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Abstract
All cellular functions are governed by complex molecular machines that assemble through
protein-protein interactions. Their atomic details are critical to the study of their molecular
mechanisms but fewer than 5% of hundreds of thousands of human interactions have been
structurally characterized. Here, we test the potential and limitations of recent progress in
deep-learning methods using AlphaFold2 to predict structures for 65,484 human interactions.
We show that higher confidence models are enriched in interactions supported by affinity or
structure-based methods and can be orthogonally confirmed by spatial constraints defined by
cross-link data. We identify 3,137 high confidence models, of which 1,371 have no homology to
a known structure, from which we identify interface residues harbouring disease mutations,
suggesting potential mechanisms for pathogenic variants. We find groups of interface
phosphorylation sites that show patterns of co-regulation across conditions, suggestive of
coordinated tuning of multiple interactions as signalling responses. Finally, we provide examples
of how the predicted binary complexes can be used to build larger assemblies. Accurate
prediction of protein complexes promises to greatly expand our understanding of the atomic
details of human cell biology in health and disease.
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Introduction
Proteins are key cellular effectors determining most cellular processes. These rarely act in
isolation, but instead, the coordination of the diversity of processes arises from the interaction
among multiple proteins and other biomolecules. The characterization of protein-protein
interactions is crucial for understanding which groups of proteins form functional units and
underlies the study of the biology of the cell. Diverse experimental and computational
approaches have been developed to determine the protein-protein interaction network of the cell
(i.e. the interactome) with hundreds of thousands of human protein interactions determined to
date 1–3. These interactions vary from transient interactions that can regulate an enzyme to
permanent interactions in large molecular machines.

The structural characterisation of any interactome has lagged behind its experimental
determination due to technical limitations, with experimental and homology models currently
covering an estimated 15 thousand human interactions 4,5. The structural characterisation of
protein complexes is a critical step in understanding the mechanisms of protein function,
studying the impact of natural and disease mutations 4,6–8 and the regulation of cellular
processes via the post-translational tuning of binding affinities 9–12.

While there has been great progress in experimental techniques for determining large
complexes, current experimental approaches are not easily scalable. Computational
approaches for predicting the structure of interacting protein pairs on a large scale have relied
primarily on identifying structural similarity for pairs of proteins against experimentally
determined protein complexes 4,6,13,14. Based on these approaches, the Interactome3D4,14

repository currently lists 7625 predicted models based on homology of domains, a number
similar to the 8359 interactions listed in this resource as having an experimentally determined
model. In addition to modelling based on homology, co-evolution based information has been
used to predict interaction pairs and guide structural docking for bacterial proteins 15. More
recently, neural network-based approaches have demonstrated the ability not only to accurately
predict the structures of individual proteins 16,17 but also the structure of protein complexes
16,18–21. In benchmark sets where protein pairs are known to form a direct complex, these
approaches can correctly predict the structure of up to 60% of the dimers 18. These methods
have been recently used to predict structures of 1,506 S. cerevisiae interactions that were
selected based on co-evolution signals 22. However, the application of these neural network
models for the large-scale prediction of human complex structures has not been tested yet.

Here, we assess the possibilities and limitations of applying AlphaFold2 to modelling human
interactions on a large scale. We predicted the complex structures for two sets of human
interactions obtained using different experimental methods, comprising 65,484 unique human
interactions. We show that metrics derived from the predicted structures can be used to rank the
models according to confidence, with 3,137 predicted structures ranked as highly confident.
Further, we show that the higher confidence predictions are enriched among those supported by
a combination of methods indicating or by constraints indicated by orthogonal cross-link data.
We showcase the value of a structurally resolved interactome by studying disease mutations
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and phosphorylation of interface residues. Finally, we provide some indication that binary
complexes can be used to build higher-order assemblies.

Results

Structure prediction of high confidence human protein interactions
We selected experimentally determined human interactions from the Human Reference
Interactome (HuRI) and the Human Protein Complex Map (hu.MAP 2.0). HuRI comprises
interactions determined by yeast two-hybrid screening 2 from which we modelled 55586 pairs.
From hu.MAP we selected 10,207 high-quality (confidence score ≥0.5) protein-protein
interactions (PPIs), which were derived by integration of affinity purification, co-fractionation and
proximity ligation assays 3. While HuRI is more likely to be enriched for direct protein
interactions, including potentially transient partners, the hu.MAP set is more likely to reflect
stable protein interactions, including members of the same complex that may not necessarily
interact directly. The overlap between the two datasets is small (309 pairs), and a comparison
with two large scale compendiums of structural models4, ( see Methods) indicates that 62,019
of the combined pairs do not have experimental models or can be modelled easily by homology,
suggesting a significant potential gain in structural knowledge.

