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Abstract

Transcriptional rates are often estimated by fitting the distribution of mature mRNA numbers
measured using smFISH (single molecule fluorescence in situ hybridization) with the distribu-
tion predicted by the telegraph model of gene expression, which defines two promoter states of
activity and inactivity. However, fluctuations in mature mRNA numbers are strongly affected
by processes downstream of transcription. In addition, the telegraph model assumes one gene
copy, but in experiments cells may have two gene copies as cells replicate their genome during
the cell cycle. Whilst it is often presumed that post-transcriptional noise and gene copy number
variation affect transcriptional parameter estimation, the size of the error introduced remains un-
clear. To address this issue, here we measure both mature and nascent mRNA distributions of
GALI10 in yeast cells using smFISH and classify each cell according to its cell cycle phase. We
infer transcriptional parameters from mature and nascent mRNA distributions, with and without
accounting for cell cycle phase and compare the results to live-cell transcription measurements of
the same gene. We find that: (i) correcting for cell cycle dynamics decreases the promoter switch-
ing rates and the initiation rate, and increases the fraction of time spent in the active state, as well
as the burst size; (ii) additional correction for post-transcriptional noise leads to further increases
in the burst size and to a large reduction in the errors in parameter estimation. Furthermore, we
outline how to correctly adjust for measurement noise in smFISH due to uncertainty in transcrip-
tion site localisation when introns cannot be labelled. Simulations with parameters estimated
from nascent smFISH data, which is corrected for cell cycle phases and measurement noise, leads
to autocorrelation functions that agree with those obtained from live-cell imaging.

1 Introduction

Transcription in single cells occurs in stochastic bursts [1,2]. Although the first observation of
bursting occurred more than 40 years ago [3], the precise mechanisms behind this phenomenon are
still under active investigation [4,5]. The direct measurement of the dynamic properties of burst-
ing employs live-cell imaging approaches, which allow visualization of bursts as they occur in liv-
ing cells [6]. However, in practice, such live-cell measurements are challenging because they are
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low-throughput and require genome-editing [7, 8]. To circumvent this, one can exploit the fact that
bursting creates heterogeneity in a population. In this case, it is relatively straightforward to obtain
a steady-state distribution of the number of mRNAs per cell from smFISH or single-cell sequenc-
ing experiments. These distributions have been used to infer dynamics by comparison to theoret-
ical models. The simplest mathematical model describing bursting is the telegraph (or two-state)
model [9,10]. In this model, promoters switch between an active and inactive state, where initia-
tion occurs during the active promoter state. The model makes the further simplifying assumption
that the gene copy number is one and that all the reactions are effectively first-order. The mRNA in
this model can be interpreted as cellular (mature) mRNA since its removal via various decay path-
ways in the cytoplasm is known to follow single-exponential (first-order) decay kinetics in eukaryotic
cells [11,12]. The solution of the telegraph model for the steady-state distribution of mRNA numbers
has been fitted to experimental mature mRNA number distributions to estimate the transcriptional
parameters [1,2,10,13].

However, the reliability of the estimates of transcriptional parameters from mRNA distributions
is questionable because the noise in mature mRNA (and consequently the shape of the mRNA distri-
bution) is affected by a wide variety of factors. Recent extensions of the telegraph model have care-
fully investigated how mRNA fluctuations are influenced by the number of promoter states [14,15],
polymerase dynamics [16], cell-to-cell variability in the rate parameter values [17,18], replication and
binomial partitioning due to cell division [19], nuclear export [20] and cell cycle duration variabil-
ity [21]. One way to avoid noise from various post-transcriptional sources is to measure distribu-
tions of nascent mRNA rather than mature mRNA, and then fit these to the distributions predicted
by an appropriate mathematical model. A nascent mRNA [22,23] is an mRNA that is being actively
transcribed, i.e. it is still tethered to an RNA polymerase II (Pol II) moving along a gene during tran-
scriptional elongation. Fluctuations in nascent mRNA numbers thus directly reflect the process of
transcription. Because nascent mRNA removal is not first-order, an extension of the telegraph model
has been developed (the delay telegraph model) [24].

However, nascent mRNA data still suffers from other sources of noise due to cell-to-cell variabil-
ity. For example in an asynchronous population of dividing cells, cells can have either one or two
gene copies. In the absence of a molecular mechanism that compensates for the increase in gene
copy number upon replication, cells with two gene copies which cannot be spatially resolved will
have a different distribution of nascent mRNA numbers (one with higher mean) than cells with one
gene copy. The importance of the cell cycle is illustrated by the finding [25] that noisy transcription
from the synthetic TetO promoter in S. cerevisiae is dominated by its dependence on the cell cycle.
The estimation of transcriptional parameters from nascent mRNA data for pre- and post-replication
phases of the cell cycle has, to the best of our knowledge, only been reported in [26].

Interestingly, all of the studies that estimate transcriptional parameters from nascent mRNA
data [26-30] do not compare them with transcriptional parameters estimated from cellular (mature)
mRNA data measured in the same experiment. Similarly, a quantitative comparison between infer-
ence from cell-cycle specific data and data which contains information from all cell cycle phases is
lacking. Likely, this is because it is considered evident that quantifying fluctuations earlier in the
gene expression process and adjusted for the cell-cycle will improve estimates. However, nascent
mRNA distributions are technically more challenging to acquire than mature mRNA distributions;
and inference from nascent mRNA distributions is substantially more complex [24]. Thus, it still
needs to be shown that acquiring nascent mRNA data is a necessity from a parameter inference
point of view, i.e. that it leads to significantly different and more robust estimates than using mature
mRNA data. We also note that current studies report parameter inference from organisms where
it is possible to label introns to identify mRNA located at the transcription site. This is not possi-
ble in many yeast genes and other microorganisms, and in these cases it is unclear how to correct
parameter estimates for uncertainty in the transcription site location.

In this paper, we sought to understand the precise impact of post-transcriptional noise and cell-
to-cell variability on the accuracy of transcriptional parameters inferred from mature mRNA data.
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The fitting algorithms (for mature and nascent mRNA data) were first tested on simulated data,
where limitations of the algorithms were uncovered in accurately estimating the transcriptional pa-
rameters in certain regions of parameter space. The algorithms were then applied to four indepen-
dent experimental data sets, each measuring GALI0 mature and nascent mRNA data from smFISH in
galactose-induced budding yeast, conditional on the stage of the cell cycle (G1 or G2) for thousands
of cells. Comparison of the transcriptional parameter estimates allowed us to separate the influence
of ignoring cell cycle variability from that of post-transcriptional noise (mature vs nascent mRNA
data). We found that only fitting of nascent cell-cycle data, corrected for measurement noise (due
to uncertainty in the transcription site location), provided good agreement with measurements from
live-cell data. Cell-cycle specific analysis also revealed that upon transition from G1 to G2, yeast
cells show dosage compensation by reducing burst frequency, similar to mammalian cells [31]. Our
systematic comparison highlights the challenges of obtaining kinetic information from static data,
and provides insight into potential biases when inferring transcriptional parameters from smFISH
distributions.

2 Results

2.1 Inference from mature mRNA data vs inference from nascent mRNA data: testing
inference accuracy using synthetic data

To understand the accuracy of the inference algorithms from nascent and mature mRNA data,
in various regions of parameter space, (i) we generated synthetic data using stochastic simulations
with certain known values of the parameters; (ii) applied the inference algorithms to estimate the
parameters from the synthetic data; (iii) compared the true and inferred kinetic parameter values.

The generation of synthetic mature mRNA data (mature mRNA measurements in each of 10*
cells) using stochastic simulations of the telegraph model (Fig. 1a) is described in Methods Sections
4.1.1 and 4.1.2. The inference algorithm is described in detail in Methods Section 4.1.3. It is based on
a maximization of the likelihood of observing the single cell mature mRNA numbers measured in a
population of cells. The likelihood of observing a certain number of mature mRNA numbers from a
given cell is given by evaluating the telegraph model’s steady-state mature mRNA count probability
distribution.

