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Abstract 13 

Electric fields (E-fields) induced by transcranial magnetic stimulation (TMS) can be modeled using partial 14 

differential equations (PDEs). Using state-of-the-art finite-element methods (FEM), it often takes tens of 15 

seconds to solve the PDEs for computing a high-resolution E-field, hampering the wide application of the 16 

E-field modeling in practice and research. To improve the E-field modeling’s computational efficiency, we 17 

developed a self-supervised deep learning (DL) method to compute precise TMS E-fields. Given a head 18 

model and the primary E-field generated by TMS coils, a DL model was built to generate a E-field by 19 

minimizing a loss function that measures how well the generated E-field fits the governing PDE. The DL 20 

model was trained in a self-supervised manner, which does not require any external supervision. We 21 

evaluated the DL model using both a simulated sphere head model and realistic head models of 125 22 

individuals and compared the accuracy and computational speed of the DL model with a state-of-the-art 23 

FEM. In realistic head models, the DL model obtained accurate E-fields that were significantly correlated 24 

with the FEM solutions. The DL model could obtain precise E-fields within seconds for whole head models 25 

at a high spatial resolution, faster than the FEM. The DL model built for the simulated sphere head model 26 

also obtained an accurate E-field whose average difference from the analytical E-fields was 0.0054, 27 

comparable to the FEM solution. These results demonstrated that the self-supervised DL method could 28 

obtain precise E-fields comparable to the FEM solutions with improved computational speed. 29 

Keywords: Self-supervised learning, deep neural networks, electric field modeling, TMS 30 

Introduction 31 

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method used in treating major 32 

depression and other neuropsychiatric disorders (O’Reardon et al., 2007). However, TMS treatment 33 

outcomes vary greatly across patients (Cash et al., 2021; Cash et al., 2020; Diekhoff-Krebs et al., 2017; 34 
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Fox et al., 2012; Fox et al., 2013; Kim et al., 2014; Luber et al., 2017; Opitz et al., 2016; Sack et al., 2009; 1 

Weigand et al., 2018; Williams et al., 2021). One primary source of such variability is that TMS suffers 2 

from targeting inaccuracies (Julkunen et al., 2009; Weiss et al., 2013). Recent studies have demonstrated 3 

that optimizing TMS stimulation parameters, such as location and orientation of the TMS coil, might 4 

improve TMS targeting and focality for individual subjects (Gomez et al., 2021; Makarov et al., 2020b; 5 

Weise et al., 2020), and optimizing TMS coil placement based on individual functional neuroanatomy 6 

could potentially increase effect sizes for both basic and clinical studies (Diekhoff-Krebs et al., 2017; Fox 7 

et al., 2012; Fox et al., 2013; Kim et al., 2014; Luber et al., 2017; Opitz et al., 2016; Weigand et al., 2018).  8 

Modeling of electric-fields (E-fields) is now the most widely used method to characterize the 9 

localization and spread of electrical current in the brain induced by TMS (Bungert et al., 2017; Deng et 10 

al., 2013; Goetz and Deng, 2017; Gomez-Tames et al., 2020; Saturnino et al., 2019; Wang and Eisenberg, 11 

1994). A variety of numerical computational methods have been developed to compute E-fields in 12 

conjunction with realistic head models by iteratively solving PDEs governing the E-field induced by TMS 13 

coils, including finite element methods (FEMs), boundary element methods (BEMs), and finite-difference 14 

methods (FDMs) (Htet et al., 2019; Makarov et al., 2020a; Nielsen et al., 2018; Paffi et al., 2015; Saturnino 15 

et al., 2019). The convergence of these numerical methods to the actual solution is sensitive to density 16 

of the head mesh, the polynomial approximation order, and error tolerance, and their computational cost 17 

is proportional to the modeling accuracy (Babuska et al., 1981). Although compromise is often necessary 18 

in real applications, it often takes tens of seconds for state-of-the-art E-field modeling methods to compute 19 

a high-resolution E-field (Htet et al., 2019; Makarov et al., 2020a; Nielsen et al., 2018; Paffi et al., 2015; 20 

Saturnino et al., 2019). 21 

The high computational cost of E-field modeling also makes it time-consuming and costly to 22 

optimize TMS stimulation parameters since a large number of E-fields have to be explored to identify an 23 

optimal solution (Gomez et al., 2021; Makarov et al., 2020b; Weise et al., 2020). To benefit clinical 24 

practice using these sophisticated tools, the computational cost of E-field modeling has to be reduced 25 

substantially without compromising accuracy. Faster E-field modeling is achievable by using a dipole-26 

based magnetic stimulation profile approach that has to compute a magnetic stimulation profile for each 27 

individual subject with several hours of CPU time (Daneshzand et al., 2021) or to compute the E-field 28 

only on sparse points or the mean of the E-field in a region of interest (ROI) by leveraging the reciprocity 29 

principle (Gomez et al., 2021; Koponen et al., 2019). Recent studies have demonstrated that superfast 30 

high-resolution E-field modeling can be achieved using deep neural networks (DNNs) (Xu et al., 2021; 31 

