
Towards routine employment of computational tools for antimicrobial

resistance determination via high-throughput sequencing

Simone Marini1?• Rodrigo A. Mora1? Christina Boucher2 Noelle Noyes3

Mattia Prosperi1•

1Department of Epidemiology, University of Florida
{simone.marini, m.prosperi}@ufl.edu

2Department of Computer and Information Science and Engineering,
University of Florida

3Department of Veterinary Population Medicine,
University of Minnesota
•Corresponding authors

?Equal contribution

Abstract

Antimicrobial resistance (AMR) is a growing threat to public health and farming at large. In clinical and

veterinary practice, timely characterization of the antibiotic susceptibility profile of bacterial infections is a

crucial step in optimizing treatment. High-throughput sequencing is a promising option for clinical point-of-

care and ecological surveillance, opening the opportunity to develop genotyping-based AMR determination

as a possibly faster alternative to phenotypic testing. In the present work, we compare the performance of

state-of-the-art methods for detection of AMR using high-throughput sequencing data from clinical settings.

We consider five computational approaches based on alignment (AMRPlusPlus), deep learning (DeepARG),

k-mer genomic signatures (KARGA, ResFinder) or hidden Markov models (Meta-MARC). We use an exten-

sive collection of 585 isolates with available AMR resistance profiles determined by phenotypic tests across

nine antibiotic classes. We show how the prediction landscape of AMR classifiers is highly heterogeneous,

with balanced accuracy varying from 0.40 to 0.92. Although some algorithms—ResFinder, KARGA, and

AMRPlusPlus– exhibit overall better balanced accuracy than others, the high per-AMR-class variance and

related findings suggest that: (1) all algorithms might be subject to sampling bias present both in data repos-

itories used for training and experimental/clinical settings; and (2) a portion of clinical samples might contain

uncharacterized AMR genes that the algorithms—mostly trained on known AMR genes—fail to generalize

upon. These results lead us to formulate practical advice for software configuration and application, and give

suggestions for future study designs to further develop AMR prediction tools from proof-of-concept to bedside.

Introduction

Antimicrobial resistance (AMR) occurs when microorganisms evolve to overcome susceptibility to antibiotics.
According to the US Centers for Disease Control (CDC), more than 2.8 million antibiotic-resistant infections and
over 35,000 resultant deaths occur each year in the US alone[1]. On a national level, it is predicted that AMR-
related infections will lead to 10 million deaths per year and a gross domestic product (GDP) loss of $100.2 trillion
by 2050 without appropriate interventions [2]. From managing antibiotic misuse in healthcare to regulating their
use in livestock and agriculture, AMR has become an ”arms race” between microorganism adaptation and drug
discovery. In clinical settings, one major obstacle to optimizing treatment of AMR-related infections is access to
accurate and timely antibiotic susceptibility testing (AST)[3]. Wet-lab AST techniques generally require growing
bacteria in vitro and testing against various antibiotics. Examples include agar-based culture techniques, disk
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diffusion, and Etest [4]. These techniques are limited in that: (a) culture conditions have not been validated for
every infectious microbial species, and only a fraction of bacterial species are cultivable with standard methods;
(b) they may take as long as 5 days before the result is obtained (1–3 days for culture and 1-2 days for AST)[3];
(c) result interpretation standards are constantly evolving; and (d) they are resource intensive in terms of training
personnel effort, equipment, and consumables.

The widespread use of DNA sequencing technologies has led to the development of curated databases of AMR
genes complementing culture experiments, with detailed functional annotation and other metadata[5, 6, 7, 8, 9,
10]. In turn, computational approaches have emerged to provide in silico detection and characterization of AMR
phenotypes and genes, processing targeted sequences as well as metagenomic samples from both clinical and
environmental settings. These tools can directly process high-throughput short read sequencing data (typically in
FASTQ format)[9, 11, 12, 13], or take as input assembled contigs, translated proteins, or whole bacterial genomes
(typically FASTA format)[8, 14, 15, 16, 17, 18]. Also, some tools are purposely designed for metagenomics data,
while others specialize on specific bacterial species. Despite the promising results shown in literature and support
from experimental studies, the uptake of sequencing-based computational AMR prediction tools for routine use in
healthcare has been slow[19]. One of the major roadblocks is that algorithms can exhibit discordant performance
in clinical settings, and there is not yet a gold standard or consensus like the Clinical & Laboratory Standards
Institute (CLSI) for AST. Sub-problems that impede the development of such gold standard include: (a) possible
shifts and bias in species or genus representations when comparing the training settings of models with the
application settings[10, 20]; (b) different working assumptions of the tools and required inputs; and (c) choice of
biological ontologies for AMR representation, i.e., standardized encoding of AMR agents and mechanisms, and
prediction outputs. These problems make it difficult to compare methods in terms of performance, agreement,
and generalizability, complicating the establishment of benchmark data sets and external validation. Prior works
identified strong spatiotemporal heterogeneity in sampling and species representation in genotype-phenotype data
repositories, confounding the identification of AMR gene signatures, as well as the generalizability of prediction
models on independent data[20, 21]. For example, some AMR genes or variants are species-specific, e.g., resistance
to fluoroquinolones via the gyrA gene is specific to Mycoplasma genitalium[22, 9, 15].

From one perspective, AMR detection algorithms operating on whole genomes and using rules for specific
bacterial strains have a design advantage with respect to species representation bias. However, requiring a whole
genome sequence as input implies that the bacterial strain has been identified prior to sequencing, which excludes
unculturable pathogens. Furthermore, software for genome assembly must be run, either de novo or reference-
based, with potential downstream errors.

Algorithms which take as input unassembled sequence reads do not need a priori information about the bacterial
species in the sample. In addition, metagenomics-based, culture-independent genomic approaches can be used
concurrently with the traditional methods to help detect AMR in unculturable bacteria, eliminating the necessity
of species isolation [23]. The absence of assembled genomes makes the AMR classification task more challenging,
since results must be aggregated from the read to the isolate level, and species-specific AMR rules might need
to be embedded in the algorithms. Nonetheless, these algorithms are in principle more flexible and applicable to
a variety of clinical scenarios, involving both characterization of known AMR as well as possibly novel microbial
elements or resistance genes.

Regardless of the methodology of operation, all methods are subject to ontology issues, as there are multiple
ontologies for AMR genes and mechanisms, and some tools predict AST phenotypes directly rather than AMR
genes.

