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1 

Abstract 28 

 29 
The precise molecular mechanisms behind life-threatening lung abnormalities during severe 30 
SARS-CoV-2 infections are still unclear. To address this challenge, we performed whole 31 
transcriptome sequencing of lung autopsies from 31 patients suffering from severe COVID-19 32 
related complications and 10 uninfected controls. Using a metatranscriptome analysis of lung 33 
tissue samples we identified the existence of two distinct molecular signatures of lethal 34 
COVID-19. The dominant “classical” signature (n=23) showed upregulation of unfolded 35 
protein response, steroid biosynthesis and complement activation supported by massive 36 
metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) 37 
potentially representing “Cytokine Release Syndrome” (CRS) showed upregulation of 38 
cytokines such IL1 and CCL19 but absence of complement activation and muted inflammation. 39 
Further, dissecting expression of individual genes within enriched pathways for patient 40 
signature suggests heterogeneity in host response to the primary infection. We found that 41 
the majority of patients cleared the SARS-CoV-2 infection, but all suffered from acute 42 
dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus 43 
cohnii in “classical” patients and Pasteurella multocida in CRS patients. Our results suggest 44 
two distinct models of lung pathology in severe COVID-19 patients that can be identified 45 
through the status of the complement activation, presence of specific cytokines and 46 
characteristic microbiome. This information can be used to design personalized therapy to 47 
treat COVID-19 related complications corresponding to patient signature such as using the 48 
identified drug molecules or mitigating specific secondary infections.   49 
 50 
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Introduction 52 

Despite numerous interventions, the novel coronavirus (SARS-CoV-2) continues to cause 53 
significant morbidity and mortality throughout the world. As of mid-August 2021, India alone 54 
has diagnosed over 32.2 million people with this virus, with over 400,000 fatalities (Dong et 55 
al., 2020). Though COVID-19 is believed to progress often asymptomatically or with only mild 56 
to moderate symptoms, primarily fever and dry cough, in many instances it can exacerbate 57 
acute pneumonia, especially in susceptible patients such as older individuals with metabolic, 58 
cardiovascular, and/or pulmonary comorbidities (Mehrian-Shai, 2020; Tay et al., 2020).  59 

As it has been reported, SARS-CoV-2 enters the host cell using Angiotensin-Converting 60 
Enzyme-2 (ACE2) receptor, which binds to the viral spike (S) protein’s receptor binding 61 
domain (RBD) (Hoffmann et al., 2020). The viral genome is released into the cytoplasm once 62 
the viral envelope fuses with the host cell membrane in a Toll-like receptor-7 (TLR-7) 63 
dependent manner (Ahmadpoor & Rostaing, 2020). The virus uses its own RNA dependent 64 
RNA polymerase enzyme to replicate its genome (Sexton et al., 2016; Simmons et al., 2013). 65 
The replication-transcription complex (RTC) is formed in a double-membrane vesicle (Sawicki 66 
& Sawicki, 2005) by two large polyproteins (pp1a and pp1b), which encode non-structural 67 
proteins (Millet & Whittaker, 2015). The continuous replication by the RTC results in the 68 
formation of many sub-genomic RNAs (Hussain et al., 2005) which code for structural and 69 
auxiliary proteins. Virus assembly and budding takes place in smooth-walled vesicles in the 70 
endoplasmic reticulum, Golgi intermediate compartment (ERGIC) (Masters, 2006), and finally 71 
the virion-containing vesicles fuse with the plasma membrane to release the virus by 72 
exocytosis. 73 

Many studies have established a strong link between the regulation of the innate immune 74 
response, the development of adaptive immunity, and the severity of COVID-19 (Mason, 75 
2020; Mehrian-Shai, 2020; Tay et al., 2020). A hyper-inflammatory response was found in 76 
patients' blood, nasopharyngeal samples, and bronchoalveolar lavage fluid, as evidenced by 77 
increased levels of cytokines such as IL-6, TNF-a, and MCP-1 that may lead to a severe acute 78 
respiratory syndrome (SARS), extensive coagulopathy, and multiorgan failure (Mason, 2020; 79 
Mehrian-Shai, 2020; Tay et al., 2020). Therefore, patients with severe COVID-19 require 80 
oxygen supplementation and intensive care, potentially exposing them to secondary 81 
opportunistic infections (Clancy & Nguyen, 2020; Friedland & Haribabu, 2020; Rawson et al., 82 
2020; Ripa et al., 2021). As a result, current guidelines suggest the use of anticoagulant, anti-83 
inflammatory, and antiviral medication along with broad-spectrum antibiotics and antifungals 84 
in patients with suspected or confirmed COVID-19 (Clancy & Nguyen, 2020; Friedland & 85 
Haribabu, 2020; Mehrian-Shai, 2020; Rawson et al., 2020). However, even with the same 86 
clinical intervention, patients display distinct trajectories with vastly different recovery times, 87 
clinical outcomes, or mortality (“Detrimental Effect of Diabetes and Hypertension on the 88 
Severity and Mortality of COVID-19 Infection: A Multi-Center Case-Control Study from India,” 89 
2021). The molecular origin of such diverse outcomes are poorly understood in the context 90 
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of lung pathophysiology, and only a handful of underpowered primary datasets have been 91 
published (Nienhold et al., 2020; Sanchez-Cerrillo et al., 2020; M. Wu et al., 2020; Xiong et al., 92 
2020; Zhou et al., 2020).  93 

This situation is further complicated by the emergence of coinfections in COVID-19 patients 94 
due to immunosuppression that may cause mucormycosis (Gupta et al., 2021; Moona & Islam, 95 
2021; Prakash & Chakrabarti, 2021; Sen et al., 2021). Studies during previous SARS and MERS 96 
epidemics showed individuals receiving invasive mechanical ventilation were more likely to 97 
develop secondary infections and have a higher fatality rate (Feldman & Anderson, 2021). 98 
Recent investigations indicate that coinfections and/or superinfections occur at varying 99 
frequencies in oral, blood, and urine samples from COVID-19 patients (Alhumaid et al., 2021; 100 
Charalampous et al., 2020; Langford et al., 2020; Mostafa et al., 2020; Ripa et al., 2021; 101 
Rodriguez et al., 2021; Silva et al., 2021; Vijay et al., 2021). However, little is known about the 102 
prevalence of these pathogens and their exact molecular relevance in the human lung tissue 103 
during COVID-19 infection. Given that most COVID-19 deaths are due to pneumonia-related 104 
complications, it is critical to identify pathogens that co-infect severe COVID-19 patients and 105 
perform targeted therapeutic interventions. 106 
 107 
In this work, we perform whole transcriptome sequencing of autopsy lung tissue from 31 108 
patients who died due to severe COVID-19 related complications, and compared them to lung 109 
biopsies from 10 control patients who are not infected with SARS-CoV-2. Using 110 
metatranscriptomics, we determine characteristic changes to the host-transcriptome and 111 
unique microbial diversity in the lung parenchyma of severe COVID-19 patients. We map the 112 
host response at the level of genes, pathways, and change in cell-type abundances while 113 
identifying unique microbiome signatures driving dysbiosis in severe COVID-19  patients. 114 
Further, we correlate these findings with clinical features of the disease and dissect the 115 
potential molecular etiology of the disease that may help explain diverse outcomes leading 116 
to complications and suggest potential personalized therapeutic interventions.  117 
  118 
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Methods 119 

