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Abstract

Neuroplasticity, defined as the brain’s potential to change in response to its environment, has
been extensively studied at the cellular and molecular levels. Work in animal models suggests
that stimulation to the ventral tegmental area (VTA) enhances plasticity, and that myelination
constrains plasticity. Little is known, however, about whether proxy measures of these properties
in the human brain are associated with learning. Here, we investigated the plasticity of the
frontoparietal system by asking whether VTA resting-state functional connectivity and myelin
map values (T1w/T2w ratios) predicted learning after short-term training on the adaptive n-back
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(n = 46, ages 18-25). We found that stronger baseline connectivity between VTA and lateral
prefrontal cortex predicted greater improvements in accuracy. Lower myelin map values
predicted improvements in response times, but not accuracy. Our findings suggest that proxy
markers of neural plasticity can predict learning in humans.

Introduction

Neuroplasticity was canonically defined as the process of brain change, but it can also be
defined as the brain’s potential to change in response to new experiences, and to learn. Animal
studies at the level of cells and synapses have made substantial progress in identifying factors
that facilitate and constrain neuroplasticity as the potential to change 1. Modulatory
neurotransmitters, including dopamine, have been shown to increase plasticity 2. In a landmark
study, stimulation of the ventral tegmental area (VTA), a key source of dopamine for the cortex,
restored juvenile-like plasticity in the auditory cortex of adult animals 3. Conversely, myelination
has been shown to restrict plasticity 4,5. Over 50% of myelin in the cortex is associated with
parvalbumin-positive (PV+) inhibitory interneurons 6,7, which are cells that limit synaptic
remodeling 8. Together, these studies suggest that individual differences in dopamine system
connectivity and myelination may contribute to variance in humans’ ability to learn.

The frontoparietal system (FPS) may be a particularly useful target of research on individual
differences in plasticity in humans, as the FPS has expanded dramatically over the course of
evolution 9,10. The FPS is characterized by a dense expression of dopamine receptors and is
lightly myelinated 11–13. The FPS is also thought to be highly plastic due to its protracted
development 14,15 and high interindividual variability 16. High FPS plasticity may be essential for
its role as the “multiple demand network” 17 and its ability to flexibly adapt its function to meet
novel task demands, including working memory and reasoning 18,19.

Some work has been done to understand the process of FPS plasticity: how the FPS changes
in response to practice. Long-term reasoning and working memory practice leads to decreases
in functional activation in the FPS 20–27, and increased functional and structural connectivity
between regions of the FPS 28–32. FPS can also change over the short-term. Indeed, a few
studies have shown that 30-60 minutes of working memory practice is sufficient to cause
decreases in FPS activation 33–35. In a motor learning task, greater learning was associated with
temporal flexibility of functional modules 36 and training-related release of coordinated activity
across task-extraneous areas 37.

However, variability in the FPS’ potential to change is less understood. Investigating variability in
the FPS’ potential for change may be important for understanding why some individuals benefit
more from educational or cognitive interventions. One study showed that greater gray matter
volume in the lateral and medial prefrontal cortex predicted greater learning over five to six
weeks of practice with a cognitively complex video game 38. Across a broader set of learning
tasks, including perceptual and motor learning, greater learning over days or weeks is predicted
by greater cortical thickness in task-relevant regions 39, greater task activation during the
to-be-learned task 40–42 and during feedback on a separate task 43, and stronger functional
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connectivity within task-relevant regions 44,45. Long-term training studies, however, are not
well-suited to investigating individual differences in the brain’s potential to change. Baseline
brain measures may not strongly predict learning outcomes in long-term training studies
because variability in learning outcomes over the course of several weeks or months are more
likely to be shaped by differences in practice intensity, or by differences in lifestyle factors that
influence brain health, including sleep and stress 46,47. It may be better to instead study
variability in short-term learning. One study found that positive functional connectivity within the
FPS and in other task-positive systems predicted greater learning from 80-90 minutes of
working memory practice 48. However, these measures are difficult to link to cellular markers of
plasticity.

Here, we focused on plasticity as a potential to change rather than plasticity as a process. We
examined whether MRI-based proxy measures of FPS plasticity at baseline predicted individual
differences in learning following short-term, adaptive working memory training. We identified
FPS regions involved in working memory with an n-back task, a commonly-used localizer for
frontoparietal activation 49. As a proxy for dopamine system connectivity, we analyzed
resting-state functional connectivity between the VTA and task-active regions. Resting-state
functional connectivity is thought to reflect a prior history of coactivation between regions,
without confounding effects of task performance 50. As a proxy measure for myelin, we
examined “myelin map” values, defined as the ratio of T1-weighted (T1w) to T2-weighted (T2w)
signal intensities, in task-active regions 51,52. We tested two hypotheses: 1) stronger functional
connectivity between the VTA and FPS regions at baseline predicts greater learning following
training and 2) lower myelin map values in FPS regions at baseline predict greater learning
following training. To evaluate the specificity of the results, we also investigated VTA
connectivity and the T1w/T2w ratio in regions we did not expect to be selectively involved in the
training task: primary visual cortex and primary motor cortex. Additionally, to explore plasticity as
a process, we explored changes in FPS structure and function, and whether these brain
changes related to learning.

