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Abstract

Despite numerous methodological advances, the normalization of single cell RNA-seq (scRNA-seq) data
remains a challenging task and the performance of different methods can vary greatly across datasets.
Part of the reason for this is the different kinds of unwanted variation, including library size, batch and
cell cycle effects, and the association of these with the biology embodied in the cells. A normalization
method that does not explicitly take into account cell biology risks removing some of the signal of interest.
Furthermore, most normalization methods remove the effects of unwanted variation for the cell embedding
used for clustering-based analysis but not from gene-level data typically used for differential expression
(DE) analysis to identify marker genes. Here we propose RUV-III-NB, a statistical method that can be used
to remove unwanted variation from both the cell embedding and gene-level counts. RUV-III-NB explicitly
takes into account its potential association with biology when removing unwanted variation via the use of
pseudo-replicates. The method can be used for both UMI or sequence read counts and returns adjusted
counts that can be used for downstream analyses such as clustering, DE and pseudotime analyses. Using five
publicly available datasets that encompass different technological platforms, kinds of biology and levels of
association between biology and unwanted variation, we show that RUV-III-NB manages to remove library
size and batch effects, strengthen biological signals, improve differential expression analyses, and lead to
results exhibiting greater concordance with independent datasets of the same kind. The performance of

RUV-III-NB is consistent across the five datasets and is not sensitive to the number of factors assumed
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to contribute to the unwanted variation. It also shows promise for removing other kinds of unwanted
variation such as platform effects. The method is implemented as a publicly available R package available

from https://github.com/limfuxing/ruvIIInb.

Introduction

Single-cell RNA-seq (scRNA-seq) technologies have gained popularity over the last few years as more and
more studies interrogate transcriptomes at the single cell level. Just as with other omics data, scRNA-seq
data inevitably contains unwanted variation which can compromise downstream analyses if left unad-
dressed. As in the case with bulk RNA-seq data, library size is the major source of unwanted variation
in scRNA-seq data and consequently, removing library size effects is the first priority in preprocessing
scRNA-seq data. The successful removal of library size effects is crucial for the validity of downstream
analyses such as clustering, cell-type annotation, differential expression and trajectory analyses. Several
studies’?34 have found that the bulk RNA-seq procedures for removing library size effects do not work
well for scRNA-seq data. This is because the relationship between gene expression and library size in
scRNA-seq data is typically complex and gene-specific, a feature of the data that has necessitated the de-

velopment of methods using gene-specific scaling factors, %5

as opposed to methods that use global scaling
factors e.g.%! In addition to library size effects, scRNA-seq data can exhibit batch effects” due to variation
between cell counts within a study (e.g. due to plate-to-plate variation) and variation between cell counts
across studies (e.g. due to platform and sample preparation variation). In this paper, we concentrate on
dealing with the first, although we show that our method has the potential to perform data integration by
adjusting for library size and batch effects across studies.

Like Vallejos et al.,> in this paper we will use the term 'normalization’ to refer to a procedure that
attempts to remove all kinds of unwanted variation and not only that due to library size. One of the key
challenges when performing normalization is to remove the right kind and amount of variation. Removing
the wrong or too much variation risks removing biology, especially if biological variation is associated with

unwanted variation. Most methods that adjust scRNA-seq data for batch effects® 1011

proceed in two
steps: library size effects are removed first, and then batch effects are removed from data that has been
adjusted for library size. This approach is reasonable if there is little or no association between library size,
batch and biology, but when there are such associations, its effectiveness may be reduced. For example,
when different cell-types have quite different library size distributions, the first step may adjust the data
too aggressively and remove library size differences arising as differences between cell-types. ZINB-WaVE!?

can be used to perform simultaneous adjustment for library size and batch effects. However, it requires

that the batches are known a priori, and its adjustment is carried out without considering the possibility


https://doi.org/10.1101/2021.11.06.467575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467575; this version posted January 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

that library size, biology and batch may be associated. Furthermore, most normalization methods remove
the effects of unwanted variation for the cell embedding used for clustering-based analysis but may severely
distort gene-level data used for differential expression (DE) analysis used to identify marker genes.!?

In this paper, we propose RUV-III-NB that simultaneously adjusts scRNA-seq gene counts for library
size and within study batch differences. As with RUV-III'* which inspired this work we do not assume
that batch details are known, but seek to use replicates and negative control genes to capture and adjust
for the unwanted variation. Negative controls are genes whose variation is (largely) unwanted and not
of biological interest, while we necessarily modify our notion of replicates, for the gene expression levels
in single cells cannot be measured in replicate. To ensure that the right kind and amount of variation
is removed from gene counts we estimate the effect of unwanted variation on these counts using suitably
defined pseudo-replicates of cells or pseudo-cells that have the same biology, and we propose strategies
to define pseudo-replicates. Using five publicly available datasets, we compare RUV-III-NB to several
popular methods for normalizing scRNA-seq data and demonstrate its ability to retain biological signals
and remove unwanted variation both in terms of cell embedding and gene-level count data, when biology

and unwanted variation are associated.