For nascent RNA data, we used stochastic simulations of the delay telegraph model (Fig. 1b) to
generate the position of bound Pol II molecules from which we constructed the synthetic smFISH
signal in each of 10* cells (Methods Section 4.2.2). An inference algorithm estimates the parameters,
based on a maximization of the likelihood of observing the single cell total fluorescence intensity
measured in a population of cells (Methods Section 4.2.3). Note that the likelihood of observing a
certain fluorescence signal intensity from a cell is given by extension of the delay telegraph model
(but not directly by the delay telegraph model itself) to account for the smFISH probe positions.

This extension takes into account that the experimental fluorescence data used in this manuscript
was acquired from smFISH of PP7-GAL10 in budding yeast, where probes were hybridized to the
PP7 sequences. Because the PP7 sequences are positioned at the 5" of the GAL10 gene, the fluores-
cence intensity of a single mRNA on the DNA locus resembles a trapezoidal pulse (see Fig. 1c for an
illustration). As the Pol I molecule travels through the 14 repeats of the PP7 loops, the fluorescence
intensity increases as the fluorescent probes binds to the nascent mRNA (this is the linear part of the
trapezoidal pulse). However, once all 14 loops on the nascent mRNA are bound by the fluorescent
probes, the intensity of a single mRNA reaches maximal intensity and the plot plateaus as the RNA
elongates through the GAL10 gene body before termination and release. The total fluorescent signal
density function is hence given by

p(s;0) = ki p(s|k)P(k;0), (2.1)
-0
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where p(s|k) is the density function of the signal s given there are k bound Pol II molecules and
P(k; 0) is the steady-state solution of the delay telegraph model giving the probability of observing k
bound Pol II molecules for the parameter set . In Methods Section 4.2.1 we show how p(s|k) can be
approximately calculated for the trapezoidal pulse. Hence Eq. (2.1) represents the extension of the
delay telegraph model to predict the smFISH fluorescent signal of the transcription site.

Note that both of these inference algorithms were used to infer the promoter switching and initia-
tion rate parameters. The degradation rate and the elongation time were not estimated but assumed
to be known. The inference and synthetic data generation procedures are summarised and illustrated
in Fig. 1d.
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Figure 1: a. A schematic illustration of the telegraph model. b. A schematic of the delay telegraph model. The double
horizontal line for nascent mRNA removal indicates this is a delayed reaction. c. Illustration showing promoter switching
between two states, Pol II binding to the promoter in the ON state and subsequently undergoing productive elongation.
Note that the length of the nascent mRNA tail increases until Pol II terminates at the end of the gene. As Pol II travels
through the 14 repeats of the PP7 loops, the intensity of the mRNA increases due to fluorescent probe binding to the
mRNA; intensity saturates as Pol II enters the GALI0 gene body. d. Illustration of the algorithms to generate synthetic
data and to perform inference from mature and nascent mRNA data. The green boxes are only applicable for the inference
of the fluorescence signal intensity of nascent mRNAs; note that in nascent mRNA inference, the "RNA number” in the
flow chart should be interpreted as the number of bound Pol Il molecules on the gene. A large iteration step Nmax (> 10%)
is chosen as the termination condition for the optimizer.

The accuracy of inference was first calculated as the mean of the relative error in the estimated
parameters g, 0on, and p (for its definition see Methods, Eq. (4.5)); note that this error measures
deviations from the known ground truth values. Fig. 2a shows, by means of a 3D scatter plot,
the ratio of the mean relative error from nascent mRNA data (using delay telegraph model) and
the mean relative error from mature mRNA data (using the telegraph model) for 789 independent
parameter sets sampled on a grid (for each of these sets, we simulated 10* cells). The overall bluish
hue of the plot suggested that the mean relative error from nascent mRNA data was typically less
than the error from mature mRNA data. This was confirmed in Fig. 2b where the same data was
plotted but now as a function of the fraction of ON time (defined as fon = Ton/ (Toft + Ton)). Out of
789 parameter sets, for 483 of them (=~ 61%) the inference accuracy was higher when using nascent
mRNA data.
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Thus far we have implicitly assumed that fluctuations in both nascent and mature mRNA are
due to transcriptional bursting. However, it is clear that mature mRNA data exhibit a higher degree
of noise due to post-transcriptional processing. For example, it has been shown that transcriptional
noise is typically amplified during mRNA nuclear export [32]. In addition, cell-to-cell variation in
the number of nuclear pore complexes has recently been identified as the source of heterogeneity
in nuclear export rates within isogenic yeast populations [33]. To take into account these additional
noise sources, which we call external noise, we added noise to the initiation rate p in the telegraph
model since this rate implicitly models all processes between the synthesis of the transcript and
the appearance of mature mRNA in the cytoplasm. Specifically, for each of the 789 parameter sets
previously used, we changed p to p’ where the latter is a log-normal distributed random variable
such that its mean is p and its standard deviation is equal to 0.05 of the mean (5% external noise).
Note that this implies that at the time of measurement, each cell in the population had a different
value of the initiation rate. Simulations with this perturbed set of parameters led to a synthetic
mature mRNA data set from which we re-inferred parameters using the telegraph model. In Fig.
2c we show the ratio of mean relative error from nascent mRNA data and the mean relative error
from perturbed mature mRNA data as a function of the fraction of ON time, fon. The percentage of
parameters where nascent mRNA is more accurate is slightly increased compared to the data without
noise (64% versus 61% of the parameters) (compare Fig. 2c and Fig. 2b). However, the addition of
even more noise (10% external noise added to the initiation rate) increases the inference accuracy for
91% of the parameter sets when the nascent mRNA data is used (SI Section 1.1 and SI Fig. 1).
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Figure 2: Accuracy of the inferred kinetic parameters from synthetic mature and nascent mRNA data using the telegraph
and delay telegraph model, respectively. a. 3D scatter plot showing the ratio of the mean relative error from nascent
mRNA data (using delay telegraph model MRE,j,y) and the mean relative error from mature mRNA data (using the
telegraph model MRE,) for 789 independent parameter sets sampled on a grid. Red datapoints indicate parameter sets
with lower relative errors for mature data compared to nascent data, blue datapoints indicate parameter sets with lower
relative error for nascent data compared to mature data b. Same data as (a) but shown as a function of the fraction of ON
time, fon. For ~ 61% of the parameters, the inference accuracy is higher when using nascent mRNA data. c¢. Sampling
from the same parameter space, we then add log-normal distributed noise (size 5%) to the initiation rate p (see text for
details) to mimic external noise due to post-transcriptional processing that is only present in mature mRNA. Log; of the
ratio of the median relative error (MRE) using perturbed mature mRNA data against Log;; MRE using nascent mRNA
data is shown as a function of the true fraction of ON time, fon. For ~ 64% of the parameters, the inference accuracy is
higher when using nascent mRNA data. d. The median relative error of each transcriptional parameter as a function of
the fraction of ON time, using synthetic nascent mRNA, synthetic mature mRNA data and synthetic mature mRNA with
external noise. Inference from nascent data is generally more accurate than using mature mRNA data.


https://doi.org/10.1101/2021.11.09.467882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467882; this version posted August 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

To obtain more insight into the accuracy of the individual parameters, we next plotted the median
relative error of transcriptional parameters of, 0on, p, burst size and the inferred fraction of ON time,
as a function of the true fraction of ON time (Fig. 2d). We compared the results using synthetic
nascent mRNA, synthetic mature mRNA data and synthetic mature mRNA with 5% external noise.
The median of the relative error for each transcriptional parameter (as given by the second equation
of Eq. 4.5) was obtained for the subset of the 789 parameter sets for which the true fraction of
ON time foy falls into the interval [x — 0.05, x + 0.05] where x = 0.1,0.2, ...,0.9. From the plots, the
following can be deduced: (i) the errors in o,y (the burst frequency), oo¢ and the burst size p/ oo tend
to increase with fon while the rest of the parameters (o and the estimated value of fon) decrease;
(ii) for small fon;, the best estimated parameters are the burst frequency and size while for large fon;,
it was p and the estimated value of fon. The worst estimated parameter was 0., independent of
the value of fon; (iii) the addition of external noise to mature mRNA data had a small impact on
inference for small fon; in contrast, for large fon the noise appreciably increased the relative error in
Ooff and to a lesser extent the error in the other parameters too.

