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Abstract

INTRODUCTION: Alzheimer’s disease (AD) is accompanied by metabolic alterations both in the
periphery and the central nervous system. However, so far, a global view of AD-associated

metabolic changes in brain has been missing.

METHODS: We metabolically profiled 500 samples from the dorsolateral prefrontal cortex.
Metabolite levels were correlated with eight clinical parameters, covering both late-life cognitive

performance and AD neuropathology measures.

RESULTS: We observed widespread metabolic dysregulation associated with AD, spanning 298
metabolites from various AD-relevant pathways. These included alterations to bioenergetics,
cholesterol metabolism, neuroinflammation and metabolic consequences of neurotransmitter
ratio imbalances. Our findings further suggest impaired osmoregulation as a potential
pathomechanism in AD. Finally, inspecting the interplay of proteinopathies provided evidence that

metabolic associations were largely driven by tau pathology rather than p-amyloid pathology.

DISCUSSION: This work provides a comprehensive reference map of metabolic brain changes

in AD which lays the foundation for future mechanistic follow-up studies.
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1 Background

Alzheimer’s disease (AD) is the most common cause of dementia, with prevalence rates expected
to increase markedly over the next decades (1). AD is a neurodegenerative disorder defined by
the deposition of B-amyloid and accumulation of neurofibrillary tangles of phosphorylated tau
protein in the brain (2). These proteinopathies are accompanied by other pathogenic processes,
including  neuroinflammation, oxidative stress, innate immune response, and
neurotransmission (1). A large body of evidence further implicates metabolic pathways both in the
periphery and in the central nervous system in AD (3-8). Notably, metabolic enzymes and
transporters are among the most commonly targeted proteins in pharmaceutical interventions
across all diseases (9,10), emphasizing the translational potential of systematically identifying
metabolic alterations. However, until now a comprehensive reference map of metabolic brain
changes related to AD, AD-associated neuropathological manifestation, and cognitive decline has

been missing.

To fill this gap, we here present a large, multi-center study from the Accelerating Medicine
Partnership in AD (AMP-AD) consortium, analyzing a total of 500 post-mortem brain tissue
samples from the dorsolateral prefrontal cortex (DLPFC) using broad, non-targeted metabolomics
measurements. This dataset represents, to the best of our knowledge, the largest metabolomics
study of aging brain tissue to date. In the present paper, we first provide an overview of the
extensive metabolic changes in brain, spanning multiple AD-related traits, including
neuropathological p-amyloid and tau tangle burden, as well as late-life cognitive performance.

This is followed by replication analysis in independent samples from different brain regions.

We then present several examples of how such a large dataset can be used to extract novel
metabolic insights into AD from the vast number of identified associations. These include:

(1) Extending metabolic characterization of pathways that previously have been implicated in AD,
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including bioenergetic pathways, cholesterol metabolism, and neuroinflammation. (2)
Establishing broad impairment of osmoregulation as a potentially relevant pathomechanism in
AD. (3) Endorsing the concept of an imbalance between excitatory/inhibitory neurotransmitter
ratios in AD by integrating our metabolomic findings with additional proteomic data. (4) Identifying
tau loadas a potential driver of metabolic dysfunction in the AD brain, with minimal contributions

from pB-amyloid load.

Finally, to maximize utilization of our study by the scientific community, we have made our data,
code, and findings available through the AD Knowledge Portal and an interactive web resource

at https://omicscience.org/apps/brainmwas/.
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2 Methods

2.1 Cohorts, clinical data, and neuropathological data

211 ROS/MAP cohort

The Religious Order Study (ROS) and Rush Memory and Aging Project (MAP) cohorts (11,12)
are two longitudinal, clinicopathologic studies conducted by the Rush Alzheimer’s Disease
Center. ROS started in 1994 with the recruitment of individuals from religious communities across
the United States. MAP started in 1997 with the recruitment of individuals from a wide range of
backgrounds and socio-economic statuses from northeastern lllinois. Both cohorts were approved
by an institutional review board of Rush University Medical Center. Both studies focus on older
individuals who agreed to longitudinal clinical analysis and brain donation after death. All
participants signed an informed consent, an Anatomic Gift Act, and a repository consent to allow
their data and biospecimens to be shared. Following enroliment in the study, participants were
evaluated for physical and cognitive function annually. After death, pathologic assessment was
performed. Initially, 514 samples from the DLPFC brain region were used for metabolomics
profiling, along with associated metadata, including medications taken during lifetime, age at
death, sex, BMI, postmortem interval, APOE genotype status, education history, cognitive scores
during lifetime, cognitive decline (computed-based on longitudinal cognitive scores), clinical
diagnosis at death, B-amyloid and paired helical filament (PHF)-tau protein load in brain tissue,
global burden of AD neuropathology (mean of neuritic plaques, diffuse plaques, and neurofibrillary
tangles), NIA-Reagan score, Braak stage, and CERAD score. Neuropathological diagnosis was
derived using the following criteria: AD case status was assigned where Braak stage was = 4 and
CERAD score was < 2; control case status was assigned where Braak stage was < 3 and CERAD

score was 2 3. All clinical parameters have previously been described in detail (13). All 514


https://doi.org/10.1101/2021.11.15.468698
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.15.468698; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

participants were of Caucasian descent. Of note, the APOE-¢4 allele frequency in the overall
ROS/MAP cohort is 13.27%, as determined from the ROS/MAP online data repository for 2,097
non-Hispanic white participants (14). This number is in line with other reported €4 allele
frequencies in Caucasian populations (15-17). Since our metabolomics sub-cohort of 514
samples was enriched for AD cases (44%), the €4 frequency in our study with 25% was

subsequently higher than the background.

2.1.2 Mayo Clinic cohort

Initially, and before filtering, 84 samples from the temporal cortex brain region were obtained from
the Mayo Clinic Brain Bank. Details on this cohort have been provided in previous studies (18,19).
All samples received diagnoses at autopsy following neuropathologic evaluation. 64 samples had
a neuropathologic diagnosis of AD with Braak >4.0 and 20 control samples had Braak <3 and
without any neurodegenerative diagnoses. All 84 samples were from North Americans of

European descent with ages at death >60 for AD and >53 for controls.

