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Abstract

Motivation: Several recently developed single-cell DNA sequencing technologies enable whole-genome
sequencing of thousands of cells. However, the ultra-low coverage of the sequenced data (< 0.05x per
cell) mostly limits their usage to the identification of copy number alterations in multi-megabase segments.
Many tumors are not copy number-driven, and thus single-nucleotide variant (SNV)-based subclone
detection may contribute to a more comprehensive view on intra-tumor heterogeneity. Due to the low
coverage of the data, the identification of SNVs is only possible when superimposing the sequenced
genomes of hundreds of genetically similar cells. Thus, we have developed a new approach to efficiently
cluster tumor cells based on a Bayesian filtering approach of relevant loci and exploiting read overlap and
phasing.

Results: We developed Single Cell Data Tumor Clusterer (SECEDO, lat. ‘to separate’), a new method
to cluster tumor cells based solely on SNVSs, inferred on ultra-low coverage single-cell DNA sequencing
data. We applied SECEDO to a synthetic dataset simulating 7,250 cells and eight tumor subclones from
a single patient, and were able to accurately reconstruct the clonal composition, detecting 92.11% of the
somatic SNVs, with the smallest clusters representing only 6.9% of the total population. When applied to
four real single-cell sequencing datasets from a breast cancer patient, each consisting of ~2,000 cells,
SECEDO was able to recover the major clonal composition in each dataset at the original coverage
of 0.03x, achieving an ARI score of ~0.6. The current state-of-the-art SNV-based clustering method
achieved an ARI score of ~0, even after increasing the coverage in silico by a factor of 10, and was only
able to match SECEDO’s performance when pooling data from all four datasets, in addition to artificially
increasing the sequencing coverage by a factor of 7. Variant calling on the resulting clusters recovered
more than twice as many SNVs as would have been detected if calling on all cells together. Further, the
allelic ratio of the called SNVs on each subcluster was more than double relative to the allelic ratio of
the SNVs called without clustering, thus demonstrating that calling variants on subclones, in addition to
both increasing sensitivity of SNV detection and attaching SNVs to subclones, significantly increases the
confidence of the called variants.

Availability: SECEDO is implemented in C++ and is publicly available at
https://github.com/ratschlab/secedo.
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1 Introduction

Somatic single-nucleotide variants (SNVs) are commonly associated
with cancer progression and growth (Stratton et al., |2009). The recent
development of single-cell DNA sequencing technologies (Gawad ef al.}
2016) offers the ability to study somatic SNVs at a single-cell level,
providing much more detailed information about tumor composition
and phylogeny than traditional bulk sequencing (Kuipers et all 2017;
Navin er al.l |2011). However, several technical obstacles decrease the
interpretability of the data obtained using these technologies. In particular,
most of the current single-cell DNA sequencing technologies require
a whole-genome amplification step, which introduces artifacts such as
DNA-amplification errors, allelic drop-out, imbalanced amplification, etc.
(Gawad ef al.| [2016). Several approaches (Bohrson et al| [2019; |Dong
et al.| [2017; Hard et al.,|2019; |Lahnemann et al.| [2021; |Luquette ef al.,
2019;|Singer et al.| 2018} |Zafar et al.l|2016) have been proposed to detect
SNVs based on such data.

Approaches that do not require whole-genome amplification have been
developed to overcome issues related to amplification (Laks et al., 2019}
Navin et al.| 2011). A prominent example of such technologies is 10X
Genomics’ Chromium Single Cell CNV Solutiorﬂ This technology allows
the sequencing of hundreds to thousands of cells in parallel, albeit with
only extremely low sequencing coverage (<0.05x per cell). Hence, its use
has been limited to the inference of copy number variations (CNVs) and
alterations (CNAs) (10X Genomics}, 2018 Durante et al.,2020;|Velazquez-
Villarreal et al.||2020; Zaccaria and Raphaell |2021). The attempts to also
use these data for the identification of tumor subclones based solely on
SNVs have so far failed to provide a solution that would be able to recover
the clonal composition at the original sequencing depth (Myers et al.|
2020); in particular, SBMClone, the algorithm of [Myers et al.| (2020),
requires a minimum coverage of > 0.2x per cell, roughly four times more
than what is currently achievable using the 10X Genomics technology
(10X Genomics, 2018; |Velazquez-Villarreal et al.} [2020).

