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Abstract 1 

Advances in microscopy hold great promise for allowing quantitative and precise 2 

readouts of morphological and molecular phenomena at the single cell level in bacteria. 3 

However, the potential of this approach is ultimately limited by the availability of 4 

methods to perform unbiased cell segmentation, defined as the ability to faithfully 5 

identify cells independent of their morphology or optical characteristics. In this study, we 6 

present a new algorithm, Omnipose, which accurately segments samples that present 7 

significant challenges to current algorithms, including mixed bacterial cultures, 8 

antibiotic-treated cells, and cells of extended or branched morphology. We show that 9 

Omnipose achieves generality and performance beyond leading algorithms and its 10 

predecessor, Cellpose, by virtue of unique neural network outputs such as the gradient of 11 

the distance field. Finally, we demonstrate the utility of Omnipose in the characterization 12 

of extreme morphological phenotypes that arise during interbacterial antagonism and on 13 

the segmentation of non-bacterial objects. Our results distinguish Omnipose as a uniquely 14 

powerful tool for answering diverse questions in bacterial cell biology.  15 
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Introduction 16 

Although light microscopy is a valuable tool for characterizing cellular and sub-17 

cellular structures and dynamics, quantitative analysis of microscopic data remains a 18 

persistent challenge1. This is especially pertinent to the study of bacteria, many of which 19 

have dimensions in the range of optical wavelengths. Thus, their cell body is composed 20 

of a small number of pixels (e.g., ~100-300 px2 for E. coli at 100x magnification). At this 21 

scale, accurate subcellular localization requires defining the cell boundary with single-22 

pixel precision. The process of defining cell boundaries within micrographs is termed cell 23 

segmentation and this is a critical first step in current image analysis pipelines2,3. 24 

In addition to their small size, bacteria adopt a wide range of morphologies. 25 

Although many commonly studied bacteria are well-approximated by idealized rods or 26 

spheres, there is growing interest in bacteria with more elaborate shapes4. Some examples 27 

include Streptomycetales, which form long filamentous and branched hyphal structures5, 28 

and Caulobacterales, which generate extended appendages distinct from their cytoplasm6. 29 

Furthermore, microfluidic devices are allowing researchers to capture the responses of 30 

bacteria to assorted treatments such as antibiotics, which often result in highly irregular 31 

morphologies7. Whether native or induced, atypical cell morphologies present a distinct 32 

problem at the cell segmentation phase of image analysis8,9. This is compounded when 33 

such cells are present with those adopting other morphologies, as is the case in many 34 

natural samples of interest10. To date, there are no solutions for segmenting bacterial cells 35 

of assorted shape and size in a generalizable manner1. 36 

Cell segmentation is a complex problem that extends beyond microbiological 37 

research, thus many solutions are currently available in image analysis programs8,9,11-27. 38 
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Most of these solutions use traditional image processing techniques such as the 39 

application of an intensity threshold to segment isolated cells; however, this approach 40 

does not perform well for cells in close contact and it requires extensive parameter-tuning 41 

in order to optimize for a given cell type. SuperSegger was developed to address these 42 

issues specifically in bacterial phase contrast images13. This program utilizes both 43 

traditional image filtering techniques and a shallow neural network to correct for errors 44 

that thresholding and watershed segmentation tend to produce. 45 

Deep neural networks (DNNs) are now widely recognized as superior tools for 46 

cell segmentation28. Unlike traditional image processing, machine-learning approaches 47 

such as DNNs require training on a ground-truth dataset of cells and corresponding 48 

labels. Trained DNNs are thus limited in applicability to images that are representative of 49 

those in the training dataset. Early DNN approaches were based on the Mask R-CNN 50 

architecture24, whereas more recent algorithms such as StarDist, Cellpose, and MiSiC are 51 

based on the U-Net architecture12,15,26. Pachitariu and colleagues showed that Cellpose 52 

outperforms Mask R-CNN and StarDist on a variety of cell types and cell-like objects, 53 

distinguishing it as a general solution for cell segmentation12. Notably, the representation 54 

of bacteria in their study was limited. MiSiC was developed as a general DNN-based 55 

solution for bacterial segmentation; however, the authors of MiSiC did not provide 56 

comparisons to other DNN algorithms15. Here, we evaluated the performance of state-of-57 

the-art cell segmentation algorithms on a diverse collection of bacterial cells. Our 58 

findings motivated the design of a new algorithm, Omnipose, that significantly 59 

outperforms all previous cell segmentation algorithms across a wide range of bacterial 60 

cell sizes, morphologies, and optical characteristics. We have made Omnipose and all 61 
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associated data immediately available to researchers, and we anticipate that our model – 62 

without retraining – can be applied to diverse bacteriological systems. Furthermore, 63 

following the incorporation of additional ground truth data, Omnipose could serve as a 64 

platform for segmenting various eukaryotic cells and extended, anisotropic objects more 65 

broadly. 66 

 67 

Results 68 

Evaluation of bacterial cell segmentation algorithms 69 

Numerous image segmentation algorithms have been developed, and the 70 

performance of many of these on bacterial cells is documented1. These broadly fall into 71 

three categories: (i) traditional image processing approaches (e.g., thresholding, 72 

watershed), (ii) traditional/machine learning hybrid approaches, and (iii) deep neural 73 

network (DNN) approaches. Given the goal of developing software with the capacity to 74 

recognize bacteria universally, we sought to identify strongly performing algorithms for 75 

further development. An unbiased, quantitative comparison of cell segmentation 76 

algorithms on bacterial cells has not been performed; thus, we selected one or more 77 

representatives from each category for our analysis: Morphometrics23 (i), SuperSegger13 78 

(ii), Mask R-CNN27, StarDist26, MiSiC15, and Cellpose12 (iii). For a detailed review of 79 

these choices, see Methods.  80 

For training and benchmarking these algorithms, we acquired micrographs of 81 

assorted bacterial species representing diverse morphologies and optical characteristics. 82 

Many studies of bacteria involve mutations or treatments that cause extreme 83 

morphologies. To capture this additional diversity, we included wild-type and mutant 84 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.11.03.467199doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 6 

bacteria grown in the presence of two beta-lactam antibiotics, cephalexin and aztreonam, 85 

and A22, which targets MreB29. Finally, based on our interest in microbial communities, 86 

we acquired images of mixtures of bacteria which display distinct morphologies and 87 

optical characteristics. In total, we collected 4833 images constituting approximately 88 

700,900 individual cells deriving from 14 species (Extended Data Table 1). Next, we 89 

developed a streamlined approach for manual cell annotation and applied it to these 90 

images (see Methods), yielding 46,000 representative annotated cells that serve as our 91 

ground-truth dataset. We arbitrarily split this data into a 27,000-cell training set and a 92 

19,000-cell benchmarking set. Relevant cellular metrics did not differ substantially 93 

between the groups, confirming that the benchmarking set faithfully represents the 94 

training set (Extended Data Fig. 1). 95 

To facilitate direct comparison of the algorithms, we first optimized their 96 

performance against our data. For the DNN approaches, each algorithm was trained on 97 

our dataset using developer-recommended parameters. Morphometrics and SuperSegger 98 

cannot be automatically optimized using ground-truth data; therefore, we manually 99 

identified settings that optimized the performance of these algorithms against our dataset 100 