2.1.3 Cohort differences

Three cohorts were used in this publication — ROS/MAP for discovery, Mayo brain clinical cohort
for replication, and a published Baltimore Longitudinal Study of Aging (BLSA) based study (5) for
comparison. These cohorts have fundamental differences: (a) Participant recruitment. BLSA is an
aging study, Mayo Clinic samples are from an archival brain bank with neuropathologic diagnoses
of AD and control, while ROS/MAP recruited older people. (b) AD-related traits. Mayo has
diagnosis determined by neuropathology and BLSA has diagnosis determined based on
neuropathology and cognitive conditions. ROS/MAP records several neuropathological as well as
cognitive scores. (c) Unlike the other two cohorts, ROS/MAP collects various lifetime variables
longitudinally, including cognitive scores, lifestyle, medications taken by participants. (d) Sample

sizes were lower in BLSA (n = 43), and Mayo (n = 84), compared to ROS/MAP (n = 514). (e)
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Different brain regions were profiled. BLSA sampled frontal and temporal gyrus, Mayo the
superior temporal gyrus of the temporal cortex, and ROS/MAP the dorsolateral prefrontal cortex

(DLPFC).

2.2 Metabolomics profiling

Brain metabolic profiles were measured using the untargeted metabolomics platform from
Metabolon Inc. Briefly, tissue samples were divided into four fractions; two for ultra-high
performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; positive
ionization), one for UPLC-MS/MS (negative ionization), and one for a UPLC-MS/MS polar
platform (negative ionization). The combination of these four runs ensures a broad coverage of
hydrophilic and hydrophobic substances. Peaks were quantified using the area under the curve
in the spectra. To account for run-day variations, peak abundances were normalized by their
respective run-day medians. Compounds were identified using an internal spectral database. A
detailed description of all experimental procedures can be found in the supplementary

information.

2.3 Data preprocessing

2.3.1 ROS/MAP and Mayo metabolomics

Metabolites with over 25% missing values were filtered out, leaving 667 out of an original 1,055
metabolites for ROS/MAP and 664 out of 827 for Mayo. Probabilistic quotient normalization was
applied to correct for sample-wise variation (20), followed by log. transformation. Remaining
missing values were imputed using a k-nearest-neighbor-based algorithm (21). Outlier samples
in the data were removed using the local outlier factor method (22) implemented in the R package

bigutilsr. To account for remaining irregularly high or low single concentrations, values with
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absolute abundance above q = abs(qnorm(0.0125/n)), with n representing the number of
samples, were set to missing. This formula finds the cutoff for values with less than 2.5% two-
tailed probability to originate from the same normal distribution as the rest of the measurement
values, after applying a Bonferroni-inspired correction factor (division by sample size). These new

missing values were then imputed by another round of the k-nearest-neighbor algorithm.

2.3.2 ROS/MAP proteomics

Proteomics data was downloaded from the AMP-AD Knowledge Portal

(https://adknowledgeportal.synapse.org), details of proteomic profiling and data processing can

be found in the original publication (23). Briefly, data were log.-transformed and corrected for
batch effects using the ‘median polish’ approach. In our analysis, proteins with over 25% missing
values were filtered out, and remaining missing values were imputed using a k-nearest-neighbor-
based algorithm (21). Outliers were treated with the same approach as the metabolomics data

(see above).

2.3.3 Maedication correction

For the ROS/MAP cohort, all prescription and over-the-counter medications were collected at
each study visit. To account for influences of these medications on metabolomics and proteomics,
a linear stepwise backward selection approach was used (4). All preprocessing steps were

performed using the maplet R package (24).

2.4 Differential analysis of metabolites and proteins

241 ROS/MAP

Five outliers identified by the local outlier factor method, six samples with missing medication

information, 1 sample with missing BMI, and 2 samples with missing APOE genotype status were
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removed from further analysis. Therefore, after preprocessing, 500 samples were used for
metabolic analysis, and 262 matching samples were used for proteomic analysis. Metabolite and
protein associations were computed using generalized linear models with the traits as response
variables and molecule levels as predictors. For statistical analysis, the following transformations
were made: Square root of f-amyloid load and binarized NIA-Reagan score (0 — low likelihood of
AD, 1 — high likelihood of AD). For the association analysis with clinical diagnosis, 8 non-AD-
related dementia samples were removed. The trait ‘cognitive decline’ is based on the slope of
cognitive values over time. In order for higher cognitive decline to be represented by higher
values, the direction of this slope was inverted during the analysis. Appropriate link functions were
used according to the respective variable types, i.e., identity link function for continuous traits
(regular linear regression for B-amyloid, tau tangles, global burden of pathology, cognition levels,
cognitive decline), logit for binary traits (logistic regression for NIA-Reagan score and NP
diagnosis), and probit for the ordinal trait (ordinal regression for clinical diagnosis after death). All
models accounted for confounding effects of age, sex, BMI, postmortem interval, number of years
of education, and number of APOE-¢4 alleles. Notably, age, sex, years of education did not show
much influence on metabolic profiles of cognitively normal samples but are known confounders
of AD (3), justifying the correction in the models. To account for multiple hypothesis testing, p-
values were corrected using the Benjamini-Hochberg (BH) method (25). Cognitive levels are
inversely related to AD, and thus the direction of associations with the variable ‘cognition’ was

reversed after statistical analysis.

242 Mayo

One AD sample with missing APOE genotype status was removed from further analysis.
Therefore, after preprocessing, 63 AD and 20 control samples with complete information on age
at death, APOE-¢4 allele status, and sex were used for our analysis. For replication, metabolites

that were associated with any of the eight AD-related traits in the ROS/MAP cohort at 5% FDR
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were selected. The analysis was performed using two subsequent logistic regressions with
diagnosis as outcome. The first model was built without any confounder correction. To account
for multiple hypothesis testing, p-values were corrected using the Benjamini-Hochberg (BH)
method (25). Metabolites with adjusted p-values < 0.05 were selected for the second model. The
second model was built with confounders sex, number of APOE-¢4 alleles, and age at death.
Metabolites with nominal p-values < 0.05 in the second model were considered replicated. All

analyses were performed using the maplet R package (24).

