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Abstract

The precise molecular mechanisms behind life-threatening lung abnormalities during severe
SARS-CoV-2 infections are still unclear. To address this challenge, we performed whole
transcriptome sequencing of lung autopsies from 31 patients suffering from severe COVID-19
related complications and 10 uninfected controls. Using a metatranscriptome analysis of lung
tissue samples we identified the existence of two distinct molecular signatures of lethal
COVID-19. The dominant “classical” signature (n=23) showed upregulation of unfolded
protein response, steroid biosynthesis and complement activation supported by massive
metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8)
potentially representing “Cytokine Release Syndrome” (CRS) showed upregulation of
cytokines such IL1 and CCL19 but absence of complement activation and muted inflammation.
Further, dissecting expression of individual genes within enriched pathways for patient
signature suggests heterogeneity in host response to the primary infection. We found that
the majority of patients cleared the SARS-CoV-2 infection, but all suffered from acute
dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus

III

cohnii in “classical” patients and Pasteurella multocida in CRS patients. Our results suggest
two distinct models of lung pathology in severe COVID-19 patients that can be identified
through the status of the complement activation, presence of specific cytokines and
characteristic microbiome. This information can be used to design personalized therapy to
treat COVID-19 related complications corresponding to patient signature such as using the

identified drug molecules or mitigating specific secondary infections.
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Introduction

Despite numerous interventions, the novel coronavirus (SARS-CoV-2) continues to cause
significant morbidity and mortality throughout the world. As of mid-August 2021, India alone
has diagnosed over 32.2 million people with this virus, with over 400,000 fatalities (Dong et
al., 2020). Though COVID-19 is believed to progress often asymptomatically or with only mild
to moderate symptoms, primarily fever and dry cough, in many instances it can exacerbate
acute pneumonia, especially in susceptible patients such as older individuals with metabolic,
cardiovascular, and/or pulmonary comorbidities (Mehrian-Shai, 2020; Tay et al., 2020).

As it has been reported, SARS-CoV-2 enters the host cell using Angiotensin-Converting
Enzyme-2 (ACE2) receptor, which binds to the viral spike (S) protein’s receptor binding
domain (RBD) (Hoffmann et al., 2020). The viral genome is released into the cytoplasm once
the viral envelope fuses with the host cell membrane in a Toll-like receptor-7 (TLR-7)
dependent manner (Ahmadpoor & Rostaing, 2020). The virus uses its own RNA dependent
RNA polymerase enzyme to replicate its genome (Sexton et al., 2016; Simmons et al., 2013).
The replication-transcription complex (RTC) is formed in a double-membrane vesicle (Sawicki
& Sawicki, 2005) by two large polyproteins (ppla and pplb), which encode non-structural
proteins (Millet & Whittaker, 2015). The continuous replication by the RTC results in the
formation of many sub-genomic RNAs (Hussain et al., 2005) which code for structural and
auxiliary proteins. Virus assembly and budding takes place in smooth-walled vesicles in the
endoplasmic reticulum, Golgi intermediate compartment (ERGIC) (Masters, 2006), and finally
the virion-containing vesicles fuse with the plasma membrane to release the virus by
exocytosis.

Many studies have established a strong link between the regulation of the innate immune
response, the development of adaptive immunity, and the severity of COVID-19 (Mason,
2020; Mehrian-Shai, 2020; Tay et al., 2020). A hyper-inflammatory response was found in
patients' blood, nasopharyngeal samples, and bronchoalveolar lavage fluid, as evidenced by
increased levels of cytokines such as IL-6, TNF-a, and MCP-1 that may lead to a severe acute
respiratory syndrome (SARS), extensive coagulopathy, and multiorgan failure (Mason, 2020;
Mehrian-Shai, 2020; Tay et al.,, 2020). Therefore, patients with severe COVID-19 require
oxygen supplementation and intensive care, potentially exposing them to secondary
opportunistic infections (Clancy & Nguyen, 2020; Friedland & Haribabu, 2020; Rawson et al.,
2020; Ripa et al., 2021). As a result, current guidelines suggest the use of anticoagulant, anti-
inflammatory, and antiviral medication along with broad-spectrum antibiotics and antifungals
in patients with suspected or confirmed COVID-19 (Clancy & Nguyen, 2020; Friedland &
Haribabu, 2020; Mehrian-Shai, 2020; Rawson et al., 2020). However, even with the same
clinical intervention, patients display distinct trajectories with vastly different recovery times,
clinical outcomes, or mortality (“Detrimental Effect of Diabetes and Hypertension on the
Severity and Mortality of COVID-19 Infection: A Multi-Center Case-Control Study from India,”
2021). The molecular origin of such diverse outcomes are poorly understood in the context
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91 of lung pathophysiology, and only a handful of underpowered primary datasets have been
92  published (Nienhold et al., 2020; Sanchez-Cerrillo et al., 2020; M. Wu et al., 2020; Xiong et al.,
93  2020; Zhou et al., 2020).

94  This situation is further complicated by the emergence of coinfections in COVID-19 patients
95  duetoimmunosuppression that may cause mucormycosis (Gupta et al., 2021; Moona & Islam,
96  2021; Prakash & Chakrabarti, 2021; Sen et al., 2021). Studies during previous SARS and MERS
97  epidemics showed individuals receiving invasive mechanical ventilation were more likely to
98 develop secondary infections and have a higher fatality rate (Feldman & Anderson, 2021).
99 Recent investigations indicate that coinfections and/or superinfections occur at varying
100 frequencies in oral, blood, and urine samples from COVID-19 patients (Alhumaid et al., 2021;
101 Charalampous et al., 2020; Langford et al.,, 2020; Mostafa et al., 2020; Ripa et al., 2021;
102  Rodriguez et al., 2021; Silva et al., 2021; Vijay et al., 2021). However, little is known about the
103  prevalence of these pathogens and their exact molecular relevance in the human lung tissue
104  during COVID-19 infection. Given that most COVID-19 deaths are due to pneumonia-related
105 complications, it is critical to identify pathogens that co-infect severe COVID-19 patients and
106  perform targeted therapeutic interventions.
107
108 In this work, we perform whole transcriptome sequencing of autopsy lung tissue from 31
109  patients who died due to severe COVID-19 related complications, and compared them to lung
110  biopsies from 10 control patients who are not infected with SARS-CoV-2. Using
111 metatranscriptomics, we determine characteristic changes to the host-transcriptome and
112  unique microbial diversity in the lung parenchyma of severe COVID-19 patients. We map the
113  host response at the level of genes, pathways, and change in cell-type abundances while
114  identifying unique microbiome signatures driving dysbiosis in severe COVID-19 patients.
115  Further, we correlate these findings with clinical features of the disease and dissect the
116  potential molecular etiology of the disease that may help explain diverse outcomes leading
117  to complications and suggest potential personalized therapeutic interventions.