In this work, we propose SECEDO, a novel algorithm for clustering
cells based on SNVs using single-cell sequencing data with ultra-low
coverage. Using an extensive set of simulated data, as well as four real data
sets, we show that SECEDO is able to correctly identify tumor subclones in
data sets with per-cell coverage as low as 0.03x, improving the current state
of the art by a factor of seven and thus rendering the algorithm applicable
to currently available single-cell data. We also provide an efficient C++
implementation of SECEDO, which is able to quickly cluster sequencing
data from thousands of cells while running on commodity machines.

2 Methods
Overview

Due to the extremely low coverage of the data (< 0.05x per cell), deciding
whether two cells have identical or distinct genotypes is a difficult problem.
Most loci are covered, if at all, by only one read (Supplementary
Figure |'S_T|) This makes it difficult, if not impossible, to interpret an
observed mismatch when comparing data from two cells. The mismatch
could be caused by an actual somatic SNV, by a sequencing error, or by a
heterozygous locus that was sequenced in different phase in the two cells.
Hence, it is crucial to jointly leverage the information from all cells at the
same time.

The pivotal blocks in the SECEDO pipeline (Figure E) are (1) a
Bayesian filtering strategy for efficient identification of relevant loci and

! lhttps://www.10xgenomics.com/resources/datasets/

(2) derivation of a global cell-to-cell similarity matrix utilizing both the
structure of reads and the haplotype phasing, which proves to be more
informative than considering only one locus at a time.

SECEDO first performs a filtering step, in which it examines the pooled
sequenced data for each locus and uses a Bayesian strategy to eliminate
loci that are unlikely to carry a somatic SNV. The filtering step drastically
increases the signal-to-noise ratio by reducing the number of loci by 3 to 4
orders of magnitude (depending on the coverage), while only eliminating
approximately half of the loci that carry a somatic SNV. Moreover, the
eliminated mutated loci typically have low coverage or high error rate
and would not be very useful for clustering. In the second step, SECEDO
builds a cell-to-cell similarity matrix based only on read-pairs containing
the filtered loci, using a probabilistic model that takes into account the
probability of sequencing errors, the frequency of SNVs, the filtering
performance, and, crucially, the structure of the reads, i.e. the fact that
the whole read was sampled from the same haplotype. In the third step of
the pipeline, we use spectral clustering to divide the cells into two or more
groups. At this point, we reduced the problem to an instance of the well-
studied community detection problem (Porter et al., [2009), so spectral
clustering is a natural choice. Optionally, the results of spectral clustering
can be further refined in a fourth step using the Expectation-maximization
algorithm (Dempster et al., |1977). The whole pipeline is then repeated
for each of the resulting subclusters. The process is stopped if (1) there
is no evidence for the presence of at least two clusters in the similarity
matrix, or (2) the clusters are deemed too small. Downstream analysis, for
instance, variant calling, can then be performed by pooling sequencing
data from all cells in one cluster based on the results of SECEDO to create
a pseudo-bulk sample.

Filtering uninformative loci

Consideration of all genomic loci is not desirable when performing the
clustering and variant calling, since most positions are not informative
for clonal deconvolution. The most informative loci with respect to the
clustering of the cells are the loci carrying somatic SN'Vs since they provide
(1) information on assignment of cells to clusters and (2) information
on haplotype phasing (due to loss/gain of heterozygosity). To a lesser
extent, this is also true for germline heterozygous loci since they provide
information on haplotype phasing. In other words, loci at which all the
cells have the same homozygous genotype do not provide any information
relevant to the task of dividing the cells into genetically homogeneous
groups, so they can be excluded from downstream analysis.

Due to the low sequencing coverage, it is generally not possible to
reliably assign genotypes to individual cells. However, we identify loci
of interest by using the pooled data across all the cells to approximate
posterior probabilities that the cells have the same genotype. Consider
for example a specific locus at which all cells have genotype AA.
Assuming sequencing errors happen independently with probability 6
and are unbiased (i.e. all types of substitutions are equally probable), the
fraction of As in the pooled data is in expectation (1 — ) and the fraction
of all other bases is /3. A locus with a significantly different proportion
of observed bases indicates that there may be two (or more) different
genotypes contributing to the observed data. In particular, we compute the
posterior probability that all cells at the locus share the same homozygous
genotype using an approximate Bayesian procedure. If this posterior is
lower than a chosen threshold K, the locus is marked as ‘informative’.