2.5 Stratified analysis

To determine the influence of sex and APOE-¢4 status on metabolic associations, we performed
a stratified analysis per factor (sex and APOE-¢4 status) for each AD-related trait. Metabolites
significant at 5% FDR were selected to compute within-group (male/female, APOE-¢4 positive/
APOE-¢4 negative) metabolic associations with AD-related traits. § estimates across groups per

Bi— B2
Jsei?+sey?

metabolite were compared using z-scores (26), defined as z = where ; and §, are

the g coefficients from the linear regressions performed in the two groups, and se; and se, are
the corresponding standard errors. Z-scores are approximately standard normally distributed and
were thus used to compute p-values using a normal distribution. Any metabolite with a nominal

p-value < 0.05 was considered significantly different within the respective group.

2.6 Metabolic network inference

To infer the metabolite-metabolite interaction network, a partial correlation-based Gaussian
graphical model (GGM) was computed using the GeneNet R package (27). P-values of partial
correlations were corrected using the Bonferroni method. Partial correlations with adjusted

p-values < 0.05 were used for network construction between metabolites. To annotate the

10
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metabolic network with AD associations, a score was computed for each metabolite/trait
combination as follows: pscore = d * (—1 * log,o(p. adj)), where p.adj is the adjusted p-value of
the model, and d is the direction (-1/1) of metabolite association based on the test statistic
(positive or negative correlation with AD-related trait). To aggregate the signal across the traits,
an overall score was defined as the pscore With maximum absolute value. This overall score was

used to color the nodes in GGM in Figure 2f and the online supplement.
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3 Results

3.1 Cohort description and characteristics of brain metabolomics

data

We analyzed brain samples of 500 participants from the Religious Order Study and the Rush
Memory and Aging Project (ROS/MAP) cohorts(11,12), including 352 females and 148 males,
with a mean age at death of 91 (Table 1). Following enroliment in the study, participants were
evaluated for physiological and cognitive function once per year (Figure 1). Neuropathology was
assessed after autopsy. Out of the 500 participants, 220 were diagnosed with AD (with or without
a secondary cause of dementia) at the time of death, 119 had mild cognitive impairment, 153
were without cognitive impairment, and 8 had other forms of dementia. Samples from the
dorsolateral prefrontal cortex (DLPFC) brain region were used for untargeted metabolic profiling.
Metabolomics measurements were analyzed in relation to eight AD-related traits covering late-
life cognitive assessments and postmortem pathology: Clinical diagnosis at time of death, level of
cognition proximate to death, cognitive decline during lifetime, p-amyloid load, tau tangle load,
global burden of AD pathology (global NP), NIA-Reagan score, neuropathological diagnosis
inferred based on a combination of Braak stage and CERAD scores (NP diagnosis; see methods

for diagnostic criteria). A detailed description of these eight AD-related traits is provided in
Table 2.

The metabolomics platform identified 667 metabolites from various chemical classes (super-
pathways) in the brain samples, including lipids (42.7%), amino acids (22.6%), nucleotides
(6.7%), carbohydrates (6.3%), cofactor and vitamins (4.3%), xenobiotics (3.7%), peptides (2.1%),

and energy-related metabolites (1.5%) (Figure 2a, Supplementary Table 1). Previous blood-
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based metabolomics studies reported strong influences of medications and supplements (such
as vitamins) on metabolic profiles (4). To investigate such effects in brain tissue-based metabolic
profiles, we examined influences of 103 grouped medication classes and supplements on
metabolic abundances. 552 out of 667 (82.75%) of the metabolites correlated with one or more
medications or supplements taken during lifetime. The group of medications to treat benign
prostatic hypertrophy associated with the highest number of metabolites (81 metabolites),
followed by diuretics (55 metabolites) and multivitamins (52 metabolites). A comprehensive list of
medication classes and their effect on the metabolome is provided in Supplementary Table 2.
Given these strong associations with the metabolome, medication effects excluding AD-related
and neurologic drugs were regressed out from the metabolic profiles for all following analyses.
Moreover, since the postmortem interval (PMI) before sample collection at autopsy may also
impact analyte levels, we investigated its effects and found that 307 metabolites associated with
PMI (Supplementary Table 3). PMI was therefore included as a covariate in all following

analyses.

To obtain a baseline understanding of metabolism in brain, we used cognitively normal samples
to compute associations between measured metabolites and demographic parameters
independent of AD pathology. This included metabolic associations with age, BMI, sex, and years
of education (as a proxy for socioeconomic status). Two metabolites, 1-methyl-5-
imidazoleacetate and N6-carboxymethyllysine, were significantly associated with age at 5% false
discovery rate (FDR). Surprisingly, there were no significant associations with sex, BMI, or
education, which is in stark contrast to findings in blood (28—30). Details of this baseline analysis

can be found in Supplementary Table 4.
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Total samples N =500
Sex
Female 352 (70.4%)
Male 148 (29.6%)

Postmortem interval (hours)

6.6 (5.2, 8.7)

BMI

25.2 (22.5, 28.2)

Years of education

16.00 (13.00, 18.00)

Age at death 91 (87, 95)
APOEA4 alleles
0 374 (75%)
1 121 (24%)
2 5(1%)

Clinical diagnosis at death

AD

220 (44%)

Mild cognitive impairment (MCI)

119 (23.8%)

No cognitive impairment (NCI)

153 (30.6%)

Other

8 (1.6%)

Format: N (%) or median (IQR)

Table 1. ROS/MAP cohort overview. Postmortem interval refers to the time between death and sample
preservation. BMI = body mass index. IQR = interquartile range, i.e., middle 50% of the data.

