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Abstract

Forming a complete picture of the relationship between neural activity and body kinetics requires
quantification of skeletal joint biomechanics during behavior. However, without detailed
knowledge of the underlying skeletal motion, inferring joint kinetics from surface tracking
approaches is difficult, especially for animals where the relationship between surface anatomy
and skeleton changes during motion. Here we developed a videography-based method enabling
detailed three-dimensional kinetic quantification of an anatomically defined skeleton in untethered
freely-behaving animals. This skeleton-based model has been constrained by anatomical
principles and joint motion limits and provided skeletal pose estimates for a range of rodent sizes,
even when limbs were occluded. Model-inferred joint kinetics for both gait and gap-crossing
behaviors were verified by direct measurement of limb placement, showing that complex decision-
making behaviors can be accurately reconstructed at the level of skeletal kinetics using our

anatomically constrained model.
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Introduction

The relationship between neural activity patterns and body motion is complex as neuronal activity
patterns are dependent on factors such as the intended behavioral outcome’, task familiarity?,
changes in the environment but also exact limb trajectories®® and motion kinetics®. Much of the
motion kinematic data forming our view of the sensorimotor control of movement was collected
during short behavioral epochs where the animal was in various forms of restraint*2, but how
these findings relate to kinematics during free behavior, where the relationship between the
environment and body motion is continuously changing, is largely unknown®'". While there have
been methodological advances recently enabling detailed neural population activity recordings'*
'S and surface tracking of an animal’s body'®?*, a major challenge still remains for generating
detailed kinetics of individual body parts, such as limbs, and how they interact with the
environment during free behavior'®2%, This poses an especially difficult problem as limb motions
involving muscles, bones and joints are biomechanically complex given their three-dimensional
(3D) translational and rotational co-dependencies?®%’.

More recently, advances in the development of machine learning approaches have enabled limb
tracking in both freely-moving® and head-restrained insects?® as the limb exoskeleton not only
provides joint angle limits and hard limits of limb position, but can be tracked as a surface feature
during behavior. When studying vertebrates, like rats, the entire skeleton is occluded by the
animal’s fur and inferring bone positions and calculating joint kinetics becomes more complicated
since the spatial relationship between skeleton and overlying soft tissues are less apparent?®=0,
Despite this limitation, recent approaches have extended two-dimensional surface tracking
methods?'?24 to include 3D pose reconstructions®' using a multi-camera cross-validation
approach and hand-marked ground-truth data sets'® allowing general kinematic representation of
animal behaviors and poses for multiple species®?. Extending these approaches to obtain the
skeleton kinetics relies on knowledge of the skeleton anatomy and biomechanics as well as
motion restrictions of joints?” because animal poses are limited by both bone lengths and joint
angle limits. Here, we developed an anatomically constrained skeleton model incorporating
mechanistic knowledge of bone locations, anatomical limits of bone rotations, and temporal
constraints to track 3D joint positions and their kinetics in freely moving rats. Together the fully
constrained skeleton enabled the reconstruction of skeleton poses and kinetic quantification

during gap-crossing tasks and throughout spontaneous behavioral sequences.
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Results

Constraining the model

Here we tracked 3D joint positions and their kinetics in freely moving rats (Fig. 1a) over a large
size range (N = 6 animals, average weight: 321 g, range: 71-735 g) using videography and a
anatomically constrained skeleton model (ACM) incorporating mechanistic knowledge of bone
locations, anatomical limits of bone rotations, and temporal constraints. Together, both the
temporal and anatomical constraints, i.e. the fully constrained ACM, enabled the reconstruction
of skeleton poses of behaving animals with single joint precision (Fig. 1b) as well as smooth limb
and joint transitions during gait cycles (Fig. 1c) allowing the quantification joint kinetics and spatial
positions of the limbs throughout behavioral sequences. At the core of this approach was a
generalized rat skeleton based on rat bone anatomy? (Fig. 1d) modeled as a mathematical graph
with vertices representing individual joints and edges representing bones (Fig. 1c, see methods
for details and Supplementary Fig. 1). For example, a single edge was used to represent the
animal’s head, the spinal column was approximated using four edges based on cervical, thoracic
and lumbar sections of the column as well as the sacrum?? and the tail by five edges (Fig. 1d,
Supplementary Fig. 1). To constrain the model we applied angle limits for each joint based on
measured rotations** (Fig. 1e, see Methods “Constraining poses based on joint angle limits”) as
well as anatomical constraints based on measured relationships between bone lengths and
animal weight and size*® (see Methods “Constraining bone lengths based on allometry”). Finally,
as vertebrates are symmetrical around the mid-sagittal plane we applied a further anatomical
constraint to ensure symmetry for bone lengths and surface marker locations (Supplementary
Fig. 3). Together, this approach established a unique skeleton model for each animal. To generate
probabilistic estimates of 3D joint positions and provide temporal constraints, we implemented a
temporal unscented Rauch-Tung-Striebel (RTS) smoother®’, an extension of a Kalman filter3?,
which is suitable for nonlinear dynamics models and also incorporates information from future
marker locations (see Supplementary Methods “Probabilistic pose estimation” for details).
Parameters of the smoother were learned via the expectation-maximization (EM) algorithm?3°, by
iteratively fitting poses of the entire behavioral sequence (see Methods “Performing probabilistic

pose reconstruction”).
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98 Fig. 1. Leaning anatomically informed skeleton models allows for accurate 3D pose reconstruction

99 during free behavior. a, Four recorded frames from an overhead camera showing a freely moving rat with
100 painted surface labels. b, Reconstructed animal poses of the entire skeleton during gait. Poses correspond
101 to the images shown in a. ¢, Enlargement of the reconstructed right hind limb during the sequence shown
102 in b. d, Schematic image of a rat skeleton showing anatomical landmarks. e, Schematic image of a hind
103 limb with modeled bones (black lines) and joints (black dots) as well as enforced joint angle limits for
104  flexion/extension (red dashed lines). f, MRI scans of three differently sized animals (maximum projection)
105 and an enlargement of a right elbow joint (lower left, mean projection, same area as in left dashed box) with
106 manually labeled bone (white lines) and joint (white dots) positions. Note visible MRI surface marker
107 (asterisk). g, 3D representation of a rat’'s MRI scan showing the animal’s surface (gray) and the aligned
108  skeleton model (black lines) and joint angle limits for flexion/extension (red lines), abduction/adduction
109 (green lines) and internal/external rotation (blue lines). h, Probability histogram of the joint position error. i,
110 Learned bone lengths (left) and joint angles (right) compared to MRI bone lengths and joint angles (N = 6
111 animals). Colors represent small (blue), medium (orange) and large (green) animal sizes (blue: 71 g & 72
112 g, orange: 174 g & 178 g, green: 699 g & 735 g).
113
114
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116  Learning the skeleton

117  To relate the animal's surface to the underlying skeleton we used a grid of rationally-placed
118 surface markers, which were either distinct anatomical landmarks like the snout or were painted
119  on the animal’s fur (Fig 1a, 14 landmarks and 29 spots total per animal, Supplementary Fig. 2).
120  To individually tailor the skeleton to each animal we used gradient decent optimization to learn
121  varying bone lengths and surface marker locations for each animal (see Methods “Learning bone
122 lengths and surface marker positions”). Visible surface markers were manually annotated from a
123  fraction of all recorded images to learn the skeleton that could then be used for all behavioral data
124 acquired from that animal. As the rigid spatial relationship between surface markers and the
125  underlying joints remained constant the algorithm could learn individual bone lengths as well as
126  surface marker locations by adjusting both via gradient descent optimization (Supplementary Fig.
127  3). New poses were iteratively generated for each time point by applying a global translation to
128 the generalized skeleton model and subsequently modifying positions of joints and rigidly
129  attached surface markers by rotating each bone (Supplementary Video 1). Errors were
130 established and minimized by projecting inferred 3D surface marker locations onto calibrated
131  overhead camera sensors and subsequently comparing them to manually labeled ground-truth
132  data (Supplementary Fig. 4).

133  To evaluate the accuracy of both the skeleton model and inference of joint positions over a large
134  range of animal sizes, we obtained high-resolution MRI scans for each animal (Fig. 1f, N = 6
135 animals, see methods “Comparison of skeleton parameters with MRI data”) and aligned the
136  skeleton model to measured positions of 3D surface markers (Fig. 1g). Errors for inferred spine
137 and limb joint positions were low (Fig. 1h, 138 joint positions total, joint position error: 0.79 +/-
138 0.69 & 0.65 cm [mean +/- s.d. & median]) and inferred limb bone lengths and bone angles were
139  not significantly different from those measured in MRI scans (Fig. 1i, 108 bone lengths total, range
140  of measured bone lengths: 0.53 cm to 4.76 cm, bone length error: 0.46 +/- 0.34 & 0.36 cm [mean
141  +/- s.d. & median], Spearman correlation coefficient: 0.75, two-tailed p-value testing non-
142 correlation: 5.00x102'; 84 bone angles total, range of measured bone angles: 4.13° to 123.77°,
143  bone angle error: 27.80 +/- 18.98 & 26.72° [mean +/- s.d. & median], Spearman correlation
144 coefficient: 0.47, two-tailed p-value testing non-correlation: 5.29x10°). Together this
145 demonstrated first, that the anatomically constrained skeleton model generated by our algorithm
146  was highly accurate when compared with the animal’s actual skeleton across the range of animal
147 sizes, and second, that accurate joint positions could be reconstructed in a single static pose from
148  this approach.