Additionally, in the SI we show that (i) independent of the accuracy of parameter estimation, the
best fit distributions accurately matched the ground truth distributions (SI Section 1.2 and SI Fig. 2);
(ii) the parameters ordered by relative error were in agreement with the parameters ordered by sam-
ple variability (SI Section 1.3 and SI Table 1) and by profile likelihood error (SI Section 1.4, SI Tables
2 and 3). Since from experimental data, only the sample variability and the profile likelihood error
are available, it follows that the results of our synthetic data study in Fig. 2 based on relative error
from the ground truth have wide practical applicability; (iii) stochastic perturbation of the mature
or nascent mRNA data (due to errors in the measurement of the number of spots and the fluores-
cent intensity) had little effect on the inference quality, unless the gene spent a large proportion of
time in the OFF state (SI Sections 1.5 and 1.6, SI Tables 4 and 5); (iv) if one utilized the conventional
telegraph model to fit the nascent data generated by the delay telegraph model, it was possible to
obtain a distribution fitting as good as the delay telegraph model but with low-fidelity parameter
estimation (SI Section 2, SI Fig. 3 and SI Table 6). Analytically, the telegraph model is only an accu-
rate approximation of the delay telegraph model when the promoter switching timescales are much
longer than the time spent by Pol II on a gene or the off switching rates are very small such that gene
expression is nearly constitutive.

In summary, by means of synthetic experiments, we have clarified how the accuracy of the pa-
rameter inference strongly depends on the type of data (nascent or mature mRNA) and the fraction
of time spent in the ON state (which determines the mode of gene expression).

2.2 Applications to experimental yeast mRNA data

Now that we have introduced the inference algorithms and tested them thoroughly using syn-
thetic data, we applied the algorithms to experimental data (see Method Section 4.3 for details of
the data acquisition). Note that in what follows, delay telegraph model refers to the extended delay
telegraph model that accounts for the smFISH probe positions that was used to predict the smFISH
fluorescent signal of the transcription site.

2.21 Inference from mature mRNA data: experimental artifacts

We have four independent datasets from which we determined mRNA count and nascent RNA
distributions. Fig. 3a shows an example cell with mature single RNAs in the cytoplasm, and a bright
nuclear spot representing the site of nascent transcription. Spots and cell outlines were identified
using automated pipelines. Importantly, to obtain an accurate estimation of transcriptional parame-
ters, the experimental input distributions of mRNA count and nascent RNAs require high accuracy.
We therefore first determined how technical artifacts in the analysis affects the inference estimates.

First, if the number of mRNA transcripts per cell is high, accurate determination of the number
of transcripts may be challenging, as transcripts may overlap. To determine if this occurred in our
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datasets, we analyzed the distributions of intensities of the cytoplasmic spots, which revealed uni-
modal distributions where ~ 90 percent of the detected spots fell in the range 0.5x median — 1.5x
median (Fig. 4a). We therefore concluded that overlapping spots are not a large confounder in our
data, likely because cytoplasmic PP7-GAL10 RNAs have a high turnover from the addition of the
PP7 loops. We note that such high turnover should aid transcriptional parameter estimates, as it
closely reflects transcriptional activity.

A second possible source of error is cell segmentation. To test how cell segmentation errors con-
tribute to the mature mRNA distribution and the transcriptional bursting estimates, we compared
two independent segmentation tools, where segmentation 1 often resulted in missed spots (Fig. 3b),
resulting in an underestimation of the mean mRNA count and of the variance (compare Fig. 3b,c).
We inferred the transcriptional parameters using the algorithm described in Methods Section 4.1.3.
In the absence of an experimental measurement of the degradation rate, we could only estimate the
3 transcriptional parameters normalised by d. The best fits of dataset 1 are shown in (Fig. 3b,c) and
the transcriptional parameters (for all four datasets) are summarized in (Fig. 3e). Note that the es-
timated parameters for all four datasets, using both segmentations, are shown in SI Table 7 and the
associated best fit distributions in SI Figure 4a. Notably the segmentation algorithms led to similar
estimates for the burst frequency but considerably different estimates for the rest of the parame-
ters. In particular segmentation 1 suggested that burst expression is infrequent (~20% of the time)
whereas segmentation 2 was consistent with burst expression occurring half of the time. Given that
accurate cell segmentation remains challenging, this analysis illustrates that parameter estimation
from mature mRNA counts may be affected by technical errors. For the remainder of the mature
mRNA analysis, we have used only segmentation 2 data.

Lastly, it may be challenging to distinguish the nascent transcription site from a mature RNA,
especially if few nascent RNAs are being produced. Either one can decide to include all cellular spots
in the total mRNA count, including the transcription site, with the result that the number of mature
transcripts is overestimated with one RNA for cells which show a transcription site. Or conversely,
one can decide to exclude the transcription site by subtracting one spot from each cell, with the
result that the number of mature mRNAs may be underestimated by one RNA for cells that are
transcriptionally silent. To understand how this choice affects the accuracy of parameter inference,
we compared both options in (Fig. 3c,d,e), where seg2 included all spots, and seg2-TS excluded
transcription sites (by subtracting 1 from each cell). The estimated parameters for all four datasets
are shown in SI Table 7 and the associated best fit distributions in SI Figure 4a. Although the mean
was lower when transcription sites were excluded, all the parameters except the burst frequency oo
were within the error, indicating that the choice of whether or not to include the transcription site in
the mature mRNA count had a small influence on parameter estimation. For the remainder of the
analysis, we included all spots, and counted the transcription site as one RNA.

2.2.2 Inference from mature mRNA data: merged versus cell-cycle specific

The above analysis was performed using the merged data from all cells, irrespective of their
position in the cell cycle. The inferred parameters of all 4 datasets are shown in Fig. 3g (grey). To
understand the effect of the cell cycle on these parameter estimates, we compared this inference with
cell-cycle specific data. We used the integrated nuclear DAPI intensity as a measure for DNA content
to classify cells into G1 or G2 cells (Fig. 3f (left)) to obtain separate mature mRNA distributions for
G1 and G2 cells.

To infer the transcriptional parameters from mature mRNA data of cells in G1, the inference
protocol remained the same. However for cells in the G2 stage, this protocol needed to be altered
since G2 cells have two gene copies, whereas the solution of the telegraph model assumes one gene
copy. Assuming the transcriptional activities of the two gene copies are independent, the distribution
of the total molecule number is the convolution of the molecule number (obtained from the telegraph
model) with itself for mature mRNA data. This convolved distribution was used in steps (ii) and (iii)
of the inference algorithm in Methods Section 4.1.3. A difference between our method of estimating
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parameters in G2 from that in the literature [26] is that we do not assume that the burst frequency
is the only parameter that changes upon replication, and we estimated all transcription parameters
simultaneously.

Note that the independence of gene copy transcription has been verified for genes in some eu-
karyotic cells [26] where the two copies can be easily resolved. For yeast data, as we are analyzing
in this paper, it is generally not possible to resolve the two copies of the allele in G2 because they are
within the diffraction limit. However, in the absence of experimental evidence, the independence
assumption is the simplest reasonable assumption that we could make (see later for a relaxation of
this assumption).