Yokota et al., 2019). Particularly, the magnitude of E-fields was estimated based on individualized MRI 32 

head scans and TMS coil positions by DNNs (Yokota et al., 2019), and 3D vector E-fields were predicted 33 

using deep DNNs by integrating both individualized neuroanatomy (scalar-valued tissue conductivity or 34 
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anisotropic conductivity tensors) and primary E-fields generated by TMS coils as the input (Xu et al., 1 

2021). Though promising results have been obtained, the existing deep learning (DL) based models were 2 

driven and optimized in a supervised learning setting. To train the DNNs, E-fields estimated by 3 

conventional numerical methods, such as FEM, are used to generate training data. Therefore, their 4 

accuracy would be bounded by the conventional numerical methods used to generate the training data. 5 

Inspired by self-supervised deep learning methods (Geneva and Zabaras, 2020; Guo et al., 2020; 6 

Li et al., 2021; Li and Fan, 2018, 2020; Qin et al., 2019; Raissi et al., 2019; Rao et al., 2021; Tian et al., 7 

2020; Winovich et al., 2019; Yang and Perdikaris, 2019; Zhu et al., 2019) and the pioneer deep learning 8 

based E-field computation methods (Xu et al., 2021; Yokota et al., 2019), we develop a novel self-9 

supervised deep learning based TMS E-field modeling method to obtain precise high-resolution E-fields. 10 

Specially, given a head model and the primary E-field generated by TMS coil, a DL model is built to 11 

generate the electric scalar potential by minimizing a loss function that measures how well the generated 12 

electric scalar potential fits the governing PDE, from which the E-field can be derived directly. In contrast 13 

to the conventional numerical methods that solve the PDEs iteratively, the DL model is built to learn the 14 

solution to the PDE directly. In contrast to the existing supervised DL methods, our DL model is trained 15 

in a self-supervised manner by minimizing an energy function that solves the governing PDE as a loss 16 

function, which does not require any external supervision. The trained DL model could be applied to new 17 

subjects and predict their E-fields by one forward-pass computation. We have validated the proposed DL 18 

model using both simulated sphere head model and realistic head models, and experimental results have 19 

demonstrated that our method can obtain precise E-fields comparable to solutions obtained by a state-20 

of-the-art FEM implemented in SimNIBS v3.1 with improved computational speed. 21 

Methods 22 

We develop a self-supervised DL model to compute TMS E-fields by directly learning a mapping from 23 

the magnetic vector potential of a TMS coil and a realistic head model to the TMS induced E-field so that 24 

high-resolution TMS E-fields will be a good estimate of the solution to the governing PDE of TMS E-fields 25 

and be computed by one feedforward computation rapidly. 26 

TMS E-fields modeling 27 

Given a head model consisting of head tissue compartments with different conductivities, the E-field 𝐸 in 28 

the head induced by a TMS coil can be computed by solving a PDE (Goetz and Deng, 2017; Gomez-29 

Tames et al., 2020; Wang and Eisenberg, 1994). Based on quasi-static approximation, the E-field, 𝐸 =30 

−∇𝜙 −
𝜕𝐴

𝜕𝑡
, can be computed by solving 31 
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∇ ∙ (𝜎∇𝜙) + ∇ ∙ (𝜎
𝜕𝐴

𝜕𝑡
)  = 0, （1） 

with the Neumann boundary condition 1 

𝑛⃗ ∙ (𝜎∇𝜙 + 𝜎
∂A

∂t
) = 0, （2） 

where 𝜎 is the tissue conductivity, 𝐴 is the magnetic vector potential of the TMS coil, 𝜙 is the electric 2 

scalar potential, and 𝑛⃗  is the normal vector to the tissue surface. Particularly, the primary E-Field −
𝜕𝐴

𝜕𝑡
 3 

depends only on the TMS coil characteristics (Deng et al., 2013; Koponen et al., 2017) and the secondary 4 

field −∇𝜙 is caused by surface charges in the conducting medium characterized by the head model. 5 

 6 

Fig.1. A self-supervised deep learning model for computing TMS E-field. A deep neural network is applied to learn 7 

a mapping from individual head model and TMS induced primary E-field to the TMS electric scalar potential, and 8 

the network is optimized by a loss function determined by an energy function (Wang and Eisenberg, 1994). 9 

Computing TMS E-fields using deep neural networks 10 

In contrast to the prevailing FEM/BEM methods adopted in E-field modeling studies (Gomez et al., 2021; 11 

Koponen et al., 2019; Makarov et al., 2020a; Makarov et al., 2020b; Nielsen et al., 2018; Paffi et al., 2015; 12 

Saturnino et al., 2019; Weise et al., 2020) and the existing DL methods that learn a mapping from 13 

individual MRI head scans/anatomy to E-fields in a supervised learning framework (Xu et al., 2021; 14 

Yokota et al., 2019), our DL model is built to minimize an energy function that solves the governing 15 

equation of Eq. (1) with the boundary condition of Eq. (2) in a self-supervised fashion as illustrated in Fig. 16 