In this study, we assess the predictive performance of state-of-the-art AMR classification algorithms for high-
throughput bacterial sequencing data from clinical settings. We consider different tools that include alignment-
based (AMRPlusPlus)[9], k-mer signatures (KARGA, ResFinder)[13, 24], and machine learning (Meta-MARC,
DeepARG)[11, 12] methods. We have designed an extensive benchmark setup apt to address agreement and
generalizability issues. More specifically, we have collated high-throughput sequencing data from 585 clinical
isolates, sourced from different studies in clinical settings worldwide (Asia, Europe, North America, and South
America), all with available AMR resistance profiles determined by phenotypic AST, covering nine major AMR
classes. We provide a robust assessment of the algorithms capabilities and discuss the potential future implications
for their routine use in healthcare settings.
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1 Methods

1.1 AMR algorithms and software

Notwithstanding a very large collection of AMR prediction methods, this study includes approaches that directly
take high-throughput sequencing data as input, removing the necessity for genome assembly prior to analysis. We
compare the following AMR computational tools: AMRPlusPlus[9], DeepARG[12], KARGA[13], Meta-MARC[11],
and ResFinder[24]. As previously mentioned, these methods use a variety of different computational approaches,
i.e. alignment-based, k-mer based (k-mers are nucleotide signatures of fixed length k), and machine learning.
Also, some tools provide predictions at the read level (DeepARG), while others at the isolate level (AMRPlusPlus,
ResFinder), or both (KARGA, Meta-MARC). We compare the methods in Table 1.

Tool
(Publication year)

Algorithmic approach AMR
database

Whole-sample
resistome

characterization

Per-read
resistome

classification
Platform

AMRPlusPlus (2020) Read alignment MEGARes X UNIX/Linux

Meta-MARC (2019) HMM classification MEGARes X X UNIX/Linux

KARGA (2021) Comparison of k-mers
MEGARes,

or any other
fasta AMR DB

X X Any with JVM

DeepARG (2018) Read alignment +
CNN classification

DeepARG DB X Any with pip,
Conda, Docker

ResFinder (2020) k-mers + alignment ResFinder DB +
PointFinder DB

X Any with Pyhton 3,
Docker; Webserver

Table 1: Summary of AMR prediction tools evaluated in this study, describing: publication year; algorithmic
approach; reference AMR database; output capabilities as whole-sample and/or per-read AMR gene prediction;
working platform(s). HMM, Hidden Markov models; CNN (Convolutional Neural Network
; JVM Java Virtual Machine.

AMRPlusPlus (v.2.0)[9] is a comprehensive software framework built around the MEGARes database[9].
MEGARes includes ∼8,000 AMR genes and variants organized in a multi-level hierarchical ontology in the form
of a directed acyclic graph, comprising four compound types, 57 classes, 220 mechanisms, and 1,345 groups.
This structure ensures that two higher level ranks are not linked to the same lower level rank, and univocity in
sequence classification. AMRPlusPlus aligns all reads to MEGARes using the BWA[25], retaining AMR genes with
a coverage of at least 80%. Low-quality and low-depth alignments are filtered through the Resistome Analyzer
and the Rarefaction Analysis modules, respectively.

Meta-MARC[11] is a machine-learning model based on an ensemble of hierarchical hidden Markov models
(HMMs). Each HMM is trained on a group of genes clustered from MEGARes[11]. A classification is performed
by aggregating predictions from the lowest level of the MEGARes annotation hierarchy towards the highest level,
although there is not always a complete match with the MEGARes ontology due to gene aggregation/split. Meta-
MARC provides a three-model ensemble (model groups I-III). Group I models are based on AMR sequences clusters
containing more than two unique sequences for each single type of AMR; Group II expands group I and includes
genes carrying AMR variants due to single nucleotide polymorphisms. Group III includes all of groups I and II,
plus additional sequences obtained by aligning MEGARes genes against the National Center for Biotechnology
Information (NCBI) GenBank using the Basic Local Alignment Search Tool (BLAST) and retaining highly similar
sequences.

KARGA[13] is an alignment-free tool. It uses sequenced gene k-mers, storing the whole k-mer spectrum—i.e.,
all distinct k-mers—both in forward- and reverse-strand from any given reference AMR database[13]. To classify
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a new sequence, KARGA calculates its k-mer spectrum and compares it with the AMR database spectrum. To
avoid false positives, KARGA calculates an empirical distribution of matches between randomly generated k-mers
and the AMR database, approximating a theoretical Markovian distribution, finding an optimal threshold based
on query length, k value, and the database spectrum. A probabilistic scoring manages multiple gene hits. For
this study we used MEGARes, which was also employed in the original KARGA publication.

DeepARG[12] is a two-step method that combines read alignment and convolutional deep learning networks. In
the first step, an input sequence is translated to amino acids, then aligned to a custom AMR database, which was
created by merging the Comprehensive Antibiotic Resistance Database (CARD)[5, 12], Antibiotic Resistance Genes
Database (ARDB)[6], and manually curated AMR sequences from the Universal Protein Resource (UNIPROT).
If the sequence aligns to the custom database, it is passed on to the second step where the deep learning module
predicts the AMR category. Of note, the DeepARG classification output does not follow either MEGARes or
CARD ontology, but it is a customized set of thirty AMR categories. DeepARG features two working modes, one
for long reads and one for short reads.

ResFinder (v.4.0)[24] is a k-mer based approach based on Python 3 scripts, that can process both sequence
reads and assembled contigs/genomes. The Resfinder k-mer engine is based on KMA[24, 26]. Briefly, KMA
implements a heuristic k-mer matching score with a threshold to accept query sequences for subsequent alignment.
Seeds of the identified k-mers are used to guide a modified Needleman-Wunsch alignment, which includes a score-
based early stop. An additional scoring system, ConClave [26], is then used to resolve tied alignments on redundant
sequences and assemble the final output. Notably, bacterial species can be specified by the user in the input, thus
customizing the output results for a subset of species-specific resistances.

1.2 Study selection, data set collation, quality control, and evaluation

We performed a literature search for AMR sequencing studies on PubMed Central based on keywords and MESH
terms related to AMR (see supplementary material for complete list). We then selected studies with the goal
of collating a data set of at least 500 isolates according to the following criteria: AMR-focused; clinical setting;
published within the last seven years (2014-2021); sequenced using Illumina platform; available NCBI BioProject
and/or Accession number/code identifier; at least 25 paired-end experiments available in NCBI Sequence Read
Archive (SRA); and available AMR resistance profiles determined by phenotypic AST. All FASTQ files were
processed with Trimmomatic v.0.32, using all Illumina adapters, and the following parameters: LEADING=3,
TRAILING=3 SLIDINGWINDOW=4:15, MINLEN=36. Unpaired reads were discarded. We considered isolates
as resistant if they were marked resistant (R), intermediate (I) or susceptible dose dependent (SDD), and sensitive
if they were marked sensitive (S) in their source paper. An isolate was considered resistant or susceptible to an
antibiotic class if it was marked in its source paper as resistant or sensitive, respectively to at least one antibiotic
within that antibiotic class.