Methods

Ethics Statement

This study was approved by the University of Pennsylvania’s Institutional Review Board. Written
informed consent was obtained from all participants.

Participants

Participants between the ages of 18 and 25 years were recruited through the University of
Pennsylvania study recruitment system, as well as through community and university
advertisements. Inclusion criteria included fluency in English, no history of psychiatric or
neurological disorders or learning disabilities, no current or recent illegal substance use, and no
contraindications for MRI.
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In total, MRI scans were completed for 61 participants. Forty-six participants were included in
the final sample (M = 21.39 years, SD = 1.91 years; 63% female), which met a predetermined
target set by a power analysis indicating that such a sample size would have 80% power to
detect a correlation between brain measures and learning of r = 0.4. Participants were excluded
for falling asleep during the n-back scan (n = 3), low performance on the control condition of the
fMRI n-back task (< 90% accuracy on the 1-back condition; n = 5), failure to advance beyond
the initial working memory condition during the 50-minute training period (n = 1), recent illegal
substance use not reported during screening but reported during participation (n = 1), inability to
tolerate scanning (n = 1), and technical issues (total n = 4; button box malfunction [n = 2], coil
error [n = 1], no behavioral log files [n = 1]). The final sample was ethnically and racially diverse
(24% Asian, 33% Black, 17% Hispanic/Latino, 4% Multi-Racial, and 19% White; one participant
chose not to report their race and ethnicity). 77% of participants were undergraduate students
and 18% were graduate students at the University of Pennsylvania.

Experimental Design and Statistical Analyses.

Learning measure

Participants completed an auditory n-back task outside of the scanner: once before and once
after adaptive n-back training (Figure 1). The task consisted of four blocks of trials at each of 3
cognitive conditions: 2-, 3- and 4-back (alternating in that order) for a total of 12 blocks. Each of
the 12 blocks contained 24 trials. Stimuli were drawn from a pool of eight consonants (‘C’, ‘D’,
‘G’, ‘K’, ‘P’, ‘Q’, ‘T’, and ‘V’). Within each condition, approximately 15% of all trials were targets.
At the beginning of each block, the current n-back condition was presented in the center of a
black screen for 2500 ms, after which the response options “YES” and “NO” appeared. Then, an
audio clip of a single consonant played for 500 ms. Participants were given 2000 ms to respond
via button press on a standard keyboard: “F” for “YES” responses and “J” for “NO” responses.
Each block was followed by 10 seconds of rest. Feedback was provided such that accurate or
inaccurate responses prompted the correct response option to be highlighted in green or red,
respectively. Two primary indices of learning were analyzed for ease of interpretation: (1) the
change in task accuracy across trials, as defined by the percentage change of
correctly-answered trials, and (2) the change in response time across trials.

Figure 1. Schematic of study design.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.11.08.467831doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467831
http://creativecommons.org/licenses/by-nc-nd/4.0/


Participants completed a 50-minute adaptive n-back task during the training period. The
50-minute duration was selected based on studies that have shown fMRI activation changes
following 30-60 minutes of training 33–35, and because longer training would likely induce fatigue.
The training session was self-paced. Syllables were used during the training period, in contrast
to the pre- and post-training assessments, to reduce the likelihood that learning was based on
perceptual changes alone. Stimuli were drawn from a pool of eight syllables (‘ba,’ ‘cha,’ ‘da,’ ‘fa,’
‘ga,’ ‘ja,’ ‘ka,’ and ‘la’). Within each condition, approximately 13% of all trials were targets. The
training session began at the 2-back condition; participants progressed to the next-highest task
condition if they finished blocks at or above 90% accuracy, remained at the same task condition
if they finished blocks with 71-89% accuracy, and regressed to the next-lowest condition (min:
2-back) if they finished blocks with 70% accuracy or below. Each block at each condition
consisted of 24 trials. Participants completed a mean of 745 trials (31.1 blocks) and reached, on
average, the 5-back condition (min: 3-back, max: 13-back) during the training period.

Neuroimaging Data Acquisition

Imaging was performed at the Center for Magnetic Resonance Imaging & Spectroscopy at the
University of Pennsylvania with a Siemens MAGNETOM Prisma 3T MRI Scanner (Siemens,
Erlangen, Germany) using a 32-channel head coil. Each participant underwent two MRI scans:
the first scan was completed before the n-back training period and the second scan was
completed following training. During both the pre- and post-training scan sessions, participants
completed an identical series of scans, which included T1- and T2-weighted structural scans, a
resting-state scan, and a five-minute n-back task. First, whole-brain, high-resolution,
T1-weighted (T1w) multi-echo (MEMPRAGE, TR = 2530 ms; TEs = 1.69, 3.55, 5.41, 7.27 ms;
flip angle = 7°; resolution = 1 mm isotropic) and T2-weighted (T2w) structural scans (T2SPACE,
TR = 3200 ms; TE = 406 ms; resolution = 1 mm isotropic; turbo factor: 282) were collected with
volumetric navigators 53. We collected a T2SPACE scan 52, but note that this sequence is not a
pure T2w scan. The participants viewed a nature documentary during the structural scans. Next,
a five-minute run of resting-state fMRI data was acquired (TR = 2000 ms; TEs = 30.20 ms; flip
angle = 90°; resolution = 2 mm isotropic). Participants looked at a fixation cross throughout the
scan. Resting-state scanning continued until at least 5 minutes of data were acquired with
framewise displacement < 0.5 mm. Finally, an n-back fMRI scan was acquired (TR = 2000 ms,
TE = 30.2 ms, flip angle = 90°, voxel size = 2.0 x 2.0 x 2.0 mm, matrix size = 96 x 96 x 75, 75
axial slices, 170 volumes, field of view = 192 mm). For both EPI sequences, the first four
volumes of each scan were automatically discarded to allow time for MRI signal to reach
steady-state.

