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Abstract

Electric fields (E-fields) induced by transcranial magnetic stimulation (TMS) can be modeled using partial
differential equations (PDES). Using state-of-the-art finite-element methods (FEM), it often takes tens of
seconds to solve the PDEs for computing a high-resolution E-field, hampering the wide application of the
E-field modeling in practice and research. To improve the E-field modeling’s computational efficiency, we
developed a self-supervised deep learning (DL) method to compute precise TMS E-fields. Given a head
model and the primary E-field generated by TMS coils, a DL model was built to generate a E-field by
minimizing a loss function that measures how well the generated E-field fits the governing PDE. The DL
model was trained in a self-supervised manner, which does not require any external supervision. We
evaluated the DL model using both a simulated sphere head model and realistic head models of 125
individuals and compared the accuracy and computational speed of the DL model with a state-of-the-art
FEM. In realistic head models, the DL model obtained accurate E-fields that were significantly correlated
with the FEM solutions. The DL model could obtain precise E-fields within seconds for whole head models
at a high spatial resolution, faster than the FEM. The DL model built for the simulated sphere head model
also obtained an accurate E-field whose average difference from the analytical E-fields was 0.0054,
comparable to the FEM solution. These results demonstrated that the self-supervised DL method could

obtain precise E-fields comparable to the FEM solutions with improved computational speed.

Keywords: Self-supervised learning, deep neural networks, electric field modeling, TMS

Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method used in treating major
depression and other neuropsychiatric disorders (O’Reardon et al., 2007). However, TMS treatment

outcomes vary greatly across patients (Cash et al., 2021; Cash et al., 2020; Diekhoff-Krebs et al., 2017,
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Fox et al., 2012; Fox et al., 2013; Kim et al., 2014; Luber et al., 2017; Opitz et al., 2016; Sack et al., 2009;
Weigand et al., 2018; Williams et al., 2021). One primary source of such variability is that TMS suffers
from targeting inaccuracies (Julkunen et al., 2009; Weiss et al., 2013). Recent studies have demonstrated
that optimizing TMS stimulation parameters, such as location and orientation of the TMS coil, might
improve TMS targeting and focality for individual subjects (Gomez et al., 2021; Makarov et al., 2020b;
Weise et al., 2020), and optimizing TMS coil placement based on individual functional neuroanatomy
could potentially increase effect sizes for both basic and clinical studies (Diekhoff-Krebs et al., 2017; Fox
etal., 2012; Fox et al., 2013; Kim et al., 2014; Luber et al., 2017; Opitz et al., 2016; Weigand et al., 2018).

Modeling of electric-fields (E-fields) is now the most widely used method to characterize the
localization and spread of electrical current in the brain induced by TMS (Bungert et al., 2017; Deng et
al., 2013; Goetz and Deng, 2017; Gomez-Tames et al., 2020; Saturnino et al., 2019; Wang and Eisenberg,
1994). A variety of numerical computational methods have been developed to compute E-fields in
conjunction with realistic head models by iteratively solving PDEs governing the E-field induced by TMS
coils, including finite element methods (FEMs), boundary element methods (BEMs), and finite-difference
methods (FDMs) (Htet et al., 2019; Makarov et al., 2020a; Nielsen et al., 2018; Paffi et al., 2015; Saturnino
et al., 2019). The convergence of these numerical methods to the actual solution is sensitive to density
of the head mesh, the polynomial approximation order, and error tolerance, and their computational cost
is proportional to the modeling accuracy (Babuska et al., 1981). Although compromise is often necessary
in real applications, it often takes tens of seconds for state-of-the-art E-field modeling methods to compute
a high-resolution E-field (Htet et al., 2019; Makarov et al., 2020a; Nielsen et al., 2018; Paffi et al., 2015;
Saturnino et al., 2019).

The high computational cost of E-field modeling also makes it time-consuming and costly to
optimize TMS stimulation parameters since a large number of E-fields have to be explored to identify an
optimal solution (Gomez et al., 2021; Makarov et al., 2020b; Weise et al., 2020). To benefit clinical
practice using these sophisticated tools, the computational cost of E-field modeling has to be reduced
substantially without compromising accuracy. Faster E-field modeling is achievable by using a dipole-
based magnetic stimulation profile approach that has to compute a magnetic stimulation profile for each
individual subject with several hours of CPU time (Daneshzand et al., 2021) or to compute the E-field
only on sparse points or the mean of the E-field in a region of interest (ROI) by leveraging the reciprocity
principle (Gomez et al., 2021; Koponen et al., 2019). Recent studies have demonstrated that superfast
high-resolution E-field modeling can be achieved using deep neural networks (DNNs) (Xu et al., 2021,
Yokota et al., 2019). Particularly, the magnitude of E-fields was estimated based on individualized MRI
head scans and TMS coil positions by DNNs (Yokota et al., 2019), and 3D vector E-fields were predicted

