that have a deletion 
NZ_INSERTIONS -1 0.1 I Fraction of reads that have an insertion 
CLIPPED_5_PRIME -1 6 c Percentage of reads clipped at 5'-end 
CLIPPED_3_PRIME -1 30 c Percentage of reads clipped at 3'-end 
C>A 0.3 0.7 O C>A triplet conversion rate 
G>A 0.4 0.6 O G>A triplet conversion rate 
T>A 0.3 0.7 O T>A triplet conversion rate 
A>C 0.3 0.7 O A>C triplet conversion rate 
G>C 0.3 0.7 O G>C triplet conversion rate 
T>C 0.3 0.7 O T>C triplet conversion rate 

Table S17 Metrics collected for each lane by bamqc_summary. If any flag is raised, the lane is excluded from the merge 
process. The values, per read group, are collected in the file .bamqc_summary. 
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A) 

Method #Variants Common (>0.1%) Rare (<0.1%) Singleton 

GATK 6,221,575 284,303 3,259,421 2,677,851 

GraphTyper 5,569,026 224,715 2,855,132 2,489,179 

B) 

Method #Variants SNPs Non-SNPs 

GATK 6,221,575 5,400,679 820,896 

GraphTyper 5,569,026 5,040,466 528,560 

C) 

Method Missing genotypes #Informative calls 

GATK 3.26% 903,536,315,740 

GraphTyper 0.11% 835,097,232,768 

D) 

Method Transitions (Ti) Transversion (Tv) Ti/Tv 

GATK 3,246,174 2,154,505 1.507 

GraphTyper 3,130,524 1,909,942 1.639 

Table S18 Results for 500 random test regions. A) Number of variants called by GATK and GraphTyper conditioned on 
frequency class. B) Number of variants conditioned on variant type. C) Fraction of missing variant calls. D) Number of 
transitions and transversions. 
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A) 

Method Total common Failed % 

GATK 284,303 21,234 7.47% 

GraphTyper 224,715 2,277 1.01% 

 
B) 

 Failed count 

Test GATK GraphTyper 

Sanger Vanguard vs. Sanger Main 13,440 999 

Sanger Vanguard vs. deCODE 16,751 1,825 

Sanger Main vs. deCODE 13,510 1,141 

Table S19 Number of common variants (frequency > .1%) that showed significant association with sequencing center in the 
500 random regions test set., A) Total number of variants that failed in any test. B) Number of failed variants stratified by 
sequencing protocol. Variant is considered “Failed” if p-value < 1e-6, Fisher’s exact test. 
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 A) 

Method Common SaM vs. deC SaV vs. deC SaV vs. SaM 

GATK 31,501,254 1,202,575 1,164,682 810,105 

GraphTyper 26,445,377 166,371 175,144 66,838 

GraphTyperHQ 22,975,922 28,432 36,283 8,096 

 
B) 

Method Common Any test p < 10-6 Any test p < 10-10 

GATK 31,501,254 1,792,003 (5.69%) 1,197,839 (3.80%) 

GraphTyper 26,445,377 257,860 (0.97%) 136,521 (0.52%) 

GraphTyperHQ 22,975,922 46,556 (0.20%) 22,307 (0.10%) 

Table S20 Number of common variants (frequency > 0.1%) that show significant association to sequencing center, indicating 
batch effects, using a Fisher’s exact test, for common (> 0.1% frequency) variants. A) Number of failed variants stratified by 
test using p < 10-6. deC = samples sequenced at deCODE genetics.  SaV = samples sequenced using the Sanger Vanguard 
processing pipeline.  SaM = samples sequenced using the Sanger main phase pipeline. B) Total number of variants that 
failed in any test, using both p < 10-6 and p < 10-10. 
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Dataset 
Shared with 
both other 

Specific 
to 

Absent 
from 

Absent from and 
same carrier in 

both other 
datasets 

Fraction of missing 
variants with same 

carrier in both 
datasets 

GATK 6,608,669 230,808 15,567 12,700 81.58% 

GraphTyperHQ 6,608,669 54,909 87,773 56,052 63.86% 

WES200k 6,608,669 28,039 498,181 476,195 95.59% 
Table S21 Three-way comparison between the GraphTyperHQ, GATK and WES200k76 call analyzed inside WES capture 
regions within the set of 109,618 individuals present in both the WES200k call set an our set of 150,119 individuals. 
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XBI P-value MaF > 0.01 MaF  0.01 - 0.001 MaF < 0.001 

Unfiltered > 0.05 17.0-17.5M (89-91%) 9.27-9.33M (93-94%) 208-215M (94-97%) 

 0.005-0.05 1.05-1.13M (5.5-5.9%) 481-497K (4.9-5.0%) 5.60-12.4M (2.5-5.6%) 

 5e-4 - 0.005 238-258K (1.2-1.3%) 64.1-77.8K (0.65-0.78%) 443-848K (0.2-0.38%) 

 5e-8 - 5e-4 214-324K (1.1-1.7%) 28.9-49.9K (0.29-0.5%) 36.8-65.6K (0.017-0.03%) 

 < 5e-8 127-540K (0.66-2.8%) 7.74-49.2K (0.078-0.5%) 364-3697 (0.00016-0.0017%) 

Filtered > 0.05 16.0-16.1M (94-94%) 8.94-8.96M (94-95%) 207-214M (94-97%) 

 0.005-0.05 808-839K (4.7-4.9%) 435-445K (4.6-4.7%) 5.57-12.3M (2.5-5.6%) 

 5e-4 - 0.005 103-122K (0.6-0.72%) 46.9-55.5K (0.5-0.59%) 439-840K (0.2-0.38%) 

 5e-8 - 5e-4 36.1-78.4K (0.21-0.46%) 10.1-16.7K (0.11-0.18%) 36.1-60.7K (0.016-0.028%) 

 < 5e-8 11.2-68.9K (0.066-0.4%) 2.37-11.5K (0.025-0.12%) 115-463 (5.2e-05-0.00021%) 

XAF P-value MaF > 0.01 MaF  0.01 - 0.001 MaF < 0.001 

Unfiltered > 0.05 29.7-29.9M (94-95%) 22.5-22.9M (93-95%) 80.8-84.6M (95-99%) 

 0.005-0.05 1.43-1.48M (4.5-4.7%) 1.04-1.44M (4.3-6.0%) 0.717-4.41M (0.84-5.2%) 

 5e-4 - 0.005 152-189K (0.48-0.6%) 79.6-143K (0.33-0.59%) 10.6-118K (0.012-0.14%) 

 5e-8 - 5e-4 20.4-73.6K (0.065-0.23%) 6.87-18.2K (0.029-0.076%) 1-5392 (1.2e-06-0.0063%) 

 < 5e-8 732-29023 (0.0023-0.092%) 62-335 (0.00026-0.0014%) 0-1 (0.0-1.2e-06%) 

Filtered > 0.05 27.4-27.4M (95-95%) 21.8-22.2M (93-95%) 80.1-83.9M (95-99%) 

 0.005-0.05 1.26-1.30M (4.4-4.5%) 0.994-1.39M (4.3-6.0%) 0.709-4.38M (0.84-5.2%) 

 5e-4 - 0.005 127-133K (0.44-0.46%) 75.7-135K (0.33-0.58%) 10.5-117K (0.012-0.14%) 

 5e-8 - 5e-4 13.4-23.8K (0.046-0.083%) 6.36-15.3K (0.027-0.066%) 1-5294 (1.2e-06-0.0063%) 

 < 5e-8 28-5752 (9.7e-05-0.02%) 0-166 (0.0-0.00071%) 0-0 (0.0-0.0%) 

XSA P-value MaF > 0.01 MaF  0.01 - 0.001 MaF < 0.001 

Unfiltered > 0.05 18.9-19.1M (94-95%) 14.1-14.5M (94-96%) 73.9-76.5M (95-99%) 

 0.005-0.05 919-989K (4.6-4.9%) 521-817K (3.5-5.4%) 1.00-3.58M (1.3-4.6%) 

 5e-4 - 0.005 99.7-142K (0.5-0.71%) 32.1-92.3K (0.21-0.61%) 17.3-83.7K (0.022-0.11%) 

 5e-8 - 5e-4 13.2-67.8K (0.066-0.34%) 2.97-12.7K (0.02-0.085%) 358-3980 (0.00046-0.0051%) 

 < 5e-8 665-30416 (0.0033-0.15%) 92-278 (0.00061-0.0018%) 0-2 (0.0-2.6e-06%) 

Filtered > 0.05 17.0-17.0M (95-95%) 13.6-13.9M (94-96%) 73.3-75.9M (95-99%) 

 0.005-0.05 796-809K (4.4-4.5%) 494-778K (3.4-5.4%) 0.994-3.56M (1.3-4.6%) 

 5e-4 - 0.005 82.4-87.9K (0.46-0.49%) 30.6-85.5K (0.21-0.59%) 17.1-82.8K (0.022-0.11%) 

 5e-8 - 5e-4 9.29-15.8K (0.052-0.088%) 2.75-10.1K (0.019-0.07%) 331-3865 (0.00043-0.005%) 

 < 5e-8 16-4327 (8.9e-05-0.024%) 1-142 (6.9e-06-0.00098%) 0-0 (0.0-0.0%) 

Table S22 Batch effects for sequencing center in the raw genotype calls. Six phenotypes for batch effects are tested. Results 
are conditioned on marker minor allele frequency (MAF). Table shows the minimum and maximum number and fraction of 
markers, across the six phenotypes) with p-value in each p-value range. E.g., when considering the unfiltered dataset and 
the XSA cohort, MAF > 0.01, between 919 and 989k markers have p-value between 0.005 and 0.05, corresponding to 4.6-
4.9% of markers with MAF > 0.01. 
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XBI P-value MaF > 0.01 MaF  0.01 - 0.001 MaF < 0.001 

Unfiltered > 0.05 16.8-17.1M (92-94%) 9.47-9.55M (94-95%) 254-266M (93-98%) 

 0.005-0.05 887-910K (4.9-5.0%) 472-495K (4.7-4.9%) 6.30-17.3M (2.3-6.3%) 

 5e-4 - 0.005 113-155K (0.62-0.85%) 54.4-71.4K (0.54-0.71%) 466-942K (0.17-0.35%) 

 5e-8 - 5e-4 40.2-137K (0.22-0.75%) 10.4-40.5K (0.1-0.4%) 38.5-74.5K (0.014-0.027%) 

 < 5e-8 15.9-180K (0.087-0.99%) 925-27218 (0.0092-0.27%) 85-1389 (3.1e-05-0.00051%) 

Filtered > 0.05 15.4-15.4M (95-95%) 8.78-8.79M (95-95%) 216-225M (93-97%) 

 0.005-0.05 733-738K (4.5-4.5%) 418-421K (4.5-4.6%) 5.63-14.7M (2.4-6.4%) 

 5e-4 - 0.005 72.5-82.8K (0.45-0.51%) 42.1-44.9K (0.46-0.49%) 425-848K (0.18-0.37%) 

 5e-8 - 5e-4 8.07-24.2K (0.05-0.15%) 4.74-6.31K (0.051-0.068%) 35.4-64.2K (0.015-0.028%) 

 < 5e-8 117-11166 (0.00072-0.069%) 0-592 (0.0-0.0064%) 0-7 (0.0-3e-06%) 