14
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Figure 1: Study overview. 500 ROS/MAP participants were included in this analysis. For each participant, data was
available on cognitive assessments during lifetime, postmortem AD brain pathology, and brain metabolic profiles from
the dorsolateral prefrontal cortex (DLPFC) region. Metabolic profiles were investigated for associations with AD-related
traits and a metabolite interaction network was inferred using a Gaussian graphical model (GGM). Associations were
tested for replication in 83 temporal cortex samples from the Mayo Clinic brain bank cohort and compared to a
previously published brain-based study. Finally, various pathways previously implicated in AD were metabolically
characterized, and a detailed metabolomic/proteomic characterization of the glutamate/GABA neurotransmitter
pathway was generated.
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AD-related trait Description of trait Trait data type
-amyloid Immunohistochemistry-based overall B-amyloid load numeric
Immunohistochemistry-based overall paired helical .
Tau tangles filament (PHF)-tau tangles load numeric
Summary of pathology derived from counts of:
Global NP neuritic plaques, diffuse plaques, and neurofibrillary numeric
tangles
NIA Reagan diagnosis of Alzheimer's disease .
NIA Reagan derived from Braak and CERAD scores binary
NP Diaanosis Mayo clinic diagnosis of Alzheimer's disease derived binar
9 from Braak and CERAD scores y
D(.3I|n|call Consensus cognitive diagnosis at time of death ordinal
iagnosis
Coanition Global cognitive function determined at the last Aumeric
9 timepoint before death
Cogn!tlve Rate of change in global cognition over time numeric
Decline

Table 2: Description of these AD-related traits investigated in this study.
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3.2 AD is associated with widespread metabolic alterations in brain

To assess AD-related metabolic changes, we computed statistical associations between
metabolic profiles and the 8 AD-related traits. All statistical models accounted for AD-related
confounders (age, sex, years of education, BMI, and copies of APOE4) as well as postmortem
interval. A total of 298 out of 667 metabolites (44.7%) were significantly associated with one or
more AD traits at 5% false discovery rate (FDR). 80 out of the 298 metabolites showed unique
associations with just one of the traits. A total of 218 metabolites were associated with more than
one trait, which is likely due to high correlations across traits (Figure 2b, Supplementary
Figure 1). The majority of the 298 metabolites was associated with one of three AD traits:
Cognitive decline (n = 201), tau tangles (n = 188), and global burden of pathology (n = 183)
(Figure 2c). Interestingly, only 34 metabolites associated with B-amyloid, which was the lowest
number of associations among the eight AD traits. Furthermore, we observed that 159 out of the
298 metabolites (53.4%) were associated with both premortem parameters and postmortem
pathological assessments. All statistical results are provided in Supplementary Table 5. Sex-
based stratified analysis revealed that 29 of the 298 metabolites (10%) showed associations with
at least one trait that were significantly modulated by sex (Supplementary Table 6), and APOE4-
stratified analysis showed that associations of 77 metabolites (26%) were influenced by APOE4

status (Supplementary Table 7).

The three most significantly changed metabolites for each of the eight AD-related traits are listed
in Table 3. Moreover, we illustrate the two most significant associations in the dataset as visual
examples: Glycerophosphoethanolamine (GPE) levels, which positively associated with cognitive
decline (FDR: 7.05e-13, Figure 2d, left), and N-acetylglutamate, which negatively associated

with global AD pathology (FDR: 3.59e-08, Figure 2d, right). GPE levels were higher with lower
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cognitive abilities, which corroborates previously published findings(31). N-acetylglutamate levels

showed lower levels with higher AD pathology load.

The 298 metabolites that were associated with AD-related traits were distributed across all super-
pathways, including 113 (37.92%) within the largest super-pathway of lipids, followed by amino
acids with 78 (26.17%) associations, and the rest in the remaining six super-pathways (Figure
2e). At the more fine-grained sub-pathway level, metabolic associations were distributed across

72 out of the 101 sub-pathways covered in the data (Supplementary Figure 2).

We statistically inferred a metabolic network and annotated it with effect directions and the lowest
adjusted p-value across the eight AD traits (Figure 2f). The network is based on a Gaussian
graphical model (GGM), which corresponds to a data-driven representation of biochemical
pathways (32,33). GGMs have previously been used to systematically investigate various trait
effects on the metabolome (21,28). To further explore our findings networks for each AD trait are
available as a Cytoscape file (Supplementary File 1), as well as an interactive online version at

https://omicscience.org/apps/brainmwas/.

Taken together, this analysis revealed global metabolic changes with respect to various AD-
related clinical and neuropathological traits. These alterations encompass all measured metabolic

super-pathways, highlighting the massive impact of the disease on brain metabolism.
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Figure 2: Overview of metabolic associations with AD traits. a, Metabolites measured in brain samples are
distributed across various metabolic classes, referred to as “super-pathways” throughout the manuscript. b, Kendall
correlations across the eight AD-related traits. ¢, A total of 298 metabolites were associated with at least one of the
eight AD-related traits. d, Examples of two metabolites with the lowest adjusted p-values. Note that the traits were
discretized (median split) for visualization. e, Distribution of metabolic associations across super-pathways. f, Gaussian
graphical model of metabolites. Metabolites are colored based on the negative logio of the lowest adjusted p-value
across AD-related traits multiplied with the direction of the respective effect estimate. Global NP = Global burden of AD
neuropathology. NP Diagnosis = postmortem diagnosis based on Braak stage and CERAD score. Cognition = cognitive
assessment scores from last premortem test. Cognitive Decline = Change in cognitive assessment scores over time
until death.
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. . Effect
Metabolite AD-related trait p-value FDR direction
carboxyethyl-GABA B-amyloid 1.47E-08 | 9.79E-06 Positive
1-stearoyl-2-oleoyl-GPE (18:0/18:1) B-amyloid 2.01E-06 | 3.46E-04 Negative
glycerophosphoethanolamine B-amyloid 2.08E-06 3.46E-04 Positive
glycerophosphoethanolamine Tau tangles 1.28E-07 8.54E-05 Positive
glycerophosphorylcholine (GPC) Tau tangles 4.46E-07 1.49E-04 Positive
1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) Tau tangles 2.84E-06 1.90E-04 Negative
N-acetylglutamate Global NP 5.39E-11 3.59E-08 Negative
N-acetylputrescine Global NP 3.61E-10 1.20E-07 Negative
glycerophosphoethanolamine Global NP 1.34E-09 2.97E-07 Positive
carboxyethyl-GABA NIA Reagan 1.39E-07 9.25E-05 Positive
glycerophosphoethanolamine NIA Reagan 5.39E-06 1.80E-03 Positive
X-25109 NIA Reagan 1.15E-05 2.55E-03 Negative
1-stearoyl-2-oleoyl-GPE (18:0/18:1) NP Diagnosis 2.86E-06 | 6.45E-04 Negative
allo-threonine NP Diagnosis 2.90E-06 | 6.45E-04 Positive
glycerophosphoethanolamine NP Diagnosis 2.10E-06 | 6.45E-04 Positive
glycerophosphoethanolamine Clinical Diagnosis | 2.75E-11 1.83E-08 Positive
glycerophosphorylcholine (GPC) Clinical Diagnosis | 3.72E-10 8.26E-08 Positive
N-acetyl-aspartyl-glutamate (NAAG) Clinical Diagnosis | 3.64E-10 8.26E-08 Positive
glycerophosphoethanolamine Cognition 3.09E-12 2.06E-09 Positive
glycerophosphorylcholine (GPC) Cognition 2.34E-10 7.81E-08 Positive
myo-inositol Cognition 1.13E-08 1.89E-06 Positive
glycerophosphoethanolamine Cognitive Decline 1.06E-15 7.05E-13 Positive
glycerophosphorylcholine (GPC) Cognitive Decline | 4.75E-14 1.58E-11 Positive
X - 24035 Cognitive Decline 5.98E-13 1.33E-10 Positive