using deep DNNs by integrating both individualized neuroanatomy (scalar-valued tissue conductivity or
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anisotropic conductivity tensors) and primary E-fields generated by TMS coils as the input (Xu et al.,
2021). Though promising results have been obtained, the existing deep learning (DL) based models were
driven and optimized in a supervised learning setting. To train the DNNs, E-fields estimated by
conventional numerical methods, such as FEM, are used to generate training data. Therefore, their
accuracy would be bounded by the conventional numerical methods used to generate the training data.

Inspired by self-supervised deep learning methods (Geneva and Zabaras, 2020; Guo et al., 2020;
Li et al., 2021; Li and Fan, 2018, 2020; Qin et al., 2019; Raissi et al., 2019; Rao et al., 2021; Tian et al.,
2020; Winovich et al., 2019; Yang and Perdikaris, 2019; Zhu et al., 2019) and the pioneer deep learning
based E-field computation methods (Xu et al., 2021; Yokota et al., 2019), we develop a novel self-
supervised deep learning based TMS E-field modeling method to obtain precise high-resolution E-fields.
Specially, given a head model and the primary E-field generated by TMS coil, a DL model is built to
generate the electric scalar potential by minimizing a loss function that measures how well the generated
electric scalar potential fits the governing PDE, from which the E-field can be derived directly. In contrast
to the conventional numerical methods that solve the PDEs iteratively, the DL model is built to learn the
solution to the PDE directly. In contrast to the existing supervised DL methods, our DL model is trained
in a self-supervised manner by minimizing an energy function that solves the governing PDE as a loss
function, which does not require any external supervision. The trained DL model could be applied to new
subjects and predict their E-fields by one forward-pass computation. We have validated the proposed DL
model using both simulated sphere head model and realistic head models, and experimental results have
demonstrated that our method can obtain precise E-fields comparable to solutions obtained by a state-

of-the-art FEM implemented in SImMNIBS v3.1 with improved computational speed.

Methods

We develop a self-supervised DL model to compute TMS E-fields by directly learning a mapping from
the magnetic vector potential of a TMS coil and a realistic head model to the TMS induced E-field so that
high-resolution TMS E-fields will be a good estimate of the solution to the governing PDE of TMS E-fields
and be computed by one feedforward computation rapidly.

TMS E-fields modeling

Given a head model consisting of head tissue compartments with different conductivities, the E-field E in
the head induced by a TMS coil can be computed by solving a PDE (Goetz and Deng, 2017; Gomez-
Tames et al., 2020; Wang and Eisenberg, 1994). Based on quasi-static approximation, the E-field, E =

V¢ — Z—f, can be computed by solving
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V- (099) + V- (02) =0, (1

with the Neumann boundary condition
i 0V + 02 =0, (2)
where ¢ is the tissue conductivity, 4 is the magnetic vector potential of the TMS coil, ¢ is the electric

scalar potential, and 7 is the normal vector to the tissue surface. Particularly, the primary E-Field —‘;—’:

depends only on the TMS coil characteristics (Deng et al., 2013; Koponen et al., 2017) and the secondary

field —V¢ is caused by surface charges in the conducting medium characterized by the head model.

Individual
head model &

Electric scalar potential |_

bo

Deep neural network @

Primary
E-field

E-field

Loss
function

Fig.1. A self-supervised deep learning model for computing TMS E-field. A deep neural network is applied to learn
a mapping from individual head model and TMS induced primary E-field to the TMS electric scalar potential, and

the network is optimized by a loss function determined by an energy function (Wang and Eisenberg, 1994).

Computing TMS E-fields using deep neural networks

In contrast to the prevailing FEM/BEM methods adopted in E-field modeling studies (Gomez et al., 2021,
Koponen et al., 2019; Makarov et al., 2020a; Makarov et al., 2020b; Nielsen et al., 2018; Paffi et al., 2015;
Saturnino et al., 2019; Weise et al., 2020) and the existing DL methods that learn a mapping from
individual MRI head scans/anatomy to E-fields in a supervised learning framework (Xu et al., 2021;
Yokota et al., 2019), our DL model is built to minimize an energy function that solves the governing
equation of Eq. (1) with the boundary condition of Eq. (2) in a self-supervised fashion as illustrated in Fig.
1. Given a head model and TMS induced primary E-field as input, a deep neural network with parameters
0 is built to estimate ¢ by minimizing a loss function L that measures the dissipated power in the

conducting medium (Wang and Eisenberg, 1994), specified as:

L(®; be) = [,0(Vo +2) - (Vo + ), (3)
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where ¢g is the electric scalar potential computed by the deep neural network and v refers to a spatial
location (voxel) within the head model Q.