XAF P-value MaF > 0.01 MaF  0.01 - 0.001 MaF < 0.001 

Unfiltered > 0.05 27.9-28.0M (95-95%) 19.6-19.8M (94-95%) 77.1-79.6M (96-99%) 

 0.005-0.05 1.30-1.34M (4.4-4.5%) 0.950-1.13M (4.6-5.4%) 0.670-3.04M (0.84-3.8%) 

 5e-4 - 0.005 132-148K (0.45-0.5%) 72.6-124K (0.35-0.59%) 16.1-107K (0.02-0.13%) 

 5e-8 - 5e-4 13.8-32.8K (0.047-0.11%) 5.97-14.3K (0.029-0.068%) 300-5385 (0.00037-0.0067%) 

 < 5e-8 92-5922 (0.00031-0.02%) 36-136 (0.00017-0.00065%) 0-3 (0.0-3.7e-06%) 

Filtered > 0.05 25.3-25.3M (95-95%) 17.6-17.8M (94-95%) 60.3-62.2M (96-99%) 

 0.005-0.05 1.16-1.19M (4.4-4.5%) 856-996K (4.6-5.3%) 0.556-2.42M (0.89-3.9%) 

 5e-4 - 0.005 110-118K (0.41-0.44%) 64.7-106K (0.35-0.57%) 13.9-85.6K (0.022-0.14%) 

 5e-8 - 5e-4 11.6-13.5K (0.043-0.051%) 5.14-10.9K (0.027-0.058%) 258-4427 (0.00041-0.0071%) 

 < 5e-8 1-104 (3.8e-06-0.00039%) 0-1 (0.0-5.3e-06%) 0-0 (0.0-0.0%) 

XSA P-value MaF > 0.01 MaF  0.01 - 0.001 MaF < 0.001 

Unfiltered > 0.05 17.7-17.8M (95-95%) 13.8-14.1M (94-96%) 67.2-68.7M (97-99%) 

 0.005-0.05 836-876K (4.5-4.7%) 506-780K (3.5-5.3%) 0.674-2.14M (0.97-3.1%) 

 5e-4 - 0.005 84.3-103K (0.45-0.55%) 33.4-84.6K (0.23-0.58%) 14.8-71.5K (0.021-0.1%) 

 5e-8 - 5e-4 9.70-26.1K (0.052-0.14%) 2.83-10.0K (0.019-0.068%) 531-3555 (0.00077-0.0051%) 

 < 5e-8 83-6253 (0.00044-0.033%) 26-94 (0.00018-0.00064%) 0-11 (0.0-1.6e-05%) 

Filtered > 0.05 15.6-15.6M (95-95%) 10.8-11.0M (94-96%) 40.0-40.9M (97-99%) 

 0.005-0.05 718-736K (4.4-4.5%) 412-603K (3.6-5.3%) 0.478-1.38M (1.2-3.3%) 

 5e-4 - 0.005 71.8-76.5K (0.44-0.47%) 25.4-65.0K (0.22-0.57%) 11.0-49.4K (0.027-0.12%) 

 5e-8 - 5e-4 8.02-9.39K (0.049-0.057%) 2.14-6.70K (0.019-0.058%) 394-2561 (0.00095-0.0062%) 

 < 5e-8 0-47 (0.0-0.00029%) 0-0 (0.0-0.0%) 0-0 (0.0-0.0%) 

Table S23 Batch effects for sequencing center in the imputed genotype calls. Six phenotypes for batch effects are tested. 
Results are conditioned on marker minor allele frequency (MAF). Table shows the minimum and maximum number and 
fraction of markers, across the six phenotypes) with p-value in each p-value range. E.g., when considering the unfiltered 
dataset and the XSA cohort, MAF > 0.01, between 836 and 876k markers have p-value between 0.005 and 0.05, 
corresponding to 4.5-4.7% of markers with MAF > 0.01. 
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Phenotype 

LD score 

intercept 

Mean 

χ2 

unadj 

λ 

unadj 

λ 

unadj 

maf<0.01 

Attenuation 

ratio Method Marker 

Age at 

menopause 

1.051 1.463 1.048 1.005 0.110 BOLT-LMM chr19:3939254 

Age of 

menarche 

1.095 2.081 1.048 1.028 0.088 BOLT-LMM chr12:57010289 

Albumin 1.236 2.028 1.094 1.017 0.229 BOLT-LMM chr4:73399955 

Calcium 1.166 1.985 1.078 1.011 0.169 BOLT-LMM chr4:73399955 

Glycine 0.976 1.457 1.016 0.983 -0.053 BOLT-LMM chr16:81069345 

Height 1.825 5.222 1.150 1.107 0.195 BOLT-LMM chr20:37261871 

Hemoglobin 

concentration, 

Asian ancestry 

1.008 1.015 1.001 0.998 0.574 Linear 

regression 

chr16:88716656 

IGF-1 serum 

levels 

1.320 2.995 1.079 1.053 0.160 BOLT-LMM chr20:37261871 

Mean 

corpuscular 

volume 

1.215 1.896 1.033 1.018 0.240 BOLT-LMM chr11:5225486 

Non-HDL 

cholesterol, 

European 

ancestry 

1.786 2.465 1.082 1.010 0.537 BOLT-LMM chr1:55029214 

Non-HDL 

cholesterol, 

African ancestry 

1.000 1.005 1.005 1.004 0.072 Linear 

regression 

chr1:55063542 

Total 

cholesterol 

1.739 2.568 1.082 1.009 0.471 BOLT-LMM chr4:73399955 

Uric acid 0.803 4.198 1.059 1.036 -0.062 BOLT-LMM chr1:125079549, 

chr1:121062032 

Gout 1.008 1.336 0.847 0.838 0.024 Logistic 

regression 

chr1:125079549, 

chr1:121062032 

Hereditary 

ataxia 

1.019 1.017 0.262 0.154 1.142 Logistic 

regression 

chr19:13207859 

Myotonic 

dystrophy 

1.050 1.036 0.119 0.053 1.408 Logistic 

regression 

chr19:45770205 

Table S24 Correction factors and inflation metrics from phenotypes used in this study; LD score intercept, mean chi-squared 
unadjusted value, unadjusted lambda value, unadjusted lambda value for rare (< 1% MAF) markers and attenuation ratio. 
Marker represents the ID of the association reported. 
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Marker 

R2  
imp vs 

raw 

SaM 
vs. 

others 
SaM vs. 

SaV 

SaV 
vs. 

others 
deCODE 

vs. Sa 
deC vs. 
SanM deC vs. SaV 

chr1:55063542 0.997 0.098 0.294 0.746 0.211 0.1120 0.9887 
chr19:13207859 0.995 0.176 0.317 0.496 0.390 0.2105 0.6639 
chr19:45770205 0.879 0.292 0.583 0.731 0.394 0.3174 0.8304 
chr11:5225486 1.000 0.436 0.984 0.730 0.349 0.3726 0.6142 
chr12:57010289 1.000 0.429 0.006 0.006 0.634 0.7400 0.0090 
chr1:121062032 0.997 0.060 0.413 0.896 0.080 0.0563 0.8189 

chr1:125079549 0.998 0.103 0.317 0.620 0.186 0.1133 0.8276 
chr20:3726187 0.995 0.682 0.116 0.133 0.714 0.897 0.1720 
chr19:3939254 0.999 0.811 0.653 0.484 0.556 0.707 0.4582 
chr1:55029214 1.000 0.352 0.091 0.042 0.092 0.235 0.0318 
chr4:73399955 1.000 0.547 0.815 0.624 0.407 0.479 0.5579 
chr16:88716656 0.995 0.057 0.031 0.059 0.460 0.113 0.1034 
chr16:81069345 1.000 0.012 0.245 0.907 0.023 0.012 0.735 

Table S25 R2 between raw genotypes and imputed markers in the XBI cohort. p-value for batch effect in the XBI cohort for 
markers presented in this study. deC = samples sequenced at deCODE genetics.  SaV = samples sequenced using the Sanger 
Vanguard processing pipeline.  SaM = samples sequenced using the Sanger main phase pipeline. Sa = samples sequenced at 
Sanger. Relationship between marker IDs and phenotypes can be seen in Table S24. 
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Methods 
Datasets 

UKB data 
The UKB phenotype and genotype data were collected following an informed consent 
obtained from all participants. The North West Research Ethics Committee reviewed and 
approved UKB’s scientific protocol and operational procedures (REC Reference Number: 
06/MRE08/65). Data for this study were obtained and research conducted under the UKB 
applications license numbers 24898 and 68574.   
Phenotypes were downloaded from the UKB, and we provide information corresponding to 
how we processed the resources and created phenotype lists with reference to the field 
identity available in the UKB data showcase (Table S15Table S15). 

Icelandic data 
The gout sample set78, a total of 1740 Icelanders, was recruited through multiple sources. A 
subset of these individuals were regular users of anti-gout medication corresponding to the 
Anatomical Therapeutic Chemical Classification System class M04 (ATC-M04). Individuals 
using ATC-M04 were identified through questionnaires at the time of entry into genetics 
projects at deCODE and provided by the Directorate of Heahth from entry in the 
Prescription Medicines Register (2005-2020) or the Register of RAI Assessments and 
Minimum Data Set (MDS) for residents and applicants of nursing homes (1993–2018).  
Furthermore, about half had received a clinical diagnosis of gout (International Classification 
of Disease: ICD- 9 code 274 or ICD-10 code M10) between 1984 and 2019 at Landspitali, the 
National University Hospital of Iceland or at two rheumatology clinics, or such a diagnosis 
was determined by examining RAI and MDS medical records. 
Serum uric acid levels in blood samples from 95,086 Icelanders were obtained from 
Landspitali, the National University Hospital of Iceland and the Icelandic Medical Center 
(Laeknasetrid) Laboratory in Mjodd (RAM) between 1990 and 2020.  Serum uric acid levels 
were normalized to a standard normal distribution using quantile-quantile normalization 
and then adjusted for sex, year of birth and age at measurement. For individuals for whom 
more than one measurement was available, we used the average of the normalized value. 
Serum uric acid levels are determined from an enzymatic reaction in which uricase oxidizes 
urate to allantoin and hydrogen peroxide, which with the aid of peroxidase and a dye forms 
a colored complex that can be measured in a photometer at a wavelength of 670 nm. 
All participating individuals who donated blood signed informed consent. The identities of 
participants were encrypted using a third-party system approved and monitored by the 
Icelandic Data Protection Authority. The study was approved by was approved by the 
National Bioethics Committee of Iceland (Approval no. VSN-15-023) following evaluation of 
the Icelandic Data Protection Authority. All data processing complies with the instructions of 
the Data Protection Authority (PV_2017060950ÞS). 
RNA sequence data analysis was approved by the Icelandic Data Protection Authority and 
the National Bioethics Committee of Iceland (no. VSNb2015030021). 