For both G1 and G2 cells, we performed inference for cell-cycle specific mature mRNA data,
the results of which are shown in Fig. 3e (right) and Fig. 3f (centre and right) — see SI Table 8 for
the confidence intervals of the estimates calculated using profile likelihood. As expected, the mean
number of mRNAs in G2 cells was larger than that in G1 cells. For both merged and cell-cycle
specific data, the parameters ordered by increasing variability of the estimates from independent
samples (the standard deviation divided by the mean) were: p, fon, 0on, burst size and copg, and
the same order was predicted by the relative error (from ground truth values) from our synthetic
experiments (compare with fon = 0.50 and fon = 0.80 in the middle and right panels of Fig. 2d)
and by sample variability (SI Section 1.3). In SI Section 3.3 and SI Table 9 we show that the relaxation
of the assumption of independence between the allele copies in G2 (by instead assuming perfect state
correlation of the two alleles) had practically no influence on the inference of the two best estimated

parameters (p, fon).

A comparison of the two types of data predicted different behaviour (Fig. 3g bottom): merged
data indicated behaviour consistent with the gene being ON half of the time and small burst sizes,
while cell-cycle specific data implied the gene is ON ~80% of the time with large burst sizes. We
note that the burst sizes have considerable sample variability, exemplifying burst size estimates of
transcriptional parameters from mature mRNA distributions have to be treated with caution. Nev-
ertheless, in line with this high fraction ON and large burst size, which start to approach constitutive
expression, the variation introduced by the transcription kinetics is relatively modest with Fano fac-
tors not far from one: 2.43 &+ 0.21 for merged data and 1.75 & 0.45 for cell-cycle data (the slightly
higher value for merged data likely was due to heterogeneity stemming from varying gene copy
numbers per cell).

Comparing the mean rates between the G1 and G2 phases, we found that oy, 0on, p decreased
while fon and the burst size increased upon replication. However, taking into account the variability
in estimates across the four datasets, the only two parameters which were well-separated between
the two phases were 0,n and p. These two parameters decreased by 65% and 21%, respectively, which
suggests that upon replication, there are mechanisms at play which reduce the expression of each
copy to partially compensate for the doubling of the gene copy number (gene dosage compensation)
[26].

In conclusion, what is particularly surprising in our analysis is the differences in the inference
results using merged and cell-cycle specific data: the former suggests the gene spends only half of
its time in the ON state while the latter implies the gene is mostly in its ON state.
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Figure 3: Inference results using four mature mRNA data sets with sample sizes of 2333, 6366, 4550 and 3163 cells, respec-
tively. a. Representative smFISH image of a yeast cell with PP7-GAL10 RNAs labeled with Cy3 and the nucleus labeled
with DAPI. b. The DAPI and Cy3 signals were used to determine the nuclear and cellular mask, respectively. Detected
and fitted spots are indicated in green. Mature RNA count distribution (pink) for segmentation method 1 with a best fit
obtained from the telegraph model (gray curve). c-d. The DAPI and Cy3 signals were used to determine the nuclear and
cellular mask using a second independent segmentation tool (segmentation 2). Mature RNA count distribution (gray and
cyan) with/without counting the transcription site (TS) for segmentation method 2 with a best fit obtained from the tele-
graph model (gray curves). e. Bar graphs of inferred transcriptional parameters (merged mature RNA data) from fitting
the distributions of the two segmentation methods (”segl” and “seg2”) as well as the distribution of mature RNAs only
(”seg2 -TS” which indicates the exclusion of one spot in each cell that represents the transcription site). The burst size was
computed as p/0yg and the fraction of ON time as 0on / (0on + 0ogf)- Error bars indicate standard deviation computed over
the four datasets. f. Distribution of the integrated DAPI intensity for each cell. Cyan line represents a Gaussian bimodal
fit with highlighted regions indicating the intensity-based classification of G1 and G2 cells. Distributions of the mature
RNA count for all cells (merged) and cell-cycle classified cells (G1 cells and G2 cells). g. Tables and bar graphs of inferred
parameters for merged and cell-cycle specific data. Note thaj the transcriptional parameters oon, 0o, p are normalised by
the degradation rate and hence dimensionless. For the cell-cycle specific data, parameters were inferred per gene copy.
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2.3 Inference from nascent mRNA data: cell cycle effects, experimental artifacts and
comparison with mature mRNA inference

2.3.1 Cell-cycle specific versus merged data

To determine the number of nascent transcripts at the transcription site, we selected the brightest
spot from each nucleus and normalized its intensity to the median intensity of the cytoplasmic spots.
As the distribution of intensities of the cytoplasmic mRNAs followed a narrow unimodal distribu-
tion, its median likely represents the intensity of a single RNA (orange distribution in the central
panel of Fig. 4a). The inference of transcriptional parameters using the merged data was done using
the algorithm described in Methods Section 4.2.3.

Similar to above, to account for two gene copies in G2 cells, we assumed that the transcriptional
activities of the two gene copies are independent. The distribution of the total fluorescent signal
from both gene copies was the convolution of the signal distribution (obtained from the extended
delay telegraph model, i.e. Eq. (2.1)) with itself. This convolved distribution was then used in steps
(ii) and (iii) of the inference algorithm.

The inference of transcriptional parameters from nascent RNA data was done using a fixed
elongation time, which was measured previously at a related galactose-responsive gene (GAL3) at
65bp/s [6]. Since the total transcript length is 3062bp (see Fig 1c), the elongation time (T in our
model) is ~ 47.1s ~ 0.785 min. The fixed elongation rate enabled us to infer the absolute values of
the three transcriptional parameters oy, 0on and p.

Best fits of the extended delay telegraph model to the distribution of signal intensity of nascent
mRNAs at the transcription site are shown in Fig. 4a, b for dataset 1; for the other datasets see SI
Fig 5. The corresponding estimates of the transcriptional parameters are shown in SI Table 10 and
also illustrated by bar charts in Fig. 4c. The confidence intervals of the transcriptional parameters
(computed using the profile likelihood method) are shown in SI Table 11.

Comparing this estimation with that from mature mRNA, we observed that in both cases fon ~
0.5 for merged data and in the range 0.7 — 0.8 for cell-cycle specific data. Also in both cases, the Fano
factors of merged data were larger than those of cell-cycle specific data. Hence, we are confident that
not accounting for the cell cycle phase leads to an over-estimation of the time spent in the OFF state
and of the Fano factor. In addition, comparing the burst sizes in Fig 3g and SI Table 10, we found
that not taking into account post-transcriptional noise (by using mature mRNA data) led to an lower
estimation of the burst size (2.6 fold, 2.6 fold and 1.1 fold lower for inference from merged, G1 and
G2 data, respectively). We note that it would be useful to directly compare the absolute estimates of
the other transcriptional parameters from mature and nascent mRNA data. However, this was not
possible because the telegraph model only estimates the switching rates and the initiation rate scaled
by the degradation rate, and the latter is unknown. On the other hand, the estimates from nascent
data were rates multiplied by the average elongation time, which is known and hence the absolute
rates can be estimated from nascent mRNA data only. The only quantities that could be directly
compared were the burst size and the fraction of ON time, since these are both non-dimensional.

Comparing the variability of the parameter estimates, we found that p and fon were the param-
eters with the smallest variability across samples for the nascent data, as for inference from mature
data. However, the inferred parameter variability across samples was on average about 2.5-fold
lower for nascent data compared to mature mRNA data (this was obtained by computing the stan-
dard deviation divided by the mean for each parameter and then averaging over all parameters
and over merged, G1 and G2 data). Likely this is because nascent data does not suffer from post-
transcriptional noise. Indeed, synthetic experiments suggested that the errors in parameter inference
using nascent data are often less than those in mature data when fon ~ 0.80 (Fig. 2d). In summary,
we have more confidence in the parameter estimates from nascent data, in particular those from
cell-cycle separated data.