Given the input training data, the deep neural network is trained to optimize the loss function of
Eqg. (3) in a self-supervised manner. Once the deep neural network is optimized, it could be applied to
new subjects and predict the electric scalar potential ¢ by one forward-pass computation, from which the

E-fields could be computed directly.

Tissue

conductivity | l
- = N H N H N - - o S B N N
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Primary
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Fig.2. Deep convolutional neural network with an Encoder-Decoder architecture applied to learn TMS E-field. The
numbers underneath convolutional (C1_1, C1 2, ..., C9_2) and deconvolutional (D1, D2, D3, and D4) layers
indicate their corresponding numbers of kernels, with a stride of 1 or 2 for downsampling or upsampling. The kernel

size in all layers is set to 3x3x3.

Network architecture for computing TMS E-fields

The overall architecture of our deep neural network for computing TMS E-fields is illustrated in Fig. 2.
The deep neural network’s backbone is a U-Net with an Encoder-Decoder architecture (Ronneberger et

al., 2015). The network’s input consists of an individual head model (scalar tissue conductivity map, a 4D
volume with a channel size of 1) and a subject-specific primary E-field (— ‘;—‘:, a 4D volume with a channel

size of 3), and its output includes the estimated electric scalar potential ¢g (a 4D volume with a channel

size of 1 and the same spatial dimension as the head model) and its gradient. The total E-field will be
estimated as E = —V¢g — ‘Z—f. Particularly, the encoder path consists of ten convolutional layers with 8 to

128 filters and a stride of 1 or 2 for downsampling, the decoder path consists of four deconvolutional
layers with 128, 64, 32, and 16 filters and a stride of 2 for upsampling, each of which is followed by two
additional convolutional layers with 64, 32, 16, and 16 filters and a stride of 1. One output convolutional
layer with 1 filter is used to predict the electric scalar potential ¢g, and its gradient is computed with a
central difference operator on the image grid. Leaky ReLU (Maas et al., 2013) activation function is used
for all the convolutional and deconvolutional layers, except those two output layers. The kernel size in alll

layers is set to 3x3x3.
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Experimental results

Data preparation

We have evaluated the proposed deep learning method using both simulated sphere head model and
realistic head models from real MRI scans.

For the simulated data, a 3D sphere head model with a radius of 95 mm and isotropic resolution
of 1 mm was generated. Its origin coordinate was set to [0, 0, 0] and its conductivity set to 1 s/m
homogeneously. The excitation was given by a point magnetic dipole located outside of the sphere. The
dipole’s location was set to [0, 0, 100] and its moment set to [0, O, 1]. The TMS induced E-field of this
sphere head model can be calculated analytically (Heller and van Hulsteyn, 1992), facilitating the direct
evaluation of numerical accuracy of methods under comparison.

For the realistic head models, we adopted a local cohort of 125 healthy adult subjects with high-
resolution multi-echo T1l-weighted MPR images (TR=2400 ms, TI=1060 ms, TE= 2.24 ms, FA=8°,
0.8x0.8x0.8 mm? voxels, image size=208x300x320, FOV= 256 mm). Based on these MRI scans, we
used SImNIBS v3.1 to generate anatomically accurate head models (‘headreco’ option with
SPM/Computational Anatomy Toolbox for tissue segmentation) and compute primary E-fields induced
by a Magstim 70mm Figure-of-Eight coil placed at varied locations with different orientations (Gomez-
Tames et al., 2018). For meshes of head models used in FEM computation, the average number of
tetrahedrons was 3.915 x 10° (with std of 3.633 x 10°), and the average edge length was 2.103 mm (with
std of 0.801 mm), as the default setting used in the SIMNIBS pipeline. The tissue conductivity map was
generated by substituting the head tissue label values with their corresponding conductivity values. We
adopted the SImMNIBS conductivity values, i.e., 0.126, 0.275, 1.654, 0.01, 0.465, and 0.5 S/m for whiter
matter, gray matter, CSF, bone, scalp, and eyes respectively.

Experiment settings and implementation

To obtain the E-field of the simulated sphere head model using our proposed deep learning model, the
conductivity map of the sphere and the primary E-field induced by the dipole was fed into the network as
illustrated in Fig. 2, and the network was trained and optimized with respect to the loss function of Eqg. (3)
until convergence.