118
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119  Methods

120 Ethics Statement

121 The study followed the standards and principles established by India's Directorate General of
122  Health Services and Drug Controller General. Ethics approval was granted in writing from the
123  Institute Ethics Committee of the All India Institute of Medical Sciences, New Delhi, India (IEC-
124  538/05.06.2020, OP-28/05.02.2021). Consent was acquired from each patient's personal
125  and/or family members for autopsy, biopsy, and sample collection, in accordance with the
126  Ethics approval.

127 Patients and sample collection

128  This retrospective study examined 60 consecutive severe COVID-19 patients’ autopsies
129  performed at the All India Institute of Medical Sciences in New Delhi, India, between
130  September 2020 and December 2020 for patients who spent the last few days of their lives in
131 the Intensive Care Unit (ICU). Minimally invasive post-mortem tissue sampling was performed
132  inless than an hour on individuals with premortem PCR-confirmed SARS-CoV-2 infection at a
133  biosafety level 3 post-mortem facility. The control (uninfected) lung samples (n = 10)
134  represent healthy tissue taken from patients with lung cancer as part of standard medical
135  evaluation during biopsy and/or surgical resection (>5cm from site of tumor from early stage
136  Non-small cell lung cancer patients undergoing curative surgical resection). These control
137  samples have been collected between August 2017 and July 2019. Paracancerous lung tissues
138  have been taken as control for COVID-19 samples in other studies (Leng et al., 2020; S. Wang
139 et al., 2021). Lung tissue was harvested from the parenchyma region in accordance with a
140  standard protocol for histology and snap-frozen immediately, for RNA extraction. Lung tissues
141 were fixed in 10% formalin, cut to the proper size and shape, embedded in paraffin for
142  histological examination, or treated with TRIzol (Life Technologies), snap-frozen in liquid
143  nitrogen, and kept at -80°C for RNA extraction. 31 out of 60 severe COVID-19 patient samples
144  were chosen for analysis based on RNA yield and RNA quality (average RNA Integrity Number
145 =6.09). “Severe” COVID-19 was defined according to Ministry of Health and Family Welfare,
146  Government of India guidelines (Government of India & Ministry of Health and Family
147  Welfare, 2021). The guidelines define severe patients as the ones “characterized by a
148  dysregulated immune response with hyperinflammation with subsequent development of
149  ARDS”. These patients would be expected to have “acute respiratory infection with a history
150  of fever or measured fever of 238 C°; and cough; with onset within the last 10 days; and
151 requires hospitalization”. According to the definition of “severe” in the guidelines, the patient
152  would present with severe pneumonia or acute respiratory distress syndrome or sepsis or
153  septic shock. De-identified clinical information was extracted from patients medical records
154  (Supplementary Table 1).
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155 Histopathological evaluation

156  Formalin-fixed, paraffin-embedded (FFPE) lung tissue blocks were processed and stained with
157  hematoxylin and eosin using a standardized procedure. Two thoracic pathologists (DJ and AN)
158 independently evaluated the slides. The following features: the extent of lung damage, injury,
159 inflammation, presence or absence of hyaline membrane formation, lymphocyte infiltration,
160  organizing pneumonia, alveolar fibrin deposition, fibrosis, and histologic features of type 2
161  pneumocyte hyperplasia, were noted and documented.

162 RNA extraction, library preparation, and sequencing

163  Total RNA was extracted from lung tissue using the Maxwell automated instrument and the
164  Maxwell® RSC Viral Total Nucleic Acid Purification Kit (Promega). The concentration of RNA
165  and quality were measured with HS Total RNA 15nt.methods (Agilent) or Qubit RNA HS Assay
166  (Thermofisher). The NGS library was prepared after cytoplasmic and mitochondrial rRNA
167  depletion, using TruSeq Stranded Total RNA Gold kit per manufacturers' instructions
168  (lllumina, 20020598). The libraries were then sequenced on an lllumina NovaSeq6000
169  platform with 2x150 base pair reads (details of statistics given in Figure S1, Supplementary
170  File 1).

171 Host transcriptome analysis

172 Raw lllumina sequencing reads were checked for quality using FastQC (version
173  0.11.9)(Babraham Bioinformatics - FastQC A Quality Control Tool for High Throughput
174  Sequence Data, n.d.) followed by adapter clipping and trimming using Trimmomatic (version
175  0.39)(Bolger et al., 2014) with default parameters. Trimmed reads were then aligned to the
176  human reference genome (GRCh38, GENCODE v36)(Frankish et al., 2019; Schneider et al.,
177  2017) using STAR aligner (version 2.7.8a)(Dobin et al., 2013). FeatureCounts (subread package
178  version 2.0.1)(Y. Liao et al., 2014) was used to quantify gene expression. Quality checks were
179  performed at each step using the MultiQC tool (version 1.10.1)(Ewels et al., 2016). Differential
180 gene expression analysis was performed using the DESseq2 package (version 1.30.0)(Love et
181 al,, 2014) in R (version 4.0.3). The analysis was performed by removing the effects of
182  confounding variables such as age and gender (Supplementary Table 1, Supplementary File 2)
183  using the appropriate design formula. Genes with BH-adjusted p-value < 0.05 and absolute
184  Log, fold change greater than 1 in either direction were taken as significantly differentially
185 expressed and Shrunken Log, fold change values were used for further analysis.
186  ClusterProfiler package (version 3.18.0)(Yu et al., 2012) was used for the Gene Ontology (GO)
187  term Over Representation Analysis (ORA) of differentially expressed genes. GSVA package
188  (version 1.38.2)(Hanzelmann et al., 2013) was used for all GSVA analysis and heatmaps of
189 GSVA enrichment scores were visualized using the package pheatmap (version
190 1.0.12)(Pheatmap: Pretty Heatmaps, n.d.). Enriched gene sets had a corresponding change in
191  GSVA enrichment scores with p < 0.05 using Wilcoxon test between the two groups
192  compared. Boxplots and other visualizations were made using the ggplot2 package (version
193  3.3.3)(Wickham, 2011). All statistical tests were performed using functions from the base or
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194  stats package in R. For identification of transcription factors driving gene expression, we used
195  the Enrichr tool (Kuleshov et al., 2016) using lists of genes upregulated in severe COVID-19
196  samples (and sub-groups as identified in the paper) when compared with controls.

197  Curation of gene lists

198  Gene lists for GSVA were manually curated from various sources (Supplementary Table 2,
199  Supplementary File 3). GSVA plots of Cell Types are based on published gene lists (Daamen
200 etal., 2021). Gene lists for fibrosis and ECM (Extracellular Structure Organization) were taken
201 from Wu et al., 2020 (M. Wu et al., 2020). Surfactant protein gene list was referenced from
202 Islam and Khan, 2020(Islam & Khan, 2020). Gene lists from interferons, chemokines,
203 interleukins, their receptors and other innate immune related pathways were sourced from
204  HGNC (Vasiliou et al., 2021), ImmPort (Bhattacharya et al., 2018) and published gene lists
205 (Daamenetal., 2021). KEGG pathways were utilized from MSigDB(Liberzon et al., 2011). Gene
206 list for host proteins which interact with SARS-CoV-2 was referenced from Gordon et al., 2020
207 (Gordon et al., 2020).

