

1 Genomic landscape of drug response reveals 2 novel mediators of anthelmintic resistance

3

4 **Authors:** Stephen R. Doyle^{1,†,*}, Roz Laing^{2,†,*}, David Bartley³, Alison Morrison³, Nancy
5 Holroyd¹, Kirsty Maitland², Alistair Antonopoulos², Umer Chaudhry^{4§}, Ilona Flis², Sue
6 Howell⁵, Jennifer McIntyre², John S. Gilleard⁶, Andy Tait², Barbara Mable², Ray
7 Kaplan⁵⁺, Neil Sargison⁴, Collette Britton², Matthew Berriman¹, Eileen Devaney^{2,‡}, James
8 A. Cotton^{1,‡}

9

10 † These authors contributed equally to this work

11 ‡ These authors contributed equally to this work

12 § Current address: School of Veterinary Medicine, University of Surrey; Surrey, United
13 Kingdom

14 + Current address: Department of Pathobiology, School of Veterinary Medicine, St.
15 George's University; St. George's, Grenada

16

17 *Corresponding authors: email: stephen.doyle@sanger.ac.uk; email:
18 Rosalind.Laing@glasgow.ac.uk

19

20 **Affiliations:**

- 21 1. Wellcome Sanger Institute; Hinxton, United Kingdom
- 22 2. Institute of Biodiversity Animal Health and Comparative Medicine, College of
23 Medical, Veterinary and Life Sciences, University of Glasgow; Glasgow, United
24 Kingdom
- 25 3. Moredun Research Institute; Penicuik, United Kingdom
- 26 4. Royal (Dick) School of Veterinary Studies, University of Edinburgh; Edinburgh,
27 United Kingdom
- 28 5. Department of Infectious Diseases, College of Veterinary Medicine, University of
29 Georgia; Athens, United States
- 30 6. Department of Comparative Biology and Experimental Medicine, Host-Parasite
31 Interactions Program, Faculty of Veterinary Medicine, University of Calgary;
32 Calgary, Canada

33

34 **Abstract:**

35 Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes
36 is key to improving the efficacy and sustainability of parasite control. Here, we use a
37 genetic cross in a natural host-parasite system to simultaneously map resistance loci
38 for the three major classes of anthelmintics. This approach identifies novel alleles for
39 resistance to benzimidazoles and levamisole and implicates the transcription factor,
40 *cky-1*, in ivermectin resistance. This gene is within a locus under selection in ivermectin
41 resistant populations worldwide; functional validation using knockout experiments
42 supports a role for *cky-1* overexpression in ivermectin resistance. Our work
43 demonstrates the feasibility of high-resolution forward genetics in a parasitic
44 nematode, and identifies variants for the development of molecular diagnostics to
45 combat drug resistance in the field.

46

47 **One-Sentence Summary:**

48 Genetic mapping of known and novel anthelmintic resistance-associated alleles in a
49 multi-drug resistant parasitic nematode

50 **Main Text:** Over a billion people and countless livestock and companion animals
51 require at least annual treatment with anthelmintic drugs to control parasitic worm
52 (helminth) infections. The rapid and widespread evolution of resistance to these drugs
53 is a significant health concern in livestock (1) and places an economic burden on food
54 production. Resistance is present on every continent where anthelmintics are used; in
55 many places, individual drug classes are now ineffective, and some farms have
56 resistance to every major class of drug (2), threatening the economic viability of livestock
57 farming. In Europe, gastrointestinal helminths of livestock are responsible for annual
58 production losses of €686 million, of which €38 million is associated with anthelmintic
59 resistance (3). Drug resistance is also now a major concern in the treatment of
60 helminths infecting dogs (4, 5), with multiple drug resistance to all major anthelmintic
61 classes in the dog hookworm now common in the USA (6). The same classes of drugs
62 to which veterinary parasites have rapidly evolved resistance are also used to control
63 related human-infective helminths, which are targeted at scale by some of the largest
64 preventative chemotherapy programmes in the world. Although less established in
65 human-infective helminths, the emergence of widespread anthelmintic resistance –
66 echoing the current global emergency around antimicrobial resistance – will have
67 serious socio-economic and welfare impacts on people infected with parasitic worms
68 and derail hard-won progress towards the proposed eradication and elimination of
69 helminths over the next decade (7, 8).

70

71 Despite extensive efforts, the causal mutations and mechanisms of resistance in
72 parasitic helminths remain largely unresolved. Many candidate "resistance genes" have
73 been proposed for most drug classes; these candidates are primarily homologues of
74 genes that confer resistance in the free-living model nematode *Caenorhabditis elegans*,
75 and are subsequently assayed for differences in genetic variation and/or gene
76 expression in parasite isolates that vary in their response to treatment (9–11). A
77 successful example of this approach is the identification of variants of β -tubulin that
78 inhibit tubulin-depolymerisation by benzimidazole-class anthelmintics (12, 13). These
79 variants, particularly at amino acid positions 167, 198 and 200 of β -tubulin isotype 1
80 (14–16), have subsequently been shown to be associated with resistance in many
81 parasitic species for which benzimidazoles have been extensively used, and a number
82 of these parasite-specific mutations have been functionally validated in *C. elegans* (17,
83 18). However, these three variants are unlikely to explain all phenotypic variation
84 associated with resistance (19, 20), and it is unknown to what degree other variants
85 contribute to benzimidazole resistance in parasitic species. For other drug classes, few
86 candidate genes have been functionally validated or shown to be important in natural
87 parasite populations. For example, concurrent mutation of three glutamate-gated
88 chloride channels (*g/c-1*, *avr-14*, *avr-15*) enables resistance to high levels of ivermectin
89 by *C. elegans* (21), yet no strong evidence of selection on these channels in any
90 parasitic species has been demonstrated to date. On the one hand, the many genes
91 proposed may reflect that resistance is a complex, quantitative trait where similar
92 resistance phenotypes can be derived from variation in multiple loci. Alternatively,
93 resistance may be species and/or population-specific, and evolve independently under

94 subtly different selection pressures (22). However, some candidates are likely to have
95 been falsely associated with resistance, as most studies present relatively weak
96 genetic evidence from the analysis of single or few candidate loci in small numbers of
97 helminth populations that often differ in both drug susceptibility and geographic origin.
98 Many helminth species are exceptionally genetically diverse (23–26), and consequently,
99 candidate gene approaches have limited power to disentangle causal variation from
100 linked but unrelated background genetic variation, a situation that is exacerbated by
101 the experimental intractability and inadequate genomic resources available for many
102 parasitic helminths (9).

103

104 Here we describe a genome-wide forward genetics approach using the parasitic
105 nematode *Haemonchus contortus* as a model to identify genetic variation associated
106 with resistance to three of the most important broad-spectrum anthelmintic drugs
107 globally: ivermectin, levamisole, and benzimidazole. *H. contortus* is an economically
108 important gastrointestinal parasite of livestock and one of only a few genetically
109 tractable parasites used for drug discovery (27, 28), vaccine development (29, 30), and
110 anthelmintic resistance research (22). Our approach has exploited a genetic cross
111 between the susceptible MHco3(ISE) and multi-drug resistant MHco18(UGA) strains of
112 *H. contortus* (**fig. S1 A**), allowing us to investigate resistance in a natural host-parasite
113 system while controlling for confounding genetic diversity that differentiates parasite
114 strains (see **Supplementary materials** regarding the establishment and validation of
115 the cross). Using an eXtreme Quantitative Trait Locus (X-QTL) (31, 32) analysis
116 framework, whereby pools of F3-generation progeny from F2 adults treated *in vivo*

117 were sampled pre- and post-treatment for each drug (**fig. S1 B**; n = 3 parasite
118 populations per drug class maintained in independent sheep; **fig. S2**) and analysed by
119 whole-genome sequencing (**table S1**), we aimed to identify drug-specific quantitative
120 trait loci (QTLs) associated with resistance throughout the genome. These QTLs and
121 specific variants were independently validated using genome-wide variation from
122 populations of *H. contortus* obtained from ten US farms of known resistance
123 phenotype (see **Supplementary materials** for a description of the US farms and
124 quantitative phenotyping; **table S2**, **fig. S3**, **fig. S4**), and from more than 350 individual
125 parasites sampled throughout the world where *H. contortus* is endemic (25, 33).

126 **A genetic cross between genetically-distinct susceptible and multi-drug resistant**
127 **strains reveals drug-specific QTL after selection**

128 A key feature and thus advantage of using a genetic cross to map anthelmintic
129 resistance loci is that the high degree of within-strain diversity and genome-wide
130 genetic divergence is controlled by admixture in the F1 generation of the cross. The
131 susceptible and resistant parental *H. contortus* strains of the cross are highly
132 genetically differentiated throughout their genomes (**Fig. 1A**; mean $F_{ST} = 0.089 \pm 0.066$
133 SD; $n = 16,794,366$ single nucleotide variant sites), typical of two parasite strains
134 sampled from different continents (25, 34). In subsequent generations, both
135 susceptible and resistant alleles segregate at moderate frequencies in the absence of
136 selection, and genetic recombination breaks down the linked genetic variation that
137 defines and differentiates the parental strains. This was evident by a significantly lower
138 genome-wide genetic differentiation in the F3-generation control population (genome-
139 wide mean $F_{ST} = 0.012 \pm 0.004$) and absence of discrete peaks of high genetic
140 differentiation (**Fig. 1B: Control**). In contrast, after each drug treatment, discrete QTLs
141 that differ between each drug class were revealed: after benzimidazole treatment, we
142 identified a major QTL on chromosome 1 (**Fig. 1B: Benzimidazole**); after levamisole,
143 two QTLs on chromosome 4 and 5 (**Fig. 1B: Levamisole**); and after ivermectin, a major
144 QTL on chromosome 5 and minor QTLs on chromosomes 2 and 5 (**Fig. 1B:**
145 **Ivermectin**).

146

147

148

149 **Fig. 1. A genetic cross followed by drug selection reveals discrete QTLs associated with**
150 **each anthelmintic drug class.**

151 (A) Genome-wide comparison of susceptible MHco3(ISE) and multidrug-resistant
152 MHco18(UGA) parental strains revealed broad-scale genetic differentiation on all
153 chromosomes. (B) Comparison of genome-wide differentiation between F3 generation pooled
154 infective-stage larvae (L_3 , $n = 200$) sampled pre- and post-treatment revealed distinct genomic
155 regions or QTLs associated with benzimidazole, levamisole, and ivermectin drug treatment. An
156 untreated control where sampling was time-matched to the treated groups is shown for
157 comparison. In all plots, each point represents the mean genetic differentiation (F_{ST}) from three
158 biological replicates in five kb sliding windows, and the dashed line represents the genome-
159 wide mean $F_{ST} + 3$ SD for each comparison (See **fig. S2** for genome-wide replicate data).
160 Individual chromosomes are indicated by alternating dark and light blue shading.