Results

RUV-III-NB preserves biology when library size and biology are associated

In NSCLC study, the library size is associated with biology because the large epithelial cells have larger
library sizes than those of the immune cells, and among the immune cells, monocytes are the largest,
and they also have the largest average library size (Fig. 1A). RUV-III-NB identified log library size as a
source of unwanted variation (Supp. Fig. 1A) and managed to separate the larger monocytes from the rest
of the immune cells (Fig. 1B) better than sctransform-log corrected data (Fig. 1A) and other methods
(Supp. Fig. 2). The silhouette statistic (Fig. 1C) shows that RUV-III-NB log PAC and Dino are the
only normalization methods that improve the biological signals over that of the simple scran normalization.
Apart from enhancing biological signals, a good normalization method should reduce effects of the unwanted
factors in the normalized data. To investigate this, within cells of the same type, we examine the remaining
effects of the library size in the normalized data using several metrics. Figure 1D shows that the leading
principal components of sctransform-Pearson, RUV-III-NB log PAC and Dino-normalized data have the
least association with log library size, with RUV-III-NB normalized data consistently having the lowest
correlation with log library size across all genes (Supp. Fig. 3A). RUV-III-NB log PAC also produces
median and IQR of relative log expression (RLE) that have the least association with log library size (Fig.

1E) and the smallest proportion of differentially-expressed genes (DEG) when cells with below and above
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median log library size are compared (Fig. 1F). Looking across all metrics, RUV-III-NB clearly has the
best overall performance. Not only does it enhance the biological signals, it is also the most successful
in removing library size effects from the data and in the differential expression analysis between cells of

differing library sizes (Fig. 2).

RUV-III-NB preserves biology when batch and biology are associated

In the cell line study, there are two cell types but the cell types were sequenced in different pairs of the
three batches. This creates an association between biology and batch. RUV-III-NB identified log library
size (Supp Figs. 1 B) and batch (Supp Figs. 1 C) as major sources of unwanted variation. After scran
normalization, the leading PC still clearly exhibit library size (Fig. 3A) and batch effects (Fig. 3B).
RUV-III-NB removes the batch effects from the leading PC (Fig 3C) as does scMerge (Supp. Fig. 4). MN-
NCorrect, Seurat3-Pearson, Seurat3-log corrected and ZINB-WaVE do not remove the batch effects, while
fastMNN and Seurat3-Integrated remove the batch effects but also remove biology (Supp. Fig. 4). Only
RUV-ITI-NB and scMerge improve the biological signals when compared with simple scran normalization
(Fig. 3D), with RUV-III-NB being slightly better at reducing correlation between the normalized data and
log library size (Supp. Fig. 3B), and much better at removing the effect of the unwanted factors from the
RLE (Fig. 3E) and from the differential expression analysis Fig. 3D). Considering all the different metrics
together, we see a clear advantage of RUV-III-NB and scMerge over the other methods, and an advantage
of RUV-III-NB over scMerge for the RLE and differential expression metrics (Fig. 4).

The ability of RUV-III-NB to preserve biological signals and its excellent performance in terms of the
RLE and differential expression metrics is also observed in the CLL study (Supp. Figs. 5, 7, 12B, 15),
another study with UMI count where biology and batch are associated. However, in the Gaublomme
study that does not have UMI counts, scMerge is slightly better than RUV-III-NB for almost all metrics,

including the RLE and differential expression analyses (Supp. Figs. 6, 8 and 12C).

RUV-III-NB preserves biology when biology is not associated with unwanted factors

The statistical model behind RUV-III-NB is designed so that removal of unwanted variation takes into
account their potential association with biology. It is therefore of interest to examine how RUV-III-NB
fares when the unwanted factors and biology are not associated. In the pancreas study, the eight cell types
are present in both of the batches that correspond to different technological platform, and within each
platform there is little difference in the average library size distribution between cell types (Supp. Fig.
10). Thus, there is only small amount of association between unwanted factors, in this case log library size

and batch (Supp. Figs. 1H and I), with biology.
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The leading PC of the scran-normalized data shows that cells of the same type are split by their batch
of origin (Supp. Fig 11A). RUV-III-NB, scMerge and Seurat3-Integrated integrate the two batches well
so that cells of the same type are clustered together (Supp. Figs. 11D,F and I). RUV-III-NB, together
with scMerge and Seurat3-Pearson consistently manage to reduce the correlation between normalized data
and log library size for homogeneous cell types (Fig. 5A). Seurat3-Integrated, RUV-III-NB and scMerge
are the most successful in improving biological signals (Fig. 5B). But in terms of R? between leading PC
and log library size (Fig. 5C) and technical silhouette (Fig. 5D), scMerge and Seurat3-Integrated are
slightly better than RUV-III-NB. This suggests that the more cautious approach of RUV-III-NB slightly
reduces its ability to remove unwanted factors from the embedding, although RUV-ITI-NB is still the best
method for removing the effect of unwanted factors from the normalized data, resulting in better RLE and
differential expression analysis (Figs. 5E and F). When all metrics are considered together, RUV-III-NB
still has the best overall performance (Fig. 6).