Formally, let C1, C2, C3, C4 be the bases sorted from the most to
the least frequent in the pooled data at the given position, c1, c2, ¢3, ca
the corresponding counts (c1 > c2 > c3 > ca4), c the total coverage
(c = ¢1 +c2 4¢3+ cq). Next, let M be an indicator random variable that
is 1 if all cells in the sample have the same homozygous genotype and 0
otherwise. Applying Bayes rule, we can compute P(M | c1,c2,c¢3,c4)

2 The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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Fig. 1. The SECEDO pipeline. After sequencing, reads are piled up per locus and a Bayesian filter eliminates loci that are unlikely to carry a somatic SNV. For each pair of reads, SECEDO

compares the filtered loci and updates the likelihoods of having the same genotype and of having different genotypes for the corresponding cells. The similarity matrix, computed as described

in Methods, is then used to cluster the cells into 2 to 4 groups (the number of groups depends on the data and is determined automatically by SECEDO) using spectral clustering. The

algorithm is then recursively applied to each cluster until a termination criterion is reached.

as:

P(c1,c2,¢3,ca | M)P(M)
P(c1,c2,c3,c4)

P(M | c1,c2,c3,c4) = )]

‘We compute or approximate the individual terms as follows:

e P(M) can be estimated from literature: the prevalence of somatic

SNVs in cancer lies between 10~9 and 10~3 (Alexandrov et al.

2013} 2013); the frequency of heterozygous sites
in a typical human genome lies between ca 0.04 and 0.11%

et "l 2013} [Meyer ez al [2012). In order to be conservative, we
choose the largest probability (= 10~2) in both cases, resulting in
P(M)~1-2-1073 = 0.998.

e P(ci1,c2,c3,c4 | M), is equal to

P(c1,e2,¢3,ca | M) =Y agP(g), 6))
geg

where ag = P(c1,c2,c3,c4 | genotype of all cellsis g) and G =
{AA, CC, GG, TT} is the set of all possible homozygous genotypes.
The probability g of observing data (c1, 2, ¢3, c4) given that the

genotype of all cells is g (g = C;C};) has a multinomial distribution

6 6 0.
»3°3°3)°

! AN
. — U
cilealesley! 3

Assuming the error rate 6 is small, the result of the equation above
is negligible for any c; that is not close to c¢. As a consequence, if
the prior P(g) is approximately the same for all genotypes, we can

with c trials and event probabilities equal to (1 -0

Qg =

approximate the sum in Equation with the largest term:
P(c1,c2,¢3,c4 | M) zmeaé(agP(g). 3)
g

e Computing P(cy,c2,c3,cq) is intractable, as it would involve
summing over all possible combinations of the cells’ genotypes. We

instead approximate the evidence by

c!

9\ c2teatea
P(c1,c2,c3,c4) = )

[Phom(l -0 (*

cilealesley! 3

1 9\ c1tec2 /9N c3tca
e (3-3) (5)
3 20\ €1 /1\€2 /9 C3Tca
+ PhomPmut (Z - 3) (Z) (g)
c! 1 0\ /1\2Te3 /g
+ph8tpmutcl!02103!04! (575) <1) (g) ]

where ppom, Phet, Pmut epresent the probability of a locus being
homozygous, heterozygous and mutated, respectively. The first
summation term estimates P(c1, c2, ¢, c4) for a homozygous locus,
the second term assumes a heterozygous locus, the third term
corresponds to a homozygous locus that suffered a somatic mutation,
and the last term to a heterozygous locus with a somatic mutation. See
Supplemental Material[ST] for a more detailed derivation.

We then include the locus into the subset of informative positions if
P(M | c1,c2,c3,cq) < K forasuitable constant K (see Supplemental
Material[S2)and Supplementary Table[ST).

Filtering heterozygous loci is similar. Here, let P(M’ | c1, c2, 3, c4)
be the probability that all cells have the same heterozygous genotype.
The individual terms in Equationm are identical except that the event
probabilities for the multinomial distribution are (l —81_0998
However, since heterozygous loci are three orders of magnitude fewer than
homozygous loci (Bryc et all 2013} Meyer et al| [2012) in addition to
potentially being useful in haplotype phasing, we empirically determined
that the following simpler and faster criteria works equally well in practice:

denote the locus as informative if ¢c; > 1.5 - c2, where ¢ and ¢z are the
most frequent and the second most frequent bases at that locus, respectively
(the expectation is that at a heterozygous locus ¢1 and c should not differ
too much). In addition, we reject all loci for which ¢; + c2 + c3 < 5.
The final set of informative loci then includes those positions that
were marked as informative by both filtering steps (i.e. filtering of both
homozygous and heterozygous loci). In practice, sequencing artefacts may
lead to loci with unusually high coverage. For this reason, we also eliminate
any loci with coverage more than two standard deviations away from the
expected coverage. In addition, we also eliminate loci where ¢ — ¢1 < 5.
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Fig. 2. Illustration of an overlap between two reads. The orange shaded positions are the
positions chosen as informative. In this example, length of the overlap is 3, the number of
positions where the bases are the same, x , is 2 and the number of positions where they are
different, z 4, is 1. For our purposes, an overlap is fully described by the tuple (zs, z4).

Cell-to-cell similarities

We define the similarity s(z,j) of cells ¢ and j as the log-odds of the
probability that cells 7 and j have the same genotype and the probability that
they have different genotypes, given the corresponding sets of reads. Each
of the two probabilities is then approximated as a product of probabilities
of individual overlaps of two reads, one read from cell 4 and one read from
cell j (Figure[Z). Formally:

(i) = 1o P[C3G)=C(j) | ri,75,h, €]
(J)1g<PW@¢CM\mnﬁA)

(Pl 106 = CG),hd
_lg(PVumlﬂO#CO)hd) @

[ s(rfr ;) za(rf, J)\C’(z)— C(j )’h’e]
P [as(rh,18),0a(rb,78) | CG) # C(G), by

= Z log
®

where r; is the set of reads from cell i, rk

+ is the k-th read from
cell 4, zs(p,q) and x4(p,q) the number of matches and mismatches,
respectively, between reads p and ¢, C(%) is the (true) cluster assignment
of cell 4, € is the proportion of SN'Vs in the set of informative positions and
h the proportion of homozygous loci in the set of informative positions
(see below). In case the two cells have no overlapping reads, the similarity
is by definition equal to O (i.e., we have no information on whether the
two cells have equal or different genotypes). We assume that observing
cells with the same genotype and with different genotypes has the same
prior probability. (Notice that decomposing the probabilities in Equation
E|0ver pairs of reads is indeed only an approximation. In particular, the
decomposition in Equation|§|wou1d only be precise if no two reads coming
from one cell were overlapping; in the opposite case, the probabilities of
read pairs containing one of these overlapping reads are non-independent.
However, since the per-cell coverage is so low (Supplementary Figure
|'S_T|), the number of such non-independent pairs is negligible.)

Notice that by decomposing the probabilities over the overlaps of reads
we gain information not only on the number of matches and mismatches
between the two reads (i.e. information on potential differences between
the two cells), but also information on haplotype phasing. Moreover, it
also allows us to put more weight on longer (and hence supposedly more
informative) overlaps. For example, a long overlap with only matches is
an indication that the two cells might have the same genotype. A long
overlap with only mismatches, on the other hand, is not a strong indication
towards the cells being from different clusters — another likely scenario
is that the two reads were sampled from different haplotypes and we just
observe a row of heterozygous loci in different phase. As a result, overlaps
with a combination of matches and mismatches are the ones most strongly
suggesting the ‘different genotypes’ case (Supplementary Figure@). We
also show, using simulated data, that considering the number of matches
and mismatches in the whole overlap of two reads provides strictly more
information than considering each locus independently (Supplementary

Figure[S3).

Below we give details on the computation of EquationEl under the
simplifying assumptions that (1) all cells are diploid, (2) the somatic
SNVs are with equal probability of type AA+AB and AB+AA (a
homozygous site in cluster 1, heterozygous in cluster 2, or vice versa),
and (3) the prevalence of differences between any two subclones is u (see
Supplemental Material@for the full list of assumptions).

Parameters The algorithm has three parameters: h, the fraction of the
homozygous loci in the set of selected positions, €, the fraction of the
mutated loci in the set, and 6, the error rate. In our analyses, we used
h = 0.5, € =0.01, and § = 0.05 (the 6 parameter has higher value than
the usually reported sequencing error rate, because the set of informative
positions is enriched in positions carrying sequencing errors).

