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Abstract

Advances in microscopy hold great promise for allowing quantitative and precise
readouts of morphological and molecular phenomena at the single cell level in bacteria.
However, the potential of this approach is ultimately limited by the availability of
methods to perform unbiased cell segmentation, defined as the ability to faithfully
identify cells independent of their morphology or optical characteristics. In this study, we
present a new algorithm, Omnipose, which accurately segments samples that present
significant challenges to current algorithms, including mixed bacterial cultures,
antibiotic-treated cells, and cells of extended or branched morphology. We show that
Omnipose achieves generality and performance beyond leading algorithms and its
predecessor, Cellpose, by virtue of unique neural network outputs such as the gradient of
the distance field. Finally, we demonstrate the utility of Omnipose in the characterization
of extreme morphological phenotypes that arise during interbacterial antagonism and on
the segmentation of non-bacterial objects. Our results distinguish Omnipose as a uniquely

powerful tool for answering diverse questions in bacterial cell biology.
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16  Introduction

17 Although light microscopy is a valuable tool for characterizing cellular and sub-
18  cellular structures and dynamics, quantitative analysis of microscopic data remains a

19  persistent challenge!. This is especially pertinent to the study of bacteria, many of which
20  have dimensions in the range of optical wavelengths. Thus, their cell body is composed
21 of a small number of pixels (e.g., ~100-300 px? for E. coli at 100x magnification). At this
22 scale, accurate subcellular localization requires defining the cell boundary with single-

23 pixel precision. The process of defining cell boundaries within micrographs is termed cell
24 segmentation and this is a critical first step in current image analysis pipelines®?.

25 In addition to their small size, bacteria adopt a wide range of morphologies.

26  Although many commonly studied bacteria are well-approximated by idealized rods or
27  spheres, there is growing interest in bacteria with more elaborate shapes*. Some examples
28 include Streptomycetales, which form long filamentous and branched hyphal structures?,
29  and Caulobacterales, which generate extended appendages distinct from their cytoplasm®.
30  Furthermore, microfluidic devices are allowing researchers to capture the responses of

31  bacteria to assorted treatments such as antibiotics, which often result in highly irregular
32 morphologies’. Whether native or induced, atypical cell morphologies present a distinct
33  problem at the cell segmentation phase of image analysis®®. This is compounded when
34  such cells are present with those adopting other morphologies, as is the case in many

35  natural samples of interest!?. To date, there are no solutions for segmenting bacterial cells
36  of assorted shape and size in a generalizable manner!.

37 Cell segmentation is a complex problem that extends beyond microbiological

38  research, thus many solutions are currently available in image analysis programs®®-!!-27,
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Most of these solutions use traditional image processing techniques such as the
application of an intensity threshold to segment isolated cells; however, this approach
does not perform well for cells in close contact and it requires extensive parameter-tuning
in order to optimize for a given cell type. SuperSegger was developed to address these
issues specifically in bacterial phase contrast images'. This program utilizes both
traditional image filtering techniques and a shallow neural network to correct for errors
that thresholding and watershed segmentation tend to produce.

Deep neural networks (DNN5s) are now widely recognized as superior tools for
cell segmentation?®. Unlike traditional image processing, machine-learning approaches
such as DNNSs require training on a ground-truth dataset of cells and corresponding
labels. Trained DNNSs are thus limited in applicability to images that are representative of
those in the training dataset. Early DNN approaches were based on the Mask R-CNN
architecture®*, whereas more recent algorithms such as StarDist, Cellpose, and MiSiC are
based on the U-Net architecture!>!>-26, Pachitariu and colleagues showed that Cellpose
outperforms Mask R-CNN and StarDist on a variety of cell types and cell-like objects,
distinguishing it as a general solution for cell segmentation!2, Notably, the representation
of bacteria in their study was limited. MiSiC was developed as a general DNN-based
solution for bacterial segmentation; however, the authors of MiSiC did not provide
comparisons to other DNN algorithms!®. Here, we evaluated the performance of state-of-
the-art cell segmentation algorithms on a diverse collection of bacterial cells. Our
findings motivated the design of a new algorithm, Omnipose, that significantly
outperforms all previous cell segmentation algorithms across a wide range of bacterial

cell sizes, morphologies, and optical characteristics. We have made Omnipose and all
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associated data immediately available to researchers, and we anticipate that our model —
without retraining — can be applied to diverse bacteriological systems. Furthermore,
following the incorporation of additional ground truth data, Omnipose could serve as a
platform for segmenting various eukaryotic cells and extended, anisotropic objects more

broadly.

Results
Evaluation of bacterial cell segmentation algorithms

Numerous image segmentation algorithms have been developed, and the
performance of many of these on bacterial cells is documented'. These broadly fall into
three categories: (7) traditional image processing approaches (e.g., thresholding,
watershed), (ii) traditional/machine learning hybrid approaches, and (iii) deep neural
network (DNN) approaches. Given the goal of developing software with the capacity to
recognize bacteria universally, we sought to identify strongly performing algorithms for
further development. An unbiased, quantitative comparison of cell segmentation
algorithms on bacterial cells has not been performed; thus, we selected one or more
representatives from each category for our analysis: Morphometrics®® (i), SuperSegger!?
(i), Mask R-CNN?’, StarDist?®, MiSiC'>, and Cellpose!? (iii). For a detailed review of
these choices, see Methods.

For training and benchmarking these algorithms, we acquired micrographs of
assorted bacterial species representing diverse morphologies and optical characteristics.
Many studies of bacteria involve mutations or treatments that cause extreme

morphologies. To capture this additional diversity, we included wild-type and mutant
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85  bacteria grown in the presence of two beta-lactam antibiotics, cephalexin and aztreonam,

86  and A22, which targets MreB?. Finally, based on our interest in microbial communities,

87  we acquired images of mixtures of bacteria which display distinct morphologies and

88  optical characteristics. In total, we collected 4833 images constituting approximately

89 700,900 individual cells deriving from 14 species (Extended Data Table 1). Next, we

90  developed a streamlined approach for manual cell annotation and applied it to these

91  images (see Methods), yielding 46,000 representative annotated cells that serve as our

92  ground-truth dataset. We arbitrarily split this data into a 27,000-cell training set and a

93 19,000-cell benchmarking set. Relevant cellular metrics did not differ substantially

94  between the groups, confirming that the benchmarking set faithfully represents the

95  training set (Extended Data Fig. 1).