For the evaluation on the realistic head models, we randomly selected 100 subjects as training
subjects and the remaining 25 as testing subjects. To evaluate the accuracy and robustness of our deep
learning model with respect to different TMS coil positions and directions, three different experiment

settings were adopted.
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Setting 1. The TMS coil was placed at a location within the motor cortex (center='‘C1’ and
pos_ydir="CP1’ as defined in the EEG10-10 system) for each subject to generate a primary E-field using
SImMNIBS. There were 100 pairs of subject specific tissue conductivity maps and primary E-fields in total
used for training the deep learning model and 25 pairs for testing its accuracy under this setting, which
served as a proof-of-concept validation of our deep learning model on realistic head models.

Setting 2. The TMS coil was placed at the same location within the motor cortex (center='C1’) but
in different directions for training and testing the deep learning model. Particularly, primary E-fields of
each training subject were generated with different coil directions (seen directions), including ‘CP1’, ‘CZ’,
‘FC1’, and ‘C3’, as training data. There were 400 pairs of subject specific tissue conductivity maps and
primary E-fields in total for training the deep learning model. The optimized deep learning model was
then evaluated on the testing subjects with the coil placed in directions different from those for generating
the training data (unseen directions), including ‘CPz’, ‘FCz’, ‘FC3’, and ‘CP3’. In total, there were 100
pairs of subject specific tissue conductivity maps and primary E-fields for testing. This setting was
adopted to evaluate the generalization performance of the deep learning model with respect to varying
coil directions.

Setting 3. The TMS coil was placed at different spatial locations within the left dorsolateral
prefrontal cortex (DLPFC) to evaluate the robustness of the deep learning model with respect to changes
of coil locations. Particularly, a target position was defined using the average mean Montreal Neurological
Institute (MNI) coordinates (x=-42, y=16, z=28) (Friehs et al., 2020), which was transformed to subject
space using SIMNIBS to obtain a subject-specific target position. Then, multiple coil positions and
directions were generated within a grid centered at the target position using the SIMNIBS function
‘optimize_tms.get_opt_grid’ with parameters of radius=20, resolution_pos=10, resolution_angle=90,
angle_limits=[-180,180], yielding 36 (9 positions by 4 directions) pairs of tissue conductivity map and
primary E-field for each subject. In total, there were 3600 pairs of subject specific tissue conductivity
maps and primary E-fields for training the deep learning model and 900 pairs of subject specific tissue
conductivity maps and primary E-fields for testing its accuracy.

For both the simulated and realistic head models, our deep neural network’s input was a
concatenated 4D volume data of the scalar tissue conductivity map (a 4D volume with a channel size of
1) and the primary E-field (a 4D volume with a channel size of 3), and its output included a predicted
scalar electric potential (a 4D volume with a channel size of 1) and its gradient. The deep neural network
was optimized under each setting respectively on the training data regarding the loss function of Eq. (3).
The subject-specific head model and primary E-field was generated using SimNIBS for each subject. For
the realistic head models, the input image was cropped (only regions outside the head was cropped) to

have a spatial dimension of 208x288x304 to fit the fully convolutional network architecture of our DL
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model. The channel size was 1 and 3 for scalar image (tissue conductivity map and electric potential)
and vector image (primary E-field), respectively.

Our deep learning model was implemented using Tensorflow (Abadi et al., 2016). Adam optimizer
(Kingma and Ba, 2014) is adopted to optimize the network, the learning rate was set to 1 x 1074, the
batch size was set to 1, and the number of iterations is set to 10000 for the simulated sphere head model,
30000 for realistic head model setting 1, 60000 and 90000 for realistic head model setting 2 and 3 during
training. One NVIDIA TITAN RTX GPU with 24G memory was used for training and testing. Training
losses of our deep learning models on the simulated sphere head model and realistic head models are
shown in Fig. 3, demonstrating the optimized deep learning models reached convergence with the

specified parameters.

x10° ' ] x10°
1.99 | Setting 1

w w 8
2 \ 2 5t Setting 2
et 1.989 = Setting 3
c ( [
€ € 4|
' 1.988 [ T
B 1 =

L o ~— R .\", : ”".'."'""'""/"““-‘~ M dld e A A A WAL o sl

1.987 ; i S 8 e o y : .
0 2500 5000 7500 10000 0 20000 40000 60000 80000
# iteration # iteration

a b

Fig.3. Training loss of the proposed deep learning model on simulated sphere head model (a) and realistic head

models under different experiment settings (b).