(see Methods). As a quantitative measure for algorithm performance, we compared their 101 

average Jaccard Index (JI) as a function of intersection over union (IoU) threshold – a 102 

well-documented approach for evaluating image segmentation (Fig. 1a)30,31. IoU values 103 

lie between zero and one, with values greater than 0.8 marking the point at which masks 104 

become indistinguishable from ground truth by the expert human eye (Extended Data 105 

Fig. 2)30. This analysis showed that DNN-based approaches significantly outperform 106 

other algorithms. However, within the DNN group, substantial differences in 107 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.11.03.467199doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 7 

performance were observed; Cellpose and StarDist outperform Mask R-CNN and MiSiC 108 

at high IoU thresholds. The performance of all algorithms varied greatly across the 109 

images in our ground-truth dataset, with much of this variability delineated by cell type 110 

and morphology categories (Fig. 1b-g). Whereas all other algorithms exhibited visible 111 

segmentation errors in two of the three cell categories we defined, errors by Cellpose – 112 

the best overall performing algorithm at high IoU thresholds – were only apparent in 113 

elongated cells (Fig. 1h-j). 114 

 115 

Motivation for a new DNN-based segmentation algorithm 116 

Our comparison revealed that Cellpose offers superior performance relative to the 117 

other segmentation algorithms we analyzed, and for this reason, we selected this 118 

algorithm for further development. Notably, even at the high performance levels of 119 

Cellpose, only 83% of predictions on our benchmarking dataset are above 0.8 IoU. This 120 

limits the feasibility of highly quantitative studies such as those involving subcellular 121 

protein localization or cell–cell interactions. 122 

Cellpose utilizes a neural network that is trained on ground-truth examples to 123 

transform an input image into several intermediate outputs, including a scalar probability 124 

field for identifying cell pixels (Extended Data Fig. 3a, panels i-iii)12. Cellpose is unique 125 

among DNN algorithms by the addition of a vector field output, which is defined by the 126 

normalized gradient of a heat distribution from the median cell pixel coordinate 127 

(Extended Data Fig. 3a, panels iv,v). This vector field directs pixels toward a global cell 128 

center via Euler integration, allowing cells to be segmented based on the points at which 129 

pixels coalesce (Extended Data Fig. 3b). In contrast to other algorithms, this approach for 130 
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reconstructing cells is size- and morphology-independent, insofar as the cell center can be 131 

correctly defined.  132 

To further interrogate the accuracy of Cellpose on our dataset, we evaluated its 133 

performance as a function of cell size. We compared cell area against the number of 134 

segmentation errors, calculated as the number of redundant or missing masks 135 

corresponding to each ground-truth cell mask. This revealed a strong correlation between 136 

cell size and segmentation errors, with the top quartile of cells accounting for 83% of all 137 

errors (Fig. 2a). To understand the source of these errors, we inspected the flow field 138 

output of many poorly segmented cells across a variety of species and growth conditions. 139 

This showed that elongated cells, an important morphology often seen in both wild-type 140 

and mutant bacterial populations, are particularly susceptible to over-segmentation (Fig. 141 

2b). We attribute this to the multiple sinks apparent in the corresponding flow fields. In 142 

the Cellpose mask reconstruction algorithm, pixels belonging to these cells are guided 143 

into multiple centers per cell, fragmenting the cell into many separate masks.  144 

We hypothesized that the observed defect in Cellpose flow field output is a 145 

consequence of two distinct flow field types arising from our training dataset: those 146 

where the median pixel coordinate, or ‘center’, lies within the cell (97.8%) and those 147 

where it lies outside the cell (2.2%). In the latter, Cellpose projects the center point to the 148 

nearest boundary pixel, ultimately leading to points of negative divergence on the cell 149 

periphery that are chaotically distributed (Fig. 2c-e). On the contrary, non-projected 150 

centers maintain a uniform field magnitude along the entire boundary and adhere to the 151 

global symmetries of the cell (Extended Data Fig. 4a,d). A similar issue is also 152 

encountered in cells with centers that are not projected but lie close to the boundary 153 
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(Extended Data Fig. 4b-d). Cells with a center point closer than 0.3 times the mean cell 154 

diameter (a factor of 0.2 off-center) to the boundary account for an additional 8.5% of our 155 

data. Neural networks can be exquisitely sensitive to the outliers in their training data32; 156 

therefore, we suspect that this small fraction of corrupt flow fields has significantly 157 

impacted the performance of Cellpose.  158 

 159 

Development of a new DNN-based segmentation algorithm 160 

As there exists no straightforward means of defining a cell center for irregular 161 

objects, we sought to develop a segmentation algorithm that operates independently of 162 

cell center identification. We built our new algorithm, which we named Omnipose, 163 

around the scalar potential known as the distance field (or distance transform), which 164 

describes the distance at any point 𝑥⃗ in a bounded region Ω to the closest point on the 165 

boundary ∂Ω. Notably, this widely utilized construct is one of the intermediate outputs of 166 

StarDist32. Whereas in StarDist it is used to seed and assemble star-convex polygons, its 167 

use in Omnipose is to define a new flow field within the Cellpose framework. The use of 168 

a distance field has several advantages. First, the distance field is defined by the eikonal 169 

equation &∇((⃗ Φ(𝑥⃗)& = 1, and so its gradient has unit magnitude throughout the bounded 170 

region for which it is calculated. This grants it faster convergence and better numerical 171 

stability when compared to alternative solutions producing similar fields (e.g., screened 172 

Poisson; see Methods) (Extended Data Fig. 5a). Second, the distance field is independent 173 

of morphology and topology, meaning that it is applicable to all cells. Lastly, the 174 

resulting flow field points uniformly from cell boundaries toward the local cell center, 175 

coinciding with the medial axis, or skeleton, that is defined by the stationary points of the 176 
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distance field (Extended Data Fig. 5b). This critical feature allows pixels to remain 177 

spatially clustered after Euler integration, solving the problem of over-segmentation seen 178 

in Cellpose. 179 

One challenge to using the distance field as the basis to our approach is that 180 

traditional distance field algorithms like FMM (Fast Marching Method) are sensitive to 181 

boundary pixilation33, causing artifacts in the flow field that extend deep into the cell. 182 

These artifacts are sensitive to pixel-scale changes at the cell perimeter, which we 183 

reasoned would interfere with the training process. To solve this, we developed an 184 

alternative approach based on FIM (Fast Iterative Method) that produces smooth distance 185 

fields for arbitrary cell shapes and sizes (Fig. 3a, and see Methods)34. The corresponding 186 

flow field is relatively insensitive to boundary features at points removed from the cell 187 

boundary, a critical property for robust and generalized prediction by the Cellpose 188 

network. 189 

The use of the distance field additionally required a unique solution for mask 190 

reconstruction. Whereas the pixels in a center-seeking field converge on a point, standard 191 

Euler integration under our distance-derived field tends to cluster pixels into multiple thin 192 

fragments along the skeleton, causing over-segmentation (Fig. 3b). We solved this with a 193 

suppression factor of (𝑡 + 1)!" in each time step of the Euler integration. This reduces 194 

the movement of each pixel after the first step 𝑡 = 0, facilitating initial cell separation 195 

while preventing pixels from clustering into a fragmented skeleton formation. The wider 196 

distribution resulting from our suppression factor allows pixels to remain connected, 197 

thereby generating a single mask for each cell in conjunction with a standard automated 198 

pixel clustering algorithm (e.g., DBSCAN)35.  199 
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 200 

Omnipose demonstrates unprecedented segmentation accuracy of bacterial cells  201 