96 To facilitate direct comparison of the algorithms, we first optimized their

97  performance against our data. For the DNN approaches, each algorithm was trained on

98  our dataset using developer-recommended parameters. Morphometrics and SuperSegger

99  cannot be automatically optimized using ground-truth data; therefore, we manually
100  identified settings that optimized the performance of these algorithms against our dataset
101  (see Methods). As a quantitative measure for algorithm performance, we compared their
102 average Jaccard Index (JI) as a function of intersection over union (IoU) threshold — a
103 well-documented approach for evaluating image segmentation (Fig. 1a)*%3!. ToU values
104 lie between zero and one, with values greater than 0.8 marking the point at which masks
105  become indistinguishable from ground truth by the expert human eye (Extended Data
106  Fig. 2)*°. This analysis showed that DNN-based approaches significantly outperform

107  other algorithms. However, within the DNN group, substantial differences in


https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467199; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

108  performance were observed; Cellpose and StarDist outperform Mask R-CNN and MiSiC
109  at high IoU thresholds. The performance of all algorithms varied greatly across the

110  images in our ground-truth dataset, with much of this variability delineated by cell type
111  and morphology categories (Fig. 1b-g). Whereas all other algorithms exhibited visible
112 segmentation errors in two of the three cell categories we defined, errors by Cellpose —
113 the best overall performing algorithm at high IoU thresholds — were only apparent in

114  elongated cells (Fig. 1h-j).

115

116  Motivation for a new DNN-based segmentation algorithm

117 Our comparison revealed that Cellpose offers superior performance relative to the
118  other segmentation algorithms we analyzed, and for this reason, we selected this

119  algorithm for further development. Notably, even at the high performance levels of

120 Cellpose, only 83% of predictions on our benchmarking dataset are above 0.8 IoU. This
121  limits the feasibility of highly quantitative studies such as those involving subcellular
122 protein localization or cell—cell interactions.

123 Cellpose utilizes a neural network that is trained on ground-truth examples to
124 transform an input image into several intermediate outputs, including a scalar probability
125  field for identifying cell pixels (Extended Data Fig. 3a, panels i-iii)'%. Cellpose is unique
126  among DNN algorithms by the addition of a vector field output, which is defined by the
127  normalized gradient of a heat distribution from the median cell pixel coordinate

128  (Extended Data Fig. 3a, panels iv,v). This vector field directs pixels toward a global cell
129  center via Euler integration, allowing cells to be segmented based on the points at which

130  pixels coalesce (Extended Data Fig. 3b). In contrast to other algorithms, this approach for
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reconstructing cells is size- and morphology-independent, insofar as the cell center can be
correctly defined.

To further interrogate the accuracy of Cellpose on our dataset, we evaluated its
performance as a function of cell size. We compared cell area against the number of
segmentation errors, calculated as the number of redundant or missing masks
corresponding to each ground-truth cell mask. This revealed a strong correlation between
cell size and segmentation errors, with the top quartile of cells accounting for 83% of all
errors (Fig. 2a). To understand the source of these errors, we inspected the flow field
output of many poorly segmented cells across a variety of species and growth conditions.
This showed that elongated cells, an important morphology often seen in both wild-type
and mutant bacterial populations, are particularly susceptible to over-segmentation (Fig.
2b). We attribute this to the multiple sinks apparent in the corresponding flow fields. In
the Cellpose mask reconstruction algorithm, pixels belonging to these cells are guided
into multiple centers per cell, fragmenting the cell into many separate masks.

We hypothesized that the observed defect in Cellpose flow field output is a
consequence of two distinct flow field types arising from our training dataset: those
where the median pixel coordinate, or ‘center’, lies within the cell (97.8%) and those
where it lies outside the cell (2.2%). In the latter, Cellpose projects the center point to the
nearest boundary pixel, ultimately leading to points of negative divergence on the cell
periphery that are chaotically distributed (Fig. 2¢c-e). On the contrary, non-projected
centers maintain a uniform field magnitude along the entire boundary and adhere to the
global symmetries of the cell (Extended Data Fig. 4a,d). A similar issue is also

encountered in cells with centers that are not projected but lie close to the boundary
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154  (Extended Data Fig. 4b-d). Cells with a center point closer than 0.3 times the mean cell
155  diameter (a factor of 0.2 off-center) to the boundary account for an additional 8.5% of our
156  data. Neural networks can be exquisitely sensitive to the outliers in their training data®?;
157  therefore, we suspect that this small fraction of corrupt flow fields has significantly

158  impacted the performance of Cellpose.

159

160  Development of a new DNN-based segmentation algorithm

161 As there exists no straightforward means of defining a cell center for irregular
162  objects, we sought to develop a segmentation algorithm that operates independently of
163 cell center identification. We built our new algorithm, which we named Omnipose,

164  around the scalar potential known as the distance field (or distance transform), which

165  describes the distance at any point X in a bounded region Q to the closest point on the
166  boundary 0Q. Notably, this widely utilized construct is one of the intermediate outputs of
167  StarDist*’. Whereas in StarDist it is used to seed and assemble star-convex polygons, its
168  use in Omnipose is to define a new flow field within the Cellpose framework. The use of
169  adistance field has several advantages. First, the distance field is defined by the eikonal
170  equation WCD (55)| = 1, and so its gradient has unit magnitude throughout the bounded
171  region for which it is calculated. This grants it faster convergence and better numerical
172  stability when compared to alternative solutions producing similar fields (e.g., screened
173 Poisson; see Methods) (Extended Data Fig. 5a). Second, the distance field is independent
174  of morphology and topology, meaning that it is applicable to all cells. Lastly, the

175  resulting flow field points uniformly from cell boundaries toward the local cell center,

176  coinciding with the medial axis, or skeleton, that is defined by the stationary points of the
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distance field (Extended Data Fig. 5b). This critical feature allows pixels to remain
spatially clustered after Euler integration, solving the problem of over-segmentation seen
in Cellpose.

One challenge to using the distance field as the basis to our approach is that
traditional distance field algorithms like FMM (Fast Marching Method) are sensitive to
boundary pixilation?, causing artifacts in the flow field that extend deep into the cell.
These artifacts are sensitive to pixel-scale changes at the cell perimeter, which we
reasoned would interfere with the training process. To solve this, we developed an
alternative approach based on FIM (Fast Iterative Method) that produces smooth distance
fields for arbitrary cell shapes and sizes (Fig. 3a, and see Methods)**. The corresponding
flow field is relatively insensitive to boundary features at points removed from the cell
boundary, a critical property for robust and generalized prediction by the Cellpose
network.

The use of the distance field additionally required a unique solution for mask
reconstruction. Whereas the pixels in a center-seeking field converge on a point, standard
Euler integration under our distance-derived field tends to cluster pixels into multiple thin
fragments along the skeleton, causing over-segmentation (Fig. 3b). We solved this with a
suppression factor of (t + 1)~ in each time step of the Euler integration. This reduces
the movement of each pixel after the first step t = 0, facilitating initial cell separation
while preventing pixels from clustering into a fragmented skeleton formation. The wider
distribution resulting from our suppression factor allows pixels to remain connected,
thereby generating a single mask for each cell in conjunction with a standard automated

pixel clustering algorithm (e.g., DBSCAN)*>.