We used the CARD and MEGARes ontologies to link antibiotics to their AMR classes, and considered only the
classes that could be predicted by all the tools included in this study. Consistency adjustments of AMR labeling
among different algorithms due to different ontology terms were curated by hand (for example, the quinolone
DeepARG category corresponds to the fluoroquinolone class used by the other methods). Each isolate was labeled
as resistant or susceptible to specific AMR classes. Therefore, we could label isolates as positive (resistant)
and negative (susceptible) with respect to each AMR class. To evaluate the performance of the methods, we
considered Sensitivity (Sens, or true positive rate), Specificity (Spec, or true negative rate), Balanced Accuracy
(BalAcc, the mean of Sens and Spec), and f1 score, which is the harmonic mean between precision (positive
predicted value) and recall (Sens).

1.3 Software and parameter setup

AMRPlusPlus was run with its default parameters. DeepARG was run in short read mode, using the recommended
threshold probability of (0.80 for read classification, and the rest of the parameters were set to default. Meta-
MARC was run specifying paired end input, and model group III, with other parameters set to default. KARGA
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was run with its default parameters (k had been previously optimized), filtering AMR genes with coverage below
80% as recommended. ResFinder was used with default parameters.

2 Results

2.1 Data set characteristics, spatio-temporal and species distributions

Five-hundred-eighty-five isolates from six sources (here labeled as S1-S6) met all the study selection criteria.
In summary, Weingarten et al. (S1) performed whole genome sequencing on 108 clinical isolates containing
carbapenemase-producing organisms (CPOs) from a clinical center in Bethesda, Maryland, USA [27]. Runcharoen
et al. (S2) analyzed the relationship between clinical and environmental Klebsiella pneumoniae strains, performing
whole genome sequencing and phylogenetic analysis of 77 isolates sampled from a hospital, its sewers, and the
surrounding canals and farms within a 20-km radius in Thailand [28]; we considered only hospital-related isolates
in our analysis. Davies et al. (S3) performed genome sequencing and phylogenetic analysis of 141 clinical
isolates from patients, 58 presenting with scarlet fever and 83 with other clinical presentations from Hong Kong,
Australia, United States, and Mainland China [29]. Croucher et al. (S4) performed whole genome sequencing and
phylogenetic analysis of 189 clinical isolates from twelve countries from 1988 to 2009, discussing the potential
relationship between antibiotic dispensing prevalence and antibiotic resistance profiles [30]. Alonos-del Valle et
al. (S5) analyzed the antibiotic resistance profiles of 50 gut isolates from patients in a hospital in Madrid,
Spain, comparing sample-originated resistance profiles to those produced by introducing a carbapenem-resistance
plasmid into each enterobacterial isolate; we considered only sample-originated resistance profiles [31]. Pesesky
et al. (S6) predicted antibiotic susceptibility of 78 de-identified patient samples from clinical bacterial biobanks
in Rawalpindi and Islamabad, Pakistan and from Saint Louis, Missouri, USA. Enterobacteriaceae isolates, which
had been previously sequenced, were analyzed using two genotypic computational algorithms and the results were
compared to previously identified phenotypic AST profiles [16]. Additional details of the data sets, such as labeling
and filtering used to assemble them for this study are provided in the Supplementary Methods and Supplementary
Tables S1-2.

According to the AMR ontology linkage by MEGARes and CARD defined in the methods, and based on
the phenotypic test determined resistance profiles of the study isolates, the following classes are retained in
the analysis: aminoglycosides (amikacin, tobramycin, and gentamicin); betalactamases (amoxicilin/clavulanic
acid, ampicillin, aztreonam, cefalotin, cefazolin, cefepime, cefotaxime, cefotetan, cefoxitin, ceftazidime, cef-
triaxone, cefuroxime, cefuroxime/axetil, doripenem, ertapenem, imipenem, meropenem, penicillin, and piper-
cillin/tazobactam); fluoroquinolones (ciprofloxacin and levofloxacin); glycopeptides (vancomycin); macrolide, lin-
cosamide, and streptogramin –MLS– (clindamycin and erythromycin); phenicols (chloramphenicol); sulfonamides
(trimethoprim/sulfamethoxazole); tetracyclines (doxycycline, tigecycline, and tetracycline); and diaminopyrim-
idines (trimethoprim and trimethoprim/sulfamethoxazole). We considered isolates resistant to trimethoprim/sulfamethoxazole
as resistant to both sulfonamides and diaminopyrimidines (trimethoprim), while the susceptible ones were not con-
sidered, as the resistance to individual trimethoprim and sulfamethoxazole were not measured in the corresponding
original data sets.

Tables 2 and 3 summarize the characteristics of each study and per-AMR-class isolates details, respectively.
More details are available in the Supplementary Methods, and in Supplementary Tables S1-2.

The data sets present highly heterogeneous per-class geographical, temporal, and bacterial distributions. To
assess distribution shifts and putative bias, we performed tests for equal proportions of AST resistance by country
of origin, year of collection, and genus. Results indicate an extreme heterogeneity for at least one of the three
domains for each AMR class, with the exclusion of diaminopyrimidines (trimethoprim). More specifically, stratified
resistance prevalence exhibited wide ranges for the following AMR classes: aminoglycosides (country [0.14, 0.72],
year [0, 0.85], and genus [0, 1]); betalactamases (country [0, 1], year [0, 1], and genus [0.25, 1]); fluoroquinolones
(year [0.28, 1] and genus [0, 1]); MLS (year [0, 1]); phenicols (country [0.23, 0.87], year [0, 1], and genus [0,
0.89]); and tetracyclines (year [0, 1]). Nonetheless, the odds-ratio (OR) ranges for AMR prevalence shift across
calendar years did not indicate a large effect size, varying between 0.98 and 1.40, with five out of seven ORs being
larger than 1, suggesting a slight shift towards increased resistance per more recent calendar year (only seven
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Data obtained
from S1-S6 Publications