Ethics Statement 120 
The study followed the standards and principles established by India's Directorate General of 121 
Health Services and Drug Controller General. Ethics approval was granted in writing from the 122 
Institute Ethics Committee of the All India Institute of Medical Sciences, New Delhi, India (IEC-123 
538/05.06.2020, OP-28/05.02.2021). Consent was acquired from each patient's personal 124 
and/or family members for autopsy, biopsy, and sample collection, in accordance with the 125 
Ethics approval. 126 

Patients and sample collection 127 
This retrospective study examined 60 consecutive severe COVID-19 patients’ autopsies 128 
performed at the All India Institute of Medical Sciences in New Delhi, India, between 129 
September 2020 and December 2020 for patients who spent the last few days of their lives in 130 
the Intensive Care Unit (ICU). Minimally invasive post-mortem tissue sampling was performed 131 
in less than an hour on individuals with premortem PCR-confirmed SARS-CoV-2 infection at a 132 
biosafety level 3 post-mortem facility. The control (uninfected) lung samples (n = 10) 133 
represent healthy tissue taken from patients with lung cancer as part of standard medical 134 
evaluation during biopsy and/or surgical resection (>5cm from site of tumor from early stage 135 
Non-small cell lung cancer patients undergoing curative surgical resection). These control 136 
samples have been collected between August 2017 and July 2019. Paracancerous lung tissues 137 
have been taken as control for COVID-19 samples in other studies (Leng et al., 2020; S. Wang 138 
et al., 2021). Lung tissue was harvested from the parenchyma region in accordance with a 139 
standard protocol for histology and snap-frozen immediately, for RNA extraction. Lung tissues 140 
were fixed in 10% formalin, cut to the proper size and shape, embedded in paraffin for 141 
histological examination, or treated with TRIzol (Life Technologies), snap-frozen in liquid 142 
nitrogen, and kept at -80oC for RNA extraction. 31 out of 60 severe COVID-19 patient samples 143 
were chosen for analysis based on RNA yield and RNA quality (average RNA Integrity Number 144 
= 6.09). “Severe” COVID-19 was defined according to Ministry of Health and Family Welfare, 145 
Government of India guidelines (Government of India & Ministry of Health and Family 146 
Welfare, 2021). The guidelines define severe patients as the ones “characterized by a 147 
dysregulated immune response with hyperinflammation with subsequent development of 148 
ARDS”. These patients would be expected to have “acute respiratory infection with a history 149 
of fever or measured fever of ≥38 C°; and cough; with onset within the last 10 days; and 150 
requires hospitalization”. According to the definition of “severe” in the guidelines, the patient 151 
would present with severe pneumonia or acute respiratory distress syndrome or sepsis or 152 
septic shock. De-identified clinical information was extracted from patients medical records 153 
(Supplementary Table 1).   154 
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Histopathological evaluation 155 
Formalin-fixed, paraffin-embedded (FFPE) lung tissue blocks were processed and stained with 156 
hematoxylin and eosin using a standardized procedure. Two thoracic pathologists (DJ and AN) 157 
independently evaluated the slides. The following features: the extent of lung damage, injury, 158 
inflammation, presence or absence of hyaline membrane formation, lymphocyte infiltration, 159 
organizing pneumonia, alveolar fibrin deposition, fibrosis, and histologic features of type 2 160 
pneumocyte hyperplasia, were noted and documented. 161 

RNA extraction, library preparation, and sequencing 162 
Total RNA was extracted from lung tissue using the Maxwell automated instrument and the 163 
Maxwell® RSC Viral Total Nucleic Acid Purification Kit (Promega). The concentration of RNA 164 
and quality were measured with HS Total RNA 15nt.methods (Agilent) or Qubit RNA HS Assay 165 
(Thermofisher). The NGS library was prepared after cytoplasmic and mitochondrial rRNA 166 
depletion, using TruSeq Stranded Total RNA Gold kit per manufacturers' instructions 167 
(Illumina, 20020598). The libraries were then sequenced on an Illumina NovaSeq6000 168 
platform with 2x150 base pair reads (details of statistics given in Figure S1, Supplementary 169 
File 1). 170 

Host transcriptome analysis 171 
Raw Illumina sequencing reads were checked for quality using FastQC (version 172 
0.11.9)(Babraham Bioinformatics - FastQC A Quality Control Tool for High Throughput 173 
Sequence Data, n.d.) followed by adapter clipping and trimming using Trimmomatic (version 174 
0.39)(Bolger et al., 2014) with default parameters. Trimmed reads were then aligned to the 175 
human reference genome (GRCh38, GENCODE v36)(Frankish et al., 2019; Schneider et al., 176 
2017) using STAR aligner (version 2.7.8a)(Dobin et al., 2013). FeatureCounts (subread package 177 
version 2.0.1)(Y. Liao et al., 2014) was used to quantify gene expression. Quality checks were 178 
performed at each step using the MultiQC tool (version 1.10.1)(Ewels et al., 2016). Differential 179 
gene expression analysis was performed using the DESseq2 package (version 1.30.0)(Love et 180 
al., 2014) in R (version 4.0.3). The analysis was performed by removing the effects of 181 
confounding variables such as age and gender (Supplementary Table 1, Supplementary File 2) 182 
using the appropriate design formula. Genes with BH-adjusted p-value < 0.05 and absolute 183 
Log2 fold change greater than 1 in either direction were taken as significantly differentially 184 
expressed and Shrunken Log2 fold change values were used for further analysis. 185 
ClusterProfiler package (version 3.18.0)(Yu et al., 2012) was used for the Gene Ontology (GO) 186 
term Over Representation Analysis (ORA) of differentially expressed genes. GSVA package 187 
(version 1.38.2)(Hänzelmann et al., 2013) was used for all GSVA analysis and heatmaps of 188 
GSVA enrichment scores were visualized using the package pheatmap (version 189 
1.0.12)(Pheatmap: Pretty Heatmaps, n.d.). Enriched gene sets had a corresponding change in 190 
GSVA enrichment scores with p < 0.05 using Wilcoxon test between the two groups 191 
compared. Boxplots and other visualizations were made using the ggplot2 package (version 192 
3.3.3)(Wickham, 2011). All statistical tests were performed using functions from the base or 193 
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stats package in R. For identification of transcription factors driving gene expression, we used 194 
the Enrichr tool (Kuleshov et al., 2016) using lists of genes upregulated in severe COVID-19 195 
samples (and sub-groups as identified in the paper) when compared with controls.  196 