With solutions to the major challenges of cell center-independent segmentation 202 

incorporated into Omnipose, we proceeded to benchmark its performance. Remarkably, 203 

across the IoU threshold range 0.5-1.0, Omnipose averages a JI >10-fold above that of 204 

Cellpose (Fig. 4a). The difference in performance between the algorithms is particularly 205 

pronounced within the high IoU range (0.75-1.0), where we observe an average of 170-206 

fold higher JI for Omnipose. At the 0.5-5 µm scale and with a typical microscope 207 

configuration, quantitative measurements rely upon IoU values in this range, thus 208 

Omnipose is uniquely suited for the microscopic analysis of bacterial cells. 209 

To dissect the contributions of the individual Omnipose innovations to the overall 210 

performance of the algorithm, we isolated the mask reconstruction component of 211 

Omnipose and applied it to the Cellpose network output. This augmentation of Cellpose 212 

modestly improved its performance to a roughly equivalent extent across all IoU 213 

thresholds (Fig. 4a). Based on this, we attribute the remaining gains in performance by 214 

Omnipose to its unique network outputs and our improvements to the Cellpose training 215 

framework (see Methods). 216 

Our analyses illuminated critical flaws in prior DNN-based approaches for the 217 

segmentation of elongated cells, effectively preventing these algorithms from 218 

generalizable application to bacteria (Fig. 1). To determine whether Omnipose overcomes 219 

this limitation, we evaluated its performance as a function of cell area. Cell area serves as 220 

a convenient proxy for cell length in our dataset, which is composed of both branched 221 

and unbranched elongated cells. Whereas the Cellpose cell error rate remains above 9% 222 
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and increases exponentially with cell size, Omnipose displays a consistent error rate that 223 

remains below 4% for all percentiles (Fig. 4b). Thus, Omnipose performance is 224 

independent of cell size and shape, including those cells with complex, extended 225 

morphologies (Fig. 4c,d).  226 

 227 

Omnipose permits sensitive detection of cellular intoxication 228 

Our laboratory recently described an interbacterial type VI secretion system-229 

delivered toxin produced by Serratia proteamaculans, Tre136. We showed that this toxin 230 

acts by ADP-ribosylating the essential cell division factor FtsZ; however, we were unable 231 

to robustly evaluate the consequences of Tre1 intoxication on target cell morphology 232 

owing to segmentation challenges. Here we asked whether Omnipose could permit 233 

straightforward and sensitive detection of intoxication by Tre1. To this end, we incubated 234 

S. proteamaculans wild-type or a control strain expressing inactive Tre1 (tre1E415Q) with 235 

target E. coli cells and imaged these mixtures after a fixed period of 20 hours. Owing to 236 

the unique capabilities of Omnipose, we were able to include dense fields of view, 237 

incorporating >300,000 cells in our analysis. 238 

Among the cells identified by Omnipose, we found a small proportion were 239 

elongated and much larger than typical bacteria (Fig. 5a,b and Extended Data Fig. 6a). 240 

These cells were only detected in mixtures containing active Tre1, and the apparent 241 

failure of the cells to septate is consistent with the known FtsZ-inhibitory activity of the 242 

toxin. The S. proteamaculans strain background we employed in this work expresses the 243 

green fluorescent protein. Corresponding fluorescence images allowed us to 244 

unambiguously assign the enlarged cell population to E. coli (Fig. 5c). Next, we 245 
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subjected the same images to cell segmentation with StarDist, Cellpose, and MiSiC, the 246 

three top-performing algorithms in our initial survey. Each of these algorithms fail to 247 

identify this population of cells to high precision (Fig. 5d,e). Close inspection reveals 248 

three distinct modes of failure (Fig. 5e and Extended Data Fig. 6b). In the case of 249 

StarDist, elongated (non-star-convex) cells are split into multiple star-convex subsets that 250 

do not span the entire cell. Cellpose detects entire elongated cells, but it breaks them up 251 

into a multitude of smaller masks. Conversely, MiSiC detects all cells but fails to 252 

properly separate them, thereby exaggerating the area measurement in many cases. Taken 253 

together, these data illustrate how the enhanced cell segmentation performance of 254 

Omnipose can facilitate unique insights into microbiological systems. 255 

 256 

Omnipose exhibits strong performance in non-bacterial segmentation tasks  257 

We have shown that the features we developed within Omnipose improved phase-258 

contrast bacterial segmentation performance beyond that of Cellpose. However, it is 259 

possible that these features could hinder performance relative to Cellpose in other 260 

imaging modalities or in segmentation tasks involving, for example, eukaryotic cells, 261 

whole organisms, and cell-like objects. To test this, we trained Omnipose on the cyto2 262 

dataset, a large collection of images and corresponding ground-truth annotations 263 

submitted by users that expands upon the original cyto dataset of Cellpose12,30. We found 264 

that Omnipose offers a modest improvement in performance relative to Cellpose on this 265 

dataset (Fig. 5f and Extended Data Fig. 7a). Moreover, Omnipose achieved this 266 

performance boost without compromising the segmentation rate (~1 image per second).  267 
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Encouraged by the strong performance of Omnipose on the cyto2 dataset, we next 268 

sought to investigate its potential utility in a field far removed from microbiology. The 269 

nematode Caenorhabditis elegans is a widely studied model organism with an overall 270 

morphology grossly similar to elongated bacteria37. At just one millimeter in length, 271 

intact C. elegans are often analyzed by microscopy in order to measure phenotypes; 272 

therefore, there is significant interest in methods for their accurate segmentation to enable 273 

tracking38. We obtained, annotated and trained Omnipose on two publicly available 274 

microscopy datasets composed of C. elegans images: time-lapse frames from the Open 275 

Worm Movement database39 and frames containing fields of assorted live or dead C. 276 

elegans from the BBBC010 dataset40. These images contain debris and are of 277 

heterogenous quality, yet 82% of masks predicted by Omnipose match or exceed the 0.8 278 

IoU threshold (Fig. 5g,h). Taken together with our findings on cyto2, we conclude that 279 

Omnipose inherits and offers improvement upon the broad applicability of Cellpose. 280 

 281 

Discussion 282 

Confronted with the importance of segmentation accuracy to the success of work 283 

within our own laboratory, we were motivated to characterize the performance of several 284 

existing cell segmentation algorithms. Recent developments in deep learning have greatly 285 

improved these algorithms; however, significant challenges remain1,30. Although isolated 286 

cells without cell-to-cell contact can be segmented with high precision by any of the 287 

packages we tested, segmentation becomes significantly more challenging when cells 288 

form microcolonies, adopt irregular morphologies, or when fields are composed of cells 289 

with multiple shapes and sizes. Such difficulties are compounded in time-lapse studies, 290 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.11.03.467199doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 15 

where the significance of segmentation errors often grows exponentially with time. 291 

Experimental design can help mitigate certain segmentation challenges; however, the 292 

recent emphasis on non-model organisms and microbial communities renders this an 293 

increasingly undesirable solution41. 294 

This work provides the most comprehensive side-by-side quantitative comparison 295 

of cell segmentation algorithm performance to-date. As expected, machine-learning-296 

based approaches outperform others, yet insights into general image segmentation 297 

strategies can be gained from each of the methods we examined. Two of the six 298 

algorithms we tested utilize traditional image thresholding and watershed segmentation: 299 

Morphometrics and SuperSegger13,23. Each program tends to under-segment adjacent 300 

cells and over-segment large cells, behaviors previously linked to thresholding and 301 

watershed processes, respectively1,42. Given that SuperSegger was motivated at least in-302 

part to mitigate these issues, we postulate that traditional image segmentation approaches 303 

are ultimately limited to specialized imaging scenarios. Although we classify MiSiC as a 304 