Computing the probabilities of overlaps We define:

e Ps s, the probability that sequencing of two bases of the same kind
results again in two bases of the same kind: Ps s = (1 — 0)2 + %
(both bases are sequenced without error, or both are misread to the
same base),

e P 4, the probability that sequencing of two bases of the same kind
results in bases that differ from each other: Py g = 1 — Ps s,

e Py s, the probability that two different bases are read as the same:
Pys=2-(1-0)- 6 + 26 (one of the two bases is misread to the
other one, or both are mlsread to the same base),

e Py qthe probability that two different bases are sequenced as different:
Pd,d =1- des.

The probability of observing xs matches and x4 mismatches in an
overlap of length x5 4 x4, assuming cells ¢ and 5 have the same genotype,
is now:

P[xmxd ‘ C(Z)

cOmd = (") SN () ()

k=01=0

heterozygous positions

.(17h7§>k+l (% (Pf, Py PE . Pdd>>5<k+z)

) (h + f) (zstzg—k—1)
2

PR plrah), ©)

homozygous positions

where 6(x) is a function defined as 0, if z = 0, and 1, otherwise. In the
formula we sum over all possible combinations of (k + 1) heterozygous
loci and (zs + x4 — k — 1) homozygous loci; k of the heterozygous loci
result in a match, the remaining / in a mismatch.
The probability of observing x s matches and 4 mismatches assuming
cells ¢ and j are in different clusters is:
meucm¢aﬂm4=@””ﬂ
S

Ts Ts—k Tg Tg—1

. . xd!
> z% g qz klp(zs —k P! Ugl(z

— ] —=qa)!
= a—1—q)!

heterozygous positions

1 8(k+1)
S(I—h—ot! (5 (Pf Plg+ Pl Pdd))

mutated positions
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Here k denotes the number of heterozygous positions giving rise to a
match, [ the number of heterozygous positions giving rise to a mismatch,
p the number of positions with the same homozygous genotype in both
types of cells that give rise to a match and g the number of these positions
that result in a mismatch.

Clustering

We first normalize the computed similarity matrix by making sure all
elements are positive: S* = —S 4 ming ; s(é,5). The cells are
then clustered using a slight variation on spectral clustering (Ng ef al.|
2001) as follows. We compute the symmetric normalized Laplacian
L=1-— D_%S*D_% and determine its first & (we used k = 6
in all experiments in this paper) eigenvectors, corresponding to the k
smallest eigenvalues. We then cluster into 1, 2, 3 or 4 clusters using
k-means (Arthur and Vassilvitskii, 2006} |[Lloyd, [1982), computing the
inertia values i1, 42, 93, 24 for each of the four options and the inertia gaps
g = ik — ix—1,k = 2,3,4, and define g1 := 0. The final number of
clusters is maxy—2 3 4 {k | g > 0.75g,_1}.

An important feature of spectral clustering is that it leverages the
information on similarities of all pairs of cells at the same time. Thus, even
in case two cells would not have any overlapping reads (the probability
of which is negligibly small, see Supplemental Material[S_zl), they could
still be clustered based on their similarities to other cells in the data set.

One important aspect of clustering is the stopping criterion, i.e. the
decision whether a specific group of cells should be divided into subclusters
or not. We suggest a (to the best of our knowledge new) heuristic approach
to automatically decide if the computed normalized similarity matrix S*
indicates that there are two (or more) different clusters of cells. We fit a
Gaussian mixture model with 1, 2, 3 or 4 components to the smallest
k eigenvectors of S* and compare their likelihood using the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC).
If the model with only one component is preferred by AIC/BIC over the
models with 2, 3 or 4 components we do not split the data further. We
further do not accept the split if the resulting subclone has too few cells
(we used 500 in our experiments). We also require that the mean within-
cluster coverage is at least 9, the lowest coverage sufficient for a reliable
variant call (see Supplemental Material [S5).

3 Results

SECEDO recovers tumor subclones with average precision
of 97% on simulated data

In order to test the performance of our method, we simulated a dataset
consisting of 7,250 cells divided into 9 groups of various sizes: one group
of healthy cells and 8 groups of tumor cells. The genome of the healthy cells
was created using Varsim (Mu et al.||2014) based on the GRCh38 human
reference genome. Common variants from dbSNP (Sherry et al.| 2001)
(3,000,000 single-nucleotide polymorphisms, 100,000 small insertions,
100,000 small deletions, 50,000 multi-nucleotide polymorphisms, 50,000
complex variants) were added to the genome. The genome of the tumor
cells was built by adding 2,500 to 20,000 of both coding and non-
coding SNVs (subclonal SNV fraction of 3%-27% (Dentro et al.}[2021)),
randomly chosen from the COSMIC v94 (Catalogue Of Somatic Mutations
In Cancer) database (Tate et al.| [2018)), to the parent genome, in addition
to 250 small insertions, 250 small deletions, 200 multi-nucleotide variants
and 200 complex variants (Figure [3| left). Paired-end reads, with each
mate of length 100 bp, were simulated using ART (Huang et al.| [2011)
at an average coverage of 0.05x per cell and with the error profile of
Illumina HiSeq 2000 machines. The reads were then aligned using Bowtie
2 (Langmead and Salzberg| 2012) and filtered using Samtools (Lil [2011)