161

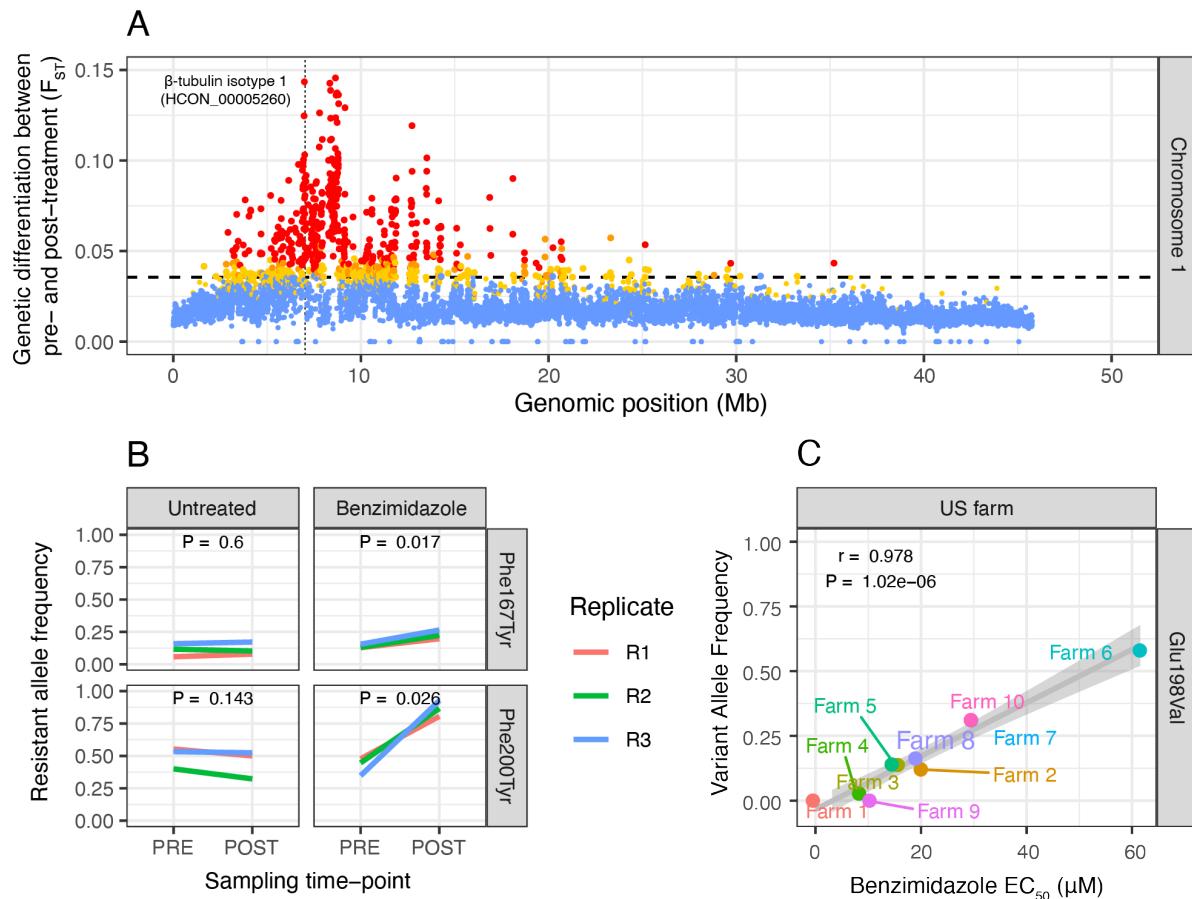
162

163

164 ***Variation at β -tubulin isotype 1 and a novel β -tubulin isotype 2 variant is
165 associated with high levels of benzimidazole resistance***

166 The β -tubulin isotype 1 (HCON_00005260) gene and, in particular, nonsynonymous
167 changes at coding positions 167, 198, and 200 have been widely associated with
168 benzimidazole resistance in *H. contortus* (13, 15, 16, 35) and other nematodes
169 frequently exposed to benzimidazole treatment (17, 36). After benzimidazole selection,
170 a single broad QTL was found on chromosome 1 (**Fig. 2A**; see **Supplementary**
171 **materials** for further discussion of the genetic structure of the QTL) containing the β -
172 tubulin isotype 1 locus. Within this gene, we identified a significant increase in the
173 frequency of a Phe200Tyr variant (a phenylalanine [reference susceptible variant] to
174 tyrosine [resistant variant] substitution at position 200) from pre- to post-treatment and
175 relative to untreated controls (**Fig. 2B**; $P = 1.7e-26$, genome-wide Cochran–Mantel–

176 Haenszel (CMH) test between replicates). We also identified a small increase in
177 frequency of the Phe167Tyr variant (mean $freq_{pre-treatment} = 0.14$ to $freq_{post-treatment} = 0.20$),
178 however, no variation was found at the Glu198 position. Considering the previous
179 association between these variants and benzimidazole resistance, we conclude that
180 the Phe200Tyr variant is the primary driver of phenotypic resistance in the X-QTL
181 population.


182

183 *Haemonchus contortus* has multiple β -tubulin genes (37), and deletion of the β -tubulin
184 isotype 2 gene (HCON_00043670) on chromosome 2 has been associated with
185 increased levels of resistance beyond that of mutations in the isotype 1 gene alone
186 (14). Here, we found no evidence of deletions in isotype 2. However, a minor but not
187 significant increase in genetic differentiation between pre- and post-treatment
188 populations was found at this locus, and a Glu198Val variant at a homologous site to a
189 known resistance variant in isotype 1 was present at a low frequency in the genetic
190 cross ($freq_{pre-treatment} = 0.260$ to $freq_{post-treatment} = 0.323$; not significant genome-wide
191 CMH). However, on the US farms, the Glu198Val variant did vary in frequency between
192 farms and was significantly correlated ($r = 0.978$, $P = 1.02e-6$; Pearson's correlation)
193 with EC_{50} values for benzimidazole resistance (**Fig. 2C**). The variance observed in EC_{50}
194 among resistant farm populations was not caused by variation in the frequency of the
195 Phe200Tyr mutation of the isotype 1 gene, as this variant was already at high
196 frequency in all populations, except for the farm that was susceptible to
197 benzimidazoles (Farm 1; **fig. S5**). These data suggest that once the isotype 1
198 Phe200Tyr variant has reached near fixation in the population, the Glu198Val variant of

199 isotype 2 mediates higher levels of benzimidazole resistance than conferred by the
200 Phe200Tyr variant alone. As such, this novel allele present in β -tubulin isotype 2 should
201 be considered, in addition to the well-characterised isotype 1 variants, as a genetic
202 marker for benzimidazole resistance.

203

204 In addition to the association with benzimidazole resistance, it has been suggested
205 that the β -tubulin isotype 1 Phe200Tyr variant in *H. contortus* (38–40) and also at an
206 equivalent variant site in a β -tubulin gene in the human-infective filarial nematode
207 *Onchocerca volvulus* (41) is associated with ivermectin resistance. Here we found no
208 evidence of selection on either the Phe167Tyr or Phe200Tyr variants (or any variant
209 found in the region) in X-QTL analyses of ivermectin treatment (**fig. S6A**), nor any
210 correlation with ivermectin EC₅₀ on the US farms (**fig. S6B**). These data reaffirm that
211 mutations in β -tubulin isotype 1 are specific to benzimidazole resistance.

212

213

214 **Fig. 2. Characterisation of QTL associated with benzimidazole resistance.**

215 **(A)** Chromosome-wide genetic differentiation between pre- and post-benzimidazole treatment
216 on chromosome 1. Each point represents the mean F_{ST} in a five kb window; points are coloured
217 based on the concordance of individual replicates indicated by none (blue), 1 of 3 (yellow), 2 of
218 3 (orange), or all 3 (red) above the genome-wide threshold. The genome-wide threshold is
219 defined as the mean + 3 SD of the chromosome-wide F_{ST} indicated by the horizontal dashed
220 line, whereas the vertical dashed line highlights the position of the β -tubulin isotype 1
221 (HCON_00005260) gene. **(B)** Allele frequency change at Phe167Tyr and Phe200Tyr variant
222 positions of β -tubulin isotype 1 pre- and post-treatment, including untreated time-matched
223 control. Coloured lines show biological replicates. P -values are calculated using pairwise t-

224 tests of allele frequency by sampling time point (i.e., pre- and post-treatment). **(C)** Correlation
225 between benzimidazole EC₅₀ concentration (μM) observed at particular farms and Glu198Val
226 variant frequency of β-tubulin isotype 2 (HCON_00043670) on US farms. Pearson's correlation
227 (r) and associated P-value together with the trendline and standard error of the linear
228 regression are shown.

229

230

231 ***Levamisole selection implicates acetylcholine receptors, including a novel acr-8***
232 ***variant, with resistance***

233 The antihelmintic activity of levamisole is due to its antagonistic effect on nematode
234 nicotinic acetylcholine receptors (42), and resistance in *C. elegans* is typically
235 associated with variation in subunits of these receptors or other accessory proteins
236 that contribute to acetylcholine-mediated signalling (43). Here we identified two major
237 QTLs on chromosomes 4 and 5 that contain a tandem duplication of the acetylcholine
238 receptor subunit β-type *lev-1* (HCON_00107690 & HCON_00107700) and acetylcholine
239 receptor subunit *acr-8* (HCON_00151270), respectively (**Fig. 3A**).