149
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150 Accurate behavior reconstructions required both the temporal and anatomical constraints.
151  To reconstruct behavioral sequences using the ACM, we first tracked 2D surface marker locations
152  in the recorded movies using DeepLabCut?*, which is specifically designed for surface landmark
153  detection of laboratory animals. As the ACM contained both joint angle limits and temporal
154  constraints, we evaluated the role of these by reconstructing poses without either the joint angle
155 limits or the temporal constraints. The resulting temporal model, only temporally constrained, and
156 the joint angle model, only constrained by joint angle limits, and the naive skeleton model,
157  constrained by neither, were compared to the ACM. To measure animal paw positions and
158 orientations during gait we used a modified frustrated total internal reflection (FTIR) touch sensing
159  approach*®#! (Fig. 2a-c, Supplementary Video 2) and compared these measurements to the paw
160 positions and orientations inferred by each model (Fig. 2d,e, N = 6 animals, 29 sequences, 181.25
161 s per 145000 frames total from 4 cameras). The ACM produced significantly smaller positional
162  errors compared to all other models (Fig. 2g, left; 10410 positions total; p-values of one-sided
163  Kolmogorov-Smirnov test: ACM vs. joint angle model: 9.84x10?'; ACM vs temporal model:
164  4.38x103%%; ACM vs. naive skeleton model: 9.03x10%"), whereas orientation errors were only
165  significantly smaller when comparing the ACM to the temporal and naive skeleton model (Fig. 2g,
166  right; 7203 and 6969 orientations total for the ACM/anatomical model and the temporal/naive
167  skeleton model respectively; p-values of one-sided Kolmogorov-Smirnov test: ACM vs temporal
168 model: 3.20x10%; ACM vs. naive skeleton model: 2.51x10°). While orientation errors were
169 significantly reduced by the anatomical constraints, including temporal constrains limited abrupt
170  pose changes over time compared to either the naive skeleton model or joint angle model (Fig.
171  2f, Supplementary Video 3-8). As a result, ACM-generated joint velocities and accelerations (Fig.
172  2h, 576288 velocities and accelerations total) were significantly smaller when compared to all
173  other models (p-values of one-sided Kolmogorov-Smirnov test: ACM vs. joint angle model
174  (velocity): numerically 0; ACM vs. temporal model (velocity): numerically 0; ACM vs. naive
175  skeleton model (velocity): numerically 0; ACM vs. joint angle model (acceleration): numerically O;
176  ACM vs. temporal model (acceleration): numerically 3.71x10°%; ACM vs. naive skeleton model
177  (acceleration): numerically 0). The temporal and anatomical constraints each had an advantage
178  over the naive skeleton model, and both constraints applied simultaneously improved positional
179  accuracy as well as motion trajectories and prevented anatomically infeasible bone orientations
180 and abrupt paw relocations. Moreover, the fraction of position errors exceeding 4 cm increased
181  when constraints were not considered (fraction of errors exceeding 4 cm: ACM: 2.72%; joint angle
182 model: 3.64%; temporal model: 4.42%; naive skeleton model: 6.44%), and the same was

183  observed for orientation errors exceeding 60° (fraction of errors exceeding 60°: ACM: 7.78%; joint
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Fig. 2. Comparison between inferred and measured paw positions during free behavior. a,

Reconstructed animal pose based on a learned skeleton model with highlighted left front (purple), right front

(red), left hind (cyan) and right hind paw (yellow). b, Reconstructed xy-positions of the paws during gait.

Colors as in a. ¢, Schematic image of the FTIR touch sensing setup with one underneath and four overhead

cameras. d, Single image from the underneath camera with reconstructed (x) and ground truth (filled circle)

xy-positions of the paw's centers and fingers/toes for the all four paws. Colors as in a. Large point clouds

around landmark locations indicate high uncertainty. e, Enlarged view of the left front paw in d (white box)

showing calculation of position error (left) and the angle error (right). f, Maximum intensity projection from
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193  the underneath camera of a 2.5 s long sequence with trajectories for the reconstructed xy-positions of the
194 right hind paw using the ACM (green), temporal- (blue), joint angle- (orange) and naive skeleton (brown)
195 models. g, Probability histograms for paw position (left) and angle errors (right) comparing different model
196 constraint regimes. Color-coding as in f. h, Probability histograms for paw velocities (left) and accelerations
197 (right) comparing different model constraint regimes. Color-coding as in f. i, Probability histograms for paw
198 position errors whereas only undetected surface markers are used for the calculation comparing different
199 model constraint regimes. Color-coding as in f. j, Position errors of occluded markers (bottom) and
200  corresponding binned sample sizes (top) as a function of time since last / until next marker detection
201 comparing different model constraint regimes. Color-coding as in f. Sample sizes differ depending on
202  whether reconstructed poses were obtained via the unscented RTS smoother (green) or not (brown).

203

204

205 angle model: 7.81%; temporal model: 17.77%; naive skeleton model: 18.22%). Likewise,
206  enforcing constraints also lowered the percentage of velocities exceeding 0.08 cm/ms (fraction of
207  errors exceeding 0.08 cm/ms: ACM: 3.29%; joint angle model: 13.49%; temporal model: 3.28%;
208 naive skeleton model: 13.85%) and accelerations exceeding 0.02 cm/ms? (fraction of errors
209  exceeding 0.02 cm/ms2 ACM: 0.22%; joint angle model: 23.43%; temporal model: 0.25%; naive
210  skeleton model: 24.55%). To test ACM robustness to missing surface markers, position errors
211  were calculated for inferred paw positions from data in which surface markers were undetected
212 (Fig. 2i, 2797 position errors total). Compared to all other models the ACM produced significantly
213  lower errors (p-values of one-sided Kolmogorov-Smirnov test: ACM vs. joint angle model:
214  9.67x10%; ACM vs temporal model: 2.83x1022; ACM vs. naive skeleton model: 3.91x10%7) as
215  well as the smallest number of error values above 4 cm (ACM: 9.36%; joint angle model: 11.61%;
216  temporal model: 13.72%; naive skeleton model: 19.12%). Paw placement errors increased the
217  longer a surface marker remained undetected for the ACM and the naive skeleton model (Fig. 2j,
218 linear regression: ACM: slope: 1.49 cm/s, intercept: 1.13 cm; naive skeleton model: slope: 2.77
219  cm/s, intercept: 1.39 cm) and errors were significantly lower when comparing both models (p-
220  values of one-sided Mann-Whitney rank test: ACM vs. naive skeleton model: 3.91x10).

221

222

223
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225 Fig. 3. Influence of temporal and anatomical constraints on periodic gait cycles. a, Schematic of the
226 normalized x-position for a single joint. b, Trajectories of the normalized x-position as a function of time for
227  the left wrist (purple), right wrist (red), left ankle (cyan) and right ankle (yellow) joint during gait. ¢, Auto-
228 correlations of the normalized x-position as a function of time (left) for four different limbs as well as a
229 corresponding model fit via a damped sinusoid (black). Fourier transformed auto-correlations of all limbs
230 (right) have their maximum peak at the same frequency. Colors as in b. d, Population averaged trajectories
231 of the normalized x-position as a function of time for the ACM (left), the naive skeleton model (center) and
232  the surface model (right). Colors as in b. Trajectories of the ACM and the naive skeleton model correspond
233  to the 3D joint locations, whereas trajectories of the surface model correspond to the 3D locations of the
234  associated surface markers. e, Schematic of the of the first temporal derivative of the normalized x-position
235 (i.e. normalized x-velocity) for a single joint. f, Normalized x-velocity as a function of time for the ACM (top)
236 and the naive skeleton model (bottom) during gait (colors as in b). g, Population averaged trajectories of
237  the normalized x-velocity as a function of time for the ACM (left), the naive skeleton model (center) and the
238 surface model (right). Colors as in b. Trajectories as in d. h, Schematic of the normalized bone angle for a
239  single joint. i, Bone angle as a function of time for the ACM (top) and the naive skeleton model (bottom)
240  during gait (colors as in b). j, Population averaged trajectories of the bone angle as a function of time for
241  the ACM (left), the naive skeleton model (center) and the surface model (right). Colors as in b. Trajectories
242 as in d. k, Schematic of the first temporal derivative of the bone angle (angular velocity) for a single joint. I,
243  Angular velocity as a function of time for the ACM (top) and the naive skeleton model (bottom) during gait
244 (colors as in b). m, Population averaged trajectories of bone angular velocity as a function of time for the
245  ACM (left), the naive skeleton model (center) and the surface model (right). Colors as in b. Trajectories as
246  ind.

247

248

249  Kinetics of cyclic gait behavior.

250  Smooth and periodic reconstruction of an animal’s average gait cycles during walking or running
251 is only possible with robust and accurate tracking of animal limb positions. To establish whether
252 the ACM could generate an average gait cycle from freely moving data, we next extracted
253 individual gait cycles from multiple behavioral sequences (Fig. 3a,b, Supplementary Fig. 5,
254  Supplementary Video 9-11) where joint velocities exceeded 25 cm/s (left; N = 2 animals, 27
255  sequences, 146.5 s per 58600 frames total from 4 cameras). The ACM extracted gait cycles were
256  stereotypical and rhythmic (Fig. 3b,c), showing clear periodicity in autocorrelations of extracted
257  limb movement (Fig 3c, left; damped sinusoid fit: frequency: 3.14 Hz, decay rate: 2.49 Hz, R?-
258  value: 0.90) and a common peak for all limbs in Fourier transformed data (Fig. 3c, right; max.
259 peak at 3.33 Hz, sampling rate: 0.83 Hz). Averaged ACM extracted gait cycles (Fig. 3d, left,

260  Supplementary Fig. 6-9) were significantly less variable than those obtained from the naive

11
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261  skeleton model (Fig. 3d, center) throughout the entire gait cycle (p-value of one-sided Mann-
262  Whitney rank test: 1.40x10°). When gait cycles were obtained from only tracking surface markers
263  alone via a deep neural network without any form of underlying skeleton (surface model), high
264  noise levels even made the periodic nature of the gait cycles vanish in its entirety (Fig. 3d, right).
265  The robustness and accuracy of limb tracking was even more apparent when analyzing joint
266  velocities (Fig. 3e-g), joint angles (Fig. 3h-j), and joint angular velocities (Fig. 3k-m), as traces
267  generated without the ACM constraints were dominated by noise in individual examples (Fig. 3f,i,l,
268 lower) and the cyclic nature of gait was less prominent when compared to traces obtained from
269 the ACM (Fig. 3f,il, top). Consistent with this, ACM averaged traces (Fig. 3g,j,m, left,
270  Supplementary Fig. 6-9) had significantly less variance compared to those obtained from the
271  naive skeleton model (Fig. 3g,j,m, right, Supplementary Fig. 6-9) for all metrics (p-values of one-
272  sided Mann-Whitney rank test: velocity: 2.28x107%; angle: 1.42x10°°; angular velocity: 1.44x10"
273 ). Additionally, for all metrics the periodicity of the gait cycles in the form of equidistant peaks was
274  more variable for the naive skeleton model (12 peaks total; sampling rate: 10 ms; time difference
275  between minimum/maximum peaks: position (min. peaks): 64.16 +/- 56.78 ms; velocity (max.
276  peaks): 80.83 +/- 54.99 ms; angle (max. peaks): 74.16 +/- 33.53 ms; angular velocity (min. peaks):
277  53.33 +/-47.78 ms [avg. +/- s.d.]), when compared to the ACM (12 peaks total; sampling rate: 10
278 ms; time difference between minimum/maximum peaks: position (min. peaks): 75.00 +/- 29.01
279  ms; velocity (max. peaks): 78.33 +/- 10.67 ms; angle (max. peaks): 78.33 +/- 23.74 ms; angular
280  velocity (min. peaks): 75.00 +/- 10.40 ms [avg. +/- s.d.]). Together this shows that the ACM can
281  objectively extract behaviors, such as gait, from freely moving animals and quantify complex
282  relationships between limb-bones by inferring 3D joint positions over time as well as their first
283  derivatives.