To further investigate the hypothesis that estimates from cell-cycle specific data are more accurate
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than merged data, we compared the estimates from merged and cell-cycle specific data to previous
live-cell transcription measurements of the same gene [6]. Because live-cell traces and simulated
traces with the estimated transcriptional parameters are difficult to compare directly, we instead
compared their normalized autocorrelation functions (ACFs). Specifically we fed the parameter es-
timates to the SSA to generate synthetic live-cell data and then calculated the corresponding ACF
(SI Section 5). We found that the estimates from cell-cycle specific data produced ACFs that match
the live-cell data closer than that from the merged data (Fig. 4d). This was also clear from the sum
of squared residuals which for each dataset was smaller for the ACF computed using the cell-cycle
specific estimates rather than those from merged data (Fig. 4e).

Using nascent data, we also reinvestigated the hypothesis that the gene exhibits dosage compen-
sation. Comparing the mean rates between the G1 and G2 phases, we found that o, 0on, p, fon de-
creased while the burst size increased upon replication. However, taking into account the variability
in estimates across the four datasets, the only two parameters which were cleanly separated between
the two phases were 0o, and fon. These two decreased by 41% and 5% respectively. These results
had some similarity to those deduced from cell-cycle separated mature mRNA data (the decrease of
Uon) but they also displayed differences. Namely, from mature mRNA data it was predicted that p
decreased upon replication while from nascent data we predicted that p did not change and it was
rather fon that decreased by a small degree. The decrease of the burst frequency o, after replication
has also been reported for some genes in mammalian cells [26,31], indicating that this could be a gen-
eral mechanism for gene dosage compensation. Our results are consistent with a population-based
ChIP-seq study [34] that showed DNA dosage compensation after replication in budding yeast. We
note that our single-cell analysis only revealed partial dosage compensation, where the mean signal
intensity of nascent mRNAs in G2 is not the same as in G1, but 1.7-fold higher in G2 than in G1 (Fig.
4¢).
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Figure 4: Inference from the normalized nascent mRNA distributions for merged and cell-cycle specific data a. Nor-
malized nascent mRNA distributions of merged cell-cycle data were obtained by normalizing the signal intensity of the
transcription site (defined as the brightest spot in the cell) by the median signal intensity of the cytoplasmic spots (shown
in orange and zoom-in depicted in the inset). In all 4 datasets, approximately 90% of the detected cytoplasmic spots fell in
the range 0.5x median — 1.5x median (grey bargraph) Black line in normalized distribution on the right represents best
fit with delay telegraph model. b. Nascent RNA distributions for cell-cycle specific data. Black line represents best fit
with delay telegraph model. c. Bar graphs comparing the transcriptional parameters, burst size, fraction of ON time and
Fano factor for cell-cycle specific and merged data. Error bars indicate standard deviation. d. Normalized ACF plots of
cell-cycle specific and merged data. The ACF plots are generated by stochastic simulations using estimated parameters
from merged and cell-cycle specific nascent mRNA data for each of the four data sets; these were compared with the ACF
measured directly using live-cell data in [6] (green line). e. The sum of squared ACF residuals of merged and cell-cycle
specific data from each dataset (this is the sum of squared deviations between the measured and estimated normalised
ACF where the sum was calculated over all time points).

2.3.2 Correcting for experimental artefacts

Although inference on cell cycle separated data outperformed inference on merged data, we
noticed that the corresponding best fit distributions did not match well to the experimental signal
distributions in the lower bins (Fig. 4b and SI Fig 5). In all cases, the experimental distributions
showed high intensities in bins 1, 2, and 3, which was likely an artifact of the experimental data
acquisition system. Since we defined the transcription site as the brightest spot, this implies that in
the absence of a transcription site, a mature transcript can be misclassified as a nascent transcript.
We therefore investigated two methods to correct for this, the “rejection” method and the “fusion”
method.

The rejection method removed all data associated with the first k bins of the experimentally ob-
tained histogram of fluorescent intensities (Fig. 5a shows the fits for dataset 1; for the other datasets
see SI Fig 6). We found that the parameter estimates varied strongly when the number of bins from
which data was rejected (k) was changed (Fig. 5b; see also SI Table 12). Although the distributions
fit well to the experimental histograms (Fig. 5a), comparison with the live-cell normalized ACF in-
dicated that the estimates actually became worse than non-curated estimates, with a higher sum of
squared residuals (Fig. 5c,d). The rejection method therefore does not produce reliable estimates.
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Figure 5: Inference results using the rejection method. a. Nascent RNA distributions for cell-cycle specific and merged
data. Gray line represents best fit with delay telegraph model using the rejection method. (only the distributions for
dataset #1 k = 4 are shown). b. Estimated transcriptional parameters, burst size, fraction of ON time and Fano factor
(mean values and standard deviation error bars) by rejecting the first k bins with k = 1,2, 3,4. The estimated parameters
are listed in SI Table 12. ¢. Normalized autocorrelation function (ACF) predicted by stochastic simulations using the
estimated parameters (for k = 4) for each of the four data sets versus that measured directly using live-cell data (green
line). d. The sum of squared residuals of the ACF of cell-cycle specific data from each dataset without/with rejection when
k=4

Next we considered another data curation method which we call the fusion method. This works
by setting to zero all fluorescent intensities in a cell population which were below a certain threshold.
In other words, we fused or combined the first k bins of the experimentally obtained histogram of
fluorescent intensities, thereby taking into account that the true intensity of bin 0 was artificially
distributed over some of the first bins.

Fig. 6a and SI Table 13 show that the fusion method led to estimates that varied little with k which
enhanced our degree of confidence in them (note that k = 1 is the same as the uncurated data). The
peak at the zero bin for both G1 and G2 was better captured using the fusion method than using
non-curated data (compare Fig. 4b and SI Fig. 5, with Fig. 6b). Comparison to the autocorrelation
function of the live-cell data shows that correction with the fusion method also led to improved
transcriptional estimates, as indicated by a reduction in the sum of the squared residuals for all 4
data sets (Fig. 6¢).
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Figure 6: Inference results using the fusion method. a. Estimated burst size, fraction of ON and Fano factor (mean values
and standard deviation error bars) by combining the first k bins with k = 1,2, 3,4. b. Corresponding fitted distributions for
G1 (top row) and G2 (bottom row) using delay telegraph model with the fusion method (only the distributions for k = 4
are shown). Magenta bar represents the combined bin 0-3 when k = 4. ¢. Normalised autocorrelation function (ACF)
predicted by stochastic simulations using the estimated parameters (for k = 4) for each of the four data sets versus that
measured directly using live-cell data (green line). The sum of squared residuals of the ACF plots using cell-cycle specific
data without/with fusion method when k = 4. d. Estimated parameters of cell cycle specified data and merged data of
nascent mRNAs with fusion method with k = 4 (fusing bins 0-3). These correspond to the fitted distributions in b. The
elongation time 7 is fixed to 0.785 mins. See the inferred parameters in SI Table 13 for all other values of k.

Overall, we conclude that for inferring parameters from the smFISH data, the optimal method
is to use nascent cell-cycle specific data, corrected by the fusion method. The optimally inferred pa-
rameters for the four data sets in our study are those given in Fig 6d. The profile likelihood estimates
of the 95% confidence intervals of these parameters are shown in SI Table 14. Note that in line with
our synthetic data study in Fig. 2, the parameters suffering from the least sample variability were
fon and p. The rest of the parameters (0o, 0on and burst size) suffered more sample variability be-
cause the fraction of ON time was high; however since their standard deviation divided by the mean
(computed over the four datasets) was not high (in the range of 10 — 20%), they still can be regarded
as useful estimates. Note also that the previous prediction that gene dosage compensation involves
regulation of the burst frequency did not change upon correction of the nascent data using the fusion
method. All these results were deduced assuming that the two copies in G2 are independent from
each other. Inferring rates under the opposite assumption of perfectly synchronized copies (SI Table
15) gave very similar estimates for p and fon (to be expected since according to the synthetic data
study, these two are the most robustly estimated parameters for genes spending most of their time
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in the active state) but different estimates for the rest of the parameters. While such perfect synchro-
nization of alleles is unlikely, some degree of synchronization is plausible and further improvement
of the transcriptional parameters in the G2 phase will require its precise experimental quantification.