DNN-based approach, this algorithm also relies on thresholding and watershed 305 

segmentation to generate cell masks from its network output15. The network output of 306 

MiSiC is more uniform than unfiltered phase contrast images, yet this pre-processing 307 

does not fully abrogate the typical errors of thresholding and watershed segmentation. 308 

We therefore conclude that, even when combined with neural networks as seen in MiSiC, 309 

thresholding and watershed cannot be effectively used for general cell segmentation 310 

tasks. 311 

A successful DNN-based algorithm is composed of a robust, consistent neural 312 

network output, and an appropriate mask reconstruction process based on this output. In 313 
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the case of Mask R-CNN, bounding boxes for each cell are predicted along with a 314 

probability field that localizes a cell within its bounding box43. Masks are generated by 315 

iterating over each box and thresholding the probability field. Despite the widespread 316 

adoption of Mask R-CNN, we found this algorithm did not perform exceptionally well in 317 

our study. Our results suggest that this is due to dense cell fields with overlapping 318 

bounding boxes, a feature known to corrupt the training process and produce poor 319 

network outputs for Mask R-CNN44. By contrast, the StarDist network makes robust 320 

predictions, but it fails to assemble accurate cell masks because the cells in our dataset 321 

are not well approximated by star-convex polygons26. The errors we encountered with 322 

Cellpose can be attributed to both neural network output and mask reconstruction. In 323 

Omnipose, we specifically addressed these two issues via the distance field and 324 

suppressed Euler integration, respectively, yielding a remarkably precise and 325 

generalizable image segmentation tool. Omnipose effectively leverages the strongest 326 

features of several of the DNN approaches we tested, namely the distance field of 327 

StarDist, the boundary field of MiSiC, and the mask reconstruction framework of 328 

Cellpose. 329 

We have designed Omnipose for use by typical research laboratories and we have 330 

made its source code and training data publicly available. For images of bacteria under 331 

phase contrast, researchers will not need to provide new ground truth data or retrain the 332 

model. In this study, we emphasized morphological diversity, but we further accounted 333 

for differences in optical features between bacterial strains, slide preparation techniques, 334 

and microscope configurations. For example, the images in our ground-truth dataset 335 

originate from four different researchers using distinct microscopes, objectives, sensors, 336 
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illumination sources, and acquisition settings. We further introduced extensive image 337 

augmentations that simulate variations in image intensity, noise, gamma, clipping, and 338 

magnification. Lastly, bacterial strains exhibit a wide range of intrinsic contrast and 339 

internal structure, often exacerbated by antibiotic treatment or revealed by dense cell 340 

packing. Internal structure can cause over-segmentation, so we included many cells with 341 

this characteristic in our dataset. 342 

 We anticipate that the unprecedented performance of Omnipose may permit 343 

access to information from microscopy images that was previously inaccessible. For 344 

instance, images deriving from natural microbial communities could be accurately 345 

characterized with regard to internal structure, autofluorescence, and morphology at the 346 

single-cell level. This data could be used to estimate diversity, a novel methodology that 347 

would complement existing sequencing-based metrics45. It is worth noting that 348 

phenotypic diversity often exceeds genetic diversity46; therefore, even in a relatively 349 

homogeneous collection of organisms, precise segmentation could allow classes 350 

representing distinct states to be identified. A microscopy-based approach also offers the 351 

opportunity to characterize spatial relationships between cells, information that is 352 

exceptionally difficult to recover in most biomolecular assays.  353 
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Methods 354 

Phase contrast and fluorescence microscopy 355 

In-house imaging was performed on a Nikon Eclipse Ti-E wide-field epi-356 

fluorescence microscope, equipped with a sCMOS camera (Hamamatsu) and X-cite LED 357 

for fluorescence imaging. We imaged through 60X and 100X 1.4 NA oil-immersion PH3 358 

objectives. The microscope was controlled by NIS-Elements. Cell samples were spotted 359 

on a 3% (w/v) agarose pad placed on a microscope slide. The microscope chamber was 360 

heated to 30°C or 37°C when needed for time-lapse experiments.  361 

Several images in our dataset were taken by two other laboratories using three 362 

distinct microscope/camera configurations. The Brun lab provided images of C. 363 

crescentus acquired on a Nikon Ti-E microscope equipped with a Photometrics Prime 364 

95B sCMOS camera. Images were captured through a 60X Plan Apo λ 100X 1.45 NA oil 365 

Ph3 DM objective. The Wiggins lab provided E. coli and A. baylyi time lapses from both 366 

a Nikon Ti-E microscope as well as a custom-built tabletop microscope, both described in 367 

previous studies47,48. 368 

 369 

C. elegans data preparation 370 

  We obtained a 1000-frame time lapse of C. elegans from the Wormpose38 GitHub 371 

(https://github.com/iteal/wormpose_data) adapted from the Open Worm Movement 372 

database39, which is inaccessible at the time of writing. We also utilized the Broad 373 

Bioimage Benchmarking Collection set BBBC01040 (https://bbbc.broadinstitute.org/c-374 

elegans-livedead-assay-0), a set of 100 images containing live and dead C. elegans. 375 

These images were manually cropped to select regions of each image without C. elegans 376 
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overlaps. For both of these datasets, images were initially segmented with Omnipose to 377 

select foreground, automatically cropped to select individual C. elegans or clusters of C. 378 

elegans, and then packed into ensemble images for efficient annotation, training, and 379 

testing following the same procedures described below for our bacterial datasets.  380 

 381 

Bacterial sample preparation 382 

To image antibiotic-induced phenotypes, cells were grown without antibiotics 383 

overnight in LB, back-diluted, and spotted on agarose pads with 50µg/mL A22 or 384 

10µg/mL cephalexin. Time lapses were captured of E. coli DH5a and S. flexneri M90T 385 

growing on these pads. E. coli CS703-1 was back-diluted into LB containing 1µg/mL 386 

aztreonam and spotted onto a pad without antibiotics49. Cells constitutively expressed 387 

GFP to visualize cell boundaries.  388 

H. pylori LSH100 grown with and without Aztreonam was provided by the 389 

Salama lab50,51. Samples were fixed and stained with Alexaflour 488 to visualize the cell 390 

membrane. Images were taken on LB pads. The typical technique of allowing the spot to 391 

dry on the pad caused cells to curl up on themselves, so our images were taken by placing 392 

the cover slip on the pad immediately after spotting and applying pressure to force out 393 

excess media.  394 

C. crescentus was cultivated and imaged by the Brun lab52,53. Cells were grown in 395 

PYE, washed twice in water prior to 1:20 dilution in Hutner base-imidazole-buffered-396 

glucose-glutamate (HIGG media) and grown at 26°C for 72h. Cells were spotted on a 1% 397 

agarose PYE pads prior to imaging. 398 
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S. pristinaespiralis NRRL 2958 was grown using the following media recipe: 399 

Yeast extract 4g/L, Malt extract 10g/L, Dextrose 4g/L, Agar 20g/L. This media was used 400 

to first culture the bacteria in liquid overnight and then on a pad under the microscope. 401 