284

285 Kinetics of complex behavior

286  We next used the ACM to analyze motion kinetics and segment a more complex decision-making
287  behavior, the gap crossing task, in which the distances between two separate platforms are
288 changed forcing the animal to re-estimate the distance to jump for each trial (Fig. 4a).
289  Reconstructed poses during gap-estimation and jump-behaviors consisted of sequences where
290 animals either approached or waited at the edge of the track and jumped (N = 42, Supplementary
291  Fig. 10, Supplementary Video 12,13) or reached with a front paw to the other side of the track
292  before jumping (N = 2, Supplementary Video 14,15). As with the inference of paw placement
293  during gait (Fig. 2b,f), hind-paw spatial position could be inferred throughout the jump and

294  compared to skeletal parameters during the behavior, such as the angle of the thoracolumbar
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295 joint at jump onset compared to the paw positions upon landing (Fig. 4b; 44 trials, N = 2 animals).
296  As rats jumped stereotypically, we next tested whether the jump-related pattern of movements
297  could be analyzed using the ACM to objectively define decision points in the behavior, such as
298  time of jump, from each individual trial. The changes in joint angles in the spine segments and
299  hind limbs around the time of the jump were highly consistent. Averaging these joint angles to
300 give an averaged joint-angle trace provided a metric with a global minimum (Fig. 4c) during the
301 jump that was independent of whether the animal crossed the gap immediately, paused and
302 waited at the track edge or reached across the gap (Supplementary Fig. 11). This approach
303 enabled objective identification of jump start-, mid- and end-points, from each individual jump.
304  Traces of joint angles averaged across joints and trials (Fig. 4d) and average ACM poses (Fig.
305 4e)illustrate the consistency of the pose changes through the jump. We next used this to quantify
306 relationships between joints and changes in joint kinetics throughout a jump sequence. Auto-
307  correlations for spatial and angular limb velocities allowed quantification of the interdependency
308 of joint movements at any point within the jumping behavior, for example at the start-point of a
309 jump (Fig. 4f,g). This displayed relationships like a significant correlation between the spatial
310  velocity of the right elbow and wrist joints (Fig. 4h left, Spearman correlation coefficient: 0.95, two-
311 tailed p-value testing non-correlation: 5.40x1024), as well as joint interactions across the midline,
312  such as a significant correlation between spatial velocity of the right and left knee joints (Fig 4h,
313  right, Spearman correlation coefficient: 0.93, two-tailed p-value testing non-correlation: 6.79x10-
314  29). As the animal jumped across the gap, changes in the bone angles and their derivatives (Fig.
315  4i) were correlated with distance that the animal jumped (Fig. 4j). For example, angular velocity
316 of the thoracolumbar joint and vertical velocity (z-velocity) of the thoracocervical joint were
317  significantly correlated with jump distance 205 ms and 175 ms respectively, before the animal
318 landed (Fig. 4k,I, Spearman correlation coefficient: -0.73, two-tailed p-value testing non-

319  correlation: 1.13x108, and 0.81, two-tailed p-value testing non-correlation: 1.12x10""").
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321 Fig. 4. 3D pose reconstruction of skeletons allows for detailed quantification of complex behavior.
322  a, Images of a rat performing the gap crossing task for a trial. b, Reconstructed xy-positions of the hind
323 paws at the start and end of the jump color-coded by the joint angle of the thoracolumbar joint for each gap
324  crossing event of the population. ¢, Averaged joint-angle traces (spine and hind limb joint angles) from 22
325  outof 44 jump trials. d, Joint-angle trace averaged across joints and all jump trials. e, Average poses at the
326 start- (green), mid- (orange) and end-point (red) of the jump from all jump trials. The three different time
327 points are indicated by colored lines in d. f, Cross-correlation of the spatial and angular velocities of the
328 limb joints at the start-point of a jump. Different marker shapes indicate whether rows/columns represent
329 spatial or angular velocities (circles and squares respectively). Marker color corresponds to joint markers
330 in g. g, Average pose at the start of a jump calculated from all jump ftrials. Joint colors are consistent with
331  the marker colors in f and j. h, High correlation examples for spatial velocities of different limb joints as a
332  function of each other for both animals. The data shown represents the correlation values highlighted in
333  whiteinf. i, Overlaid poses of a single animal 240 ms to 160 ms before the end of a jump. Arrow indicates
334 the thoracolumbar joint. j, Correlations of the z- and angular velocities of the head and spine joints for time
335 points up to 400 ms before the end-point of a jump. Marker conventions as in f. k, Jump distance as a
336  function of angular velocity of the thoracolumbar joint for both animals 205 ms before the end of the jump.
337 Poses corresponding to the single data point highlighted with the arrow are shown in i. Displayed data
338 represents the correlation value highlighted with a white rectangle in j. I, Jump distance as a function of z-
339  velocity of the thoracocervical joint for both animals 175 ms before the end of the jump. Displayed data
340  represents the correlation value highlighted with a white rectangle in j.

341

14


https://doi.org/10.1101/2021.11.03.466906
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.466906; this version posted November 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

342  Discussion

343  We developed an anatomically constrained model (ACM) for tracking skeletal poses of untethered
344  freely-moving animals, at the resolution of single joints, that enabled the quantification of joint
345  kinetics during gait and gap-crossing behaviors. From these kinetic measurements the ACM was
346  able to build a comparative map of the kinetic-sequences throughout decision-making behaviors
347  that could be compared to the behavioral outcome. Accurate generation of skeleton kinetics relied
348  on incorporating skeleton anatomy, requiring smoothness of rotations and imposing motion
349 restrictions of joints?’, as animal poses are limited by both bone lengths and joint angle limits?®.
350 In addition, we generated ground truth data to quantify both the accuracy of the algorithm used to
351 fit the model skeleton to the behavioral data and also the performance of the ACM at estimating
352 limb and joint trajectories. Comparing the bone lengths of the fitted skeleton to the actual bone
353 lengths measured from anatomical MRI scans for animals of a range of sizes we showed that
354  accurate model fits could be obtained for animals with an order of magnitude difference in weight,
355  with equally good fitting results independent of animal size. By directly measuring the animals
356 paw positions and comparing with positions returned by the ACM, we showed that the
357  combination of both anatomical and temporal constraints significantly reduced the errors relative
358 to the naive skeleton model or either constraint alone. This combination allowed accurate
359 estimation not only of the location and orientation of the paws but also the accelerations and
360 velocities of the joints during the measured behaviors. The ACM was capable of accurately
361 quantifying limb kinetics during cyclic gait behaviors and more complex behaviors, such as gap-

362  crossing, even when limbs were partially occluded.

363 Lastly, the ACM remained accurate over a large range of animal sizes, 72 g — 735 g, with the
364  expectation that the ACM approach would also work for smaller rodents, such as mice. Our
365  approach ushers in a suite of new possibilities for studying the biomechanics of motion during
366  complex behaviors in freely-moving animals and complements recent developments in detailed
367  surface tracking*2. It opens up future investigations to also model forces applied by tendons and
368 muscles®?” and starts bridging the gap between neural computations in the brain®%' and the

369  mechanistic implementation of complex behavior®'", such as rodent emotion*®.

370  Recently, various studies relying on deep neural networks approached the problem of detecting
371 an animal’s pose in the form of 2D features from an image without anatomically constrained
372  skeleton models?'2*24, 3D poses can be inferred from these 2D features by means of classical
373  calibrated camera setups*, however the 2D detection in one camera image does not benefit from

374  the information from other cameras and the triangulation may suffer from resulting mislabeling of
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375 2D features as well as missing detections due to occluded features. A recent approach®?
376  overcomes many of these issues by mapping from recorded images directly to 3D feature
377 locations, again using deep learning, and is capable of classifying animal behaviors across many
378  species®. However, it does not possess explicit inherent temporal connections between frames
379  and thus no persistent skeletal model with fixed bone lengths over time or anatomical constraints
380 on joint angles. In contrast, the ACM uses a different approach: With DLC?* we used an existing
381  method to detect 2D anatomical markers and inferred 3D positions and kinetics of movement with
382 the RTS smoother based on anatomical constraints and mechanistic knowledge of bone
383  rotations??7, considering the trajectory of 3D positions over time. While the goal of the current
384  study was to infer skeletal kinematics of freely behaving animals but not real-time behavior
385 tracking®*#%, we expect future work in the field of 3D animal pose estimation to combine both
386  supervised learning techniques®#? and mechanistic model constraints®®2’, to simultaneously
387  capitalize on their different strengths, e.g. by applying a smoother with anatomical knowledge like
388 the ACMdirectly to 3D positions from an image-to-3D framework®2. Our approach has the capacity
389  to extend existing methods and not only to enhance the detail in which animal behavior can be
390 studied and quantified, but it also provides an objective and accurate quantification of limb and