Evaluation and comparisons

We compared our method in terms of both accuracy and computational speed with a state-of-the-art FEM,
with superconvergent patch recovery, implemented in SImNIBS v3.1. We also compared our method
with a FDM under Setting 1 using an implementation available at

https://github.com/luisgo/TMS _Efield Solvers (Gomez et al., 2020). As no ground truth was available for

the realistic head models, we used the solutions of FEM as reference to estimate the accuracy, following
the existing deep learning studies of E-field modeling (Xu et al., 2021; Yokota et al., 2019). The FEM
solutions were projected onto voxels using “msh2nii” as implemented in SimNIBS for the comparison.
Two evaluation metrics, including pointwise magnitude error and correlation coefficient between the
predicted and reference solutions were adopted (Gomez et al., 2020). Specifically, the correlation
coefficient was computed as Pearson correlation between the magnitude of E-fields obtained by our DL

method and the FEM within a specified ROI, and the pointwise magnitude error was computed as
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abs(Epy,(r)=Eyef (1))
Eref(r)

err(r) = , Where r refers to voxel r in GM and WM region. Both measures were

re{GNﬁ\)/(VM}
evaluated within different ROIs, including the combined gray matter and whiter matter (GM&WM) region,
the gray matter (GM) region, the white matter (WM) region, region thresholded at the 95th percentile of
E-field magnitude (Xu et al., 2021), and region thresholded at the 50% of the E-field maximum (Deng et
al., 2013; Yokota et al., 2019), to get better understanding about the characteristics of the DL based
solution. For the simulated sphere head model, the E-field can be calculated analytically (Heller and van
Hulsteyn, 1992) to directly evaluate the numerical accuracy of methods under comparison. Particularly,
the difference between a numerical solution E,,,,,, and an analytically solution E,,,, was measured with a

normalized root-mean-square error (NRMSE): % N ”E””’ﬁ‘;v)_f;)’l‘l“(v)"

in the sphere head model. The evaluation metrics were computed on voxels with values greater than 0

, where N is the number of voxels

in the reference/ground-truth solution.

Results

Results on simulated sphere head model. Fig. 4 shows the magnitude of E-fields computed analytically,
by the FEM, and by the proposed DL model, respectively, demonstrating that the numerical E-fields
obtained by our DL model and the FEM were visually similar to the analytical solution. The NRMSE
between the DL based and analytical E-field was 0.0054, close to the NRMSE between FEM based and
analytical E-field (NRMSE=0.0055), indicating that the E-field solution obtained by the DL model was
comparable to the FEM solution. This result demonstrated that the proposed DL model can indeed be
optimized to learn the E-field that follows the physics law underlying the TMS stimulation.

FEM DL

Analytical

3V/m

0V/m

Fig.4. The magnitude of E-fields of the sphere model computed analytically, by FEM (with a NRMSE of 0.0055),
and by our DL method (with a NRMSE of 0.0054), respectively.

Table 1. Quantitative evaluation of the proposed DL method under different experimental settings, with the FEM
solutions as reference. Mean and standard deviation of the correlation coefficient (CC) and pointwise magnitude

error (PME) measures within different regions of interest (ROIs) are demonstrated. ROI definition: gray and whiter


https://doi.org/10.1101/2021.11.09.467946
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 00 N o Uu b W

10
11
12
13
14
15
16
17
18
19
20
21

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467946; this version posted September 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

matter (GM&WM), gray matter (GM), white matter (WM), region thresholded at the 95th percentile of E-field

magnitude (95th percentile), region thresholded at the 50% of maximum E-field magnitude (50% of max).

cC cC cC 9C5fh SOS/::of PME PME PME F;';/ltf Sg"’\/fif

GM&WM | GM WM . GM&WM GM WM .

percentile Max percentile Max

Setting 1 train 0.984 0.984 | 0.985 0.958 0.856 0.010 0.010 0.010 0.025 0.044
+0.005 | +0.004 | £0.006 | +0.007 +0.035 +0.002 | £0.002 | £0.002 +0.003 +0.003
Setting 1 test 0.978 0.979 | 0977 0.948 0.837 0.012 0.012 0.013 0.030 0.049
+0.006 | +0.005| +0.008 | +0.014 +0.034 +0.003 | £0.003 | £0.003 +0.005 +0.008
Setting 2 test (seen | 0.979 0.978 | 0.980 0.933 0.801 0.013 0.013 0.013 0.034 0.055
dir) +0.005 | +£0.005 | £0.006 | +0.017 +0.127 +0.003 | £0.003 | £0.003 +0.007 +0.011
Setting 2 test 0.957 0.961 | 0.953 0.918 0.782 0.019 0.019 0.022 0.042 0.064
(unseen dir) +0.012 | +0.010 | £0.015| +0.022 +0.113 +0.005 | £0.005 | +0.005 +0.011 +0.014
Setting 3 test 0.984 0.983 | 0.985 0.943 0.819 0.012 0.012 0.012 0.036 0.055
+0.004 | +0.004 | £0.004| +0.010 +0.052 +0.002 | £0.002 | +0.003 +0.005 +0.006