fMRI n-Back Task

The fMRI n-back task consisted of four 30-second blocks alternating between 1- and 2-back
conditions with 12 trials per block. Each block was followed by 10 seconds of rest. Consonant
stimuli were presented for 500 ms and participants were given 2000 ms to respond. The fMRI
n-back task was designed as a FPS localizer; therefore, only 1- and 2-back conditions were
used during the fMRI task to maximize accuracy and minimize confounding effects of errors. As
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a result, the task was not designed to be sensitive to improvements in accuracy associated with
training. By design, accuracy on the fMRI n-back task was high at baseline (1-back accuracy: M
= 97.8%, SD = 1.9%; 2-back accuracy: M = 96.9%, SD = 3.5%), and improved from baseline to
post-test only during the 2-back condition (1-back: t = 0.96, p = .34; 2-back: t = 2.56, p = .01).
Response times on the fMRI n-back task decreased significantly with training (1-back: t = -6.43,
p < .0001; 2-back: t = -3.16, p = .002).

Data Processing and Analysis

Task-based fMRI analyses

Preprocessing for the task fMRI data was implemented using FEAT (FMRI Expert Analysis Tool)
Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following
steps were applied: motion correction using MCFLIRT 54, skull stripping, spatial smoothing using
a Gaussian kernel of FWHM 5 mm, and high-pass temporal filtering (100s). Functional data
were normalized to the MNI template during a two-step process using FLIRT (FMRIB's Linear
Image Registration Tool) in FEAT. First, each participant’s functional image was co-registered to
their anatomical T1w structural image using FSL’s Boundary-Based Registration feature (BBR)
55. Second, the anatomical image was warped to the standard 2 mm MNI152 structural
template. Finally, both of these transformations were combined and used to normalize the
functional image to standard MNI space 56. Average framewise displacement across the
pre-training n-back run was not significantly different from motion across the post-training run (t
= .25, p = .80). No included participants had average head motion greater than 0.15 mm across
either the pre- or post-training runs of the n-back task.

At the single-subject level, we created a general linear model (GLM) for each participant that
included the following regressors: 1- and 2-back blocks convolved with the double-gamma
hemodynamic response function and their temporal derivatives, as well as FSL’s standard and
extended motion parameters (global signal, 6 motion parameters and their temporal derivatives,
quadratic terms, and the temporal derivatives of the quadratic terms). We conducted
mixed-effects analyses in FEAT (FLAME 1) to create group-level maps for three contrasts
(1-back greater than baseline; 2-back greater than baseline; 2-back > 1-back) for
Pre-training-only, Post-training-only, and Pre-training > Post-training. Examining all three
contrasts allowed us to check that the task was activating the regions we expected based on
prior work (Supplemental Figure 1). Group-level z-statistic images were thresholded using
clusters determined by z = 4.0 and a corrected cluster significance threshold of p = 0.05 57.
Results were registered to the Freesurfer fsaverage surface and projected to the cortical surface
using mri_vol2surf for visualization (Freesurfer v6.0) 58.

Region-of-interest (ROI) definition

To identify task-active ROIs, we used the results of the whole-brain analysis of the 2-back >
1-back contrast from the pre-training scan at a threshold of z = 4.0. We selected the five most
significant clusters, which were within the frontoparietal system (Figure 2): (1) left lateral
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prefrontal cortex (left LPFC; MNI coordinates for center-of-gravity: X = -37 , Y = 10 , Z = 41), (2)
right lateral prefrontal cortex (right LPFC; MNI coordinates for center-of-gravity: X = 29, Y = 12,
Z = 52), (3) bilateral medial prefrontal cortex (mPFC; MNI coordinates for center-of-gravity: X =
-1, Y = 16, Z = 47), (4) bilateral parietal cortex (including medial parietal regions; MNI
coordinates for center-of-gravity: X = -4, Y = -56, Z = 48,), and (5) striatum (MNI coordinates for
center-of-gravity: X = -7, Y = 3, Z = 12). To examine whether FPS regions specifically predict
learning, we also examined two control regions: primary visual cortex and primary motor cortex.
We defined these ROIs using the pericalcarine and precentral gyrus regions of the
Harvard-Oxford probabilistic cortical structural atlas provided through FSL.

Figure 2. Five task-based regions of interest (left lateral prefrontal cortex [LPFC], green; right LPFC,
purple; medial PFC, white; bilateral parietal cortex, blue; striatum, pink) derived from the whole-brain
analysis of the 2-back > 1-back contrast from the pre-training scan at a threshold of z = 4.0. Axial slice is
shown at z = 22.