RUV-III-NB accommodates size heterogeneity within a cell type

With UMI counts the library size corresponds closely to the number of molecules inside a cell and hence
cell size. If there is size-related heterogeneity among cells of the same type, library size in experiments
with UMI is biologically meaningful. We investigate the ability of the different normalization methods to
isolate these biologically meaningful library size effects from the unwanted (technical) library size effects.
To do this, for the NSCLC study we performed DE analysis comparing monocytes with smaller (< median)
vs larger (> median) library size. The results show that RUV-III-NB has the lowest proportion of DEG
(Fig. 1F), which suggests that RUV-III-NB removed the unwanted library size effects most effectively.
We then performed KEGG pathway analysis among the DEG to investigate whether the DEG obtained
are biologically meaningful. We found that only DEG from RUV-III-NB log PAC and sctransform-log
corrected were significantly enriched with terms from the phagosome pathway (Supp. Fig. 13). This is
consistent with'® who reported that larger monocytes have increased phagocytic activity. We carried out a
similar analysis for the pancreas study where we compared beta cells with above and below median library
sizes from the inDrop experiment.'%17 reported that patients with type II diabetes have reduced beta cells
size. We found that that only the DEG from RUV-III-NB log PAC were significantly enriched with terms
from the insulin resistance pathway (Supp. Fig. 14). We conclude that only RUV-III-NB normalization

can reliably reveal size-related heterogeneity among cells of the same type.
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RUV-III-NB improves concordance with ’gold standard’ DEG

For the Cell line, Gaublomme and Pancreas studies, we also compared the concordance of DEG based on
data normalized by the different methods with the ‘gold standard” DEG. For the Cell line study, the DEG
are from the 293T vs Jurkat cell comparison, for the Gaublomme study we compare pathogenic vs sorted
non-pathogenic Th-17 cells, while for the Pancreas study we compare alpha and beta cells. We found
that for the Cell line and Gaublomme studies where batch is associated with biology, RUV-III-NB has the
best concordance (Figs. 7TA-B), while for the Pancreas study (Fig. 7C) where batch and biology are not
associated, none of the batch-effect removal methods improve on scran normalization, with RUV-III-NB

ranking second after Seurat3 with log-corrected counts.

RUV-III-NB performance is robust

The RUV-III-NB algorithm require users to specify the negative control gene set and the number of
unwanted factors. Using the cell line dataset, we investigate the sensitivity of the key performance metrics
against these parameters. We use five different strategies to identify the negative control gene set and
varying K from 1 to 20. Supp. Fig. 16A demonstrate that for four negative control gene sets, including set
2 that uses the default single-cell housekeeping genes, the R? between log library size and leading principal
component of normalized data is relatively robust when K is increased and thus potentially overestimated.
Set 4, in which the negative control gene set was identified as non-DEG from the batch with two cell lines
(batch 3), is the only one where the R? is affected by overestimation of K. In terms of average batch (Supp
Fig. 16B) and biological silhouette width (Supp Fig. 16C), its performance is quite similar across different

negative control gene sets, for K > 2.

Computing time

The original implementation of RUV-III-NB requires a High-Performance Computing (HPC) environment.
For the examples used in this paper, the running time on an HPC environment with 15 cores and 120
Gb total RAM (8Gb RAM per core), ranges from approximately 120 minutes for the CLL dataset with
around 1,650 cells to around 280 minutes for the Pancreas dataset with more than 10,000 cells (Supp. Fig.
17A). The running time is approximately a square root, rather than a linear function of the number of
cells. Studies involving scRNA-seq are growing in size and it is now not uncommon to have studies with
several hundred thousands of cells. To meet this challenge, we also provide a fast implementation of RUV-
ITII-NB, which we call fastRUV-III-NB.. For K < 10, the fast implementation is faster than MNNCorrect
and scMerge and about half as fast as Seurat3 (Supp. Fig. 17B). Importantly, judging from several key
metrics (Supp.Fig.18), fastRUV-III-NB achieves the same level performance as the original RUV-III-NB.
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The speed-up is achieved primarily by estimating gene-level parameters using a subset of cells (default =

20%). To reduce memory requirements fastRUV-III-NB processes the data as a DelayedArray object.

Discussion

Single-cell RNA-seq offers us an unparalleled opportunity to advance our understanding of the transcrip-
tome at the single cell level. However, scRNA-seq data contains significant amounts of unwanted variation
that, when left unaddressed, may compromise downstream analyses. Most methods for removing unwanted
variation from scRNA-seq data implicitly assume that the unwanted factors are at worst weakly associated
with the biological signals of interest. In this paper, we have proposed RUV-III-NB, a statistical method
for normalizing scRNA-seq data which does not make this assumption. The method adjusts for unwanted
variation using pseudo-replicate sets, which should ensure that it does not remove too much biology when
biology and unwanted variation are associated. Using publicly available data from five studies we show
this to be the case.