1. Given a head model and TMS induced primary E-field as input, a deep neural network with parameters 17 

Θ  is built to estimate 𝜙  by minimizing a loss function 𝐿  that measures the dissipated power in the 18 

conducting medium (Wang and Eisenberg, 1994), specified as: 19 

𝐿(Θ;𝜙Θ) = ∫ 𝜎(∇𝜙Θ +
∂A

∂t
) ∙ (∇𝜙Θ +

∂A

∂t
)𝑑𝑣

Ω
, (3) 
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where 𝜙Θ is the electric scalar potential computed by the deep neural network and 𝑣 refers to a spatial 1 

location (voxel) within the head model Ω. 2 

Given the input training data, the deep neural network is trained to optimize the loss function of 3 

Eq. (3) in a self-supervised manner. Once the deep neural network is optimized, it could be applied to 4 

new subjects and predict the electric scalar potential 𝜙 by one forward-pass computation, from which the 5 

E-fields could be computed directly. 6 

 7 

Fig.2. Deep convolutional neural network with an Encoder-Decoder architecture applied to learn TMS E-field. The 8 

numbers underneath convolutional (C1_1, C1_2, …, C9_2) and deconvolutional (D1, D2, D3, and D4) layers 9 

indicate their corresponding numbers of kernels, with a stride of 1 or 2 for downsampling or upsampling. The kernel 10 

size in all layers is set to 3×3×3. 11 

Network architecture for computing TMS E-fields 12 

The overall architecture of our deep neural network for computing TMS E-fields is illustrated in Fig. 2. 13 

The deep neural network’s backbone is a U-Net with an Encoder-Decoder architecture (Ronneberger et 14 

al., 2015). The network’s input consists of an individual head model (scalar tissue conductivity map, a 4D 15 

volume with a channel size of 1) and a subject-specific primary E-field (−
𝜕𝐴

𝜕𝑡
, a 4D volume with a channel 16 

size of 3), and its output includes the estimated electric scalar potential 𝜙Θ (a 4D volume with a channel 17 

size of 1 and the same spatial dimension as the head model) and its gradient. The total E-field will be 18 

estimated as 𝐸 = −∇𝜙Θ −
𝜕𝐴

𝜕𝑡
. Particularly, the encoder path consists of ten convolutional layers with 8 to 19 

128 filters and a stride of 1 or 2 for downsampling, the decoder path consists of four deconvolutional 20 

layers with 128, 64, 32, and 16 filters and a stride of 2 for upsampling, each of which is followed by two 21 

additional convolutional layers with 64, 32, 16, and 16 filters and a stride of 1. One output convolutional 22 

layer with 1 filter is used to predict the electric scalar potential 𝜙Θ, and its gradient is computed with a 23 

central difference operator on the image grid. Leaky ReLU (Maas et al., 2013) activation function is used 24 

for all the convolutional and deconvolutional layers, except those two output layers. The kernel size in all 25 

layers is set to 3×3×3.  26 
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Experimental results 1 

Data preparation 2 

We have evaluated the proposed deep learning method using both simulated sphere head model and 3 

realistic head models from real MRI scans.  4 

For the simulated data, a 3D sphere head model with a radius of 95 mm and isotropic resolution 5 

of 1 mm was generated. Its origin coordinate was set to [0, 0, 0] and its conductivity set to 1 s/m 6 

homogeneously. The excitation was given by a point magnetic dipole located outside of the sphere. The 7 

dipole’s location was set to [0, 0, 100] and its moment set to [0, 0, 1]. The TMS induced E-field of this 8 

sphere head model can be calculated analytically (Heller and van Hulsteyn, 1992), facilitating the direct 9 

evaluation of numerical accuracy of methods under comparison.  10 

For the realistic head models, we adopted a local cohort of 125 healthy adult subjects with high-11 

resolution multi-echo T1-weighted MPR images (TR=2400 ms, TI=1060 ms, TE= 2.24 ms, FA=8°, 12 

0.8×0.8×0.8 mm3 voxels, image size=208×300×320, FOV= 256 mm). Based on these MRI scans, we 13 

used SimNIBS v3.1 to generate anatomically accurate head models (‘headreco’ option with 14 

SPM/Computational Anatomy Toolbox for tissue segmentation) and compute primary E-fields induced 15 

by a Magstim 70mm Figure-of-Eight coil placed at varied locations with different orientations (Gomez-16 