Danish data 
Data was provided from the Danish Blood Donor Study (DBDS)79. The DBDS genetic study 
has been approved by the Danish National Committee on Health Research Ethics (NVK-
1700407) and by the Danish Capital Region Data Protection Office (P-2019-99).  
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WGS data quality specification.  
Sequencing was performed at the two sequencing providers, deCODE genetics and the 
Wellcome Trust Sanger Institute, according to the specifications set forth in the material 
transfer agreement for UKB Access application nr. 52293 – Summarized as follows: 
 

QC parameter Sample level Batch level 

Sequencer type Illumina NovaSeq6000 or better with 
standard 151 base, parired-end 
chemistry 

 

Sequencing library PCR-free, uniquely dual-indexed in 
multiplexed pools 

 

Read-length >100bp  

Proper-pairs % of mapped read-pairs from the 
same DNA fragment with appropriate 
orientation and separation: 
≥95% PASS 
<95% FAIL 

 

Coverage % of autosome covered ≥15x: 
≥95% PASS 
<95% FAIL 
 
 

The mean sample genome 
coverage across the 
monthly sequencing batch 
is expected to be 
approximately 30X across 
the genome with a 
minimum coverage of 26X. 

Contamination level 
1 
(Freemix) 
 

Freemix sample contamination level 
as measured by VerifyBamID80: 
≥5% FAIL 
>1% and <5% further analyzed with 
Read_haps81 
<1% PASS 

≤4 samples per 96 sample 
sequencing plate  
≤1% per monthly 
sequencing batch  

Contamination level 
2 
(Read_haps) 

For samples with Freemix values 1-
5%, contamination is verified by 
Read_haps 
  

 

Sample Identity 
Concordance 

Discordance at non-reference 
genotypes ≥2% FAIL 
<2% PASS 
 

Sample identity 
concordance failures 
within each monthly 
sequencing batch must be 
<0.05% 

Montly seq batch 
overall failure rate 

 Repeat Sample requests 
are no more than 1% of 
the monthly sequencing 
batch 

 
All calculations of data quantity (yield) and coverage must exclude duplicate reads, 
adaptors, overlapping bases from reads from the same fragment, soft-clipped bases 
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Whole genome sequencing 
 
DNA samples were selected by UK Biobank using its picking algorithm which ensures 
pseudo-randomisation of recruitment centres and collection times across batches, to avoid 
potential batch effects and shipped on dry-ice to the sequencing centers at Welcome Sanger 
Institute in Cambridgeshire, UK (WSI) and deCODE genetics in Reykjavik, Iceland (deCODE).  
The samples were in 70 µL aliquots in Fluid-X 0.3 mL, externally threaded 2D barcoded tubes 
in 96-well racks with linear barcodes (Brooks Life Sciences) at a normalized, target DNA 
concentration of 12 ng/µL in 1x TE buffer (10 mM Tris-HCl, 1.0mM EDTA, pH 8.0). Upon 
arrival, samples/plates were registered in the respective Laboratory Information 
Management System (LIMS) and stored until use at -20 °C. DNA concentration was 
confirmed by UV/VIS spectrophotometry (Trinean DropSense system or equivalent). 
Sequencing libraries were prepared using the NEBNext Ultra™ II PCR-free kit (New England 
Biolabs). In short, 500 ng of genomic DNA was fragmented to a mean target size of 450-500 
bp using high frequency Adaptive Focused Acoustics Technology (AFA) from Covaris Inc 
(LE220plus instruments and 96-well TPX-AFA plates) . End repair and A-tailing was 
performed in a single step followed by ligation of unique dual indexed sequencing adaptors 
(IDT for Illumina) and two rounds of SPRI-bead purification (0.6X) using an automatic 96/8-
channel liquid handler (Hamilton Microlab STAR and Tecan Freedom EVO). Quality 
(concentration and insert size) of sequencing libraries was determined using the LabChip GX 
(96-samples) instrument (Perkin Elmer). Sequencing libraries were pooled appropriately 
using  automatic 8-channel liquid handlers and sequenced using Illumina´s NovaSeq6000 
instruments. Paired-end sequencing on the S4 flowcell (v1.0 chemistry) was performed with 
a read length of 2x151 cycles of incorporation and imaging, in addition to 2*8 index cycles to 
a mean coverage of at least 26X per sample. Real-time analysis (RTA) involved conversion of 
image data to base-calling in real-time. All steps in the workflow were monitored using the 
in- LIMS with barcode tracking of all samples/plates and reagents.  
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Sequence processing pipeline 
The deCODE pipeline (Fig. S16, Fig. S17) for UKB consists of the following steps. An 
automated pipeline monitors the data coming off the sequencers and starts processing the 
data when the sequence run folder is ready. The steps taken are: 

1. bcl2fastq is run on the sequencer run folder to demultiplex the data and convert 
each (lane,index) combination into fastq pairs. A checksum is generated for each 
fastq pair and stored for future reference. The reads in the fastq files are counted 
and compared against the expected counts coming from the sequencer. The 
Undetermined read files are inspected, looking for reads that haven't been 
accounted for. 

2. Each pair of fastq files is processed to create a CRAM file. The steps are 
a. Align against GRCh38 
b. Fix mate pair information 
c. Mark duplicates. 
d. Sort in genomic order 
e. calculate checksum and compare with fastq checksum. Failure if they don't 

match and process is rerun 
3. CRAM file is compared with chip genotypes for same sample. Result reported back to 

the lab. Failure if mismatch rate >2% (potential sample error) 
4. QC stats are collected and thresholds applied (Fig. S18). Results are reported back to 

the lab and CRAM is failed if it doesn't pass all quality parameter thresholds. Failed 
lanes are archived and not used in further processing. 

5. A merge process monitors the (lane,index) data and merges the data when it is likely 
that sufficient data have been collected for a sample. The merge process injects all 
the necessary header information into the file making it ready for export to UKB. 

6. When the file has been created, a checksum is generated for each read group and 
compared with the corresponding checksums for the fastq files. Failure if the don't 
match and the merge process is rerun. 

7. The merged CRAM file is archived and the upstream data are marked for deletion. 
8. Variant calling is performed on the CRAM file and the result is prepared for export to 

UKB. This includes the production of the BQSR25 table as well as a gVCF file. 
9. QC stats for the merged file are collected and thresholds applied. Results are 

reported back to the lab.  
a. If the file fails on quantity only, the file is held, the lab initiates a top-up run 

which is processed as described above and upon completion is merged with 
the held CRAM file into a new merged CRAM file. That new merged CRAM file 
is then processed again as described above 

b. If the file fails on other quality parameters, the file is failed and the sample is 
flagged in the lab. The lab must decide the appropriate action (abandon 
sample, request a new library) 

10. The merged CRAM file, along with variant calling and auxiliary data are sent to UK 
Biobank 
 

Pipeline details 

Alignment 
Each read group is aligned to GRCh38 reference (GRCh38 reference with alt contigs plus 
additional decoy contigs and HLA genes) with bwa mem (v0.7.17)23 using parameters '-K 
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100000000 -Y -t 24'.  To add MC and MQ tags, samblaster82 (v0.1.24) is used with 
parameters '-a --addMateTags'. Duplicates are marked using Picard MarkDuplicates 
(v2.20.3) with parameters "ASSUME_SORT_ORDER=queryname READ_NAME_REGEX='[a-zA-
Z0-9-]+:[0-9]+:[a-zA-Z0-9]+:[0-9]:([0-9]+):([0-9]+):([0-9]+)'", then the results are coordinate 
sorted using samtools83 (v1.9). 

Merging 
Internal thresholds are set for total sequence yield and read count, GC fraction (first and 
second read in pair) and bias compared to reference, flagging of base conversions in sample 
preparation, where certain trinucleotides are more commonly observed in sequencing than 
their reverse complement, flagging of base conversions in sample preparation, where 
certain trinucleotides are more commonly observed in sequencing than their reverse 
complement, percentage aligned library read pairs, library insert fragment size 
distribution, sequencing adapter contamination level, sequence run base call quality 
values, genotype concordance rate against supplied genome-wide genotype data supplied 
by UKB for each participant sample, sequence error rate, sequence contamination rate and 
genome coverage. Read group bam files are assessed for these parameters and those that 
pass all the thresholds are merged using samtools83 merge (v1.9) and converted to CRAM 
format. 

Single sample variant calling 
A base quality recalibration table is created using GATK BaseRecalibrator (v4.0.12) with 
known sites files dbSNP138, Mills and 1000G gold standard indels, and known indels from 
GATK resource bundle and parameters "--preserve-qscores-less-than 6 -L chr1 .. -L 
chr22".  For each chromosome in chr1 .. chr22, chrX, chrY, the resulting base recalibration 
table is applied using GATK ApplyBQSR (v4.0.12) with parameters "--preserve-qscores-less-
than 6 --static-quantized-quals 10 --static-quantized-quals 20 --static-quantized-quals 30 --
create-output-bam-index" and then variants are called using GATK25 HaplotypeCaller 
(v4.0.12) with parameters "-ERC GVCF". The resulting 24 chromosome g.vcf files are then 
combined using Picard25 MergeVcfs (v2.20.3). 

Quality assessment reports 
Reports (Table S16) to assess the data quality are created using the following programs (in 
the steps Lane QC, QCPreview and QCStats): 

• BamQC (v1.0.0) run on each lane before merge (Table S17). 
• samtools83 stats (v1.9) using parameters "-d -p" , i.e. excluding duplicates and 

overlapping basepairs 
• Picard CollectWGSMetrics (v2.20.3) is run with parameters 

"USE_FAST_ALGORITHM=True MINIMUM_BASE_QUALITY=0 
MINIMUM_MAPPING_QUALITY=0 COVERAGE_CAP=1000" once for whole genome, 
once for autosomes only 

• Genotypes are called from .g.vcf files using GATK GenotypeGVCFs (v4.0.12) 
• Sample contamination is assessed by running verifyBamId80 (v1.1.3) with parameters 

"--ignoreRG --chip-none --free-full --maxDepth 100 --precise" using 1000G phase 3 
autosomal SNPs with European MAF > 0.01 

• Sample contamination is accessed again using read_haps81 "-q 30 -mq 30 -c 1 -w 
1000" 

• Genetic sex is determined using a set of some 100 000 chrX SNPs from gnomad with 
Non-Finnish European MAF > 0.2.  For each variant, the genotype is called using 
GATK GenotypeGVCFs. Then the ratio of observed to expected heterozygosity 
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assuming diploidy is computed. If ratio > 0.7 the sample is called female, if ratio < 0.3 
the sample is called male, otherwise undetermined. Implemented using in-house 
script gvcf_sexcheck.py 

• Picard25 Genotypeconcordance (v2.20.3) is run with parameter "MIN_GQ=30" to 
determine concordance with genotypes for quality variants from a chip array. 
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Sequence coverage 
Our design was to have at least 95% of the genome covered to at least 15x coverage in each 
sample.  Nearly half of the variants detected in this study are singletons, detected in only 
one sample and a large majority of the variants are rare.  GraphTyper requires that at least 4 
high quality reads be observed at position for a marker to be called.  At 15x coverage the 
probability that a variant observed in a single individual would be misclassified due to 
random sampling is 3.5%. Sequence coverage across the genome computed over 1,000 
randomly selected samples can be seen in Fig. S19.   
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SNP and indel calling with GraphTyper 
 
Prior to running GraphTyper we preprocessed all input CRAI indices by extracting a large 
single file containing all CRAI index entries with sample_id for a 50kb window (with 1 kb 
padding at each side of the region) for all samples. For each region, we then created a 
chopped CRAI for each sample by processing the large file for the corresponding region, 
substantially reducing the amount of CRAI index entries read. 
Further, we created a sequence cache of the reference FASTA file using the 
`seq_cache_populate.pl` script distributed with samtools 1.9. In each region we copied the 
corresponding sequence cache to the local disk and used it for reading the CRAM files by 
setting the `REF_CACHE` environment variable. 
We ran GraphTyper (v2.7.1) using the `genotype` subcommand. The full command we ran 
was in the format: 
graphtyper genotype ${UKBIO_REFERENCE} 

 --sams=${SAMS} 

 --sams_index=${CRAI_TMP}/crai_filelist.txt 

 --avg_cov_by_readlen=${COVERAGES} 

 --region=${REGION} 

 --threads=${THREADS} 

 --verbose  

  

Where UKBIO_REFERENCE is the GRCh38_full_analysis_set_plus_decoy_hla FASTA 
sequence file, SAMS is a list of all input BAM/CRAM files, CRAI_TMP is a path to the chopped 
CRAI files on the local disk, COVERAGES is the coverage divided by the read length for each 
input file, REGION is the genotyping region and THREADS is the number of threads to use.  
 