This strain forms aggregates in liquid media, so these aggregates were allowed to grow 402 

for several hours on a slide in the heated microscope chamber until we could see 403 

individual filaments extending from the aggregates. Fields of view were selected and 404 

cropped to exclude cell overlaps. Autofluorescence was captured to aid in manual 405 

segmentation.  406 

Mixtures of S. proteamaculans attTn7::Km-gfp tre1 or tre1E415Q and E. coli were 407 

spotted on a PBS pad to prevent further growth. Phase-contrast images of the cells were 408 

acquired before and after a 20hr competition on a high-salt LB plate. Fluorescence 409 

images in the GFP channel were also acquired to distinguish S. proteamaculans from 410 

unlabeled E. coli. 411 

All other individual strains in Table S1 were grown overnight, diluted 1:100 into 412 

fresh LB media, and grown for 1-3 hours before imaging. Mixtures were made by 413 

combining back-diluted cells roughly 1:1 by OD600.  414 

 415 

Manual image annotation 416 

Manual annotation began with loading images into MATLAB, normalizing the 417 

channels, registering the fluorescence channel(s) to brightfield (when applicable), and 418 

producing boundary-enhanced versions of brightfield and fluorescence. Where possible, 419 

fluorescence data was primarily used to define cell boundaries (not available in the C. 420 

elegans dataset acquired online). In addition to a blank channel to store manual labels, all 421 
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processed phase and fluorescence images were then automatically loaded as layers into 422 

an Adobe Photoshop document. We used 4-6 unique colors and the Pencil tool (for pixel-423 

level accuracy and no blending) to manually define object masks. Due to the 4-color 424 

theorem54, this limited palette was sufficient to clearly distinguish individual object 425 

instances from each other during annotation. This color simplification is not found in any 426 

segmentation GUI, and it enabled faster manual annotation by reducing the need to select 427 

new colors. It also eliminated the confusion caused by the use of similar but distinct 428 

colors in adjacent regions, which we suspect is the principal cause for the misplaced 429 

mask pixels that we observed in other datasets (e.g., cyto2). 430 

The cell label layer was then exported as a PNG from Photoshop, read back into 431 

MATLAB, and converted from the repeating N-color labels to a standard 16-bit integer 432 

label matrix, where each object is assigned a unique integer from 1 to the number of cells 433 

(background is 0). Because integer labels cannot be interpolated, we then performed a 434 

non-rigid image registration of the brightfield channel to the binary label mask to achieve 435 

better brightfield correlation to ground truth masks. All images in our ground-truth 436 

dataset have been registered in this manner. 437 

 438 

Choosing Segmentation algorithms 439 

Three main factors contributed to the choice of algorithms highlighted in this 440 

study: (i) specificity to bacterial phase contrast images, (ii) success and community 441 

adoption, especially for bioimage segmentation, and (iii) feasibility of installation, 442 

training, and use. SuperSegger, Morphometrics, and MiSiC were selected because they 443 

specifically targeted the problem of bacterial phase contrast segmentation15,23,55. Packages 444 
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such as BactMAP, BacStalk, Cellprofiler, CellShape, ColiCoords, Cytokit, 445 

MicroAnalyzer, MicrobeJ, Oufti, and Schnitzcells incorporate limited novel segmentation 446 

solutions and instead aim to provide tools for single-cell analysis such as lineage tracing 447 

and protein tracking8,9,14,18-20,25,56-58. Furthermore, the segmentation that these programs 448 

perform depends broadly on thresholding and watershed techniques; therefore, 449 

Morphometrics is a reasonable proxy for their segmentation capabilities. We were unable 450 

to locate code or training data for BASCA11. Ilastik is a popular interactive machine-451 

learning tool for bioimage segmentation, but training it using a manual interface was not 452 

feasible on a large and diverse dataset such as our own21. Among DNN approaches, Mask 453 

R-CNN was selected because it is a popular architecture for handling typical image 454 

segmentation tasks. It was also used in the segmentation and tracking package Usiigaci24. 455 

U-Net architectures have been implemented in a number of algorithms, including 456 

DeLTA, PlantSeg, MiSiC, StarDist, and Cellpose12,15,17,22,26. DeLTA was not included in 457 

this study because it operates similarly to MiSiC and was designed specifically for 458 

mother machine microfluidics analysis. DeLTA 2.0 was recently released to additionally 459 

segment confluent cell growth on agarose pads, but it remains quite similar to MiSiC in 460 

implementation59. PlantSeg could, in principle, be trained on bacterial micrographs, but 461 

we determined that its edge-focused design meant to segment bright plant cell wall 462 

features would not offer any advancements over the remaining U-Net methods that we 463 

tested. 464 

 465 

Training and tuning segmentation algorithms 466 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.11.03.467199doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 23 

All segmentation algorithms have tunable parameters to optimize performance on 467 

a given dataset. These include pre-processing such as image rescaling (often to put cells 468 

into a particular pixel diameter range), contrast adjustment, smoothing, and noise 469 

addition. Morphometrics and SuperSegger were manually tuned to give the best results 470 

on our benchmarking dataset. The neural network component of SuperSegger was not 471 

retrained on our data, as this is a heavily manual process involving toggling watershed 472 

lines on numerous segmentation examples. DNN-based algorithms are automatically 473 

trained using our dataset, and the scripts we used to do so are available in our GitHub 474 

repository. We adapted our data for MiSiC by transforming our instance labels into 475 

interior and boundary masks. Training documentation for MiSiC is not published. 476 

Training and evaluation parameters for MiSiC were tuned according to correspondence 477 

with the MiSiC authors. Cellpose and StarDist were trained with the default parameters 478 

provided in their documentation. StarDist has an additional tool to optimize image pre-479 

processing parameters on our dataset, which we utilized. 480 

 481 

Evaluating segmentation algorithms 482 

All algorithms were evaluated on our benchmarking dataset with manually or 483 

automatically optimized parameters. We provide both the raw segmentation results for all 484 

test images by each tested algorithm as well as the models and model-training scripts 485 

required to reproduce our results. Before evaluating IoU or JI, small masks at image 486 

boundaries were removed for both the ground-truth and predicted masks. IoU and JI are 487 

calculated on a per-image basis and, where shown, are averaged with equal weighting 488 

over the image set or field of view.  489 
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Our new metric, the number of segmentation errors per cell, was calculated by 490 

first measuring the fraction of each predicted cell that overlaps with each ground truth 491 

cell. A predicted cell is assigned to a ground-truth cell if the overlap ratio is ≥ 0.75, 492 

meaning that at least three quarters of the predicted cell lies within the ground-truth cell. 493 

If several predicted cells are matched to a ground-truth cell, the number of surplus 494 

matches is taken to be the number of segmentation errors. If no cells are matched to a 495 

ground-truth cell, then the error is taken to be 1.  496 

 497 

Leveraging Omnipose to accelerate manual annotation 498 

Omnipose was periodically trained on our growing dataset to make initial cell 499 

labels. These were converted into an N-color representation and loaded into Photoshop 500 

for manual correction. A subset of our cytosol GFP channels were sufficient for training 501 

Omnipose to segment based on fluorescence, and the resulting trained model enabled 502 

higher-quality initial cell labels for GFP-expressing samples than could be achieved from 503 

intermediate phase contrast models (e.g., V. cholerae).  504 

 505 

Defining the Omnipose prediction classes 506 

Omnipose predicts four classes: two flow components, the distance field, and a 507 

boundary field. Our distance field is found by solving the eikonal equation  508 

&∇((⃗ 𝜙(𝑥⃗)& =
1

𝑓(𝑥⃗) 509 

where 𝑓 represents the speed at a point 𝑥. The Godunov upwind discretization of the 510 

eikonal equation is 511 
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5
max9𝜙#,% −min9𝜙#!",% , 𝜙#&",%> , 0>