Tames et al., 2018). For meshes of head models used in FEM computation, the average number of 17 

tetrahedrons was 3.915 × 106 (with std of 3.633 × 105), and the average edge length was 2.103 mm (with 18 

std of 0.801 mm), as the default setting used in the SIMNIBS pipeline. The tissue conductivity map was 19 

generated by substituting the head tissue label values with their corresponding conductivity values. We 20 

adopted the SimNIBS conductivity values, i.e., 0.126, 0.275, 1.654, 0.01, 0.465, and 0.5 S/m for whiter 21 

matter, gray matter, CSF, bone, scalp, and eyes respectively.  22 

Experiment settings and implementation  23 

To obtain the E-field of the simulated sphere head model using our proposed deep learning model, the 24 

conductivity map of the sphere and the primary E-field induced by the dipole was fed into the network as 25 

illustrated in Fig. 2, and the network was trained and optimized with respect to the loss function of Eq. (3) 26 

until convergence. 27 

For the evaluation on the realistic head models, we randomly selected 100 subjects as training 28 

subjects and the remaining 25 as testing subjects. To evaluate the accuracy and robustness of our deep 29 

learning model with respect to different TMS coil positions and directions, three different experiment 30 

settings were adopted.  31 
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Setting 1. The TMS coil was placed at a location within the motor cortex (center=‘C1’ and 1 

pos_ydir=’CP1’ as defined in the EEG10-10 system) for each subject to generate a primary E-field using 2 

SimNIBS. There were 100 pairs of subject specific tissue conductivity maps and primary E-fields in total 3 

used for training the deep learning model and 25 pairs for testing its accuracy under this setting, which 4 

served as a proof-of-concept validation of our deep learning model on realistic head models.  5 

Setting 2. The TMS coil was placed at the same location within the motor cortex (center=‘C1’) but 6 

in different directions for training and testing the deep learning model. Particularly, primary E-fields of 7 

each training subject were generated with different coil directions (seen directions), including ‘CP1’, ‘Cz’, 8 

‘FC1’, and ‘C3’, as training data. There were 400 pairs of subject specific tissue conductivity maps and 9 

primary E-fields in total for training the deep learning model. The optimized deep learning model was 10 

then evaluated on the testing subjects with the coil placed in directions different from those for generating 11 

the training data (unseen directions), including ‘CPz’, ‘FCz’, ‘FC3’, and ‘CP3’. In total, there were 100 12 

pairs of subject specific tissue conductivity maps and primary E-fields for testing. This setting was 13 

adopted to evaluate the generalization performance of the deep learning model with respect to varying 14 

coil directions. 15 

Setting 3. The TMS coil was placed at different spatial locations within the left dorsolateral 16 

prefrontal cortex (DLPFC) to evaluate the robustness of the deep learning model with respect to changes 17 

of coil locations. Particularly, a target position was defined using the average mean Montreal Neurological 18 

Institute (MNI) coordinates (x=−42, y=16, z=28) (Friehs et al., 2020), which was transformed to subject 19 

space using SIMNIBS to obtain a subject-specific target position. Then, multiple coil positions and 20 

directions were generated within a grid centered at the target position using the SIMNIBS function 21 

‘optimize_tms.get_opt_grid’ with parameters of radius=20, resolution_pos=10, resolution_angle=90, 22 

angle_limits=[-180,180], yielding 36 (9 positions by 4 directions) pairs of tissue conductivity map and 23 

primary E-field for each subject. In total, there were 3600 pairs of subject specific tissue conductivity 24 

maps and primary E-fields for training the deep learning model and 900 pairs of subject specific tissue 25 

conductivity maps and primary E-fields for testing its accuracy. 26 

For both the simulated and realistic head models, our deep neural network’s input was a 27 

concatenated 4D volume data of the scalar tissue conductivity map (a 4D volume with a channel size of 28 

1) and the primary E-field (a 4D volume with a channel size of 3), and its output included a predicted 29 

scalar electric potential (a 4D volume with a channel size of 1) and its gradient. The deep neural network 30 

was optimized under each setting respectively on the training data regarding the loss function of Eq. (3). 31 

The subject-specific head model and primary E-field was generated using SimNIBS for each subject. For 32 

the realistic head models, the input image was cropped (only regions outside the head was cropped) to 33 

have a spatial dimension of 208×288×304 to fit the fully convolutional network architecture of our DL 34 
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model. The channel size was 1 and 3 for scalar image (tissue conductivity map and electric potential) 1 

and vector image (primary E-field), respectively. 2 

Our deep learning model was implemented using Tensorflow (Abadi et al., 2016). Adam optimizer 3 

(Kingma and Ba, 2014) is adopted to optimize the network, the learning rate was set to 1 × 10−4, the 4 

batch size was set to 1, and the number of iterations is set to 10000 for the simulated sphere head model, 5 

30000 for realistic head model setting 1, 60000 and 90000 for realistic head model setting 2 and 3 during 6 

training. One NVIDIA TITAN RTX GPU with 24G memory was used for training and testing. Training 7 

losses of our deep learning models on the simulated sphere head model and realistic head models are 8 

shown in Fig. 3, demonstrating the optimized deep learning models reached convergence with the 9 

specified parameters. 10 

 11 

Fig.3. Training loss of the proposed deep learning model on simulated sphere head model (a) and realistic head 12 

models under different experiment settings (b). 13 

Evaluation and comparisons 14 

We compared our method in terms of both accuracy and computational speed with a state-of-the-art FEM, 15 

with superconvergent patch recovery,  implemented in SimNIBS v3.1. We also compared our method 16 

with a FDM under Setting 1 using an implementation available at 17 

https://github.com/luisgo/TMS_Efield_Solvers (Gomez et al., 2020). As no ground truth was available for 18 

the realistic head models, we used the solutions of FEM as reference to estimate the accuracy, following 19 

the existing deep learning studies of E-field modeling (Xu et al., 2021; Yokota et al., 2019). The FEM 20 

solutions were projected onto voxels using “msh2nii” as implemented in SimNIBS for the comparison. 21 