We predicted the structure of 65,484 non-redundant pairs using the FoldDock pipeline 18, based
on AlphaFold2 17. We have previously shown that larger interface size and higher predicted
lDDT (plDDT) scores from AlphaFold2 in the interfaces of the predicted complexes are
associated with more reliable predictions 18. As in the FoldDock pipeline, we combined these
two metrics into a single score, which can be used to predict the DockQ score of a complex,
dubbed pDockQ (Methods) that can rank models by confidence. We tested the overlap
performance and ranking by pDockQ score by comparing the predicted models with
experimental models. Across 1,465 comparisons, 742 (50%) of predicted complexes were
deemed to be well modelled (DockQ>0.23). For predictions with pDockQ>0.23, we estimate that
70% (671 out of 955) are well modelled and for pDockQ>0.5, 80% (521 out of 651) are
considered well modelled. However, it is worth noting that this estimated performance applies to
cases where we expect that two proteins interact via a direct contact.

We show in Fig. 1A the distribution of pDockQ for the predicted interactions and a set of
predicted structures for 2,000 random pairs of proteins. The pDockQ of known interacting
proteins tends to be higher than for the random set with the predictions for hu.MAP showing on
average higher confidence than the HuRI set. Additionally, when selecting hu.MAP interactions
also supported by yeast-two-hybrid (Y2H) or cross-link data (cross-linking) results in much
higher confidence values (Fig. 1A). This suggests that high confidence models are enriched for
protein interactions supported by the two types of methods associated with high affinity and
direct interactions. Based on the benchmarking results, we selected 3,137 structures (Fig. 1B)
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as high confidence models based on a cutoff of pDockQ>0.5, which would indicate around 80%
of correct models compared to the experimental models. The number of structures increased to
10,061 if a cutoff of 0.23 is used. Only 0.3% of the random set of models would be considered a
confident prediction at this cut-off. In Fig. 1C we show examples of predicted structures aligned
to experimental or homology models, showing how the predictions and the confidence score
relate to the observed alignments. For the majority of these cases, even with lower confidence
values, the interaction interface is generally in good agreement, except for the interaction
between subunits of the proteasome 26S complex, ATPpase domain 2(PSMC2) and non-ATPase
domain 11 (PSMD11), which has the lowest confidence score of the illustrated models. It can be
noted that several of the models in Fig 1C are parts of large complexes; PRDX2-PRDX3:
members of the peroxiredoxin family of antioxidant enzymes, RFC2-RFC5: subunits of
heteropentameric Replication factor C (RF-C), YWHAB-YWHAG: parts of the 14-3-3 family of
proteins tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation proteins beta
(YWHAB) and gamma (YWHAG), and RPL9-RPL18A: ribosomal proteins L99RPL9) and L18a
(RPL18A). This shows that AlphaFold2 can predict the structure of directly interacting protein
pairs present in large complexes.

A list of protein interactions with predicted structural models, confidence metrics and
annotations is provided in Table S1, and all models are available as described in the data
availability section.

Figure 1 - Application of AlphaFold2 complex predictions to a large dataset of human
protein-protein interactions. A) Distribution of model confidence score (pDockQ) for predicted
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structures from two large human protein interaction datasets (hu.MAP and HuRI), compared
with confidence metrics from 2000 random pairs of proteins. The hu.MAP dataset was further
subsetted to those that have support from yeast two-hybrid (Y2H), cross-link data
(Cross-linking) or correspond to pairs with available experimental or homology modelling
information (Structure). B) Number interactions with models built from both datasets and those
that we consider to be of high confidence (Predicted), corresponding to those with pDockQ>0.5.
C) Examples of predicted models (orange and green) overlapped with the corresponding
experimental models (grey) and the observed (DockQ) or predicted (pDockQ) quality of the
models.

Protein and interaction features impacting on prediction
confidence
As shown in Fig. 1A, protein pairs present in PDB are enriched in high-scoring models
compared with all other pairs in HuRI and Hu.MAP. There could exist several possible
explanations for this, such as the inability of AlphaFold2 to identify transient or indirect
interactions that might be more present in HuRI and Hu.MAP. Nevertheless, it is also possible
that the two high-throughput datasets contain a fraction of non-interacting pairs. Therefore, to
understand this difference better, we studied an additional dataset created from large (>10
chains) heteromeric protein complexes.

The set of large complexes consists of 12 large heteromeric protein complexes, and all
(non-identical) pairs of protein chains in each complex were docked with each other. These
pairs can be divided into the ones with direct interaction and those that do not. Here, we used a
definition of more than 20 contacts less than 8Å between Calphas to exclude small interaction
interfaces. When a complex contains multiple copies of identical chains all interactions were
included to allow for alternative interactions between the chains. The difference in pDockQ
scores between the direct and indirect interacting pairs is striking, where only 6% of the indirect
pairs have a pDockQ score >0.5 compared with 38% of the directly interacting pairs (Fig. 2A),
showing that directly interacting pairs often can be predicted even when they are part of large
complexes. However, as expected, AlphaFold2 models of members of the same complex that
do not interact are assigned a low confidence.