Table 3. Top three metabolites associated with each AD-related trait. Global NP = Global burden of AD
neuropathology. NP Diagnosis = postmortem diagnosis based on Braak stage and CERAD score. Cognition =
cognitive assessment scores from last premortem test. Cognitive Decline = Change in cognitive assessment scores
over time until death.
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3.3 AD-associated metabolic alterations overlap across

independent brain studies

To strengthen confidence in our findings, we performed replication analysis using a metabolomics
dataset from a Mayo Clinic brain bank cohort. In addition, we compared our results to a previously
published brain metabolomics study based on samples from the Baltimore Longitudinal Study of
Aging (BLSA) (5). Detailed replication results of Mayo can be found in Supplementary Table 8

and published BLSA results used for comparison can be found in Supplementary Table 9.

In the Mayo data, 83 temporal cortex brain samples were used for untargeted metabolic profiling,
including 63 AD patients and 20 controls. Of the 8 AD-related traits used in the discovery phase
with ROS/MAP cohort, neuropathology-based diagnosis was the only matching trait available in
this cohort. Individual measures of neuropathology were not comparable between cohorts, and
cognitive assessments were not available for the Mayo cohort. A total of 257 metabolites of the
298 significant in the ROS/MAP cohort (across all 8 AD-related traits) were measured in the Mayo
cohort. 30 of these 257 metabolites were significant in both datasets, i.e., with AD diagnosis in
the Mayo cohort and with at least one of the eight AD-related traits in ROS/MAP (Figure 3a), all

of which showed consistent effect directions.

In the BLSA study (5), 43 samples from the inferior temporal gyrus (ITG) and middle frontal gyrus
(MFG) brain regions were used for targeted metabolic profiling. The study identified 130
metabolites, of which the authors focused on 26, which were further categorized into different
biochemical groups. In their analysis, 9 out of 26 metabolites were associated with AD diagnosis.
All 26 metabolites were measured in our study, 17 of these 26 associated with AD-related traits,
and 6 of these 17 were among the 9 metabolites associated in their study (Figure 3b). Of those
6 metabolites, 5 had the same effect directions, while cysteine was found to be positively

associated with AD in the BLSA study and negatively associated with AD traits in ROS/MAP.
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Overall, 35 of the 298 associations identified in ROS/MAP were confirmed with consistent effect

directions in either the Mayo or the BLSA cohort.
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Figure 3: Overlap across independent cohorts and brain regions. a, The Mayo and ROS/MAP cohorts have 30
metabolic associations with consistent effect directions in common. b, The BLSA and ROS/MAP cohorts have 5
metabolic associations with consistent effect directions in common (green and brown). Cysteine showed inconclusive
effect directions, with a positive association with AD in the BLSA cohort and a negative association with AD traits in the
ROS/MAP cohort.
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3.4 Metabolic alterations further characterize pathways previously

implicated in AD

To examine the contribution of metabolic alterations in previously reported AD-related pathogenic
processes, we selected four pathway groups for further exploration (Figure 4). Comprehensive
functional annotations based on Metabolon’s sub-pathways are available in Supplementary
Figure 2. For each pathway group discussed below, we included metabolites associated with at

least one of the eight AD-related traits.

3.41 Bioenergetic pathways

Bioenergetic dysregulation is a hallmark of AD, which has been demonstrated using different
technologies, from PET neuroimaging to deep molecular profiling such as metabolomics and
proteomics studies (34-37). In our analysis, key metabolites from bioenergetic pathways,
including glycolysis, branched-chain amino acid (BCAA) metabolism, and mitochondrial (-
oxidation, were found to be significantly associated with AD. This included positive correlations
with AD traits of the glycolytic metabolites glucose, glycerate, glucose 6-phosphate, and 1,5-
anhydroglucitol; the BCAAs valine, isoleucine, and leucine, as well as their 1-carboxyethyl
conjugates and degradation products p-hydroxyisovalerate, and 3-hydroxyisobutyrate; and the
acylcarnitines isobutyrylcarnitine (C4), tiglyl carnitine (C5), 2-methylbutyrylcarnitine (C5),
glutarylcarnitine (C5-DC), and 5-dodecenoylcarnitine (C12:1). High abundances of these
metabolites resemble observations in blood metabolic profiles of individuals with type 2 diabetes
and stand in contrast to blood-based studies in AD, which reported negative associations of, e.g.,
BCAA levels with AD (4,38). Together, these results are in line with the hypothesis that AD might

represent a “type 3” diabetes that selectively affects the brain (39).
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3.4.2 Cholesterol metabolism and sterol pathway

The strongest genetic risk for AD is exerted by variants of the APOE gene, a lipoprotein involved
in cholesterol transport and metabolism (40—42). Our findings provide further evidence for the AD-
associated significance of this pathway, with degradation products of cholesterol showing positive
correlations with AD-related traits. These degradation products include 7a-hydroxy-3-oxo-4-
cholestenoic acid (7-HOCA), which has been described as a CSF-based marker for blood-brain-
barrier integrity (43); 4-cholesten-3-one, a product of cholesterol oxidation and isomerization
through bacterial enzymes (44); and 7-hydroxycholesterol, a precursor for bile acids. Notably,
cholesterol itself did not show any significant associations, indicating potential dysfunctional
cholesterol clearance rather than a direct role of cholesterol in AD. This hypothesis is further
supported by previous studies where we observed a significant increase of secondary bile acids

in AD (39,45,46).