Resting-state analyses

Resting-state data were preprocessed with a different pipeline than the one used for the
task-based data in order to incorporate Nipype, a Python-based framework specifically
optimized for flexibly integrating resting-state analysis tools 59. The software packages used in
this preprocessing pipeline included FMRIB Software Library (FSL v5.0.8) 60, FreeSurfer (v6.0)
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58, Advanced Normalization Tools (ANTs v2.1.0;) 61, and Nipype’s implementation of Artifact
Detection Tools (ART; http://www.nitrc.org/projects/artifact_detect/). Simultaneous realignment
and slice timing correction were conducted using an algorithm implemented in Nipy 62. Outlier
volumes in the resting-state data were defined using ART based on composite motion (> 0.5
mm of head displacement between volumes) and global signal intensity (> 3 SD from the
mean). Participants had average composite head motion of < 0.2 mm (M = 0.11 mm,
SD = 0.06 mm) across resting-state runs.

The resting-state data were then bandpass filtered (0.01–0.1 Hz), spatially smoothed with an
isotropic 6 mm Gaussian kernel (FWHM), and normalized to the OASIS-30 Atropos template (in
MNI152 2 mm space) in a two-step process. First, the median functional image was
coregistered to the reconstructed surfaces using FreeSurfer’s bbregister 55; second, the
structural image was registered to the OASIS-30 Atropos MNI152 template using ANTs. The
transformation matrices generated by these two steps were then concatenated, allowing images
to be transformed directly from functional to MNI space in a single interpolation step. The CSF
and white matter segmentations were derived from Freesurfer’s individual segmentations of the
lateral ventricles and total white matter, respectively, and were transformed into functional
space. Five principal components were derived from both segmentations and regressed from
the resting-state data, in order to correct for physiological noise like heart rate and respiration
(aCompCor) 63. At the single-subject level, the following confounds were regressed out: 6
realignment parameters (3 translations, 3 rotations) and their first-order derivatives, outlier
volumes flagged by ART (one nuisance regressor per outlier), composite motion, 5 principal
components from aCompCor, and linear and quadratic polynomials in order to detrend the data.
Global signal was not regressed out during these analyses.

The VTA ROI was defined using a probabilistic atlas 64. The average time series of the VTA
seed was extracted from unsmoothed functional data and correlated with the average time
series from within each of the five task-based ROIs, both before and after training. VTA
connectivity with the other ROIs was not related to age, sex, total length of scan (number of
volumes collected) or the number of ART outliers (p-values > 0.05); nonetheless, we controlled
for these measures in all models to ensure that they did not drive relationships with learning. All
results of resting-state analyses are the same with and without these covariates of no interest.

Myelin maps

We calculated the ratio between each participant’s T1w and T2w images to create
subject-specific myelin-enhanced contrast images, or “myelin maps” 52, using the publicly
available MRTool toolbox (version 1.4.3; https://www.nitrc.org/projects/mrtool/) 51,65 for SPM12.

The steps taken by MRTool to generate each participant’s myelin map are delineated below.
First, each participant’s T2w image was coregistered to their T1w image using a rigid-body
transformation 12,66. Both images then underwent bias correction to ensure spatial equalization
of the coil sensitivity profiles. The intensity inhomogeneity correction tool in SPM12 was
separately used on both images to correct for transmission-field inhomogeneities in image
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intensity and contrast 12. Subsequently, the intensity values of both bias-corrected images were
separately standardized using a non-linear external calibration approach (MRTool image
calibration option #1: Non-linear histogram matching – external calibration), in order to
accurately capture inter-individual differences in myelin contrast 51,65. This was a three-step
process: (i) subject-specific masks corresponding to CSF, skull, and soft tissues (i.e., dura
mater) were extracted using SPM’s Segmentation tool in both anatomical (T1w) and template
(MNI) space, (ii) intensity histograms for all three masks were generated in both spaces and a
non-linear mapping function (cubic spline interpolation) between them was computed, and (iii)
the corresponding cubic polynomial was used to calibrate the intensities of the bias-corrected
T1w and T2w images. Lastly, the ratio between each participant’s bias-corrected and calibrated
T1w and T2w images was calculated, as a proxy for their corresponding “myelin map” 52.

We then masked out CSF and white matter (as defined by individual segmentations in
Freesurfer’s LookUp Table) 67–69 from the myelin maps to ensure that extracted values for the
ROIs reflected only gray matter. The five task-based ROIs (created in MNI space) were
inverse-transformed to each subject’s structural space with ANTs 61. Finally, myelin map values
(T1w/T2w ratio intensities) were extracted from each ROI for each subject, both before and after
training.