Curation of gene lists 197 
Gene lists for GSVA were manually curated from various sources (Supplementary Table 2, 198 
Supplementary File 3).  GSVA plots of Cell Types are based on published gene lists (Daamen 199 
et al., 2021). Gene lists for fibrosis and ECM (Extracellular Structure Organization) were taken 200 
from Wu et al., 2020 (M. Wu et al., 2020). Surfactant protein gene list was referenced from 201 
Islam and Khan, 2020(Islam & Khan, 2020). Gene lists from interferons, chemokines, 202 
interleukins, their receptors and other innate immune related pathways were sourced from 203 
HGNC (Vasiliou et al., 2021), ImmPort (Bhattacharya et al., 2018) and published gene lists 204 
(Daamen et al., 2021). KEGG pathways were utilized from MSigDB(Liberzon et al., 2011). Gene 205 
list for host proteins which interact with SARS-CoV-2 was referenced from Gordon et al., 2020 206 
(Gordon et al., 2020). 207 

Cell deconvolution analysis 208 
Multi-subject Single cell deconvolution (MuSic_0.2.0)(X. Wang et al., 2019) was used to 209 
predict the relative composition of different cell types from bulk RNA-Seq samples using 210 
existing single cell RNA-seq (scRNA-Seq) dataset as reference. From the relative composition 211 
of cell types, “Hedges' g effect size” is measured using effsize_0.8.1 R package (Torchiano, 212 
2016). Changes in cellular proportions comparing G1 vs N and G2 vs N were plotted for only 213 
those cell types that gave finite values in both G1 and G2, using a “scatterplot” using (ggplot2) 214 
(Wickham, 2011) R package. 215 

Connectivity Map (CMap) analysis  216 
Connectivity Map (CMap)(Lamb et al., 2006) analysis was performed using the online portal 217 
https://clue.io/cmap to determine perturbagens (potential drugs reversing the aberrant gene 218 
expression) using the L1 version of CMap with L1000 data repository, Touchstone data set as 219 
a benchmark for assessing connectivity among perturbagens and Individual query option. The 220 
pertubagens were further filtered for potential therapeutic drugs.   221 

Metatranscriptomic analysis  222 
Reads not mapped to the human genome were filtered to remove low complexity 223 
(entropy>=0.7) , human rRNA and mitochondrial reads using BBMAP toolkit (version 224 
38.90)(Bushnell, 2014). The filtered unmapped reads were then input into Seal (from the suite 225 
of bbtools) and binned into bacterial rRNA (using SILVA bacterial rRNA database)(Quast et al., 226 
2013), human genome (GRCh38) and microbial  bin. Taxonomic classification of reads was 227 
carried out on the microbial bin using Kraken2 (Wood et al., 2019) using organisms with at 228 
least 100 reads at the genus level for classification and confidence level of 0.3. The alpha 229 
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diversity (Shannon diversity index) and bacterial taxon abundance was assessed using the 230 
PhyloSeq package (version 1.34.0)(McMurdie & Holmes, 2013).  231 

SARS-CoV-2 genomic and transcriptomic analysis 232 
All COVID-19 samples with detectable SARS-CoV-2 reads were taken for further analysis. 233 
Filtered microbial reads from these samples were aligned against the SARS-CoV-2 reference 234 
genome(F. Wu et al., 2020) using BBMap (version 38.9)(Bushnell, 2014). Depth and coverage 235 
of the viral genome were obtained using samtools (version 1.9)(Li et al., 2009). Full length 236 
genomes were assembled for samples with high depth and coverage using SPAdes. The SARS-237 
CoV-2 genomes were classified using GISAID (https://www.gisaid.org/), PANGO database 238 
(https://cov-lineages.org/) and nextclade (https://clades.nextstrain.org/) and were placed in 239 
a phylogenetic tree created using nextstrain (https://nextstrain.org/ ). Information on 240 
mutation types and frequency was obtained from http://giorgilab.unibo.it/coronannotator/. 241 
Additional information on strain B.1.36 was obtained from https://outbreak.info/situation-242 
reports?pango=B.1.36. Transcriptome analysis was performed by aligning filtered viral reads 243 
to the reference strain (Wuhan-Hu-1) using Bowtie2 (Langmead & Salzberg, 2012).  Read 244 
counts for the viral genes were obtained using featureCounts and normalized to Transcripts 245 
per Million (TPM) values.  246 

Data availability 247 

All the data used in this study, which includes whole transcriptome sequencing raw data, 248 
filtered expression matrix that supports the findings of this study can be accessed in GEO 249 
under the accession number GSE183533. Further clinical annotation of the samples may be 250 
available upon reasonable request from the corresponding author DJ. 251 
 252 
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Results 254 

To characterize the pathology of SARS-CoV-2 infection, postmortem lung tissue samples were 255 
collected from 31 patients who had been diagnosed with severe COVID-19. As a control, 10 256 
uninfected normal lung samples were taken from - patients diagnosed with cancer as part of 257 
standard surgery procedure (Figure 1). Among the 41 samples there were 19 (46%) females 258 
and 22 (54%) males. The 10 normal samples had 6 females and 4 males, while in the 31 COVID-259 
19 samples there were 13 females and 18 males. The mean age for all 41 COVID-19 patients 260 
was 51.65 ± 15.27 years. The mean age for controls was 51 ± 16.22 years, while the COVID-19 261 
patients were 57± 15.23 years (Table 1). Using nasopharyngeal swab PCR, all cases tested 262 
positive for SARS-CoV-2. At the time of onset, the most common symptoms were shortness 263 
of breath, fever, and cough.  264 

265 
Figure 1. Schematic for histopathological and metatranscriptomic analysis pipeline.  266 
Lung tissue biopsy samples were collected from post mortem COVID-19 affected and control patients. 267 
The tissue samples were first evaluated for clinical  physiology. The host rRNA was depleted prior to 268 
NGS library prep,  the samples were then sequenced at an average depth of ~47 million reads per 269 
sample. The sequence reads were filtered based on read quality. Filtered reads were used for 270 
differential gene expression, virome and microbiome profiling. 271 
 272 
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Table 1. Patient clinicopathological details 274 

Characteristics N or mean % or range 

COVID-19 cohort (60 patients)     

  Age 57y 28-77y 

  Sex M 18, F13 (1.4:1)   

  Hospitalisation time 11.6d 1-38d 

  Major comorbidities    

    Diabetes 9 29.03% 

    Cardiovascular complications  14 45.16% 

    Respiratory complications  4 12.90% 

    Cancer 5 16.12% 

    Liver or kidney complications  15 48.38% 

    Thyroid complications 3 9.67% 

    Patients with no prior comorbidities 2 6.45% 

  Most common lung pathological features    

    Exudative phase of diffuse alveolar damage  9 29.03% 

    Organizing phase diffuse alveolar damage 6 19.35% 

    Acute bronchopneumonia   3 9.67% 

    Co-existing acute bronchopneumonia with DAD 5 16.12% 

    Moderate inflammatory changes  5 16.12% 

    No changes/tissue sample 3 9.67% 

Control cohort (10 subjects)     

  Age 51y 21-69y 

  Sex M 4, F6 (0.6:1)   