Two evaluation metrics, including pointwise magnitude error and correlation coefficient between the 22 

predicted and reference solutions were adopted (Gomez et al., 2020). Specifically, the correlation 23 

coefficient was computed as Pearson correlation between the magnitude of E-fields obtained by our DL 24 

method and the FEM within a specified ROI, and the pointwise magnitude error was computed as 25 
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𝑒𝑟𝑟(𝑟) =
𝑎𝑏𝑠(𝐸𝐷𝐿(𝑟)−𝐸𝑟𝑒𝑓(𝑟))

max
𝑟∈{GM,WM}

𝐸𝑟𝑒𝑓(𝑟)
, where 𝑟  refers to voxel 𝑟  in GM and WM region. Both measures were 1 

evaluated within different ROIs, including the combined gray matter and whiter matter (GM&WM) region, 2 

the gray matter (GM) region, the white matter (WM) region, region thresholded at the 95th percentile of 3 

E-field magnitude (Xu et al., 2021), and region thresholded at the 50% of the E-field maximum (Deng et 4 

al., 2013; Yokota et al., 2019), to get better understanding about the characteristics of the DL based 5 

solution. For the simulated sphere head model, the E-field can be calculated analytically (Heller and van 6 

Hulsteyn, 1992) to directly evaluate the numerical accuracy of methods under comparison. Particularly, 7 

the difference between a numerical solution 𝐸𝑛𝑢𝑚 and an analytically solution 𝐸𝑎𝑛𝑎 was measured with a 8 

normalized root-mean-square error (NRMSE): 
1

𝑁
∑

‖𝐸𝑛𝑢𝑚(𝑣)−𝐸𝑎𝑛𝑎(𝑣)‖

‖𝐸𝑎𝑛𝑎(𝑣)‖
𝑁
𝑣=1 , where 𝑁 is the number of voxels 9 

in the sphere head model. The evaluation metrics were computed on voxels with values greater than 0 10 

in the reference/ground-truth solution. 11 

Results 12 

Results on simulated sphere head model. Fig. 4 shows the magnitude of E-fields computed analytically, 13 

by the FEM, and by the proposed DL model, respectively, demonstrating that the numerical E-fields 14 

obtained by our DL model and the FEM were visually similar to the analytical solution. The NRMSE 15 

between the DL based and analytical E-field was 0.0054, close to the NRMSE between FEM based and 16 

analytical E-field (NRMSE=0.0055), indicating that the E-field solution obtained by the DL model was 17 

comparable to the FEM solution. This result demonstrated that the proposed DL model can indeed be 18 

optimized to learn the E-field that follows the physics law underlying the TMS stimulation. 19 

 20 

Fig.4. The magnitude of E-fields of the sphere model computed analytically, by FEM (with a NRMSE of 0.0055), 21 

and by our DL method (with a NRMSE of 0.0054), respectively. 22 

Table 1. Quantitative evaluation of the proposed DL method under different experimental settings, with the FEM 23 

solutions as reference. Mean and standard deviation of the correlation coefficient (CC) and pointwise magnitude 24 

error (PME) measures within different regions of interest (ROIs) are demonstrated. ROI definition: gray and whiter 25 
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matter (GM&WM), gray matter (GM), white matter (WM), region thresholded at the 95th percentile of E-field 1 

magnitude (95th percentile), region thresholded at the 50% of maximum E-field magnitude (50% of max). 2 

 
CC  

GM&WM 
CC 
GM 

CC 
WM 

CC  
95th 

percentile 

CC  
50% of 

Max 

PME 
GM&WM 

PME 
GM 

PME 
WM 

PME 
95th 

percentile 

PME 
50% of 

Max 

Setting 1 train 
0.984 

±0.005 
0.984 

±0.004 

0.985 
±0.006 

0.958 
±0.007 

0.856 
±0.035 

0.010 
±0.002 

0.010 
±0.002 

0.010 
±0.002 

0.025 
±0.003 

0.044 
±0.003 

Setting 1 test 
0.978 

±0.006 
0.979 

±0.005 
0.977 

±0.008 
0.948 

±0.014 
0.837 

±0.034 
0.012 

±0.003 
0.012 

±0.003 
0.013 

±0.003 
0.030 

±0.005 
0.049 

±0.008 
Setting 2 test (seen 

dir) 
0.979 

±0.005 
0.978 

±0.005 
0.980 

±0.006 
0.933 

±0.017 
0.801 

±0.127 
0.013 

±0.003 
0.013 

±0.003 
0.013 

±0.003 
0.034 

±0.007 
0.055 

±0.011 

Setting 2 test 
(unseen dir) 