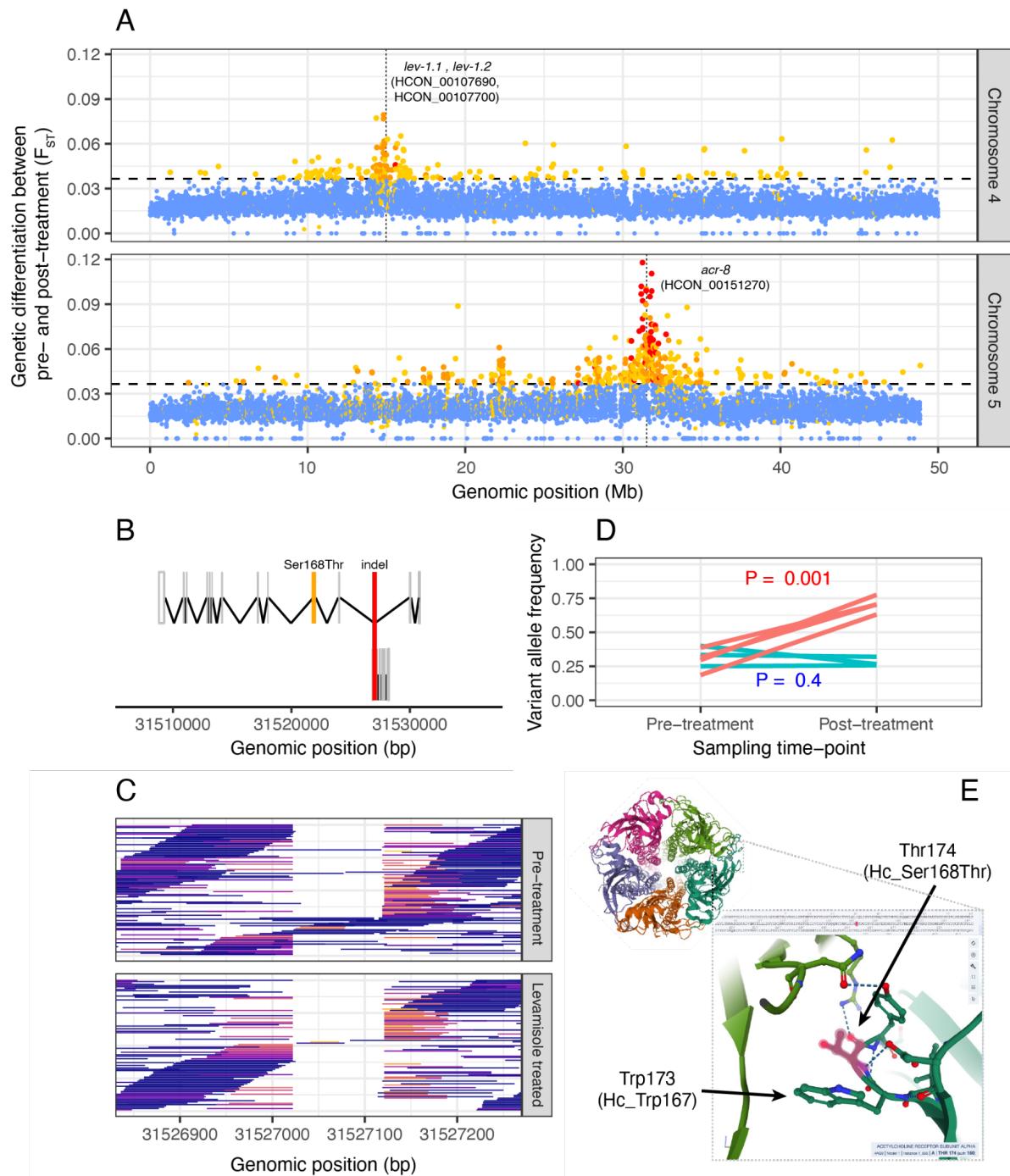
240

241 The *H. contortus* *acr-8* gene (**Fig. 3B**) has long been implicated in levamisole
242 resistance; a truncated isoform of *acr-8* containing the two first exons and a part of
243 intron 2 (previously called *Hco-acr-8b*) (44), and subsequently, a 63 bp indel between
244 exons 2 and 3 have been associated with resistance based on their presence in several
245 resistant isolates (45). However, the functional consequence of these variants in
246 mediating levamisole resistance *in vivo* is not yet clear. Here, we identified two larger

247 deletion variants spanning 31,527,022 to 31,527,119 (97 bp) or 31,527,121 (99 bp) on
248 chromosome 5 that increased in frequency from 73.47% in the pre-treatment
249 population to 86.58% after levamisole treatment (**Fig. 3C**; paired t-test across
250 replicates, $P = 0.1$). However, the *acr-8* indel was present in the levamisole susceptible
251 parental MHco3(ISE) strain (59.05%) and was present at only a slightly higher
252 frequency in the resistant MHco18(UGA) strain (63.55%). Thus, these data argue that
253 the *acr-8* indel is a poor marker of levamisole resistance.

254
255 We did, however, identify a nonsynonymous variant (Ser168Thr) in *acr-8* that was
256 strongly correlated with resistance across multiple datasets. In the X-QTL analyses,
257 Ser168Thr increased to a high frequency after drug selection in the F2 generation (**Fig.**
258 **3D**; position 31,521,884; genome-wide CMH: $P = 1.6\text{e-}15$; allele frequency change
259 pre- vs post-treatment: $P = 1.0\text{e-}4$; in time-matched no-treatment control: $P = 0.4$). It
260 was also found at a high frequency in the USA field population with the highest
261 levamisole drug resistance phenotype (Farm 7; $\text{freq}_{\text{Ser168Thr}} = 0.64$). This association was
262 supported in global diversity data of *H. contortus* (25), where we found the Ser168Thr
263 variant fixed in parasites from the Kokstad (KOK; South Africa) population ($\text{freq}_{\text{Ser168Thr}} =$
264 1.0; $n = 4$), the only population with confirmed levamisole resistance in that study,
265 whereas the variant was absent in all other populations analysed. The identification of
266 Ser168Thr prompted us to look beyond *H. contortus*; a reanalysis of levamisole
267 resistance in resequencing data from the closely related clade V parasitic nematode
268 *Teladorsagia circumcincta* (46) revealed a homologous non-synonymous variant at high
269 frequency in resistant parasites (Ser140Thr in Cont419:G75849C ; $\text{freq}_{\text{Ser140Thr}} = 0.972$),

270 which was absent in the susceptible population to which it was compared. Although a
271 serine to threonine substitution is a relatively conservative change, we found the serine
272 residue to be highly conserved among clade V nematodes (**fig. S7**), particularly among
273 the parasite species, whereas in the free-living *Caenorhabditis* spp., threonine is
274 encoded at this position.


275 In *C. elegans*, *acr-8* is genetically and functionally distinct relative to *acr-8* of parasitic
276 nematodes and is not a component of the native levamisole receptor (47); the *C.*
277 *elegans* functional homolog *lev-8*, which can be transgenically substituted by *H.*
278 *contortus* *acr-8* to produce a functional receptor (48), does encode a serine at this
279 homologous position. The *H. contortus* ACR-8 Ser168Thr variant lies immediately
280 downstream of the cys-loop domain within the ligand-binding pocket and is
281 immediately adjacent to a highly conserved tryptophan residue essential for ligand
282 binding (49, 50) (**Fig. 3E**). Importantly, key residues downstream of the conserved
283 tryptophan have previously been shown to influence levamisole sensitivity of closely
284 related receptor subunits (51). Thus, we hypothesise that the Ser168Thr variant
285 facilitates a change in the molecular interactions within the binding pocket of ACR-8,
286 resulting in a decreased sensitivity to levamisole.

287
288 The identification of *lev-1* genes within the chromosome 4 QTL is compelling, with
289 three intronic variants of *lev-1* (top variant position 14,995,062 in HCON_00107700; $P =$
290 1.7e-20; CMH test) among of the top ten most differentiated SNPs on this
291 chromosome. However, it remains unclear what effect the overall observed variation in
292 the *lev-1* genes has on levamisole resistance. Although multiple non-synonymous

293 variants were also identified (seven and three variants for HCON_00107690 and
294 HCON_00107700, respectively), none were predicted to cause high-effect changes in
295 the protein sequence and exhibited only relatively minor shifts in allele frequency upon
296 levamisole treatment. In *C. elegans*, several dominant resistant variants of *lev-1* have
297 been described (not found in the data described here); however, *lev-1* can be lost
298 without affecting the function of the receptor (43). Examination of variation in *lev-1*
299 expression in addition to genetic variation may be required to elucidate the role of *H.*
300 *contortus* *lev-1* subunits in levamisole resistance. Close to the *lev-1* genes and toward
301 the centre of the QTL, four of the top ten variants in chromosome 4 were found in
302 HCON_00107560 (top non-synonymous variant: Arg934His at position 14,781,344; $P =$
303 1.0e-21; CMH test), an ortholog of *C. elegans* *kdin-1*. Highly conserved with
304 mammalian orthologs (52), *kdin-1* has been shown to co-localise with acetylcholine
305 receptors at rat neuromuscular junctions during development (53) where, via a PDZ
306 domain, it participates in the coordination of signalling components including ion
307 channels and neurotransmitters. The precise role of HCON_00107560 or *kdin-1* in *H.*
308 *contortus* or *C. elegans*, respectively, remains unknown; however, its putative
309 association with levamisole response here warrants further investigation.

310

311 Signals of selection on two components of the pentameric acetylcholine receptor
312 prompted us to look for selection on the remaining subunits. Although the expression
313 of *unc-63* (HCON_00024380) and *unc-29.3* (HCON_00003520) mRNAs were
314 significantly reduced in the larvae of resistant MHco18(UGA) strain (54), we found no
315 evidence of selection on the region of the genome containing these genes.

318 **Fig. 3. Characterisation of QTL associated with levamisole resistance.**

319 (A) QTL between pre-treatment and levamisole-treated parasites on chromosome 4 (top) and
 320 chromosome 5 (bottom). Each point represents the mean F_{ST} in a five kb window; points are
 321 coloured based on the concordance of individual replicates indicated by none (blue), 1 of 3

322 (yellow), 2 of 3 (orange), or all 3 (red) above the genome-wide threshold (horizontal dashed line;
323 mean + 3 SD of the chromosome-wide F_{ST}). **(B)** Gene model for *acr-8* (top; HCON_00151270)
324 and a cuticle collagen (bottom; HCON_00151260), highlighting the position of the overlapping
325 *acr-8*/levamisole-associated indel and the Ser168Thr variant of *acr-8*. **(C)** Visualisation of
326 sequencing reads supporting the *acr-8* intronic indel. Mapped reads are coloured to reflect the
327 degree to which they have been clipped to allow correct mapping in the presence of the
328 deletion, i.e. reads that have not been clipped are blue, whereas reads that are moderate to
329 highly clipped are coloured red to yellow, respectively. **(D)** Comparison of Ser168Thr variant
330 frequency between pre- and post-levamisole treatment (red) and time-matched untreated
331 controls (green). **(E)** Structure of the pentameric cys-loop acetylcholine receptor of *Torpedo*
332 *marmorata* (Protein Data Base ID: 4AQ9), one of the few species from which the receptor's
333 structure has been resolved (55). The Trp[Ser/Thr]Tyr motif is highly conserved among the
334 clade V nematodes (**fig. S7**) and the distantly related alpha subunit of *T. marmorata*; Thr174,
335 the homologous position of the *H. contortus* Hc_Ser168Thr variant of *acr-8*, lies within the
336 acetylcholine binding pocket at the interface of the alpha and gamma subunits and adjacent to
337 Trp173 (*H. contortus* Hc_Trp167), a residue essential for ligand binding.