Running time 
 
All jobs were run using 12 cors with 60GB of reserved RAM.  Approximately 1% of jobs were 
rerun using 24 cores with 120GB reserved RAM. A few jobs requiring more cores and 
memory, with a single job finishing with 48 cores and 1000GB of RAM.  Total reserved CPU 
time on cluster was 5.8M CPU hours and total effective compute time 5.0M CPU hours.  The 
difference in these numbers is explained by the fact that not all cores reserved for the 
program may not utilize all at the same time. 
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SNP and indel calling with Calling with GATK 
 
We used GATK versions 4.1.7.0 for all regions.  Regions that failed were rerun with version 
4.1.8.1. 
 
The process starts by slicing the 50kb region (padded with 1kb) of every sample file with 
tabix (from htslib83 version 1.9) onto local disk and then builds a GenomicsDB with GATK 
GenomicsDBImport. The command we ran was the following: 
gatk --java-options "-Xmx${JAVAMEM_TOTAL}G 

 -Xms${JAVAMEM_TOTAL}G 

 -DGATK_STACKTRACE_ON_USER_EXCEPTION=true" 

    GenomicsDBImport 

    --genomicsdb-workspace-path ${GDB} 

    --intervals ${REGION_PADDED} 

    --tmp-dir ${GDB_TMP} 

    --sample-name-map ${SNMAP} 

    --batch-size ${BATCH_SIZE} 

    --reader-threads ${RTHREADS} 

where SNMAP is the tab-delimited text file of sample names and paths to samples. The 
parameters --batch-size and --reader-threads are used to reduce memory usage. 
We then split the padded region into as many smaller regions as the number of threads, and 
pad those regions again with 1kb. The GenotypeGVCFs command was then ran wrapped in 
GNU parallel 
parallel --halt=now,fail=1 

 --jobs=${NTHREADS} 

 --xapply 

    "${GATK_WITH_OPTS} GenotypeGVCFs 

    --genomicsdb-use-vcf-codec 

      -R ${REF} 

      -V gendb://${GDB} 

      --tmp-dir=${tmpdir} 

      -L {1} 

      -O {2} && 

    ${GATK_WITH_OPTS} SelectVariants -R ${REF} 

    -V {2} 

    -L {3} 

    -O {4}" 

    :::: ${REGIONS_PADDED} ${SPLITFILES_PADDED} ${REGIONS} ${SPLITFILES} 

where REF is the reference, REGIONS_PADDED is a file containing the padded subregions, 
SPLITFILES_PADDED is a file containing the intermediate padded output file paths, REGIONS 
is a file containing the subregions and SPLITFILES is a file containing the intermediate 
output file paths after selecting the variants. 
We then run the following command to combine the intermediate output files 
gatk --java-options "-Djava.io.tmpdir=$tmpdir 

 -Xmx${JAVAMEM_TOTAL}G 

 -Xms${JAVAMEM_TOTAL}G 

 GatherVcfs -R ${REF} 

  -O ${OUT} 

  --arguments_file ${VARARGS} 

where VARARGS is a file containing arguments for all input intermediate vcfs. 
 
It should be noted that running GATK out of the box will cause every job to read the entire 
gVCF index file (.tbi) for each of the 150,119 samples. The average size of the index files is 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


110 
 

4.15MB, so each job would have to read 4.15*150,126 = 623GB of data on top of the actual 
gVCF slice data. For 60,000 jobs, this would amount to 623GB*60,000 = 37PB or 25.2GB/sec 
of additional read overhead if the jobs are run on 20,000 cores in 17 days. This read 
overhead will definitely prevent 20,000 cores from being used simultaneously. However, 
this problem was avoided by pre-processing the .tbi files and modifying the software 
reading the gVCF files from the central storage in a similar fashion as we did for GraphTyper 
and the CRAM index files (.crai). 
 
All jobs were run initially with 6 cores and 100GB of RAM. Jobs that failed due to memory 
were rerun with more memory, up to a maximum of 1,458GB.  Calling for 320 of the 50kb 
regions failed using GATK version 4.1.7.0, either due to 1,458GB of memory being insuffient 
or program failure.  These regions were split into 3,066 5kb regions (regions at the end of 
chromosomes were smaller than 50kb) and rerun with GATK version 4.1.8.1.  320 regions, 
representing 1.6Mb, of the 3,066 regions again failed calling with GATK version 4.1.8.1. No 
further attempt was made to call these regions.  Total reserved CPU time on cluster was 
9.6M CPU hours and total effective compute time 4.0M CPU hours.  The difference in these 
numbers is explained by the fact that while 6 cores reserved for the program it may not 
utilize all at the same time. 
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Evaluation of SNP and indel callers across 500 random regions 
Prior to running variant calling on the whole dataset, we evaluated joint variant callers for 
the UKB sequencing effort. We evaluated the quality of the genotype calls and feasibility of 
variant calling 150,000 or more WGS samples. There were some minor differences between 
this call set and the final set, for example we included seven Genome in a Bottle (GIAB) 
samples for evaluation purposes in the evaluation set. However, we believe these 
differences should have minimal effects on the results. 
 

Input data 
The evaluation was run on the set of 150,126 WGS samples including 7 WGS samples 
obtained from the GIAB Consortium (websites).  
 
All of the GIAB BAM files were down sampled to approximately 30x coverage using 
samtools view -s 42.FRAC option with seed 42 and FRAC was the fraction of reads to 
keep such that 30x was obtained to represent more closely the target coverage of the other 
input files. Samtools version 1.9 was used. 
 
We evaluated 500 regions (50kb each). We selected the regions at random by listing all such 
regions (only excluding regions which contained only Ns) and using the first 500 regions 
from the output of sort -R. 
 

SNP and indel calling with GraphTyper 
We ran GraphTyper as described for the whole dataset, with the additional option --
normal_and_no_variant_overlapping.  This was done to simplify the comparison to the 
GIAB truth sets using the files which contained no variant overlaps as rtg vcfeval 
sometimes misinterprets overlapping variants. This option however should normally be 
omitted to generate only a set where variants may overlap. We used the non-overlapping 
set when comparing to the GIAB truth sets but in all other analysis of GraphTyper variants 
we used the "normal" variants set. 
 

Resource Requirements 

GraphTyper 
The GraphTyper jobs were run on 12 cores and 60GB of memory reserved for each job 
(5GB/core). Average CPU time was 82 hours and average elapsed walltime was 7.8 hours, 
resulting in average reserved core time (walltime*12) of 93.6 hours. For 150k samples and 
the entire genome (60,000 50kb slices), this translates to overall compute time of 
93.6*60,000 = 5.62M hours, or 12 days if the jobs are run in parallel on 20,000 cores. 
The input data to GraphTyper are CRAM files. The average size of an input CRAM file is 
17.8GB, so the total size of data to be read is 17.8GB*150,126 = 2.7PB. Reading those data 
once over a period of 12 days was estimated to result in average sustained read rate of 
2.6GB/sec, assuming no overhead. 

GATK HaplotypeCaller 
The GATK jobs were run on 6 cores and 80GB of memory reserved for each job 
(13.33GB/core). With these settings, 488 of the 500 jobs completed. The 12 remaining jobs 
finished when given more memory. The average cpu time was 53.4 hours and average 
elapsed walltime was 22.5 hours, resulting in average reserved core time (walltime*6) of 
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135.0 hours. For 150k samples and the entire genome (60,000 50kb slices), this translates to 
overall compute time of 135*60,000 = 8.1M hours, or 17 days if the jobs are run in parallel 
on 20,000 cores. 
 

Output sizes 
Both programs return a gzip compressed vcf file (.vcf.gz), one for each region. The average 
file size for GATK is 12.0GB while for GraphTyper it is 7.6GB. For 150k samples and the entire 
genome, this translates to a total estimated output size of 12GB*60,000 = 720TB for GATK, 
while the output for GraphTyper was 7.6GB*60,000 = 445TB. This difference in size may in 
part be explained by the fact that GATK reports more variants and in part by the fact that 
GATK does not cap genotype likelihoods at 255 like GraphTyper, thus resulting in worse 
compression ratio. 
 

Comparison to the GIAB truth sets 
In both sets we genotyped seven GIAB samples. We extracted the calls made in each of 
those sample in the 150k sample run and compared to their v3.3.2 truth set in high 
confidence regions. Variant callers do not generally have the same output when genotyping 
a single sample compared to extracting the sample from a multi-sample run. 
We ran the tool RTG-vcfeval84 to make the comparison to the truth set in the high 
confidence regions which overlapped the 500 regions. For all of the samples, GraphTyper 
had both higher sensitivity and precision than GATK on the full sets (Table S1). The 
difference between the two callers was small (99.44% vs. 99.34%,Table S1) for SNPs but 
more marked for indels (97.58% vs. 94.14%, Table S1), were both methods performed much 
worse on indels only compared to single sample calling, indicating that indel calling is 
particularly difficult when genotyping a large population. 
 

Overview of genotyping results 
We analyzed the evaluation set to further learn the differences between the two genotyping 
datasets. In this analysis, all of the variants from the VCF were analyzed on per alternative 
allele basis. Therefore the number of variants we report here is higher than the number of 
VCF records due to multi-allelic variants. 
 

Variant counts 
We counted the number of variants in each dataset (Table S18, Fig. S20). We saw that there 
were more variants in the GATK dataset. However, GATK also had greater number of 
missing calls (genotype quality = 0 in the VCF).  It is expected that the ratio of SNP 
transitions to transversion is roughly 2.1-2.3 in humans genome-wide. We saw lower ratios 
in the call sets, but it was higher in the GraphTyper set (1.639) than in the GATK set (1.507).  
Indel sizes were limited to 100 bp in the GraphTyper dataset but had a larger range in the 
GATK set (Fig. S21). 
 

Batch Effect by Sequence Center 
Further, we investigated how many common variants had genotype calls which were highly 
correlated to the sequence center for which the sample was sequenced in.  As the batches 
had a highly different amount of samples we randomly selected 10,000 samples from each 
batch and restricted our analysis to those sample. We tested whether there were more 
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alternative calls (either ref/alt or alt/alt calls) compared to the number of reference calls in 
each set using Fisher’s exact test. Only common variants were tested, as we expect fewer 
rare markers to be rejected due to smaller sample size. We used a p-value threshold of 10−6, 
any variants with a lower p-value in any of three tests were considered as failed. 
 