391 joint positions for comparison with neuronal recordings.
392

393
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413 Methods

414  Obtaining video data of behaving animals. All experiments were performed in accordance with
415 German guidelines for animal experiments and were approved by the Landesamt fir Natur,
416  Umwelt und Verbraucherschutz, North Rhine-Westphalia, Germany. Six Lister Hooded rats
417  (Charles River Laboratories), weighting 174 g (animal #1), 178 g (animal #2), 71 g (animal #3),
418 72 g (animal #4) , 735 g (animal #5) and 699 g (animal #6) on the day of the experiment, were
419  used. Anatomical landmarks for tracking limb and body positions consisted of black or white ink
420 spots (5-8 mm diameter, black markers: Edding 3300, white markers: Edding 751, Edding,
421  Ahrensburg, Germany) which were painted onto the fur in a stereotypical pattern that was near-
422  symmetrical around the animals’ mid-sagittal axis (Supplementary Fig. 2). For application of the
423  anatomical markers, animals were anesthetized with isoflurane (2-3%) and body temperature
424  maintained around 37.5°C using a heating pad and temperature probe. After this labeling
425  procedure the animals were allowed to recover for approx. 45 min before datasets were acquired
426  on a gap-crossing track and open arena. The open arena was 80x105 cm? with 50 cm high walls
427  colored gray to promote contrast with the animals and markers. The gap-crossing track consisted
428  of two 50x20 cm? platforms, mounted 120 cm off the ground on a slide mechanism to allow manual
429  adjustment of the distance between the platforms in the range from 0 to 60 cm. The platforms
430  were positioned such that with the gap closed they met along one of the 20 cm edges. The edges
431  of the platform, apart from the edge along which the two platforms met, were equipped with a 2.5
432  cm tall wall. The floor of the platforms was covered with a layer of neoprene material to promote
433  a secure grip for the animals’ feet. A water delivery spout was located in the center of the 20 cm
434  track edge opposite of where the platforms met. To encourage gap-crossing behavior, animals
435 were water-restricted, having full access to water two days per week, and otherwise having
436  access to water only on the gap-crossing track. Fifty to one hundred microliters of water was
437  available at the delivery spout after each successful cross of the gap. Animals received a minimum
438  of 50% of their daily ad libertum water consumption either during the training or recording sessions
439  or as a supplement after the last session of the day if they had not already consumed at least this
440  amount. Gap-crossing training commenced approximately two weeks prior to the recording, and
441  consisted of two daily sessions. Gap distances were pseudo-random, with the gap distance
442  reduced in cases where the animal refused to cross. Both setups were homogeneously
443  illuminated using eight 125 cm long white LED strips with 700 Im/m (PowerLED, Berkshire, United
444  Kingdom), arranged equidistantly in a patch of 125x80 cm? and 125x55 cm? at a distance of 130
445 cm and 150 cm above the ground of the open arena and the gap-crossing track, and data were

446  acquired using four synchronously triggered digital cameras (ace acA1300-200um, Basler,
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447  Ahrensburg, Germany) mounted above the setups and set in such a way that all parts of the setup
448  were covered by at least two cameras, with the majority of both setups covered by all four.
449  Datasets consisted of 1280x1024 px? image frames with an acquisition time of 2.5 ms recorded
450 at 100 Hz for the gait dataset in the open arena and 200 Hz for the gap-crossing dataset. For
451 quantification of the animals’ foot positions we used a custom-made FTIR plate, consisting of a
452  single sheet of 60x60 cm?, along the edges of which an IR-LED strip (Solarox 850 nm LED strip
453 infrared 850 nm, Winger Electronics GmbH & Co. KG, Germany) was mounted such that IR light
454  could propagate through the FTIR plate from two opposing sites. Animal position data were
455  acquired from the overhead cameras at 200 Hz for these experiments, and paw placements were
456  recorded using two additional cameras (ace acA1300-200um, Basler, Ahrensburg, Germany),
457  synchronized with the overhead cameras, mounted underneath the plate and equipped with
458 infrared-highpass filters (Near-IR Bandpass Filter, part: BP850, useful range: 820-910 nm,
459  FWHM: 160 nm, Midwest Optical Systems, Inc., Palatine, USA). These cameras were set to
460 acquire 1280x1024 px? frames with an acquisition time of 2.5 ms recorded at 200 Hz. The total
461 FTIR dataset consisted of 29 sequences with a total of 36250 frames in each of the four cameras
462  and a total duration of 181.25 s. The gait dataset consisted of 27 sequences with a total of 14650
463 frames in each of the four cameras and a total duration of 146.5 s. The gap-crossing dataset
464  consisted of 44 sequences with a total of 8800 frames in each of the four cameras and a total
465  duration of 44 s.

466

467  Obtaining MRI scans to evaluate learned skeleton models. To locate labeled surface markers,
468  custom-made MRI markers (Premium sanitary silicone DSSA, fischerwerke GmbH & Co. KG,
469  Waldachtal, Germany) were attached to the respective positions on the surface of the animals’
470  bodies. MR imaging was performed at a field strength of 3T (Magnetom Prisma, Siemens
471  Healthineers, Erlangen, Germany), using the integrated 32-channel spine coil of the
472  manufacturer. The data was acquired ex vivo in six rats using a 3D turbo-spin-echo sequence
473  with variable-flip-angle echo trains (3D TSE-VFL). Detailed MR protocol parameters for 3D TSE-
474  VFL imaging with a turbo factor of 98 were as follows: a repetition time of 3200 ms, an effective
475 echo time of 284 ms, an echo train duration of 585 ms, and an echo spacing of 6.3 ms using a
476  readout bandwidth of 300 Hz/px for one slab with 208 slices covering the whole rat at an isotropic
477  resolution of 0.4x0.4x0.4 mm3.

478

479  Calibrating multi-camera setups. We based the calibration of multiple cameras on a pinhole

480 camera model with 2nd order radial distortions (Supplementary Text) and OpenCV*¢ functions for
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481  detection of checkerboard corners. The checkerboards we used had additional ArUco*” markers
482  printed on them. To obtain the calibration an objective function penalizing mismatches between
483  detected and projected corners was defined and minimized via gradient descent optimization
484  using the Trust Region Reflective algorithm*® (Supplementary Text).

485

486 Defining a 3D skeleton model. The generalized skeleton model consisted of joints, modeled as
487  vertices, and inter-joint segments, modeled as edges and which could represent multiple bones
488 from the true skeleton (Supplementary Fig. 1). The front limbs were modeled as four edges,
489 representing the clavicle, humerus, radius/ulna and metacarpal/phalanges. The associated
490 vertices corresponded to the shoulder, elbow and wrist, with the last vertex representing the tip of
491 the middle phalanx. The hind limbs were modeled as five edges representing the pelvis, femur,
492 tibiaffibula, tarsus and phalanges, with the associated vertices representing the hip, knee, ankle
493 and metatarsophalangeal joints, with the last vertex representing the tip of the middle tarsal. The
494  tail was modeled as five edges and five vertices, with the last vertex representing the tip of the
495 tail. The spine was modeled as four edges, representing the cervical, thoracic and lumbar spinal
496 regions and the sacrum, with three intervening vertices. The head was modeled as a single edge,
497  with a vertex at the tip to represent the nose, and a second vertex representing the joint to the
498 first cervical vertebra. The resting pose of the 3D skeleton model was defined as the pose
499  generated by the pose reconstruction scheme, when all the parameters encoding bone rotations
500 were set to zero. In this pose all edges (i.e. bones) pointed towards the positive z-direction of the
501 right-handed world coordinate system, except the four edges approximating the
502  clavicle/collarbone and sacrum/pelvis, where edges of the right limb faced towards and edges of
503 the left limb faced against the positive x-direction of the world coordinate system (Supplementary
504  Fig. 1). The configuration of these four edges was also kept constant during pose reconstruction,
505 so that edges representing the cervical and lumbar vertebrae were always orthogonal to the
506 edges representing the clavicle and sacrum. The y-coordinates of all vertices were equal to zero,
507 locating the entire 3D skeleton model in the world’s xz-plane while situated in the resting pose.
508 Besides the world coordinate system each edge also had its own right-handed coordinate system
509 located at the start vertex of the corresponding edge, e.g. the coordinate system of the edge
510 representing the left humerus was located at the position of the vertex representing the left
511  shoulder joint. The z-direction of these edge coordinate systems were always identical to the
512  direction in which the associated edges faced. Additionally, anatomical rotations were defined in

513 the edge coordinate systems, so that a rotation around the x-direction became equivalent to
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514  flexion/extension, rotations around the y-direction were identical to abduction/adduction and a
515 rotation around the z-direction coincided with internal/external rotation.

516

517  Constraining poses based on joint angle limits. We implemented joint angle limits based on
518 measured minimum and maximum values for flexion/extension, abduction/adduction and
519 internal/external rotation in domestic house cats?'. A comparable set of measured values is to our
520 knowledge not available for rat. For vertices approximating head, spine or tail joints data for joint
521 angle limits was not available, so that we modeled corresponding edges without the capacity to
522  rotate around the z-direction of their associated edge coordinate systems, whereas joint angle
523 limits for rotations around the x- and y-direction were set to +/- 90°. This allowed a respective
524  child-vertex to reach any point within an area spanned by a hemisphere pointing in the direction
525  of the associated edge with radius identical to the length of this edge. Since the resting pose of
526  our 3D skeleton model was not necessarily identical to the pose in which the published joint angle
527 limits were measured in, we calculated the correct rotational limits which were consistent with our
528 resting pose based on the mean of the published values. The resulting joint angle limits were set

529  as follows:

530 joint x (°) y (°) z(°)

531  left shoulder [25,205] [-85,25] [-35,35]

532  right shoulder [25,205] [-25,85] [-35,35]

533 left elbow [2.5,145] [0,0] [-100,45]

534  right elbow [2.5,145] [0,0] [-45,100]

535  left wrist [-135,35] [-12.5,37.5] [0,0]

536  right wrist [-135,35] [-37.5,12.5] [0,0]

537  left hip [35,195] [-65,25] [-85,40]

538  right hip [35,195] [25,65] [-40,85]

539  left knee [-145,15] [0,0] [0,0]

540  right knee [-145,15] [0,0] [0,0]

541  left ankle [-10,145] [0,0] [0,0]

542  right ankle [-10,145] [0,0] [0,0]

543  left metatarsophalangeal [0,0] [0,0] [-15,35]

544  right metatarsophalangeal [0,0] [0,0] [-35,15]

545  While the published joint angles referred to Euler angles, we used Rodrigues vectors to
546  parameterize rotations (Supplementary Text), since the latter are better suited for pose
547  reconstruction*®. However, both parameterizations become identical when only a single type of
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548 rotation, e.g. flexion/extension, is present at a vertex, which was the case for the measured joint
549  angles*. Parameterizing rotations with Rodrigues vectors therefore allowed us to obtain smooth
550 transitions between different types of bone rotations.