Statistical Analyses
All statistical analyses were performed using R (version 4.05) and RStudio (version 1.4.1106)
software (R Foundation for Statistical Computing, Vienna, Austria). We used linear models to
predict learning gains (change in accuracy and response time on the n-back task) with resting
state functional connectivity (rsFC) between VTA and each ROI, and with T1w/T2w ratios in
each ROI. The VTA connectivity models included the following covariates: age, sex, baseline
n-back task performance, motion during the baseline resting-state fMRI scan, and the number of
volumes acquired during the baseline resting-state fMRI scan. The T1w/T2w ratio models
included the following covariates: age, sex, and baseline n-back task performance. All results
underwent FDR-correction in R for 28 tests (7 ROIs [5 task-based, 2 control], 2 learning
measures [accuracy, response time], and 2 neural measures [VTA rsFC, T1w/T2w ratio].

Data Availability Statement
All behavioral data, task-based and control regions of interest (ROIs), values extracted from
neuroimaging data, code used to collect functional task data, and code necessary to replicate
results are freely available at https://github.com/austinboroshok/frontoparietal-plasticity.
Deidentified neuroimaging data in BIDS format are freely available at
https://openneuro.org/datasets/ds003849/versions/1.0.0.

Results

Working memory performance improved with training.

We considered two behavioral measures of learning: accuracy change and response time (RT)
change on the out-of-scanner pre- and post-training n-back task (Figure 1). Fifty minutes of
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training led to small but significant increases in accuracy and decreases in response times
(Table 1, Figure 3B). However, there was considerable variability in training gains among
individuals (Figure 3A-C). Individuals with lower baseline accuracy improved more on accuracy
following training (β = -0.284, 95% CI [-0.493, -0.076], p = .009). Individuals with slower baseline
response times showed swifter response times following training (β = -0.389, 95% CI [-0.563,
-0.215], p < .001). Gains in accuracy were not associated with improvements in response times
(β = 0.050, 95% CI [-0.045, 0.145], p = .291). Improvements in learning were not significantly
associated with age (accuracy: β = -0.003, 95% CI [-0.008, 0.002], p = .217; RT: β = 0.008, 95%
CI [-0.008, 0.023], p = .306) or sex (accuracy: β = 0.019, males higher, 95% CI [0.000, 0.039], p
= .055; RT: β = 0.002, 95% CI [-0.061, 0.065], p = .955), controlling for baseline performance.
The highest n-back condition reached during training was not used in brain analyses because
the distribution was significantly non-parametric (Shapiro-Wilk: W = 0.81, p < .001), due to a
small number of participants reaching very high conditions (Figure 3C).

2-back 3-back 4-back Average

Pre
M

(SD)

Post
M

(SD)

Δ
M

(SD)

Pre
M

(SD)

Post
M

(SD)

Δ
M

(SD)

Pre
M

(SD)

Post
M

(SD)

Δ
M

(SD)

Pre
M

(SD)

Post
M

(SD)

Δ
M

(SD)

Accuracy (%) 92.2
(.05)

94.2
(.04)

.02**
(.04)

85.1
(.06)

85.6
(.07)

.004
(.05)

82.0
(.06)

83.7
(.06)

.02*
(.05)

86.4
(.05)

87.8
(.05)

.01**
(.03)

Reaction Time (s) .50
(.17)

.39
(.17)

-.11***
(.12)

.60
(.21)

.42
(.17)

-.18***
(.16)

.55
(.20)

.35
(.15)

-.20***
(.17)

.57
(.19)

.41
(.16)

-.16***
(.13)

Table 1. Behavioral performance on the out-of-scanner n-back task. Task accuracy is represented using
percentage of correctly-answered trials, and response time is represented using seconds taken to
respond to stimuli. The delta values for change in accuracy and response time across timepoints
represent the difference between pre- and post-training means (M) and standard deviations (SD). Bolded
values denote significant training-related changes, as indicated by Student’s t-test. * = p ≤ 0.05, ** = p ≤
0.01, *** = p ≤ 0.001.
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Figure 3. (A) Individual differences in out-of-scanner n-back accuracy and response time (averaged
across conditions) changes. Each colored line represents an individual participant. (B) Task performance
on the out-of-scanner pre- and post-training n-back task, measured by accuracy (or percentage of correct
trials), averaged across task conditions (left panel) and response time (in seconds) averaged across tasks
conditions (right panel). Vertical dashed lines represent mean values. (C) Highest n-back condition
achieved during training.
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Plasticity as potential