3.4.3 Neuroinflammation and oxidative stress

Neuroinflammation is a central pathogenic feature of AD and is accompanied by the production
of reactive oxygen species leading to oxidative stress (47). AD has been associated with both
lipid mediators of inflammatory processes as well as immune response, including eicosanoids,
and molecules involved in the antioxidant defense, such as glutathione (48-50). In line with these
findings, we observed significant positive correlations of metabolites in the glutathione pathway
with AD, indicating an upregulated antioxidant response. Significant metabolites included 4-
hydroxy-nonenal-glutathione, a marker for detoxification of lipid peroxidation through glutathione
S-transferases (GSTs) (51); cysteinylglycine disulfide, a degradation product of oxidized
glutathione (49); and ophthalmate, an endogenous analog of hepatic glutathione (GSH) and a
potential marker for GSH depletion (52). Moreover, pro-inflammatory eicosanoids showed

positive associations with AD, including 15-oxoeicosatetraenoic acid (15-KETE), which has been
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linked to GST inhibition (53), and 12-hydroxy-heptadecatrienoic acid (12-HHTrE), overall
providing further molecular evidence for active inflammatory processes in AD. In contrast, anti-
inflammatory long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as
eicosapentaenoate (EPA) and docosahexaenoate (DHA) (54,55), were negatively associated

with AD.

3.4.4 Osmoregulation

Osmolytes are a class of molecules that primarily sustain cell integrity (56). They have been
suggested to play a neuroprotective role in AD by activating mTOR-independent autophagy
signaling to inhibit the accumulation of aggregated proteins(57). Osmolytes also affect protein
folding (58), and their therapeutic potential has been discussed in AD as well as other
neurodegenerative proteinopathies (59). Moreover, osmolyte imbalances can impact neuronal
hyperexcitation by influencing neurotransmitter uptake (56). In our analysis, we observed positive
associations of several osmolytes with AD, including 2-aminoadipate, arginine,
glycerophosphorylcholine (GPC), myo-inositol, serine, and urea, whereas betaine was negatively
associated with the disease. As these observations are based on bulk tissue metabolomics, it
remains unclear if these metabolites are deregulated within or outside of the cell. Nevertheless,
the strong statistical significance underlying these associations suggests an important role of

osmoregulation in AD which warrants further investigation.
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Figure 4: Pathway-level metabolic associations with AD-related traits. The highlighted biological processes have
previously been implicated in AD. Our data provide a metabolic characterization of the AD-related alterations of these
pathways in the brain: Cholesterol metabolism has an established connection to late-onset AD through APOE-¢4, the
major genetic risk factor for the disease. Bioenergetic dysregulation is one of the earliest detectable changes in the
central nervous system in AD and has also been described in the periphery. Inflammation and oxidative stress have
been reported to synergistically affect AD pathogenesis. Osmoregulation affects various aspects of AD pathology,
including protein folding, neural excitation, and autophagy.
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3.5 Integration of complementary omics provides comprehensive

view of biochemical cascade downstream of neurotransmitters

As a detailed showcase of the complex, biochemical interconnections in brain omics data, we
selected a biochemical cascade downstream of the neurotransmitters glutamate and gamma
aminobutyric acid (GABA). An elevated synaptic excitatory/inhibitory (E/l) ratio of these
neurotransmitters has been linked to hyperexcitability and cognitive impairment observed in AD
(60,61). Furthermore, given GABA’s positive correlation with efficient working memory within the
DLPFC region (62), it is of high significance to investigate GABA-related deregulation in this

region.

We compiled biochemical steps of metabolites and enzymes downstream of glutamate using
known reactions from the public database pathbank (63) (Figure 5). Notably, the cascade does
not contain the routes from GABA to glutamate or from putrescine to GABA due to a lack of

coverage of metabolites along those pathways.

Based on proteomics profiles available for 262 matching brain samples, we performed a targeted
association analysis of AD-related traits and proteins that are enzymatically involved in this
pathway cascade (Supplementary Table 10). Significant metabolic and proteomic associations
with at least one of the eight AD-related traits were annotated on the respective molecules within

the cascade.

3.5.1 Glutamate metabolism

The pathway cascade starts with glutamate, which was positively associated with AD traits in our
data. Excitatory glutamatergic synapses involving N-methyl D-aspartate receptors (NMDAR) have
previously been targeted by memantine to treat severe AD (64). Glutamate is the precursor of the

inhibitory neurotransmitter GABA, which we found to be negatively associated with AD.
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Interestingly, protein abundance of glutamate decarboxylase (GAD2), which catalyzes the
production of GABA from glutamate was also negatively associated with AD pathology in our data.
This negative association provides a potential explanation for the imbalance between the two

neurotransmitters.

3.5.2 Urea cycle

Glutamate metabolism is directly connected to the urea cycle, in which ornithine, arginine, and
urea were positively associated with AD. Urea buildup to neurotoxic levels has been observed in
postmortem brains of Huntington’s disease and has furthermore been linked to dementia (65).
The key enzyme in this pathway, arginase (ARG2) was positively associated with AD in our data.
It catalyzes the conversion of arginine to ornithine with urea as a byproduct and has been
previously linked to AD pathology due to its involvement in microglial activation and autophagy
(66—68). Moreover, the reduction of urea levels through the inhibition of arginase (ARG2) has

been suggested as a promising target in the context of AD (69).

3.5.3 Polyamine metabolism

The urea cycle further feeds into the polyamine pathway, in which putrescine was negatively
associated with AD, while spermidine and spermine were not significantly associated with AD.
Putrescine promotes the clearance of apoptotic cells via efferocytosis (70), a mechanism affected
in AD and other neurodegenerative diseases (71). Notably, some previous studies in human

samples as well as mouse models have implicated putrescine in the context of AD (72—75).