0.957 
±0.012 

0.961 
±0.010 

0.953 
±0.015 

0.918 
±0.022 

0.782 
±0.113 

0.019 
±0.005 

0.019 
±0.005 

0.022 
±0.005 

0.042 
±0.011 

0.064 
±0.014 

Setting 3 test 
0.984 

±0.004 
0.983 

±0.004 
0.985 

±0.004 
0.943 

±0.010 
0.819 

±0.052 
0.012 

±0.002 
0.012 

±0.002 
0.012 

±0.003 
0.036 

±0.005 
0.055 

±0.006 

 3 

Results on realistic head model setting 1. The E-fields of three randomly selected testing subjects 4 

computed by the FEM and our proposed DL method are shown in Fig. 5. The results obtained by our DL 5 

model had patterns similar to those obtained by FEM. Quantitatively, the results obtained by our DL 6 

method were significantly correlated with the FEM solutions, with an average correlation of 0.978 and an 7 

average pointwise magnitude error of 0.012 within the gray and white matter region, and these measures 8 

were similar when evaluated within gray matter and white matter respectively, as summarized in Table 9 

1, indicating that the results by our DL model are comparable to the reference solutions of FEM. The 10 

average correlation and pointwise magnitude error were 0.948 and 0.03 respectively for regions with E-11 

field magnitude exceeding the 95th percentile, which are similar to those obtained by state-of-the-art 12 

supervised DL models (Xu et al., 2021). For regions with a E-field magnitude exceeding 50% of the E-13 

field maximum, the average correlation and pointwise magnitude error were 0.837 and 0.049 respectively. 14 

These quantitative measures were largely consistent with results shown in Fig. 5 that the magnitude error 15 

was relatively larger for regions with a high E-field magnitude. Moreover, our DL model obtained similar 16 

correlation coefficients and pointwise magnitude error on both training and testing subjects as shown in 17 

Table 1, demonstrating the model’s robustness to the anatomical differences across different subjects. 18 

Our E-field solutions were also significantly correlated with the FDM solutions, with an average correlation 19 

coefficient of 0.981 (standard deviation: 0.006) and an average pointwise magnitude error of 0.010 20 

(standard deviation: 0.002) within the gray and white matter. 21 
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 1 

Fig.5. E-fields of three randomly selected testing subjects computed by the FEM and the proposed DL model with 2 

the motor cortex as a stimulation target (1st and 2nd rows), and the corresponding pointwise magnitude error map 3 

with the FEM solution as reference (3rd row).  The top colorbar shows the magnitude values (in V/m) of the E-fields 4 

and the bottom colorbar shows the normalized pointwise magnitude error. 5 

Results on realistic head model setting 2. The E-fields of three randomly selected testing subjects with 6 

unseen coil directions computed by the FEM and our proposed DL method are shown in Fig. 6. Though 7 

the coil directions were different from those used for training the DL model, the DL model still successfully 8 

predicted the E-fields for the testing subjects, demonstrating good consistency with those obtained by 9 

the FEM. Quantitatively, the results on both seen and unseen coil directions obtained by our DL method 10 

were significantly correlated with the FEM solutions, with an average correlation of 0.979 and 0.957 11 

respectively, while the average pointwise magnitude error was 0.013 and 0.019 respectively for the gray 12 

and white matter region, as summarized in Table 1. As shown in Fig. 6, the prediction error was relatively 13 

larger for regions with a high E-field magnitude. It is worth noting that all these results were obtained for 14 

testing subjects which were not used for the model training. These results demonstrated that the DL 15 

model was robust under different coil direction settings and could generalize to unseen coil directions. 16 

We also observed that the pointwise magnitude error of the 3rd subject was larger compared with others 17 

in Fig. 6, which might indicate the model’s robustness to inter-subject anatomical difference compromises 18 

moderately when the coil directions were not seen during the model training procedure. 19 
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 1 

Fig.6. E-fields of three randomly selected testing subjects computed by the FEM and the proposed DL model with 2 

the motor cortex as a stimulation target and the coil set in varying directions (1st and 2nd rows), the corresponding 3 

pointwise magnitude error map with the FEM solution as reference (3rd row). The top colorbar shows the magnitude 4 

values of the E-fields and the bottom colorbar shows the normalized pointwise magnitude error. 5 

Results on realistic head model setting 3. The E-fields of one randomly selected testing subject computed 6 

by the FEM and our proposed DL method for three different coil positions located within the DLPFC area 7 

are shown in Fig. 7. The E-fields obtained by our DL model are visually similar to those obtained by FEM. 8 

The average correlation coefficient of the solutions obtained by our DL model and FEM was 0.984 within 9 

the gray and white matter for the testing subjects, with an average pointwise magnitude error of 0.012 as 10 

summarized in Table 1, indicating that our DL model was capable of predicting E-fields with varying coil 11 

positions and directions. It could be observed that the prediction error was relatively larger for regions 12 

with a high E-field magnitude. The average correlation and pointwise magnitude error were 0.943 and 13 