  Patients with smoking history 6   

 275 
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The major cause of mortality was respiratory failure or multiorgan failure affecting the 276 
respiratory system. Consistent with a previous report (Carsana et al., 2020), fatal pulmonary 277 
tissue of all COVID-19 patients was highly abnormal, with evidence of diffuse alveolar damage 278 
(DAD), in addition to widespread hyaline membrane formation (the pathological hallmark of 279 
acute respiratory distress syndrome), acute lung injury, bronchopneumonia, and thrombosis 280 
being frequent (Supplementary Table 1, Supplementary File 2). COVID-19 afflicted patients' 281 
lungs also show varying degrees of an inflammatory infiltrate.    282 

To dissect the molecular aberrations underlying fatal COVID-19 cases, 41 lung tissue samples 283 
(31 cases and 10 control) were subject to whole transcriptome analysis using RNA-284 
sequencing. The average number of reads ranged from 13.3 million to 115 million with an 285 
average of 46.9 million reads per sample. The range for the 10 normal samples is 35.4 million 286 
to 115 million with a mean of 58.9 million reads. While the range for 31 COVID-19 samples 287 
was slightly lower, at 13.3 million to 67.2 million with an average of 43.1 million reads, 288 
potentially owing to lung damage (Figure S1A, Supplementary File 1). The RNA-seq data was 289 
aligned to the human reference genome GRCh38 (gencode v36) to summarize gene counts. 290 
The alignment rate ranged from 60.0% to 89.6% with a mean of 83.72 ± 6.72% (Figure S1B, 291 
Supplementary File 1). 292 

 293 
Figure 2. Differential expression and Histopathological analysis of COVID-19 samples  294 
A) PCA plot based on gene expression counts across COVID-19 patients and Normal controls (blue) 295 
identified two groups of patients G1 (red) and G2 (green) samples B) Representative histological 296 
images of postmortem lung tissue sections for two patient groups. G1 group (top), displayed (1) acute 297 
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organizing pneumonia (x200), (2) microthrombi (CD61 immunostain, x400). G2 group (below), 298 
displayed (3) diffuse alveolar damage with hyaline membranes (200x) and (4) acute bronchopneumonia 299 
with microabscesses (x200). C) Volcano plot describing the fold changes and FDR adjusted p-values 300 
between two groups of COVID-19 patients v/s Normal controls with down regulated genes in blue and 301 
upregulated genes in red. Top 10 DE gene names are highlighted.  D)Variance-stabilizing transformed 302 
(vst) gene expression profile of top 50 significantly DE genes between control and two groups of COVID-303 
19 patients. 304 

Lung transcriptome signature in severe COVID-19  305 

To interpret the host response, Differential Expression (DE) analysis was performed using the 306 
DESeq2 package in R accounting for confounding variables such as age and gender. Visualizing 307 
the gene level data per sample in a PCA plot we found that controls and a majority of COVID-308 
19 samples clearly segregated on the first principal component (explaining 78% variance) 309 
except for 8 COVID-19 samples that clustered with normal samples (cov20, cov23, cov27, 310 
cov30, cov50, cov53, cov55, cov60). Henceforth, we refer to these 8 samples as G1 (group 1) 311 
and the rest of the COVID-19 samples as G2 (group 2), which can be seen colored differently 312 
in the PCA plot (Figure 2A).  Next, we tried to check whether the gene expression pattern of 313 
G1 and G2 samples could be explained by the presence of any comorbidities. However, our 314 
analysis (Supplementary Table 1, Supplementary File 2) found no significant correlations 315 
(Figure S2 A-F, Supplementary File 1). 316 

We identified a total of 1,856 significantly differentially expressed genes (DEGs) between 317 
normal and all COVID-19 samples, with 864 genes significantly upregulated (Methods) and 318 
992 genes significantly downregulated (Methods) in COVID-19 patients (Figure 2C). DE 319 
analysis between the G1 and Normal samples revealed the presence of 263 significant DEGs, 320 
with 56 genes significantly upregulated and 207 genes significantly downregulated, whereas, 321 
in the case of G2 group and normal samples, there were 3,094 DEGs, out of which 1,363 were 322 
significantly upregulated and 1,731 were significantly downregulated (Supplementary Table 323 
3, Supplementary File 4). Between the two COVID-19 groups G2 and G1,  there were 1,433 324 
DEGs, out of which 1,314 were significantly upregulated and 119 were significantly 325 
downregulated (Figure 2C). Further differential expression analysis of G2 and G1 may be 326 
found in Supplementary Figure S7 (Supplementary File 1). A heatmap plotting the variance 327 
stabilized (vst) gene expression of the top 50 differentially expressed genes between all 328 
COVID-19 and normal samples clearly divides the samples into two groups and reaffirms the 329 
presence of two distinct categories of COVID-19 samples with gene expression of G1 matching 330 
that of normal samples (Figure 2D). 189 genes were differentially expressed in both G1 vs N 331 
and G2 vs N while 2899 genes were only differentially expressed in G2 vs N and 74 genes were 332 
only differentially expressed in G1 vs N (Supplementary Table 3, Supplementary File 4).  333 

The most significantly upregulated genes in G1 and G2 include Orosomucoid 1 (ORM1 or 334 
better known as Alpha-1-acid glycoprotein 1 or AGP1), Orosomucoid 2 (ORM2 or Alpha-1-acid 335 
glycoprotein 2 or AGP2), Apolipoprotein B (APOB), ALB (Figure 2C, Figure 2D). Orosomucoid 336 
is known to be regulated by TNF beta, IL-1 beta, IL-6 and IL-6 related cytokines (Baumann et 337 
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al., 1989; Fournier et al., 2000), along with immuno-modulating effects like inhibiting 338 
neutrophil migration (Mestriner et al., 2007) and has been employed as biomarker in COVID-339 
19 (Shu et al., 2020). APOB has been observed to be upregulated in enterovirus 71 infection 340 
(Leong & Chow, 2006) and elevated levels in the blood of COVID-19 patients (Pushkarev et 341 
al., 2021). ALB levels in blood may be used as a biomarker for measuring COVID-19 severity 342 
(Liang et al., 2021).  343 

Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 (ITIH3), Hemopexin (HPX), Vitronectin (VTN), 344 
Angiotensinogen (AGT), SERPINC1 and CYP2E1 are certain genes that are highly upregulated 345 
in G2 when compared to normal samples (Figure 2C, Figure 2D). ITIH3 has been indicated as 346 
one of the plasma mortality markers for COVID-19 (Demichev et al., 2020; Völlmy et al., 2021). 347 
Angiotensinogen (AGT), is a hormone precursor involved in blood pressure regulation cascade 348 
that is implicated as potential biomarker and linked to severity of COVID-19 (Kouhpayeh et 349 
al., 2021; Sriram & Insel, 2020). VTN levels, from platelets, were observed to be high in case 350 
of SARS-CoV pneumonia as well (Lazzaroni et al., 2021). It has been noted that CYP2E1 has 351 
played a role in oxidative stress in Hepatitis C (Smirnova et al., 2016) and increased levels of 352 
the same have been associated with higher risk of adverse events, such as hepatotoxicity, 353 
especially in potential COVID-19 patients with obesity and Metabolic associated fatty liver 354 
disease (MAFLD) as a comorbidity (Ferron et al., 2020). 355 