3 Discussion

In this study, we compared the reliability of transcriptional parameter inference from mature and
nascent mRNA distributions, with and without taking into account the cell cycle phase. Although
these distributions come from the same experiment, we found that the different fits produced very
different parameter estimates, ranging from small bursts to very large bursts. Comparison to live-
cell data revealed that the optimal inference method is to use nascent mRNA data that is separated
by cell cycle.

Our findings illustrate the risk of inferring transcriptional parameters from fitting of mRNA dis-
tributions. First of all, as we have shown, these fits are sensitive to the segmentation method which
can lead to large errors in the estimates. Secondly, the most common method of parameter inference
in the literature is fitting of mature mRNA distributions that are not separated by cell cycle [2,10,22].
Obtaining such distributions is straightforward using methods such as smFISH, where one can di-
rectly count the number of mRNAs per cell. Additionally, with the advance of single-cell mRNA
sequencing technologies, it is possible to obtain mRNA distributions for many genes simultaneously
and it is tempting to use these to estimate bursting behaviour across the genome [2,13]. However,
our comparisons on the same dataset show that the values obtained from mature mRNA fits (us-
ing merged data) can be significantly different from the optimal values (using nascent cell-cycle
separated data corrected using the fusion method), with underestimation of the burst sizes of al-
most 10-fold and underestimation of the active fraction of more than 1.5-fold. These results indicate
that parameter inference from merged mature mRNA data should be treated with caution. There
were smaller differences between the burst size and the active fraction inferred from cell-cycle sep-
arated mature and nascent data (only these two can be directly compared because these are non-
dimensional); however the relative errors in the estimates (computed over the four datasets) were
more than 2-fold higher for mature data likely due to post-transcriptional noise which nascent data
is free from.

It is more common to fit mature distributions rather than nascent distributions because nascent
distributions are technically more challenging to obtain. As nascent single-cell sequencing methods
are still in the early phase [35], the only method available so far for nascent measurements is sm-
FISH [36]. In such smFISH experiments, intronic probes can be used to specifically label nascent
RNA, although there may be some effects of splicing kinetics on the distribution [37]. If introns are
not present, like for most yeast genes, one can use exonic probes instead [22]. Since exonic probes
label both nascent and mature mRNA transcript, it may be challenging to identify the nascent tran-
scription site unambiguously, especially at lower transcription levels. We show in this manuscript
that the fusion method can correct for this bias by combining bins below kK RNAs, which results in
an improvement of the parameter estimates.

Our analysis also emphasizes the importance of separately analyzing G1 and G2 cells [26]. It
is important to note that for cell-cycle-specific analysis, experimental adjustments or cell-cycle syn-
chronized cultures are not required. Although asynchronous cultures consist of a mix G1, S and G2
cells, the integrated DNA intensity of the nucleus of each cell, for example from a DAPI signal, can
be used to separate these cells by cell cycle phase in silico [26,38]. As most smFISH experiments
already include a DNA-labelled channel, adding an extra analysis step should in principle not limit
the incorporation of this step in future smFISH fitting procedures.

Even with our optimal fitting strategy, there is a residual error of the simulated ACF and the mea-
sured ACF from live-cell measurements. This difference may be the result of different experimental
biases of the two measurements. For example, live-cell measurements have a detection threshold be-
low which RNAs may not be detected. In addition, live-cell measurements include cells in S phase,
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which are not analyzed in smFISH. There could also be differences in the exact percentage of G1 and
G2 cells, or other noise sources between live-cell and smFISH experiments. Alternatively, the fit may
be imperfect because there might be parameter sets, others than the ones which our inference algo-
rithm found, which provide an accurate fit of the nascent mRNA distribution and perhaps an even
better fit to the ACF than we found. We cannot exclude this possibility because we estimated fon
to be 0.7 — 0.8 and using synthetic data we showed that the accuracy of some parameters (Ton, O
and the burst size) deteriorated as fon approached 1 (2c). Another factor which could explain the
residual error between the simulated ACF and the measured ACF is that perhaps the two-state model
may be too simplistic to cover the true promoter states in living cells and may therefore not be able to
describe the true in vivo kinetics. The promoter may switch between more than 2 states, or there may
be sources of extrinsic noise other than the cell cycle that contribute to the heterogeneity. Previous
studies have for example identified extrinsic noise on the elongation rate [30]. However, these more
complex transcription models also have more parameters, which in practice often means that very
few will be identifiable with the current set of experimental observables. To fit these models, one re-
quires temporal data on the transcription kinetics [30,39], or simultaneous measurements of various
sources of extrinsic noise, such as single cell transcription factor concentration and RNA polymerase
number measurements, cellular volume, local cell crowding, etc, which are often not available in
standard smFISH experiments [40,41]. Nevertheless, given that there is no explicit time component
in smFISH data, the closeness of the simulated ACF to the measured ACF provides confidence we
are close to the real values.

The optimal parameter set (Fig 6d) indicates long ON promoter times of 75s, during which al-
most 50 RNAs are produced in a burst. Large burst sizes (> 70) have been previously reported for
mouse embryonic stem cells [26], mouse hepatocytes [42] and human fibroblasts [2]. The large burst
size and high active fraction of 0.78 suggests that GAL10 expression is reaching its limit of maximal
expression, which may not be surprising as it is already one of the most highly expressed genes in
yeast. It is also interesting to note that the ON time of 75s is longer than the residence time of a single
transcript (47s), which means that RNA polymerases in the beginning of a burst have already left the
locus before the burst has finished.

The optimal parameter set (Fig 6d) also indicates partial gene dosage compensation. Specifically
the burst frequency per gene copy (0on) in the G2 phase is 0.66 that in the G1 phase; the other tran-
scriptional rates are not significantly different between the two cell cycle phases. The fold change
in the burst frequency per gene copy was previously estimated for the Oct4 and Nanog genes to be
0.63 and 0.71 respectively, in mouse embryonic stem cells [26]. The similarity of our estimate of the
fold change to those previously measured could be explained by the results of a recent study [43];
using a detailed model of gene expression, it was shown that in the absence of a dependence of the
initiation rate on cell volume, gene dosage compensation optimally leads to approximate mRNA
concentration homeostasis when the fold change in the burst frequency upon DNA replication is
V2/2 2 0.71.

In conclusion, obtaining kinetic information from static distributions can introduce biases. How-
ever, we show that it is possible to obtain reasonable estimates that agree with live-cell measure-
ments, if one infers parameters from nascent mRNA distributions that are accounted for cell cycle
phase.

4 Methods

4.1 Inference from mature mRNA data
4.1.1 Mathematical model

The steady-state solution of the telegraph model of gene expression [9] gives mature mRNA dis-
tributions. The reaction steps in this model are illustrated in Fig. 1a. Next we describe the generation
of synthetic mature mRNA data and the algorithm used to infer parameters from this data.
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4.1.2 Generation of synthetic mature mRNA data

We generate parameter sets on an equidistant mesh grid laid over the space:
(Cofts Oon, p) € [Uniform(0,150), Uniform(0,150), Uniform(0,250)], 4.1)

where the units are inverse minute. Furthermore we apply a constraint on the effective transcription

rate
P0on

——— < 100.
Oon 1 Ooff

p =
In each of the three dimensions of the parameter space, we take 10 points that are equidistant,

leading to a total of 1000 parameter sets which reduce to 789 after the effective transcription rate
constraint is enforced.