338

339

340

341 ***A resolved ivermectin QTL implicates cky-1 as a novel mediator of resistance***

342 Ivermectin is a critically important broad-spectrum drug used to control several
343 human- and veterinary-infective helminths worldwide and is also widely used as an
344 acaricide targeting ticks and mites. We recently identified a ~5 Mb QTL associated with
345 ivermectin resistance from 37 to 42 Mb on chromosome 5 from the analysis of a
346 backcross experiment (34, 56), and subsequently, we identified evidence of selection in
347 the same chromosomal region in ivermectin-resistant field populations from Africa and
348 Australia (25). Although the introgression region from the backcross was broad (57), the

349 genetic architecture of the QTL was consistent with a single dominant variant driving
350 resistance, and we were able to demonstrate that most candidate genes previously
351 proposed to be associated with resistance were not under direct ivermectin selection.
352 However, we were unable to confidently identify any novel candidate driving mutation
353 among the ~360 genes lying within the region (34).

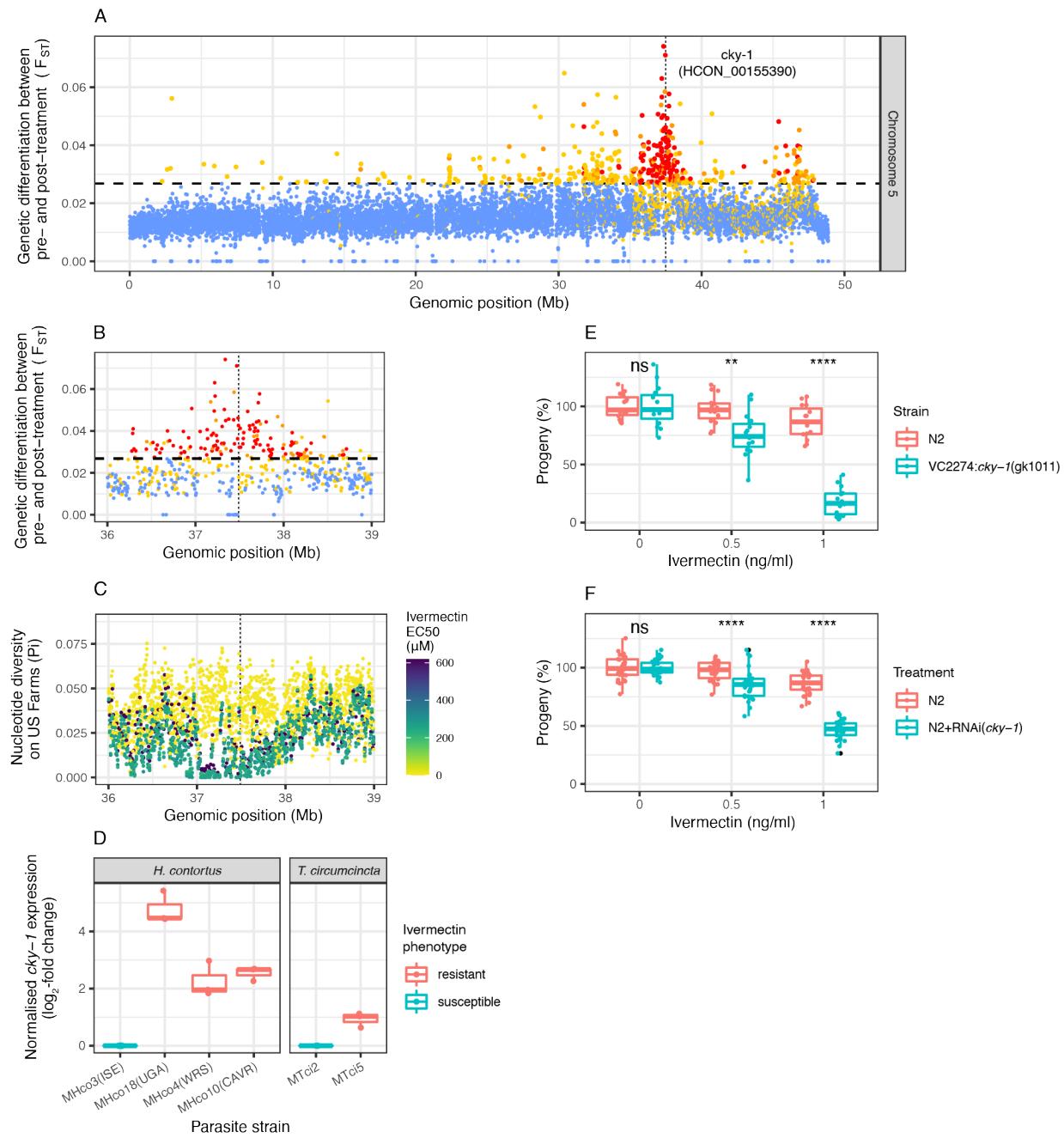
354

355 Here, we confirm the QTL within the previously implicated chromosome 5 region at
356 ~37.5 Mb (34, 56) but with significantly increased resolution (**Fig. 4A**). We have
357 narrowed the genetic association to approximately 300 kb wide (region: ~37,250,000-
358 37,550,000), based on the region of highest differentiation between independently
359 replicated pre- and post-treatment X-QTL samples (**Fig. 4B**). This region was also
360 highly differentiated between pre-treatment larvae and adult male worms that survived
361 ivermectin treatment *in vivo* (**fig. S8 A,B**), and between larvae that survived treatment
362 with an EC₇₅ dose of ivermectin and those sensitive to an EC₅₀ dose *in vitro* (**fig. S8**
363 **C,D**). Together, these results confirm that this locus is under direct selection and
364 mediates resistance in both the parasitic stages *in vivo* and in the free-living stages *in*
365 *vitro* (see **Supplementary materials** for further discussion). Finally, this was the only
366 region in the genome where increased levels of ivermectin resistance (i.e., EC₅₀) was
367 associated with a loss of genetic diversity in moderately or highly resistant field
368 populations relative to susceptible populations (**Fig 4C**), consistent with a selective
369 sweep in response to ivermectin-mediated selection.

370

371 The main chromosome 5 QTL contained 25 genes and included an expansion of
372 protein kinases (8/21 genes present in the genome with the InterPro identifier
373 IPR015897), some of which had the highest statistical association with resistance; for
374 example, HCON_00155240 (intronic position 37,336,132, $P = 3.3\text{e-}13$; position
375 37,235,944, $P = 1.2\text{e-}12$) and HCON_00155270 (intronic position 37,343,439, $P = 1.0\text{e-}10$).
376 These protein kinases are, however, novel leads with no previous association to
377 drug resistance, and a lack of functional orthologs and observed gene expansion made
378 it difficult to further infer and test a role for these genes in ivermectin resistance.

379


380 Towards the middle of the QTL, we identified *cky-1* (HCON_00155390; positions
381 37,487,982 - 37,497,398) as a new mediator of resistance, based on several lines of
382 evidence. In the X-QTL data, *cky-1* contained eight moderately to highly differentiated
383 significant non-synonymous variants (top variant: position 37,497,061 [Ser583Pro], $P =$
384 9.6e-09; CMH test). In a complementary study, we showed *cky-1* was the only gene in
385 the region significantly upregulated in both males and females of the resistant
386 MHco18(UGA) isolate relative to MHco3(ISE) and was one of the most upregulated
387 genes genome-wide (58). In this study, RT-qPCR of *cky-1* from the parental isolates of
388 the cross and two unrelated ivermectin-resistant *H. contortus* strains revealed
389 significant overexpression in ivermectin-resistant relative to sensitive strains (**Fig. 4E**),
390 an observation that was replicated between sensitive and ivermectin-resistant strains
391 of the related parasite, *T. circumcincta* (**Fig. 4E**). To explore *cky-1* further, we assayed
392 *C. elegans* developmental and pumping behavioural phenotypes, both known to be
393 perturbed by ivermectin exposure (59), to test the role of differential expression of *cky-1*.

394 1 on the resistant phenotype in the presence of ivermectin. While complete knockout
395 of *cky-1* was non-viable, both a balanced deletion (VC2274) (**Fig. 4E**) and RNAi
396 knockdown (**Fig. 4F**) of *cky-1* increased the sensitivity of *C. elegans* to ivermectin
397 relative to the ivermectin-susceptible N2 strain. The level of *cky-1* expression is,
398 therefore, associated with the ivermectin resistance phenotype in nematodes.

399

400 Two additional, less prominent QTLs on chromosome 5 at ~46 Mb and on
401 chromosome 2 at ~3 Mb were also identified after ivermectin treatment (**Fig. 4A**; see
402 **Supplementary materials** for a description of the two QTLs). The second
403 chromosome 5 QTL was identified as a candidate region associated with resistance in
404 the backcross (34); however, we did not have the statistical power to differentiate it
405 from the main QTL in that experiment. Here, the QTL appeared to segregate
406 independently of the prominent 37.5 Mb peak, providing more robust evidence of a
407 second resistance-conferring variant on chromosome 5. Although the main
408 chromosome 5 QTL at 37.5 Mb was present in all selection experiments with
409 ivermectin, the secondary QTLs were variable between replicates and experiments. To
410 further refine the association, we exposed the F5 generation of the cross to a half
411 standard dose of ivermectin, followed by a double dose thereafter. The rationale was
412 first to identify low-effect variants (responding to the half dose treatment), then select a
413 subset of variants that conferred resistance at high doses (see **Supplementary**
414 **materials** for additional background). In these experiments, we consistently detected
415 the main chromosome 5 QTL but not the less prominent chromosome 2 QTL.

416 Additionally, we detected the presence of at least three new minor QTLs (**fig. S10**,
417 supplementary text). Of practical significance, the identification of novel replicate-
418 specific variants in addition to the main chromosome 5 QTL highlights the
419 consequence of under-dosing in selecting novel variants, and emphasises the
420 importance of correct dosing in the field.

421

422

423 **Fig. 4. Characterisation of QTL associated with ivermectin resistance.**

424 (A) QTL between pre- and post-ivermectin treatment on chromosome 5. Each point represents
 425 the mean F_{ST} in a five kb window; points are coloured based on the concordance of individual
 426 replicates indicated by none (blue), 1 of 3 (yellow), 2 of 3 (orange), or all 3 (red) above the
 427 genome-wide threshold (horizontal dashed line; mean + 3 SD of the chromosome-wide F_{ST}). A

428 magnified aspect of the main chromosome 5 QTL, highlighting (**B**) genetic differentiation (F_{ST}) in
429 the X-QTL cross, and (**C**) nucleotide diversity (Pi) on US farms, where each farm is coloured by
430 the degree of ivermectin resistance (EC_{50}) measured by larval development assays. In A, B and
431 C, the position of *cky-1* is indicated by the vertical dashed line. (**D**) RT-qPCR analysis of *cky-1*
432 expression in both *H. contortus* and *T. circumcincta* strains that differ in their ivermectin
433 resistance phenotype. Data represents \log_2 -transformed expression normalised to actin or
434 GAPDH control genes for *H. contortus* and *T. circumcincta*, respectively. Downregulation of
435 *cky-1* expression in *C. elegans* by either (**E**) a balanced deletion or (**F**) RNAi-knockdown
436 increases ivermectin sensitivity relative to the control N2 strain, based on developmental
437 assays measuring the percentage of progeny surviving to adulthood relative to DMSO controls.
438 (In **E** and **F**, each point represents an independent treatment condition, which is normalised to
439 a DMSO control without ivermectin. A Kruskal-Wallis test was used to determine whether
440 treatment condition differed from untreated control, where ns = not significant, * $p < 0.05$, ** p
441 < 0.01 , and **** $p < 0.0001$.