10
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Omnipose demonstrates unprecedented segmentation accuracy of bacterial cells

With solutions to the major challenges of cell center-independent segmentation
incorporated into Omnipose, we proceeded to benchmark its performance. Remarkably,
across the IoU threshold range 0.5-1.0, Omnipose averages a JI >10-fold above that of
Cellpose (Fig. 4a). The difference in performance between the algorithms is particularly
pronounced within the high IoU range (0.75-1.0), where we observe an average of 170-
fold higher JI for Omnipose. At the 0.5-5 um scale and with a typical microscope
configuration, quantitative measurements rely upon IoU values in this range, thus
Omnipose is uniquely suited for the microscopic analysis of bacterial cells.

To dissect the contributions of the individual Omnipose innovations to the overall
performance of the algorithm, we isolated the mask reconstruction component of
Omnipose and applied it to the Cellpose network output. This augmentation of Cellpose
modestly improved its performance to a roughly equivalent extent across all loU
thresholds (Fig. 4a). Based on this, we attribute the remaining gains in performance by
Omnipose to its unique network outputs and our improvements to the Cellpose training
framework (see Methods).

Our analyses illuminated critical flaws in prior DNN-based approaches for the
segmentation of elongated cells, effectively preventing these algorithms from
generalizable application to bacteria (Fig. 1). To determine whether Omnipose overcomes
this limitation, we evaluated its performance as a function of cell area. Cell area serves as
a convenient proxy for cell length in our dataset, which is composed of both branched

and unbranched elongated cells. Whereas the Cellpose cell error rate remains above 9%

11
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and increases exponentially with cell size, Omnipose displays a consistent error rate that
remains below 4% for all percentiles (Fig. 4b). Thus, Omnipose performance is
independent of cell size and shape, including those cells with complex, extended

morphologies (Fig. 4c,d).

Omnipose permits sensitive detection of cellular intoxication

Our laboratory recently described an interbacterial type VI secretion system-
delivered toxin produced by Serratia proteamaculans, Tre13¢. We showed that this toxin
acts by ADP-ribosylating the essential cell division factor FtsZ; however, we were unable
to robustly evaluate the consequences of Trel intoxication on target cell morphology
owing to segmentation challenges. Here we asked whether Omnipose could permit
straightforward and sensitive detection of intoxication by Trel. To this end, we incubated
S. proteamaculans wild-type or a control strain expressing inactive Trel (trelf#°9) with
target E. coli cells and imaged these mixtures after a fixed period of 20 hours. Owing to
the unique capabilities of Omnipose, we were able to include dense fields of view,
incorporating >300,000 cells in our analysis.

Among the cells identified by Omnipose, we found a small proportion were
elongated and much larger than typical bacteria (Fig. 5a,b and Extended Data Fig. 6a).
These cells were only detected in mixtures containing active Trel, and the apparent
failure of the cells to septate is consistent with the known FtsZ-inhibitory activity of the
toxin. The S. proteamaculans strain background we employed in this work expresses the
green fluorescent protein. Corresponding fluorescence images allowed us to

unambiguously assign the enlarged cell population to E. coli (Fig. 5¢). Next, we

12
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subjected the same images to cell segmentation with StarDist, Cellpose, and MiSiC, the
three top-performing algorithms in our initial survey. Each of these algorithms fail to
identify this population of cells to high precision (Fig. 5d,e). Close inspection reveals
three distinct modes of failure (Fig. Se and Extended Data Fig. 6b). In the case of
StarDist, elongated (non-star-convex) cells are split into multiple star-convex subsets that
do not span the entire cell. Cellpose detects entire elongated cells, but it breaks them up
into a multitude of smaller masks. Conversely, MiSiC detects all cells but fails to
properly separate them, thereby exaggerating the area measurement in many cases. Taken
together, these data illustrate how the enhanced cell segmentation performance of

Omnipose can facilitate unique insights into microbiological systems.

Omnipose exhibits strong performance in non-bacterial segmentation tasks

We have shown that the features we developed within Omnipose improved phase-
contrast bacterial segmentation performance beyond that of Cellpose. However, it is
possible that these features could hinder performance relative to Cellpose in other
imaging modalities or in segmentation tasks involving, for example, eukaryotic cells,
whole organisms, and cell-like objects. To test this, we trained Omnipose on the cyto2
dataset, a large collection of images and corresponding ground-truth annotations
submitted by users that expands upon the original cyto dataset of Cellpose!>*°. We found
that Omnipose offers a modest improvement in performance relative to Cellpose on this
dataset (Fig. 5f and Extended Data Fig. 7a). Moreover, Omnipose achieved this

performance boost without compromising the segmentation rate (~1 image per second).

13


https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467199; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

available under aCC-BY-NC-ND 4.0 International license.

Encouraged by the strong performance of Omnipose on the cyto2 dataset, we next
sought to investigate its potential utility in a field far removed from microbiology. The
nematode Caenorhabditis elegans is a widely studied model organism with an overall
morphology grossly similar to elongated bacteria®’. At just one millimeter in length,
intact C. elegans are often analyzed by microscopy in order to measure phenotypes;
therefore, there is significant interest in methods for their accurate segmentation to enable
tracking®®. We obtained, annotated and trained Omnipose on two publicly available
microscopy datasets composed of C. elegans images: time-lapse frames from the Open
Worm Movement database® and frames containing fields of assorted live or dead C.
elegans from the BBBCO010 dataset*. These images contain debris and are of
heterogenous quality, yet 82% of masks predicted by Omnipose match or exceed the 0.8
IoU threshold (Fig. 5g,h). Taken together with our findings on cyto2, we conclude that

Omnipose inherits and offers improvement upon the broad applicability of Cellpose.

Discussion

Confronted with the importance of segmentation accuracy to the success of work
within our own laboratory, we were motivated to characterize the performance of several
existing cell segmentation algorithms. Recent developments in deep learning have greatly
improved these algorithms; however, significant challenges remain!-*°. Although isolated
cells without cell-to-cell contact can be segmented with high precision by any of the
packages we tested, segmentation becomes significantly more challenging when cells
form microcolonies, adopt irregular morphologies, or when fields are composed of cells

with multiple shapes and sizes. Such difficulties are compounded in time-lapse studies,

14
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where the significance of segmentation errors often grows exponentially with time.
Experimental design can help mitigate certain segmentation challenges; however, the
recent emphasis on non-model organisms and microbial communities renders this an
increasingly undesirable solution*!.

This work provides the most comprehensive side-by-side quantitative comparison
of cell segmentation algorithm performance to-date. As expected, machine-learning-
based approaches outperform others, yet insights into general image segmentation
strategies can be gained from each of the methods we examined. Two of the six
algorithms we tested utilize traditional image thresholding and watershed segmentation:
Morphometrics and SuperSegger!*?3. Each program tends to under-segment adjacent
cells and over-segment large cells, behaviors previously linked to thresholding and

watershed processes, respectively!s+?