Some of the top 10 genes upregulated in G1 are Fibrinogen Beta Chain (FGB), Serum Amyloid 356 
A1 (SAA1), Serum Amyloid A2 (SAA2), Apolipoprotein A2 (APOA2), Apolipoprotein C3 357 
(APOC3), AL008726.1 (Figure 2C). Increased abundance of Fibrinogen-β (FGB) also found in 358 
SARS-CoV-2 infected plasma exosomes is known to stimulate pro-inflammatory cytokine 359 
signaling (Sur et al., 2021). Proteomics studies showed the signatures of cytokine production 360 
and interferon-γ response, and increased level of SAA1 in the serum of COVID-19 patients 361 
(Singh et al., 2021). SAA2 may be a predictor of severity of COVID-19 (Papoutsoglou et al., 362 
2021).  363 

Small Nucleolar RNA, H/ACA Box 74B (SNORA74B), Small Nucleolar RNA, H/ACA Box 53 364 
(SNORA53), RNU5A-1, FOSB and Cystin 1 (CYS1) are significantly downregulated in both G1 365 
and G2, when compared to normal (Figure 2C, Figure 2D). Downregulation of CYS1 has been 366 
observed in another study for SARS-CoV, wherein low levels of CYS1 have been linked to 367 
activation of NF-kappa-B and subsequent cytokine storm (Zolfaghari Emameh et al., 2020). 368 
FOSB inactivation in mast cells has been shown to increase the inflammatory response 369 
(Duque-Wilckens et al., 2021) while contradictorily also reported to be upregulated in single 370 
cell analysis of CD4+ T cells of severe COVID-19 patients (Kalfaoglu et al., 2020).  371 

SNORD17, ITLN2, CAVIN2, PLAC9 and SIGLEC6 are some of the genes highly downregulated in 372 
G2, along with SCARNA5, FABP4 and Pseudogenes (namely RN7SKP255, RN7SKP9, RN7SKP80) 373 
being highly downregulated in G1 (Figure 2C). Interlectin 2 (ITLN2) was found to be 374 
downregulated in a study of 22 blood samples of severe COVID-19 patients (Vastrad et al., 375 
2020) as well, as seen in G2. Contrary to the trend observed in G2, in a single cell sequencing 376 
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study of 16 COVID-19 patients, megakaryocyte progenitor cells/platelets showed increased 377 
expression of CAVIN2. SIGLEC6 belongs to family of Sialic acid binding immunoglobulin-like 378 
lectin proteins, out of which SIGLEC1, SIGLEC7 and SIGLEC10 have been implicated to play a 379 
role in COVID-19 (Doehn et al., 2021; Saheb Sharif-Askari et al., 2021). Low levels of Fatty acid-380 
binding protein 4 (FABP4) in BALF macrophages of patients suffering from severe COVID-19, 381 
has been linked to declining lung function (M. Liao et al., 2020). 382 

 383 
Figure 3. Gene Ontology enrichment, Gene Set Variation Analysis (GSVA) and Transcription 384 
Factor analysis between COVID-19 groups G1, G2 and normal control patients 385 
A) GO enrichment map with nodes representing biological processes, edges representing overlapping 386 
gene sets. (top) up-regulated biological processes in G2 vs Normal individuals or ‘N’ (middle) down-387 
regulated biological processes in G2 vs N (bottom) up-regulated biological processes in G1 vs N. B) 388 
Heatmap of GSVA depicts profiles of curated gene sets (Daamen et al., 2021),(Vasiliou et al., 389 
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2021),(Bhattacharya et al., 2018) across all the samples in our study. C) Barplots indicate the 390 
transcription factor targets enriched in significantly upregulated genes in G1 vs N, upregulated genes 391 
in G2 vs N, downregulated genes in G2 vs N. D) Boxplots of Log transformed vst-normalized gene 392 
counts representing differences among G1, G2 and normal sample groups for HNF1A and HNF4A. 393 

To identify biological processes implicated in the host response to SARS-CoV-2, we performed 394 
a Gene Ontology (GO) analysis of DEGs. The top 60 enriched GO terms  (adjusted p-value < 395 
0.05) were organized into a network of modules with edges connecting overlapping gene sets 396 
(Figure 3A). Key modules enriched in the G1 group included lipid metabolism, negative 397 
regulation of coagulation, and neutrophil-mediated immunity reported  previously (Sanchez-398 
Cerrillo et al., 2020; M. Wu et al., 2020; Xiong et al., 2020; Zhou et al., 2020). Key modules 399 
enriched in the G2 group were related to complement activation, xenobiotic metabolism, and 400 
peroxisomal protein transport as reported previously (Knoblach et al., 2021). No enriched 401 
modules were found downregulated in the G1 group while modules related to cilium 402 
formation, synapse formation, and membrane potential were downregulated in the G2 group 403 
suggesting suppression of neuronal processes as reported elsewhere (M. Wu et al., 2020). 404 

Targeted gene set enrichment analysis using GSVA  405 

To gain a better understanding of the regulation of key pathways identified in GO analysis we 406 
performed gene set variation analysis (GSVA). First, we analyze curated lists from HGNC and 407 
ImmPort (Supplementary Table 2, Supplementary File 3) of immune-related pathways, 408 
interferons, chemokines, interleukins and their receptors (Gene Group, n.d.). Expression of 11 409 
of these gene lists was significantly altered with “Chemokine Ligands” altered only in G1 and 410 
7 of the gene lists exclusively altered in G2 (Figure 3B). Genes corresponding to remaining 3 411 
genelists namely, Interleukin receptors, Interferon Induced Transmembrane proteins (IFIT), 412 
and the JAK-STAT signaling were upregulated in both groups indicating a core antiviral 413 
inflammatory response (Sadler & Williams, 2008; Schoggins & Rice, 2011) in both patient 414 
groups. However, specific genes within each geneset were upregulated in each patient group 415 
suggesting distinct molecular pathways towards inflammation (Figure S3B, Supplementary 416 
File 1). Interleukin receptors IL20RA and IL5RA were upregulated in G1 while IL17RB, IL1RN, 417 
and IL22RA1 upregulated in the G2 group. Interleukins IL1RN and IL27 were only upregulated 418 
in G2, although IL6 was not upregulated in either groups, corroborating previous observations 419 
in lung tissue (M. Wu et al., 2020) despite high levels in blood of COVID-19 patients (Patel et 420 
al., 2021). Similarly, the entire chemokine ligand geneset itself was only upregulated in the 421 
G1 group, potentially due to high expression of chemokines such as CCL19 (Supplementary 422 
Figure S3E). Specific chemokines such as CCL16 were also upregulated in only the G2 group. 423 
We find further evidence of distinct inflammatory response within the G2 group through the 424 
exclusive downregulation of genes corresponding to Interferons, Chemokine receptors, 425 
Tumor Necrosis Factor mediated antiviral signaling, TGF beta signaling (Figure 3B); albeit with 426 
heterogeneity in expression of individual genes specially Bone Morphogenic Proteins (BMP), 427 
Growth Differentiation factors (GDF), and Inhibins (Figure S3B). Further, we find significant 428 
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downregulation of genes associated with T-cell receptor signaling genes in the G2 group 429 
indicating T-cell dysfunction and potentially aberrant response. 430 