442 **Discussion**

443 Anthelmintics are currently the most important tool for controlling parasitic worm
444 infections in humans and animals worldwide, and this is likely to remain true for the
445 foreseeable future. However, this paradigm of control is threatened by the emergence
446 and spread of anthelmintic-resistant parasites. Despite the large health and economic
447 impacts resulting from increasing levels of anthelmintic resistance, multiple
448 complicating factors have hindered the ability to determine the genetic loci responsible
449 for resistance. Here we demonstrate an efficient approach to map multiple drug
450 resistance-conferring loci for three of the most important anthelmintic drugs in the
451 globally distributed and genetically tractable parasitic nematode, *H. contortus*. We
452 have identified novel variants and loci likely involved in resistance to each of these drug
453 classes; these include the β -tubulin isotype 2 Glu198Val variant correlated with
454 benzimidazole resistance in field populations, the *acr-8* Ser168Thr variant associated
455 with levamisole resistance in both the cross and field populations of *H. contortus*, and
456 *cky-1* as a novel candidate gene that mediates ivermectin response. Our approach was
457 validated by identifying QTLs and variants previously associated with drug resistance,
458 for example, the β -tubulin isotype 1 Phe200Tyr variant associated with benzimidazole
459 resistance and the *acr-8* indel variant associated with levamisole resistance. However,
460 for the latter, we provide evidence against the indel being a reliable marker of
461 resistance. Finally, we note an absence of many previously proposed ivermectin-
462 associated candidate genes in the QTL described, highlighting both the limitation of
463 candidate gene approaches and the power of genome-wide forward-genetic strategies

464 to robustly identify regions of the genome containing known and novel mediators of
465 resistance (9).

466

467 We have refined a previously identified QTL for ivermectin resistance on chromosome
468 5 (34) to ~300 kb, and together with functional genetic evidence from expression and
469 knockout experiments, we have explicitly tested the role of our proposed candidate in
470 the main ivermectin QTL on chromosome 5, the NPAS4 ortholog *cky-1*. This gene
471 encodes an activity-dependent basic Helix-Loop-Helix (bHLH)-PAS family transcription
472 factor shown in mammals to regulate the excitation/inhibition balance upon neuronal
473 activation to limit excitotoxicity (60) and during the development of inhibitory synapses
474 to control the expression of activity-dependent genes (61). It is yet to be determined if
475 this is a conserved molecular function in nematodes; however, it is tempting to
476 speculate that the hyperexcitability as a result of induced activation of ion channels by
477 ivermectin at the neuromuscular junction is, at least in part, controlled by a “retuning”
478 of the excitation/inhibition balance to limit toxicity. The role of *cky-1* in ivermectin
479 resistance is supported by: (i) genetic differentiation between susceptible and resistant
480 strains around this locus relative to genome-wide variation that is replicated in
481 geographically and genetically diverse strains here and elsewhere (25, 34, 62), (ii) the
482 presence of non-synonymous variants that are highly differentiated before and after
483 treatment, (iii) increased gene expression of *cky-1* in resistant strains relative to
484 susceptible strains (supported by genome-wide RNA-seq (58)) and (iv) knockdown of
485 the *C. elegans* ortholog leading to hypersensitivity to ivermectin. We acknowledge that
486 overexpression of *cky-1* in *C. elegans* does not recapitulate the high levels of

487 ivermectin resistance seen in *H. contortus* or, for example, by concurrent mutation of
488 glutamate-gated chloride channels in *C. elegans* (21); while this may argue against *cky-*
489 *1* as a universal mediator of resistance, it likely reflects the challenge of using a
490 heterologous expression system in which there is an assumption that the biology (and,
491 therefore, response to treatment) is concordant between the free-living and parasitic
492 species, and/or may reflect the multigenic nature of ivermectin resistance in different
493 species (63–65). Given the lack of an obvious causal non-synonymous variant, we
494 hypothesise that a non-coding variant that influences the expression of *cky-1* is under
495 selection in resistant strains of *H. contortus*; however, such variants are difficult to
496 validate without genotype and transcriptional phenotype data from a large number of
497 individual worms.

498

499 It is broadly accepted that the mode of action of ivermectin is on ligand-gated ion
500 channels, and ivermectin resistance has been associated with variants in glutamate-
501 gated channels (66). Concurrent mutation of a number of these channels (*glc-1*, *avr-14*
502 and *avr-15*) confers high-level resistance in *C. elegans* (21) and selection on at least
503 one of these channels (*glc-1*) in wild strains (67) has been demonstrated. We find no
504 evidence to suggest that genetic variation in these channels confers ivermectin
505 resistance in *H. contortus*. Transcriptional changes in these channels in resistant,
506 relative to drug-susceptible, parasite strains have been demonstrated previously; for
507 example, the glutamate-gated chloride channel subunits (*glc-3*, *glc-5*), as well as p-
508 glycoprotein ABC transporters (*pgp-1*, *pgp-2*, *pgp-9*) (54) in the MHco18(UGA) strain.
509 Similarly, a *pgp-9* copy number variant was associated with ivermectin resistance in a

510 genetic cross and bulk segregant experiment in the related nematode *T. circumcincta*
511 (46), while transgenic overexpression of the equine parasitic nematode *Parascaris*
512 *univalens* *pgp-9* modulated ivermectin sensitivity in *C. elegans* (68). However, none of
513 these genes were identified in regions of differentiation after treatment in this study,
514 suggesting these genes are not the direct target of selection. However, we cannot
515 exclude that variation in expression of these genes may be a downstream response to
516 selection on a transcriptional regulator such as *cky-1*.

517 The use of genetic crosses, in which the genetics of the parasites can be controlled, is
518 the ideal way to generate populations of individuals in which the relationship between
519 genotype and phenotype can be assayed. Our approach here relies on selecting
520 populations of parasites using drug treatment, however, advances are still required to
521 improve phenotyping of resistance in individual parasites. The ability to do so would
522 improve our understanding of the molecular basis of drug resistance phenotypes and
523 enable more sophisticated genetic approaches to unravel the role of the minor
524 signatures of selection we observe in this experiment. Recent advances in single larvae
525 whole-genome sequencing (69) and low-input RNA sequencing (70), even at single-cell
526 resolution (71), now provide the tools to allow a more precise understanding of
527 molecular and cellular phenotypes for drug response and may help to fully understand
528 the role of *cky-1*. The identification of *cky-1* as a putative candidate offers new
529 plausible hypotheses relevant to a resistant phenotype, whereby *cky-1* may act: (i)
530 during development to establish a neuronal architecture that is more tolerant to
531 hyperexcitability such as that caused by ivermectin, and/or (ii) in response to

532 ivermectin exposure by initiating transcription of downstream genes to modulate the
533 excessive excitation/inhibition imbalance, thereby mitigating the lethal effect. These
534 hypotheses will require further validation, aided in the first instance by identifying the
535 downstream targets of *cky-1*. However, it is clear that the molecular mechanisms by
536 which parasites develop ivermectin resistance are more complex than previously
537 appreciated. Broader, systems biology approaches are likely needed to understand the
538 relationship between direct evidence of selection in the genome and the downstream
539 transcriptional responses that enable parasite survival when challenged with
540 ivermectin. By defining the genomic landscape of anthelmintic resistance even in a
541 single resistant strain, our results refocus effort away from candidate genes with limited
542 support and redefine our understanding of the evolution of anthelmintic resistance in
543 helminths of veterinary and medical importance.

544 **References and Notes:**

- 545 1. R. M. Kaplan, Drug resistance in nematodes of veterinary importance: a status report.
Trends Parasitol. **20**, 477–481 (2004).
- 547 2. R. M. Kaplan, A. N. Vidyashankar, An inconvenient truth: global worming and anthelmintic
548 resistance. *Vet. Parasitol.* **186**, 70–78 (2012).
- 549 3. J. Charlier, L. Rinaldi, V. Musella, H. W. Ploeger, C. Chartier, H. R. Vineer, B. Hinney, G.
550 von Samson-Himmelstjerna, B. Băcescu, M. Mickiewicz, T. L. Mateus, M. Martinez-
551 Valladares, S. Quealy, H. Azaizeh, B. Sekovska, H. Akkari, S. Petkevicius, L. Hektoen, J.
552 Höglund, E. R. Morgan, D. J. Bartley, E. Claerebout, Initial assessment of the economic
553 burden of major parasitic helminth infections to the ruminant livestock industry in Europe.
554 *Prev. Vet. Med.* **182**, 105103 (2020).
- 555 4. P. D. Jimenez Castro, S. B. Howell, J. J. Schaefer, R. W. Avramenko, J. S. Gillean, R. M.
556 Kaplan, Multiple drug resistance in the canine hookworm *Ancylostoma caninum*: an
557 emerging threat? *Parasit. Vectors.* **12**, 576 (2019).
- 558 5. C. Bourguinat, A. C. Y. Lee, R. Lizundia, B. L. Blagburn, J. L. Liotta, M. S. Kraus, K. Keller,
559 C. Epe, L. Letourneau, C. L. Kleinman, T. Paterson, E. C. Gomez, J. A. Montoya-Alonso, H.
560 Smith, A. Bhan, A. S. Peregrine, J. Carmichael, J. Drake, R. Schenker, R. Kaminsky, D. D.
561 Bowman, T. G. Geary, R. K. Prichard, Macrocytic lactone resistance in *Dirofilaria immitis*:
562 Failure of heartworm preventives and investigation of genetic markers for resistance. *Vet.
563 Parasitol.* **210**, 167–178 (2015).
- 564 6. P. D. Jimenez Castro, A. Venkatesan, E. Redman, R. Chen, A. Malatesta, H. Huff, D. A.
565 Zuluaga Salazar, R. Avramenko, J. S. Gillean, R. M. Kaplan, Multiple drug resistance in
566 hookworms infecting greyhound dogs in the USA. *Int. J. Parasitol. Drugs Drug Resist.* **17**,
567 107–117 (2021).
- 568 7. World Health Organization, “Ending the neglect to attain the Sustainable Development
569 Goals: A road map for neglected tropical diseases 2021–2030” (World Health
570 Organization, Geneva, 2020), (available at
571 https://www.who.int/neglected_diseases/resources/who-ucn-ntd-2020.01/en/).
- 572 8. A. Montresor, D. Mupfasoni, A. Mikhailov, P. Mwinzi, A. Lucianez, M. Jamsheed, E.
573 Gasimov, S. Warusavithana, A. Yajima, Z. Bisoffi, D. Buonfrate, P. Steinmann, J. Utzinger,
574 B. Levecke, J. Vlaminck, P. Cools, J. Vercruyse, G. Cringoli, L. Rinaldi, B. Blouin, T. W.
575 Gyorkos, The global progress of soil-transmitted helminthiases control in 2020 and World
576 Health Organization targets for 2030. *PLoS Negl. Trop. Dis.* **14**, e0008505 (2020).
- 577 9. S. R. Doyle, J. A. Cotton, Genome-wide approaches to investigate anthelmintic resistance.
578 *Trends Parasitol.* **35**, 289–301 (2019).