In this study, we see that Hu.MAP has many more high-confident predictions than predictions
from HuRI, which is based on yeast two-hybrid (Y2H) experiments. To further understand this
difference, we first analyzed a subset of all protein pairs from the CORUM23 database, the best
manually curated database of mammalian protein complexes. We selected a subset of the
complexes and predicted the interaction of all pairs in the same complex. The average pDockQ
score of CORUM is slightly higher than for Hu.MAP, but the number of high-quality predictions is
similar (16% vs 19%), indicating that the different databases of protein complexes have a similar
fraction of high-confidence predictions and that HuRI is an outlier (Fig 2B).
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It is unlikely that the Y2H in HuRI data should contain a large set of indirect interactions, as only
two human proteins are expressed in the same cell. Therefore, there must be another reason
for the few high-confidence predictions. We examined the properties of the pairs present in the
two datasets. Here, it can be seen that HuRI proteins differ from the Hu.Map (and other
datasets) in two ways. HuRI protein pairs contain more intrinsic disorder (Fig 2C) and have
fewer sequences in their MSAS (Fig 2D). In these figures it can also be seen that the pDockQ
values tends to increase with less disorder and more sequences in the alignments, although it is
clearly not an exact relationship. Further, protein pairs in HuRI are less likely to be found in the
same subcellular compartment (Fig 2E), and have similar coexpression profiles (Fig 2F).
Considering all this, it is likely that many interactions in HuRI are transient (or weak) and that
AlphaFold2 cannot reliably predict such interactions. These factors also agree with our earlier
study 18, where we showed that it is easier to predict interfaces containing secondary structure
elements.

Figure 2: Protein and interaction features impacting on prediction confidence, analysis of
different datasets. In all subfigures, proteins in HuRI in green, Hu.MAP grey, CORUM orange,
and from large PDB complexes blue. A) pDockQ values of directly and indirectly interacting
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proteins from the same complex (blue), for comparison HuRI and Hu.Map data are shown with
thin lines. B) pDockQ values of CORUM (orange), HuRI (green) and Hu.Map (grey) datasets.
C) Fraction of residues predicted to be disordered (pLDDT<0.5) shows that protein pairs in HuRI
are enriched in disorder. D) Proteins in HuRI have fewer sequences in the paired MSAs. E)
Proteins that share subcellular localisation (solid lines) are enriched in high pDockQ scores in all
three datasets. F) Only protein pairs in Hu.Map are coexpressed according to STRING and
coexpressed pairs are enriched in pairs with high pDockQ scores.

Cross-linking support for predicted complex structures
Chemical cross-linking followed by mass spectrometry is an approach that can be used to
identify reactive residues (usually lysines) that are in proximity, as constrained by the geometry
of the cross-link agent used. The identification of such residues across a pair of proteins can
help define the likely protein interface. To determine if the predicted complex structures agree
with such orthogonal spatial constraints, we obtained a compilation of cross-links for pairs of
residues across 528 protein pairs with predicted models (Fig. 3A, Table S1, see Methods). Of
these, 51% of models have one or more cross-links at a distance below the expected maximal
distance possible (Fig. 3A, Methods). Restricting the predicted models to higher confidence by
the pDockQ score increases the fraction of complexes with cross-links within the maximal
distance possible, reaching 75% for pDockQ scores greater than 0.5 (Fig. 3A). This result is in
line with the benchmark results above, indicating that most models are likely to be correct at a
pDockQ cut-off above 0.5. Additionally, predicted structures with pDockQ>0.23 are also likely to
have many correct models as judged by the fraction supported by cross-linking.