Next, we dissected the molecular pathways that may be involved in the physical re-431 
organization of lung tissue (Supplementary Table 2) using GSVA. We found that genes 432 
involved in Fibrosis, and Extracellular Structure Organization were significantly upregulated 433 
in both the patient groups (Figure 4A).  Corroborating previous reports in COVID-19 patients 434 
(Islam & Khan, 2020), Surfactant proteins, which maintain surface tension in alveoli(Glasser 435 
& Mallampalli, 2012), were significantly downregulated. Again individual genes within each 436 
of these genesets displayed distinct expression between the two groups suggesting different 437 
routes towards aberrant lung physiology (Figure S3A, Supplementary File 1).  438 

Next, we studied pathways previously found to be dysregulated in COVID-19. Out of a curated 439 
list of 36 pathways(Daamen et al., 2021), 20 (55.55%) pathways were found to be significantly 440 
upregulated between G1 or G2 relative to control samples. The G1 group showed significant 441 
overexpression of genes in cell cycle regulation and IL1 cytokines. While, the G2 group showed 442 
significant overexpression of genes related to apoptosis, all three complement pathways 443 
(classical, alternative, and lectin-induced) and metabolic pathways such as fatty acid 444 
oxidation, sugar metabolism, TCA cycle, and oxidative phosphorylation (Figure 3B). Massive 445 
change in metabolic pathways was further corroborated by GSVA using KEGG pathways 446 
whereby 85 out of 186 (45.69%) pathways were significantly altered (Figure S4A, 447 
Supplementary File 1) such as upregulation of steroid biosynthesis pathways and 448 
downregulation of neuroactive ligand-receptor interaction (corresponding to symptoms of 449 
anosmia and ageusia). Both the patient groups had characteristic dysregulation of TCR genes 450 
confirming previous bias(Gutierrez et al., 2020; P. Wang et al., 2021). For example in G1, TCRD 451 
was downregulated and TCRAJ was upregulated, while in G2, expression of both TCRA and 452 
TCRB was downregulated (Figure 3B).  453 

We then studied host genes that directly interact with the viral proteins to help in viral entry 454 
and infection. The expression of both ACE2 and TMPRSS2, which play a role in SARS-CoV-2 455 
entry(Hoffmann et al., 2020) did not differ between either group of patients when compared 456 
to normals (Figure S3D, Supplementary File 1). Cathepsins B and L which can substitute for 457 
TMPRSS2(Hoffmann et al., 2020) also remained unchanged (Figure S3D, Supplementary File 458 
1). Next, we investigated the expression of 331 human proteins that directly bind to viral 459 
proteins(Gordon et al., 2020) in our samples (Supplementary Table 2, Supplementary File 3; 460 
Figure S3C, Supplementary File 1). Out of 248 (74.92%) highly expressed genes (depth greater 461 
than 100 reads in 90% of either normal or COVID-19 samples, hypothesizing that high 462 
expression would indicate a direct role), we found only 16 genes such as ERGIC1, GGH, PCSK6, 463 
PLOD2, that were differentially expressed only in the G2 group suggesting no significant over-464 
representation the human host interactome in our patients (p = 0.985 using a hypergeometric 465 
test).  466 
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To find the regulators orchestrating the massive re-wiring of gene expression observed in 467 
COVID-19 patients, we investigated the enrichment of various targets of transcription factors 468 
(TFs) amongst our list of DEGs (Methods, Figure S5 A-C, Supplementary File 1). Targets of 469 
Hepatocyte nuclear factor-4 alpha (HNF-4α) and Nuclear respiratory factor 1 (NR2F1) were 470 
enriched in upregulated DEGs in both groups (Figure 3C). However, only HNF-4α was only 471 
overexpressed in the G2 patients when compared to Normal (Figure 3D) as well as G1 group 472 
(Supplementary Figure S7, Supplementary File 1). These results corroborate the role of HNF-473 
4α in COVID-19 and other chronic lung pathologies (Agudelo et al., 2020; Nardacci et al., 474 
2021), potentially through its role as a master regulator of lipid metabolism but only for the 475 
G2 group. This is further bolstered by lipid homeostasis related GO terms being enriched in 476 
upregulated genes of G2 when compared with G1. None of the other TF targets enriched in 477 
either upregulated genes or downregulated genes for both the groups were themselves 478 
expressed in the same direction as their targets - indicating alternate regulation. 479 

 480 

Figure 4. Cell-type specific gene-set enrichment and In-silico drug screening  481 
A) Heatmap of per sample GSVA enrichment scores for previously implicated immune signaling 482 
pathways (above) and genes involved in physical organization of lung physiology (below) that are 483 
significantly differentially expressed (p<0.05, Wilcoxon test) between normal and either G1 or G2 484 
samples. B) Changes in effective size of relative cellular proportions in G1 vs N and G2 vs N. 485 
Proliferating basal cells and TREM2+ dendritic cells were increased in G2 patients compared to G1. C) 486 
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Bar plots of Connectivity Map (CMap) Scores for potential disease inducers (purple) and potential 487 
therapeutic compounds. (green) for G1 and G2 groups of patients respectively. 488 

Cell-type deconvolution analysis maps altered lung cellular profile  489 

Gene expression re-wiring can also be caused due to change in the proportion of different 490 
cell-types in the lung tissue of COVID-19 patients. To dissect this, first we performed GSVA 491 
using 57 gene expression signatures corresponding to different cell-types in the lung 492 
tissue(Daamen et al., 2021) and found that 25  signatures (43.86%) showed a significant 493 
change between COVID-19 patients and normal control patients, most of them being 494 
downregulated in G2 patients (Figure 4A). The only common signature between G1 and G2 495 
groups was the loss of alveolar macrophages as reported previously (M. Liao et al., 2020). The 496 
G2 group showed an enrichment of signatures corresponding to Erythrocytes, damage-497 
associated M1 macrophages and Neutrophils suggesting acute inflammation and structural 498 
damage. The G2 group also showed loss of signature corresponding to cells in the lung 499 
parenchyma such as alveolar epithelial cells, endothelial cells, and ciliated cells alongside loss 500 
of platelets suggesting prolonged lung damage and thrombocytopenia. Such reorganization 501 
of lung tissue was also accompanied by loss in signature corresponding to specific 502 
Lymphocytes such as B-cells, activated T-cells, NK-T-cells and anergic T-cells alongside loss of 503 
dendritic and plasmacytoid DCs (pDC) suggesting immune exhaustion.  504 

To further dissect the finer details of lung physiology, we performed cell-type deconvolution 505 
to estimate the proportion of 58 different cell types using a published single-cell RNA-506 
sequencing dataset from lungs (Travaglini et al., 2020) (Figure S4B, Supplementary File 1). In 507 
both the patient groups, we found a strong depletion in the proportion of IGSF21+ & EREG 508 
DCs, signaling Alveolar epithelial cells, and  “Basophil Mast 2” cells alongside enrichment in 509 
the proportion of Lipofirboblasts, indicative of common pathophysiology. In the G1 group, we 510 
found a high proportion of proliferating NK-T cells and “OLR1 Classical Monocytes” alongside 511 
depletion of “Bronchial Vessel 2” cells. Interestingly, two  cell populations showed 512 
antagonistic change in cell proportions namely Proliferating Basal and TREM2+ DCs that were 513 
depleted in G1 but enriched in the G2 group of patients (Figure 4B). 514 