208 Cell deconvolution analysis

209  Multi-subject Single cell deconvolution (MuSic_0.2.0)(X. Wang et al., 2019) was used to
210  predict the relative composition of different cell types from bulk RNA-Seq samples using
211 existing single cell RNA-seq (scRNA-Seq) dataset as reference. From the relative composition
212 of cell types, “Hedges' g effect size” is measured using effsize_0.8.1 R package (Torchiano,
213  2016). Changes in cellular proportions comparing G1 vs N and G2 vs N were plotted for only
214 those cell types that gave finite values in both G1 and G2, using a “scatterplot” using (ggplot2)
215  (Wickham, 2011) R package.

216 Connectivity Map (CMap) analysis
217  Connectivity Map (CMap)(Lamb et al., 2006) analysis was performed using the online portal
218  https://clue.io/cmap to determine perturbagens (potential drugs reversing the aberrant gene

219  expression) using the L1 version of CMap with L1000 data repository, Touchstone data set as
220  abenchmark for assessing connectivity among perturbagens and Individual query option. The
221 pertubagens were further filtered for potential therapeutic drugs.

222 Metatranscriptomic analysis

223  Reads not mapped to the human genome were filtered to remove low complexity
224  (entropy>=0.7) , human rRNA and mitochondrial reads using BBMAP toolkit (version
225  38.90)(Bushnell, 2014). The filtered unmapped reads were then input into Seal (from the suite
226  of bbtools) and binned into bacterial rRNA (using SILVA bacterial rRNA database)(Quast et al.,
227  2013), human genome (GRCh38) and microbial bin. Taxonomic classification of reads was
228  carried out on the microbial bin using Kraken2 (Wood et al., 2019) using organisms with at
229 least 100 reads at the genus level for classification and confidence level of 0.3. The alpha
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230 diversity (Shannon diversity index) and bacterial taxon abundance was assessed using the
231 PhyloSeq package (version 1.34.0)(McMurdie & Holmes, 2013).

232 SARS-CoV-2 genomic and transcriptomic analysis

233  All COVID-19 samples with detectable SARS-CoV-2 reads were taken for further analysis.
234  Filtered microbial reads from these samples were aligned against the SARS-CoV-2 reference
235 genome(F. Wu et al., 2020) using BBMap (version 38.9)(Bushnell, 2014). Depth and coverage
236  of the viral genome were obtained using samtools (version 1.9)(Li et al., 2009). Full length
237 genomes were assembled for samples with high depth and coverage using SPAdes. The SARS-
238 CoV-2 genomes were classified using GISAID (https://www.gisaid.org/), PANGO database
239  (https://cov-lineages.org/) and nextclade (https://clades.nextstrain.org/) and were placed in

240 a phylogenetic tree created using nextstrain (https://nextstrain.org/ ). Information on

241 mutation types and frequency was obtained from http://giorgilab.unibo.it/coronannotator/.

242  Additional information on strain B.1.36 was obtained from https://outbreak.info/situation-

243  reports?pango=B.1.36. Transcriptome analysis was performed by aligning filtered viral reads
244  to the reference strain (Wuhan-Hu-1) using Bowtie2 (Langmead & Salzberg, 2012). Read
245  counts for the viral genes were obtained using featureCounts and normalized to Transcripts
246  per Million (TPM) values.

247 Data availability

248  All the data used in this study, which includes whole transcriptome sequencing raw data,
249 filtered expression matrix that supports the findings of this study can be accessed in GEO
250  under the accession number GSE183533. Further clinical annotation of the samples may be
251 available upon reasonable request from the corresponding author DJ.

252

253
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254 Results

255  To characterize the pathology of SARS-CoV-2 infection, postmortem lung tissue samples were
256  collected from 31 patients who had been diagnosed with severe COVID-19. As a control, 10
257  uninfected normal lung samples were taken from - patients diagnosed with cancer as part of
258  standard surgery procedure (Figure 1). Among the 41 samples there were 19 (46%) females
259  and 22 (54%) males. The 10 normal samples had 6 females and 4 males, while in the 31 COVID-
260 19 samples there were 13 females and 18 males. The mean age for all 41 COVID-19 patients
261 was 51.65 + 15.27 years. The mean age for controls was 51 + 16.22 years, while the COVID-19
262  patients were 57+ 15.23 years (Table 1). Using nasopharyngeal swab PCR, all cases tested
263  positive for SARS-CoV-2. At the time of onset, the most common symptoms were shortness
264  of breath, fever, and cough.

Sample collection # Histopathology analysis
(Normal lung n=10; SARS-CoV-2 lung n=31) H&E staining
Clinical
l validation
Paired-end library prep &
RNA sequencing

Metatranscriptomics

l pipeline

* Entropy filtering
¢ Human rRNA & mitochondrial

e Quality control ““,";252“'

e Adapter trimming » reads filtered
e Alignment to human reference * Reads binned into human genome,

bacterial rRNA & microbial reads

Differential Gene Enrichment (DGE) analysis
Gene Set Variation Analysis (GSVA)

Gene Ontology (GO) analysis * Taxonomic classification
Cellular Deconvolution « De novo assembly of reads
In-silico drug prediction analysis

265

266 Figure 1. Schematic for histopathological and metatranscriptomic analysis pipeline.

267  Lung tissue biopsy samples were collected from post mortem COVID-19 affected and control patients.
268  The tissue samples were first evaluated for clinical physiology. The host rRNA was depleted prior to
269  NGS library prep, the samples were then sequenced at an average depth of ~47 million reads per
270  sample. The sequence reads were filtered based on read quality. Filtered reads were used for
271 differential gene expression, virome and microbiome profiling.

272

clean
Microbial
reads

Transcriptomics pipeline
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274  Table 1. Patient clinicopathological details

aracteristics or mean 6 Oor range
Ch terist N %

COVID-19 cohort (60 patients)

Age 57y 28-77y
Sex M 18, F13 (1.4:1)
Hospitalisation time 11.6d 1-38d

Major comorbidities

Diabetes 9 29.03%
Cardiovascular complications 14 45.16%
Respiratory complications 4 12.90%
Cancer 5 16.12%
Liver or kidney complications 15 48.38%
Thyroid complications 3 9.67%

Patients with no prior comorbidities 2 6.45%

Most common lung pathological features

Exudative phase of diffuse alveolar damage 9 29.03%
Organizing phase diffuse alveolar damage 6 19.35%
Acute bronchopneumonia 3 9.67%
Co-existing acute bronchopneumonia with DAD 5 16.12%
Moderate inflammatory changes 5 16.12%
No changes/tissue sample 3 9.67%

Control cohort (10 subjects)

Age 51y 21-69y
Sex M 4, F6 (0.6:1)
Patients with smoking history 6

275
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The major cause of mortality was respiratory failure or multiorgan failure affecting the
respiratory system. Consistent with a previous report (Carsana et al., 2020), fatal pulmonary
tissue of all COVID-19 patients was highly abnormal, with evidence of diffuse alveolar damage
(DAD), in addition to widespread hyaline membrane formation (the pathological hallmark of
acute respiratory distress syndrome), acute lung injury, bronchopneumonia, and thrombosis
being frequent (Supplementary Table 1, Supplementary File 2). COVID-19 afflicted patients'
lungs also show varying degrees of an inflammatory infiltrate.