Data obtained from NCBI SRA Run Selector

Isolatesa

BioProject(s)
(Publication Year)

Phenotypic Antibiotic
Susceptibility Testing

Country Organism (Isolates)b

S1
142

PRJNA430442
(2018)

Broth microdilution
Disk diffusion

USA

Achromobacter sp. (2)
Acinetobacter baumannii (2)
Acinetobacter calcoaceticus/baumannii
complex sp. (1)
Acinetobacter sp. (4)
Aeromonas hydrophila (3)
Aeromonas sp. (10)
Citrobacter freundii (1)
Citrobacter freundii complex sp. (13)
Citrobacter sp. (2)
Enterobacter cloacae (1)
Enterobacter cloacae complex sp. (19)
Enterobacteriaceae bacterium (5)
Escherichia coli (8)
Escherichia sp. (1)
Klebsiella aerogenes (2)
Klebsiella oxytoca (15)
Klebsiella pneumoniae (23)
Klebsiella pneumoniae subsp.
Pneumoniae (2)
Leclercia sp. (11)
Pantoea sp. (5)
Pseudomonas sp. (2)
Serratia sp. (10)

S2
50

PRJEB11403
(2017)

VITEK 2c Thailand
Klebsiella pneumoniae (45)
Klebsiella quasipneumoniae (5)

S3

133
PRJEB2657,
PRJEB2589

(2014)

Disc diffusion,
D-zone disc diffusion

Etest

Hong Kong Streptococcus pyogenes (133)

S4
140

PRJEB2255
(2014)

Phenotypic tests for
isolates labeled ‘resistant’,
‘intermediate’ or ‘sensitive’

not specifiedd

Iceland
Thailand
Portugal

Peru

Streptococcus pneumoniae (140)

S5
47

PRJNA641166
(2021)

Disc diffusion Spain

Escherichia coli (23)
Klebsiella pneumoniae (19)
Klebsiella quasipneumoniae (4)
Klebsiella quasivariicola (1)

S6
73

PRJNA261540
(2016)

Kirby Bauer
Disk Diffusion

Pakistan

Enterobacter cloacae (8)
Escherichia coli (33)
Klebsiella aerogenes (4)
Klebsiella pneumoniae (28)

Table 2: Summary of sources included in our AMR benchmarking study. aFor isolate and data pre-processing
details, see Supplementary Methods and Supplementary Table S1. bFor isolate antibiotic resistance profiles per
organism and antibiotic class, see Supplementary Table S3. cVITEK 2 (bioMérieux, Marcy l’Étoile, France). dOnly
isolates with available Resistant (R), Intermediate (I), and/or Sensitive (S) labels were considered for analysis.
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Antibiotic Class
Resistant
Isolates

Sensitive
Isolates

Most Represented
Country

Most Prevalent
Genus

Aminoglycosides 181 (58%) 131 (42%) USA (53%) Klebsiella (47%)

betalactamases 326 (66%) 166 (34%) USA (33%) Streptococcus (37%)

Fluoroquinolones 146 (55%) 119 (45%) USA (62%) Klebsiella (47%)

Glycopeptides 0 (0%) 133 (100%) Hong Kong (100%) Streptococcus (100%)

MLS 217 (81%) 51 (19%) Hong Kong (50%) Streptococcus (100%)

Phenicols 199 (63%) 119 (37%) Iceland (36%) Streptococcus (42%)

Sulfonamides 141 (100%) 0 (0%) USA (72%) Klebsiella (35%)

Tetracyclines 301 (77%) 88 (23%) Hong Kong (34%) Streptococcus (68%)

Diaminopyrimidines
(Trimethoprim)

180 (94%) 11 (6%) USA (53%) Klebsiella (52%)

Table 3: Summary of the resistant and sensitive isolates, most represented country, and most prevalent genus
per AMR class from our collated data set derived from S1-S6 data sets.

AMR classes considered in this study have both resistant and susceptible isolates.)

2.2 Computational determination of AMR, prediction performance, and agreement
among algorithms

All 585 isolates were processed by each AMR computational tool. The prediction performances are summarized in
Table 4. Overall, ResFinder yields the highest average BalAcc across all classes, 0.87 (InterQuartile Range, IQR
0.63, 0.89), followed by KARGA with 0.83 (0.73, 0.84), AMRPlusPlus with 0.80 (0.51, 0.89), DeepARG with 0.55
(0.50, 0.62), and Meta-MARC with 0.50 (0.50, 0.62). Comparing the per-AMR-class BalAcc in the top three
methods, the null hypothesis that one distribution is greater than the other cannot be rejected (Wilcoxon rank sum
test p-value of 0.74 and 0.34 for ResFinder versus KARGA and ResFinder versus AMRPlusPlus, respectively).
We observe a wide per-AMR-class heterogeneity, without any method performing superior to the others on
all the classes. KARGA is the most robust according to quartile coefficient of dispersion (0.07 for KARGA,
0.17 for ResFinder). For aminoglycosides and fluoroquinolones, all algorithms perform poorly, with the best
BalAcc achieved by KARGA (0.66 and 0.58, respectively) and ResFinder (0.64 and 0.61, respectively). For
betalactamases, the best algorithm is AMRPlusPlus with a BalAcc of 0.90; other algorithms perform in the [0.83,
0.89] range, with the exception of ResFinder (0.50). For MLS, ResFinder and KARGA achieve a BalAcc of 0.93
and 0.83, respectively, while other algorithms are limited to the [0.40, 0.57] range. For phenicols, tetracyclines,
and diaminopyrimidines (trimethoprim), ResFinder, KARGA, and AMRPlusPlus achieve BalAccs in the [0.80,
0.91] range, while other algorithms are limited to the [0.50, 0.72] range. Glycopeptides, where our data set
consists of only susceptible isolates, and sulfonamides, where our data set consists of only resistant isolates, were
not considered in the main analysis. For completeness, we report the performances of these antibiotic classes in
the Supplementary Methods and Supplementary Table S4.

Next, we evaluated the prediction concordance between each algorithm pair, which is illustrated in Figure
1. AMRPlusPlus, KARGA, and ResFinder cluster together, and exhibit moderate to high pairwise correlations,
ranging between 0.62 and 0.72. Meta-MARC and DeepARG exhibit a lower mutual correlation (0.56), and are
not well-correlated with the other methods, with a correlation ranging from 0.27 to 0.55.