To our surprise, we saw that a large fraction of the common variants are highly correlated 
with the sequence center (Table S19), on average of 7.47% and 1.01% of variants for GATK 
and GraphTyper, respectively. 
 

Singletons variants 
Fig. S22a) shows the distribution of singletons by mutation classes between and the variant 
allele frequency (VAF) of singletons.  A VAF of 50% is expected for singletons.  
 

Parent-Offspring Trio Analysis 
There were 28 parent-offspring trios in the dataset. We analyzed Mendelian errors in the 
trios as well as the rate of transmission of alternative alleles from parent to offspring. We 
assume that the alleles transmit from parent to child with equal likelihood and use the 
transmission rate to estimate false discovery rate and number of germline variants in the 
datasets. More info on the method is described24. 
 

Mendelian Errors 
We measured non-reference Mendelian errors by checking for Mendelian consistency when 
a parent had an alternative genotype (ref/alt or alt/alt) (Table S3). 
 

Estimating FDR and number of TP in trios 
Using transmission rate in trios we estimate both false discovery rate (FDR) and the number 
of true positive (TP) variants24. We also stratified the results by variant type.  We estimated 
that GraphTyper finds slighlty more true positive variants across all variant types with a 
much lower false discovery rate than GATK (Table S3). GATK finds more true positive SNPs, 
but GraphTyper more true positive indels. 
 

Monozygotic Twin Non-Ref Error Rate 
There were 14 pairs of monozygotic twins in the dataset. We checked how many of the non-
reference variants were consistent between a pair of monozygotic twins. We considered a 
variant to be non-ref if either twin had an alternative allele in their genotyped. GraphTyper 
had lower error rate between monozygotic twins (Table S3C). 
 

Summary 
Overall, we find that GraphTyper performs consistently slightly better than GATK in the 
variant quality experiments. Despite that GATK reports more variants than GraphTyper, we 
estimate that GraphTyper’s sensitivity is better in both the GIAB truth set comparison and 
family trio analysis. There appears to be larger gap between the methods in terms of noise, 
GATK performs worse in precision in the GIAB comparison, in the family trios we estimated 
that GATK’s false discovery rate is twice as much as GraphTyper’s, and 7-fold more common 
GATK variants failed the batch effect test compared to GraphTyper.  
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Comparison of final GraphTyper and GATK call sets. 
In addition to the two callsets, we also define the set "GraphTyperHQ" as the set of 
GraphTyper alternative alleles with AAScore above 0.5. 

Variant counts and frequency classes 
We counted total number of variants in the sets (Table S7). When counting the number of 
"variants" in any context hereafter, we are referring to alternative alleles excluding the 
alleles that are denoted as '*' in the VCF. 
 
An informative call is one with non-zero quality (GQ > 0). We saw that GATK had more 
variants but also much more missing calls. We split the sets into three frequency classes: 
Common (Allele frequency (AF) > 0.1%), rare (AF <0.1%, excluding singletons) and singletons 
(one called carrier in the set). A vast majority of the datasets (95.6% - 96.0%) are have an 
allele frequency below 0.1%. Singletons account for nearly half of the variants (43.9-45.5%) 
(Table S7). 
The transition transversion ratio was 1.550, 1.642 and 1.657 for the GATK, GraphTyper and 
GraphTyperHQ datasets, respectively (Table S7B, Fig. S23). 
 

Batch effect by sequence center 
We investigated how many common variants had genotype calls which were highly 
correlated to the sequence center, i.e. the location which the sample was sequenced at.  
We randomly selected 10,000 samples from each sequencing center analysis pipeline and 
restricted our analysis to those samples. We tested whether there were more alternative 
calls (either ref/alt or alt/alt calls) compared to the number of reference calls in each set 
using Fisher's exact test. Only common variants were tested, as we expect rare variants are 
less likely to be rejected due to limited sample size. The same variant often fails multiple 
tests, 5.69%, 0.97% and 0.20% of common variants associate with sequencing center for the 
GATK, GraphTyper and GraphTyperHQ datasets, respectively (Table S20). 
 

Variant transmission in parent-offspring trios and monozygotic twin pairs 
There were 28 parent-offspring trios in the dataset. We analyzed the rate of transmission of 
alternative alleles from parent to offspring. We assume that the alleles transmit from parent 
to child with equal likelihood and use the transmission rate to estimate false discovery rate 
(FDR) and number of germline true positive (TP) variants in the datasets24.  From the family 
trios we estimate that GraphTyper has more true positive variants while also having lower 
rate of false positive ones. GraphTyperHQ has considerably lower false discovery rate than 
the GATK call set (Table S2). 
There were 14 pairs of monozygotic twins in the dataset. We checked how many 
inconsistent genotypes in the twins were on average in a 1MB region (ICPM). We also 
calculate the total non-reference consistency rate among, by checking for consistency 
among all calls where either twin had a call with an alternative allele. The raw GATK and 
GraphTyper datasets have many inconsistent calls between monozygotic twins but the 
filtered GraphTyper dataset is much more consistent (Table S2).  
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Batch effects in final dataset 
 
Sequencing was performed in three batches; individuals sequenced at deCODE genetics 
(deCODE), sequenced at the Welcome Trust Sanger Institute processed using Vanguard 
phase pipeline (Sanger Vanguard), sequenced at the Welcome Trust Sanger Instititute using 
the main phase pipeline (Sanger Main).  From the lists of individuals, we constructed six 
different phenotypes, comparing each sequencing batch both to the two other sequencing 
batches both jointly and separately.  Association tests were performed per cohort and both 
for the raw genotypes and the imputed dataset, following the protocol describe in 
subsection “Association testing”.  Association results are presented for both a filtered and 
an unfiltered dataset. For the raw genotypes the filtered set refers to markers with AAscore 
> 0.5, or the GraphTyper HQ set.  For the imputed genotypes the filtered set refers to 
markers markers with AAscore > 0.5 and Imp info > 0.8.   
 
Batch effects for sequencing center are shown in Table S22 for raw genotypes and in Table 
S23 for imputed genotypes, with results conditioned on frequency and association p-value. 
Considerable batch effects can be observed in all datasets.  As expected, lower levels of 
batch effects were detected for the filtered dataset.  More common variants show higher 
levels of batch effects.  We note that marker batch effect is conflated with missing data in 
genotype calling.   
 
For the purpose of the Table S22 and Table S23 frequency is computed from genotype 
likelihoods, where the likelihoods are transformed into probabilities that the individual is a 
carrier.  In this way an individuals with no sequence reads is assigned frequency 50%, 
upweighing rare markers where a large fraction of markers have missing data.  Alternatively 
frequencies can be computed from the carrier status of individuals without missing data. 
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Overlap with UKBB WES SNPs 
 

Comparison based on minor allele frequency 
A recent UKB WES dataset has 200,000 individuals (WES200k76). In the dataset there are 
1,047,397 SNPs with WES AF >0.01% and 353,889 with WES AF >0.1%. We checked how 
many of those were not found in the WGS datasets. 1.81, 0.44 and 1.60% of variants with 
frequency > 0.01% in the WES200k dataset were missing the in the GATK, GraphTyper and 
GraphTyperHQ datasets, respectively (Table S5). 
 

Variant normalization 
To reliably compare two datasets (the result of different samples, technologies or tools), the 
data needs to be in a standardized format. The commonly used VCF format is unfortunately 
very ambiguous: 

1. Two variation events may be represented as a single multi-allelic VCF record in one 
set or as two VCF records in another. 

2. A single variation event has many equivalent representations, i.e. variants are not 
required to be left-aligned and parsimonious85. 

3. While records are required to be ordered by POS, two records with the same POS 
have no defined order. This makes line-wise comparisons and merges difficult. In 
particular, the order generated by bcftools norm is not alphabetical. 

4. Different conventions exist for how to name chromosomes ("Chr1" vs "1"; "ChrX" vs 
"Chr23" vs "23"). 

5. IDs are absent from some files, making it more difficult to return to the original entry 
after changes have happened. 

Our normalization pipeline employs bcftools norm to split multi-allelic variants and to left-
align and trim them. It enforces a naming convention for the chromosomes ("Chr1" ... 
"ChrX") and adds an ID-String if missing. Finally, the data is split into 50KB regions and 
sorted by "Chrom,Pos,Ref,Alt". Since normalization may influence the POS field of a VCF 
record, it may fall into a different 50KB bin than before; these cases are handled. 
Once all datasets are normalized, a merged dataset is created from them. This consists of 
one set of VCF files where all INFO fields from the original datasets are included with a set-
specific prefix, e.g. "GATK_AF" instead of "AF". The original datasets' ID, QUAL and FILTER 
fields are also included in the merged files' INFO fields as "GATK_ID", "GATK_QUAL" etc. This 
representation of the data is sparse because missing entries do not take up space. For 
analysis purposes, a TSV or GOR[Z] file can be created for individual regions or full 
chromosomes. The transformation from .VCF.GZ files to .GORZ and further operations (e.g. 
JOINs) are efficiently possible, because our VCF records are already fully sorted. 
 

Comparison of WES and WGS call sets on the same sets of samples 
In an attempt to make a judicial comparison between WES and WGS as well as between the 
GraphTyperHQ and GATK call sets we analyzed seperately the calls made for a subset of 
109,618 individuals included in our dataset as well as the 200k release of WES data from the 
UKB76. 
Variants not present in any of the 109,618 indivdiuals were removed from analysis, resulting 
in 558,128,486 GraphTyperHQ variants and 13,815,704 WES variants. We then split the 
variants by functional annotation and tabulated the number of variants shared between the 
two call sets and the number of variants absent from the other call set (Table 1). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