To dissect the molecular aberrations underlying fatal COVID-19 cases, 41 lung tissue samples
(31 cases and 10 control) were subject to whole transcriptome analysis using RNA-
sequencing. The average number of reads ranged from 13.3 million to 115 million with an
average of 46.9 million reads per sample. The range for the 10 normal samples is 35.4 million
to 115 million with a mean of 58.9 million reads. While the range for 31 COVID-19 samples
was slightly lower, at 13.3 million to 67.2 million with an average of 43.1 million reads,
potentially owing to lung damage (Figure S1A, Supplementary File 1). The RNA-seq data was
aligned to the human reference genome GRCh38 (gencode v36) to summarize gene counts.
The alignment rate ranged from 60.0% to 89.6% with a mean of 83.72 + 6.72% (Figure S1B,
Supplementary File 1).
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Figure 2. Differential expression and Histopathological analysis of COVID-19 samples
A) PCA plot based on gene expression counts across COVID-19 patients and Normal controls (blue)
identified two groups of patients G1 (red) and G2 (green) samples B) Representative histological

images of postmortem lung tissue sections for two patient groups. G1 group (top), displayed (1) acute
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298  organizing pneumonia (x200), (2) microthrombi (CD61 immunostain, x400). G2 group (below),
299  displayed (3) diffuse alveolar damage with hyaline membranes (200x) and (4) acute bronchopneumonia
300  with microabscesses (x200). C) Volcano plot describing the fold changes and FDR adjusted p-values
301 between two groups of COVID-19 patients v/s Normal controls with down regulated genes in blue and
302  upregulated genes in red. Top 10 DE gene names are highlighted. D)Variance-stabilizing transformed
303  (vst) gene expression profile of top 50 significantly DE genes between control and two groups of COVID-
304 19 patients.

305 Lung transcriptome signature in severe COVID-19

306  Tointerpret the host response, Differential Expression (DE) analysis was performed using the
307  DESeq2 package in R accounting for confounding variables such as age and gender. Visualizing
308 the gene level data per sample in a PCA plot we found that controls and a majority of COVID-
309 19 samples clearly segregated on the first principal component (explaining 78% variance)
310  except for 8 COVID-19 samples that clustered with normal samples (cov20, cov23, cov27,
311 cov30, cov50, cov53, cov55, covb0). Henceforth, we refer to these 8 samples as G1 (group 1)
312  and the rest of the COVID-19 samples as G2 (group 2), which can be seen colored differently
313  inthe PCA plot (Figure 2A). Next, we tried to check whether the gene expression pattern of
314  G1 and G2 samples could be explained by the presence of any comorbidities. However, our
315  analysis (Supplementary Table 1, Supplementary File 2) found no significant correlations
316  (Figure S2 A-F, Supplementary File 1).

317  We identified a total of 1,856 significantly differentially expressed genes (DEGs) between
318 normal and all COVID-19 samples, with 864 genes significantly upregulated (Methods) and
319 992 genes significantly downregulated (Methods) in COVID-19 patients (Figure 2C). DE
320  analysis between the G1 and Normal samples revealed the presence of 263 significant DEGs,
321  with 56 genes significantly upregulated and 207 genes significantly downregulated, whereas,
322 in the case of G2 group and normal samples, there were 3,094 DEGs, out of which 1,363 were
323  significantly upregulated and 1,731 were significantly downregulated (Supplementary Table
324 3, Supplementary File 4). Between the two COVID-19 groups G2 and G1, there were 1,433
325 DEGs, out of which 1,314 were significantly upregulated and 119 were significantly
326  downregulated (Figure 2C). Further differential expression analysis of G2 and G1 may be
327  found in Supplementary Figure S7 (Supplementary File 1). A heatmap plotting the variance
328  stabilized (vst) gene expression of the top 50 differentially expressed genes between all
329  COVID-19 and normal samples clearly divides the samples into two groups and reaffirms the
330 presence of two distinct categories of COVID-19 samples with gene expression of G1 matching
331  that of normal samples (Figure 2D). 189 genes were differentially expressed in both G1 vs N
332  and G2 vs N while 2899 genes were only differentially expressed in G2 vs N and 74 genes were
333  only differentially expressed in G1 vs N (Supplementary Table 3, Supplementary File 4).

334  The most significantly upregulated genes in G1 and G2 include Orosomucoid 1 (ORM1 or
335  better known as Alpha-1-acid glycoprotein 1 or AGP1), Orosomucoid 2 (ORM2 or Alpha-1-acid
336  glycoprotein 2 or AGP2), Apolipoprotein B (APOB), ALB (Figure 2C, Figure 2D). Orosomucoid
337 is known to be regulated by TNF beta, IL-1 beta, IL-6 and IL-6 related cytokines (Baumann et
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338 al., 1989; Fournier et al., 2000), along with immuno-modulating effects like inhibiting
339  neutrophil migration (Mestriner et al., 2007) and has been employed as biomarker in COVID-
340 19 (Shu et al., 2020). APOB has been observed to be upregulated in enterovirus 71 infection
341 (Leong & Chow, 2006) and elevated levels in the blood of COVID-19 patients (Pushkarev et
342  al., 2021). ALB levels in blood may be used as a biomarker for measuring COVID-19 severity
343 (Liangetal., 2021).

344  Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 (ITIH3), Hemopexin (HPX), Vitronectin (VTN),
345  Angiotensinogen (AGT), SERPINC1 and CYP2E1 are certain genes that are highly upregulated
346  in G2 when compared to normal samples (Figure 2C, Figure 2D). ITIH3 has been indicated as
347  one of the plasma mortality markers for COVID-19 (Demichev et al., 2020; Volimy et al., 2021).
348  Angiotensinogen (AGT), is a hormone precursor involved in blood pressure regulation cascade
349 that is implicated as potential biomarker and linked to severity of COVID-19 (Kouhpayeh et
350 al., 2021; Sriram & Insel, 2020). VTN levels, from platelets, were observed to be high in case
351 of SARS-CoV pneumonia as well (Lazzaroni et al., 2021). It has been noted that CYP2E1 has
352 played a role in oxidative stress in Hepatitis C (Smirnova et al., 2016) and increased levels of
353 the same have been associated with higher risk of adverse events, such as hepatotoxicity,
354  especially in potential COVID-19 patients with obesity and Metabolic associated fatty liver
355  disease (MAFLD) as a comorbidity (Ferron et al., 2020).