To further investigate whether there are differences among algorithms even when they are concordant in over-
all resistance determination (e.g., if they identify two different AMR genes or mechanisms) we look at the most
represented AMR groups by each algorithm, according to the MEGARes ontology (i.e., 42 groups for aminogly-
cosides, 221 for betalactamases, 17 for fluoroquinolones, 68 for glycopeptides, 83 for MLS, 18 for phenicols, 7 for
sulfonamides, 62 for tetracyclines, and 11 for diaminopyrimidines). Since ResFinder and DeepARG have different
categorizations, only AMRPlusPlus, KARGA, and Meta-MARC can be compared. Note that the group level is the
finest AMR functional granularity that can be reached with these algorithms (AMRPlusPlus and KARGA can give
gene predictions, but Meta-MARC cannot). Results are shown in Figure 2. Interestingly, even algorithms with

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2021.11.03.467126doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467126
http://creativecommons.org/licenses/by-nd/4.0/


Antibiotic Class Algorithm Sens ± SE Spec ± SE F-score ± SE BalAcc ± SE

Aminoglycosides

AMRPlusPlus 0.99 ± <0.01 0 0.64 ± 0.03 0.50 ± 0.03
DeepARG 1 0 0.64 ± 0.03 0.50 ± 0.03
Meta-MARC 0.99 ± 0.01 0.02 ± 0.01 0.64 ± 0.03 0.50 ± 0.03
KARGA 0.98 ± 0.01 0.35 ± 0.03 0.73 ± 0.03 0.66 ± 0.03
ResFinder 0.99 ± 0.01 0.30 ± 0.03 0.71 ± 0.03 0.64 ± 0.03

Betalactamases

AMRPlusPlus 1 0.80 ± 0.02 0.95 ± 0.01 0.90 ± 0.01
DeepARG 0.87 ± 0.01 0.80 ± 0.02 0.89 ± 0.01 0.84 ± 0.02
Meta-MARC 0.98 ± 0.01 0.80 ± 0.02 0.94 ± 0.01 0.89 ± 0.01
KARGA 0.86 ± 0.02 0.81 ± 0.02 0.88 ± 0.01 0.83 ± 0.02
ResFinder 1 0 0.80 ± 0.02 0.50 ± 0.02

Fluoroquinolones

AMRPlusPlus 0.97 ± 0.01 0.08 ± 0.02 0.72 ± 0.03 0.53 ± 0.03
DeepARG 1 0 0.71 ± 0.03 0.50 ± 0.03
Meta-MARC 0.98 ± 0.01 0.02 ± 0.01 0.70 ± 0.03 0.50 ± 0.03
KARGA 0.60 ± 0.03 0.55 ± 0.03 0.61 ± 0.03 0.58 ± 0.03
ResFinder 0.92 ± 0.02 0.31 ± 0.03 0.74 ± 0.03 0.61 ± 0.03

MLS

AMRPlusPlus 1 0 0.89 ± 0.02 0.50 ± 0.03
DeepARG 0.87 ± 0.02 0.27 ± 0.03 0.85 ± 0.02 0.57 ± 0.03
Meta-MARC 0.46 ± 0.03 0.33 ± 0.03 0.57 ± 0.03 0.40 ± 0.03
KARGA 1 0.67 ± 0.03 0.96 ± 0.01 0.83 ± 0.02
ResFinder 1 0.86 ± 0.02 0.98 ± 0.01 0.93 ± 0.02

Phenicols

AMRPlusPlus 0.93 ± 0.01 0.72 ± 0.03 0.88 ± 0.02 0.82 ± 0.02
DeepARG 0.82 ± 0.02 0.29 ± 0.03 0.73 ± 0.02 0.55 ± 0.03
Meta-MARC 0.33 ± 0.03 0.71 ± 0.03 0.44 ± 0.03 0.52 ± 0.03
KARGA 0.86 ± 0.02 0.85 ± 0.02 0.88 ± 0.02 0.85 ± 0.02
ResFinder 0.88 ± 0.02 0.88 ± 0.02 0.90 ± 0.02 0.88 ± 0.02

Tetracyclines

AMRPlusPlus 0.90 ± 0.01 0.85 ± 0.02 0.93 ± 0.01 0.88 ± 0.02
DeepARG 0.90 ± 0.02 0.44 ± 0.03 0.87 ± 0.02 0.67 ± 0.02
Meta-MARC 0.99 ± 0.01 0.45 ± 0.03 0.92 ± 0.01 0.72 ± 0.02
KARGA 0.71 ± 0.02 0.90 ± 0.02 0.81 ± 0.02 0.80 ± 0.02
ResFinder 0.94 ± 0.01 0.81 ± 0.02 0.94 ± 0.01 0.87 ± 0.02

Diaminopyrimidines
(Trimethoprim)

AMRPlusPlus 0.91 ± 0.02 0.91 ± 0.02 0.95 ± 0.02 0.91 ± 0.02
DeepARG 0 1 NA 0.50 ± 0.04
Meta-MARC 0.91 ± 0.02 0.09 ± 0.02 0.93 ± 0.02 0.50 ± 0.04
KARGA 0.90 ± 0.02 0.91 ± 0.02 0.94 ± 0.02 0.90 ± 0.02
ResFinder 0.91 ± 0.02 0.91 ± 0.02 0.95 ± 0.02 0.91 ± 0.02

Table 4: Classification performance for all methods on S1-S6 data sets (585 isolates), stratified per AMR class.
Instances in bold show the top-performing methods whose balanced accuracy overlaps according to the standard
error (SE).Considering True Positives as TP, True Negatives as TN, False Positives as FP, False Negatives as FN,
we define Sensitivity (Sens) as TP

TP+FN ; Specificity (Spec) as TN
TN+FP ; F-score as 2∗TP

2∗TP+FP+FN ; and Balanced

Accuracy (BalAcc) as Sens+Spec
2

.
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Figure 1: Heatmap of Pearson’s correlations between AMR classifiers’ predictions run on S1-S6 data sets (585
isolates).

higher correlation can identify very different groups at the base of the predicted resistance. For instance, in the
fluoroquinolone class, KARGA finds primarily PATB and PATA, while AMRPlusPlus finds GYRA and PARC; in
sulfonamides, FOLP is strongly predicted by both AMRPlusPlus and Meta-MARC, but not KARGA; on the other
hand, only KARGA predicts SULI in a large number of isolates. Some of the differences may be explained by the
fact that AMRPlusPlus and Meta-MARC are able to flag chromosomal genes that induce antibiotic resistance
through point mutations, e.g., the GYRA topoisomerase enzyme subunit, while KARGA does not (because they
need secondary confirmation of the point mutations). Another reason is that the presence of more than one gene
could be needed for resistance, and the algorithms might identify one or the other, but not both. Finally, some
genes could be very similar, leading to uncertainty in the identification and different frequencies in gene findings
by different algorithms. Of note, Meta-MARC clusters very similar genes, and only one representative is used.