551

552  Constraining surface marker positions based on body symmetry. When learning surface
553  maker positions and bone lengths we constrained the former to comply with the symmetrically
554  applied surface marker pattern by enforcing box constraints for each spatial dimension, e.g.
555  markers on the left side of an animal were prevented from being placed on the right side. This
556  reduced the total number of free parameters during learning. To reduce this number further we
557  also mirrored surface marker positions in the yz-plane of the associated edge coordinate system
558  when there was a left/right correspondence, i.e. we only learned surface marker positions for the
559 left side which then also determined right-sided surface maker positions due to the mirroring
560 (Supplementary Text). Resulting box constraints for central and left-sided surface maker locations
561 were then defined in the coordinate system of the associated edges and set as follows

562  (Supplementary Fig. 1,2):

563  marker attached joint X y z

564  head #1 spine #5 [0,0] [0,inf) (-inf,inf)
565 head #2 spine #5 [0,0] [0,inf) (-inf,inf)
566  head #3 head (leaf) [0,0] [0,0) [0,0]
567  spine #1 spine #2 [0,0] [0,inf) (-inf,inf)
568  spine #2 spine #2 [0,0] [0,inf) (-inf,inf)
569  spine #3 spine #3 [0,0] [0,inf) (-inf,inf)
570  spine #4 spine #3 [0,0] [0,inf) (-inf,inf)
571  spine #5 spine #4 [0,0] [0,inf) (-inf,inf)
572  spine #6 spine #5 [0,0] [0,inf) [0,0]
573  tail #1 tail #1 (leaf) [0,0] [0,0] [0,0]
574  tail #2 tail #2 [0,0] [0,inf) (-inf,inf)
575  tail #3 tail #3 [0,0] [0,inf) (-inf,inf)
576 tail#4 tail #4 [0,0] [0,inf) (-inf,inf)
577 tail#5 tail #5 [0,0] [0,inf) (-inf,inf)
578  tail #6 spine #1 [0,0] [0,inf) (-inf,inf)
579  shoulder shoulder [0,0] [0,inf) [0,inf)
580 elbow elbow (-inf,0] [0,0] [0,0]
581  wrist wrist [0,0] (-inf,0] [0,0]
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582  finger #1 finger (leaf) (-inf,inf) [0,0] (-inf,inf)
583  finger #2 finger (leaf) [0,0] [0,0] [0,0]
584  finger #3 finger (leaf) (-inf,inf) [0,0] (-inf,inf)
585 side spine #3 (-inf,0] (-inf,inf) (-inf,inf)
586  hip hip [0,0] [0,inf) [0,inf)
587  knee knee (-inf,0] [0,0] [0,0]
588 ankle ankle (-inf,0] [0,0] [0,0]
589 metatarsophalangeal metatarsophalangeal [0,0] (-inf,0] [0,0]
500 toe #1 toe (leaf) (-inf,inf) [0,0] (-inf,inf)
501 toe #2 toe (leaf) [0,0] [0,0] [0,0]
592  toe #3 toe (leaf) (-inf,inf) [0,0] (-inf,inf)

593  The only exception from this was the upper bound of the left-sided surface marker on the shoulder
594  in z-direction for the two large animals (animals #5 and #6), which was also set to 0 in order to
595 prevent the bone lengths of the collarbones to become zero during learning.

596

597  Constraining bone lengths based on allometry. We applied loose constraints on the length of
598 limb bones based on the published linear relationships between body weight and bone lengths in
599 rats®®. The lengths of the following list of limb bones were constrained according to measured
600 slope estimates®. Box constraints for bone lengths were calculated from weight-matched lengths

601  plus or minus 10 times the standard deviation, based on the following proportionality factors:

602 bone name slope avg. +/- s.d. (cm/g)
603  humerus 0.0075 +/- 0.0005
604  radius 0.0069 +/- 0.0004
605 metacarpal 0.0023 +/- 0.0001
606 femur 0.0102 +/- 0.0006
607 tibia 0.0114 +/- 0.0006
608 metatarsal 0.0053 +/- 0.0003

609  For bones that were not part of the limbs no constraints were enforced, such that corresponding
610 box constraints were set to [0,inf). To ensure that bone lengths of the left and right limbs were
611 identical, we only learned bone lengths of the left-sided limbs, which then also determined right-
612  sided limb bone lengths (Supplementary Text).

613

614  Training deep neural networks to detect 2D locations of surface markers. To automatically

615 detect 2D locations of surface makers we used DeepLabCut?. For each rat in each dataset an
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616 individual neural network was trained on manually labeled images obtained from four different
617 cameras, six trained networks in total. For each image that was used for training a background-
618 subtracted image was generated by subtracting the image acquired 200 ms prior to the frame of
619 interest for the FTIR and gap-crossing datasets and 125 ms prior for the gait dataset.
620 Subsequently, approximate 2D locations of the recorded rats on the background-subtracted
621 images were obtained by calculating the median indices of pixels above a threshold-value of 5
622 times the standard deviation of each pixel, where the standard deviations were calculated from
623  the first 100 images of each recorded video, which were acquired with the arena or track empty
624  and free of any moving objects. These 2D locations where then used as a center-point to crop the
625 original images to 600x600 px2. To minimize the influence of visible movements of the
626  experimentors on this center-point detection in the recorded FTIR data set, pixel values of pixels,
627  which did not show the FTIR plate, were set to zero for the recordings of animals #3 to #6. For
628 the FTIR datasets the networks were trained on 4068 images for animal #1, 3980 images for
629 animal #2, 752 images for animal #3, 1100 images for animal #4, 992 images for animal #5 and
630 1128 images for animal #6. For the gait and gap-crossing datasets 2404 and 3608 images were
631 used respectively for each analyzed animal (animal #1 and #2). Resulting images that did not
632  contain any manually annotated 2D positions of surface markers due to the preprocessing steps
633  not leading to correct cropping, were not used during training. We used DeeplLabCut’'s default
634  settings, with the only two exceptions being that we changed the network architectures to ResNet-
635 152 and enabled mirroring of images for which we paired surface markers with a left/right
636  correspondence®. Training was conducted via DeepLabCut 2.1.6.4 downloaded from GitHub
637  (https://github.com/DeepLabCut/DeepLabCut/commit/2f5d32884da2e5c3e4b6ef2a2126f6bb615
638  79060). Once the networks were trained, we used them to obtain 2D locations of surface markers
639 for images of analyzed behavioral sequences, where we set DeepLabCut’s pcutoff-parameter®
640 to 0.9 and treated detected marker positions below this value as missing measurements.

641

642 Performing probabilistic pose reconstruction. To perform probabilistic 3D pose
643  reconstruction, which allows for generating poses using non-linear mathematical operations and
644  where information of an entire behavioral sequence is processed, we implemented an unscented
645  Rauch-Tung-Striebel (RTS) smoother®®3’, whose fundamental principles are based on the
646  ordinary Kalman filter formulation®®. In this approach, time series data is modelled as a stochastic
647  process generated by a state space model where at each time point hidden states give rise to
648 observable measurements and fulfill the Markov property, i.e. each hidden state only depends on

649  the preceding one (Supplementary Fig. 12). This formalism allowed us to represent each pose as

24


https://doi.org/10.1101/2021.11.03.466906
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.466906; this version posted November 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

650 alow-dimensional state variable, corresponding to the location of a reconstructed skeleton as well
651 as the individual bone rotations (dimension of hidden state variable: 50; 3 variables for 3D location
652  of the skeleton plus 47 variables for bone rotations). The measurable 2D locations of surface
653 markers (which were given by the outputs of the trained neural network) had a higher
654 dimensionality and were represented via measurement variables (dimension of measurement
655  variable: maximal 344; 43 surface markers times 4 cameras times 2 variables for the 2D location
656  of a surface marker). We assumed the hidden states to be (conditionally) normally distributed,
657  whereby temporal constraints are implicitly modeled through the transition kernel of the Markov
658  process (i.e. the probabilistic mapping between one state and the next). Our formalism allows for
659 non-linearities in our pose reconstruction scheme, e.g. introduced by the usage of trigonometric
660 functions when applying bone rotations. The unscented RTS smoother can be used to perform
661  probabilistic pose estimation in such a nonlinear state space model, considering both past and
662 future (Supplementary Text). We learned the unknown model parameters (i.e. the initial mean and
663  covariance of the state variables as well as the covariances of the transition and measurement
664  noise) via an expectation-maximization (EM) algorithm3® (maximal 2944 model parameters total;
665 50 parameters for mean of initial hidden state variable plus 1275 parameters for covariance matrix
666 of initial hidden state variable plus 1275 parameters for covariance matrix of transition noise plus
667 maximal 334 parameters for diagonal covariance matrix of measurement noise), which aims to
668 maximize a lower bound of the state space model's evidence, i.e. the evidence lower bound
669 (ELBO), accounting for each pose within a behavioral sequence (Supplementary Text). This is
670 achieved by alternating between an expectation step (Supplementary Text), in which we obtain
671 the expected values of the state variables given a fixed set of model parameters via the unscented
672  RTS smoother, and a maximization step (Supplementary Text), in which these model parameters
673 are updated in closed form in order to maximize the ELBO®'. After convergence of the EM
674  algorithm, final poses were obtained by applying the unscented RTS smoother using the learned
675 model parameters.

676

677  Accounting for missing measurements during pose reconstruction. Detecting 2D positions
678  of surface markers via a trained deep neural network was not always successful, e.g. due to
679  marker occlusions. As a result, we only had access to different subsets of all 2D positions during
680  smoothing. This forced us to apply modifications to the plain unscented RTS smoother formulation
681 and the EM algorithm, i.e. we set rows and/or columns of the measurement covariance matrices
682 to zero during the filtering path of the smoother®?% and proceeded equivalently with the

683  covariance matrix of the measurement noise when maximizing the ELBO (Supplementary Text).
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684

685 Enforcing joint angle limits during pose reconstruction. The plain formulation of the
686 unscented RTS smoother does not account for box constraints, so that state variables
687  representing bone rotations are not bounded. To still allow for anatomically constrained pose
688  estimation we instead optimized unbound state variables, which could be mapped onto the correct
689 lower and upper bounds for joint angle limits via sigmoidal functions, i.e. error functions
690 (Supplementary Text). These functions had slope one at the origin and were asymptotically
691 converging towards the lower and upper bounds of the respective joint angle limits.

692

693 Learning bone lengths and surface marker positions. To learn bone lengths and surface
694  marker positions we simultaneously fitted our generalized 3D skeleton model to manually labeled
695 2D positions of surface markers at different time points for each animal. Fitting of the generalized
696 3D skeleton model was achieved via gradient decent optimization using the L-BF GS-B algorithm5
697  in order to minimize an objective function, which penalized mismatches between manually labeled
698 2D locations of surface markers and those generated via the pose reconstruction scheme
699 (Supplementary Text). Bone lengths, surface marker positions and pose parameters were
700  optimized, while only the pose parameters were unique for every time point and the rest were
701  shared throughout the entire sequence. For this we used sequences of freely-behaving animals
702  recorded via four different cameras totaling to 2404 training frames for animal #1 and #2, 752
703  training frames for animal #3, 1100 training frames for animal #4, 992 training frames for animal
704  #5 and 1128 training frames for animal #6. Bone lengths were initialized by the mean of their
705  upper and lower bounds or zero when there were no constraints and surface marker positions
706  were initialized to be identical to the joints they were attached too. Initial poses were identical to
707  the resting pose but global skeleton locations and rotations were adjusted prior to the fitting to
708 loosely align with the locations of an animal’s body as seen by the cameras. Once values for bone
709 lengths and surface marker positions were learned, we used them for all further pose
710  reconstructions.