Stronger VTA connectivity at baseline predicted greater improvements in accuracy

We used functional connectivity between the VTA and the task-based FPS regions of interest as
a proxy measure for dopamine system connectivity (Figure 4A). Consistent with the hypothesis
that greater strength of dopamine system connectivity is associated with greater learning, we
found that stronger resting-state functional connectivity between the VTA and the bilateral LPFC
at baseline predicted greater improvements in accuracy (Figure 4B-C: left LPFC: β = 0.067,
95% CI [0.011, 0.123], p = .020, pFDR = .068; right LPFC: β = 0.086, 95% CI [0.027, 0.146], p =
.006; pFDR = .029), controlling for baseline accuracy, age, sex, motion, and total number of
volumes. The relationship between VTA-LPFC connectivity and accuracy gains survived FDR
correction for 28 tests (7 ROIs, 2 learning measures, and 2 neural measures) for the right LPFC
but not the left LPFC. There were no significant associations between accuracy gains and VTA
connectivity with the mPFC (β = 0.004, 95% CI [-0.057, 0.064], p = .906, pFDR = .906), the
parietal cortex (β = 0.019, 95% CI [-0.042, 0.079], p = .536, pFDR = .578), or the striatum (β =
0.050, 95% CI [-0.008, 0.108], p = .091, pFDR = .213). Further, there were no significant
associations between VTA-FPS connectivity and changes in response times in any ROI (left
LPFC: β = -0.152, 95% CI [-0.329, 0.025], p = .090, pFDR = .213; right LPFC: β = -0.127, 95%
CI [-0.322, 0.069], p = .198, pFDR = .298; mPFC: β = -0.119, 95% CI [-0.303, 0.065], p = .199,
pFDR = .298; parietal: β = -0.136, 95% CI [-0.316, 0.043], p = .133, pFDR = .248; striatum: β =
-0.084, 95% CI [-0.276, 0.108], p = .383, pFDR = .450). There were no significant associations
between VTA connectivity and accuracy or response times at baseline.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.11.08.467831doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467831
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Correlations between functional connectivity between the ventral tegmental area (VTA) and the
lateral prefrontal cortex (LPFC) and improvements in accuracy. (A) Schematic of correlation between
BOLD time series at rest of regions of interest. Colored lines represent the time series of positive
functional connectivity between the VTA and the LPFC at rest. (B) Positive relationships between baseline
VTA-left LPFC resting-state functional connectivity (rs-FC) and accuracy gains on the n-back working
memory task. (C) Positive relationships between baseline VTA-right LPFC rs-FC and accuracy gains on
the n-back working memory task. Relationships between connectivity and accuracy gains did not survive
FDR correction over 28 tests (7 ROIs [5 task-based, 2 control], 2 learning measures [accuracy, response
time], and 2 neural measures [VTA rsFC, T1w/T2w ratio]). Statistical models control for age, sex, motion,
and baseline working memory accuracy. Asterisks denote p-values that survive FDR-correction.
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Lower T1w/T2w ratios at baseline predicted greater improvements in response times.

We used the ratio of T1w/T2w intensities as a proxy measure for myelination (Figure 5A).
Individuals with lower baseline T1w/T2w ratios in all five FPS regions of interest showed greater
improvements in response times (Figure 5B-F: left LPFC: β = 0.423, 95% CI [0.127, 0.719], p =
.006, pFDR = .029; right LPFC: β = 0.425, 95% CI [0.131, 0.718], p = .006, pFDR = .029;
mPFC: β = 0.318, 95% CI [0.016, 0.620], p = .039, pFDR = .122; parietal cortex: β = 0.410, 95%
CI [0.112, 0.708], p = .008, pFDR = .032; and striatum: β = 0.411, 95% CI [0.138, 0.684], p =
.004, pFDR = .029), while controlling for baseline response times, age, and sex. T1w/T2w ratios
were not associated with accuracy improvement in any of the task-based ROIs (left LPFC: β =
0.075, 95% CI [-0.018, 0.169], p = .112, pFDR = .223; right LPFC: β = 0.075, 95% CI [-0.018,
0.169], p = .112, pFDR = .223; mPFC: β = 0.054, 95% CI [-0.041, 0.149], p = .261, pFDR =
.348; parietal: β = 0.068, 95% CI [-0.026, 0.163], p = .149, pFDR = .261; striatum: β = 0.078,
95% CI [-0.009, 0.164], p = .077, pFDR = .213). Lower baseline T1w/T2w ratios in striatum were
related to faster response times at baseline (β = 0.491, 95% CI [0.004, 0.979], p = .048), while
controlling for age and sex. Associations between T1w/T2w ratios and baseline response times
in the other FPS regions of interest were not significant (left LPFC: β = 0.467, 95% CI [-0.069,
1.002], p = .086; right LPFC: β = 0.444, 95% CI [-0.092, 0.979], p = .102; mPFC: β = 0.318, 95%
CI [-0.228, 0.863], p = .246; parietal cortex: β = 0.469, 95% CI [-0.066, 1.004], p = .084).
T1w-/T2w ratios were not associated with accuracy at baseline.
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Figure 5. Correlations between frontoparietal T1w/T2w signal intensity ratio and training-related changes
in response time. (A) Schematic of T1 signal intensity divided by T2 signal intensity, as a proxy measure
for myelination. (B) Task-based regions of interest (B-F) Positive relationships between baseline
frontoparietal T1w/T2w signal intensity ratio and training-related changes in response times on the n-back
working memory task. Axial slice is shown at z = 22. Statistical models control for age, sex, and baseline
working memory response times. Asterisks denote p-values that survive FDR-correction.
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Sensitivity analysis

To examine the specificity of the predictions in the frontoparietal system, we examined two
control ROIs that we did not expect to predict learning: primary visual and motor cortex.
Resting-state functional connectivity between the VTA and visual and motor ROIs did not predict
changes in accuracy or response time following training. Baseline T1w/T2w ratios in visual and
motor ROIs were not associated with changes in accuracy. However, lower baseline T1w/T2w
ratios were associated with greater improvements in response time (visual: β = 0.407, 95% CI
[0.150, 0.665], p = .005, pFDR = .01; motor: β = 0.426, 95% CI [0.136, 0.715], p = .003, pFDR =
.01).