Subgroup analysis based on isolation source. Our data set included 36 clinical isolation sources, namely
Aspirate (1), Blood (10), Blood in broth (2), Built-environment (2), Conjunctiva (2), Generic patient sample
(73), Deep wound swab (1), Ear swab (1), Groin (1), Gut (47), High vaginal swab (3), Hospital (9), Human-
associated habitat (24), Low vaginal swab (2), Middle ear (45), Missing (3), Nasopharynx (38), No Label (24),
Nose (7), Parotid gland (1), Perirectal Swab (4), Peritoneal Dialysis Fluid (1), Pus (11), R knee pus (1), Sink
Aerator (1), Sink Drain (1), Sinus (2), Sputum (35), Throat swab (108), Throat/Groin (1), Urethral swab (1),
Urine (19), Vaginal swab (2), Vulval swab (2), Hospital wastewater (98), and Wound swab (2).

To perform a subgroup analysis based on the isolation source, we analyzed the AMR predictions for the combi-
nations of antibiotic class and isolation source presenting a total of at least 25 resistant and susceptible isolates. We
retrieved six eligible subset combinations involving four AMR classes (aminoglycosides, fluoroquinolones, pheni-
cols, and tetracyclines) and three isolation sources (hospital wastewater, generic patient sample, and throat swab).
The combinations included aminoglycosides and hospital wastewater, fluoroquinolones and hospital wastewater,
fluoroquinolones and generic patient sample, phenicols and generic patient sample, tetracyclines and throat swab,
and tetracyclines and generic patient sample. The stratified BalAcc results are consistent with the aggregated
ones reported in Table 4 for the majority of the combinations (KARGA produced top performance in four out of
the six combinations, while ResFinder and AMRPlusPlus produced top performances in two and one out of the six
combinations, respectively). However, a few specific combinations of AMR class and isolation source did heavily
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increase or decrease the quality of the predictions. As we mention in the Discussion, ad-hoc AMR data collections
are needed to properly assess and train AMR detection algorithms so that they can be more resilient to the data
collection context (including the isolation source). Detailed results for the different combinations of isolation
source and antibiotic class are reported in Supplementary Table S5a-b, and in the Supplementary Methods.

Computational determination of AMR, prediction performance, time of execution, and agreement among
algorithms. As described in the Introduction, timely execution is a crucial factor for introducing routine employ-
ment of computational AMR prediction tools. We assessed the speed of execution by first generating a “speed
test” subset by subsampling ten isolates from each data set we considered in this study (10% of the whole data
set, for a total of 60 compressed FASTQ pairs with mean size 357± 208MB). We then calculated the runtime for
each algorithm on this subset. We ran the algorithms on 4 Intel(R) Xeon(R) CPUs E5-2698 v3 (2.30GHz), with
96GB of RAM, on the University of Florida HiPerGator 3 computing cluster. For each method, we measured the
overall median (IQR) execution time in seconds, finding ResFinder to be the fastest with 105.50 seconds (80.75,
169.50), followed by KARGA with 190 (126.50, 263.20), DeepARG with 454 (197.20, 680), AMRPlusPlus with
920.50 (558.20, 1335.50), and Meta-MARC with 24,614 (14,466, 33,771). We also analyzed the results stratified
by file size, considering inputs as compressed FASTQ pairs with sizes <0.50 GB (47 pairs), 0.50-1 GB (11 pairs),
and >1 GB (2 pairs). We observe the stratified speed-of-execution rankings to be consistent with the unstratified
results. We report the measured times in Supplementary Table S6.

3 Discussion

Algorithm performance. Overall, all the methods except KARGA had a high number of false positive predic-
tions, i.e., predicting the positive (resistant) class on negative (susceptible) isolates. In some specific cases, all, or
almost all, the isolates for a class were classified as positive, i.e., betalactamases for ResFinder; aminoglycosides
and fluoroquinolones for AMRPlusPlus, Meta-MARC, and DeepARG; and MLS for AMRPlusPlus.

We note that the classification results of DeepARG are given per read, i.e., the AMR class label is not predicted
at the isolate level. Therefore, results must be aggregated, and a threshold applied. To better understand how this
affected our results, in a sensitivity analysis, we considered two additional approaches: (a) using a higher threshold
than the default probability (0.80) of DeepARG; and (b) requiring a minimum number of reads to support AMR
determination at the isolate level. A threshold of up to 0.99 did not change the main results, i.e., in cases of
positive classification, there was always at least one read with a predicted probability of 0.99 or more. For the
second strategy, to label the whole isolate as resistant, we evaluated a grid of thresholds with a minimum number
of resistant reads, i.e., 10, 100, 1000, and 10000. However, none of the values improved results consistently for
all classes. For example, in the case of aminoglycosides, a threshold of 1000 led to the best BalAcc (0.53 versus
the default of 0.50); the best thresholds for the betalactamase class were 1 and 10, all other values degraded the
performance. In general, threshold optimization could lead to performance improvement, but we must note that:
(a) there is not a one-size-fits-all solution, and the threshold must be optimized per AMR class; (b) this post-hoc
adjustment may lead to overfitting, as the optimal threshold should be part of the training phase, and testing
should be done on unseen data; (c) even optimizing the threshold, the results do not reach the performance of
the top three algorithms in this study. Detailed results of the threshold-dependent predictions are provided in
Supplementary Table S7. As a last note for DeepARG, the radical difference in prediction for diaminopyrimidines
(trimethoprim), when compared to other algorithms, could be due to absence of specific trimethoprim sequences
that are instead present in MEGARes.