to select for reads mapped only in proper pair, non-duplicate and only
primary alignments.

For efficiency reasons, we build the pileup files used by the Bayesian
filtering using our own implementation rather than existing tools that are
not optimized for use on thousands of cells simultaneously (e.g. Samtools,
which currently does not offer a multi-threaded pileup creation). The
pileup creation, distributed on 23 commodity machines (one for each
chromosome) using 20 threads each, takes about 70 minutes (down from
72 hours when using Samtools’ pileup creation on the same machines).
We ran SECEDO on the resulting pileup files on an Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz using 20 threads and 32GB of RAM. The
filtering, clustering and VCF generation took 21 minutes. For the top
level clustering, the filtering step kept about 1 in 16,000 loci. Somewhat
counter-intuitively, the number of filtered loci approximately doubled at
each level as we traveled down the clustering tree. This is due to the
fact that the discriminative power of the Bayesian filtering degrades as
the mean pooled coverage decreases (from 248 at the root to 20 at the
leaves), such that a larger proportion of loci that are not relevant are let
through. SECEDO was able to recover all 9 subclones with an average
precision of 97.45% (Figure@ right). Note that SECEDO is not attempting
to reconstruct the evolutionary history of the tumor, but merely trying to
efficiently find a grouping of cells that reflect the current subclonal structure
and enable downstream tasks like variant calling. Therefore, the clustering
tree reconstructed by SECEDO does not reflect the actual developmental
process that gave rise to the given population of cancer cells; indeed, the
SECEDO clustering tree differs from the true phylogenetic tree of the
population (Figure 3).

In order to show the potential of the resulting clusters for somatic
variant calling, we identified the most likely genotype of each cluster
using a simple MAQ-based approach (Li et al.| |2008) (Supplemental
Material[S5) and generated VCF files for each cluster against the GRCh38
human reference genome. Similarly to other variant callers that remove
germline variants (Cibulskis et al., 2013), we then removed the ground-
truth variants that were present in the healthy cells and compared the
remaining SNVs against the ground truth SNVs provided by Varsim for
each cluster. SECEDO was able to detect 92.11% of the somatic SNVs
(vs. 77.79% when calling variants on the unclustered cells) with a 52.41%
average precision (see Supplementary Table@).

SECEDO is able to correctly group cells starting at 0.03x
coverage and 500 cells per cluster

One practical question of crucial importance is how to determine if, given a
dataset, SECEDO will be able to correctly cluster the cells for meaningful
downstream processing. To answer this question, we conducted a series
of experiments to determine the conditions under which SECEDO can
successfully be applied to a given dataset. There are three cluster attributes
that affect SECEDO’s ability to separate cell clusters: (a) the number of
cells, (b) the average per-cell coverage, and (c) the number of SNVs in
which the clones differ. In order to test the interplay of these three cluster
attributes, we devised a series of synthetic datasets, each consisting of
1,000 cells belonging to two groups. The sizes of the two groups were either
equal (i.e. 500 cells in each group) or in ratio 1:3 (i.e. one cluster consisted
of 250 cells and the other one of 750 cells). We further constructed a series
of synthetic data sets consisting of 2,000 cells being split equally among
two groups (i.e. 1,000 cells in each group). Then, for a given number
of SNVs and given sizes of clusters, we gradually lowered the per-cell
coverage until the algorithm was unable to cluster the cells correctly. The
genome creation, reads simulation, and alignment were done as described
in the previous section. For most parameter configurations, the currently
achievable per-cell coverage of 0.05x is sufficient for SECEDO to correctly
cluster the cells (see Figure [d). Since SECEDO is able to discriminate
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Fig. 3. Clustering a synthetic dataset with 9 unequally sized subclones totaling 7,250 cells. Left: Theoretical phylogenetic tree of the dataset. Edge labels indicate the number of additional