Plasticity as a process: Brain activation changes with training were small and not
strongly associated with learning.

We did not observe training-related changes in VTA connectivity, or in T1w/T2w ratios
(Supplemental Table 1). We also did not observe training-related changes in functional
activation (Supplemental Figure 1). Brain changes were not associated with learning.
Relationships among brain change measures and learning for all regions of interest are shown
in Supplemental Figure 2.

Discussion

We investigated whether individual differences in the structure and function of the frontoparietal
system predicted learning potential in healthy human adults. We focused on proxy measures of
two properties that have been shown to influence the brain’s ability to change in animal models:
ventral tegmental area (VTA) functional connectivity and myelin maps. Adults, on average,
improved their accuracy and response times after 50 minutes of practice on an adaptive n-back
task, and there were large individual differences in learning. Improvements in accuracy were
positively associated with resting-state functional connectivity between the VTA and the bilateral
lateral prefrontal cortex (LPFC) at baseline. Improvements in response times were negatively
associated with myelin map values for all frontal, parietal, and striatal regions of interest.

The finding that stronger functional connectivity between the VTA and the LPFC predicted
greater accuracy gains is consistent with work in animal models showing that dopamine
promotes synaptic plasticity 3,70,71. One interpretation of our findings is that individuals with
stronger connectivity between the dopamine system and the LPFC are better able to learn an
LPFC-dependent task (i.e., a working memory task) 72 because they have greater synaptic
plasticity in these regions, or are better able to modulate synaptic plasticity. Indeed, a few
experimental and computational modeling studies have suggested that synaptic plasticity in the
LPFC is key for working memory 21,73–75. Another interpretation is that individuals with greater
top-down control from the LPFC to the VTA are better able to learn because they can better
upregulate a range of motivational processes including effort. A third interpretation is that
greater VTA-LPFC connectivity reflects a history of coactivation of these regions, perhaps
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because an individual has more experience learning novel prefrontally-dependent tasks. In rats,
the VTA and the PFC show simultaneous and significant increases in firing rate at the same
phases of a learning task 76. In the present study, it is not the case that VTA-LPFC connectivity
is simply a marker of better working memory: VTA-LPFC connectivity was not associated with
baseline working memory, and all statistical models predicting working memory change with
VTA-LPFC connectivity controlled for baseline working memory. However, resting-state fMRI
cannot distinguish between top-down control of the VTA by the LPFC and bottom-up innervation
of the LPFC by the VTA, and it also cannot distinguish between dopamine system connectivity
and excitatory, or even inhibitory, transmission. Although rs-fMRI leaves open some questions
about possible interpretations of our results, VTA connectivity is nevertheless a promising
marker of how well adults will learn a frontoparietal task, with potential broader extensions to
measuring individual differences in plasticity across other brain systems. Convergent data from
PET imaging or pharmacological manipulation of dopamine would strengthen these results.

The observation that individuals with lower T1w-/T2w ratio values in the FPS (a proxy for
myelination in this system) at baseline showed the biggest improvements in response time
following training is consistent with work in animal models suggesting that lower myelination is
associated with greater plasticity 4,77. Less-myelinated individuals were able to improve their
response time without sacrificing their accuracy on the n-back task, even controlling for baseline
performance, alleviating concerns about a speed-accuracy tradeoff effect. Thus, it was not the
case that individuals were simply responding faster and less carefully due to increased
familiarity with the task or decreased effort following training, which would have been indicated
by a high error rate. It remains unclear why our two proxy measures of neuroplasticity were
differentially related to the two learning measures. It is possible that the brain measures
reflected differences in strategy or approach to the learning task, or that the behavioral outcome
measures were sensitive to different learning processes. More work is needed to understand
why some individuals show accuracy gains and others show speed gains. We also observed
that associations between T1w/T2w ratios and improvements in response time were significant
in primary visual and motor regions in addition to our FPS regions of interest. This may indicate
that this effect is not specific to the FPS as expected and rather is representative of a more
global property of cortex.

Training did not lead to changes in task activation, VTA functional connectivity, or T1w/T2w
ratios. Again, as the n-back task was designed to serve as a localizer for investigations of FPS
potential for change, the task was not intended to be particularly sensitive to training-related
improvements in accuracy. However, it is possible that changes from short-term learning were
too small to be reflected in the neural measures we selected. Additionally, training-related
changes in neural measures were not associated with learning gains. It is possible that
individuals take different strategies to learn the n-back task, and these strategies result in
heterogeneous changes in structure and function. Indeed, interindividual variation in learning
strategies have been demonstrated to modulate underlying brain structure in a number of
learning studies 78–81. One such study showed that individual differences in cognitive style and
encoding strategies explained significant variability in task-related functional activation during a
memory retrieval task in a number of brain regions including frontal and parietal areas 79.
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Another study found similarly strong strategy-dependent changes in lateral prefrontal
task-related activation during a working memory task 81. Further work in this area is needed to
better understand the contributions of individual strategy during short-term learning.