In total, we have identified 479 cross-links providing supporting evidence for 171 predicted
complex structures with pDockQ>0.5. Out of these, 41 correspond to complex structures with no
experimental structure or homology models, from which we selected some to illustrate in Fig.
3B-E. Fig. 23 shows the AF2 model for the full length of the ERLIN1/ERLIN2 complex, which
mediates the endoplasmic reticulum-associated degradation (ERAD) of inositol
1,4,5-trisphosphate receptors (IP3Rs). AlphaFold2 predicts a globular domain (1-190) followed
by an extended helical region with a kink around amino acid position 280. Unlike the model in
Interactome3D, the paralogous proteins are stacked side-by-side with the hydrophobic face of
the helices buried and the hydrophilic face (mainly Lys) exposed to solvent. A cross-link
between the C-terminal residues K275 (ERLIN1) and K287 is predicted to bridge a distance of
18 Å, supporting the predicted model. In Fig. 3C we show the model for proteins IMMT and
CHCHD3, components of the mitochondrial inner membrane MICOS complex. AlphaFold2
predicts a globular helical domain at the C-terminal end of IMMT (550-750) to interact with the
C-terminal end of CHCHD3 (150-225). This is supported by data of three cross-links between;
K173 (CHCD3) and K565 (IMMT), and K203 (CHCD3) to both K714 and K726 of IMMT. Fig. 3D
shows the complex of tRNA-guanine-N(7)-methyltransferase (METTL) with its non-catalytic
subunit (WDR4). The structure of WDR4 has not yet been solved experimentally but contains
WD40 repeats, which are expected to form a β-propeller domain, as predicted here. The METTL
domain is predicted to interact with the side of the WDR40, away from the ligand-binding pore.
This orientation is supported by a cross-link between K122 (WDR4) and K143 (METTL) (18 Å).
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Finally, in Fig. 3E we show the predicted complex structure for the heterogeneous nuclear
ribonucleoprotein C (HNRNPC) and the RNA-binding protein, RALY. Two regions in both
proteins are predicted with high confidence (plDDT>70), with the lower confidence regions not
shown. The N-terminal domain in HNRNPC (16-85) is predicted to interact with the N-terminal
domain of RALY (1-100). A long helix in HNRNPC (185-233) is predicted to interact with a helix
in RALY (169-228). This interhelix interface is supported by cross-linking data for three pairs of
lysines at either end of the helices (189→ 222; 229→179 and 232→ 183).

Figure 3 - Cross-link support for predicted complex models. A) The numbers and ratios of
predicted structures having cross-link information for pairs of residues that bridge the two
proteins in the predicted structure, broken down by the cross-links that satisfy their expected
maximal distance and by the predicted quality of the model (pDockQ). B-E) Examples of
predicted structures of high confidence, no prior structural information, and at least supported by
one cross-link (indicated with blue line).
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Disease-associated missense mutations at interfaces
Missense mutations associated with human diseases can alter protein function via diverse
mechanisms, including disrupting protein stability, allosterically modulating enzyme activity, and
altering protein-protein interactions. Structural models can lead to the identification of interface
residues allowing for the rationalisation of possible mechanisms of such interface disease
mutations. To determine the usefulness of the predicted structures for studying disease
mutations, we compiled a set of mutations located at interface residues that were previously
experimentally tested for the impact on the corresponding interaction 24. We then performed in
silico predictions of changes in binding affinity upon mutations using FoldX 25 and observed that
mutations known to disrupt the interactions are predicted to have a strong destabilisation of
binding compared to mutations known not to have an effect (Fig. 4A, Table S2). Very high
confidence (plDDT>90) of the mutated residues led to more substantial discrimination between
mutations known or not known to disrupt or not complex formation (Fig. 4A), indicating that only
very accurate models are useful when using the FoldX forcefield for estimating the impact of
binding affinity of mutations.

Having established the value of the predicted structures for modelling interface mutations, we
mapped human disease (from ClinVar) and cancer mutations (from TCGA) to the interface
residues defined by the set of high confidence protein complex predictions (pDockQ>0.5). The
hu.MAP and HuRI confident predictions identified 280 interfaces carrying pathogenic mutations
and 602 interfaces corresponding to the top 25% recurrently mutated interfaces in cancer,
defined as the highest number of mutations per interface position (Fig. 4B, Methods). For these
interface models we find a strong enrichment in pathogenic vs benign mutations at interface
residues relative to the rest of the protein (2.3 fold enrichment, p-value 2.7x10-31)

We illustrate in Fig. 4C examples of protein network clusters with interface disease mutations
across a range of biological functions. For example, interface mutations in chromatin
remodelling, including members of SWI/SNF complex (SMARCD1, SMARCD2, SMARCD3) and
several transcription factors related to the development (e.g. TCF3, TCF4, LMO1 and LMO2).
All of the disease mutation information is provided in Table S1.