SNVs in each subclone relative to the parent, node labels indicate the number of cells in each subclone. Right: Recursive clustering by SECEDO. Each nodes corresponds to one SECEDO

clustering step. The percentage at the bottom of each node indicates the clustering precision (correctly clustered cells relative to total cells in cluster). The scatter plots above parent nodes

depict the 2nd and 3rd eigenvectors of the similarity matrix Laplacian. For leaf nodes SECEDO correctly determined that further clustering is not desirable.
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Fig. 4. Minimum required coverage for successful clustering of sub-clones differing in the
given number of SNVs, in three scenarios: clustering 1,000 cells, with a (1/4, 3/4) split,
with an equal (1/2, 1/2) split, and clustering 2,000 cells with an equal split. The shaded
area marks the coverage currently achievable in practice. The top labels indicate the cancer
type with median mutation rate closest to the given SNV density (cancer mutation rates

according to|Lawrence et al.|(2013)).

between balanced clusters of 1,000 cells that differ in as little as 2,500
SNVs (equivalent to an SNV prevalence of ca 8.33-10~7), the method can
be applied to a wide variety of cancers, starting from those with very high
mutation rates, such as melanoma (median prevalence of somatic SNVs ca
10~7) down to pancreatic and breast cancer (median prevalence of somatic
SNVsca 10*6) (Alexandrov et al.}2013;Lawrence et al.,|2013). Note that
there is a relationship between tumor mutational burden and SECEDO’s
ability to distinguish subclones. SECEDO is able to identify complex
subclonal structures (such as in Figure ??) in cancers with high mutational
burden (e.g. melanoma), whereas in cancers with lower mutational burden
(e.g. pancreatic and breast cancer) only major clones could be identified,
as shown in the next section. As expected, the discriminative power of
SECEDO increases with the number of cells (Figure , as well as with
the per-cell coverage (Supplementary Figure @, since both act as a
multiplying factor for the pooled coverage.

SECEDO recovers dominant subclones in a breast cancer
dataset, clearly outperforming state of the art

In order to test the performance of SECEDO on real data, we downloaded
a publicly available 10X Genomics single-cell DNA sequencing dataseEl

sequenced using an Illumina NovaSeq 6000 System. The dataset contains
five tumor sections (labeled A to E) of a triple negative ductal carcinoma,
each section containing roughly 2,000 cells (10X Genomics| [2018). The
mean per-cell coverage in the data set is 0.03x, with individual coverages
ranging from 0.006x to 0.086x. CHISEL, the CNV-based clustering
algorithm proposed by [Zaccaria and Raphael| (2021), identified three
dominant clones in each of the sections, except for section A, which
consists mainly of healthy cells and was thus not included in our analysis.

We applied SECEDO to the four datasets corresponding to sections
B.C,D, and E. The filtering step reduced the number of loci in each tumor
section to roughly 1,000,000 bp (ca 0.03% of the original size); the average
pooled coverage across the == 2,000 cells in each dataset ranged from 45
to 55. SECEDO was able to correctly recover the three dominant clones
in each of the four tumor sections. The clustering results match with high
accuracy (96.68% recall, 66.59% precision) those computed by CHISEL
(FigureE[). The scatter plots of the 2nd and 3rd eigenvector of the similarity
matrix confirm that each tumor section consists of three highly separable
clusters.

We compared SECEDO’s performance to that of SBMClone (Myers:
et al.l|2020), the current state of the art in SNV-based clustering. Since
SBMClone was reported to work only at coverage > 0.2x, and the coverage
of the breast cancer dataset is 0.03x, we created higher coverage data in
silico by merging sequencing data from cells reported to be in the same
cluster by CHISEL. In addition, SBMClone requires a matched normal
sample, so we again used the clustering in CHISEL to determine the
healthy cells; from the variants determined using Varscan (Koboldt ez al.
2009), we removed all mutations that appeared in at least one healthy cell,
and the remaining mutations were fed to SBMClone. SECEDO does not
require a matched normal sample, so the sequencing data was used without
this pre-processing. SECEDO correctly clustered (precision >96%) all
cells at the original coverage (including the separation of healthy cells),
and its performance remained relatively constant as coverage increased.
SBMClone was able to provide an approximate clustering starting at 3-fold
the original coverage, and its performance matched SECEDO’s at 7-fold
the original coverage when combining data from all slices. For individual
slices, SBMClone was not able to cluster the cells, irrespective of the
coverage (Figure[6).