We also verified whether tweaking the coverage parameter could improve the results on two problematic AMR
classes, namely aminoglycosides and fluoroquinolones, where even the top two algorithms KARGA and ResFinder
performed poorly due to low specificity. We therefore tested different values of the coverage parameter, to reduce
the false negative rate. If we express coverage as a fraction, the default values are 0.60 for ResFinder and 0.80
for KARGA. We set a grid search by increasing the tools’ default values by 0.10, and re-ran the methods over
our data set. We found that the optimization increased Specificity at the expense of Sensitivity, and the overall
BalAcc had a modest increase at best. In detail, for aminoglycosides, KARGA reached a BalAcc of 0.68 (default:
0.66) when coverage was set to 0.90, while ResFinder achieved a similar BalAcc increase up to 0.66 (default:
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Figure 2: Per-class MEGARes AMR group prediction analysis on AMRPlusPlus, Meta-MARC, and KARGA. We
measured the number of isolates predicted as positive for each group (regardless of the phenotype label), per class,
indicated on the X and Y axes of the panels. All 585 isolates for each class are compared. We report the names
of the top groups depending on the per-class group numerosity, as follows: top five per method if there are more
than 99 groups in the class; top three if 99 to 25; top two if 24-15; and top one for less than 15 groups in the
class. Of note, isolates without an associated glycopeptide AMR profile, are found resistant to the glycopeptide
class (more than a hundred by Meta-MARC and more than thirty by KARGA and ResFinder).
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0.64) when coverage was set to 1. For fluoroquinolones, increasing coverage in KARGA to 1 had only a negative
effect on BalAcc: Spec increased to 0.71 (default 0.55), but Sens dropped to 0.32 (default 0.60); while with a
coverage of 0.90, Resfinder increased BalAcc from the default 0.61 to 0.62. It must be noted that these modest
increases are subject to the aforementioned limitations (a-c). Detailed results of the coverage threshold-dependent
predictions are provided in Supplementary Table S8.

In this study we compared the performances of high-throughput algorithms that work directly with short read
sequencing data. Of note, there is another class of algorithms which take whole bacterial genomes or assembled
contigs as input, either as nucleotides or translated protein, such as VAMPr [17] and PARMAP [18], respectively. In
principle, these algorithms could be used with WGS high-throughput sequencing by performing genome assembly,
although they would not work for metagenomics sequencing experiments, which could be performed in certain
clinical settings. To obtain genome assemblies from short reads followed by protein translation, several extra steps
are required. These steps often need to be done independently by the user, e.g., the software code/pipelines
provided by VAMPr and PARMAP do not include them. Note that genome assembly does not involve the
application of just one program, e.g., de novo or reference assembly, but involves pre-assembly quality control
and error correction, parameter optimization of the assembly itself, and scaffolding/finishing after assembly. The
extra steps may heavily influence the downstream results for an AMR prediction algorithm. In other words, a
high-quality assembly software pipeline could boost the performance of VAMPr and PARMAP, while a low-quality
assembly software could have the opposite effect. For proper algorithm comparison, and to avoid providing unfair
advantage, we ran all the pipelines with the developers’ recommended settings. Adding assembly and protein
translation phases would add a large, unavoidable user-choice component to the analysis presented in this study.
For these reasons we consider VAMPr, PARMAP, and other algorithms based on full genome inputs to be out of
the scope of the present review. Even if these algorithms are limited to well-curated full genomes, and selected
combinations of pathogens and antibiotics, they are competitive: VAMPr showed very high accuracy (averaging
0.91 in validation sets), and PARMAP provided both AUC and Recall higher than 0.80. We note also that Meta-
MARC, included in this study as it can process both assembled and unassembled data, retrieved more AMR genes
in the validation sets when assembled contigs were used instead of short reads [11].

In summary, we observed that no one algorithm provides outstanding results in all of the considered AMR
classes in terms of balanced accuracy, and the same holds for the f1 measure. Yet on average they all perform
well. Although encouraging, these results are still far from a near-perfect classification that would be needed to
include them in clinical practice as substitutes to phenotypic AST.

Distribution shift and bias. All high-throughput AMR prediction algorithms, based on sequence alignment, k-
mers, or machine learning, are trained on an established ground truth. Training data sets include well-characterized,
laboratory-confirmed AMR genes, such as MEGARes[9] or CARD[5], or collections of whole genomes with asso-
ciated AST phenotypes, as in PATRIC[7]. They are the result of a coordinated effort by the scientific community
to collect and standardize AMR knowledge, but can be subject to several types of bias, sampling in primis[10, 20].
For example, a genus or species can be over-represented; distribution of samples over time are not uniform; and
there is substantial geographical bias (by country or samples within localized outbreaks). Species distribution
shifts can be common even within related clinical settings, e.g. in infections whose source/colonization origin is
different or when treatment protocols change over time. Evidence of bias across genus, temporal, and geographical
representation was found in PATRIC, and it was shown that such bias affects discriminative ability of AMR ma-
chine learning predictions by 5% [20]. For most of the AMR classes in our data set we found strong geographical
and per-genus distribution shifts. We consider this finding a further indication that these sources of bias should
be accounted for when collecting data used as a reference or training set for AMR prediction algorithms.

Problems with ground truth. Similar to standardized AST methods, there is a need to develop standardized
AMR bioinformatics protocols and evaluation benchmarks, so that results from different studies can be put
together and used for training and validation. So far, the Food and Drug Administration does not provide
standardized regulatory guidelines for metagenomic diagnostic tests[3]. A second major obstacle to comparing the
performances of different AMR classification tools is that they can be based on different AMR ontologies –albeit
an output match is possible for most antibiotic classes at different granularity levels. We must note that CARD
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and MEGARes ontologies are designed to organize genes and resistance mechanisms, thus they are well suited
for studies on metagenomics and ecology, but less for clinical studies where single species are cultured and tested
against antibiotics. Although there are other off-the-shelf tools that predict directly AST from genotypes, they
need assembled and finished genomes, which is a non-trivial (and time-consuming) step in the analytics pipeline,
while all the methods used here accept raw short read data.

The high-throughput AMR prediction algorithms we examined provide mostly a per-AMR-class prediction, with
a few exceptions, e.g., MEGARes-based output below the class level, such as the specific penicillin binding protein
mechanism. However, the isolates we consider have been tested only against some specific antibiotics within a
class. In the case of resistant isolates, this is not necessarily a problem. For example, if an isolate is resistant to
ampicillin, since it is resistant to at least one antibiotic of the betalactamase class, we can consider it resistant
to the whole class and the algorithmic recommendation would be not to use betalactamases to address this
particular infection. This assumption does not hold, however, for susceptibility. If another isolate is, for example,
susceptible to ampicillin, we cannot label it with certainty as susceptible to all betalactamases –in order to do so,
we should in fact test it extensively against a large fraction (ideally, all) of the betalactamase class antibiotics. This
poses another a priori problem with the ground truth, namely the fact that susceptible instances might be falsely
labeled as they were not tested against all antibiotics of each specific class. It is however unrealistic to expect
from observational studies, such as the ones we used to assemble the data set used for this work, to explicitly
test resistance against an exhaustive range of antibiotic classes and molecules. Even large genome collections
show how most of the species versus antibiotic combinations have few to no records[7, 10]. Another problem in
assessing the correctness of the predictions is that the AMR framework description can include labels that are not
informative enough to infer antibiotic resistance at the class level. This is the case, for example, of MEGARes
multi-compound or multi-drug classes, or the DeepARG ’unknown’ category. Such annotations are not suitable
for a direct integration within clinical practice, as they do not provide precise indications to which AMR classes
the sample or isolate is resistant to.