579 10. A. C. Kotze, P. W. Hunt, P. Skuce, G. von Samson-Himmelstjerna, R. J. Martin, H. Sager,
580 J. Krücke, J. Hodgkinson, A. Lespine, A. R. Jex, J. S. Gilleard, R. N. Beech, A. J.
581 Wolstenholme, J. Demeler, A. P. Robertson, C. L. Charvet, C. Neveu, R. Kaminsky, L.
582 Rufener, M. Alberich, C. Menez, R. K. Prichard, Recent advances in candidate-gene and
583 whole-genome approaches to the discovery of anthelmintic resistance markers and the
584 description of drug/receptor interactions. *Int. J. Parasitol. Drugs Drug Resist.* **4**, 164–184
585 (2014).

586 11. S. R. Hahnel, C. M. Dilks, I. Heisler, E. C. Andersen, D. Kulke, *Caenorhabditis elegans* in
587 anthelmintic research - Old model, new perspectives. *Int. J. Parasitol. Drugs Drug Resist.*
588 **14**, 237–248 (2020).

589 12. M. Driscoll, E. Dean, E. Reilly, E. Bergholz, M. Chalfie, Genetic and molecular analysis of a
590 *Caenorhabditis elegans* beta-tubulin that conveys benzimidazole sensitivity. *J. Cell Biol.*
591 **109**, 2993–3003 (1989).

592 13. M. H. Roos, J. H. Boersema, F. H. Borgsteede, J. Cornelissen, M. Taylor, E. J. Ruitenberg,
593 Molecular analysis of selection for benzimidazole resistance in the sheep parasite
594 *Haemonchus contortus*. *Mol. Biochem. Parasitol.* **43**, 77–88 (1990).

595 14. M. S. Kwa, F. N. Kooyman, J. H. Boersema, M. H. Roos, Effect of selection for
596 benzimidazole resistance in *Haemonchus contortus* on beta-tubulin isotype 1 and isotype
597 2 genes. *Biochem. Biophys. Res. Commun.* **191**, 413–419 (1993).

598 15. A. Silvestre, J. Cabaret, Mutation in position 167 of isotype 1 beta-tubulin gene of
599 Trichostrongylid nematodes: role in benzimidazole resistance? *Mol. Biochem. Parasitol.*
600 **120**, 297–300 (2002).

601 16. M. Ghisi, R. Kaminsky, P. Mäser, Phenotyping and genotyping of *Haemonchus contortus*
602 isolates reveals a new putative candidate mutation for benzimidazole resistance in
603 nematodes. *Vet. Parasitol.* **144**, 313–320 (2007).

604 17. C. M. Dilks, S. R. Hahnel, Q. Sheng, L. Long, P. T. McGrath, E. C. Andersen, Quantitative
605 benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. *Int.*
606 *J. Parasitol. Drugs Drug Resist.* **14**, 28–36 (2020).

607 18. M. S. G. Kwa, J. G. Veenstra, M. Van Dijk, M. H. Roos, β -Tubulin genes from the parasitic
608 nematode *Haemonchus contortus* modulate drug resistance in *Caenorhabditis elegans*.
609 *Journal of Molecular Biology.* **246**, 500–510 (1995).

610 19. S. R. Hahnel, S. Zdraljevic, B. C. Rodriguez, Y. Zhao, P. T. McGrath, E. C. Andersen,
611 Extreme allelic heterogeneity at a *Caenorhabditis elegans* beta-tubulin locus explains
612 natural resistance to benzimidazoles. *PLoS Pathog.* **14**, e1007226 (2018).

613 20. M. Zamanian, D. E. Cook, S. Zdraljevic, S. C. Brady, D. Lee, J. Lee, E. C. Andersen,

614 Discovery of genomic intervals that underlie nematode responses to benzimidazoles. *PLoS*
615 *Negl. Trop. Dis.* **12**, e0006368 (2018).

616 21. J. A. Dent, M. M. Smith, D. K. Vassilatis, L. Avery, The genetics of ivermectin resistance in
617 *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 2674–2679 (2000).

618 22. J. S. Gillean, *Haemonchus contortus* as a paradigm and model to study anthelmintic drug
619 resistance. *Parasitology*. **140**, 1506–1522 (2013).

620 23. S. R. Doyle, C. Bourguinat, H. C. Nana-Djeunga, J. A. Kengne-Ouaf, S. D. S. Pion, J.
621 Bopda, J. Kamgno, S. Wanji, H. Che, A. C. Kuesel, M. Walker, M.-G. Basáñez, D. A.
622 Boakye, M. Y. Osei-Atweneboana, M. Boussinesq, R. K. Prichard, W. N. Grant, Genome-
623 wide analysis of ivermectin response by *Onchocerca volvulus* reveals that genetic drift and
624 soft selective sweeps contribute to loss of drug sensitivity. *PLoS Negl. Trop. Dis.* **11**,
625 e0005816 (2017).

626 24. J. S. Gillean, Understanding anthelmintic resistance: the need for genomics and genetics.
627 *Int. J. Parasitol.* **36**, 1227–1239 (2006).

628 25. G. Sallé, S. R. Doyle, J. Cortet, J. Cabaret, M. Berriman, N. Holroyd, J. A. Cotton, The
629 global diversity of *Haemonchus contortus* is shaped by human intervention and climate.
630 *Nat. Commun.* **10**, 4811 (2019).

631 26. D. J. Berger, T. Crellin, P. H. L. Lamberton, F. Allan, A. Tracey, J. D. Noonan, N. B.
632 Kabatereine, E. M. Tukahebwa, M. Adriko, N. Holroyd, J. P. Webster, M. Berriman, J. A.
633 Cotton, Whole-genome sequencing of *Schistosoma mansoni* reveals extensive diversity
634 with limited selection despite mass drug administration. *Nature Communications*. **12**
635 (2021), doi:10.1038/s41467-021-24958-0.

636 27. R. Kaminsky, P. Ducray, M. Jung, R. Clover, L. Rufener, J. Bouvier, S. S. Weber, A.
637 Wenger, S. Wieland-Berghausen, T. Goebel, N. Gauvry, F. Pautrat, T. Skripsky, O.
638 Froelich, C. Komoin-Oka, B. Westlund, A. Sluder, P. Mäser, A new class of anthelmintics
639 effective against drug-resistant nematodes. *Nature*. **452**, 176–180 (2008).

640 28. S. Preston, A. Jabbar, C. Nowell, A. Joachim, B. Ruttkowski, J. Baell, T. Cardno, P. K.
641 Korhonen, D. Piedrafita, B. R. E. Ansell, A. R. Jex, A. Hofmann, R. B. Gasser, Low cost
642 whole-organism screening of compounds for anthelmintic activity. *Int. J. Parasitol.* **45**,
643 333–343 (2015).

644 29. C. C. Bassetto, A. F. T. Amarante, Vaccination of sheep and cattle against haemonchosis.
645 *J. Helminthol.* **89**, 517–525 (2015).

646 30. D. P. Knox, D. L. Redmond, G. F. Newlands, P. J. Skuce, D. Pettit, W. D. Smith, The
647 nature and prospects for gut membrane proteins as vaccine candidates for *Haemonchus*
648 *contortus* and other ruminant trichostrongyloids. *Int. J. Parasitol.* **33**, 1129–1137 (2003).

649 31. A. Burga, E. Ben-David, T. L. Vergara, J. Boocock, L. Kruglyak, Fast genetic mapping of
650 complex traits in *C. elegans* using millions of individuals in bulk. *Nature Communications*.
651 **10**, 2680 (2019).

652 32. F. D. Chevalier, C. L. L. Valentim, P. T. LoVerde, T. J. C. Anderson, Efficient linkage
653 mapping using exome capture and extreme QTL in schistosome parasites. *BMC
654 Genomics*. **15**, 617 (2014).

655 33. S. R. Doyle, A. Tracey, R. Laing, N. Holroyd, D. Bartley, W. Bazant, H. Beasley, R. Beech,
656 C. Britton, K. Brooks, U. Chaudhry, K. Maitland, A. Martinelli, J. D. Noonan, M. Paulini, M.
657 A. Quail, E. Redman, F. H. Rodgers, G. Sallé, M. Z. Shabbir, G. Sankaranarayanan, J. Wit,
658 K. L. Howe, N. Sargison, E. Devaney, M. Berriman, J. S. Gilleard, J. A. Cotton, Genomic
659 and transcriptomic variation defines the chromosome-scale assembly of *Haemonchus
660 contortus*, a model gastrointestinal worm. *Commun Biol.* **3**, 656 (2020).

661 34. S. R. Doyle, C. J. R. Illingworth, R. Laing, D. J. Bartley, E. Redman, A. Martinelli, N.
662 Holroyd, A. A. Morrison, A. Rezansoff, A. Tracey, E. Devaney, M. Berriman, N. Sargison, J.
663 A. Cotton, J. S. Gilleard, Population genomic and evolutionary modelling analyses reveal a
664 single major QTL for ivermectin drug resistance in the pathogenic nematode, *Haemonchus
665 contortus*. *BMC Genomics*. **20**, 218 (2019).

666 35. M. S. G. Kwa, J. G. Veenstra, M. H. Roos, Benzimidazole resistance in *Haemonchus
667 contortus* is correlated with a conserved mutation at amino acid 200 in β -tubulin isotype 1.
668 *Molecular and Biochemical Parasitology*. **63**, 299–303 (1994).