711

712 Comparison of skeleton parameters with MRI data. To estimate the quality of these skeleton
713  parameters, we aligned learned 3D skeleton models to manually labeled 3D locations of surface
714 markers obtained from an MRI scan for each animal (Fig. 1b, bottom). To determine the 3D
715  positions of the respective spine joints in the MRI scan, we counted vertebrae such that each
716 modeled spine segment matched its anatomical counterpart with respect to the number of

717 contained vertebrae®3. One MRI surface marker was not recoverable in the MRI dataset from one
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718  animal (right metatarsophalangeal marker, animal #1), and in this case we labeled the 3D location
719  onthe animal’s body closest to the position of the missing marker. Again, we used gradient decent
720  optimization of an objective function, so that manually labeled 3D markers locations were matched
721  with the ones given by our model. Skeleton parameters were kept constant and only pose
722  parameters changed during optimization. All ground truth joint positions except those for the
723  metatarsophalangeal joints could be identified manually in the MRI scan (4 joint locations total).
724  These missing locations were assumed to be identical to the positions of the corresponding
725 metatarsophalangeal markers.

726

727 Defining four different models to evaluate the influence of anatomical and temporal
728 constraints. In the ACM anatomical and temporal constraints were enforced and poses were
729  reconstructed using the unscented RTS smoother together with the EM algorithm. This was also
730 the case for the temporal model but joint angle limits of limb joints, which were not equal to [0°,0°],
731  were set to [-180°,180°], effectively allowing full 360° rotations at the respective joints. Pose
732  parameters for these two models were initialized by fitting the pose of the first time point of a
733  behavioral sequence equivalently to how we learned the skeleton parameters with the only
734  exception that automatically detected instead of manually labeled 2D locations of surface markers
735 were used. The covariance matrices for the initial state variables as well as the state and the
736  measurement noise, which were learned via the EM algorithm, were initialized by setting all
737  diagonal entries to 0.001 and off-diagonal entries to zero, while the latter were also kept constant
738  for the measurement noise covariance matrix during the maximization step of the EM algorithm.
739  For the joint angle and the naive skeleton model, where only anatomical or no constrains were
740  enforced, we did not use the unscented RTS smoother but reconstructed every pose in the same
741  way we initialized the ACM and the temporal model. Here poses within a behavioral sequence at
742  a certain time point were initialized with the reconstructed pose of the previous time point and
743  joint angle limits of limb joints were set to [-180°,180°] in the naive skeleton model.

744

745  Evaluating pose reconstruction accuracy via a FTIR touch sensing system. To obtain ground
746  truth data paw centers and three individual fingers/toes were manually labeled for each limb in
747  every 40th frame of the FTIR dataset. Images from the calibrated underneath cameras were used
748  and paw centers were identified as the interpolated intersection of the three fingers/toes. Manually
749  labeled marker locations were then projected onto the surface of the transparent floor and xy-
750 positions were calculated as the intersection between this surface and the corresponding epipolar

751 lines. Paw positions and orientation errors where then calculated in the coordinate system of the
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752  transparent floor based on these xy-coordinates. Velocity and acceleration values for the four
753  different models were derived from central finite differences (order of accuracy: 8) based on the
754 reconstructed 3D positions of the metatarsophalangeal/wrist and finger/toe markers. Paw position
755  errors of undetected markers where obtained by only using paw position errors of surface markers
756  that were not detected by the trained neural network (i.e. pcutoff < 0.9). When ordering these
757  errors according to the time spans that passed since a respective maker was successfully
758  detected, differentiating between the ACM/temporal and joint angle/naive skeleton model was
759  necessary. As the unscented RTS smoother incorporates information from the past as well as
760  from the future, time spans until the next detection need to be treated equally to time spans since
761  the last detection, i.e. the direction of the time axis becomes irrelevant. For the ACM/temporal
762  model time spans were calculated as the minimum of the time spans since the last or until the
763  next detection, whereas for the joint angle/naive skeleton model only time spans since the last
764  detection were relevant, as the smoother was not used here. For the resulting analysis we only
765 included errors for which the corresponding sample size was at least 10.

766

767  Analyzing gait data. In order to extract gait periodicity, we normalized reconstructed poses by
768  applying a coordinate transformation on 3D joint locations, such that the new origin was identical
769  to the joint which connects lumbar vertebrae with the sacrum and the new x-direction pointed
770  towards the xy-position of the joint linking cervical with thoracic vertebrae. Given the new joint
771  coordinates we calculated normalized x-positions and bone angles as well as their first temporal
772  derivatives (i.e. normalized x-velocity and angular velocity) of limb joints, where bone angles were
773  defined as the angle between the new x-direction and a respective bone. To model auto-
774  correlations of normalized x-positions, we minimized an objective function penalizing mismatches
775 between data from the four different traces of each limb and the corresponding estimate
776  calculated using a single damped sinusoid via gradient decent optimization. To obtain population
777 averages of normalized x-positions, bone angles and their temporal derivatives, we detected
778  midpoints of swing phases by identifying maximum peaks of normalized x-velocities above 25
779  cm/s. Anindividual trace was extracted containing data up to +/- 200 ms around each peak. These
780 traces were then aligned with respect to their associated velocity peaks and then averaged across
781  the entire population. To obtain traces from only tracking surface markers alone, 3D positions of
782  surface markers where interpolated based on their inferred 2D locations given by the trained
783  neural network, whereas for each 3D position only the two most likely 2D locations where taken
784  into account, i.e. the two 2D locations with the highest pcutoff-value.

785
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786  Analyzing gap-crossing data. Each of the 44 gap-crossing sequences was 1 s long and
787  contained 200 frames per camera totaling 35200 frames. Due to the limited number of gap-
788  crossing events and recorded frames, we used 20% of the frames to train the neural network, i.e.
789  we took every 5th frame of the recorded gap crossing sequences for its training and deployed it
790 to automatically process all frames once training was completed. Similar to the analysis of gait
791 data, velocity values were derived from central finite differences (order of accuracy: 8) of
792  reconstructed 3D joint positions and joint angles were defined as the angle between two
793  connected bones. To obtain start-, mid- and end-point for each jump we averaged joint angles of
794  all spine and hind limb joints and identified the time point where this averaged metric reached its
795  global minimum for each gap-crossing sequence. The averaged metric was characteristic for each
796  jump, i.e. distinct peaks were always present in the following order: local minimum, local
797 maximum, global minimum, local maximum, local minimum. This allowed us to extract the start-
798  and end-point of each jump by finding the first and last local minimum of this sequential pattern.
799  Resulting jump start- and end-points were in close agreement with those obtained from manual
800 assessments of gap crossing sequences by a human expert. Jump distances were calculated as
801 the absolute xy-difference of the average hind paw positions, i.e. average of left/right ankle,
802  metatarsophalangeal and toe joint positions, at the start- and end-point of each jump. To obtain
803  population averaged poses for the jump start-, mid- and end-points, we normalized each pose
804  equivalently to the analysis of gait data. This aligned the resulting poses at their origin and we
805  were able to calculate characteristic jump poses by averaging them across the entire population.
806  For the population averaged mean angle traces we aligned each individual trace according to the
807  mid-point of each jump and then averaged across the entire population. To highlight the diversity
808  of the data given by the reconstructed poses, we calculated distance- and auto-correlations of
809  several different metrics and joints: jump distances were correlated with spatial z-velocities and
810 angular velocities of spine joints at time points up to 400 ms before the end of a jump and absolute
811  spatial velocities and angular velocities of hind limbs joints were correlated with each other at the
812  start-point of a jump. Since differences in bone lengths for each animal dominated the correlation
813  for spatial position and joint angle we only focused on their first temporal derivatives.

814

815 Computing hardware. All pose reconstructions and analyzes were conducted on a workstation
816  equipped with an AMD Ryzen 7 2700x CPU, 32 GB DDR4 RAM, Samsung 970 EVO 500 GB
817  SSD, and a single NVIDIA GeForce RTX 1080 Ti (11 GB) GPU. The installed operating system
818  was Ubuntu 18.04.5 LTS. Training DeepLabCut was either conducted on a NVIDIA GeForce RTX
819 1080 Ti (11 GB) GPU, using CUDA version 10.0 and NVIDIA driver version 410.48, or a NVIDIA
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820 GeForce RTX 2080 Ti (11 GB) GPU, using CUDA version 11.0 and NVIDIA driver version
821  450.80.02.

822

823  Code availability. Code for performing pose reconstructions will be made publicly available on
824  GitHub: https://github.com/bbo-lab/ACM

825

826 Data availability. Raw data available on request.

827
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Supplementary Fig. 1 | Projection of the generalized skeleton model in the xy-plane with index and name
for each individual joint. For this figure, all bone lengths are equal and all bone rotations have been set to

the mean of their upper and lower bounds.
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Supplementary Figure 3
Monsees et al

Supplementary Fig. 3 | Projections of the generalized and learned skeleton models for each animal as viewed from the top (xy-view, left column) and from the
side (xz-view, right column). All bone rotations were set to the mean of their upper and lower bounds. Green dots indicate the learned positions of surface
markers and blue lines join paired joints and surface markers. All scale bars 5 cm.


https://doi.org/10.1101/2021.11.03.466906
http://creativecommons.org/licenses/by/4.0/

camera: 0 camera: 1
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Supplementary Fig. 4 | Synchronous training frames from four calibrated cameras used for learning skeleton lengths and surface maker
positions. The figure shows the manually labeled surface marker positions (green), their locations after the skeleton model is learned
(blue) and the discrepancies between the two (green lines).
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camera: 0

Supplementary Fig. 5 | Synchronous frames from four calibrated cameras which were part of the gait data set. Reconstructed
skeleton poses are shown for different time points of the gait sequence. The time difference between posesis 1 s.
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Supplementary Fig. 6 | Averaged traces from the ACM as in
Figure 3d,g,j,m (left), but with trace alignment based on the
velocity peaks for the right ankle (right column), left wrist
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aligning to the velocity peak of the left ankle joint.
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Supplementary Fig. 7 | Averaged traces from the model
not constrained by either temporal or joint limit
constraints as in Figure 3d,g,j,m (right) aligned to velocity
peaks for the right ankle (right column), left wrist (center
column) and right wrist joint (right column), instead of
aligning to the velocity peak of the left ankle joint.
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peaks from the left ankle, right ankle, left wrist and right wrist joint of the
respective limb.
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Supplementary Fig. 9 | Averaged traces from the model not constrained by
either temporal or joint limit constraints for all joints of just the left hind (left
column), right hind (center left column), left front (center right column) and
right front limb (right column). Traces were aligned to velocity peaks from the
left ankle, right ankle, left wrist and right wrist joint of the respective limb.
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Supplementary Fig. 10 | Synchronous frames from four calibrated cameras which were part of the gap-cross-
ing data set, with overlay of the center of mass (left) and reconstructed skeleton poses (right) shown for
different time points.
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State Space Model