0.036 respectively for regions with a E-field magnitude exceeding the 95th percentile, and the average 14 

correlation and pointwise magnitude error was 0.819 and 0.055 respectively for regions with E-field 15 

magnitude exceeding 50% of the E-field maximum. 16 
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 1 

Fig.7. E-fields of one randomly selected testing subjects computed by the FEM and the proposed DL model with 2 

the dorsolateral prefrontal cortex (DLPFC) as a stimulation target and the coil set at varying positions and in different 3 

directions (1st and 2nd rows), and the corresponding pointwise magnitude error map with the FEM solution as 4 

reference (3rd row). The top colorbar shows the magnitude values of the E-fields and the bottom colorbar shows 5 

the normalized pointwise magnitude error. 6 

Computation time. It took 35.17 and 33.65 seconds on average by the FEM as implemented in SIMNIBS 7 

to obtain the E-field for one subject (whole head model with 208×288×304 voxels at a spatial resolution 8 

of 0.8×0.8×0.8 mm3) with the TMS coil located at the motor cortex and DLPFC respectively when using 9 

one Intel Xeon Gold 5218 CPU. It took 14.27 and 14.26 seconds by our trained DL model using the same 10 

CPU. On one NVIDIA TITAN RTX GPU, it took 1.47 and 1.49 seconds respectively by our trained DL 11 

model to compute E-fields with the TMS coil located at the motor cortex and DLPFC, respectively. For 12 

the FEM, the timing measurement included the time for assembling and solving the FEM system; For DL 13 

method, the timing measurement includes the time for one forward pass to obtain the E-field and the 14 

electric potential using a head model and a primary E-field as input. We did not include the time for 15 

computing head model/mesh and primary E-field for both the FEM and our DL method. This comparison 16 

demonstrated the improved computational speed obtained by the proposed deep learning model. For the 17 

model training, it took 2.88 seconds on average for each training iteration. It is worth noting that the model 18 

only needs to be trained once for a target ROI, which can be applied to new testing subjects without 19 
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further optimization once trained. 1 

Discussion 2 

We have developed a self-supervised deep learning model to directly learn a mapping from the magnetic 3 

vector potential of a TMS coil and a realistic head model to the TMS induced E-fields, instead of iteratively 4 

solving equations governing the E-field induced by a TMS coil. Experimental results on both simulated 5 

and realistic head models have demonstrated that our method could obtain similar accuracy compared 6 

with the most commonly used numerical method. Our method is capable of computing the TMS induced 7 

E-fields by one forward-pass computation, taking less than 1.5 seconds for a realistic head model with 8 

high spatial resolution. 9 

Several numerical computational methods have been developed for accurate E-fields modeling 10 

in conjunction with realistic head models, such as FEMs, BEMs, and FDMs. Though the computational 11 

speed of state-of-the-art numerical methods has been improved a lot, their computational cost for high-12 

resolution E-fields is still high due to the nature of iterative optimization in their PDE solvers, which 13 

compromises their use in the optimization of TMS stimulation parameters in both basic and clinical studies. 14 

Instead of solving the governing PDEs from scratch, recently studies have demonstrated promising 15 

performance of deep neural networks for rapid estimation of E-fields (Xu et al., 2021; Yokota et al., 2019), 16 

in which deep neural networks are trained to directly predict the E-fields with high fidelity to those 17 

estimated using conventional E-field modeling methods, such as FEMs. Therefore, the deep neural 18 

networks are actually trained to predict the solutions obtained by the conventional E-field modeling 19 

methods and their performance is bounded by the conventional E-field modeling methods used for 20 

generating training data. Moreover, it will also be time-consuming to generate surrogate training data with 21 

different TMS stimulation parameters on a large cohort.  22 

In contrast to the existing deep learning based E-field modeling methods (Xu et al., 2021; Yokota 23 

et al., 2019) that learn a mapping from head scans/models to surrogate E-fields estimated using 24 

conventional E-field modeling methods in the supervised learning way, our method directly learns a 25 

solution to the governing equations in a self-supervised learning way, which does not require any external 26 

supervision. Our proposed deep neural network is designed to predict the TMS induced electric scalar 27 

potential and is optimized so that the network’s output fit the governing PDE as much as possible, which 28 

is formulated to minimize an energy function that solves the governing PDE. Therefore, our method 29 

directly learns a solution to the same governing PDE as the convention numerical optimization methods 30 

do, while benefiting from the fast inference of deep neural networks. As surrogate E-fields are not required 31 

by our method, realistic head models from diverse imaging datasets can be used as the training data for 32 

our method. To the best of our knowledge,  our method is the first study to investigate self-supervised 33 
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deep learning for TMS E-field modeling, though physics-informed deep learning methods have been 1 

successfully applied to solving PDEs on varied domains (Geneva and Zabaras, 2020; Guo et al., 2020; 2 

Qin et al., 2019; Raissi et al., 2019; Rao et al., 2021; Tian et al., 2020; Winovich et al., 2019; Yang and 3 