Δ𝑥 @
'

+ 5
max9𝜙#,% −min9𝜙",%!", 𝜙#,%&"> , 0>

Δ𝑦 @
'

=
1
𝑓#,%
	 512 

Our solution to this equation is based on the Improved FIM Algorithm 1.1 of34, as 513 

follows. Our key contribution to this algorithm is the addition of ordinal sampling to 514 

boost both convergence and smoothness of the final distance field.  515 

2D update function for 𝜙#,% on a cartesian grid 516 

1. Find neighboring points for cardinal axes (Δ𝑥 = Δ𝑦 = 𝛿): 517 

𝜙()*+ = min9𝜙#!",% , 𝜙#&",%> , 𝜙()*, = min9𝜙#,%!", 𝜙#,%&"> 518 

2. Find neighboring points for ordinal axes (	𝑥D ⋅ 𝑎D = 𝑦D ⋅ 𝑏H = √'
'
, ./
.0
= .1

.2
= √2𝛿	): 519 

𝜙()*3 = min9𝜙#!",%!", 𝜙#&",%&"> , 𝜙()*4 = min9𝜙#&",%!", 𝜙#!",%&"> 520 

3. Calculate update along cardinal axes: 521 

if &𝜙()*+ − 𝜙()*,& > √'5
6!,#

:	522 

𝑈02 = min9𝜙()*+, 𝜙()*,> +
𝛿
𝑓#,%

 523 

else: 524 

𝑈02 =
1
2M𝜙

()*+ + 𝜙()*, +N25
𝛿
𝑓#,%
@
'

− (𝜙()*+ − 𝜙()*,)'O 525 

4. Calculate update along ordinal axes: 526 

if &𝜙()*3 − 𝜙()*4& > '5
6!,#

:	527 

𝑈/1 = min9𝜙()*3, 𝜙()*4> +
√2𝛿
𝑓#,%

 528 

else: 529 

𝑈/1 =
1
2M𝜙

()*3 + 𝜙()*4 +N45
𝛿
𝑓#,%
@
'

− (𝜙()*3 − 𝜙()*4)'O 530 

5. Update with geometric mean: 531 

𝜙#,% = Q𝑈02𝑈/1 532 
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This update rule is repeated until convergence (Extended Data Fig. 5). We take 533 

𝛿 = 𝑓#,% to obtain the signed distance field used in Omnipose.	The flow field components 534 

are defined by the normalized gradient of this distance field 𝜙.  The boundary field is 535 

defined by points satisfying 0 < 𝜙 < 1. For network prediction, the boundary map is 536 

converted to the logits (inverse sigmoid) representation, such that points in the range 537 

[0,1] are mapped to [−5,5]. For consistent value ranges across prediction classes, the 538 

flow components are multiplied by 5 and all background values of the distance field (𝜙 =539 

0) are set to −5.  540 

 541 

Omnipose network architecture 542 

 The DNN used for Omnipose is a minor modification of that used in Cellpose: a 543 

U-net architecture with two residual blocks per scale, each with two convolutional 544 

layers12. Omnipose introduces a dropout layer before the densely connected layer60, 545 

which we incorporated into the shared Cellpose and Omnipose architecture moving 546 

forward. However, Cellpose models utilized in this study are trained without dropout. 547 

 548 

Rescaling flow field by divergence 549 

During training, the ground truth data is augmented by a random affine 550 

transformation. The original implementation, and the one which yields the best results, 551 

linearly interpolates the transformed field. This reduces the magnitude of the otherwise 552 

normalized field in regions of divergence, i.e., at boundaries and skeletons. A 553 

renormalized field (obtained either from the transformed field or as the normalized 554 

gradient of the transformed heat distribution) often has artifacts at cell boundaries and 555 
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skeletons, so the interpolated field effectively reduces the influence of these artifacts on 556 

training. We reason that this feature explains the superior performance of interpolated 557 

field training over renormalized fields, despite the latter being the nominal goal of the 558 

algorithm.  559 

Pixels at cell boundaries, however, consequently do not move far (less than 1px) 560 

under Euler integration due to the low magnitude of the predicted field at cell boundaries. 561 

Our solution in Omnipose is to rescale the flow field by the magnitude of the divergence. 562 

The divergence is most positive at the cell boundaries (where pixels need to move) and 563 

most negative at cell skeletons (where pixels need to stop). We therefore rescale the 564 

divergence from 0 to 1 and multiply the normalized flow field by this new magnitude 565 

map. This forces boundary pixels of neighboring cells to quickly diverge and allow for 566 

accurate pixel clustering to obtain the final segmentation.  567 

 568 

Novel diameter metric 569 

The size models of Cellpose are trained to estimate the average cell ‘diameter’, 570 

taken to be the diameter of the circle of equivalent area: 571 

𝑑 = 2R = 2N
𝐴
𝜋

(∗) 572 

This metric as a basis for rescaling is problematic when cells are growing in 573 

length but not width (Extended Data Fig. 7). Log-phase bacterial cell area grows 574 

exponentially with time, and so too does the scale factor, eventually resulting in a 575 

rescaled image that is too small for Cellpose to segment.  576 
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The average of the distance field, however, does not change for filamentous 577 

bacteria, as the width – and therefore the distance to the closest boundary – remains 578 

constant. To define a formula consistent with the previous definition in the case of a 579 

circular cell, we consider mean of the distance field over the cell:  580 

𝜙Z =
1
𝜋𝑅'\ \ (𝑅 − 𝑟)𝑟𝑑𝑟𝑑𝜃

7

8

'9

8
=

1
𝜋𝑅' _

𝜋
3 𝑅

:` =
𝑅
3 581 

This allows us to define a new ‘effective diameter’ as 582 

𝑑 = 2𝑅 = 6𝜙Z	 (∗∗) 583 

Aside from agreeing with the previous scaling method (∗) for round 584 

morphologies, this definition exhibits excellent consistency across time (Extended Data  585 

Fig. 7). This consistency is also critical for training on datasets with wide distributions in 586 

cell areas that require rescaling, such as the Cellpose datasets. Finally, the raw distance 587 

field output of Omnipose can directly be used directly in (∗∗) to estimate average cell 588 

diameter, which is used in our code to automatically toggle on features that improve 589 

mask reconstruction performance for small cells.  590 

 591 

Gamma augmentation 592 

To make the network robust against changes in exposure/contrast, the training 593 

images are now raised to a random power (gamma) between 0.5 and 1.25, simulating the 594 

varying levels of contrast that are observed experimentally with different light sources, 595 

objectives, and exposure times.  596 

 597 

 598 

 599 
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Alleviating class imbalance 600 

Class imbalance remains a challenge in many machine learning applications61. In 601 

our dataset, foreground pixels (cells) take up anywhere from 1 to 75 percent of a given 602 

training image, with the rest being background pixels that the network must only learn to 603 

ignore (i.e., assign a constant output of -5 for distance and boundary logits). We 604 

implemented several changes to the loss function to emphasize foreground objects, 605 

including weighting by the distance field and averaging some loss terms only over 606 

foreground pixels. Our training augmentation function also attempts many random crop 607 

and resizing passes until a field of view with foreground pixels is selected (this may take 608 

several attempts for sparse images, but adds very little time to training).  609 

 610 

Image normalization 611 

To manage different image exposure levels, Cellpose automatically rescales 612 

images such that pixels in the 1st percentile of intensity are set to 0 and those in the 99th 613 

percentile are sent to 1. This percentile rescaling is preferred over blind min-max 614 

rescaling because bubbles or glass can cause small bright spots in the image. However, 615 

we found that images containing single cells (low intensity) in a wide field of media 616 