669 36. R. W. Avramenko, E. M. Redman, L. Melville, Y. Bartley, J. Wit, C. Queiroz, D. J. Bartley, J.
670 S. Gilleard, Deep amplicon sequencing as a powerful new tool to screen for sequence
671 polymorphisms associated with anthelmintic resistance in parasitic nematode populations.
672 *Int. J. Parasitol.* **49**, 13–26 (2019).

673 37. G. I. Saunders, J. D. Wasmuth, R. Beech, R. Laing, M. Hunt, H. Naghra, J. A. Cotton, M.
674 Berriman, C. Britton, J. S. Gilleard, Characterization and comparative analysis of the
675 complete *Haemonchus contortus* β -tubulin gene family and implications for benzimidazole
676 resistance in strongylid nematodes. *Int. J. Parasitol.* **43**, 465–475 (2013).

677 38. M. de Lourdes Mottier, R. K. Prichard, Genetic analysis of a relationship between
678 macrocyclic lactone and benzimidazole anthelmintic selection on *Haemonchus contortus*.
679 *Pharmacogenet. Genomics*. **18**, 129–140 (2008).

680 39. J. K. L. Eng, W. J. Blackhall, M. Y. Osei-Atweneboana, C. Bourguinat, D. Galazzo, R. N.
681 Beech, T. R. Unnasch, K. Awadzi, G. W. Lubega, R. K. Prichard, Ivermectin selection on
682 beta-tubulin: evidence in *Onchocerca volvulus* and *Haemonchus contortus*. *Mol. Biochem.
683 Parasitol.* **150**, 229–235 (2006).

684 40. J. M. L. dos Santos, J. M. L. dos Santos, J. F. Vasconcelos, G. A. Frota, W. L. C. Ribeiro,

685 W. P. P. André, L. da Silva Vieira, M. Teixeira, C. M. L. Bevilaqua, J. P. Monteiro,
686 *Haemonchus contortus* β -tubulin isotype 1 gene F200Y and F167Y SNPs are both
687 selected by ivermectin and oxfendazole treatments with differing impacts on anthelmintic
688 resistance. *Veterinary Parasitology*. **248**, 90–95 (2017).

689 41. M. Y. Osei-Atweneboana, D. A. Boakye, K. Awadzi, J. O. Gyapong, R. K. Prichard,
690 Genotypic analysis of β -tubulin in *Onchocerca volvulus* from communities and individuals
691 showing poor parasitological response to ivermectin treatment. *Int. J. Parasitol. Drugs*
692 *Drug Resist.* **2**, 20–28 (2012).

693 42. R. J. Martin, A. P. Robertson, S. K. Buxton, R. N. Beech, C. L. Charvet, C. Neveu,
694 Levamisole receptors: a second awakening. *Trends Parasitol.* **28**, 289–296 (2012).

695 43. J. T. Fleming, M. D. Squire, T. M. Barnes, C. Tornoe, K. Matsuda, J. Ahnn, A. Fire, J. E.
696 Sulston, E. A. Barnard, D. B. Sattelle, J. A. Lewis, *Caenorhabditis elegans* levamisole
697 resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine
698 receptor subunits. *J. Neurosci.* **17**, 5843–5857 (1997).

699 44. A. Fauvin, C. Charvet, M. Issouf, J. Cortet, J. Cabaret, C. Neveu, cDNA-AFLP analysis in
700 levamisole-resistant *Haemonchus contortus* reveals alternative splicing in a nicotinic
701 acetylcholine receptor subunit. *Molecular and Biochemical Parasitology*. **170**, 105–107
702 (2010).

703 45. V. Barrère, R. N. Beech, C. L. Charvet, R. K. Prichard, Novel assay for the detection and
704 monitoring of levamisole resistance in *Haemonchus contortus*. *Int. J. Parasitol.* **44**, 235–
705 241 (2014).

706 46. Y.-J. Choi, S. A. Bisset, S. R. Doyle, K. Hallsworth-Pepin, J. Martin, W. N. Grant, M.
707 Mitreva, Genomic introgression mapping of field-derived multiple-anthelmintic resistance
708 in *Teladorsagia circumcincta*. *PLoS Genet.* **13**, e1006857 (2017).

709 47. G. Hernando, I. Bergé, D. Rayes, C. Bouzat, Contribution of subunits to *Caenorhabditis*
710 *elegans* levamisole-sensitive nicotinic receptor function. *Mol. Pharmacol.* **82**, 550–560
711 (2012).

712 48. A. Blanchard, F. Guégnard, C. L. Charvet, A. Crisford, E. Courtot, C. Sauvé, A. Harmache,
713 T. Duguet, V. O'Connor, P. Castagnone-Sereno, B. Reaves, A. J. Wolstenholme, R. N.
714 Beech, L. Holden-Dye, C. Neveu, Deciphering the molecular determinants of cholinergic
715 anthelmintic sensitivity in nematodes: When novel functional validation approaches
716 highlight major differences between the model *Caenorhabditis elegans* and parasitic
717 species. *PLoS Pathog.* **14**, e1006996 (2018).

718 49. D. K. Williams, C. Stokes, N. A. Horenstein, R. L. Papke, Differential regulation of receptor
719 activation and agonist selectivity by highly conserved tryptophans in the nicotinic
720 acetylcholine receptor binding site. *J. Pharmacol. Exp. Ther.* **330**, 40–53 (2009).

721 50. T. Lynagh, S. A. Pless, Principles of agonist recognition in Cys-loop receptors. *Front.*
722 *Physiol.* **5**, 160 (2014).

723 51. D. Rayes, M. J. De Rosa, M. Bartos, C. Bouzat, Molecular basis of the differential
724 sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole. *J.*
725 *Biol. Chem.* **279**, 36372–36381 (2004).

726 52. H. Kong, J. Boulter, J. L. Weber, C. Lai, M. V. Chao, An evolutionarily conserved
727 transmembrane protein that is a novel downstream target of neurotrophin and ephrin
728 receptors. *J. Neurosci.* **21**, 176–185 (2001).

729 53. S. Luo, Y. Chen, K.-O. Lai, J. C. Arévalo, S. C. Froehner, M. E. Adams, M. V. Chao, N. Y.
730 Ip, α -Syntrophin regulates ARMS localization at the neuromuscular junction and enhances
731 EphA4 signaling in an ARMS-dependent manner. *Journal of Cell Biology.* **169** (2005), pp.
732 813–824.

733 54. S. M. Williamson, B. Storey, S. Howell, K. M. Harper, R. M. Kaplan, A. J. Wolstenholme,
734 Candidate anthelmintic resistance-associated gene expression and sequence
735 polymorphisms in a triple-resistant field isolate of *Haemonchus contortus*. *Mol. Biochem.*
736 *Parasitol.* **180**, 99–105 (2011).

737 55. N. Unwin, Y. Fujiyoshi, Gating movement of acetylcholine receptor caught by plunge-
738 freezing. *J. Mol. Biol.* **422**, 617–634 (2012).

739 56. E. Redman, N. Sargison, F. Whitelaw, F. Jackson, A. Morrison, D. J. Bartley, J. S. Gilleard,
740 Introgession of ivermectin resistance genes into a susceptible *Haemonchus contortus*
741 strain by multiple backcrossing. *PLoS Pathog.* **8**, e1002534 (2012).

742 57. S. R. Doyle, R. Laing, D. J. Bartley, C. Britton, U. Chaudhry, J. S. Gilleard, N. Holroyd, B.
743 K. Mable, K. Maitland, A. A. Morrison, A. Tait, A. Tracey, M. Berriman, E. Devaney, J. A.
744 Cotton, N. D. Sargison, A genome resequencing-based genetic map reveals the
745 recombination landscape of an outbred parasitic nematode in the presence of polyploidy
746 and polyandry. *Genome Biol. Evol.* **10**, 396–409 (2018).

747 58. R. Laing, S. R. Doyle, J. McIntyre, K. Maitland, A. Morrison, D. J. Bartley, R. Kaplan, U.
748 Chaudhry, N. Sargison, A. Tait, J. A. Cotton, C. Britton, E. Devaney, Transcriptomic
749 analyses implicate neuronal plasticity and chloride homeostasis in ivermectin resistance
750 and recovery in a parasitic nematode. *bioRxiv* (2021), p. 2021.11.12.468372.

751 59. J. A. Dent, M. W. Davis, L. Avery, *avr-15* encodes a chloride channel subunit that mediates
752 inhibitory glutamatergic neurotransmission and ivermectin sensitivity in *Caenorhabditis*
753 *elegans*. *EMBO J.* **16**, 5867–5879 (1997).

754 60. I. Spiegel, A. R. Mardinly, H. W. Gabel, J. E. Bazinet, C. H. Couch, C. P. Tzeng, D. A.
755 Harmin, M. E. Greenberg, Npas4 regulates excitatory-inhibitory balance within neural

756 circuits through cell-type-specific gene programs. *Cell.* **157**, 1216–1229 (2014).

757 61. Y. Lin, B. L. Bloodgood, J. L. Hauser, A. D. Lapan, A. C. Koon, T.-K. Kim, L. S. Hu, A. N.
758 Malik, M. E. Greenberg, Activity-dependent regulation of inhibitory synapse development
759 by Npas4. *Nature*. **455**, 1198–1204 (2008).

760 62. A. M. Rezansoff, R. Laing, J. S. Gillard, Evidence from two independent backcross
761 experiments supports genetic linkage of microsatellite Hcms8a20, but not other candidate
762 loci, to a major ivermectin resistance locus in *Haemonchus contortus*. *Int. J. Parasitol.* **46**,
763 653–661 (2016).

764 63. K. S. Evans, J. Wit, L. Stevens, S. R. Hahnel, B. Rodriguez, G. Park, M. Zamanian, S. C.
765 Brady, E. Chao, K. Introcaso, R. E. Tanny, E. C. Andersen, Two novel loci underlie natural
766 differences in *Caenorhabditis elegans* abamectin responses. *PLoS Pathog.* **17**, e1009297
767 (2021).

768 64. J. Wit, C. M. Dilks, E. C. Andersen, Complementary approaches with free-living and
769 parasitic nematodes to understanding anthelmintic resistance. *Trends Parasitol.* **37**, 240–
770 250 (2021).

771 65. A. Streit, Opinion: What do rescue experiments with heterologous proteins tell us and what
772 not? *Parasitol. Res.* (2021), doi:10.1007/s00436-021-07247-z.

773 66. R. Laing, V. Gillan, E. Devaney, Ivermectin – Old Drug, New Tricks? *Trends in Parasitology*.
774 **33** (2017), pp. 463–472.

775 67. R. Ghosh, E. C. Andersen, J. A. Shapiro, J. P. Gerke, L. Kruglyak, Natural variation in a
776 chloride channel subunit confers avermectin resistance in *C. elegans*. *Science*. **335**, 574–
777 578 (2012).