. Given that SuperSegger was motivated at least in-
part to mitigate these issues, we postulate that traditional image segmentation approaches
are ultimately limited to specialized imaging scenarios. Although we classify MiSiC as a
DNN-based approach, this algorithm also relies on thresholding and watershed
segmentation to generate cell masks from its network output!'>. The network output of
MiSiC is more uniform than unfiltered phase contrast images, yet this pre-processing
does not fully abrogate the typical errors of thresholding and watershed segmentation.
We therefore conclude that, even when combined with neural networks as seen in MiSiC,
thresholding and watershed cannot be effectively used for general cell segmentation
tasks.

A successful DNN-based algorithm is composed of a robust, consistent neural

network output, and an appropriate mask reconstruction process based on this output. In
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the case of Mask R-CNN, bounding boxes for each cell are predicted along with a
probability field that localizes a cell within its bounding box*}. Masks are generated by
iterating over each box and thresholding the probability field. Despite the widespread
adoption of Mask R-CNN, we found this algorithm did not perform exceptionally well in
our study. Our results suggest that this is due to dense cell fields with overlapping
bounding boxes, a feature known to corrupt the training process and produce poor
network outputs for Mask R-CNN*. By contrast, the StarDist network makes robust
predictions, but it fails to assemble accurate cell masks because the cells in our dataset
are not well approximated by star-convex polygons?®. The errors we encountered with
Cellpose can be attributed to both neural network output and mask reconstruction. In
Omnipose, we specifically addressed these two issues via the distance field and
suppressed Euler integration, respectively, yielding a remarkably precise and
generalizable image segmentation tool. Omnipose effectively leverages the strongest
features of several of the DNN approaches we tested, namely the distance field of
StarDist, the boundary field of MiSiC, and the mask reconstruction framework of
Cellpose.

We have designed Omnipose for use by typical research laboratories and we have
made its source code and training data publicly available. For images of bacteria under
phase contrast, researchers will not need to provide new ground truth data or retrain the
model. In this study, we emphasized morphological diversity, but we further accounted
for differences in optical features between bacterial strains, slide preparation techniques,
and microscope configurations. For example, the images in our ground-truth dataset

originate from four different researchers using distinct microscopes, objectives, sensors,
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illumination sources, and acquisition settings. We further introduced extensive image
augmentations that simulate variations in image intensity, noise, gamma, clipping, and
magnification. Lastly, bacterial strains exhibit a wide range of intrinsic contrast and
internal structure, often exacerbated by antibiotic treatment or revealed by dense cell
packing. Internal structure can cause over-segmentation, so we included many cells with
this characteristic in our dataset.

We anticipate that the unprecedented performance of Omnipose may permit
access to information from microscopy images that was previously inaccessible. For
instance, images deriving from natural microbial communities could be accurately
characterized with regard to internal structure, autofluorescence, and morphology at the
single-cell level. This data could be used to estimate diversity, a novel methodology that
would complement existing sequencing-based metrics*®. It is worth noting that
phenotypic diversity often exceeds genetic diversity*®; therefore, even in a relatively
homogeneous collection of organisms, precise segmentation could allow classes
representing distinct states to be identified. A microscopy-based approach also offers the
opportunity to characterize spatial relationships between cells, information that is

exceptionally difficult to recover in most biomolecular assays.

17


https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467199; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

available under aCC-BY-NC-ND 4.0 International license.

Methods

Phase contrast and fluorescence microscopy

In-house imaging was performed on a Nikon Eclipse Ti-E wide-field epi-
fluorescence microscope, equipped with a sSCMOS camera (Hamamatsu) and X-cite LED
for fluorescence imaging. We imaged through 60X and 100X 1.4 NA oil-immersion PH3
objectives. The microscope was controlled by NIS-Elements. Cell samples were spotted
on a 3% (w/v) agarose pad placed on a microscope slide. The microscope chamber was
heated to 30°C or 37°C when needed for time-lapse experiments.

Several images in our dataset were taken by two other laboratories using three
distinct microscope/camera configurations. The Brun lab provided images of C.
crescentus acquired on a Nikon Ti-E microscope equipped with a Photometrics Prime
95B sCMOS camera. Images were captured through a 60X Plan Apo A 100X 1.45 NA oil
Ph3 DM objective. The Wiggins lab provided E. coli and A. baylyi time lapses from both
a Nikon Ti-E microscope as well as a custom-built tabletop microscope, both described in

previous studies*”#8,

C. elegans data preparation

We obtained a 1000-frame time lapse of C. elegans from the Wormpose*® GitHub
(https://github.com/iteal/wormpose data) adapted from the Open Worm Movement
database?®, which is inaccessible at the time of writing. We also utilized the Broad
Bioimage Benchmarking Collection set BBBC010% (https://bbbc.broadinstitute.org/c-
elegans-livedead-assay-0), a set of 100 images containing live and dead C. elegans.

These images were manually cropped to select regions of each image without C. elegans
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overlaps. For both of these datasets, images were initially segmented with Omnipose to
select foreground, automatically cropped to select individual C. elegans or clusters of C.
elegans, and then packed into ensemble images for efficient annotation, training, and

testing following the same procedures described below for our bacterial datasets.

Bacterial sample preparation

To image antibiotic-induced phenotypes, cells were grown without antibiotics
overnight in LB, back-diluted, and spotted on agarose pads with 50pg/mL A22 or
10pg/mL cephalexin. Time lapses were captured of E. coli DH5a and S. flexneri M90T
growing on these pads. E. coli CS703-1 was back-diluted into LB containing 1pug/mL
aztreonam and spotted onto a pad without antibiotics*’. Cells constitutively expressed
GFP to visualize cell boundaries.

H. pylori LSH100 grown with and without Aztreonam was provided by the
Salama lab>%!, Samples were fixed and stained with Alexaflour 488 to visualize the cell
membrane. Images were taken on LB pads. The typical technique of allowing the spot to
dry on the pad caused cells to curl up on themselves, so our images were taken by placing
the cover slip on the pad immediately after spotting and applying pressure to force out
excess media.

C. crescentus was cultivated and imaged by the Brun lab>>3. Cells were grown in
PYE, washed twice in water prior to 1:20 dilution in Hutner base-imidazole-buffered-
glucose-glutamate (HIGG media) and grown at 26°C for 72h. Cells were spotted on a 1%

agarose PYE pads prior to imaging.
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S. pristinaespiralis NRRL 2958 was grown using the following media recipe:
Yeast extract 4g/L, Malt extract 10g/L, Dextrose 4g/L, Agar 20g/L. This media was used
to first culture the bacteria in liquid overnight and then on a pad under the microscope.
This strain forms aggregates in liquid media, so these aggregates were allowed to grow
for several hours on a slide in the heated microscope chamber until we could see
individual filaments extending from the aggregates. Fields of view were selected and
cropped to exclude cell overlaps. Autofluorescence was captured to aid in manual
segmentation.