4 Conclusions

Current computational tools for AMR characterization from high-throughput sequencing data show promising
results, but do not appear ready for application in clinical settings. There are obstacles that go beyond algorithmic
development and relate to bias in data as well as issues with ground truth and ontology, hampering algorithm
development and benchmarking. Therefore, we make a call to develop prospective studies designed with the
specific intent of training and validating computational AMR tools, i.e., with explicit determination of possible
sources of bias, comprehensive characterization of AST profiles, and linkage with at least one of the current
ontologies. These data sets would then constitute the gold standard ground truth to build upon AMR detection
algorithms.

5 Key points

• Current computational tools for AMR characterization from high throughput sequencing data show promising
results but do not seem ready for application in clinical settings.

• Each method provides a wide range of performances over the considered AMR classes; no method seems
to provide the best results in all the classes.

• The major roadblocks towards a realistic bench-to-bedside implementation are:

– The presence of bias, such as species, geographical, and temporal biases in the reference/training data
sets

– The need to establish a per AMR-class ground truth by testing an extensive portion of the antibiotics
(ideally, all of them) for each specific antibiotic class

– Absence of standardization in both AST and AMR ontologies

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2021.11.03.467126doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467126
http://creativecommons.org/licenses/by-nd/4.0/


Funding

This work was in part supported by US grants NIH NIAID R01AI141810, NSF SCH 2013998, and USDA AFRI
grant no. 2019-67017-29110.

Acknowledgment

The authors want to thank Marco Oliva, Ilya B. Slizovskiy, and Daniele N. Cudin for the productive and deep
conversations.

References

[1] P. Dadgostar, “Antimicrobial resistance: implications and costs,” Infection and drug resistance, vol. 12,
p. 3903, 2019.

[2] A. Chokshi, Z. Sifri, D. Cennimo, and H. Horng, “Global contributors to antibiotic resistance,” Journal of
global infectious diseases, vol. 11, no. 1, p. 36, 2019.

[3] A. Dulanto Chiang and J. P. Dekker, “From the pipeline to the bedside: advances and challenges in clinical
metagenomics,” The Journal of infectious diseases, vol. 221, no. Supplement 3, pp. S331–S340, 2020.

[4] V. Wuthiekanun, P. Amornchai, D. H. Paris, S. Langla, J. Thaipadunpanit, W. Chierakul, L. D. Smythe, N. J.
White, N. P. Day, D. Limmathurotsakul, et al., “Rapid isolation and susceptibility testing of leptospira spp.
using a new solid medium, lvw agar,” Antimicrobial agents and chemotherapy, vol. 57, no. 1, pp. 297–302,
2013.

[5] B. P. Alcock, A. R. Raphenya, T. T. Lau, K. K. Tsang, M. Bouchard, A. Edalatmand, W. Huynh, A.-L. V.
Nguyen, A. A. Cheng, S. Liu, et al., “Card 2020: antibiotic resistome surveillance with the comprehensive
antibiotic resistance database,” Nucleic Acids Research, vol. 48, no. D1, pp. D517–D525, 2020.

[6] B. Liu and M. Pop, “Ardb—antibiotic resistance genes database,” Nucleic Acids Research, vol. 37,
no. suppl 1, pp. D443–D447, 2009.

[7] J. J. Davis, A. R. Wattam, R. K. Aziz, T. Brettin, R. Butler, R. M. Butler, P. Chlenski, N. Conrad,
A. Dickerman, E. M. Dietrich, et al., “The patric bioinformatics resource center: expanding data and analysis
capabilities,” Nucleic Acids Research, vol. 48, no. D1, pp. D606–D612, 2020.

[8] J. J. Davis, S. Boisvert, T. Brettin, R. W. Kenyon, C. Mao, R. Olson, R. Overbeek, J. Santerre, M. Shukla,
A. R. Wattam, et al., “Antimicrobial resistance prediction in patric and rast,” Scientific Reports, vol. 6,
p. 27930, 2016.

[9] E. Doster, S. M. Lakin, C. J. Dean, C. Wolfe, J. G. Young, C. Boucher, K. E. Belk, N. R. Noyes, and
P. S. Morley, “Megares 2.0: a database for classification of antimicrobial drug, biocide and metal resistance
determinants in metagenomic sequence data,” Nucleic Acids Research, vol. 48, no. D1, pp. D561–D569,
2020.

[10] M. VanOeffelen, M. Nguyen, D. Aytan-Aktug, T. Brettin, E. M. Dietrich, R. W. Kenyon, D. Machi,
C. Mao, R. Olson, G. D. Pusch, et al., “A genomic data resource for predicting antimicrobial resistance
from laboratory-derived antimicrobial susceptibility phenotypes,” Briefings in Bioinformatics, 2021.

[11] S. M. Lakin, A. Kuhnle, B. Alipanahi, N. R. Noyes, C. Dean, M. Muggli, R. Raymond, Z. Abdo, M. Prosperi,
K. E. Belk, et al., “Hierarchical hidden markov models enable accurate and diverse detection of antimicrobial
resistance sequences,” Communications Biology, vol. 2, no. 1, pp. 1–11, 2019.

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2021.11.03.467126doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467126
http://creativecommons.org/licenses/by-nd/4.0/


[12] G. Arango-Argoty, E. Garner, A. Pruden, L. S. Heath, P. Vikesland, and L. Zhang, “Deeparg: a deep
learning approach for predicting antibiotic resistance genes from metagenomic data,” Microbiome, vol. 6,
no. 1, pp. 1–15, 2018.

[13] M. Prosperi and S. Marini, “Karga: Multi-platform toolkit for k-mer-based antibiotic resistance gene analysis
of high-throughput sequencing data,” in 2021 IEEE EMBS International Conference on Biomedical and
Health Informatics (BHI), pp. 1–4, IEEE, 2021.
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