Results on realistic head model setting 1. The E-fields of three randomly selected testing subjects
computed by the FEM and our proposed DL method are shown in Fig. 5. The results obtained by our DL
model had patterns similar to those obtained by FEM. Quantitatively, the results obtained by our DL
method were significantly correlated with the FEM solutions, with an average correlation of 0.978 and an
average pointwise magnitude error of 0.012 within the gray and white matter region, and these measures
were similar when evaluated within gray matter and white matter respectively, as summarized in Table
1, indicating that the results by our DL model are comparable to the reference solutions of FEM. The
average correlation and pointwise magnitude error were 0.948 and 0.03 respectively for regions with E-
field magnitude exceeding the 95" percentile, which are similar to those obtained by state-of-the-art
supervised DL models (Xu et al., 2021). For regions with a E-field magnitude exceeding 50% of the E-
field maximum, the average correlation and pointwise magnitude error were 0.837 and 0.049 respectively.
These quantitative measures were largely consistent with results shown in Fig. 5 that the magnitude error
was relatively larger for regions with a high E-field magnitude. Moreover, our DL model obtained similar
correlation coefficients and pointwise magnitude error on both training and testing subjects as shown in
Table 1, demonstrating the model’'s robustness to the anatomical differences across different subjects.
Our E-field solutions were also significantly correlated with the FDM solutions, with an average correlation
coefficient of 0.981 (standard deviation: 0.006) and an average pointwise magnitude error of 0.010

(standard deviation: 0.002) within the gray and white matter.
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Fig.5. E-fields of three randomly selected testing subjects computed by the FEM and the proposed DL model with
the motor cortex as a stimulation target (1st and 2nd rows), and the corresponding pointwise magnitude error map
with the FEM solution as reference (3rd row). The top colorbar shows the magnitude values (in V/m) of the E-fields

and the bottom colorbar shows the normalized pointwise magnitude error.

Results on realistic head model setting 2. The E-fields of three randomly selected testing subjects with
unseen coil directions computed by the FEM and our proposed DL method are shown in Fig. 6. Though
the coil directions were different from those used for training the DL model, the DL model still successfully
predicted the E-fields for the testing subjects, demonstrating good consistency with those obtained by
the FEM. Quantitatively, the results on both seen and unseen coil directions obtained by our DL method
were significantly correlated with the FEM solutions, with an average correlation of 0.979 and 0.957
respectively, while the average pointwise magnitude error was 0.013 and 0.019 respectively for the gray
and white matter region, as summarized in Table 1. As shown in Fig. 6, the prediction error was relatively
larger for regions with a high E-field magnitude. It is worth noting that all these results were obtained for
testing subjects which were not used for the model training. These results demonstrated that the DL
model was robust under different coil direction settings and could generalize to unseen coil directions.
We also observed that the pointwise magnitude error of the 3rd subject was larger compared with others
in Fig. 6, which might indicate the model’s robustness to inter-subject anatomical difference compromises

moderately when the coil directions were not seen during the model training procedure.
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Fig.6. E-fields of three randomly selected testing subjects computed by the FEM and the proposed DL model with

0.15

=3 .

the motor cortex as a stimulation target and the coil set in varying directions (1st and 2nd rows), the corresponding
pointwise magnitude error map with the FEM solution as reference (3rd row). The top colorbar shows the magnitude

values of the E-fields and the bottom colorbar shows the normalized pointwise magnitude error.

Results on realistic head model setting 3. The E-fields of one randomly selected testing subject computed
by the FEM and our proposed DL method for three different coil positions located within the DLPFC area
are shown in Fig. 7. The E-fields obtained by our DL model are visually similar to those obtained by FEM.
The average correlation coefficient of the solutions obtained by our DL model and FEM was 0.984 within
the gray and white matter for the testing subjects, with an average pointwise magnitude error of 0.012 as
summarized in Table 1, indicating that our DL model was capable of predicting E-fields with varying coll
positions and directions. It could be observed that the prediction error was relatively larger for regions
with a high E-field magnitude. The average correlation and pointwise magnitude error were 0.943 and
0.036 respectively for regions with a E-field magnitude exceeding the 95th percentile, and the average
correlation and pointwise magnitude error was 0.819 and 0.055 respectively for regions with E-field

magnitude exceeding 50% of the E-field maximum.
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Fig.7. E-fields of one randomly selected testing subjects computed by the FEM and the proposed DL model with
the dorsolateral prefrontal cortex (DLPFC) as a stimulation target and the coil set at varying positions and in different
directions (1st and 2nd rows), and the corresponding pointwise magnitude error map with the FEM solution as
reference (3rd row). The top colorbar shows the magnitude values of the E-fields and the bottom colorbar shows

the normalized pointwise magnitude error.