We have benchmarked RUV-III-NB against methods that return gene-level normalized data as well
as lower dimensional embedding. Both metrics are equally important in scRNA-seq experiments. While
embedding is important and useful for clustering-based analysis to identify cells with similar biology, gene-
level normalized data is used to identify markers genes to characterize the clusters. We have shown the
distinct advantage of RUV-III-NB for UMI data in terms of embedding and normalized data when the
unwanted variation is associated with biology. When biology is not associated with unwanted variation,
RUV-III-NB has similar level of performance to Seurat3 and scMerge in terms of embedding and better in
terms of normalized data.

A strong feature of RUV-III-NB is that it returns a sequencing count after adjusting for the unwanted
variation. We call this the percentile-invariant adjusted count (PAC). These adjusted counts can be used
as input to downstream analyses such as differential expression (DE), cell-type annotation and pseudotime
analyses. In this paper, we have shown that when used for DE analysis, it delivers good control of false
discoveries and improved power to detect 'gold standard’ DE genes. In the vignette that accompanies the
R package, we also demonstrated how the adjusted counts can be used to perform cell-type annotation.

RUV-III-NB can be used for both data with and without UMI, but its improvement relative to other
methods is especially evident for UMI data. When using RUV-III-NB users need to specify the number of
unwanted factors in the data (K) and the set of negative control genes. We have shown that RUV-III-NB
performance is relatively robust to overestimation of K and the choice of negative control gene sets. While
RUV-III-NB is developed primarily to remove within-study batch effects, it can also be used to integrate

datasets from different studies where platform difference is a major source of unwanted variation. Using


https://doi.org/10.1101/2021.11.06.467575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467575; this version posted January 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the Pancreas study, we have shown that the performance of RUV-III-NB for data integration purposes is

quite competitive .

Methods

We describe the RUV-III-NB model and algorithm here, with more details can be found in the Supplemen-
tary Methods. RUV-III-NB takes raw sequencing counts as input and models the counts y,. for genes g
and cells ¢, as independent Negative Binomial (NB), yg. ~ NB(pgc,14) or Zero-Inflated Negative Binomial
(ZINB) random variables, g = 1,...,G,c = 1,..., N. Here we will only discuss the NB model for UMI
data and leave the ZINB model for read count data to the Supplementary Methods section. Without loss
of generality, we further assume there are m groups among the N cells with the same underlying biology
within and different underlying biology across groups. We will refer to these groups as pseudo-replicate
sets, that is, sets of cells whose members will be regarded as replicates for the purposes of normalization.
Let y, = (Yg1, Yg2; - - - ,ygn) T be the vector of counts for gene g and kg be its vector of mean (i.e. expected
value) parameters under the NB model. We use a generalized linear model with log link function to relate
these mean parameters to the unobserved unwanted factor levels captured by the matrix W while the

biology of interest will be embodied in the matrix M, these being related by

log pry = (g1 + MB, + Way, (1)

where M (N xm) is the pseudo-replicate design matrix with M (¢, j) = 1 if the cth cell is part of the jth
pseudo-replicate set and 0 otherwise, B,(m x 1) ~ N (0, )\[QII m) is the vector of biological parameters, with
values for each of the m replicate sets, W (N x k) is the unobserved matrix of k-dimensional unwanted
factor levels and ay(k x 1) ~ N(au, Ay IE) is the vector of regression coefficient associated with the
unwanted factors, and finally (4 is the location parameter for gene g after adjusting for unwanted factors,
g=1,...G. In our applications we found that setting A\, = 0.01 and A\g = 16 yield good results.

For a given number k& of unwanted factors we use a double-loop iteratively re-weighted least squares
(IRLS) algorithm, where in the inner loop, given current estimates of the dispersion parameters, we estimate
the parameters of the loglinear model above, including the unobserved unwanted factor levels W (see Sup-
plementary Methods for details). Once convergence is achieved there, we update the dispersion parameters
in the outer loop. Two important constructs enable the algorithm to estimate the unobserved unwanted
factor levels and their gene-specific effects on the sequencing count. These are the pseudo-replicate design
matrix M and the set of negative control genes.

The pseudo-replicate design matrix M plays an important role for estimating the effect of the unwanted

factors on the data.'®!® This effect is represented by oy and in RUV-III-NB it is estimated after projecting
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the current IRLS working vector onto the orthogonal complement of the subspace spanned by the columns
of M. Given an estimate of oy, we use the set of negative control genes to estimate the unobserved unwanted
factor levels W. As stated above, negative controls are genes whose variation is (largely) unwanted and
not of biological interest,,' i.e, By = 0 for all negative control genes g. The model for these genes thus
reduces to

log gy, = (g1l + Way,

20 as the negative controls but users can (and

We recommend the use of single-cell housekeeping genes
may need to) devise their own negative control set. The important property of such genes is that they
are affected by the same sources of unwanted variation as the other genes, and that their variation is not

related to the biology of interest in the study.