3.5.4 Methionine metabolism

In the final part of our pathway cascade, the enzyme S-methyl-5'-thioadenosine phosphorylase
(MTAP) links the polyamine pathway to methionine metabolism, in which methionine, methionine

sulfoxide, s-adenosylmethionine, and s-adenosylhomocysteine were positively associated with
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AD, with concordant changes in protein levels of respective enzymes MTAP, mitochondrial
peptide methionine sulfoxide reductase (MSRA) and methionine adenosyltransferase (MAT2A).
In a previous study, we have shown that higher levels of methionine in CSF were associated with
AD (76). Methionine acts as an antioxidant by forming methionine sulfoxide and is also a precursor
of s-adenosylmethionine (77), which is a key methyl donor in brain cells and involved in the
synthesis of the neurotransmitters dopamine, norepinephrine, and serotonin via the folate cycle

(78).

Overall, our analysis provides an integrated, multi-omics view of neurotransmitter-related

changes known to play a role in the pathogenesis of AD.
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Figure 5: Metabolic changes downstream of the neurotransmitters glutamate/GABA. This multi-omics cascade
starts with a biochemical process involving the conversion of glutamate into GABA within glutamate metabolism.
Glutamate metabolism feeds into the urea cycle by conversion of glutamate to ornithine. Urea buildup to neurotoxic
levels has been observed in postmortem brains of Huntington’s disease and has furthermore been linked to dementia.
The urea cycle connects to polyamine metabolism via the conversion of ornithine into putrescine. Putrescine promotes
the clearance of apoptotic cells via efferocytosis, a mechanism affected in AD. Polyamine metabolism connects to
methionine metabolism through the methionine salvage pathway. Methionine acts as an antioxidant and is a precursor
of s-adenosylmethionine, which is a key methyl donor in brain cells and involved in the synthesis of the
neurotransmitters dopamine, norepinephrine, and serotonin via the folate cycle.
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3.6 Conditional analysis suggests tau pathology as a driver of

metabolic changes in brain

According to the B-amyloid hypothesis of AD, B-amyloid is key to AD pathogenesis (79). It is
considered to influence the accumulation of tangles of phosphorylated tau as well as tangle-driven
pathogenesis (80). As a result, B-amyloid has been the focus of most therapeutic approaches
(81-85). However, recent evidence suggests that tau tangles might be acting independent of -
amyloid (86). To identify metabolic signatures specific to f-amyloid and tau tangles we performed
conditional analyses by adjusting for the respective other neuropathology (Figure 6a). In our
standard association analysis, i.e., without accounting for -amyloid load, 188 metabolites were
associated with tau tangle load. 119 out of these 188 associations were still significant after
accounting for B-amyloid load in the statistical model. While 34 metabolites were associated with
B-amyloid load in the standard association analysis, only one remained significant after
accounting for tau tangle load. Details of the standard and conditional analysis are available in
Supplementary Table 5 and Supplementary Table 11, respectively. Taken together, this
analysis suggests that metabolic associations of tau tangles are largely independent of -amyloid

load, while metabolic associations of 3-amyloid load are confounded by tau tangle load.

To corroborate this finding with another omics layer, we performed the same analysis on
proteomics profiles. In the standard association analysis, 695 proteins associated with tau tangle
load, i.e., without accounting for B-amyloid load. 252 out of these 695 were still associated with
tau tangle load after accounting for B-amyloid load in our statistical model. While 265 proteins
were associated with B-amyloid load in the standard association analysis, only 68 of these
remained correlated after accounting for tau tangle load (Figure 6b). Details of the proteomics

standard and conditional analysis are available in Supplementary Table 12.
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Taken together, metabolic associations were more widespread for tau tangles and less dependent

on B-amyloid load, which was partially confirmed by a similar trend in the proteomics data.
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Figure 6: Comparison of standard and conditional analyses of B-amyloid and tau tangles. Tau tangle-associated
signals appeared largely independent of -amyloid signals, while B-amyloid signals were more strongly dependent on
tau tangle signals. a, b Overlap of tangle- and B-amyloid-associated metabolites and proteins, respectively, with and
without adjusting for the respective other neuropathology.
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4 Discussion

In this work, we provide a global view of metabolic changes in brain related to Alzheimer’s
disease. Our study is based on broad untargeted metabolomics profiles of 500 brain tissue
samples from the DLPFC, covering 667 metabolites from various biochemical classes. We
demonstrated that in cognitively normal individuals, age, sex, education, and BMI did not show
major effects on brain metabolites. These limited associations of brain metabolites with
demographics and socioeconomic status stand in contrast to the strong associations seen with
blood metabolic profiles (28-30). Conversely, intake of medications had major effects on brain
metabolome, as observed in blood metabolic profiles (4), highlighting the importance of
accounting for the effects of pharmaceuticals. Of note, we observed significant modulation of
metabolic associations through sex and APOE-¢4 status, which is concordant with previous

findings in blood-based metabolomics data (3).

4.1.1 Comparison with independent cohorts

In the subsequent association analysis, we found that 298 out of the 667 metabolites correlated
with at least one of the eight investigated AD-related traits, covering cognition and several
neuropathological parameters. We confirmed 30 of our associations using independent samples
from the Mayo Clinic brain bank cohort. Additionally, 5 associations were confirmed using a study
on the BLSA cohort (5). Two pathways, urea cycle, and glutathione metabolism, were associated
with AD in all three cohorts. This overlap was observed despite the substantial differences in
sample sizes, profiled brain regions, study designs, and clinical parameters. We thus conclude
that the 35 metabolites and two pathways are high confidence AD-related metabolic signals in
brain tissue, and the metabolic associations unique to our ROS/MAP study need further

validation. Metabolic view of AD-associated pathways

36


https://doi.org/10.1101/2021.11.15.468698
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.15.468698; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Our study provided a metabolic view on various AD-related processes, including bioenergetic
pathways, cholesterol metabolism, neuroinflammation, and osmoregulation. Out of those four, we
will now specifically highlight our contribution towards the understanding of impaired bioenergetic
metabolism and propose osmoregulation as a potentially important mechanism in AD
pathogenesis. The bioenergetic alterations observed in our study endorse the existing evidence
of impaired insulin signaling in AD (39). We speculate that this dysregulation (also referred to as
type 3 diabetes) together with our finding that tau tangles are the major driver of metabolic
alterations extends the emerging view that tau tangle is a key regulator of insulin signaling in the
brain (87). Further, we observed numerous osmolytes being highly associated with AD, which
suggests a potential functional link with the pathomechanisms of the disease. Osmolytes
participate in multiple critical processes associated with neurogenerative diseases, including
protein folding (88), autophagy (57), and hyperexcitation of neurons (56). While our observations
on osmolytes might to some extent be confounded by, e.g., systematic differences in the hydration
status of AD patients before death, to the best of our knowledge, these alterations within the

central nervous system have so far not been studied in detail.