Computation time. It took 35.17 and 33.65 seconds on average by the FEM as implemented in SIMNIBS
to obtain the E-field for one subject (whole head model with 208x288x304 voxels at a spatial resolution
of 0.8x0.8x0.8 mm?) with the TMS coil located at the motor cortex and DLPFC respectively when using
one Intel Xeon Gold 5218 CPU. It took 14.27 and 14.26 seconds by our trained DL model using the same
CPU. On one NVIDIA TITAN RTX GPU, it took 1.47 and 1.49 seconds respectively by our trained DL
model to compute E-fields with the TMS coil located at the motor cortex and DLPFC, respectively. For
the FEM, the timing measurement included the time for assembling and solving the FEM system; For DL
method, the timing measurement includes the time for one forward pass to obtain the E-field and the
electric potential using a head model and a primary E-field as input. We did not include the time for
computing head model/mesh and primary E-field for both the FEM and our DL method. This comparison
demonstrated the improved computational speed obtained by the proposed deep learning model. For the
model training, it took 2.88 seconds on average for each training iteration. It is worth noting that the model

only needs to be trained once for a target ROI, which can be applied to new testing subjects without
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further optimization once trained.

Discussion

We have developed a self-supervised deep learning model to directly learn a mapping from the magnetic
vector potential of a TMS coil and a realistic head model to the TMS induced E-fields, instead of iteratively
solving equations governing the E-field induced by a TMS coil. Experimental results on both simulated
and realistic head models have demonstrated that our method could obtain similar accuracy compared
with the most commonly used numerical method. Our method is capable of computing the TMS induced
E-fields by one forward-pass computation, taking less than 1.5 seconds for a realistic head model with
high spatial resolution.

Several numerical computational methods have been developed for accurate E-fields modeling
in conjunction with realistic head models, such as FEMs, BEMs, and FDMs. Though the computational
speed of state-of-the-art numerical methods has been improved a lot, their computational cost for high-
resolution E-fields is still high due to the nature of iterative optimization in their PDE solvers, which
compromises their use in the optimization of TMS stimulation parameters in both basic and clinical studies.
Instead of solving the governing PDEs from scratch, recently studies have demonstrated promising
performance of deep neural networks for rapid estimation of E-fields (Xu et al., 2021; Yokota et al., 2019),
in which deep neural networks are trained to directly predict the E-fields with high fidelity to those
estimated using conventional E-field modeling methods, such as FEMs. Therefore, the deep neural
networks are actually trained to predict the solutions obtained by the conventional E-field modeling
methods and their performance is bounded by the conventional E-field modeling methods used for
generating training data. Moreover, it will also be time-consuming to generate surrogate training data with
different TMS stimulation parameters on a large cohort.

In contrast to the existing deep learning based E-field modeling methods (Xu et al., 2021; Yokota
et al., 2019) that learn a mapping from head scans/models to surrogate E-fields estimated using
conventional E-field modeling methods in the supervised learning way, our method directly learns a
solution to the governing equations in a self-supervised learning way, which does not require any external
supervision. Our proposed deep neural network is designed to predict the TMS induced electric scalar
potential and is optimized so that the network’s output fit the governing PDE as much as possible, which
is formulated to minimize an energy function that solves the governing PDE. Therefore, our method
directly learns a solution to the same governing PDE as the convention numerical optimization methods
do, while benefiting from the fast inference of deep neural networks. As surrogate E-fields are not required
by our method, realistic head models from diverse imaging datasets can be used as the training data for

our method. To the best of our knowledge, our method is the first study to investigate self-supervised
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deep learning for TMS E-field modeling, though physics-informed deep learning methods have been
successfully applied to solving PDEs on varied domains (Geneva and Zabaras, 2020; Guo et al., 2020;
Qin et al., 2019; Raissi et al., 2019; Rao et al., 2021; Tian et al., 2020; Winovich et al., 2019; Yang and
Perdikaris, 2019; Zhu et al., 2019).