(high intensity) would become badly clipped due to the foreground-background class 617 

imbalance. To solve this, we changed the percentile range from 0.01 to 99.99. 618 

 619 

Data availability  620 
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Ground truth images and labels generated for this study are hosted on the Cellpose 621 

website (http://www.cellpose.org/dataset_omnipose) and listed on the Papers With Code 622 

database (https://paperswithcode.com/dataset/bpcis). 623 

 624 

Code availability  625 

For install instructions, source code, and all Python and MATLAB scripts generated for 626 

this study, see our GitHub repository at https://github.com/kevinjohncutler/omnipose.   627 
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Fig. 1 | Quantitative comparison of segmentation methods distinguishes Cellpose as a high 
performing algorithm. (a-g) Comparison of segmentation algorithm performance on our test dataset. (a) 
Overall performance measured by Jaccard Index (JI). The JI was calculated at the image level and values 
averaged across the dataset are displayed. Algorithm abbreviations defined in B-G. (b-g) Algorithm 
performance partitioned by cell type (Simple, n=12,869; Abx/mutant, n=6,138; Elongated, n=46). Images 
were sorted into types as defined in Supplemental Table 1 (Abx, antibiotic). (h-j) Representative 
micrographs of cell type partitions analyzed in B-G, indicated by vertical bars at right. Ground-truth masks 
and predicted mask outlines generated by the indicated algorithm are displayed. Mean matched IoU values 
for cells shown are displayed within each micrograph. Bacteria displayed are (H) Vibrio cholerae, 
Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, (I) aztreonam-treated Escherichia coli 
CS703-1, and (J) Streptomyces pristinaespiralis. All images scaled equivalently; scale bar is 1mm.  
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Fig. 2 | Cellpose over-segments extended, anisotropic cells. (a) Single-cell analysis of segmentation error 
as a function of cell area. Color represents density on a log scale. Gray box represents the top quartile of 
cell areas. (b) Representative examples exhibiting problematic flow fields. Corresponding boundary pixel 
trajectories are shown in black and final pixel locations in red. Predicted mask overlays are shown with 
mean matched IoU values. (c) Analysis of stochastic center-to-boundary distances. Distance from the 
center (median pixel coordinate) to each boundary pixel is normalized to a maximum of 1. Position along 
the boundary is normalized from -1 to 1 and centered on the point closest to the median pixel. Center-to-
boundary for the cell in panel D is highlighted in black. (d) Representative cell with median coordinate 
outside the cell body (black X). Cellpose projects this point to the global minima of this function (green 
dot), but several other local minima exist (blue dots). (e) The heat distribution resulting from a projected 
cell center (black arrow). The normalized gradient corresponds to the divergence shown. Bacteria displayed 
are (a,e) Helicobacter pylori, (b) Escherichia coli CS703-1, both treated with aztreonam, and (d) 
Caulobacter crescentus grown in HIGG media. Scale bars are 1 μm. 
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Fig. 3 | Core innovations of Omnipose. (a) Comparison of distance field algorithms and corresponding 
flow fields. Fast Marching Method (FMM) produces ridges in the distance field resulting from pixelation 
on the cell mask boundary. Our smooth FIM algorithm minimizes these features. The difference image 
(FIM – FMM) highlights artifacts in the FMM method. Flow fields are calculated as the normalized 
gradient of the distance field. Boundary pixelation affects the FMM flow field deep into the cell, regardless 
of cell size. (b) Comparison of mask reconstruction algorithms on a smooth flow field (not shown).  Left: 
boundary pixel trajectories and resulting mask outlines from standard Euler integration. Right: Trajectories 
and mask outlines under suppressed Euler integration. Red dots indicate the final positions of all cell pixels, 
not only the boundary pixels for which trajectories are displayed. Bacteria displayed are (a) Escherichia 
coli CS703-1 and (b) and Helicobacter pylori, both treated with aztreonam. Scale bars are 1 μm. 
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Fig. 4 | Omnipose outperforms Cellpose. (a) Overall performance measured by Jaccard Index (JI). The 
hybrid method (gray) is a variant of Cellpose that uses the original center-seeking flow output and the mask 
reconstruction of Omnipose. Gray box represents IoU ≥ 0.8. (b) Quantification of segmentation 
performance by cell size. The percent of cells with at least one segmentation error is computed for cells in 
each area percentile group from 1 to 100. Gray box represents the top quartile. (c) Omnipose IoU 
distribution on our dataset compared to the next highest performing algorithm in each of three cell 
categories. (d)  Example micrographs and Omnipose segmentation. Mean matched IoU values shown. 
Bacteria displayed are (i) Streptomyces pristinaespiralis, (ii) Caulobacter crescentus grown in HIGG 
media, (iii) Shigella flexneri treated with A22, (iv) mix of Pseudomonas aeruginosa, Staphylococcus 
aureus, Vibrio cholerae, and Bacillus subtilis. Scale bars are 1 μm.  
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Fig. 5 | Omnipose can be applied to the study of bacterial and non-bacterial systems. (a) 
Fluorescence/area population profile according to Omnipose segmentation in control and experimental 
conditions. K-means clustering on GFP fluorescence distinguishes S. proteamaculans tre1/tre1E415Q 
(light/dark green markers) from E. coli (gray markers). (b) Example of extreme filamentation of E. coli in 
response to active Tre1. (c) Omnipose accurately segments all cells in the image. Largest cell indicated 
with black arrow. (d) MiSiC predicts large cell masks over both species. Cellpose and StarDist fail to 
predict any cells above 15μm2. (e) Example segmentation results highlighting typical errors encountered 
with MiSiC (under-segmentation), Cellpose (over-segmentation), and StarDist (incomplete masks). Mask 
mergers cause some E. coli to be misclassified as S. proteamaculans. Scale bar is 1 μm. (f) Performance of 
Omnipose and Cellpose on cyto2 and C. elegans datasets. Results for Omnipose trained on C. elegans 
(grey) or C. elegans and bacterial data (yellow) are shown. (g)  IoU distribution for the masks predicted by 
each method on our C.elegans dataset. (h) Example segmentation of C. elegans in the BBBC010 dataset.  
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Extended Data Fig. 1 | Test dataset is representative of the training dataset. (a) Mean diameter, 
defined in Methods. (b) Cell area. (c) Cell perimeter. P-values are displayed for the two-sided KS test.  
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Extended Data Fig. 2 | IoU values for synthetic cell of typical size/resolution. (a) 0-12 pixel 
displacement of cell mask (red outline) and corresponding IoU values. (b) IoU decreases non-linearly for 
curved regions such as this synthetic cell.   
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Extended Data Fig. 3 | Details of the Cellpose algorithm. (a) Stages of the Cellpose training pipeline. 
Ground truth masks (i) are converted to cell probability (ii) by binary thresholding and a heat distribution 
(iii) by simulated diffusion from the median pixel coordinate. The flow field (iv) is defined by the 
normalized gradient of (iii). Color-magnitude representations of this vector field follow the flow legend 
diagram. The phase, cell probability, and flow fields are used to train the network. (b) Stages of the 
cellpose prediction pipeline. Phase images are processed by the trained cellpose network into the 
intermediate flow field and cell probability outputs (i-ii). A binary threshold is applied to the probability to 
identify cell pixels (iii). Pixels are Euler-integrated under the flow field until they converge at common 
points. Boundary pixel trajectories are depicted in iv. Each pixel is assigned a unique label corresponding to 
the center to which it converged (v). This segmentation result is commonly depicted in an outline view (vi). 
Bacteria shown are Escherichia coli. Scale bar is 1 μm. 
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Extended Data Fig. 4 | Median coordinates are asymmetrically localized. (a) Center-to-boundary 
distance highlighted for two cells with non-projected median coordinates. Dashed lines indicate the larger 
of the two minima along the medial axis. (b) Rod-shaped E.coli with symmetric median coordinate. 
Symmetry of the center is reflected in A by equal high and low points corresponding to the extremal points 
along the long and short axes of the cell. (c) Curved B. subtilis with median coordinate asymmetrically 
close to the cell boundary. This asymmetry is reflected in A by a secondary minimum above the global 
minimum corresponding to the diametrically opposing point along the short axis of the cell. (d) These 
centers result in distinct flow fields reflecting the (a)symmetric of the cell center. Bacteria shown are (a) 
Escherichia coli and (b) Bacillus subtilis. Scale bar is 1 μm. Images scaled equivalently.  
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Extended Data Fig. 5 | Comparison of three algorithms for computing center-independent flow fields. 
Each field is defined by a partial differential equation with the mask at the source: time-independent heat 
equation, the screened Poisson equation, and the Eikonal equation. We solve these equations with iterative 
relaxation (see Methods). (a) Two example cells, the first drawn from our dataset with a mean diameter of 
37px and a synthetic rod-shaped cell with a mean diameter of 192px. Cell (i) exhibits heat-derived flow 
components pointing toward the skeleton near boundaries and toward the global cell center at the skeleton. 
Center-seeking flow components become problematic for mask reconstruction for more complicated cell 
geometries, namely those with oscillating thickness.  The screened Poisson and Eikonal equations produce 
nearly identical flow fields (same direction, normalized magnitude). Cell (ii) reveals a core flaw in the 
screened Poisson solution: its derivative exceeds our available numerical precision, leading to a vanishing 
flow field at the center where the solution plateaus. Any cells of this size or larger will exhibit this issue. 
(b) Convergence measured by the average difference at each iteration (maximum normalized to 1) for cells 
(i,ii). Our Eikonal solution converges faster than the other methods by a wide margin at typical cell 
diameters (i).  
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Extended Data Fig. 6 | Controls and additional examples. (a) Controls segmented by StarDist, Cellpose, 
and MiSiC. Notably, Cellpose and MiSiC exhibit an enrichment of larger cells even in the control, a 
consequence of both under-segmented (merged) cells as well as fragments of over-segmented large cells. 
(b) Cells 2 and 3 highlighted in orange and gray plotted in Fig. 5a,d. Scale bars are 1 μm.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.11.03.467199doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 49 