778 68. A. P. Gerhard, J. Krücke, C. Neveu, C. L. Charvet, A. Harmache, G. von Samson-
779 Himmelstjerna, Pharyngeal pumping and tissue-specific transgenic P-Glycoprotein
780 expression influence macrocyclic lactone susceptibility in *Caenorhabditis elegans*.
781 *Pharmaceuticals*. **14** (2021), doi:10.3390/ph14020153.

782 69. S. R. Doyle, G. Sankaranarayanan, F. Allan, D. Berger, P. D. Jimenez Castro, J. B. Collins,
783 T. Crellin, M. A. Duque-Correia, P. Ellis, T. G. Jaleta, R. Laing, K. Maitland, C. McCarthy, T.
784 Moundai, B. Softley, E. Thiele, P. T. Ouakou, J. V. Tushabe, J. P. Webster, A. J. Weiss, J.
785 Lok, E. Devaney, R. M. Kaplan, J. A. Cotton, M. Berriman, N. Holroyd, Evaluation of DNA
786 extraction methods on individual helminth egg and larval stages for whole-genome
787 sequencing. *Front. Genet.* **10**, 826 (2019).

788 70. S. Sun, C. Roedelsperger, R. J. Sommer, Single worm transcriptomics identifies a
789 developmental core network of oscillating genes with deep conservation across
790 nematodes. *Genome Res.* (2021), doi:10.1101/gr.275303.121.

791 71. C. L. Diaz Soria, J. Lee, T. Chong, A. Coghlan, A. Tracey, M. D. Young, T. Andrews, C.
792 Hall, B. L. Ng, K. Rawlinson, S. R. Doyle, S. Leonard, Z. Lu, H. M. Bennett, G. Rinaldi, P. A.
793 Newmark, M. Berriman, Single-cell atlas of the first intra-mammalian developmental stage
794 of the human parasite *Schistosoma mansoni*. *Nat. Commun.* **11**, 6411 (2020).

795 72. E. Redman, E. Packard, V. Grillo, J. Smith, F. Jackson, J. S. Gillear, Microsatellite
796 analysis reveals marked genetic differentiation between *Haemonchus contortus* laboratory
797 isolates and provides a rapid system of genetic fingerprinting. *Int. J. Parasitol.* **38**, 111–122
798 (2008).

799 73. J. H. Gill, J. M. Redwin, J. A. Van Wyk, E. Lacey, Avermectin inhibition of larval
800 development in *Haemonchus contortus* — Effects of ivermectin resistance. *International
801 Journal for Parasitology*. **25**, 463–470 (1995).

802 74. S. B. Howell, J. M. Burke, J. E. Miller, T. H. Terrill, E. Valencia, M. J. Williams, L. H.
803 Williamson, A. M. Zajac, R. M. Kaplan, Prevalence of anthelmintic resistance on sheep and
804 goat farms in the southeastern United States. *J. Am. Vet. Med. Assoc.* **233**, 1913–1919
805 (2008).

806 75. M. M. George, L. Lopez-Soberal, B. E. Storey, S. B. Howell, R. M. Kaplan, Motility in the
807 L3 stage is a poor phenotype for detecting and measuring resistance to
808 avermectin/milbemycin drugs in gastrointestinal nematodes of livestock. *Int. J. Parasitol.
809 Drugs Drug Resist.* **8**, 22–30 (2018).

810 76. I. Kozarewa, Z. Ning, M. A. Quail, M. J. Sanders, M. Berriman, D. J. Turner, Amplification-
811 free Illumina sequencing-library preparation facilitates improved mapping and assembly of
812 (G C)-biased genomes. *Nat. Methods*. **6**, 291–295 (2009).

813 77. P. Ewels, M. Magnusson, S. Lundin, M. Käller, MultiQC: summarize analysis results for
814 multiple tools and samples in a single report. *Bioinformatics*. **32**, 3047–3048 (2016).

815 78. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence
816 data. *Bioinformatics*. **30**, 2114–2120 (2014).

817 79. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
818 *arXiv [q-bio.GN]* (2013), (available at <http://arxiv.org/abs/1303.3997>).

819 80. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella,
820 D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis Toolkit: a
821 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.*
822 **20**, 1297–1303 (2010).

823 81. P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, D. M.
824 Ruden, A program for annotating and predicting the effects of single nucleotide
825 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118;

826 iso-2; iso-3. *Fly*. **6**, 80–92 (2012).

827 82. L. Ferretti, S. E. Ramos-Onsins, M. Pérez-Enciso, Population genomics from pool
828 sequencing. *Mol. Ecol.* **22**, 5561–5576 (2013).

829 83. R. Kofler, R. V. Pandey, C. Schlötterer, PoPopulation2: identifying differentiation between
830 populations using sequencing of pooled DNA samples (Pool-Seq). *Bioinformatics*. **27**,
831 3435–3436 (2011).

832 84. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E.
833 Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000 Genomes
834 Project Analysis Group, The variant call format and VCFtools. *Bioinformatics*. **27**, 2156–
835 2158 (2011).

836 85. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7:
837 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

838 86. J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, Y. Zhang, The I-TASSER Suite: protein
839 structure and function prediction. *Nat. Methods*. **12**, 7–8 (2015).

840 87. R. H. Baker, S. Buschbaum, J. B. Matthews, I. J. McKendrick, T. Schnieder, C. Strube, A.
841 J. Nisbet, GTP-cyclohydrolase and development in *Teladorsagia circumcincta* and
842 *Dictyocaulus viviparus* (Nematoda: Strongylida). *Exp. Parasitol.* **128**, 309–317 (2011).

843 88. R. T. Bell, B. X. H. Fu, A. Z. Fire, Cas9 Variants Expand the Target Repertoire in
844 *Caenorhabditis elegans*. *Genetics*. **202**, 381–388 (2016).

845 89. C. C. Mello, J. M. Kramer, D. Stinchcomb, V. Ambros, Efficient gene transfer in *C.elegans*:
846 extrachromosomal maintenance and integration of transforming sequences. *The EMBO
847 Journal*. **10**, 3959–3970 (1991).

848 90. L. Avery, H. R. Horvitz, Effects of starvation and neuroactive drugs on feeding in
849 *Caenorhabditis elegans*. *J. Exp. Zool.* **253**, 263–270 (1990).

850 91. S. T. Laing, A. Ivens, V. Butler, S. P. Ravikumar, R. Laing, D. J. Woods, J. S. Gilleard, The
851 transcriptional response of *Caenorhabditis elegans* to ivermectin exposure identifies novel
852 genes involved in the response to reduced food intake. *PLoS One*. **7**, e31367 (2012).

853 92. N. C. Sangster, J. M. Redwin, H. Bjorn, Inheritance of levamisole and benzimidazole
854 resistance in an isolate of *Haemonchus contortus*. *Int. J. Parasitol.* **28**, 503–510 (1998).

855 93. L. F. Le Jambre, J. H. Gill, I. J. Lenane, P. Baker, Inheritance of avermectin resistance in
856 *Haemonchus contortus*. *Int. J. Parasitol.* **30**, 105–111 (2000).

857 94. S. Shompole, D. P. Jasmer, Cathepsin B-like cysteine proteases confer intestinal cysteine
858 protease activity in *Haemonchus contortus*. *J. Biol. Chem.* **276**, 2928–2934 (2001).

859 95. D. P. Jasmer, C. Yao, A. Rehman, S. Johnson, Multiple lethal effects induced by a
860 benzimidazole anthelmintic in the anterior intestine of the nematode *Haemonchus*
861 *contortus*. *Mol. Biochem. Parasitol.* **105**, 81–90 (2000).

862 96. I. J. I. Janssen, J. Krücken, J. Demeler, G. von Samson-Himmelstjerna, *Caenorhabditis*
863 *elegans*: modest increase of susceptibility to ivermectin in individual P-glycoprotein loss-
864 of-function strains. *Exp. Parasitol.* **134**, 171–177 (2013).

865 97. A. P. Page, The sensory amphidial structures of *Caenorhabditis elegans* are involved in
866 macrocyclic lactone uptake and anthelmintic resistance. *Int. J. Parasitol.* **48**, 1035–1042
867 (2018).

868

869 **Acknowledgements:** This work was supported by the Biotechnology and Biological
870 Sciences Research Council (BBSRC) [BB/M003949]; the Scottish Government's Rural
871 and Environment Science and Analytical Services (RESAS) division; a University of
872 Glasgow James Herriot Scholarship; the Wellcome Trust [206194 and 216614/Z/19/Z];
873 and UKRI [MR/T020733/1]. For the purpose of Open Access, the authors have applied
874 a CC BY public copyright licence to any Author Accepted Manuscript version arising
875 from this submission. We would like to acknowledge members of the BUG Consortium
876 and Parasite Genomics group at the Wellcome Sanger Institute for insightful
877 discussions throughout this project. We also thank Pathogen Informatics and DNA
878 Pipelines (WSI) for their support and expertise and the Biosciences Division at the
879 Moredun Research Institute for expert care and animal assistance.

880 **Funding:** Biotechnology and Biological Sciences Research Council (BBSRC;
881 BB/M003949) (RL, MB, ED, JAC, NS, BM, DB, CB). Wellcome Trust's core funding of
882 the Wellcome Sanger Institute (grant WT206194) (MB). University of Glasgow James
883 Herriot Scholarship (AA). Wellcome Clinical Research Career Development Fellowship
884 (216614/Z/19/Z) (RL). UKRI Future Leaders Fellowship (MR/T020733/1) (SRD).

885 **Author contributions:** Conceptualisation: RL, AT, ED, JAC. Investigation: SRD, RL,
886 DB, AM, KM, AA, CB, UC, IF, JM. Formal analysis: SRD, RL. Software: SRD.
887 Resources: DB, AM, RK, NS. Supervision: CB, JSG, NS, MB, ED, JAC. Project
888 administration: NH, ED. Writing - Original Draft: SRD, JAC, RL, ED. Writing - Review &
889 Editing: All authors. Funding acquisition: RL, AT, MB, ED, JAC, NS, BM, DB, CB, SRD.

890 **Competing interests:** Authors declare that they have no competing interests.

891 **Data and materials availability:** Raw sequencing data for this study are outlined in
892 **table S1** and are archived under the ENA study accession PRJEB4207. The *H.*
893 *contortus* genome assembly and manually curated annotation resources are publicly
894 available at
895 https://parasite.wormbase.org/Haemonchus_contortus_prjeb506/Info/Index/. The code
896 used to generate and analyse data and to plot figures can be found at
897 https://github.com/stephenrdoyle/hcontortus_X-QTL.

898 **Supplementary Materials**

899 Materials and Methods

900 Supplementary Text

901 Figs. S1 to S10

902 Tables S1 to S2

903 References (72 - 97)