356  Some of the top 10 genes upregulated in G1 are Fibrinogen Beta Chain (FGB), Serum Amyloid
357 Al (SAA1), Serum Amyloid A2 (SAA2), Apolipoprotein A2 (APOA2), Apolipoprotein C3
358 (APOC3), AL008726.1 (Figure 2C). Increased abundance of Fibrinogen-B (FGB) also found in
359  SARS-CoV-2 infected plasma exosomes is known to stimulate pro-inflammatory cytokine
360 signaling (Sur et al., 2021). Proteomics studies showed the signatures of cytokine production
361 and interferon-y response, and increased level of SAA1 in the serum of COVID-19 patients
362  (Singh et al., 2021). SAA2 may be a predictor of severity of COVID-19 (Papoutsoglou et al.,
363  2021).

364 Small Nucleolar RNA, H/ACA Box 74B (SNORA74B), Small Nucleolar RNA, H/ACA Box 53
365 (SNORAS53), RNU5A-1, FOSB and Cystin 1 (CYS1) are significantly downregulated in both G1
366 and G2, when compared to normal (Figure 2C, Figure 2D). Downregulation of CYS1 has been
367  observed in another study for SARS-CoV, wherein low levels of CYS1 have been linked to
368 activation of NF-kappa-B and subsequent cytokine storm (Zolfaghari Emameh et al., 2020).
369  FOSB inactivation in mast cells has been shown to increase the inflammatory response
370  (Duque-Wilckens et al., 2021) while contradictorily also reported to be upregulated in single
371 cell analysis of CD4+ T cells of severe COVID-19 patients (Kalfaoglu et al., 2020).

372  SNORD17, ITLN2, CAVIN2, PLAC9 and SIGLEC6 are some of the genes highly downregulated in
373 G2, along with SCARNAS, FABP4 and Pseudogenes (namely RN7SKP255, RN7SKP9, RN7SKP80)
374  being highly downregulated in G1 (Figure 2C). Interlectin 2 (ITLN2) was found to be
375 downregulated in a study of 22 blood samples of severe COVID-19 patients (Vastrad et al.,
376  2020) as well, as seen in G2. Contrary to the trend observed in G2, in a single cell sequencing
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study of 16 COVID-19 patients, megakaryocyte progenitor cells/platelets showed increased
expression of CAVIN2. SIGLEC6 belongs to family of Sialic acid binding immunoglobulin-like
lectin proteins, out of which SIGLEC1, SIGLEC7 and SIGLEC10 have been implicated to play a
role in COVID-19 (Doehn et al., 2021; Saheb Sharif-Askari et al., 2021). Low levels of Fatty acid-
binding protein 4 (FABP4) in BALF macrophages of patients suffering from severe COVID-19,
has been linked to declining lung function (M. Liao et al., 2020).
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Figure 3. Gene Ontology enrichment, Gene Set Variation Analysis (GSVA) and Transcription
Factor analysis between COVID-19 groups G1, G2 and normal control patients

A) GO enrichment map with nodes representing biological processes, edges representing overlapping
gene sets. (top) up-regulated biological processes in G2 vs Normal individuals or ‘N’ (middle) down-
regulated biological processes in G2 vs N (bottom) up-regulated biological processes in G1 vs N. B)
Heatmap of GSVA depicts profiles of curated gene sets (Daamen et al., 2021),(Vasiliou et al.,
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390  2021),(Bhattacharya et al., 2018) across all the samples in our study. C) Barplots indicate the
391 transcription factor targets enriched in significantly upregulated genes in G1 vs N, upregulated genes
392 in G2 vs N, downregulated genes in G2 vs N. D) Boxplots of Log transformed vst-normalized gene
393  counts representing differences among G1, G2 and normal sample groups for HNF1A and HNF4A.

394  Toidentify biological processes implicated in the host response to SARS-CoV-2, we performed
395 a Gene Ontology (GO) analysis of DEGs. The top 60 enriched GO terms (adjusted p-value <
396  0.05) were organized into a network of modules with edges connecting overlapping gene sets
397  (Figure 3A). Key modules enriched in the G1 group included lipid metabolism, negative
398  regulation of coagulation, and neutrophil-mediated immunity reported previously (Sanchez-
399 Cerrillo et al., 2020; M. Wu et al., 2020; Xiong et al., 2020; Zhou et al., 2020). Key modules
400 enrichedin the G2 group were related to complement activation, xenobiotic metabolism, and
401 peroxisomal protein transport as reported previously (Knoblach et al., 2021). No enriched
402 modules were found downregulated in the G1 group while modules related to cilium
403 formation, synapse formation, and membrane potential were downregulated in the G2 group
404  suggesting suppression of neuronal processes as reported elsewhere (M. Wu et al., 2020).

405 Targeted gene set enrichment analysis using GSVA

406 To gain a better understanding of the regulation of key pathways identified in GO analysis we
407 performed gene set variation analysis (GSVA). First, we analyze curated lists from HGNC and
408 ImmPort (Supplementary Table 2, Supplementary File 3) of immune-related pathways,
409 interferons, chemokines, interleukins and their receptors (Gene Group, n.d.). Expression of 11
410  of these gene lists was significantly altered with “Chemokine Ligands” altered only in G1 and
411 7 of the gene lists exclusively altered in G2 (Figure 3B). Genes corresponding to remaining 3
412  genelists namely, Interleukin receptors, Interferon Induced Transmembrane proteins (IFIT),
413  and the JAK-STAT signaling were upregulated in both groups indicating a core antiviral
414  inflammatory response (Sadler & Williams, 2008; Schoggins & Rice, 2011) in both patient
415  groups. However, specific genes within each geneset were upregulated in each patient group
416  suggesting distinct molecular pathways towards inflammation (Figure S3B, Supplementary
417  File 1). Interleukin receptors IL20RA and IL5RA were upregulated in G1 while IL17RB, IL1RN,
418  and IL22RA1 upregulated in the G2 group. Interleukins ILLRN and IL27 were only upregulated
419  in G2, although IL6 was not upregulated in either groups, corroborating previous observations
420  inlung tissue (M. Wu et al., 2020) despite high levels in blood of COVID-19 patients (Patel et
421 al., 2021). Similarly, the entire chemokine ligand geneset itself was only upregulated in the
422  G1 group, potentially due to high expression of chemokines such as CCL19 (Supplementary
423  Figure S3E). Specific chemokines such as CCL16 were also upregulated in only the G2 group.
424  We find further evidence of distinct inflammatory response within the G2 group through the
425  exclusive downregulation of genes corresponding to Interferons, Chemokine receptors,
426  Tumor Necrosis Factor mediated antiviral signaling, TGF beta signaling (Figure 3B); albeit with
427  heterogeneity in expression of individual genes specially Bone Morphogenic Proteins (BMP),
428  Growth Differentiation factors (GDF), and Inhibins (Figure S3B). Further, we find significant
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429  downregulation of genes associated with T-cell receptor signaling genes in the G2 group
430 indicating T-cell dysfunction and potentially aberrant response.