Perdikaris, 2019; Zhu et al., 2019).  4 

Our method is designed as a general-purpose method for the computation of E-field, and it could 5 

obtain the E-field for a new subject (whole head model with 208×288×304 voxels at a spatial resolution 6 

of 0.8×0.8×0.8 mm3) in about 1.47 seconds. Several alternative fast E-field computation methods have 7 

been developed (Daneshzand et al., 2021; Stenroos and Koponen, 2019). Particularly, a magnetic 8 

stimulation profile for each subject needs to be computed in advance (Daneshzand et al., 2021), which 9 

may require hours of CPU time. The surface integral equation used in (Stenroos and Koponen, 2019) is 10 

valid only for isotropic medium, which cannot account for the anisotropic conductivity of white matter 11 

properly. Our method does not require per-subject training or pre-computation, it could be applied to new 12 

subjects directly without further optimization once a DL model training is finished. Moreover, we can 13 

further reduce its computation time by applying the trained model to a region of interest (ROI) instead of 14 

the whole head model, facilitated by the fully convolutional network architecture of our method. It should 15 

be noted that an isotropic tissue conductivity model was adopted in our current method development and 16 

evaluation, and the trained model should not be applied to head models with anisotropic tissue 17 

conductivity. It should be also noted that extension to anisotropic tissue conductivity is feasible by 18 

incorporating anisotropic conductivity tensor into the loss function defined in Eq. (3) and replacing the 19 

scalar conductivity with anisotropic conductivity tensor properly as the network input. 20 

In addition to promising accuracy and computational speed, our method is robust to varying TMS 21 

coil locations and directions. As demonstrated in Fig. 6, the deep neural network generalized well for 22 

computing E-fields of the testing subjects that were generated by the coil placed in directions different 23 

from those for generating the training data. The validation experiment with the coil placed at left DLPFC 24 

has further demonstrated that the accuracy of the predicted E-fields was still comparable to that obtained 25 

by the FEM on the testing subjects, even though the coil was placed at varying locations and in different 26 

directions, as illustrated in Fig. 7. The good generalization performance of the proposed method may be 27 

attributed to its self-supervised learning nature, which optimizes the deep learning model to learn the 28 

underlying mapping between head anatomy and electric potential without external guidance or prior 29 

assumptions. The robust generalization emphasizes that this method is likely to be applicable to the 30 

optimization of TMS stimulation where varying positions and directions around the target position are to 31 

be explored. Nevertheless, it was observed in Figs. 5 to 7 that the pointwise magnitude errors were 32 

relatively large at the regions with a high E-field magnitude, indicating there is still room for improving the 33 

model’s performance with respect to both methodological development and model training, such as 34 
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optimizing the neural network architecture and increasing the size of training dataset. It was also 1 

observed in Fig. 6 that the prediction error for the 3rd subject was relatively larger than that for other 2 

subjects, which might be due to large inter-subject anatomical differences between training and testing 3 

subjects, and it is expected that a model trained on a larger training dataset with more subjects will 4 

improve the model’s robustness to anatomical differences across subjects. On the other hand, the DL-5 

based results can also be served as a good initialization for conventional PDE solvers to achieve an 6 

improved convergence rate given that the DL-based results were close to the FEM-based solutions. 7 

Though the self-supervised deep learning method has demonstrated enormous potential for fast 8 

and accurate E-field modeling, there are still several limitations should be noted. First, current evaluation 9 

was focused on E-field induced by a Figure-of-Eight coil and head models at a single resolution, the 10 

influence of different coils and spatial resolutions of head models merits further investigation. Second, 11 

scalar tissue conductivity maps were used in the present study. Future work will be devoted to modeling 12 

of anisotropic tissue conductivity with deep learning and exploring its effects on the derived E-field. Third, 13 

our current model adopts a traditional U-Net architecture, which can be optimized in terms of both 14 

accuracy and computational speed of the E-field modeling using neural architecture search (NAS) 15 

techniques (Elsken et al., 2019). In addition, tuning the hyper-parameters for network training such as 16 

batch size along with the architecture optimization may further improve the performance. Moreover, the 17 

gradient operator currently used to compute the loss function in Eq. (3) was implemented as a central 18 

difference operator on the image grid, which may generate blurring or artificially elevated peak values 19 

around the tissue boundaries. More attention should also be paid to exploring other numerical solutions 20 

such as cubic spline based method and spectral differentiation for computing gradient or other processing 21 

strategies to improve the prediction at tissue boundary regions. Fourth, dedicated deep neural networks 22 

were trained separately for different target regions in the present study, future work will be devoted to 23 

investigating the feasibility of one unified neural network for multiple target regions across the cerebral 24 

cortex and its generalization with respect to the size of training data and the neural network capacity.  25 

In conclusion, a self-supervised deep learning model was developed to estimate TMS induced E-26 

fields directly from realistic head models and the TMS coil’s magnetic vector potential. The DL model can 27 

obtain high-resolution E-fields from realistic head models with high accuracy, facilitating fast and precise 28 

TMS E-field modeling, and therefore the optimization of TMS stimulation parameters in both basic and 29 

clinical studies. 30 
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