117 
 

To further explore the accuracy of genotype callers we analyzed specifically variants inside 
regions that are purportedly captured by exome sequencing (websites,Table S21), 6,608,669 
variants are found in all three call sets.  Variants in one call set and not another may be 
either true or false positives.  A priori, we would expect that variants found in two call sets 
to be a strong indication of the variant being a true positive. This analysis is complicated by 
the fact that although we have filtered the set of GraphTyper variants GATK variants have 
not been filtered for true positives.  
A total of 87,773 variants are found by both GATK and WES but missed by GraphTyperHQ.  
32,875 of these variants were present in the unfilterd GraphTyper dataset but filtered due 
to low AAscore.  56,909 out of the 87,773 variants have the same primary carrier in both 
datasets, while the remaining 30,864 are found by both callers but not in the same sample.  
These variants represent a shared tendancy of false positive calls at the same variant (but in 
different samples) across both datasets.  Best practices use of GATK recommends filtering of 
variants based on a number of factors.  While we have not computed all of these, we 
computed for these variants what we believe are some of the most common causes of 
failure; failing variants that have variant allele frequency (VAF) below 25%, failing variants 
that are not supported by reads from both strands and failing variant that are not supported 
by both a read that is first in pair and one that is second in pair.  Applying these three filters 
removed 69.3% of the 56,909 variants, suggesting at most a small fraction of the variants 
found by both GATK and WES, but not GraphTyper, are in fact called reliably enough to be 
used in a recommended genetic analysis. 
Cursory analysis of the variants found by both GraphTyper and WES, but not GATK 
suggested that these were similarly possibly problematic. 
Analysis of variants found by both GATK and GraphTyper however suggested that these 
were in large part true positives. We considered the distribution of the 898,764 singletons 
shared between the callers and found their distribution (XAF 78,229 (8.70%), XBI 564,346 
(62.79%), XSA 71,823 (8.00%), OTH 184,366 (20.51%)), to be similar to that of the 
distribution of singleton calls overall (XAF 746,289 (8.40%), XBI 5,731,044 (64.50%), XSA 
707,379 (7.96%), OTH 1,701,318 (19.15%)). We would expect false positive calls due to 
sequencing artifacts would be similar to the fraction of individuals from each cohort in our 
intersected sequencing set (XAF 2.05%, XBI 87.89%, XSA 2.08%, OTH 7.99%). 
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SV calling with Manta and GraphTyper 
We ran a structural variant (SV) genotyping pipeline similar to the one we had previously 
applied to 49,962 Icelanders60. In summary, we ran Manta58 v1.6 to discover SVs on all 
150,119 individuals in the genotyping set. We also created a set of highly confident common 
SVs (imputation info above 0.95 with frequency above 0.1%) from our previous studies using 
both Illumina short reads60 and Oxford Nanopore long-read data59. Finally, we inferred a set 
of SVs from six publicly available assembly datasets using dipcall86, as described previously60. 
We used svimmer60 to merge these different SV datasets and we called the resulting SVs 
using GraphTyper60 version 2.7.1. By incorporating data from long read data and high quality 
assemblies, we are able call more true SVs compared using short reads only, particularly for 
common SVs.   
A total of 895,054 variants were called, of which 637,321 variants were annoted as „Pass“. 
Variant counts are presented for variants annoted by GraphTyper as „Pass“, unless 
otherwise noted. 
The majority of the SVs are deletions (81.3%), however we observe only slightly more 
deletions than insertions and duplications on average per individual (Fig. 3a). This is because 
the source for many insertions are long reads and assembly data, and thus many rare 
insertions are missing. Deletions are typically easier to discover in short read data. 
Individuals that belong in the XAF cohort carry more SVs than in the other cohorts (Fig. 3b). 
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Microsatellite calling with popSTR 
We followed the protocol described above for Graphtyper before we ran PopSTR(v2.0) and 
created chopped CRAI indices for all samples as well as a reference sequence cache for each 
processed region.  
We scanned all CRAM files in 50kb regions using the popSTR subcommand 
computeReadAttributes.  
The format of the command was:  
popSTR computeReadAttributes ${CRAI_TMP}/sampleList.txt ${RESULT_TMP} 

markerList flanking <(readLength-2*flanking) “.” longRepeats N 

Results over a predetermined set of microsatellites from chr21(our kernel) were used to 
estimate a slippage rate for each individual using the popSTR subcommand 
computePnSlippageDefault. 
The format of the command was: 
popSTR computePnSlippageDefault  

–PL $sample  

–AD ${RESULT_TMP}/attributes/chr21/ 

-OF ${outDir}/pnSlippage 

-FP $sampleIDx 

-MS ${codeDir}/kernelSlippageRates 

-MD ${codeDir}/kernel/kernelModels 

Combining CRAM analysis results and sample slippage rates we performed genomewide 
genotyping using the popSTR subcommand msGenotyperDefault  
The format of the command was: 
popSTR msGenotyperDefault –ADCN ${RESULT_TMP}/attributes/${chrom}/ -PNS 

pnSlippage –MS ${RESULT_TMP}/markerSlipps/${chrom}/markerSlippage –VD 

${RESULT_TMP} –VN vcfName –ML markerList –I $idx –FP 1 

CRAI_TMP is a path to the chopped CRAI files on the local disk, RESULT_TMP is a folder on 
the local disk to store results, flanking is a parameter specifying the number of bps 
required to anchor a read to the microsatellite,  readLength is the length of reads in the 
CRAM file, markerList is a list of all microsatellites in the 50kb region being 
analysed,  outDir is a directory to store sample slippage results, sampleIDx is the index of 
the sample being analysed in the sampleList.txt, codeDir is the directory where popSTR 
and its dependencies are stored and $idx is the index of the region being analyzed. 
 

Filtering of microsatellites 
We recommend the following best practice filtering guidelines. 
 
Filter marker where: 

average coverage < 10  or average coverage > 75    
                command: bcftools query -f 

‘%CHROM\t%POS\t%INFO/nReads\t%INFO/nPnsWithReads\n‘ $file | 

awk ‘{print $1,$2,$3/$4}‘ | awk ‘{if ($3>10 && $3<75){print 

$1\t$2}}‘ > pass; bcftools view -T pass -o filtered_${file} -O 

z $file; tabix filtered_${file} 

average genotype quality < 20 
                command: bcftools query -f 

‘%CHROM\t%POS[\t%GT\t%GQ]\n‘ $file | awk ‘{sum=0; miss=0; 

avail=0; for (i=4;i<=NF;i+=2){if ($(i-

1)==“./.“){miss+=1}else{sum+=$i; avail+=1}} 

if(avail>0){mean=sum/avail}else{mean=0} print $1,$2,mean}‘ | 
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awk ‘{if ($3>20){print $1\t$2}}‘ > pass; bcftools view -T pass 

-o filtered_${file} -O z $file; tabix filtered_${file}  

number of individuals with reads < 75,000  
                command: bcftools query -f 

‘%CHROM\t%POS\t%INFO/nPnsWithReads\n‘ $file |awk ‘{if 

($3>75000){print $1\t$2}}‘ > pass; bcftools view -T pass -o 

filtered_${file} -O z $file; tabix filtered_${file} 

number of reads not supporting genotype/number of reads available > 0.3 
                command: bcftools query -f 

‘%CHROM\t%POS\t%INFO/nNonSupportReads\t%INFO/nReads\n‘ $file | 

awk ‘{if ($3/$4<0.3){print $1\t$2}}‘ > pass; bcftools view -T 

pass -o filtered_${file} -O z $file; tabix filtered_${file} 

 
A total of 2,393,292 variants pass these filters.  
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Imputation and phasing 
 
The UKB samples were SNP chip genotyped with a custom-made Affymetrix chip, UK BiLEVE 
Axiom in the first 50,000 individuals87, and the Affymetrix UKB Axiom array88 in the 
remaining participants.  We used the existing long-range phasing of the SNP chip genotyped 
samples5.   
 
We excluced SNP and indel sequence variants where at least 50% of the samples had no 
coverage (GQ score = 0), if the Hardy Weinberg p-value was less than 10-30 or if 
heterozygous excess was less than 0.5 or greater than 1.5.  
 
We used the remaining sequence variants and the long-range phased chip data to create a 
haplotype reference panel using inhouse tools1,89. We then imputed the haplotype 
reference panel variants into the chip genotyped samples using inhouse tools and methods 
described previously1,89. 
 
The imputation consists of estimating, for each haplotype, haplotype sharing with 
haplotypes in the haplotype reference panel, giving haplotype weights for each haplotype. 
These weights along with allele probabilities for each haplotype in the haplotype reference 
panel allow imputation with a Li and Stephens90 model similar to the one used in 
IMPUTE291. Estimation of haplotype weights was based on long-range phased chip 
haplotypes. 
 
Sequence variant phasing consists of iteratively imputing the phase in each sequenced 
sample based on the other sequenced samples and the estimated phase from last iteration.  
The imputed genotypes, along with the original genotypes are weighted together to 
estimate new allele probabilites for the haplotypes. Imputation is done as described above. 
 
We compute a leave-one-out r-squared score (L1oR2) as the squared correlation (r2 value) 
of the original genotype calls with the genotypes imputed for each sample when excluding 
the original genotype of the sample from the imputation input. 

 

Imputation results 
We refer to a variant as being reliably imputed if its L1oR2 score is greater than 0.5 and 
imputation info1 was above 0.8.  
 
Imputation and phasing accuracy of SNPs and indels for the GraphTyperHQ set is shown in 
(Fig. 2, Fig. S14, Table S11). GraphTyperHQ filters variants based on an AAscore of 0.5. 
Requiring higher AAscore allows a higher fraction of variants to be imputed (Fig. S24).  We 
found that variants located > 100kb from a chip genotyped variant and variants in regions 
that were placed on different chromosomes on GRCh3822 and CHM1371 imputed less 
accurately than others. 
 
SVs and microsatellites are imputed less accurately than SNPs and indels (Fig. S14), in part 
due to difficulty in genotyping those variants.  For microsatellites, this may in part be 
attributed to the high mutation rate of microsatellites and in part to the fact that the results 
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are presented for the unfiltered microsatellite set, we expect that a higher fraction of 
microsatellites would impute after filtering. 
 

Comparison of imputation from GATK and GraphTyper variants 
We imputed all variants genotyped by GATK and GraphTyper across chr22, 10-11Mb.  We 
define a variant to be imputed if the phasing leave-one-out r21 (L1or2) was at least 0.5 and 
imputation info1 was at least 0.5. We present the number of variants that could be imputed 
as a function of frequency and variant type (Table S4).  Although more variants are called by 
GATK, there are more variants called by GraphTyper that can be imputed, across all 
frequency classes and variant types.  
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Genome annotation  
 
We downloaded Refseq and Ensembl gene map annotations from Ensembl92, version 100 
database.  The gene maps were transformed to segments with each position in GRCh38 
annotated as at least one of 3'utr, 5'utr, coding, downstream, intergenic, intronic, 
spliceregion, splicesite, upstream. 
These regions were grouped and ordered by precedence: 
1 – coding – coding 
2 – splice – spliceregion, splicesite 
3 – 5‘UTR – 5‘UTR 
4 – 3‘UTR – 3‘UTR 
5 – proximal – upstream, downstream, intronic 
6 – intergenic – intergenic  
Each position was then given annotation according to its lowest precedence rank 
annotation, e.g. a position annotated as both spliceregion and 5‘UTR was given the 
annotation „splice“. 
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Identification of functionally important regions 
To identify functionally important regions, we start by estimating whether reliable basecalls 
can be expected to be made at each site in the genome.  The sequence coverage at each bp 
in GRCh38 was computed for each of 1,000 randomly selected individuals.  At each bp we 
then computed the mean and s.d. of coverage across the 1,000 individuals. Bps with mean 
coverage at least 20 and s.d. of coverage at most 12 were considered reliable bps.  Only 
variants in GraphTyperHQ (AAscore > 0.5) were considered in the analysis.  

Recurrent mutations, and spectra under saturation 
Using the classification of SNP variants from above, we calculate the ratio of all SNP’s in 
GraphTyperHQ that falls into each category. Then we do the same restricting to singletons, 
i.e. calculate the proportion of singletons falling into each mutation class. For comparison, 
we calculate the fractions of each SNP class in all 181,258 SNP’s from a curated list of 
194,687 de novo mutations in 2,976 Icelandic trios29. We use this distribution on mutation 
classes to calculate the transitons/tranversions ratio in each case. 
To get a list of recurrent mutations, we join this list of de novo mutations with 
GraphTyperHQ. This overlap is almost certainly cases of the same alleles originating from 
separate mutation events. 