431 Next, we dissected the molecular pathways that may be involved in the physical re-
432  organization of lung tissue (Supplementary Table 2) using GSVA. We found that genes
433 involved in Fibrosis, and Extracellular Structure Organization were significantly upregulated
434  in both the patient groups (Figure 4A). Corroborating previous reports in COVID-19 patients
435 (Islam & Khan, 2020), Surfactant proteins, which maintain surface tension in alveoli(Glasser
436 & Mallampalli, 2012), were significantly downregulated. Again individual genes within each
437  of these genesets displayed distinct expression between the two groups suggesting different
438  routes towards aberrant lung physiology (Figure S3A, Supplementary File 1).

439  Next, we studied pathways previously found to be dysregulated in COVID-19. Out of a curated
440 list of 36 pathways(Daamen et al., 2021), 20 (55.55%) pathways were found to be significantly
441 upregulated between G1 or G2 relative to control samples. The G1 group showed significant
442  overexpression of genes in cell cycle regulation and IL1 cytokines. While, the G2 group showed
443  significant overexpression of genes related to apoptosis, all three complement pathways
444  (classical, alternative, and lectin-induced) and metabolic pathways such as fatty acid
445  oxidation, sugar metabolism, TCA cycle, and oxidative phosphorylation (Figure 3B). Massive
446  change in metabolic pathways was further corroborated by GSVA using KEGG pathways
447  whereby 85 out of 186 (45.69%) pathways were significantly altered (Figure S4A,
448  Supplementary File 1) such as upregulation of steroid biosynthesis pathways and
449  downregulation of neuroactive ligand-receptor interaction (corresponding to symptoms of
450 anosmia and ageusia). Both the patient groups had characteristic dysregulation of TCR genes
451  confirming previous bias(Gutierrez et al., 2020; P. Wang et al., 2021). For example in G1, TCRD
452  was downregulated and TCRAJ was upregulated, while in G2, expression of both TCRA and
453  TCRB was downregulated (Figure 3B).

454  We then studied host genes that directly interact with the viral proteins to help in viral entry
455  and infection. The expression of both ACE2 and TMPRSS2, which play a role in SARS-CoV-2
456  entry(Hoffmann et al., 2020) did not differ between either group of patients when compared
457  to normals (Figure S3D, Supplementary File 1). Cathepsins B and L which can substitute for
458  TMPRSS2(Hoffmann et al., 2020) also remained unchanged (Figure S3D, Supplementary File
459  1). Next, we investigated the expression of 331 human proteins that directly bind to viral
460 proteins(Gordon et al., 2020) in our samples (Supplementary Table 2, Supplementary File 3;
461 Figure S3C, Supplementary File 1). Out of 248 (74.92%) highly expressed genes (depth greater
462  than 100 reads in 90% of either normal or COVID-19 samples, hypothesizing that high
463  expression would indicate a direct role), we found only 16 genes such as ERGIC1, GGH, PCSK®6,
464  PLOD2, that were differentially expressed only in the G2 group suggesting no significant over-
465  representation the human host interactome in our patients (p = 0.985 using a hypergeometric
466  test).
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467  To find the regulators orchestrating the massive re-wiring of gene expression observed in
468  COVID-19 patients, we investigated the enrichment of various targets of transcription factors
469  (TFs) amongst our list of DEGs (Methods, Figure S5 A-C, Supplementary File 1). Targets of
470 Hepatocyte nuclear factor-4 alpha (HNF-4a) and Nuclear respiratory factor 1 (NR2F1) were
471 enriched in upregulated DEGs in both groups (Figure 3C). However, only HNF-4a was only
472  overexpressed in the G2 patients when compared to Normal (Figure 3D) as well as G1 group
473  (Supplementary Figure S7, Supplementary File 1). These results corroborate the role of HNF-
474  4a in COVID-19 and other chronic lung pathologies (Agudelo et al., 2020; Nardacci et al.,
475  2021), potentially through its role as a master regulator of lipid metabolism but only for the
476 G2 group. This is further bolstered by lipid homeostasis related GO terms being enriched in
477  upregulated genes of G2 when compared with G1. None of the other TF targets enriched in
478  either upregulated genes or downregulated genes for both the groups were themselves
479  expressed in the same direction as their targets - indicating alternate regulation.
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481 Figure 4. Cell-type specific gene-set enrichment and In-silico drug screening

482  A) Heatmap of per sample GSVA enrichment scores for previously implicated immune signaling
483  pathways (above) and genes involved in physical organization of lung physiology (below) that are
484 significantly differentially expressed (p<0.05, Wilcoxon test) between normal and either G1 or G2
485  samples. B) Changes in effective size of relative cellular proportions in G1 vs N and G2 vs N.
486  Proliferating basal cells and TREM2+ dendritic cells were increased in G2 patients compared to G1. C)
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487  Bar plots of Connectivity Map (CMap) Scores for potential disease inducers (purple) and potential
488  therapeutic compounds. (green) for G1 and G2 groups of patients respectively.

489 Cell-type deconvolution analysis maps altered lung cellular profile

490 Gene expression re-wiring can also be caused due to change in the proportion of different
491  cell-types in the lung tissue of COVID-19 patients. To dissect this, first we performed GSVA
492 using 57 gene expression signatures corresponding to different cell-types in the lung
493 tissue(Daamen et al., 2021) and found that 25 signatures (43.86%) showed a significant
494  change between COVID-19 patients and normal control patients, most of them being
495  downregulated in G2 patients (Figure 4A). The only common signature between G1 and G2
496  groups was the loss of alveolar macrophages as reported previously (M. Liao et al., 2020). The
497 G2 group showed an enrichment of signatures corresponding to Erythrocytes, damage-
498  associated M1 macrophages and Neutrophils suggesting acute inflammation and structural
499 damage. The G2 group also showed loss of signature corresponding to cells in the lung
500 parenchyma such as alveolar epithelial cells, endothelial cells, and ciliated cells alongside loss
501 of platelets suggesting prolonged lung damage and thrombocytopenia. Such reorganization
502 of lung tissue was also accompanied by loss in signature corresponding to specific
503 Lymphocytes such as B-cells, activated T-cells, NK-T-cells and anergic T-cells alongside loss of
504  dendritic and plasmacytoid DCs (pDC) suggesting immune exhaustion.