4.1.2 Biochemical changes downstream of glutamate/GABA neurotransmitters

We investigated detailed biochemical alterations downstream of glutamate and GABA.
Imbalances of these neurotransmitters have previously been associated with hyperexcitability and
cognitive impairment in AD (60,61). In our study, the excitatory neurotransmitter glutamate was
positively associated with AD, while the inhibitory neurotransmitter GABA was negatively
associated with AD. These findings are in line with prior studies of AD etiology involving excess
glutamate-mediated overstimulation (64) and emerging evidence that a decline in GABA levels
contributes to synaptic dysfunction and excitatory/inhibitory imbalance (89). To investigate the
downstream effects of this excitatory/inhibitory imbalance, we explored the metabolic and

enzymatic changes in the biochemical cascade starting from the conversion of glutamate to
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GABA, connecting glutamate to urea cycle, polyamine metabolism, and methionine metabolism.
Our study shows how the integration of metabolomics with proteomics provides a comprehensive
overview of biochemical changes downstream of these neurotransmitters. Moreover, to the best
of our knowledge, this is the first study reporting low levels of GABA being associated with
cognitive decline within the DLPFC region. DLPFC is associated with working memory in
individuals (62), which becomes impaired during AD pathogenesis (90). Thus, GABA levels within
the DLPFC region have been of considerable interest to the AD community (90), which is

corroborated by our results.

4.1.3 Interplay between proteinopathies and metabolic changes

Addressing the complex interplay of 3-amyloid and tau tangles in AD, we performed a conditional
statistical analysis. In our data, 97% of the B-amyloid-associated metabolites were dependent on
tau tangle load, while only 36.7% of the tau tangle-associated metabolites were dependent on [3-
amyloid load. Our study thus provides preliminary evidence that the metabolic component of tau
tangle-driven pathogenesis is independent of B-amyloid, which is in line with recent literature that
proposes that tau accumulation might be independent of B-amyloid (86). Our finding may also
suggest that metabolic changes in the brain are mostly later events in the pathologic cascade of
AD (91) and closer temporally to tau pathology, neurodegeneration, and cognitive decline than to
B-amyloid accumulation. Further supporting this, the largest number of associations in ROS/MAP
was detected with cognitive decline, an event deemed to be at the later stages of the pathologic
cascade of events in AD (92). Notably, our results might also have implications for potential
pharmaceutical interventions for the disease. Specifically, it can be postulated that drugs targeting

B-amyloid will only have limited impact on the metabolic component of AD.
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4.1.4 Limitations

Despite the various novel insights into metabolic alterations in brain observed in AD, our study
has several limitations. First, post-mortem studies are always cross-sectional in nature. The
caveat of such studies is that they cannot be used to assess the causal direction of the identified
associations. That is, an observed metabolic change in AD could be a factor directly contributing
to disease development, or it could be a downstream effect of the pathological changes in brain.
The true effect direction can only be determined in mechanistic follow-up studies or by genetic
causality analysis such as Mendelian randomization (93), for which our study did not have the
necessary statistical power. Second, diet and the gut microbiome are substantial confounders of
the measured metabolites (94,95), and examining the influence of these food-related factors will
be a valuable and necessary addition in future studies. Third, the bulk tissue approach used in
our study generates mixed metabolomic data from a variety of cell types and tissue
compartments. Future work with specific cell populations will allow us to obtain a more precise
picture of a particular mechanistic change accompanying AD and dementia. Fourth, postmortem
tissue samples are prone to substantial biological and technical variation, as seen in the
association of 307 out of 667 metabolites with postmortem interval (PMI), i.e., the time between
death and sample preservation. Despite the statistical correction for PMI interval, degradation of
certain metabolites until sample preservation is a factor that cannot be controlled in this type of

study.

4.1.5 Conclusion and Outlook

Follow-up studies will be needed to build upon our findings, to complete the picture of
dysregulated metabolism and pathological pathways in the Alzheimer's disease brain. In
particular, the wide availability of multi-omics datasets will provide a more holistic picture of the
molecular changes associated with the disease (96-98). The integration of proteomics data into

the glutamate/GABA pathway exploration in our study represents a pilot analysis in this direction;
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however, large-scale studies with an “ome-wide” integration of the (epi-)genome, transcriptome,
proteome, and metabolome are required to further elucidate the mechanistic basis of AD
pathogenesis and outline potential treatment options. To further enable these efforts, we
published raw and processed metabolomics data through the AD Knowledge Portal, provide all
analysis codes, and developed a reference catalog of hundreds of associations in an interactive

web portal.
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Data availability

The data used in this paper can be obtained from two sources: (1) Metabolomics data for the
ROS/MAP and Mayo cohorts, clinical data for the Mayo cohort, and proteomics data for the

ROS/MAP cohort are available via the AD Knowledge Portal (https://adknowledgeportal.org). The

AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by the
Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other National
Institute on Aging (NIA)-supported programs to enable open-science practices and accelerate
translational learning. The data, analyses, and tools are shared early in the research cycle without
a publication embargo on secondary use. Data is available for general research use according to
the following requirements for data access and data attribution

(https://adknowledgeportal.org/DataAccess/Instructions). For access to content described in this

manuscript see: http://doi.org/10.7303/syn26401311. (2) The full complement of clinical and

demographic data for the ROS/MAP cohort are available via the Rush AD Center Resource

Sharing Hub and can be requested at https://www.radc.rush.edu.

An interactive network view of AD associations from this study can be found at

https://omicscience.org/apps/brainmwas/.

All R scripts to generate the tables and figures of this paper are available at

https://qgithub.com/krumsieklab/ad-brain-landscape.
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