We additionally fix the degradation rate d = 1 min~!. Note that we choose not to vary the

degradation rate (as we did for the other three parameters) since it is not possible to infer all four
rates simultaneously — this is because the steady-state solution of the telegraph model is a function
of the non-dimensional parameter ratios p/d, 0o /d and oo, /d [10].

Once a set of parameters is chosen, we use the stochastic simulation algorithm (SSA [44]) to
simulate the telegraph model reactions in Fig. 1a and generate 10* samples of synthetic data. Note
that each sample mimicks a single cell measurement of mature mRNA.

4.1.3 Steps of the algorithm to estimate parameters from mature mRNA data

The inference procedure consists of the following steps: (i) select a set of random transcriptional
parameters; (ii) use the solution of the telegraph model to calculate the probability of observing
the number of mature mRNA measured for each cell; (iii) evaluate the likelihood function for the
observed data; (iv) iterate the procedure until the negative log-likelihood is minimized; (v) the set
of parameters that accomplishes the latter provides the best point-estimate of the parameters of the
telegraph model that describes the measured mature mRNA fluctuations.

For step (i), we restrict the search for optimal parameters in the following region of parameter
space

(Oott, Ton, 0) € [Uniform(0,250), Uniform(0,250), Uniform(0,300)] (min~1) =: @. 4.2)

The degradation rate is fixed to d = 1 min~'.

Step (ii) can be obtained either by computing the distribution from the analytical solution [9] or
by using the finite state projection (FSP) method [45]. Here, for the sake of computational efficiency,
we use the FSP method to compute the probability distribution of mature mRNA numbers.

For step (iii) we calculate the likelihood of observing the data given a chosen parameter set ¢

N, cell

£(6) = [] P(n;;6), (4.3)
i=1

where P(n js 0) is the probability distribution of mature mRNA numbers obtained from step (ii) given
a parameter set 6, n; is the total number of mature mRNA from cell j and Ny is the total number of
cells.

Steps (i) and (iv) involve an optimization problem. Specifically we use a gradient-free optimiza-
tion algorithm, namely adaptive differential evolution optimizer (ADE optimizer) using BlackBoxOptim.jl
(https:/ / github.com /robertfeldt/BlackBoxOptim.jl) within the Julia programming language to find
the optimal parameters

Neen
0* = argmin [ — ) _logP(n;;0) | . (4.4)
0e® j=1
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The minimization of the negative log-likelihood is equivalent to maximizing the likelihood. Note
the optimization algorithm is terminated when the number of iterations is larger than 10%; this num-
ber is chosen because we have found that invariably after this number of iterations, the likelihood
has converged to some maximal value. Note that the inference algorithm is particularly low cost
computationally, with the optimal parameter values estimated in at most a few minutes.

Once the best parameter set 6* is found, we calculate the mean relative error (MRE) which is
defined as

1 M
MRE = - Y Relative error (6}, fiue,i),
i=1
4.5)
107 = Ourue,i|

Relative error(6;, Oue,i) =
‘Gtrue,i |

where 07 and 0y, represent the i-th estimated and true parameters respectively, and M denotes
the number of the estimated parameters. Thus, the mean relative error reflects the deviation of the

estimated parameters from the true parameters.

4.2 Inference from nascent mRNA data
4.2.1 Mathematical model

The steady-state solution of the delay telegraph model [24] gives the distribution of the number
of bound Pol II. In SI Section 6, we present an alternative approach to derive the steady-state solution.
The reaction steps are illustrated in Fig. 1a.

The position of a Pol Il molecule on the gene determines the fluorescence intensity of the mRNA
attached toit. In particular for fluorescence data acquired from smFISH PP7-GAL10, the fluorescence
intensity of a single mRNA on the DNA locus looks like a trapezoidal pulse (see Fig. 1b for an
illustration). This presents a problem because although we can predict the distribution of the number
of bound Pol II using the delay telegraph model, we do not have any specific information on their
spatial distribution along the gene. However, since the delay telegraph model implicitly assumes
that a Pol II molecule has fixed velocity and that Pol II molecules do not interact with each other
(via volume exclusion), it is reasonable to assume that in steady-state, the bound Pol II molecules
are uniformly distributed along the gene. This hypothesis is confirmed by stochastic simulations of
the delay telegraph model where the position of a Pol II molecule is calculated as the product of the
constant Pol II velocity and the time since its production.

By the uniform distribution assumption and the measured trapezoidal fluorescence intensity pro-
file, it follows that the signal intensity of each bound Pol II has the density function g defined by

L L
g(s) = fl]l[o,l](s) + fz51(5), s e [0,1],

where L; = 862 bp (base pairs), L, = 2200bp,L = L; + L, as defined in Fig. 1b. The indicator
function 1j9;)(s) = 1if and only if s € [0,1] and 61 (s) is the Dirac function at 1. The probability
of the signal s being between 0 and 1 is due to the first part of the trapezoid function and hence is
multiplied by L; /L which is the probability of being in this region if Pol II is uniformly distributed.
Similarly, the probability of s being 1 is due to the L, part of the trapezoid and hence the probability
is Lo/ L by the uniform distribution assumption. Note that the signal s from each Pol II is at most
1 because in practice, the signal intensity from the transcription site is normalized by the median
intensity of single cytoplasmic mRNAs [22].

The total signal is the sum of the signals from each bound Pol II. Hence, the density function of
the sum is given by the convolution of the signal densities from each bound Pol II. Defining p(s|k)
as the density function of the signal given there are k bound Pol II molecules, we have that p(s|k) is
the k—th convolution power of g, i.e.

p(slk) = (gxg---+g)(s) = g™ (s), &(s) = du(s), (4.6)
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where dy(s) is the Dirac function at 0. Finally we can write the total fluorescent signal density func-
tion as

p(s:6) = Y p(sik)P(K;6), 47)
k=0

where P(k; ) is the steady-state solution of the delay telegraph model giving the probability of ob-
serving k bound Pol II molecules for the parameter set 6. Hence Eq. (4.7) represents the extension of
the delay telegraph model to predict the smFISH fluorescent signal of the transcription site.

Comparison to the algorithm in [24]. Both algorithms take into account the fact that the signal
intensity depends on the position of Pol II on the gene, albeit this is done in different ways. In
[24] a master equation is written for the joint distribution of gene state and the number of nascent
mRNA. In this case the number of nascent RNAs can have non-integer values since it represents
the experimentally measured signal from the (incomplete) nascent RNA. Solution of this master
equation proceeds by (a) a discretization of the continuous nascent mRNA signal into bins which are
much smaller than one; (b) solution using finite state projection (FSP). This approach can lead to a
large state space which incurs a large computational cost. In contrast, in our method, we use FSP
to solve for the delay telegraph model, i.e. the distribution of the discrete number of bound Pol II
from which we construct (using convolution) the approximate distribution of the continuous nascent
mRNA signal by assuming the Pol II is uniformly distributed on the gene. Since the state space of
bound Pol Il is typically not large, our method will typically be more computationally efficient than
the one described in [24].

4.2.2 Generation of synthetic nascent nRNA data

We generated synthetic smFISH signal data by using the SSA, modified to include delay to sim-
ulate the delay telegraph model [46]. Specifically, we use Algorithm 2 described in [47]. One run of
the algorithm simulates the fluctuating number of bound Pol II molecules in a single cell.

The total fluorescence intensity (mimicking smFISH) is obtained as follows. When a particular
bound Pol II is produced by a firing of the transcription reaction G — G + N, we record this pro-
duction time; since the elongation rate is assumed to be constant, given the production time we can
calculate the position of the Pol II molecule on the gene at any later time and hence using Fig. 1b we
can deduce the fluorescent signal due to this Pol II molecule.