We selected examples of interfaces with disease mutations and no previous experimental data
or homology to available models (Fig. 4D-G). Fig. 4D shows the interface of WDR4-METTL1
that has supporting cross-link information described above. WDR4 has two annotated
pathogenic variants at this interface, linked with Galloway-Mowat Syndrome 6, with the
highlighted R170 participating in interactions with a negatively charged residue of METTL1. Fig.
4E shows an example of an interface with 32 recorded interface mutations in cancer for both
proteins, including the highlighted arginines in LDOC1, which form electrostatic interactions with
the opposite chain. TWIST1 has several annotated pathogenic mutations, including L149R and
L159H, which are at residues buried in the interface (Fig. 4F). In particular, the leucine to
arginine mutation, associated with the Saethre-Chotzen syndrome, would strongly disrupt

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2022. ; https://doi.org/10.1101/2021.11.08.467664doi: bioRxiv preprint 

https://paperpile.com/c/KOtxnP/i1PH
https://paperpile.com/c/KOtxnP/6TSW
https://doi.org/10.1101/2021.11.08.467664
http://creativecommons.org/licenses/by-nd/4.0/


packing. The R118G mutation would disrupt the interaction with residue F22 mainchain O in
TCF4. In RAD51D we found the mutation R266C (Breast-ovarian cancer, familial) that interacts
across the interface with XRCC2 (Fig. 4G), paralogous genes involved in the repair of DNA
double-strand breaks by homologous recombination. Interestingly, we also found mutations at
R239, to Trp/Gln/Gly, associated with Breast-ovarian cancer that interacts with Tyr119 in XRCC2
that itself is also annotated as having mutations linked to hereditary cancer-predisposing
syndrome.

Figure 4 - Disease mutations at protein complex interface residues. A) Boxplot showing
the distribution of changes in predicted binding affinity (ΔΔG) for mutations known to have an
impact (orange) versus the ones with neutral effect (green) B) unique protein-protein interaction
pairs for high confidence models (pDockQ>0.5) in total, with mutations in cancer, mapped to the
interface (all and top 25% ratios) and with pathogenic or likely pathogenic clinical variants
mapped to the interface. C) Modules related to relevant biological processes. The colour of the
edge represents the presence of cancer mutations in the interface (top25% ratio, colour red)
and the shape of the presence of pathogenic clinical variants (double line). D-G) Selected
relevant structures with no prior structural knowledge showing clinical variants or mutations in
cancer mapped to the interface (mutated residues in red).
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Phospho-regulation of protein complex interfaces
Protein phosphorylation can regulate protein interactions by modulating the binding affinity via
the change in size and charge of the modified residue. Over 100,000 experimentally human
phosphorylation sites have been determined to date 26,27, but only 5 to 10% of these have a
known function 28. Mapping phosphorylation site positions to models of protein interfaces can
generate mechanistic hypotheses for the functional role of phosphorylation sites in controlling
protein interactions. We used a recent characterisation of the human phosphoproteome 26 to
identify 4145 unique phosphosites at interface residues of the set of confidently predicted
structures. We noted that the average functional importance, defined by the functional score
described by Ochoa and colleagues 26, was generally higher than random for phosphorylation
sites at interfaces (Fig. 5A). Among the interface phosphorylation sites, we found some
enrichment for targets of multiple kinases, including several tyrosine kinases (ERBB2, AXL,
ABL2, FER) (Fig. 5B). This observation suggests that some interfaces in different protein pairs
may be under coordinated regulation by specific kinases and conditions.

To identify potentially co-regulated interfaces, we collected measurements of changes in
phosphorylation levels across a large panel of over 200 conditions 29. We retained 260
phosphosites that had a significant regulation in three conditions and then computed all-by-all
pairwise correlations in phosphosite fold changes across conditions. We clustered these
phosphosites by their profile of correlations (Fig. 5C), identifying 16 groups of co-regulated
interface phosphorylation sites (Fig. 5C, Table S3). For each group of phosphosites, we
identified the conditions where these have the strongest up- or down-regulation (Fig S1) and
plotted a subset of conditions in Fig. 5D. We also performed a GO enrichment analysis for each
group of co-regulated phosphosites, including both proteins of the modified interfaces, to search
for common biological functions (Fig. 5E, Table S4). For example, we observed a cluster of
interface phosphosites in proteins related to intermediate filaments (cluster 7) that show strong
regulation patterns along the cell cycle, downregulated in S-phase and up-regulated in G1 and
mitosis. Phosphosites in cluster 1 (cell cycle G1-S phase transition) show the opposite trends
with up-regulation in late S-phase and down-regulation in G1 and mitosis. Some clusters show
regulation under specific kinase inhibition which may provide novel hypotheses for kinase
regulation of specific processes. For example, phosphosites in cluster 9 (regulation of
chromosome assembly) tend to be up-regulated after inhibition of ROCK and up-regulation after
inhibition of mTOR.