In-silico drug screening using Connectivity maps 515 
We performed connectivity map (CMap) analysis with differentially expressed genes from G1 516 
vs Normal and G2 vs Normal samples to help predict the different set of drugs which can be 517 
used to reverse the molecular signature in the two types of patients.  We identified 423,422 518 
perturbagens and among them 136,460 were drug perturbagens which contain both 519 
therapeutic agents and inducers. We filtered them for compound data and A549 cell lines 520 
(adenocarcinomic human alveolar basal epithelial cells) and found 11456 unique drug 521 
perturbagens for both groups. Among these, 1,986 and 2,048 perturbagens had negative 522 
connectivity scores for G1 and G2 groups respectively, implying their potential as therapeutic 523 
agents that can be screened further using in-vivo experiments (Supplementary Table 4, 524 
Supplementary File 5) to identify potential drugs. Among the top therapeutic agents we found 525 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2021.11.08.467705doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467705
http://creativecommons.org/licenses/by/4.0/


18 

curcumin, Ro-60-0175, talampicillin, FTI-276, erastin as potential therapeutic agents for G1 526 
patients while we found SKF-96365, 2-chloroacetophenone, JNK-IN-5A, H-9, cabazitaxel as 527 
potential therapeutic agents for G2 patients (Figure 4C).  528 

Metatranscriptome analysis reveals difference in species richness and 529 
distribution between control and COVID-19 lungs 530 

To identify the microbial signature in patient lung tissue we performed a metatranscriptomic 531 
analysis (Figure 1). Briefly, reads that did not align to the human genome (2.23 ± 0.46% ; Figure 532 
S1C, Supplementary File 1) were filtered for low complexity sequences (Figure S1D, 533 
Supplementary File 1) and bacterial rRNA, and then used for k-mer based phylogenetic 534 
classification (Supplementary Table 5, Supplementary File 6). After taxonomic assignment, we 535 
found significant loss in species richness in both G1 (Wilcoxon test; p-value = 4.6e-05) and G2 536 
(p=8.6e-08) patients compared to normal controls, with no difference between the two 537 
groups (Figure 5A). At the phylum level (Figure 5B), Actinobacteria were found to be less 538 
abundant in both G1 and G2 samples compared to normal controls (p=6.2e-04 and p=1.5e-0 539 
respectively). While only in G2 patients, we found depletion of Proteobacteria (p=4.2e-06) 540 
and enrichment of Firmicutes (p-value=7.9e-06) (Figure S6A, Supplementary File 1).  541 
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542 
Figure 5. Lung microbiome of COVID-19 and control patients.  543 
A) Box Plots showing alpha diversity (Shannon index) for N, G1, and G2 groups B) Stacked barplot 544 
representing the distribution of bacterial taxon at the phylum level. C) Log2 of normalized read counts 545 
for the bacterial species present in at least 3 samples and which were present in both G1 and G2 as 546 
compared to the control group.    547 

To look at changes in composition between COVID-19 patient groups at the species level and 548 
reduce noise, we opted to include only those species with a minimum of 100 reads across at 549 
least three samples. We found 20 species distributed between the three groups of patients 550 
based on normalized counts per million (CPM) values. We found that some Staphylococcus 551 
species such as S. cohnii were enriched in both groups of COVID-19 patients while other 552 
Staphylococcus species, such as S. hominis, S. epidermidis and S. warneri, along with multidrug 553 
resistant Chryseobacterium arthrosphaerae were enriched in the G1 group. Additionally, the 554 
G1 patients were also enriched for the pathogenic Pasteurella multocida while the G2 patients 555 
were enriched in other pathogens such as Klebsiella pneumoniae and Tsukamurella 556 
paurometabola (Figure 5C).  557 
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Analysis of the co-isolated SARS-CoV-2 genome and transcriptome 558 

After phylogenetic classification of filtered microbial reads, only 6 out of the 31 (19.35%) 559 
COVID-19 samples were found to have more than 100 reads assigned to SARS-CoV-2  560 
(Supplementary table 6). Three samples with greater than 10X depth and above 99% coverage 561 
were used for de novo genome assembly using SPAdes to obtain a single contig of length > 29 562 
kbp (corresponding to the full length SARS-CoV-2 genome) from two samples and 11 contigs 563 
spanning the entire genome were assembled from the third (deposited at GISAID accession 564 
ID : EPI_ISL_4392854,EPI_ISL_4392853,EPI_ISL_4392851).  565 

 566 

Figure 6. Phylogenetic classification and analysis of recovered SARS-CoV-2 genomes  567 
A). Phylogenetic analysis of the three high confidence SARS-CoV-2 genomes show that they all fall 568 
within the same nextstrain clade 20A and are next to each other in the phylogenetic tree. B). Analysis 569 
of the mutations from all three genomes show that non synonymous SNPs are the most common 570 
mutation type observed while C > T base change was the most common mutation.  571 

Consensus calling was used for variant calling by aligning to the Wuhan-Hu-1 reference strain 572 
(Methods). Phylogenetic analyses assigned these sequences to the GISAID clade GH or 573 
Nextstrain clade 20A in PANGO lineage B.1.36 (Figure 6A) circulating in Europe, Asia and North 574 
America from September 2020 to March 2021 (Figure S6C, Supplementary File 1). Genomic 575 
sequence analysis revealed that cov20 had 12, cov48 had 13 while cov55 had 14 mutations 576 
with respect to the reference with 7 mutations were in the spike protein region. Most of the 577 
mutations were SNP’s (56.41 %) while C > T was the most frequently observed substitution 578 
(58.97%) (Figure 6B; Supplementary Table 6).  579 

Given the depth of sequencing of SARS-CoV-2 virus in the three samples above, we were also 580 
able to estimate viral gene expression (Figure S6B, Supplementary File 1). We found that 581 
ORF10 had the highest expression level (mean TPM of 3.44 million) which was twice more 582 
than any other gene and is consistent with another report (Zhang et al., 2020). ORF7b had the 583 
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lowest expression (mean TPM of 0.12 million), while the viral N gene, encoding the 584 
Nucleocapsid and a common target for RT-PCR diagnostic tests, had the second highest 585 
expression (mean TPM of  1.64 million). Since normal samples are collected much before 586 
COVID-19 pandemic (Methods) and sequenced in the same batch of COVID-19, very few reads 587 
of COVID-19 appear in our normal samples, which are most probably a contamination during 588 
library preparation and have been filtered out by setting higher detection threshold for 589 
detecting COVID-19 in samples to at least 100 reads.  590 