Specifically we normalize each transcribing Pol II's position to [0,1] and map the position to its
normalized signal by

L L
st xelokh),

q(x) =
1 xe B,

where x is the normalized position on the gene. Thus at a given time, the total fluorescent signal
from the n-th cell (the n-th realization of the SSA) equals

]Il

n = E E](x]'),
j=1

where ], is the number of bound Pol II molecules in the n-th cell, and {x]-} withj =1,...,], is the
vector of all Pol II positions on the gene. The total signal from each cell is a real number but it is
discretized into an integer.

The kinetic parameters are chosen from the same region of parameter space as in (4.1), on the
same equidistant mesh grid and with the same constraint on the effective transcription rate. Unlike
the mature mRNA case, here there is no degradation rate; instead we have the elongation time,
which we fix to T = 0.5 (min). Note that fixing this time is necessary since it is not possible to infer
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the 3 transcriptional parameters rates and the elongation time simultaneously because the steady-
state solution of the delay telegraph model is a function of the non-dimensional parameter ratios
OT, OogfT and oon T.

Once a set of parameters is chosen, we use the modified SSA (as described above) to simulate the
signal intensity in each of 10* cells.

4.2.3 Steps of the algorithm to estimate parameters from nascent nRNA data

The inference procedure is essentially the same as steps (i)-(v) described in mature mRNA infer-
ence except for the following points.

In step (ii), the probability of observing a total signal of intensity i from a single cell is obtained
by integrating p(s;0) in Eq. (4.7) on an interval [i — 1,i] for i € IN which, in our numerical scheme,
means

K i
S(i;0) = ZP(k;G)/ ¢*x)dy, i=1,2,... 4.8)
k=0 i-1

Note that the integration over the interval of length 1 is to match the discretization of the synthetic
data and 6 € ©. Intuitively, one can always choose a positive integer K such that P(k) = 0 for any
k > K. The computation of the solution of the delay telegraph model P (k) can be done either using
the analytical solution (evaluated using high precision) or using the finite state projection algorithm
(FSP) [45]. In SI Fig. 8 and SI Table 16, we show that the two methods yield comparable accuracy
and CPU time.

For step (iii) we calculate the likelihood of observing the data given a chosen parameter set

N, cell

L) =IT5(q;0), (4.9)
=1

where g; is the discretized total signal intensity from cell j and N is the total number of cells. In
the optimization, we aim to find

Neent
0" = argmin | — ) logS(q;;0) | .
j=1

0c®

The whole procedure (for both mature and nascent mRNA inference) is summarized by a flow-chart
in Fig. 1c.

4.3 Experimental data acquisition and processing

A diploid yeast strain of BY4743 background with a single integration of 14xPP7 loops at the
5'UTR of GALI0 was used in this study. Yeast cultures were grown in synthetic complete media
with 2 % galactose to early mid-log (OD 0.5), fixed with 5% paraformaldehyde (PFA) for 20 min, per-
meabilized with 300 units of lyticase and hybridized with 7.5 pmol each of four PP7 probes labeled
with Cy3 (Integrated DNA Technologies) as described in Trcek et al. [48] and Lenstra et al. [36,49].
The PP7 probe sequences are: atatcgtctgctcctttcta, atatgctctgetggtttcta, gcaattaggtaccttaggat, aatgaac-
ccgggaatactge. Coverslips were mounted on microscope slides using mounting media with DAPI
(ProLong Gold, Life Technologies).

The coverslips were imaged on a Zeiss AxioObserver (Zeiss, USA) widefield microscope with a
Plan-Apochromat 40x 1.4NA oil DIC UV objective and a 1.25x optovar. For Cy3, a 562 nm longpass
dichroic (Chroma T562lpxr), 595/50 nm emission filter (Chroma ET595/50m) and 550/15 nm LED
excitation at full power (Spectra X, Lumencor) were used. For DAPI, a 425 nm longpass dichroic
(Chroma T425lpxr) and a 460/50 nm emission filter (Chroma ET460/50m) and LED excitation at
395/25 nm at 25% power (Spectra X, Lumencor) were used. The signal was detected on a Hama-
matsu ORCA-Flash4.0 V3 Digital CMOS camera (Hamamatsu Photonics, Japan). For each sample
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and each channel, we utilized the Micro-Manager software (UCSF) to acquire at least 20 fields-of-
view based on the DAPI channel. Each field-of-view consisted of 13 z-stacks (with a z-step of 0.5
um) at 25 ms exposure for DAPI and 250 ms exposure for Cy3.

A custom python pipeline was used for analysis (https:/ /github.com/Lenstralab /smFISH). Max-
imum intensity projected images were used to segment the cell and nucleus using Otsu thresholding
and watershedding (segmentation 1). In addition, we segmented cells using CellProfiler (segmen-
tation 2). The diffraction-limited Cy3 spots were detected per z-slice using band-pass filtering and
refined using iterative Gaussian mask localization procedure (Crocker and Grier [50]; Thompson et
al. [51]; Larson et al. [52,53] and Coulon et al. [54]). Cells in which no spots were detected were
excluded from further analysis since a visual inspection indicated that these cells were not properly
segmented or were improperly permeabilized.

Spots were classified as nuclear or cytoplasmic and the brightest nuclear spots were classified as
transcription sites. The intensity of the brightest nuclear spot in a cell was normalized with the me-
dian fluorescence intensity of all the cytoplasmic spots in all cells. This is due to the fact that 90% of
cytoplasmic mRNAs are isolated (Fig. 4a), thus the median of the fluorescence signal of cytoplasmic
mRNAs can be considered as the normalizing value. The distribution of the normalised intensity
of the brightest nuclear spot, calculated over the cell population, is the experimental equivalent of
the total fluorescent signal density function as given by the solution of the modified delay telegraph
model, Eq. (4.7).

The number of mature mRNA in each cell is given by counting the number of spots in the entire
cell, i.e. nuclear plus cytoplasmic. The transcription site is counted as 1 mRNA, regardless of its
intensity. We show in Fig. 3c that this has negligible influence on the estimated parameters since the
mean number of mature mRNA is much greater than 1. The distribution of the number of spots is
the experimental equivalent of the solution of the telegraph model, i.e. the marginal distribution of
mature mRNA numbers in steady-state conditions.

The integrated nuclear intensity of each cell was calculated by summing the DNA content in-
tensity (DAPI) of all the pixels within the nucleus mask. The distribution of the intensities was fit
with a bimodal Gaussian distribution. Those cells whose intensity was within a standard deviation
of the mean of the first (second) Gaussian peak was classified as G1 (G2) (see Fig. 3e left). This gave
similar results to a different cell cycle classication method using the Fried /Baisch model [55] which
was recently employed in [26]. See SI Fig. 9 for a comparison of the two methods. We note that cells
in late G2 may contain two separate transcription sites, one in the mother and one in the bud. When
the nucleus moves into the bud, buds often contain less DNA than G1 cells, and mothers contain
more DNA than G1 cells, both of which are excluded from the analysis. When the DNA content of
the mother and daughter is similar, both mother and daughter are counted separately as G1 cells.
We note that this late G2 subpopulation is very small.

We did four independent experiments with a total number of cells equal to 2510, 6411, 4592, 3181
respectively. After classification, the numbers of G1 cells are 766, 2111, 1495, 904 and the number of
G2 cells are 683, 1657, 1209, 1143, whereas the rest were classified as undetermined.

4.4 Data availability

The 4 smFISH datasets are available from https:/ /osf.io/d5nvj/. These datasets include the max-
imum intensity projected images, the spot localization results, the nuclear and cellular masks used
for merged, G1 and G2 cells and the analyzed results of the mature and nascent data. The analysis
code of the smFISH microscopy data is available at https://github.com/Lenstralab/smFISH. The
code for the the synthetic simulations and the parameter inference is available at
https:/ /github.com/palmtree2013 /RN AlnferenceTool jl.
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