Strategies for defining pseudo-replicate sets

To estimate the effects of the unwanted variation on the gene counts, the RUV-III-NB algorithm requires
users to specify one or more sets of cells with relatively homogeneous biology, and these are called pseudo-
replicate sets. In cases where the biological factor of interest for each cell is known, e.g when different
treatments are compared across the same cell type, or when two or more cell lines are being compared,
then cells with the same level of the biological factor of interest can be declared to be a pseudo-replicate
set . There will be situations where the biology of interest is not known a priori at the single cell level. For
example, it is often the case that cell type information is unavailable in advance, especially for droplet-based
technologies. For such situations we outline some strategies that can be used to define pseudo-replicate

sets.

Single batch

When the data comes from a single batch, users can cluster the cells into distinct biologically homogeneous
sets of cells. The clustering could be done using the log (normalized count + 1) where the scaling factor
for normalization is calculated using computeSumFactors function in scran package.! For clustering we
recommend the use of a graph-based method such as the Louvain algorithm.?! Cells allocated to the same

cluster can then be considered to form a pseudo-replicate set. We illustrate this strategy in Supp. Fig 19.

Multiple batches

When the data comes multiple batches, we need to match clusters containing cells with similar biology
located in different batches. We recommend that users use the scReplicate function in the Bioconductor

package scMerge!? for this purpose. This function takes log(normalized count + 1) as input and performs
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K-means clustering for each batch separately followed by identification of clusters in different batches that
are mutual nearest clusters.!® Once these mutual nearest clusters (MNC) are identified, cells from the

same MNC can be considered to form a pseudo-replicate set. We illustrate this strategy in Supp. Fig 20.

Strengthening pseudo-replicate sets using pseudo-cells

Even when pseudo-replicate sets can be defined by clustering, the clustering may at times be imprecise,
with considerable biological heterogeneity across cells in the same cluster. Thus declaring all such cells to
be a pseudo-replicate set may risk removing some of the biological signal of interest. To address this issue,

we introduce the idea of basing pseudo-replicate sets on pseudo-cells.

Pseudo-cells: single batch

Within a single batch and biology, we suppose that the major source of unwanted variation is library size,
and that other intra-batch variation (e.g., well-to-well variation within a plate) is minimal. The idea is to
form pseudo-replicates of pseudo-cells that have been constructed to have as much variation as possible
in their library size while keeping their biology as homogeneous as possible, more homogeneous than we
might see in actual single cells in a pseudo-replicate set. Suppose we have identified m pseudo-replicate
sets using either known single cell biology or the strategy that we have just described above. For each of
the pseudo-replicate sets, we form pseudo-cells that represent the pseudo-replicate set using the following

pool-and-divide strategy:

1. Assign each cell to one of the J = 10 pools based on its library size, where pool j contains n; cells,

j=1...J.

2. Pooling: Let Y; be the matrix of counts for cells belonging to pool j = 1,2,...J , where rows
corresponds to genes and columns corresponds to cells. We aggregate the counts for these cells by

forming row totals of Y; and denote the vector containing these row totals by s; with components

Sgj = Zcépoolj Yge-

3. Dividing: For each gene g, we generate a count z,; using the pool-aggregated counts as follows:
Zg; | Sgj ~ Binomial(sgj,p = 1/n;) where sg4; is the aggregated count for gene g in pool j consisting
of m; cells. This step is formally equivalent to randomly dividing the aggregated counts for the
pool into counts for n; pseudo-cells and choosing one of the pseudo-cells at random. The hope is
that the pseudo-cell so defined will exhibit average and so stabler biology in its gene counts, while

concentrating the unwanted variation in the pool, here library size.
4. We thus obtain counts z; = (21, 225, . . ., sz)T for the pseudo-cell that represents pool j.

10
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5. We repeat steps 1-4 for all J pools and declare the J pseudo-cells so defined to be a pseudo-replicate

set.

6. Finally, we carry out steps 1-5 above for the other pseudo-replicate sets, at the end of which we will

have m pseudo-replicate sets each containing J pseudo-cells.

It can be shown that the counts assigned to these pseudo-cells will still have the quadratic mean-variance
relationship typical of negative binomial random variables (see Supplementary Methods). The difference
between these pseudo-cells and the real cells lies in the overdispersion parameter. For the same gene,
the overdispersion parameter for pseudo-cells will be smaller, reflecting the reduced variability resulting
from the pool-and-divide strategy. To incorporate this feature of pseudo-cells into the RUV-III-NB fitting
process, we simply treat them as additional cells whose dispersion parameters are estimated separately

from those of the real cells.