505 To further dissect the finer details of lung physiology, we performed cell-type deconvolution
506 to estimate the proportion of 58 different cell types using a published single-cell RNA-
507 sequencing dataset from lungs (Travaglini et al., 2020) (Figure S4B, Supplementary File 1). In
508 both the patient groups, we found a strong depletion in the proportion of IGSF21+ & EREG
509 DCs, signaling Alveolar epithelial cells, and “Basophil Mast 2” cells alongside enrichment in
510 the proportion of Lipofirboblasts, indicative of common pathophysiology. In the G1 group, we
511  found a high proportion of proliferating NK-T cells and “OLR1 Classical Monocytes” alongside
512  depletion of “Bronchial Vessel 2” cells. Interestingly, two cell populations showed
513  antagonistic change in cell proportions namely Proliferating Basal and TREM2* DCs that were
514  depleted in G1 but enriched in the G2 group of patients (Figure 4B).

515 In-silico drug screening using Connectivity maps

516  We performed connectivity map (CMap) analysis with differentially expressed genes from G1
517  vs Normal and G2 vs Normal samples to help predict the different set of drugs which can be
518 used to reverse the molecular signature in the two types of patients. We identified 423,422
519  perturbagens and among them 136,460 were drug perturbagens which contain both
520 therapeutic agents and inducers. We filtered them for compound data and A549 cell lines
521 (adenocarcinomic human alveolar basal epithelial cells) and found 11456 unique drug
522  perturbagens for both groups. Among these, 1,986 and 2,048 perturbagens had negative
523  connectivity scores for G1 and G2 groups respectively, implying their potential as therapeutic
524  agents that can be screened further using in-vivo experiments (Supplementary Table 4,
525  Supplementary File 5) to identify potential drugs. Among the top therapeutic agents we found
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526  curcumin, Ro-60-0175, talampicillin, FTI-276, erastin as potential therapeutic agents for G1
527  patients while we found SKF-96365, 2-chloroacetophenone, JNK-IN-5A, H-9, cabazitaxel as
528  potential therapeutic agents for G2 patients (Figure 4C).

529 Metatranscriptome analysis reveals difference in species richness and
530 distribution between control and COVID-19 lungs

531  Toidentify the microbial signature in patient lung tissue we performed a metatranscriptomic
532  analysis (Figure 1). Briefly, reads that did not align to the human genome (2.23 £ 0.46% ; Figure
533  S1C, Supplementary File 1) were filtered for low complexity sequences (Figure S1D,
534  Supplementary File 1) and bacterial rRNA, and then used for k-mer based phylogenetic
535 classification (Supplementary Table 5, Supplementary File 6). After taxonomic assignment, we
536  found significant loss in species richness in both G1 (Wilcoxon test; p-value = 4.6e-05) and G2
537 (p=8.6e-08) patients compared to normal controls, with no difference between the two
538  groups (Figure 5A). At the phylum level (Figure 5B), Actinobacteria were found to be less
539  abundant in both G1 and G2 samples compared to normal controls (p=6.2e-04 and p=1.5e-0
540 respectively). While only in G2 patients, we found depletion of Proteobacteria (p=4.2e-06)
541  and enrichment of Firmicutes (p-value=7.9e-06) (Figure S6A, Supplementary File 1).
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Figure 5. Lung microbiome of COVID-19 and control patients.

A) Box Plots showing alpha diversity (Shannon index) for N, G1, and G2 groups B) Stacked barplot
representing the distribution of bacterial taxon at the phylum level. C) Log2 of normalized read counts
for the bacterial species present in at least 3 samples and which were present in both G1 and G2 as
compared to the control group.

To look at changes in composition between COVID-19 patient groups at the species level and
reduce noise, we opted to include only those species with a minimum of 100 reads across at
least three samples. We found 20 species distributed between the three groups of patients
based on normalized counts per million (CPM) values. We found that some Staphylococcus
species such as S. cohnii were enriched in both groups of COVID-19 patients while other
Staphylococcus species, such as S. hominis, S. epidermidis and S. warneri, along with multidrug
resistant Chryseobacterium arthrosphaerae were enriched in the G1 group. Additionally, the
G1 patients were also enriched for the pathogenic Pasteurella multocida while the G2 patients
were enriched in other pathogens such as Klebsiella pneumoniae and Tsukamurella
paurometabola (Figure 5C).
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558 Analysis of the co-isolated SARS-CoV-2 genome and transcriptome

559  After phylogenetic classification of filtered microbial reads, only 6 out of the 31 (19.35%)
560 COVID-19 samples were found to have more than 100 reads assigned to SARS-CoV-2
561 (Supplementary table 6). Three samples with greater than 10X depth and above 99% coverage
562  were used for de novo genome assembly using SPAdes to obtain a single contig of length > 29
563  kbp (corresponding to the full length SARS-CoV-2 genome) from two samples and 11 contigs
564  spanning the entire genome were assembled from the third (deposited at GISAID accession
565 ID: EPI_ISL_4392854,EPI_ISL_4392853,EPI_ISL_4392851).
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567  Figure 6. Phylogenetic classification and analysis of recovered SARS-CoV-2 genomes

568 A). Phylogenetic analysis of the three high confidence SARS-CoV-2 genomes show that they all fall
569  within the same nextstrain clade 20A and are next to each other in the phylogenetic tree. B). Analysis
570  of the mutations from all three genomes show that non synonymous SNPs are the most common
571 mutation type observed while C > T base change was the most common mutation.

572  Consensus calling was used for variant calling by aligning to the Wuhan-Hu-1 reference strain
573 (Methods). Phylogenetic analyses assigned these sequences to the GISAID clade GH or
574  Nextstrain clade 20A in PANGO lineage B.1.36 (Figure 6A) circulating in Europe, Asia and North
575  America from September 2020 to March 2021 (Figure S6C, Supplementary File 1). Genomic
576  sequence analysis revealed that cov20 had 12, cov48 had 13 while cov55 had 14 mutations
577  with respect to the reference with 7 mutations were in the spike protein region. Most of the
578  mutations were SNP’s (56.41 %) while C > T was the most frequently observed substitution
579  (58.97%) (Figure 6B; Supplementary Table 6).

580  Given the depth of sequencing of SARS-CoV-2 virus in the three samples above, we were also
581 able to estimate viral gene expression (Figure S6B, Supplementary File 1). We found that
582  ORF10 had the highest expression level (mean TPM of 3.44 million) which was twice more
583  than any other gene and is consistent with another report (Zhang et al., 2020). ORF7b had the
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lowest expression (mean TPM of 0.12 million), while the viral N gene, encoding the
Nucleocapsid and a common target for RT-PCR diagnostic tests, had the second highest
expression (mean TPM of 1.64 million). Since normal samples are collected much before
COVID-19 pandemic (Methods) and sequenced in the same batch of COVID-19, very few reads
of COVID-19 appear in our normal samples, which are most probably a contamination during
library preparation and have been filtered out by setting higher detection threshold for
detecting COVID-19 in samples to at least 100 reads.
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502 Discussion