Supplementary Fig. 12 | lllustration of the state space model used for describing
behavioral time series’.
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We choose to parameterize rotations with Rodrigues vectors as they are well suited for the description
of bone rotations with three rotational degrees of freedom [10]. A Rodrigues vector r is formed by
combining the axis of rotation w € R3 and the rotation angle ¢ € R:

r=fw = 0wy, wz,wz) " (1)

where ||w|| = 1. To calculate the associated rotation matrix R from a given Rodrigues vector r we
can use the following function:

Ri1 Ry Rus
R31 R32 Rass
where I € R3*3 is the identity matrix and & € R3*3 is given by:
0 —W3 w2
w= w3 0 —w1 | - (3)
—W?2 w1 0

2 Camera calibration

2.1 Pinhole camera model

To project an arbitrary three-dimensional joint or surface marker location msp € R? onto a camera
sensor to obtain the corresponding two-dimensional data point mop € R?, we are using a pinhole
camera model [6], which gives the following relationship between the two:

fap—op (m3D7 7 1, k, ;1) = Afgistort (fr—>R (7) msp + ¢, 7;) = maop (4)

where 7 € R? is the Rodrigues vector and ¢ € R3 the translation vector of the respective camera, such
that the expression f._,r () m3p + £ maps mzp from the world coordinate system into the coordinate
system of the camera. Given the camera’s distortion vector & € R2, the function fyiorc applies radial
distortions according to

U1+ kié + ko

faistort (y, i;:) = Z—i 1+ ];316 + ];252 ()
1

2 2
with y = (yl,yQ,y;g)T and ¢ = (Z—i) + (Z—i) . The final mapping onto the two-dimensional camera

sensor is done using the camera matrix A € R?*3 given by

- Ay 0 12113)
A= - - 6
< 0 Az Ao ©)

where A;; and A, are the focal lengths and A5 and A,z are the x- and y-location of the camera’s
optical center.

2.2 Calibration of multiple cameras

Given a multi-camera setup with several cameras and overlapping fields of view, we need to infer
the initially unknown location and camera parameters of every individual camera in the setup as this
allows us to predict where a three-dimensional point in space will be visible on each camera sensor.


https://doi.org/10.1101/2021.11.03.466906
http://creativecommons.org/licenses/by/4.0/

R BT ecRR ARy s AR G A ARdieTi A R TRRLES SR IRGCAE Bl tw RS ISR S
ture and dimensions are known teyaiableetelisay AR Hhdesiarg! takish synchronously in all cameras,
such that the spatial location and orientation of the shown object is identical for a given set of images
at a certain time point. For this purpose checkerboards are suited objects as edges of individual tiles
can be detected automatically in recorded image frames and the description of their spatial structure
requires only a single parameter, i.e. the length of a quadratic tile. Given a multi-camera setup with
neam Cameras and niime time points at which we used each camera to record images, which show
a checkerboard that has a total of n.qe. detectable edges, we can calibrate the setup by minimiz-
ing a respective objective function via gradient decent optimization using the Trust Region Reflective
algorithm [2]:

‘mnj —f3ps2p (fr—>R (Pr) 1y + tr, P iy s, Ai)

(7)

Ntime Tcam tedge ‘2

arg min g E g Orij
Fisti ki, Aifrite 7=1 =1 j=1
Vie{l,...,ncam }
V7Te{l,...,ntime }

where 7; is the Rodrigues vector, #; is the translation vector, k; is the distortion vector and A; is
the camera matrix of camera i. The Rodrigues vector . and the translation vector #, encode the
orientation and translation of the checkerboard at time point 7. Since the checkerboard is a planar
object each edge j is given by a three-dimensional point 1m; = ctie(x4, y5, 0)” with the known length
of a single tile ¢ and x; € N as well as y; € N. Furthermore, the two-dimensional edge j in camera
i at time point 7 is denoted as m,;; € R? and the delta function ¢,;; indicates whether this edge is
detected successtfully, i.e. §-;; = 1, or not, i.e. d,;; = 0.

3 Skeleton model

3.1 Modifying the skeleton model to obtain new poses

Given a three-dimensional skeleton model, we need to adjust joint locations by rotating each bone of
the model, such that resulting three-dimensional positions of rigidly attached surface markers match
the respective two-dimensional locations in our video data. Assuming our skeleton model has a total
of npone bONEs and nyaer SUrface markers, we want to generate the three-dimensional locations
of the joints p € R™one*3 and surface markers m € R™markerX3 which can be obtained according to
Algorithm 1.

Algorithm 1
1: function f .. (t, 7,1, v)
2 for j € {1,..., nbone } dO
3 Rj 1 > Initialize each bone rotation R;
4 foric {1,....,npone} dO
5: for j € {1, ..., npone} dO
6 if 71 is child of iy then > Check if rotation of bone i affects end joint j;
7 Rj « fo g (r)"R; > Update rotation of bone j
8: for j € {1, ..., nbone } dO B
9: R; RjTRj > Apply bone rotation R; to resting pose R;
10: D1y <t > Initialize root joint location p;,

11: for j € {1,...,npone} dO

12: Piy < Pjo + (Rji3, Rjoss RjSS)le > Calculate end joint location p;, of bone j
13: for k € {1, ..., nmarker } dO

14: if j1 is connected to k then > Check if end joint j; is connected to marker &
15: my < pj, + Rjug > Calculate absolute marker location m,
16: return m

rint
ade
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graph beginning with the bone wiRtdaPStaMEARE13"tHE 'Rsatejsi 'Es™afhd then proceed with the bones
further down the skeleton graph. Thus, it is always guaranteed that for j > i, the start joint i¢ of bone
i is never a child of the start joint jo of bone j. It is also assumed that the bone coordinate systems
of the skeleton model are constructed such that their z-directions encode the directions in which the
respective bones are pointing. Furthermore, the global translation vector t € R? corresponds to the
three-dimensional location of the skeleton’s root joint, the rows of the tensor » € R"bone*3 contain
Rodrigues vectors encoding the bone rotations, the vector | € R™rone contains the bone lengths and
the rows of the tensor v € R™makerX3 contain the relative maker locations, i.e. the locations of the
markers when the position of the attached joints are assumed to be the origin. The resting pose
R € R™eonex3%3 of the animal describes the orientation of the bones when no additional rotations are
applied, i.e. r; = (0,0,0)7 Vi € {1,...,npone}. Here, the frequent usage of the transpose operation
allows to first rotate bones, which are the closest to the leaf joints of the skeleton graph [4]. This has
the advantage that we can enforce constraints on bone rotations with reference to a global coordinate
system that corresponds to the three main axes of the animal’s body. Assume we only model a single
front limb where we only have rotations around the shoulder, elbow and wrist, i.e. Rshoulders Relbow
and Ry.ist, and would like to obtain the new orientation R, of the bone whose start joint is identical
to the animal’'s wrist given its resting pose R..is; While iterating through the skeleton graph starting
from the root joint, i.e. the shoulder. Then we can obtain R, according to

T T \T 5 D
Rnew = (Rwrist Relbow Rshoulder ) Rwrist = RshoulderRelbowaristRwrist (8)

Thus, we can iterate through the skeleton graph from the root to the leaf joints but actually apply the
respective bone rotations in the reversed order.

3.2 Inferring bone lengths and surface marker positions

Reconstructing poses for ntime time points can be archived equivalently to the calibration of a multi-
camera setup as discussed in Section 2.2, i.e. we need to minimize a respective objective function
via gradient decent optimization using the L-BFGS-B algorithm [3]:

Ntime Mcam Mmarker

arg min Z Z Z 8rijllmrij — e 9)

tr,rrlv 1 i -
Vre{l,...,ntime } T=1 =1 j=1
where m;; is the two-dimensional location of marker j in camera i at time point ~ and ¢.;; indicates
whether this marker location was successfully detected, i.e. 6-;; = 1, or not, i.e. 6-;; = 0. The
corresponding projected two-dimensional marker location 7:,;; can be obtained by propagating the
absolute marker positions calculated via Algorithm 1 through the projection function fsp_,op:

m’rij = f3D—>2D (fpose (t7'7 Tr, l> U)j, fia L:ia I;:ia Az) (1 0)

where t, € R? and r, € R™on*3 denote the translation vector and the bone rotations at time point
7. Note how there is a set of pose-encoding parameters t. and r,. for each time point 7 whereas
the bone lengths [ and the relative surface marker positions v, which encode the animal’s skeletal
structure and configuration, are shared across all time points. Thus, if we provide enough time points
where the animal is visible in many different poses, which ideally cover the entire spectrum of the
animal’s behavioral space, we can not only reconstruct the pose of the animal for the given time
points but are also able to learn the structure of the animal’'s skeleton, by inferring the unknown
parameters [ and v.

3.3 Scaling of input and output variables

In general, we always scale the translation vector ¢t and the bone rotations r as well as the resulting
two-dimensional marker locations 2, such that all of them roughly lie within the same range, i.e.

4
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= 640 px and cQ = 512 px, whiglaigendeets-hofharzeaiomhisersgs well as 7. The choice for ¢
was based on the dimensions of the largest arena we used in our experiments, where the maximum
distance to an arena’s edge from the origin of the world coordinate system, located at the center of
the arena, was around 50 cm. The choice for ¢, was based on the maximum bone rotation of the
naively constrained spine and tail joints in our skeleton model, which was equal to 5 rad. The choice
for ¢c; and ¢, were based on the sensor sizes of the cameras we used in our experiments, which were
all equal to 1280 x 1024 px?. Using the normalization constants we obtain the normalized translation
vector t* = L and the normalized bone rotations r* = < as well as the normalized two-dimensional

marker Iocatlons
A% o q
ar = (") = [«
o= () (m - 1) )

for a single two dimensional marker location 7 € R?, such that 1, represents its x- and 7 its y-
coordinate. These normalized variables were used instead of their non-normalized counterparts in
all depicted optimization and pose reconstruction steps.