Saturation for general mutation classes 
We restrict our analysis to the reliable bps described above and group bps and their 
complement and consider each A or T base in the genome as a mutation opportunity for 
T>A, T>C or T>G mutations. Similarly, we consider each G or C base as potential C>A, C>G or 
C>T mutation, splitting C>T into two classes based on whether they occur in a CpG context 
or not.  We then compute the saturation ratio as the number of observed mutations in 
GraphTyperHQ divided by the number of mutation opportunities at reliable bps. 
Computation is done separately for the autosomes and chromosome X. 95% CIs are 
computed using a normal approximation to the binomial distribution, treating each site as 
an independent observation. 

Sites methylated in the germline 
We determine sites on GRCh38 that are methylated in the germline using ENCODE Whole 
Genome Bisulfite Sequencing10 (WGBS) data from samples of human testes and ovaries. 
More precisely we use sample ENCFF946UQB and ENCFF157ZPP for testes and 
ENCFF561KYJ, ENCFF545XYI and ENCFF515OOQ for ovaries.  
We assume that methylation is strand symmetric and compute methylation ratio for each 
CpG dinucleotide in a given tissue type by tabulating the number of reads supporting 
methylation or non-methylation in each dinucleotide, summing over all samples of a given 
tissue type and then compute the fraction of reads that support methylation. 
We consider a site in a CpG dinucleotide on the reference genome methylated in the 
germline if its methylation ratio is at least 0.7 in both testes and ovaries, and the combined 
depth is at least 20 for testes and 30 for ovaries, or 10 times the number of samples in each 
tissue type. This resulted in a list of 17,902,255 CpG dinucleotides, harboring 35,804,510 
CpG>TpG mutation opportunities. 

Saturation at methylated CpG sites 
For each potential CpG>TpG at a methylated site we assessed its most significant potential 
consequence with Variant Effect Predictor93 v. 100.  In case of multiple such consequences 
we chose the alphabetically last one. We also classified them based on the functional 
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classifications described above. For each class we estimated the saturation as the ratio of 
variants of that functional class in GraphTyperHQ divided by the number of mutation 
opportunities. 95% CIs are computed using a normal approximation to the binomial 
distribution, treating each site as an independent observation. 

Depletion rank (DR) 
We followed a methodology akin to35. A variant depletion score is computed for an 
overlapping set of 500 bp windows in the genome with 50bp step size. A total of 49,104,026 
500 bp windows where at least 450 bp were considered reliable bps were considered for 
further analysis. We tallied the number of occurrences of each possible heptamer (H) and 
the number of times the central bp in the heptamer was observed as a SNP (S), across the 
first set of non-overlapping windows. To account for regional mutational patterns in the 
genome94, we dichotomized the genome into two mutually exclusive subsets, inside and 
outside of C>G enriched regions (Supplementary Table 12 in94). The ratio S/H was then 
interpreted as the expected mutation rate of the heptamer, separately for each of the two 
subsets. For each window we then computed the observed number of variants (O) and then 
subtracted its expected number of variants (E), given its heptamers.  This difference was 
divided by the square root of the expected value ((O-E)/ √E).  We exclued windows from the 
analysis where the average AAscore was lower than 0.85 for variants within the window. 
These ((O-E)/ √E) numbers were then sorted and the window with the i-th lowest depletion 
score was assigned a Depletion Rank of 100(i-0.5)/n, where n is the total number of 
windows. 
To compute DR restricted to the cohorts, we applied the same approach restricting to 
sequence variants that are present in each of the XBI, XSA and XAF cohorts. 
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WGS individuals carrying actionable genotypes meeting ACMG criteria 
 
The American College of Medical Genetics and Genomics (ACMG) recommends reporting 
secondary findings in a list of actionable genes associated with diseases that are highly 
penetrant and for which a well-established intervention is available27. The initial version 
(ACMG SF v1.0) was published in 2013 and included 56 actionable genes but has since been 
updated twice to ACMG SF v2.0 and v3.0 listing 59 and 73 actionable genes, respectively. 
2.0% of the 49,960 WES individuals from the UKB were reported28 to carry an actionable 
variant in at least one gene from the ACMG v2.0 list of 59 genes.  Using their criteria, we 
detected actionable genotypes in 2.6% of 150.119 WGS individuals.  When applying the 
same criteria to the ACMG v3.0 gene list (73 genes), the fraction of individuals carrying an 
actionable genotype increases to 3.5%.  In the ACMG v3.0 list of actionable genes, HFE 
p.Cys282Tyr homozygotes are recommended to be reported, but does not fullfill the 
previously described criteria28. In the set of 150,119 WGS individuals, we observe 929 HFE 
p.Cys282Tyr homozygotes (0.62%), thereby increasing the fraction of individuals carrying an 
actionable genotype in one of the ACMG v3.0 genes to 4.1%. 
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Genotype count of rare LoF variants   
 
We counted the number of autosomal heterozygous and homozygous genotypes per 
individual for rare  LoF variants (minor allele frequency (MAF)<1% in all 3 groups, XBI, XAF 
and XSA). LoF variants are those annotated by the Variant Effect predictor as having 
consequence as one of: stop gained, frameshift, splice acceptor, splice donor og start loss.  
Heterozygous counts were based on WGS data, and homozygous counts were based on 
phased genotypes.  
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GWAS enrichment analysis 
We have previously described a likelihood-based inference model for estimating the 
enrichment of trait-associating sequence variants on the basis of their annotations39.   
Similar to our earlier work39 we defined a set of 22.8M high-quality sequence variants 
identified as mono-allelic SNPs or Indels in a set 28,075 whole genome sequenced 
individuals from the Icelandic population.  
The high-quality SNP-indels (22.8M) were then tested for association to a selected set of 
614 human diseases and other traits.  For each trait, we split the genome into 10Mb 
windows and selected the strongest sequence variant association from each window where 
p < 1∙10-9.  Then, for each chromosome, we sorted the selected sequence variants according 
to P-value to then determine whether the second best variant still associates at p <1∙10-9 
after adjusting the trait for the strongest variant on that same chromosome.  If so, this 
second best sequence variant was incorporated into a final set of „independently 
associated“ variants for that trait, and the process continued for all other sequence variants 
down the list –each time adjusting for „stronger“ variants on the same chromosome.   
This yielded a set of 3,431 independently associated sequence variants in 322 traits.  For 
each of the 3,431 trait-associated variants, we searched for correlated sequence variants 
(r2>0.80) in the same Icelandic population.  In this way, a given trait association variant 
along with its correlated variants (found in linkage disequilibrium; LD) defines an association 
signal.  P-values were estimated by determining how often the enrichment estimate (E) is 
above or below E=1 by bootstrapping (N=5000) of the GWAS association signals. 
We then annotated sequence variants according to whether or not they are found within 
regions that show low and high DR scores (1st percentile versus 99th percentile; i.e. most 
and least conserved regions, respectively); refered to as DR-1% and DR-99%, respectively.  In 
this model, we specified eleven other annotations of sequence variants: loss of function, 
missense, splice-donor/acceptor, splice region, synonymous, 5kb gene-upstream, 5kb gene-
downstream, 3´UTR, 5´UTR, intronic and the remaining sequence variants as „other“ (not 
found in any of the specified annotation categories).  Similarly, we specified another model 
wherein we estimated enrichment for DR-5% and DR-95%.   
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Overlap with ENCODE regions 
 
We used annotations from ENCODE10 and compute the odds ratios these annotations in 
regions of different DR scores. We label each bp in the genome with a11,a12,a21 or a22, where 
the first number represent that the bp was annoted with the given ENCODE annotation (1) 
or not (2) and the second number represents that the DR score was above (1) or below (2) a 
given threshold. 
The odds ratio for the ENCODE annotation given the DR score threshold is then: 
OR=a11/a21 ×a22/a12. 
The marker label parameters are computed for each one of the annotations on a set of 1Mb 
windows across the regions annoted with a DR score. The mean odds ratio is computed by 
summing up the individual parameters for the complete set of windows. We use 
bootstrapping to estimate the confidence limits for the odds ratio we, for each bootstrap 
sample we sample with replacement from the complete set of 1Mb windows, sum up 
individually the resulting set aij‘s and compute the odds ratio for the bootstrap sample. The 
odds ratio is computed for a total of 1000 bootstrap samples and the confidence intervals 
defined between the 2.5% and 97.5% quantile of the resulting dataset. 
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Association testing 
 
We tested for association with quantitative traits based on the linear mixed model 
implemented in BOLT-LMM95. We used BOLT-LMM to calculate leave-one-chromosome out 
(LOCO) residuals which we then tested for association using simple linear regression. We 
used logistic regression to test for the association between sequence variants and binary 
traits. We tested variants for association under the additive model using the expected allele 
counts as a covariate for quantitative traits and integrating over the possible genotypes for 
binary traits. Sequencing status (whether the individual is one of the WGS individuals), other 
available individual characteristics that correlate with the trait were additionally included in 
the model; sex, age, and principal components (20 for XBI and XAF, 45 for XSA) in order to 
adjust for population stratification. Association analyses with XAF and XSA ethnicities have 
sample sizes <10,000 and therefore were done with linear regression directly instead of 
BOLT-LMM. The correction factor employed was the intercept of each regression analysis. 
 
We used LD score regression to account for distribution inflation in the dataset due to 
cryptic relatedness and population stratification13. Using 1.1 million variants, we regressed 
the χ2 statistics from our GWASs against LD score and used the intercepts as a correction 
factor.  Effect sizes based on the LOCO residuals are shrunk and we rescaled them based on 
the shrinkage of the 1.1 million variants used in the LD score regression.  Table S24 lists 
statistics for the GWAS analysis of each of the association signals presented here. 
Manhattan plots, quantile-quantile (QQ) plots and histograms of inverse-normal 
transformed values after adjustment for covariates age, sex and 40 principal components 
can be found in Fig. S25 and Fig. S26 for quantitative and binary phenotypes, respectively. 
Locus plots for Uric Acid and Menarche association can be found in Fig. S27. 
 
All associations reported are for imputed genotypes.  For comparison purposes associations 
were also performed on the genotypes directly.  For the association testing perfomed on the 
directly genotyped markers the same set of covariates were used, apart from sequencing 
status (as all individuals are sequenced) and additionaly the sequencing center (deCODE, 
Sanger main, Sanger Vanguard) was used as a covariate.  Table S25 shows correlation 
between the raw and the imputed genotypes and batch effects for sequencing center in the 
XBI cohort.  
 
An individual was deemed to be a carrier of an allele if the probability that the individual 
carried the allele was at least 0.9. The association analysis was limited to markers were at 
least one (XAF, XSA), two (XBI, imputed dataset) or three (XBI, raw genotypes) individuals 
carried the minor allele. As association tests are frequently limited to a subset of the 
individuals in the datset the association analysis was further limited to those markers were 
there was at least one carrier among the individuals in the association test. In the imputed 
dataset association tests were further limited to those markers with imp info > 0.5 and in 
the raw genotype set to those markers with sequencing information1 > 0.8. 
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RNA sequence data 
 
RNA sequencing was performed on samples from cardiac right atrium of 169 Icelanders. The 
data and subsequent sequence alignment to GRCh38 has been described96. To estimate the 
effect of deletion of exon 6 in transcript ENST00000168977.6 of NMRK2 we counted 
fragments aligning from the donor site of exon 5 to either acceptor site of exon 6 or exon 7 
(Fig. S12, Fig. S13).  
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Defining cohorts 
 
Most studies of UKB data to date have been conducted on a list of around 410,000 
“Caucasian” individuals created by UKB on the basis of “White British” self-identification and 
clustering on genetic principal components derived from microarray genotypes5. Like some 
recent studies54,97,98, we wished to capitalize on the diversity in the UKB. To achieve this, we 
defined three cohorts based on the most common ancestries identified among the 
participants, using a combination of 1) UMAP dimension reduction of 40 genetic principal 
components provided by UKB, 2) ADMIXTURE analysis supervised on five reference 
populations and self-reported ethnicity information. 
 