While not all phosphosites at interfaces are likely to regulate the binding affinity, this analysis
provides hypotheses for the potentially coordinated regulation of multiple proteins by tuning their
interactions after specific perturbations. We provide the complete list of interface phosphosites,
known kinase regulators and condition-specific regulation in Table S1.
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￼
Figure 5 - Co-regulation of phosphorylation sites at interface residues. A) Distribution of
phosphosite functional scores for phosphosites at interface residues and random phosphosites.
B) Enrichment of kinase substrates among phosphosites at interface residues. C) Hierarchical
clustering of the pairwise correlation values for changes in phosphosites levels across
conditions. Groups of phosphosites showing high correlation values were defined as clusters (1
to 16) as indicated in colours along the outside of the clustergram. D) Degree of regulation of
phosphosites from each cluster in a select panel of conditions, defined as a Z-test comparing
the fold change of the phosphosites in a cluster compared with the entire distribution of fold
changes in that condition. The result is summarized as the -log(P-value) and signed as positive
if the median value is above the background or negative otherwise. E) Gene-ontology
enrichment analysis for the proteins with phosphosites annotated to select clusters.
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Higher-order assemblies of protein complexes from binary
interactions
Proteins interact with multiple partners either simultaneously, as part of larger protein
complexes, or separated in time and space. This is also reflected in our structurally
characterised network, where proteins can be found in groups as illustrated in a global network
view of the interactions with confident models (Fig 6, central network, Fig S2 and Data S1).
One key benefit of structurally characterising an interaction network is the identification of
shared interfaces for multiple interactors. As an example, we highlight GDI1 (Rab GDP
dissociation inhibitor alpha) that interacts with multiple Rab proteins regulating their activity by
inhibiting the dissociation of GDP. The predicted complex structures for these interactions shows
how these share the same interface and therefore cannot co-occur. Other clusters in the
network suggest that the proteins form larger protein complex assemblies with many-to-many
interactions. As the use of AlphaFold2 for predicting larger complex assemblies can be limited
by computational requirements, we tested whether the structures for pairs of proteins could be
iteratively structurally aligned. We tested this procedure on a small set of complexes covered in
this network, with known structures and the number of subunits ranging from 5 (RFC complex,
TFIIH core complex) to 14 (20S proteasome). We then aligned an experimentally determined
structure with the predicted models (Fig. 6, grey - experimental model). These examples
showcase the potential and also limitations of this procedure.

The TFIIH core complex is composed of 5 subunits with 1-to-1 stoichiometry. All subunits can be
modelled with the final complex generally agreeing (Fig. 6) with a cryoEM structure for these
subunits (6NMI). The most significant difference to the cryoEM model is the relative positioning
of the ERCC3 subunit. The exact final model obtained can vary depending on the aligned pairs
with multiple possible final conformations (Fig S3). Fig. 6 illustrates the conformation that best
matches the cryoEM model in 6NMI. For example, for the TFIIH core complex, there is a
predicted model where the complex adopts a more open conformation (as seen in 5OQJ) and
alternative predicted placements of the GTF2H1 subunit.

The RFC complex is also composed of 5 subunits with 1-to-1 stoichiometry. One iterative
alignment of pairwise interactions builds a model that includes all five subunits organised
similarly to that observed in the 6VVO cryoEM structure (Fig. 6). In this predicted model, the
subunits RFC2/5/4/3 match the experimentally observed model well, but there are apparent
deviations introduced by compounding errors in alignment by this iterative process. Individual
subunits in the cryoEM structure can be aligned to each of the model subunits well, but then the
alignment of the rest of the model is progressively worse the further away the subunits are
positioned from the aligned subunit. The RFC1 subunit is individually not well predicted,
showing a considerable difference between the cryoEM and AlphaFold2 models. Some of the
modelled pairs highlighted additional issues. For example, the RFC3 - RFC5 interaction pair is
predicted with high confidence, while in fact, these do not share a direct contact in the
experimental structure. AlphaFold2 places RFC3 at the RFC5-RFC4 interface, likely due to the
structural similarity between RFC3 and RFC4.
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Encouraged by the examples tested, we defined an automatic procedure to generate larger
models by iterative alignment of pairs (Methods). We start building all possible dimers in a
complex, then sort them by pDockQ, and start building from the first ranked dimers. Next, we
add the highest-ranked dimer, which shares one subunit with the complex if it does not overlap;
this is repeated for all dimers until the complex is complete or no additional proteins can be
added. We tested this on the 20S proteasome, a particularly challenging example with
stoichiometries different from 1-to-1 and homologous subunits. This automatic procedure could
build a model containing all 14 subunits (half of the proteasome) that are mostly placed in
agreement within the experimental model (Fig. 6). However, the exact order of the chains is
incorrect, i.e. at each location an incorrect protein is placed, highlighting that AF2 cannot
distinguish which two proteins interact from a set of homologous proteins.