Pseudo-cells: multiple batches

When there are multiple batches, the procedure for forming pseudo-cells just described needs to follow the
stratification of our cells into sets of MNC. Then we construct pseudo-cells for each of the clusters that
makes up an MNC. For example, suppose we have b = 2 batches A, and B and we identified three clusters
for each batch with the following MNC: (Ay, B2), (A2, B1) and (As, Bs) where A; refers to the first cluster

in batch A, etc. The procedure for forming the pseudo-cells would then be as follows:

1. Start with the first MNC (A1, B2)

2. Assign each cell in A; into one of the J groups based on its library size, where group j contains n;

cells.

3. Pooling: Let Y; be the matrix of counts for cells belonging to pool j where rows correspond to genes
and columns corresponds to cells. Aggregate the gene counts in these cells by forming the row totals

of Y; and denote this new vector by s4;.

4. Dividing: For each gene g, we generate a count zj, using the pool-aggregated counts as follows:
zjg ~ Binomial(sj4, p = 1/n;) where sj4 is the pool-aggregated count for gene g. As above, this step
is equivalent to randomly dividing the aggregated counts for the pool into those for n; pseudo-cells

and choosing one of the pseudo-cells randomly.
5. We thus obtain z; = (215, 225, . . ., 2¢;) as the count data for pseudo-cell that represent pool j.

6. Repeat steps 2-5 for cells in Bs.
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7. Declare all the pseudo-cells formed in step 2-6 above to be a pseudo-replicate set.

8. Go to step 1 and repeat steps 2-6 for the second MNC (Ag, B;) and third MNC (A3, Bs)

When this procedure is completed, we will have as many pseudo-replicate sets as we have MNC sets
and each pseudo-replicate set is made up of b x J pseudo-cells. We illustrate this strategy for b = 2 batches

and J = 2 groups in Supp. Fig 21.

Adjusted counts

Once we obtain the estimates of unwanted factors W and their effects Gy, we remove their effects from
the raw data. RUV-III-NB provides two forms of adjusted data. These adjusted data can be used as input

to downstream analyses such as clustering, trajectory and differential expression analyses.

e Pearson residuals:
ygc - Ngc

\/ /-ALQC + :a?]cwg
where fig. = exp(ég + T ay).

When k =1 and W is approximately equal to log library size (up to a scaling factor), these Pearson
residuals will roughly agree with those of,* although different shrinkages of parameter estimates may
lead to small differences. When k£ > 1 and some columns of W reflect batch effects, our Pearson

residuals will also adjust for unwanted variation other than library size, such as batch effects.

e Log of percentile-invariant adjusted count (log PAC):
IOg(F_l(Tgc; Hge = eXp(ég + mZBAg + ’LT)ng), @Z’g) +1)

where rge ~ U(age, bge) and

Qge = F(ygc§ Hge = eXp(Cg + mZBQ + wCT&Q’ %))
bge = F(yge +1ipge = exp(Cy + ml By + " brg, 1))

where F(.) is the negative binomial c.d.f and F~!(.) its inverse, m,. is the c*" row of the matrix M,
W, the ¢ row of the matrix W and w is vector of entries equal to the average level N1 Zi\[:l W, of

unwanted variation. Here U(a, b) denoted a random variable uniformly distributed over the interval

(a,b).
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The intuition behind this adjustment is as follows. We first obtain the percentiles of the observed
counts under the fitted NB model, where the mean value parameter includes terms for unwanted
variation. Since negative binomials are discrete distributions, percentiles can only be determined up
to an interval. To come up with an estimate of a percentile for practical use, we simply select a
uniformly distributed random value from this interval in a manner suggested in.?> We then find the

corresponding count for that estimated percentile under a different NB model, namely one where

T
c

the mean parameter is free from unwanted variation, i.e. where W, é&4 is replaced by tTJng. We
then add 1 and log. Our definition of percentile-invariant adjusted count explicitly derives the counts
as percentiles of a full NB distribution and in this regard it is similar to that in?® who proposed
this approach to obtain batch-corrected bulk RNA-seq data. Their adjustment was only applied to
non-zero counts, and left the zero counts intact. That was not expected to pose significant problems
for bulk RNA-seq data where zero counts are relatively scarce, but because zero counts are very
prominent in scRNA-seq data, we broaden their approach and also adjust zero counts. On the
other hand, sctransform’s corrected count® is calculated by taking away from the observed count the

difference between the predicted counts at the observed and at the average log library size, followed

by rounding to avoid non-integer values.

Datasets for Benchmarking

To benchmark our methods against others, we use the following five datasets that encompass different
technological platforms, illustrate different strategies for identifying pseudo-replicates and pose different
challenges for normalization due to association between different unwanted factors and biology (Table 1).