Mixtures of S. proteamaculans attTn7::Km-gfp trel or trel**°C and E. coli were
spotted on a PBS pad to prevent further growth. Phase-contrast images of the cells were
acquired before and after a 20hr competition on a high-salt LB plate. Fluorescence
images in the GFP channel were also acquired to distinguish S. proteamaculans from
unlabeled E. coli.

All other individual strains in Table S1 were grown overnight, diluted 1:100 into
fresh LB media, and grown for 1-3 hours before imaging. Mixtures were made by

combining back-diluted cells roughly 1:1 by ODsoo.

Manual image annotation

Manual annotation began with loading images into MATLAB, normalizing the
channels, registering the fluorescence channel(s) to brightfield (when applicable), and
producing boundary-enhanced versions of brightfield and fluorescence. Where possible,
fluorescence data was primarily used to define cell boundaries (not available in the C.

elegans dataset acquired online). In addition to a blank channel to store manual labels, all
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422  processed phase and fluorescence images were then automatically loaded as layers into
423  an Adobe Photoshop document. We used 4-6 unique colors and the Pencil tool (for pixel-
424 level accuracy and no blending) to manually define object masks. Due to the 4-color

425  theorem’, this limited palette was sufficient to clearly distinguish individual object

426  instances from each other during annotation. This color simplification is not found in any
427  segmentation GUI, and it enabled faster manual annotation by reducing the need to select
428  new colors. It also eliminated the confusion caused by the use of similar but distinct

429  colors in adjacent regions, which we suspect is the principal cause for the misplaced

430  mask pixels that we observed in other datasets (e.g., cyto2).

431 The cell label layer was then exported as a PNG from Photoshop, read back into
432  MATLAB, and converted from the repeating N-color labels to a standard 16-bit integer
433 label matrix, where each object is assigned a unique integer from 1 to the number of cells
434  (background is 0). Because integer labels cannot be interpolated, we then performed a
435  non-rigid image registration of the brightfield channel to the binary label mask to achieve
436  better brightfield correlation to ground truth masks. All images in our ground-truth

437  dataset have been registered in this manner.

438

439  Choosing Segmentation algorithms

440 Three main factors contributed to the choice of algorithms highlighted in this

441  study: (i) specificity to bacterial phase contrast images, (ii) success and community

442 adoption, especially for bioimage segmentation, and (iii) feasibility of installation,

443  training, and use. SuperSegger, Morphometrics, and MiSiC were selected because they

444  specifically targeted the problem of bacterial phase contrast segmentation'>3°, Packages
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such as BactMAP, BacStalk, Cellprofiler, CellShape, ColiCoords, Cytokit,
MicroAnalyzer, Microbel, Oufti, and Schnitzcells incorporate limited novel segmentation
solutions and instead aim to provide tools for single-cell analysis such as lineage tracing

and protein tracking®?14.18-20.25.56-58

. Furthermore, the segmentation that these programs
perform depends broadly on thresholding and watershed techniques; therefore,
Morphometrics is a reasonable proxy for their segmentation capabilities. We were unable
to locate code or training data for BASCA!!. Tlastik is a popular interactive machine-
learning tool for bioimage segmentation, but training it using a manual interface was not
feasible on a large and diverse dataset such as our own?!. Among DNN approaches, Mask
R-CNN was selected because it is a popular architecture for handling typical image
segmentation tasks. It was also used in the segmentation and tracking package Usiigaci**.
U-Net architectures have been implemented in a number of algorithms, including
DeLTA, PlantSeg, MiSiC, StarDist, and Cellpose!>!3172226_ DeL.TA was not included in
this study because it operates similarly to MiSiC and was designed specifically for
mother machine microfluidics analysis. DeLTA 2.0 was recently released to additionally
segment confluent cell growth on agarose pads, but it remains quite similar to MiSiC in
implementation®®. PlantSeg could, in principle, be trained on bacterial micrographs, but
we determined that its edge-focused design meant to segment bright plant cell wall

features would not offer any advancements over the remaining U-Net methods that we

tested.

Training and tuning segmentation algorithms

22
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467 All segmentation algorithms have tunable parameters to optimize performance on
468  a given dataset. These include pre-processing such as image rescaling (often to put cells
469 into a particular pixel diameter range), contrast adjustment, smoothing, and noise

470  addition. Morphometrics and SuperSegger were manually tuned to give the best results
471  on our benchmarking dataset. The neural network component of SuperSegger was not
472  retrained on our data, as this is a heavily manual process involving toggling watershed
473 lines on numerous segmentation examples. DNN-based algorithms are automatically
474  trained using our dataset, and the scripts we used to do so are available in our GitHub
475  repository. We adapted our data for MiSiC by transforming our instance labels into

476 interior and boundary masks. Training documentation for MiSiC is not published.

477  Training and evaluation parameters for MiSiC were tuned according to correspondence
478  with the MiSiC authors. Cellpose and StarDist were trained with the default parameters
479  provided in their documentation. StarDist has an additional tool to optimize image pre-
480  processing parameters on our dataset, which we utilized.

481

482  Evaluating segmentation algorithms

483 All algorithms were evaluated on our benchmarking dataset with manually or
484  automatically optimized parameters. We provide both the raw segmentation results for all
485  test images by each tested algorithm as well as the models and model-training scripts
486  required to reproduce our results. Before evaluating IoU or JI, small masks at image
487  boundaries were removed for both the ground-truth and predicted masks. IoU and JI are
488  calculated on a per-image basis and, where shown, are averaged with equal weighting

489  over the image set or field of view.

23


https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467199; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

available under aCC-BY-NC-ND 4.0 International license.

Our new metric, the number of segmentation errors per cell, was calculated by
first measuring the fraction of each predicted cell that overlaps with each ground truth
cell. A predicted cell is assigned to a ground-truth cell if the overlap ratio is > 0.75,
meaning that at least three quarters of the predicted cell lies within the ground-truth cell.
If several predicted cells are matched to a ground-truth cell, the number of surplus
matches is taken to be the number of segmentation errors. If no cells are matched to a

ground-truth cell, then the error is taken to be 1.

Leveraging Omnipose to accelerate manual annotation

Omnipose was periodically trained on our growing dataset to make initial cell
labels. These were converted into an N-color representation and loaded into Photoshop
for manual correction. A subset of our cytosol GFP channels were sufficient for training
Omnipose to segment based on fluorescence, and the resulting trained model enabled
higher-quality initial cell labels for GFP-expressing samples than could be achieved from

intermediate phase contrast models (e.g., V. cholerae).