Two additional proteins where we could build a good model are Heterodisulfide reductase from
Methanothermococcus thermolithotrophicus (pdb:5ODC) and the eukaryotic translation initiation
factor 2B from Schizosaccharomyces pombe (5B04), see supplementary Fig S4. For 5ODC we
could build a complete model of the protein with an RMSD of 6.0Å (TM-score 0.90) starting from
dimers. However, for 5B04 it was not possible as the chains started overlapping when we tried
to build a larger model. However, if we build trimers and then use all three dimers from these
trimers we can build a complete model with an RMSD of 7.3 Å (TM-score 0.86), showing that it
is sometimes necessary to use largers subunits to assembly the complexes. Preliminary results
from a follow up study show that it is often possible to build the structure of several complexes if
the subunits are well predicted. We have developed a computationally efficient tool for this
method using a Monte Carlo Tree search30. In summary, we find that it is possible to iteratively
align structures of pairs of interacting proteins to build larger assemblies but identified issues
that limit this procedure at the moment.
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Figure 6 - Protein complex predictions for higher-order assemblies. The middle circle is a
network view of all protein-protein interactions predicted with high confidence (pDockQ>0.5).
The edges and nodes are coloured in red if there is a previous experimental or homology model
for the interaction, in blue if such information is not available. We selected four examples of
recapitulated complexes (yellow circles and black arrows) plotted in further detail. In these small
networks, only the edges are coloured based on structural evidence. In the case of RabGDP the
faded nodes and edges represent predictions with slightly lower confidence (pDockQ>0.3)

Discussion
We have attempted here to generate predicted complex structures for pairs of human proteins
known to physically interact from two different datasets based on different experimental
approaches. We noted that the source of data used for the protein interactions is important and
impacts the fraction of models that can be confidently predicted. Our analysis suggests the
protein interactions supported by a combination of affinity, co-fraction, and complementation
based methods results in higher confidence models. We believe these interactions tend to
correspond to high-affinity interactions that are very likely to share a direct physical permanent
interaction. We show that it is possible to use metrics from the models (e.g. pDockQ score) to
rank higher confidence models, providing an additional accuracy level to the large scale
protein-protein interaction studies. Further, future large-scale computational predictions of
protein-protein interactions may provide additional high-quality targets for detailed studies of
stable complexes. Experimental data from cross-link mass spectrometry experiments provide an
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ideal resource for further validating these predictions via orthogonal means. In principle, such
constraints from cross-link could also be considered during predictions, and it may be possible
in the future to develop predictors that can take in such constraints as part of the starting
information.

Based on comparisons with solved structures, we suggest that models with pDockQ>0.5 are
very likely to be correct. Additionally, models with lower scores (0.5>pDockQ>0.23) are still likely
to contain many correct solutions and may highlight correct interfaces even if not fully correct
orientations of the interacting proteins, in agreement with results from CAPRI31,32. In this study
this would correspond to an additional 6000 complex structures. Such lower confidence models
are likely to be useful for generating hypotheses and large-scale analysis of global properties.
Equally important is the caveat that high confidence predictions will still contain errors, and in
particular, we note that in protein complexes containing paralogous proteins (which is common
in higher eukaryotes33), the current procedure cannot identify the exact pairing of the protein.
For such cases, additional methods need to be developed.

Structural models for protein interfaces are critical for understanding molecular mechanisms and
the impact of mutations and post-translational modifications. We illustrate this using disease
mutations and phosphorylation data. While much disease-associated variation is often found in
non-coding regions of the genome, the growth of exome sequencing of large cohorts of patients
will lead to discovering many more protein mutations linked to disease, which will require such
large structural characteristics. Both for mutations and phosphorylation sites, we think these
analyses should be seen as generating hypotheses for further testing, and we make this
information available in the supplementary material to facilitate such future work.

Finally, in principle, we show that it is possible to build structural models for larger assemblies
from the binary complexes predicted here. In a follow-up paper we have shown that it is
sometimes possible to build large assemblies fully automatically by using predictions of dimers
and trimers30. Aspects that may limit this include the structural homology between subunits,
unknown subunit stoichiometries and limits in the predicted interactions30. Additional work will be
needed to determine the exact stoichiometry and design methods and score systems to build
such larger complex assemblies, as well as to predict the interaction of proteins with weak and
transient interactions.