We then called SNVs on each subclone of Slice B, as identified by
SECEDO, independently, and on the entire slice. In order to call SNVs,
we created a Panel of Normals from the cells categorized as normal by
CHISEL based on the CNV profile (Clonel9 in the left-most tree of
Figure EI) ‘We ran MuTect 1.1.4 (Cibulskis et al.} [2013) with the default
settings, using dbSNP (Sherry et al.| 2001) and Cosmic v94 (Tate et al.

2 hhttps://www.10xgenomics.com/resources/datasets/

3 Available at https://github.com/raphael-group/chisel-data/
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"None" based on the CNV signature are assigned a category by SECEDO based on the genomic signature.

1.0
SBMClone All
—¥— Secedo All
0.8 SBMClone Slice B
06l ./._,_.———.\"‘_”'/._._.—__<
]
5
@
E:
0.4+
0.2+
0.0 : :

003 006 009 012 015 018 021 024 027 03

Avg. per-cell coverage

Fig. 6. Adjusted Rand Index scores for the SECEDO and SBMClone clustering for Slice
B and all slices of the breast cancer dataset at coverage ranging from 0.03x to 0.3x. Shaded

area marks the average per-cell coverage achievable with current technology.

as priors. The number of distinct SN'Vs in the two tumor subclones
is more than double the number of variants that were called when pooling
all cells together (Figurels_gl left). The histogram of the allelic ratio for
the sublconal and global SNVs shows a significant shift to the right for
the subclonal SNVs, an indication that the clustering correctly identified
and separated genetically similar cells, enabling the detection of twice as
many SNVs at twice the allelic ratio (Figure @ right).

4 Discussion

We introduced SECEDO, a method that is able to correctly identify SNV-
based subclones in single-cell sequencing datasets with coverage as low
as 0.03x per cell. This is a significant improvement in comparison to
SBMClone, the current state-of-the-art method (Myers et al} 2020), which,
using the same data, was able to cluster the cells only after pooling data
from all four data sets and artificially increasing the coverage by a factor
of 7. This improvement in performance can be likely attributed to the
fact that SECEDO takes into account the information on read phasing, as
well as its efficient filtering of uninformative positions. We also note that
unlike SBMClone, SECEDO does not require a matched normal sample for
the identification of potential SNVs. We provide an efficient, well-tested,
ready-to-use C++ implementation of SECEDO, which uses established
data formats for both input and output, and can thus be easily incorporated
into existing bioinformatics pipelines.

We demonstrated SECEDO’s applicability to currently available
single-cell sequencing data and find that SECEDO correctly clustered cells

on a series of synthetic and four breast cancer datasets. CNA frequencies
and patterns vary significantly across cancer types 2021}
[Zack et al} 2013), similarly to SNV frequency. Since SECEDO does not

use copy-number information to cluster cells, it can infer sub-clones even
in cancer types where CNAs do not vary or where the frequency of CNAs
is generally low (e.g. pancreatic neuroendocrine tumors
[2021)). It is also notable that not all CNAs affect the SNV profile of a cell.
Thus, CNA-based clustering may lead to suboptimal grouping of cells,
e.g. from a variant calling perspective. SECEDO is able to group cells
with similar SNV profiles irrespective of their CNA profiles. This can lead
to improvements in the precision and accuracy of the variant calling. Using
the clusters identified by SECEDO, we were able to recover 92.11% of
the SNVs present in the synthetic data set using a simple variant caller.
On Slice B of the breast cancer data set, the number and the confidence
of the called SNVs more than doubled after clustering using SECEDO,
compared to calling variants on the entire slice.

While SECEDO enables accurate cell-clustering and variant calling,
there are a number of areas for future improvement. First, SECEDO
currently only uses single-nucleotide substitutions to cluster cells, which
are known to be the most common type of mutations in adult and childhood

cancers (Grobner et al| 2018} [Lawrence et al.| 2014} Ma et al [2018).

We expect that the clustering accuracy could be further improved if e.g.

short insertions and deletions were additionally used. Second, the smallest
subclones that SECEDO was able to detect had =200 cells. However, as
technology inevitably improves and the sequencing coverage increases,
SECEDO’s resolution and variant calling quality will also proportionally
increase.

We hope that SECEDO will facilitate new types of analyses and form
the basis for future methodological development in the field of cancer
research and treatment outcome prognosis.
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