Defining the Omnipose prediction classes
Omnipose predicts four classes: two flow components, the distance field, and a

boundary field. Our distance field is found by solving the eikonal equation

1
£

Vo@)| =

where f represents the speed at a point X. The Godunov upwind discretization of the

eikonal equation is
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. 2 _ 2

519 (max(¢i,j - mln(¢i—1,j' ¢i+1,j) ) 0)) N (max(¢i,j - mln(d)l,j—l' ¢i,j+1) ) 0)) _ 1
Ax Ay fij

513 Our solution to this equation is based on the Improved FIM Algorithm 1.1 of*%, as

514  follows. Our key contribution to this algorithm is the addition of ordinal sampling to

515  boost both convergence and smoothness of the final distance field.

516 2D update function for ¢; ; on a cartesian grid
517 1. Find neighboring points for cardinal axes (Ax = Ay = §):
518 ¢™* = min(¢;_y j, Pir1j), ¢™™ = min(¢; 1, P j+1)
. . . . . a A ~ V2 Aa Ab
519 2. Find neighboring points for ordinal axes (X -a =3 -b = A Ay V26):
520 ¢mina = min(¢i—1,j—1; ¢i+1,j+1) ) ¢minb = min(¢i+1,j—1' ¢i—1,j+1)
521 3. Calculate update along cardinal axes:
522 if |¢minx _ ¢miny| > ?
Lj
: , 6
523 U*y = min(¢m1nx' ¢m1ny) 4+ —
Lj
524 else:
1 . 5\ . |
525 Uxy = — ¢m1nx + ¢m1ny + 2 — _ (d)mmx _ ¢m1ny)2
2 fij
526 4. Calculate update along ordinal axes:
. mina __ 4 minb ﬁ
527 if | Ppminb| > P
. . V2§
528 yaeb = min(qulna,qulnb) +
fij
529 else:
530 Ueb = 1 ¢mina + ¢minb + (4 (i)z — (¢mina — ¢minb)2
2 fij
531 5. Update with geometric mean:

532 ¢i,j = Jyxyyab
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This update rule is repeated until convergence (Extended Data Fig. 5). We take
& = f; j to obtain the signed distance field used in Omnipose. The flow field components
are defined by the normalized gradient of this distance field ¢. The boundary field is
defined by points satisfying 0 < ¢ < 1. For network prediction, the boundary map is
converted to the logits (inverse sigmoid) representation, such that points in the range
[0,1] are mapped to [—5,5]. For consistent value ranges across prediction classes, the
flow components are multiplied by 5 and all background values of the distance field (¢ =

0) are set to —5.

Omnipose network architecture

The DNN used for Omnipose is a minor modification of that used in Cellpose: a
U-net architecture with two residual blocks per scale, each with two convolutional
layers'?. Omnipose introduces a dropout layer before the densely connected layer®?,
which we incorporated into the shared Cellpose and Omnipose architecture moving

forward. However, Cellpose models utilized in this study are trained without dropout.

Rescaling flow field by divergence

During training, the ground truth data is augmented by a random affine
transformation. The original implementation, and the one which yields the best results,
linearly interpolates the transformed field. This reduces the magnitude of the otherwise
normalized field in regions of divergence, i.e., at boundaries and skeletons. A
renormalized field (obtained either from the transformed field or as the normalized

gradient of the transformed heat distribution) often has artifacts at cell boundaries and
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skeletons, so the interpolated field effectively reduces the influence of these artifacts on
training. We reason that this feature explains the superior performance of interpolated
field training over renormalized fields, despite the latter being the nominal goal of the
algorithm.

Pixels at cell boundaries, however, consequently do not move far (less than 1px)
under Euler integration due to the low magnitude of the predicted field at cell boundaries.
Our solution in Omnipose is to rescale the flow field by the magnitude of the divergence.
The divergence is most positive at the cell boundaries (where pixels need to move) and
most negative at cell skeletons (where pixels need to stop). We therefore rescale the
divergence from 0 to 1 and multiply the normalized flow field by this new magnitude
map. This forces boundary pixels of neighboring cells to quickly diverge and allow for

accurate pixel clustering to obtain the final segmentation.

Novel diameter metric
The size models of Cellpose are trained to estimate the average cell ‘diameter’,

taken to be the diameter of the circle of equivalent area:
A
d=2R=2 |— (%)
T

This metric as a basis for rescaling is problematic when cells are growing in
length but not width (Extended Data Fig. 7). Log-phase bacterial cell area grows
exponentially with time, and so too does the scale factor, eventually resulting in a

rescaled image that is too small for Cellpose to segment.
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The average of the distance field, however, does not change for filamentous
bacteria, as the width — and therefore the distance to the closest boundary — remains
constant. To define a formula consistent with the previous definition in the case of a
circular cell, we consider mean of the distance field over the cell:

1
TR2

b 2ﬂfR(R Yrdrdo ! (nR3) K
= —7r)rdrdd = —(zR3) ==
0 0 3

mR% \3

This allows us to define a new ‘effective diameter’ as

d=2R =6¢ (%)

Aside from agreeing with the previous scaling method () for round
morphologies, this definition exhibits excellent consistency across time (Extended Data
Fig. 7). This consistency is also critical for training on datasets with wide distributions in
cell areas that require rescaling, such as the Cellpose datasets. Finally, the raw distance
field output of Omnipose can directly be used directly in (x*) to estimate average cell
diameter, which is used in our code to automatically toggle on features that improve

mask reconstruction performance for small cells.

Gamma augmentation

To make the network robust against changes in exposure/contrast, the training
images are now raised to a random power (gamma) between 0.5 and 1.25, simulating the
varying levels of contrast that are observed experimentally with different light sources,

objectives, and exposure times.
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Alleviating class imbalance

Class imbalance remains a challenge in many machine learning applications®!. In
our dataset, foreground pixels (cells) take up anywhere from 1 to 75 percent of a given
training image, with the rest being background pixels that the network must only learn to
ignore (i.e., assign a constant output of -5 for distance and boundary logits). We
implemented several changes to the loss function to emphasize foreground objects,
including weighting by the distance field and averaging some loss terms only over
foreground pixels. Our training augmentation function also attempts many random crop
and resizing passes until a field of view with foreground pixels is selected (this may take

several attempts for sparse images, but adds very little time to training).

Image normalization

To manage different image exposure levels, Cellpose automatically rescales
images such that pixels in the 1st percentile of intensity are set to 0 and those in the 99th
percentile are sent to 1. This percentile rescaling is preferred over blind min-max
rescaling because bubbles or glass can cause small bright spots in the image. However,
we found that images containing single cells (low intensity) in a wide field of media
(high intensity) would become badly clipped due to the foreground-background class

imbalance. To solve this, we changed the percentile range from 0.01 to 99.99.

Data availability
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Ground truth images and labels generated for this study are hosted on the Cellpose
website (http://www.cellpose.org/dataset omnipose) and listed on the Papers With Code

database (https://paperswithcode.com/dataset/bpcis).