Our method is designed as a general-purpose method for the computation of E-field, and it could
obtain the E-field for a new subject (whole head model with 208x288x304 voxels at a spatial resolution
of 0.8x0.8x0.8 mm?) in about 1.47 seconds. Several alternative fast E-field computation methods have
been developed (Daneshzand et al., 2021; Stenroos and Koponen, 2019). Particularly, a magnetic
stimulation profile for each subject needs to be computed in advance (Daneshzand et al., 2021), which
may require hours of CPU time. The surface integral equation used in (Stenroos and Koponen, 2019) is
valid only for isotropic medium, which cannot account for the anisotropic conductivity of white matter
properly. Our method does not require per-subject training or pre-computation, it could be applied to new
subjects directly without further optimization once a DL model training is finished. Moreover, we can
further reduce its computation time by applying the trained model to a region of interest (ROI) instead of
the whole head model, facilitated by the fully convolutional network architecture of our method. It should
be noted that an isotropic tissue conductivity model was adopted in our current method development and
evaluation, and the trained model should not be applied to head models with anisotropic tissue
conductivity. It should be also noted that extension to anisotropic tissue conductivity is feasible by
incorporating anisotropic conductivity tensor into the loss function defined in Eq. (3) and replacing the
scalar conductivity with anisotropic conductivity tensor properly as the network input.

In addition to promising accuracy and computational speed, our method is robust to varying TMS
coil locations and directions. As demonstrated in Fig. 6, the deep neural network generalized well for
computing E-fields of the testing subjects that were generated by the coil placed in directions different
from those for generating the training data. The validation experiment with the coil placed at left DLPFC
has further demonstrated that the accuracy of the predicted E-fields was still comparable to that obtained
by the FEM on the testing subjects, even though the coil was placed at varying locations and in different
directions, as illustrated in Fig. 7. The good generalization performance of the proposed method may be
attributed to its self-supervised learning nature, which optimizes the deep learning model to learn the
underlying mapping between head anatomy and electric potential without external guidance or prior
assumptions. The robust generalization emphasizes that this method is likely to be applicable to the
optimization of TMS stimulation where varying positions and directions around the target position are to
be explored. Nevertheless, it was observed in Figs. 5 to 7 that the pointwise magnitude errors were
relatively large at the regions with a high E-field magnitude, indicating there is still room for improving the

model’s performance with respect to both methodological development and model training, such as
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optimizing the neural network architecture and increasing the size of training dataset. It was also
observed in Fig. 6 that the prediction error for the 3rd subject was relatively larger than that for other
subjects, which might be due to large inter-subject anatomical differences between training and testing
subjects, and it is expected that a model trained on a larger training dataset with more subjects will
improve the model’s robustness to anatomical differences across subjects. On the other hand, the DL-
based results can also be served as a good initialization for conventional PDE solvers to achieve an
improved convergence rate given that the DL-based results were close to the FEM-based solutions.

Though the self-supervised deep learning method has demonstrated enormous potential for fast
and accurate E-field modeling, there are still several limitations should be noted. First, current evaluation
was focused on E-field induced by a Figure-of-Eight coil and head models at a single resolution, the
influence of different coils and spatial resolutions of head models merits further investigation. Second,
scalar tissue conductivity maps were used in the present study. Future work will be devoted to modeling
of anisotropic tissue conductivity with deep learning and exploring its effects on the derived E-field. Third,
our current model adopts a traditional U-Net architecture, which can be optimized in terms of both
accuracy and computational speed of the E-field modeling using neural architecture search (NAS)
techniques (Elsken et al., 2019). In addition, tuning the hyper-parameters for network training such as
batch size along with the architecture optimization may further improve the performance. Moreover, the
gradient operator currently used to compute the loss function in Eq. (3) was implemented as a central
difference operator on the image grid, which may generate blurring or artificially elevated peak values
around the tissue boundaries. More attention should also be paid to exploring other numerical solutions
such as cubic spline based method and spectral differentiation for computing gradient or other processing
strategies to improve the prediction at tissue boundary regions. Fourth, dedicated deep neural networks
were trained separately for different target regions in the present study, future work will be devoted to
investigating the feasibility of one unified neural network for multiple target regions across the cerebral
cortex and its generalization with respect to the size of training data and the neural network capacity.

In conclusion, a self-supervised deep learning model was developed to estimate TMS induced E-
fields directly from realistic head models and the TMS coil’'s magnetic vector potential. The DL model can
obtain high-resolution E-fields from realistic head models with high accuracy, facilitating fast and precise
TMS E-field modeling, and therefore the optimization of TMS stimulation parameters in both basic and

clinical studies.
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