In order to define the three cohorts, we followed previous work99 and applied UMAP to the 
40 genetic principal components provided by UKB. UMAP was performed in R using 
umap::umap() using default parameters in v0.2.3, notably n_neighbours 15 and min_dist 
0.1.  UMAP placed the individuals in a two-dimensional latent space featuring several 
clusters and filaments. These structures showed a correspondence with self-described 
ethnicity (Fig. S28). 
 
To provide a separate measure of ancestry that we could use to inform our interpretation of 
the UMAP clusters, we superimposed results from a supervised ADMIXTURE100 analysis of 
the UKB microarray genotypes (Supp Section ADMIXTURE), using five training populations 
from the 1000 Genomes Project8 (1000GP): CEU (Northern Europeans from Utah), CHB (Han 
Chinese in Beijing), ITU (Indian Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in 
Ibadan, Nigeria). We observed a clear correspondence between UMAP coordinates and 
ancestry proportions assigned by ADMIXTURE (Fig. S29, Fig. S30). Using this correspondence 
and guided by self-reported ethnicity information, we defined the cohorts by manually 
delineating regions in the UMAP latent space that were limited to individuals with British–
Irish ancestry (XBI, N=431,805), South Asian ancestry (XSA, N=9,633), and African ancestry 
(XAF, N=9,252). This left 37,598 individuals with genotype data, who were assigned to an 
arbitrary cohort we refer to as OTH (short for other). The distribution of ancestry estimated 
using the ADMIXTURE in each of the four cohorts (Fig. S29).  Fig. S6, Fig. S7 and Fig. S8 show 
the geographical distribution of birthplaces for the XBI, XAF and XSA cohorts, respectively.  
 
The most systematic difference between the XBI cohort and the prevailing UKB-defined 
“Caucasian” set is our inclusion in XBI of around 12,500 individuals identifying as White Irish. 
This is clearly justified, given the known geographical and cultural proximity of the 
populations of the Britain and island of Ireland. More importantly, both our analyses (and 
those of previous publications) clearly reveal evidence for extensive gene flow between 
them. Thus, the main Irish genetic cluster appears in PCA as an integrated component of 
continuous variation in the UK (Fig. S5), and is not clearly separated from others. Another 
major difference of the XBI cohort relative to the much-used Caucasian set, is the addition 
of around 10,900 individuals who did not identify as White-British, but we infer to have 
ancestry indistinguishable from British-Irish individuals. We note that the greater size of the 
XBI cohort should provide more statistical power to detect genotype-phenotype 
associations.   
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Computing principal components within cohorts 
 

Microarray data 
For all cohorts, we first removed variants with missingness >3% and 135 individuals with 
genomewide missingness >5%. We then removed a canonical set of long-range high-LD 
regions and all indels. 
 
For the XAF and XSA cohorts, the following procedure was followed. We first excluded both 
individuals from each pair of relatives with kinship coefficient 0.0625 or greater; these 
excluded individuals were later projected onto the principal components. We then pruned 
for variants in complete linkage disequilibrium (r2 = 1) using plink --indep-pairwise 200 25 
0.999999, and then removed all variants with MAF <1%. PCA for these two cohorts was 
performed using smartpca101 with parameters numoutevec: 45, numoutlieriter: 0, ldregress: 
200, and ldposlimit: 100000. We then projected all relatives using the OADP method 
implemented in bigsnpr’s102 function bed_projectSelfPCA(). 
 
A slightly different approach was used for the XBI set, due to the very large number of 
individuals. We first excluded: individuals from each pair of relatives at a kinship coefficient 
threshold of 0.0442 or greater; individuals with inbreeding of 0.1 or greater; individuals with 
genomewide missingness 1% or greater; and all remaining individuals defined as “HetMiss” 
(heterozygosity/missingness) outliers by UKB. We next removed variants with < 0.05% MAF 
and a Hardy-Weinberg disequilibrium p-value (calculated with plink --hwe midp) of <1e-100. 
Then LD clumping was performed using bigsnpr’s bed_clumping() function using thr.r2 = 0.2 
and [window] size = 500 [kb]. We calculated 30 PCs on the remaining variants and 
individuals using bigsnpr’s bed_randomSVD(), and the previously excluded individuals were 
projected onto these PCs using OADP. 
 

WGS data 
To prepare each WGS cohort for PCA, we first removed all variants with missingness >3%. 
We then excluded individuals with genomic inbreeding over 0.1 and both individuals in any 
pair of 3rd degree or closer relatives. The excluded individuals were later projected onto the 
principal components. After excluding these individuals, we removed all singleton variants. 
For XBI in particular, we also removed all variants with minor allele count <10, in order to 
make computation more tractable and to minimise the influence of very recent genealogical 
structure. 
 
bigsnpr101 was used to remove a canonical list of long-range, high-LD regions [long-range LD 
ref] and then perform LD clumping using bed_clumping() with an r2 threshold of 0.1 and a 
window size of 5 megabases.  We then used bed_randomSVD() in bigsnpr to calculate 50 
PCs on each of the cohorts.  
 
The first six principal components in each cohort are shown in Fig. S31, Fig. S32 and Fig. S33. 

 

Inbreeding 
Genomic inbreeding in the form of FROH (proportion of the genome in runs of homozygosity) 
was calculated on microarray genotypes using PLINK103 v1.9 and the same parameters 
specified in ROHgen2104: homozyg-window-snp 50; homozyg-snp 50; homozyg-kb 1500; 
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homozyg-gap 1000; homozyg-density 50; homozyg-window-missing 5; homozyg-window-
het 1. Genotype data had been filtered to remove variants: that were not in the 
“in_HetMiss” set defined by UKB; that had >2% cohortwide missingness; or that were found 
to have highly discordant allele frequencies compared to other British–Irish datasets or to 
be in apparent inter-chromosomal LD105. 

 

IBD segment computation 
We called IBD segments between UKB individuals’ microarray genotypes using KING v2.2.4 -
-ibdseg106. Genotype data was split into 90 batches and run using --projection mode to 
calculate IBD between batches. Kinship coefficients quoted throughout the supplementary 
refer to the PropIBD values reported by KING divided by 2. Genotype data had been filtered 
to remove variants with cohortwide missingness >3%. 
 

ADMIXTURE 
We assigned proportions of continental-scale ancestry to all UKB microarray genotypes 
using ADMIXTURE100. ADMIXTURE was run on --supervised mode using the 1000G 
populations CEU (Northern Europeans from Utah), CHB (Han Chinese in Beijing), ITU (Indian 
Telugu in the UK), PEL (Peruvians in Lima), and YRI (Yoruba in Ibadan, Nigeria) as training 
data. The 1000G training data had previously been filtered to remove close (at least 2nd 
degree) relatives using KING106 --kinship, to remove some apparent genomic ancestry 
outliers using PCA and leave-one-out unsupervised ADMIXTURE (especially PEL individuals 
with high European ancestry), and also pruned for LD using PLINK103 v1.9 --indep-pairwise 
50 5 0.2. The ADMIXTURE program was run for batches of 30 UKB individuals at a time and 
the results subsequently merged. 
 

Birthplace data 
All location analyses were performed in R using the sf package107, the sp package108, and the 
gstat package109. Spatial interpolation of birthplaces was performed using linear variogram 
models (gstat∷vgm(), range 60,000) and ordinary kriging (gstat∷krige(), nmax = 300). 
 
For some analysis, we binned the birthplaces into the following administrative divisions: the 
ceremonial counties of England; the historic counties of Wales; the 1975 local government 
areas of Scotland; the Isle of Man, Northern Ireland, and the [Republic of] Ireland each as 
their own divisions; and Jersey and Guernsey grouped together into a division we labelled 
the Channel Islands. 
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Websites: 

GraphTyper 

https://github.com/DecodeGenetics/graphtyper 
 

GATK resource bundle 
gs://genomics-public-data/resources/broad/hg38/v0 
 

Svimmer 
https://github.com/DecodeGenetics/svimmer 
 

popSTR 
https://github.com/DecodeGenetics/popSTR 
 

Dipcall 
https://github.com/lh3/dipcall 
 

RTG Tools 
https://github.com/RealTimeGenomics/rtg-tools 
 

bcl2fastq 
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-
software.html 
 

Samtools 
http://www.htslib.org/ 
 

samblaster 
https://github.com/GregoryFaust/samblaster 
 

BamQC 
https://github.com/DecodeGenetics/BamQC 

GIAB WGS samples 

• HG001 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/NIST_NA12878_HG0

01_HiSeq_300x/NHGRI_Illumina300X_novoalign_bams/HG001.GRCh38_full_plus_hs

38d1_analysis_set_minus_alts.300x.bam 

• HG002 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA243

85_son/NIST_HiSeq_HG002_Homogeneity-

10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.GRCh38.60x.1.bam 

• HG003 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA241

49_father/NIST_HiSeq_HG003_Homogeneity-

12389378/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG003.GRCh38.60x.1.bam 
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• HG004 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA241

43_mother/NIST_HiSeq_HG004_Homogeneity-

14572558/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG004.GRCh38.60x.1.bam 

• HG005 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG005_NA24631_

son/HG005_NA24631_son_HiSeq_300x/NHGRI_Illumina300X_Chinesetrio_novoalign

_bams/HG005.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.300x.bam 

• HG006 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG006_NA24694-

huCA017E_father/NA24694_Father_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_n

ovoalign_bams/HG006.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.ba

m 

• HG007 https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/HG007_NA24695-

hu38168_mother/NA24695_Mother_HiSeq100x/NHGRI_Illumina100X_Chinesetrio_

novoalign_bams/HG007.GRCh38_full_plus_hs38d1_analysis_set_minus_alts.100x.ba

m 

ENSEMBL 
https://m.ensembl.org/info/data/mysql.html 

Shapefiles for UK 
http://discover.ukdataservice.ac.uk/catalogue/?sn=5819&tyep=Data%20catalogue 
http://census.ukdataservice.ac.uk/get-data/boundary-data.aspx 
https://gadm.org/ 
 

Exon capture regions 
http://biobank.ndph.ox.ac.uk/ukb/ukb/auxdata/xgen_plus_spikein.b38.bed 
 

ClinVar 
https://www.ncbi.nlm.nih.gov/clinvar/ 
 

UKB data showcase 
https://biobank.ndph.ox.ac.uk/showcase/search.cgi 
 

GERP 
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz 
 

Eigen 
http://www.funlda.com/toolkit 
 

LINSIGHT 
http://compgen.cshl.edu/LINSIGHT/ 
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