The current study has several limitations. First, the observed relationship between VTA-Right
LPFC connectivity and learning survived correction for multiple comparisons, but the
relationship between VTA-Left LPFC connectivity and learning did not. Thus, replication of these
results is necessary. Second, we conducted analyses that were narrowly tailored to our specific
hypotheses about plasticity, but the multimodal data set that we have collected lends itself to
additional data-driven analyses, for example asking whether baseline connectivity within the
FPS predicts learning 48. We share all behavioral and imaging data to facilitate this future work.
Third, the study was designed to characterize how brain features predict individual differences in
learning, not to test for main effects of working memory training on neural measures, so it did
not include a control group. A control group that practiced an unrelated task, for example an
implicit learning task that does not rely on the FPS, could further illuminate the specificity of the
relationships presented here. For example, a control group could be used to answer the
questions: “Does VTA-LPFC connectivity predict accuracy gains on a task that does not engage
LPFC?” or “Do T1w/T2w ratios predict swifter response times on a task that does not engage
LPFC?” Fourth, we only collected five minutes of resting-state fMRI data from each participant,
which may limit the reliability of the VTA-LPFC connectivity findings 82. Fifth, our sample
included predominantly undergraduate and graduate students, so it may not reflect the
variability in cognition and learning that is present in the American population or in the broader
world. Finally, learning during the working memory task likely depends not only on the plasticity
of the frontal, parietal, and striatal regions, but also on individual differences in effort, attention,
strategy choice, or susceptibility to fatigue.

In sum, individuals with stronger connectivity between VTA and lateral prefrontal cortex, as well
as individuals with lower myelin map values, showed greater learning from short-term practice.
Our study underscores the opportunities and challenges of using neuroimaging tools to
measure frontoparietal system plasticity in humans. Better measures of human brain plasticity
would enable investigations of the experiences and lifestyle factors that increase plasticity in
adulthood, for example stress 83, sleep 84,85, or novel positive experiences 86,87. MRI measures of
plasticity are also necessary for tackling questions about how early life experiences shape
plasticity, with implications ranging from learning in school to response to cognitive behavioral
therapies. Therefore, a deeper understanding of human neuroplasticity may help optimize
neurocognitive, educational, and psychological interventions that aim to improve well-being and
experience across the lifespan.
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Supplement

Pre-Training
M (SD)

Post-Training
M (SD)

Change
M (SD)

VTA rsFC

Left LPFC .12 (.17) .08 (.19) -.04 (.23)

Right LPFC .21 (.16) .23 (.17) .02 (.21)

MPFC .10 (.17) .11 (.18) .01 (.24)

Parietal .12 (.17) .13 (.18) .01 (.23)

Striatum .20 (.18) .18 (.18) -.02 (.24)

T1w/T2w Ratio

Left LPFC .94 (.13) .93 (.12) -.01 (.03)

Right LPFC .91 (.13) .91 (.13) -.001 (.04)

MPFC .89 (.12) .88 (.12) -.01 (.04)

Parietal .96 (.13) .05 (.12) -.01 (.04)

Striatum 1.10 (.13) 1.09 (.13) -.01 (.03)

2-back > 1-back Betas

Left LPFC 27.12 (18.10) 21.60 (19.92) -5.52 (28.27)

Right LPFC 28.19 (19.69) 20.60 (25.68) -7.59 (31.89)

MPFC 19.33 (15.51) 15.21 (20.01) -4.11 (24.22)

Parietal 29.35 (21.33) 27.24 (24.81) -2.11 (28.18)

Striatum 9.48 (8.85) 4.76 (11.41) -4.72* (14.01)

Supplemental Table 1. Means and standard deviations of neural measures at baseline and following
training, as well as training-related changes in these features. Bold values with an asterisk denote
significant training-related changes, as indicated by Student’s t-test. * = p ≤ 0.05. Abbreviations: lateral
prefrontal cortex (LPFC), medial prefrontal cortex (MPFC), resting-state functional connectivity
between the ventral tegmental area and frontoparietal regions of interest (VTA rsFC).
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Supplemental Figure 1. N-back task activation before and after adaptive n-back practice.
Average functional activation for (A) 1-back > baseline, (B) 2-back > baseline, and (C) 2-back > 1-back.
Activation at baseline (pre-training) is shown in yellow, activation post-training is shown in red, and
their overlap is shown in orange. Pre-training regions in the 2-back > 1-back contrast (shown in yellow
in Panel C) were used as regions of interest in the VTA functional connectivity and T1w/T2w ratio
analyses. Results are corrected for multiple comparisons at z = 4.0, p  < 0.05. Axial slices are shown
for z = 22.
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Supplemental Figure 2. Beta coefficients for regression models examining associations between
training-related changes in neural measures and working memory performance, rounded to the nearest
hundredth. Axial slice visualized at Z = 22. Abbreviations: lateral prefrontal cortex (LPFC), medial
prefrontal cortex (MPFC), resting-state functional connectivity between the ventral tegmental area and
frontoparietal regions of interest (VTA rsFC), T1w/T2w ratio “myelin map” values (T1w/T2w), 2-back >
1-back beta values (Betas), n-back accuracy (ACC), n-back response times (RT). Statistical models
control for age, sex, baseline working memory performance, baseline brain measures, and motion.
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