 

Extended Data Fig. 7 | Comparison of diameter metrics on a filamentous microcolony time lapse. (a). 
Cellpose diameter metric is the diameter of the circle with equivalent area. Omnipose diameter metric is 
proportional to the mean of the distance transform. (b) Bacteria displayed are A. baylyi transformed with a 
ΔftsN::kan PCR fragment. Scale bar is 1 μm. 
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Extended Data Table 1.  
Species Strain Image 

count 
Cell Count Cells in 

GT 
Percent 
of GT 

Notes 

Escherichia coli 
 

DH5α 1378 98200 9733 20.6 Dense microcolonies grown 
on minimal media. Thin 
phenotype. ITPG-induced 
GFP cytosol marker. Time 
lapse. Imaged by the Wiggins 
lab.  

141 4536 4395 9.3 Dense microcolonies on LB. 
Time lapse. Imaged by the 
Wiggins lab. 

2 2277 - - Treatment with cephalexin. 
Tn7::GFP. Imaged by the 
Mougous lab. 

CS703-
162 

80 23169 
 

1299 2.6 Mutant grown on LB and 
aztreonam. Elongated and 
branching phenotypes. Time 
lapse. Imaged by the 
Mougous lab.  

Shigella flexneri 
 

M90T 
 

117 256618 1409 3.0 Treatment with A22. 
Tn7::GFP. Frames selected 
from time lapse after 1hr 
growth. Imaged by the 
Mougous lab. 

6 4482 4318 9.2 Treatment with cephalexin. 
Tn7::GFP. Frames selected 
from time lapse after 1hr 
growth. Imaged by the 
Mougous lab. 

Francisella 
tularensis subsp. 
novicida 

U112 5 20166 496 1.1 Small and extremely low-
contrast cells. Tn7::GFP.  
Imaged by the Mougous lab. 

Acinetobacter 
baylyi 

ADP163 2169 
 

60601 
 

3336 7.1 Deletion of essential gene 
murA. Rounded phenotype. 
Time lapse.  Imaged by the 
Wiggins lab. 

241 1313 1133 2.4 Deletion of essential gene 
ftsN. Filamentous phenotype. 
Time lapse. Imaged by the 
Wiggins lab. 

540 10013 2227 4.7 Deletion of essential gene 
dnaA. Filamentous 
phenotype. Time lapse. 
Imaged by the Wiggins lab. 

Burkholderia 
thailandensis 

E26464 30 62005 5122 10.9 Selected panels from a self-
intoxication experiment. 
Cells exhibit internal 
structure and low contrast in 
microcolonies. Tn7::GFP. 
Time lapse. Imaged by the 
Mougous lab.  

Helicobacter 
pylori 
 

LHS10050 15 13014 - - Helical phenotype. Grown, 
fixed, and stained with 
Alexaflour 488 in the lab of 
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Nina Salama. Imaged by the 
Mougous lab. 

19 1668 701 1.5 Treated with aztreonam. 
Filamentous, helical 
phenotype. Grown, fixed, and 
stained with Alexaflour 488 
in the lab of Nina Salama. 
Imaged by the Mougous lab.  

Caulobacter 
crescentus  

NA100052 4 1787 756 1.6 Grown in HIGG media to 
induce stalk phenotype. 
Cultivation and imaging done 
in the lab of Yves Brun.  

Streptomyces  
pristinaespiralis 
 

NRRL 
2958 

17 2339 270 0.6 Grown on rich media to 
induce filamentous 
phenotype. Imaged by the 
Mougous lab. 

Vibrio cholerae A155265 2 2627 2265 4.8 Cells have short but curved 
morphology and form dense, 
low-contrast microcolonies. 
Tn7::GFP. Obtained from the 
lab of Fitnat Yildiz. Imaged 
in the Mougous lab.  

Serratia  
proteamaculans 
E. coli  

568 
DH5α 

43 100146 1244 2.6 1:1 mixture. S.p. labelled via 
Tn7::GFP, E.c. unlabeled. 
Time lapse. Imaged in the 
Mougous lab. 

Pseudomonas 
aeruginosa 
Staphylococcus 
aureus 

PAO166 
USA300 
 

3 2662 3688 7.8 1:1 mixture. P.a. labelled via 
Tn7::GFP, S.a. unlabeled. 
Imaged in the Mougous lab. 

P. aeruginosa 
S. aureus 
V. cholerae 
Bacillus subtilis  

PAO1 
USA300 
A1552 
HM1350 

21 33281 4678 9.9 1:1:1:1 mixture. P.a. and V.c. 
labelled via Tn7::GFP, S.a. 
and B.s. labelled with red 
membrane dye. Imaged in the 
Mougous lab. 

  4833 700904 47070 100  
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