Code availability

For install instructions, source code, and all Python and MATLAB scripts generated for

this study, see our GitHub repository at https://github.com/kevinjohncutler/omnipose.
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Fig. 1 | Quantitative comparison of segmentation methods distinguishes Cellpose as a high
performing algorithm. (a-g) Comparison of segmentation algorithm performance on our test dataset. (a)
Overall performance measured by Jaccard Index (JI). The JI was calculated at the image level and values
averaged across the dataset are displayed. Algorithm abbreviations defined in B-G. (b-g) Algorithm
performance partitioned by cell type (Simple, n=12,869; Abx/mutant, n=6,138; Elongated, n=46). Images
were sorted into types as defined in Supplemental Table 1 (Abx, antibiotic). (h-j) Representative
micrographs of cell type partitions analyzed in B-G, indicated by vertical bars at right. Ground-truth masks
and predicted mask outlines generated by the indicated algorithm are displayed. Mean matched IoU values
for cells shown are displayed within each micrograph. Bacteria displayed are (H) Vibrio cholerae,
Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, (1) aztreonam-treated Escherichia coli
CS703-1, and (J) Streptomyces pristinaespiralis. All images scaled equivalently; scale bar is Imm.
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Fig. 2 | Cellpose over-segments extended, anisotropic cells. (a) Single-cell analysis of segmentation error
as a function of cell area. Color represents density on a log scale. Gray box represents the top quartile of
cell areas. (b) Representative examples exhibiting problematic flow fields. Corresponding boundary pixel
trajectories are shown in black and final pixel locations in red. Predicted mask overlays are shown with
mean matched IoU values. (¢) Analysis of stochastic center-to-boundary distances. Distance from the
center (median pixel coordinate) to each boundary pixel is normalized to a maximum of 1. Position along
the boundary is normalized from -1 to 1 and centered on the point closest to the median pixel. Center-to-
boundary for the cell in panel D is highlighted in black. (d) Representative cell with median coordinate
outside the cell body (black X). Cellpose projects this point to the global minima of this function (green
dot), but several other local minima exist (blue dots). (e) The heat distribution resulting from a projected
cell center (black arrow). The normalized gradient corresponds to the divergence shown. Bacteria displayed
are (a,e) Helicobacter pylori, (b) Escherichia coli CS703-1, both treated with aztreonam, and (d)
Caulobacter crescentus grown in HIGG media. Scale bars are 1 pm.
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Fig. 3 | Core innovations of Omnipose. (a) Comparison of distance field algorithms and corresponding
flow fields. Fast Marching Method (FMM) produces ridges in the distance field resulting from pixelation
on the cell mask boundary. Our smooth FIM algorithm minimizes these features. The difference image
(FIM — FMM) highlights artifacts in the FMM method. Flow fields are calculated as the normalized
gradient of the distance field. Boundary pixelation affects the FMM flow field deep into the cell, regardless
of cell size. (b) Comparison of mask reconstruction algorithms on a smooth flow field (not shown). Left:
boundary pixel trajectories and resulting mask outlines from standard Euler integration. Right: Trajectories
and mask outlines under suppressed Euler integration. Red dots indicate the final positions of all cell pixels,
not only the boundary pixels for which trajectories are displayed. Bacteria displayed are (a) Escherichia
coli CS703-1 and (b) and Helicobacter pylori, both treated with aztreonam. Scale bars are 1 um.
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Fig. 4 | Omnipose outperforms Cellpose. (a) Overall performance measured by Jaccard Index (JI). The
hybrid method (gray) is a variant of Cellpose that uses the original center-seeking flow output and the mask
reconstruction of Omnipose. Gray box represents IoU > 0.8. (b) Quantification of segmentation
performance by cell size. The percent of cells with at least one segmentation error is computed for cells in
each area percentile group from 1 to 100. Gray box represents the top quartile. (¢) Omnipose IoU
distribution on our dataset compared to the next highest performing algorithm in each of three cell
categories. (d) Example micrographs and Omnipose segmentation. Mean matched IoU values shown.
Bacteria displayed are (i) Streptomyces pristinaespiralis, (ii) Caulobacter crescentus grown in HIGG
media, (iii) Shigella flexneri treated with A22, (iv) mix of Pseudomonas aeruginosa, Staphylococcus
aureus, Vibrio cholerae, and Bacillus subtilis. Scale bars are 1 pm.
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Fig. 5 | Omnipose can be applied to the study of bacterial and non-bacterial systems. (a)
Fluorescence/area population profile according to Omnipose segmentation in control and experimental
conditions. K-means clustering on GFP fluorescence distinguishes S. proteamaculans trel/tre1**°¢
(light/dark green markers) from E. coli (gray markers). (b) Example of extreme filamentation of E. coli in
response to active Trel. (¢) Omnipose accurately segments all cells in the image. Largest cell indicated
with black arrow. (d) MiSiC predicts large cell masks over both species. Cellpose and StarDist fail to
predict any cells above 15um?. (¢) Example segmentation results highlighting typical errors encountered
with MiSiC (under-segmentation), Cellpose (over-segmentation), and StarDist (incomplete masks). Mask
mergers cause some E. coli to be misclassified as S. proteamaculans. Scale bar is 1 um. (f) Performance of
Omnipose and Cellpose on cyto2 and C. elegans datasets. Results for Omnipose trained on C. elegans
(grey) or C. elegans and bacterial data (yellow) are shown. (g) IoU distribution for the masks predicted by
each method on our C.elegans dataset. (h) Example segmentation of C. elegans in the BBBC010 dataset.
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Extended Data Fig. 1 | Test dataset is representative of the training dataset. (a) Mean diameter,
defined in Methods. (b) Cell area. (c¢) Cell perimeter. P-values are displayed for the two-sided KS test.
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Extended Data Fig. 2 | IoU values for synthetic cell of typical size/resolution. (a) 0-12 pixel
displacement of cell mask (red outline) and corresponding IoU values. (b) IoU decreases non-linearly for
curved regions such as this synthetic cell.
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Extended Data Fig. 3 | Details of the Cellpose algorithm. (a) Stages of the Cellpose training pipeline.
Ground truth masks (7) are converted to cell probability (i7) by binary thresholding and a heat distribution
(iii) by simulated diffusion from the median pixel coordinate. The flow field (iv) is defined by the
normalized gradient of (iii). Color-magnitude representations of this vector field follow the flow legend
diagram. The phase, cell probability, and flow fields are used to train the network. (b) Stages of the
cellpose prediction pipeline. Phase images are processed by the trained cellpose network into the
intermediate flow field and cell probability outputs (i-if). A binary threshold is applied to the probability to
identify cell pixels (iii). Pixels are Euler-integrated under the flow field until they converge at common
points. Boundary pixel trajectories are depicted in iv. Each pixel is assigned a unique label corresponding to
the center to which it converged (v). This segmentation result is commonly depicted in an outline view (vi).
Bacteria shown are Escherichia coli. Scale bar is 1 um.
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Extended Data Fig. 4 | Median coordinates are asymmetrically localized. (a) Center-to-boundary
distance highlighted for two cells with non-projected median coordinates. Dashed lines indicate the larger
of the two minima along the medial axis. (b) Rod-shaped E.coli with symmetric median coordinate.
Symmetry of the center is reflected in A by equal high and low points corresponding to the extremal points
along the long and short axes of the cell. (¢) Curved B. subtilis with median coordinate asymmetrically
close to the cell boundary. This asymmetry is reflected in A by a secondary minimum above the global
minimum corresponding to the diametrically opposing point along the short axis of the cell. (d) These
centers result in distinct flow fields reflecting the (a)symmetric of the cell center. Bacteria shown are (a)
Escherichia coli and (b) Bacillus subtilis. Scale bar is 1 pm. Images scaled equivalently.
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Extended Data Fig. 5 | Comparison of three algorithms for computing center-independent flow fields.
Each field is defined by a partial differential equation with the mask at the source: time-independent heat
equation, the screened Poisson equation, and the Eikonal equation. We solve these equations with iterative
relaxation (see Methods). (a) Two example cells, the first drawn from our dataset with a mean diameter of
37px and a synthetic rod-shaped cell with a mean diameter of 192px. Cell (i) exhibits heat-derived flow
components pointing toward the skeleton near boundaries and toward the global cell center at the skeleton.
Center-seeking flow components become problematic for mask reconstruction for more complicated cell
geometries, namely those with oscillating thickness. The screened Poisson and Eikonal equations produce
nearly identical flow fields (same direction, normalized magnitude). Cell (i) reveals a core flaw in the
screened Poisson solution: its derivative exceeds our available numerical precision, leading to a vanishing
flow field at the center where the solution plateaus. Any cells of this size or larger will exhibit this issue.
(b) Convergence measured by the average difference at each iteration (maximum normalized to 1) for cells
(i,ii). Our Eikonal solution converges faster than the other methods by a wide margin at typical cell
diameters (7).
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Extended Data Fig. 6 | Controls and additional examples. (a) Controls segmented by StarDist, Cellpose,
and MiSiC. Notably, Cellpose and MiSiC exhibit an enrichment of larger cells even in the control, a
consequence of both under-segmented (merged) cells as well as fragments of over-segmented large cells.
(b) Cells 2 and 3 highlighted in orange and gray plotted in Fig. 5a,d. Scale bars are 1 pm.
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Extended Data Fig. 7 | Comparison of diameter metrics on a filamentous microcolony time lapse. (a).
Cellpose diameter metric is the diameter of the circle with equivalent area. Omnipose diameter metric is
proportional to the mean of the distance transform. (b) Bacteria displayed are 4. baylyi transformed with a
AftsN::kan PCR fragment. Scale bar is 1 pm.
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Extended Data Table 1.