  591 
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Discussion 592 

Dissecting the molecular biology of primary lung tissue is essential for understanding drivers 593 
of mortality in severe COVID-19 infection to develop precision novel therapies and monitor 594 
disease prognosis. However, most large-scale cohort studies have been limited to non-595 
invasive sampling from blood, nasopharyngeal fluid, and bronchoalveolar lavage to delineate 596 
the effects of the disease in peripheral tissues (Sanchez-Cerrillo et al., 2020; M. Wu et al., 597 
2020; Xiong et al., 2020; Zhou et al., 2020) that consider all severe patients as a singular group. 598 
Most studies on lung tissue from severe cases of COVID-19 profiled either FFPE samples with 599 
compromised RNA or were underpowered with less than 18 patients (Nienhold et al., 2020; 600 
Sanchez-Cerrillo et al., 2020; M. Wu et al., 2020; Xiong et al., 2020; Zhou et al., 2020). Here, 601 
we describe the molecular pathology of severe COVID-19 patients in the largest cohort lung 602 
tissue biopsies from 31 post-mortem patients compared with biopsies of non-cancerous 603 
tissue from 10 lung cancer patients as a control group. We found that COVID-19 patient lung 604 
tissue displayed two distinct molecular signatures defined by the lung transcriptome profiles. 605 
The lung transcriptome did not show indication of bacterial or fungal co-infections in severe 606 
COVID-19 patients.  607 

The dominant “classical” signature found in 74% of patients displayed a large-scale 608 
reorganization of gene expression characterized by loss in various parenchymal cells, 609 
unfolded protein response, enhanced complement system supported by metabolic 610 
reprogramming, Neutrophil upregulation, and activated T-cells depletion. The rarer “Cytokine 611 
Release Syndrome” (CRS) signature found in 26% of patients showed minimal deviation in 612 
gene expression from normal controls but was marked by the proliferation of NK-T-cells, and 613 
enhanced production of cytokines such as IL1 and CCL19. A limitation of the comparisons 614 
drawn for significantly downregulated genes for COVID-19 would be that those genes are 615 
simply upregulated in cancer-adjacent normal tissues (due to them being upregulated in 616 
cancer) and is acknowledged as thus. TREM2+ DCs, which play a role in T-cell priming and are 617 
found in the BALF of severe COVID-19 patients(M. Liao et al., 2020), were enriched in the 618 
classical signature but depleted in the CRS signature. Damage-associated M1 macrophage 619 
signature was enhanced in the dominant group and was depleted in the rare group while the 620 
reverse pattern was seen for the protective M2 macrophages. Although a previous study by 621 
Nienhold et al (Nienhold et al., 2020) also described two distinct subtypes of COVID-19 based 622 
on the expression of Interferon stimulated genes (ISG); the two patient subtypes identified in 623 
this study could not be segregated based on ISG expression. 624 

We propose two models to explain the disease signatures based on complement activation 625 
and failure to launch an adaptive immune response. The dominant signature represents 626 
“classic” COVID-19 patients with an acute infection due to high initial viral load, as evidenced 627 
by sustained unfolded protein response (Chan, 2014), leading to hyperinflammation through 628 
the complement system activating neutrophils. This hyperinflammation leads to lung damage 629 
(Figure 2B) and recruitment of M1 macrophages. Also, these patients are unable to mount an 630 
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adaptive immune response as evidenced by the depletion of T-cells, potentially due to direct 631 
viral infection, or T-cell exhaustion due to alternate metabolic flux. The rarer signature may 632 
represent patients with cytokine release syndrome (Henderson et al., 2020; Hu et al., 2021; 633 
Tang et al., 2020) at low viral load, who are unable to deploy the complement system and 634 
depend on innate immunity through NK-T-cells. These patients may have characteristic “lung 635 
damage”, repaired by M2 macrophages. However, these patients too are unable to mount an 636 
adaptive immune response due to lymphopenia or diminished T-cell priming as a result of 637 
depleted TREM2+ DCs.  638 

Although both groups of COVID-19 patients were given the same treatment, they displayed 639 
differences in the infection spectrum. Patients with the rare signature were specifically 640 
enriched for Staphylococcus epidermidis and Pasteurella multocida despite administration of 641 
broad spectrum antibiotics such as Azithromycin. Effect of broad spectrum antibiotics can be 642 
perceived from the reduced species diversity in severe COVID-19 patients. Further, we found 643 
that the rare signature patients may have impaired immunity to deal with such infections 644 
through downregulation of genes involved in CCR6 dependent bactericidal activity (DEFB1) 645 
and the downregulation of de novo biosynthesis of steroids from cholesterol (HSD17B6, 646 
GREM2, FADS6, AADAC). These characteristic changes in the lung microbiome warrant further 647 
investigation into the contribution of nasopharyngeal and airway microbiota in COVID-19 648 
patients with lung complications.  649 

It must be noted that the microbiome of lung tissue collected during aseptic surgery of cancer 650 
patients will significantly differ from postmortem microbiome of COVID-19 patients. 651 
Regardless, our results indicate that there is a dysbiosis in lung tissue of patients with severe 652 
COVID-19 reinforced by the fact that lung tissues extracted in sterile conditions (Normal 653 
samples) have more alpha diversity than the COVID-19 postmortem lung tissues.  654 

Despite most patients clearing the SARS-CoV-2 virus, we were able to recover the full genome 655 
from 3 patients that converged to the same consensus indicating clonal viral expansion. Upon 656 
analyzing the SARS-CoV-2 genome, we found that the ORF10 non-coding gene, with a low 657 
mutation rate and no selection pressure (Nguyen et al., 2021), had the highest gene 658 
expression with twice the number of transcripts as compared to the N gene, suggesting its 659 
potential use as a novel target for RT-PCR testing. Also the 3 genomes recovered are from the 660 
same lineage (Figure 6). With 3 genomes, one cannot significantly conclude whether these 661 
strains have led to different trajectories in the two groups of patients and if we had been able 662 
to retrieve complete genome sequences for more samples, we could interpret the cause in 663 
accordance with the strain of the virus.  664 

In conclusion, our work supports further clinical investigation correlating prognosis by 665 
stratifying patients based on the circulating molecules involved in complement activation 666 
shown recently (Ma et al., 2021), or characteristic cytokines such as CCL19, implicated in 667 
COVID-19 mortality (Balnis et al., 2021). Such non-invasive stratification of patients can be 668 
used to test the efficacy drugs identified in our study that reverse the molecular changes for 669 
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the two patient signatures such as cabazitaxel to treat “classical” patients or talampicillin to 670 
treat “CRS” patients .  671 

This is the first study analyzing the lung transcriptome in the Indian population, one of the 672 
worst affected countries in the world with over 400,000 COVID-19 mortalities. Although about 673 
1 in 7 people in the world comes from India, data from Indian populations is often missing 674 
from such molecular investigations of diseases and COVID-19 is no different. Our study 675 
bridges the gap of diversity in sampling various populations across the world that are affected 676 
by the pandemic. This is particularly of interest as in our recent work we demonstrate a 677 
significant contribution of genetics towards mortality in severe COVID-19 (Prakrithi et al., 678 
2021). Therefore, we conclude by hypothesizing that the heterogeneity in the molecular 679 
signature of severe COVID-19 patients may be driven by patient genetics and can be used for 680 
candidate gene prioritization.   681 
  682 
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