Prior to normalization all datasets were subjected to quality control checks using Bioconductors’s
scater package?! to remove low quality cells. Low abundance genes were also removed and additional

parameters for each method were set to their default.

e Non-Small Cell Lung Cancer cells (NSCLC): The dataset was generated using 10x and is freely
available from the 10x Genomics website (www.10xgenomics.com). The sequencing was done in one
batch, so there should be no batch effects, but the cells are a mixture of cells with larger size such as
epithelial cells and smaller cells such as T cells. The challenge here is to normalize when library size

is associated with the biology, namely, cell-type. After QC, there were 10,0019 genes and 6,622 cells.

e Cell line: Here the 10x technology was used to sequence cells in three batches. One batch contained
only the Jurkat cell line, another contained only the 293T cell line, while the third batch contained
50-50 mixture of both cell lines. Data were downloaded from 10x Genomics website. After QC, there

were 7,943 genes and 9,027 cells.
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e Chronic lymphocytic leukemia (CLL): This in-house dataset was generated using the CelSeq2 tech-
nology as part of a study investigating the transcriptomic signature of Venetoclax resistance. The
cells were pre-sorted so that the vast majority are B-cells and were treated with dimethyl sulfoxide
(DMSO) as well as single treatment (TRT) and combination treatments (TRT+) for one week, before
being sequenced on six different plates. In addition to this, a small number of cells from the Granta
cell line were included on each plate. After QC, there were 11,470 genes and 1,644 cells. The dataset

is included as CLLdata object in the ruvIIInb R package.

e Gaublomme: Here Th17 cells derived under a non-pathogenic condition (TGF-51+IL-6, unsorted:
130 cells from 2 batches and TGF-31+IL-6; sorted for IL-17A /GFP+: 151 cells from 3 batches) and
a pathogenic condition (II-15141L-6+11-23, sorted for IL-17A /GFP+: 139 cells from 2 batches) were
sequenced using the SMARTseq technology.?® After QC, there were 7,590 genes and 337 cells.

e Pancreas: Human pancreas islet cells from two different studies.'® wused the inDrop technology
to sequence the cells, while?® used the CELSeq2 technology. The datasets were downloaded from
https://hemberg-lab.github.io/scRNA seq.datasets/human/pancreas/. After QC, there were 11,542
genes and 10.687 cells.

Benchmarking Methods

For the NSCLC study where there should be no batch effect and the only task is removing library size

1 12

effects, we compared RUV-III-NB with the following methods: scran,' sctransform,* ZINBwave!? and
Dino.® For the other studies where batch effects are present, we compare RUV-III-NB to the following
batch correction methods: mnnCorrect and fastMNN,® Seurat3'! coupled with sctransform normalization,
ZINBwave'? and scMerge.'? These methods have been selected because all of them return the gene-level
normalized data required to calculate the benchmarking metrics (see below). This is in contrast with other
methods such as Harmony,? where the normalized data is only available as an embedding. Some of the
methods produce multiple versions of normalized data and in Supp. Table 1, we provide details on which

normalized data we used for calculating the various metrics in our benchmarking exercise.

We use the following criteria for assessing the performance of the different normalization methods:

e Genewise correlations between the normalized data and log library size: We expect a
good normalization to remove any association between gene expression levels and log library size,

especially when cells with the same biology are considered.

¢ R? between log library size and the leading PC: For each cell-type, the coefficient of determi-

nation (R?) when regressing log library size on the leading PCs should be as low as possible. This is
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because we believe that a good normalization should reduce the association between the normalized
data and log library size, so within a group of cells with similar biology, the leading PCs should

contain little information about library size.

e Silhouette statistics for clustering by batch (Technical Silhouette): When batch effects are
reduced, we should expect a lower degree of clustering by batch, within a set of cells with homogeneous

biology.

e Silhouette statistics for clustering by biology (Biological Silhouette): When batch effects

are removed, we expect biological signals to be strengthened and lead to better clustering by biology.

For all methods, with the exception of Seurat3-Integrated, to calculate silhouette scores we used
the first ten PC calculated using genes whose normalized expression variance lies in the top 50%
and Euclidean distance. For Seurat3-Integrated, we use all anchor features for calculating PC. The
number of anchor features is typically 2000, much less than the half of the total number of genes.
When biological factors of interest are available from the dataset, these are used to calculate silhouette
scores. Otherwise, we use the Bioconductor package SingleR? to estimate the cell types. PC were

derived using the R package irlba.?®

e Differential expression vs unwanted factors (DE-UF): When comparing cells of the same cell-
type across batches (DE-batch) or smaller vs larger library size (DE-LS), a good normalization

should decrease the proportion of differentially expressed genes (DEG).

e Differential expression vs biology (DE-Bio): When comparing cells across different biologies,
a good normalization should increase the concordance between the results found with the current

and those of an independent study, as measured by the number of DEG.

e Canonical correlation between relative log expression medians and interquartile ranges
(IQR) and log library size and batch variables (RLE-UF): With good normalization, we
expect that within a set of cells with homogeneous biology, the RLE plot summary statistics have
little association with unwanted factors.Because the RLE calculation requires subtracting log of gene-
specific median expression,?? the RLE plots were calculated using only genes with non-zero median

expression.