Species

Strain

Image
count

Cell Count

Cells in
GT

Percent
of GT

Notes

Escherichia coli

DH5a

1378

98200

9733

20.6

Dense microcolonies grown
on minimal media. Thin
phenotype. ITPG-induced
GFP cytosol marker. Time
lapse. Imaged by the Wiggins
lab.

141

4536

4395

9.3

Dense microcolonies on LB.
Time lapse. Imaged by the
Wiggins lab.

2277

Treatment with cephalexin.
Tn7::GFP. Imaged by the
Mougous lab.

CS703-

162

23169

1299

2.6

Mutant grown on LB and
aztreonam. Elongated and
branching phenotypes. Time
lapse. Imaged by the
Mougous lab.

Shigella flexneri

M90T

117

256618

1409

3.0

Treatment with A22.
Tn7::GFP. Frames selected
from time lapse after 1hr
growth. Imaged by the
Mougous lab.

4482

4318

9.2

Treatment with cephalexin.
Tn7::GFP. Frames selected
from time lapse after 1hr
growth. Imaged by the
Mougous lab.

Francisella
tularensis subsp.
novicida

Ul12

20166

496

1.1

Small and extremely low-
contrast cells. Tn7::GFP.
Imaged by the Mougous lab.

Acinetobacter
baylyi

ADP1

2169

60601

3336

7.1

Deletion of essential gene
murA. Rounded phenotype.
Time lapse. Imaged by the
Wiggins lab.

241

1313

1133

24

Deletion of essential gene
ftsN. Filamentous phenotype.
Time lapse. Imaged by the
Wiggins lab.

540

10013

2227

4.7

Deletion of essential gene
dnaA. Filamentous
phenotype. Time lapse.
Imaged by the Wiggins lab.

Burkholderia
thailandensis

E264%

30

62005

5122

10.9

Selected panels from a self-
intoxication experiment.
Cells exhibit internal
structure and low contrast in
microcolonies. Tn7::GFP.
Time lapse. Imaged by the
Mougous lab.

Helicobacter
pylori

LHS100%

13014

Helical phenotype. Grown,
fixed, and stained with
Alexaflour 488 in the lab of
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Nina Salama. Imaged by the
Mougous lab.

19 1668 701 1.5 Treated with aztreonam.
Filamentous, helical
phenotype. Grown, fixed, and
stained with Alexaflour 488
in the lab of Nina Salama.
Imaged by the Mougous lab.

Caulobacter NA1000°3 4 1787 756 1.6 Grown in HIGG media to

crescentus induce stalk phenotype.
Cultivation and imaging done
in the lab of Yves Brun.

Streptomyces NRRL 17 2339 270 0.6 Grown on rich media to

pristinaespiralis 2958 induce filamentous
phenotype. Imaged by the
Mougous lab.

Vibrio cholerae | A1552% |2 2627 2265 4.8 Cells have short but curved
morphology and form dense,
low-contrast microcolonies.
Tn7::GFP. Obtained from the
lab of Fitnat Yildiz. Imaged
in the Mougous lab.

Serratia 568 43 100146 1244 2.6 1:1 mixture. S.p. labelled via

proteamaculans | DH5a Tn7::GFP, E.c. unlabeled.

E. coli Time lapse. Imaged in the
Mougous lab.

Pseudomonas PAO1% |3 2662 3688 |7.8 1:1 mixture. P.a. labelled via

aeruginosa USA300 Tn7::GFP, S.a. unlabeled.

Staphylococcus Imaged in the Mougous lab.

aureus

P. aeruginosa PAOI1 21 33281 4678 9.9 1:1:1:1 mixture. P.a. and V.c.

S. aureus USA300 labelled via Tn7::GFP, S.a.

V. cholerae A1552 and B.s. labelled with red

Bacillus subtilis |HM1350 membrane dye. Imaged in the
Mougous lab.

4833 700904 47070 1100

51



https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/