593  Dissecting the molecular biology of primary lung tissue is essential for understanding drivers
594  of mortality in severe COVID-19 infection to develop precision novel therapies and monitor
595 disease prognosis. However, most large-scale cohort studies have been limited to non-
596 invasive sampling from blood, nasopharyngeal fluid, and bronchoalveolar lavage to delineate
597 the effects of the disease in peripheral tissues (Sanchez-Cerrillo et al., 2020; M. Wu et al.,
598  2020; Xiong et al., 2020; Zhou et al., 2020) that consider all severe patients as a singular group.
599  Most studies on lung tissue from severe cases of COVID-19 profiled either FFPE samples with
600 compromised RNA or were underpowered with less than 18 patients (Nienhold et al., 2020;
601 Sanchez-Cerrillo et al., 2020; M. Wu et al., 2020; Xiong et al., 2020; Zhou et al., 2020). Here,
602  we describe the molecular pathology of severe COVID-19 patients in the largest cohort lung
603 tissue biopsies from 31 post-mortem patients compared with biopsies of non-cancerous
604 tissue from 10 lung cancer patients as a control group. We found that COVID-19 patient lung
605 tissue displayed two distinct molecular signatures defined by the lung transcriptome profiles.
606  The lung transcriptome did not show indication of bacterial or fungal co-infections in severe
607  COVID-19 patients.

III

608 The dominant “classical” signature found in 74% of patients displayed a large-scale
609 reorganization of gene expression characterized by loss in various parenchymal cells,
610 unfolded protein response, enhanced complement system supported by metabolic
611 reprogramming, Neutrophil upregulation, and activated T-cells depletion. The rarer “Cytokine
612  Release Syndrome” (CRS) signature found in 26% of patients showed minimal deviation in
613  gene expression from normal controls but was marked by the proliferation of NK-T-cells, and
614  enhanced production of cytokines such as IL1 and CCL19. A limitation of the comparisons
615  drawn for significantly downregulated genes for COVID-19 would be that those genes are
616  simply upregulated in cancer-adjacent normal tissues (due to them being upregulated in
617  cancer) and is acknowledged as thus. TREM2+ DCs, which play a role in T-cell priming and are
618 found in the BALF of severe COVID-19 patients(M. Liao et al., 2020), were enriched in the
619  classical signature but depleted in the CRS signature. Damage-associated M1 macrophage
620  signature was enhanced in the dominant group and was depleted in the rare group while the
621 reverse pattern was seen for the protective M2 macrophages. Although a previous study by
622 Nienhold et al (Nienhold et al., 2020) also described two distinct subtypes of COVID-19 based
623  on the expression of Interferon stimulated genes (ISG); the two patient subtypes identified in
624  this study could not be segregated based on ISG expression.

625  We propose two models to explain the disease signatures based on complement activation
626 and failure to launch an adaptive immune response. The dominant signature represents
627  “classic” COVID-19 patients with an acute infection due to high initial viral load, as evidenced
628 by sustained unfolded protein response (Chan, 2014), leading to hyperinflammation through
629 the complement system activating neutrophils. This hyperinflammation leads to lung damage
630  (Figure 2B) and recruitment of M1 macrophages. Also, these patients are unable to mount an
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631  adaptive immune response as evidenced by the depletion of T-cells, potentially due to direct
632  viral infection, or T-cell exhaustion due to alternate metabolic flux. The rarer signature may
633  represent patients with cytokine release syndrome (Henderson et al., 2020; Hu et al., 2021;
634 Tang et al., 2020) at low viral load, who are unable to deploy the complement system and
635 depend oninnate immunity through NK-T-cells. These patients may have characteristic “lung
636  damage”, repaired by M2 macrophages. However, these patients too are unable to mount an
637  adaptive immune response due to lymphopenia or diminished T-cell priming as a result of
638 depleted TREM2* DCs.

639  Although both groups of COVID-19 patients were given the same treatment, they displayed
640 differences in the infection spectrum. Patients with the rare signature were specifically
641  enriched for Staphylococcus epidermidis and Pasteurella multocida despite administration of
642  broad spectrum antibiotics such as Azithromycin. Effect of broad spectrum antibiotics can be
643  perceived from the reduced species diversity in severe COVID-19 patients. Further, we found
644  that the rare signature patients may have impaired immunity to deal with such infections
645 through downregulation of genes involved in CCR6 dependent bactericidal activity (DEFB1)
646 and the downregulation of de novo biosynthesis of steroids from cholesterol (HSD17B6,
647 GREMZ2, FADS6, AADAC). These characteristic changes in the lung microbiome warrant further
648 investigation into the contribution of nasopharyngeal and airway microbiota in COVID-19
649  patients with lung complications.

650 It must be noted that the microbiome of lung tissue collected during aseptic surgery of cancer
651 patients will significantly differ from postmortem microbiome of COVID-19 patients.
652  Regardless, our results indicate that there is a dysbiosis in lung tissue of patients with severe
653  COVID-19 reinforced by the fact that lung tissues extracted in sterile conditions (Normal
654  samples) have more alpha diversity than the COVID-19 postmortem lung tissues.

655  Despite most patients clearing the SARS-CoV-2 virus, we were able to recover the full genome
656 from 3 patients that converged to the same consensus indicating clonal viral expansion. Upon
657  analyzing the SARS-CoV-2 genome, we found that the ORF10 non-coding gene, with a low
658 mutation rate and no selection pressure (Nguyen et al., 2021), had the highest gene
659  expression with twice the number of transcripts as compared to the N gene, suggesting its
660 potential use as a novel target for RT-PCR testing. Also the 3 genomes recovered are from the
661 same lineage (Figure 6). With 3 genomes, one cannot significantly conclude whether these
662  strains have led to different trajectories in the two groups of patients and if we had been able
663  to retrieve complete genome sequences for more samples, we could interpret the cause in
664  accordance with the strain of the virus.

665 In conclusion, our work supports further clinical investigation correlating prognosis by
666  stratifying patients based on the circulating molecules involved in complement activation
667 shown recently (Ma et al., 2021), or characteristic cytokines such as CCL19, implicated in
668  COVID-19 mortality (Balnis et al., 2021). Such non-invasive stratification of patients can be
669 used to test the efficacy drugs identified in our study that reverse the molecular changes for
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III

670 the two patient signatures such as cabazitaxel to treat “classica
671  treat “CRS” patients .

patients or talampicillin to

672  This is the first study analyzing the lung transcriptome in the Indian population, one of the
673  worst affected countries in the world with over 400,000 COVID-19 mortalities. Although about
674 1in 7 people in the world comes from India, data from Indian populations is often missing
675 from such molecular investigations of diseases and COVID-19 is no different. Our study
676  bridges the gap of diversity in sampling various populations across the world that are affected
677 by the pandemic. This is particularly of interest as in our recent work we demonstrate a
678  significant contribution of genetics towards mortality in severe COVID-19 (Prakrithi et al.,
679  2021). Therefore, we conclude by hypothesizing that the heterogeneity in the molecular
680  signature of severe COVID-19 patients may be driven by patient genetics and can be used for
681  candidate gene prioritization.

682
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