’Gold-standard’ DE genes

We compare the concordance of differentially-expressed genes (DEG) obtained from the different methods

to the following ’gold standard’ DEG:
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e Celline: ’Gold standard’ DEG in this case were derived by comparing Jurkat and 293T cells from
batch 3, which has cells from both cell lines. The assumption is that cells assayed in the same batch
will exhibit similar batch effects that will, to some extent, cancel when we compare cells of different
types. The DE analysis was performed using the Kruskal-Wallis test on the log(scran-normalized

data + 1).

e Gaublomme: ’'Gold standard’” DEG here were derived from an external dataset. We downloaded
the raw Affymetrix CEL files from the GEO website (ID: GSE39820). The microarray data were
normalized using the GCRMA package version 2.58.0 and DE analysis comparing non-pathogenic (TGF-
B141IL-6) vs pathogenic (II-151+1L-641L-23) microarray samples was performed using the limma

package.?’

e Pancreas: ’Gold standard’ DEG here were also derived from an external dataset. Normalized
Agilent microarray expression data were downloaded from https://www.omicsdi.org/dataset/
arrayexpress-repository/E-MTAB-465 and DE analysis comparing Alpha vs Beta cells was per-

formed using limma.
Data Availability
All datasets used in this paper are published datasets available for downloads from sources outlined in the
Methods section above.
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Fig. 1: NSCLC study. (A) PC of sctransform-log corrected count. Colour refers to log library size. (B)
PC of RUV-III-NB log percentile adjusted count (PAC). These show that monocytes are better separated
from the rest of the cells. (C) Biological silhouette. RUV-III-NB and Dino are the only methods that
improve the biological silhouette over that for scran normalization. (D) Heatmap of R-squared between
logLLS and PC of normalized data. RUV-III-NB and sctransform-Pearson have the lowest correlation, with
RUV-III-NB still retaining some of the size-related heterogeneity within a cell type. (E) Correlation and
canonical correlation (ccRLE) between median and IQR of relative log expression (RLE) and log library
size. (F) Proportion of DEG between cells with below and above median log library size.
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Fig. 2: Overall performance of normalization methods in the NSCLC study. Each vertex corresponds to a
metric and the length of the shaded area corresponds to level of performance with respect to the metric.
For assessment metrics where lower indicates better performance such as technical (batch) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as l-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics.
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Fig. 3: Cell line study. (A) The first two PC of scran-normalized data. Colour refers to log library size.
The library size effect is clearly visible in the PC. (B) PC of scran-normalized data. Colour refers to
cell type. Batch effects are visible for the Jurkat cells. (C) PC of RUV-III-NB log percentile adjusted
counts (PAC). Clustering by cell type is clearly visible with batch effects removed. (D) Average biological
silhouette score. RUV-III-NB and scMerge improve the biological signal and increasing the number of
unwanted factors beyond a certain point only slightly degrades performance. (E) Correlation between
median and IQR of relative log expression (RLE) with log library size and canonical correlation (ccRLE)
between median and IQR of RLE and log library size and batch. (F) Proportion of DEG when comparing
cells of the same type across batches.
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Fig. 4: Overall performance of normalization methods in the celline study. Each vertex corresponds to a
metric and the length of the shaded area corresponds to level of performance with respect to the metric.
For assessment metrics where lower indicates better performance such as technical (batch) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as l-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics.
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Fig. 5: Pancreas study. (A) Densities of Spearman correlations between log library size and normalized
data for ALL and each cell type. RUV-III-NB has the most concentrated density around zero, followed

by scMerge.

(B) Biological silhouette score. Seurat3-Integrated has the best biological silhouette score,

followed by RUV-III-NB. (C) Heatmap of R-squared between logLS and PCs of normalized data. RUV-
III-NB and scMerge have the lowest correlation, with RUV-III-NB still retaining some of the size-related
heterogeneity within a cell type. (D) Technical silhouette scores for each cell-type. scMerge has the lowest
silhouette, followed by RUV-III-NB. (E) Correlation between median and IQR of relative log expression
(RLE) with log library size and canonical correlation (ccRLE) between median and IQR of RLE and log
library size and batch. (F) Proportion of DEG when comparing cells of the same type across batches.
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Fig. 6: Overall performance of normalization methods in the Pancreas study. Each vertex corresponds to
a metric and the length of the shaded area corresponds to level of performance with respect to the metric.
For assessment metrics where lower indicates better performance such as technical (batch) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as l-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics.
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Fig. 7: Concordance of DEG. (A) Jurkat cells in the cell line study. RUV-III-NB has the best concordance,
followed by Seurat3. (B) Pathogenic vs Sorted Non-Pathogenic cells in the Gaublomme study. RUV-III-
NB has the best concordance followed by fastMNN and scMerge. (C) Alpha vs Beta cells in the Pancreas
study. scran has the best concordance followed by Seurat3 and RUV-III-NB.
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