Methods

Protein interaction data and annotations
Human protein pairs known to physically interact were obtained from the Hu.MAP dataset,
retaining pairwise interactions with >=0.5 confidence, and most interactions from the HuRI
dataset. These interactions were further enriched by obtaining annotations on cross-linked
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peptides matched across pairs of interaction proteins, disease related mutations and protein
phosphorylation sites in the selected proteins. In addition all non homologous pairs from 12
protein complexes (Table S5) and 4320 protein pairs from 2102 different protein complexes
(Table S6) in CORUM23 were used for additional analysis. A complete list of all datasets is
available from the supplementary data. A subset of Cross-link data was collected from 34–44,
filtered for peptides unique to only one protein sequence. A cross link was considered validated
by the structure if the distance between the epsilon amino groups on the side-chains of the
relevant pair of lysine residues were within 32Å. Clinical missense variants associated with
disease were collected from ClinVar. We selected only those having pathogenic or likely
pathogenic effects which were mapped to Uniprot protein sequences using VarMap. The final
list of mutated positions was then compared to the interface positions. We obtained a list of
protein phosphorylation sites with predicted functional relevance 26, phosphosite annotations 28

and regulation of phosphorylation sites across a large panel of conditions 29. These
phosphosites were also mapped to interface positions as defined by the predicted models. All
protein interaction networks were processed using R packages igraph (v1.2.5) and qgraph (v
1.9), further graphical editing was done using Cytoscape 45.

Protein complex prediction
To predict protein complexes of pairwise interactions, we used the FoldDock pipeline 18 based
on AlphaFold2 17. We use the option of fused+paired multiple sequence alignments (MSAs) and
run the model configuration m1-10-1 as this provides the highest success rate accompanied by
a 20-fold speed-up. Both the fused and paired MSAs are constructed from running HHblits on
every single chain against Uniclust30. The fused MSA is generated by simply concatenating the
output of each of the single-chain HHblits runs for two interacting chains. The paired MSA is
constructed by combining the top hit for each matching OX identifier between two interacting
chains, using the output from the single-chain HHblits runs.

pDockQ confidence score

To score models, we use features from the predicted complexes to calculate the predicted
DockQ score, pDockQ. This score is defined with the following sigmoidal equation:

𝑝𝐷𝑜𝑐𝑘𝑄 =  0.707

1+𝑒−0.03148(𝑥−388.06) + 0. 03138

where,

x = average interface plDDT・log(number of interface contacts).
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The parameters were optimised to predict the DockQ score using the dataset from 46. The
number of interface contacts is defined as elsewhere in this paper (any residues with an
interface atom within 10Å to the other chain) , and the plDDT is the predicted lDDT score from
AlphaFold2 taken over the interface residues as defined by the interface contacts.

Building larger complexes from binary interactions
A simple procedure to build larger complexes from a set of paired models was developed. All
dimers in the set are by default ranked by their pDockQ values.

1. The building is started from a single dimer by default the dimer with the highest pDockQ
value. This is referred to as the “complex”.

2. All other dimers in the set are then tried to be added to the “complex. Starting with the
one with the second highest pDockQ a chain is added to the complex if:

a. Exactly one chain of the dimer is identical to one chain in the complex
b. The structure of these two chains is similar enough (default TM-score > 0.8)
c. The dimer is then rotated so that the two chains overlap-
d. The second chain in the dimer does not clash with more than 25% of its residues

(CA<5Å) to any chain in the complex.
3. If a chain is added, the procedure is started over again and repeated until no more

chains can be added.

Analysis of phosphosites in the protein-protein interfaces
Phosphosite residues in interfaces were identified from a previously published comprehensive
list of known human phosphosites 26. Kinases associated with phosphorylation of interface
residues were obtained from the PhosphositePlus database and over-representation analysis of
kinases was performed using a hyper-geometric test. Highly regulated interface phosphosites
were defined as those with more than two-fold change in phosphorylation in more than two
perturbation conditions across a collated phosphoproteomics dataset comprising a range of
physiological conditions and drug treatments 29. Pearson correlation was calculated amongst
these regulated phosphosites and clusters of co-regulated phosphosites were identified using
hierarchical clustering (‘ward’ method) of Euclidean distances of the correlation matrix.
Phosphosite clusters were created by cutting the dendrogram at the appropriate level using the
cutree (h=17) function in R. Phosphosite clusters that were significantly regulated in each
perturbation condition were identified by a z-test from the comparison of fold changes in
phosphosite measurements of all phosphosites in a cluster against the overall distribution of
phosphorylation fold changes across the condition. Gene ontology over-representation of each
cluster was performed separately using a hypergeometric test in R. The gene ontology terms
were obtained from the c5 category of Molecular Signature Database (MSigDBv7.1) 47. All
over-representation analysis (ORA) were performed using the enricher function of clusterProfiler
package (version 3.12.0) 6 in R.
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Comparison with other databases.
All proteins used here were mapped to UniProt48 to retrieve subcellular localisation, STRING49

for coexpression and other interaction data, gtex50 for tissue specific expression.

Availability
All code used in this project can be found at https://gitlab.com/ElofssonLab/huintaf2/. Tools to
run AlphaFold2 can be found at https://gitlab.com/ElofssonLab/FoldDock/. All models generated
as well as some of the multiple sequence alignments can be found at
https://archive.bioinfo.se/huintaf2/. All datasets and meta-data is available from
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