3.4 Enforcing body symmetry

To improve the inference of bone lengths and surface marker positions we took advantage of the
symmetric properties of an animal’s body, i.e. for every left-sided limb there exists a corresponding
limb on the right side. Furthermore, we also placed the surface markers onto the animal’s fur, such
that the marker-pattern itself was symmetrical, e.g. for a marker that was placed to a position close
to the left hip joint there was a corresponding marker on the right side of the animal. By incorporating
this knowledge into Algorithm 1 we reduced the number of free parameters, i.e. we only optimized
the reduced bone lengths [* € R"one and relative marker positions v* € R"marker*3, where n___ is
the number of asymmetrical bones, i.e. bones along the head, spine and tail, plus the number of limb
bones on the animal’s left side and, equivalently, »n’ . .. denotes the number of the asymmetrical
and left-sided markers. The excluded right-sided limb bones were then enforced to have the same
lengths as the corresponding limb bones on the left side. Additionally, we also applied this concept for
the relative marker locations by mirroring the x-component of the left-sided markers at the yz-plane
to obtain the relative marker locations of the markers on the right side. To implement this we defined
Algorithm 2, which maps the reduced bone lengths I* to the original parameter [.

Algorithm 2
1: function f;«_,;(I*)
2 c+1 > Initialize counter ¢ for right-sided bones
3 foric {1,...n; .} do
4: li <17 > Set asymmetric/left-sided bone length ;
5: if i is left-sided bone then > Check if bone i is on the left side
6 by e 1 > Set right-sided bone length [,,x .
7 c+—c+1 > Increase counter ¢ for right-sided bones
8 return |

Equivalently, we also defined the corresponding Algorithm 3, which maps the reduced relative
marker positions v* to their original counterpart v.
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. v v

2 c+1 > Initialize counter ¢ for right-sided markers

3 forjec{1,...n} ..} do

4: vj v} > Set asymmetric/left-sided rel. marker position v;

5: if j is left-sided marker then > Check if marker j is on the left side
T

6 Ups e 4 <—v;f l,vj’f2,v;-‘3) > Set right-sided rel. marker position v,: .

7 c+—c+1 > Increase counter ¢ for right-sided markers

8 return v

To learn the underlying three-dimensional skeleton model while also enforcing body symmetry,
we then redefined m;; from equation 10 as follows:

mTij = f3D—>2D (fposc (t7'7 Tr, f1"%1 (l*) ) fv**w (U*»]’a 7:1', Eh I;;D Az) (1 2)

and minimized equation 9 with respect to the parameters [* and v* instead of [ and v.

4 Probabilistic pose estimation

4.1 Using a state space model to describe behavioral time series’

To allow for probabilistic pose reconstruction of entire behavioral sequences of length 7', which en-
sures that poses of consecutive time points are similar to each other, we deploy a state space model,
given by a transition and an emission equation

2t = 241+ €, (13)
e =g (%) + €& (14)

where at time point ¢ € {1,...,T'} the state variable z; € R"= encodes the position of the animal as
well as the bone rotations and the measurement variable x; € R"= represents the two-dimensional
surface marker locations in all cameras given by a trained neural network. Thus, the state variable
z contains the global translation vector ¢ as well as the pose-encoding tensor r for time point ¢t and
the measurement variable z; is a constant quantity given for all time points ¢. The function g, given
by Algorithm 4, computes the noise-free measurements of the two-dimensional surface marker loca-
tions z; given the state variable z;. At this point the bone lengths | and relative maker locations v
are already inferred and therefore given. The same applies to the Rodrigues vector 7;, the translation
vector #;, the distortion vector k; and the camera matrix A; of camera i, which we obtained from
calibrating the multi-camera setup. The normalization constants ¢;, ¢, as well as ¢; and ¢, are the
same as in Section 3.3. The probabilistic nature of the model is given by incorporating the two nor-
mally distributed random variables ¢, ~ N (0,V.) and e, ~ N (0, V,.), simulating small pose changes
over time and measurement noise, as well as the initial state zg ~ N (10, Vo), which is also assumed
to be a normally distributed random variable. Thus, the state space model is entirely described by
the model parameters © = {ug, Vo, V., V,}. This allows for inferring a set of expected state vari-
ables z = {z1, ..., zr} given our measurements x = {x1,...,z7} in case we have a good estimate for
the model parameters ©. Alternatively, we are also able to calculate a set of model parameters O,
which, given an estimate for the state variables z, maximizes a lower bound of the model’s evidence,
i.e. the evidence lower bound (ELBO). The former is equivalent to the expectation step (E-step) of
the expectation-maximization (EM) algorithm, which can be performed by applying the unscented
Rauch-Tung-Striebel (RTS) smoother, whereas the latter is identical to the algorithm’s maximiza-
tion step (M-step), in which new model parameters are calculated in closed form to maximize the
ELBO [8].
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1: function g(z;)

2 t < ci(2e1, 212, 213) > Obtain global translation ¢
3 To < (213, 214, 2t5) > Obtain global translation rg
4 foric {1,..,npon} dO

5: kE<«3(i+1) > Calculate correct index k
6: i <= (Ztks Ztha1s Ztht2) > Obtain bone rotation r;
7 m3p < fpose (£,7,1,0) > Obtain 3D marker locations given [ and v
8 foric {1,..,ncam } dO

9: fOI'j € {17 0y nmarker} do

10: k < 2nmarker (1 — 1) + j > Calculate correct index k
11 map <+ f3p_op (mdD], ity by A ) > Obtain 2D marker locations given 7, i, k and A
12: Ty e -1 > Normalize x-coordinates
13: T oy 2 — 1 > Normalize y-coordinates
14: return x;

4.2 Theory of the expectation-maximization algorithm

While the EM algorithm was first introduced by Dempster et al. [5], we follow the concepts and
notations stated by Bishop [1] and Murphy [9]. To derive a formulation of the ELBO we first note that
the model’s joint distribution p (z, z) is equal to the product of the model’s likelihood p (x|z) and prior

p(2):
p(z,2) =p(z]2)p(2). (15)

Additionally, we also note that the mutual dependency of the model’s marginal likelihood p (z), pos-
terior p (z|x), likelihood p (z|z) and prior p (z) is given by Bayes’ theorem:
p (zlz) p (z) = p (z[2) p (2)-

We now define an arbitrary probability density function q (z) over our state variables z, for which we
know the following statement is true by definition:

/q(z)dz: 1.

Multiplying equation 17 with an arbitrary constant ¢ yields:

c/q(z)dz:/cq(z)dz:c.

We can now replace the constant ¢ with a function independent from the state variables = without loss
of generality. If we choose this function to be the model’s marginal log-likelihood Inp (x), we obtain:

(16)

(17)

(18)

[a@mp@)dz=1np () (19)
and note that, due to equation 17 and 18 respectively, the marginal log-likelihood In p (z) is actually
independent of the probability density function ¢ (z). Next, we can use equation 15 and 16 to de-
rive a relationship between the marginal log-likelihood Inp (z), the Kullback—Leibler (KL) divergence
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inp (@) = [ a(2)lnp(z)d: (20)

_ / a(z) 1np(z|f)|§)(”“")dz (21)

_ / a(z ‘;(Z)dz (22)

Jumie 0

Jreni

- fac ( péf;f’ W) &

_ / a(z )dz— / (=) In p(fi";)dz (26)

=L+K (Q||p) (27)

with £ = [q(z)In 222 d> and KL (ql[p) = — [a(z)In2ZE)dz. The KL divergence is a distance

measure between the probability density functions q and p and as such always larger or equal to
zero:

KL (¢q/lp) = 0 (28)

with equality KL (¢||p) = 0 if ¢ = p. When we add the ELBO £ to equation 28 and combine the
result with the derived definition of Inp (z), it becomes clear that the ELBO L is a lower bound of the
marginal log-likelihood:

Inp(z) = L+ KL (¢||p) > L. (29)

If we now acknowledge that we also require the model parameters © to compute the above quantities,
i.e.

Inp (z|0) =L(q @)+KL(qu) (30)
_ ) [ CIn0),,
_/ 2y P20) /q( i P (31)
_ N " ZPE8) N o PEO)
‘( p(el0)dz + [azm P d) JaemP P @)
> L (q (33)
/ 2)Inp (2|©) dz — KL (¢||p) , (34)

we can start building an understanding for how the EM algorithm works. In the E-step we are hold-
ing © constant and maximize £ (q, ®©) with respect to g, i.e. given a current estimate for the model
parameters O we infer the probability density functions of our state variables p (z|z, ©%), such that
q(z) = p(z|z, ©y), making the KL divergence KL (q||p) become zero, i.e. KL (q||p) = KL (p||p) = 0,
and the marginal log-likelihood In p (z|©;) become equal to the ELBO L (¢, ©). Here, setting q(z) =
p (z]z, ©%) maximizes the ELBO L (q, ©) due to the equality given by equation 34 and the previously
mentioned fact that the marginal log-likelihood In p (z) is actually independent of the probability den-
sity function q (z). Subsequently, in the M-step we are holding q constant and maximize L (q, ©) with
respect to © in order to obtain a new set of model parameters O, 1, leading to an increased marginal
log-likelihood Inp (|©x11), as the KL divergence becomes greater then zero again, i.e. KL (¢||p) > 0
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Inp (2[0©) > L(q,0) (35)
_ p(z,2]0)
—/p(z\ac,@k)lnmdz (36)
= /p(z\x,@k)lnp(x,z@)dz—/p(z\x,@k)lnp(z\x,Gk) dz (37)
:Q«xmg—/p@m@wmpMa@ww (38)

with Q(0,0) = [p(z|z,0k)Inp (z,2|0) dz. We note that the latter term is independent of © and
can be omltted since our goal is to optimize the ELBO L (q, ©) with respect to ©. Therefore, instead of
maximizing the ELBO £ (q, ©) directly, we can just maximize the function Q (©, ©;). We furthermore
notice that Q (0, ©;) has the form of an expectation value, i.e. we can obtain Q (0, ©) by taking the
expectation of Inp (z, z|©) with respect to z:

Q(0,05) = E[lnp(z,2]0)] (39)

where E [lnp (z, 2|©)] is conditioned on z and Oy, i.e. both quantities are given. With this we finally
arrive at the essence of what is done during the M-step, i.e. maximizing Q (0, ©;) with respect to ©
to obtain new model parameters Oy 1:

Op4+1 = argmax Q (O, Oy) (40)
©

4.3 The unscented transformation

We are required to approximate expectation values to perform the E-step, i.e. when applying the
unscented Kalman filter and the unscented Kalman smoother (Algorithm 7 and 9), as well as the
M-step, i.e. when maximizing Q (0, ©;) (equation 39), as we can not compute them analytically [8].
These expectation values are of the form:

Em@nz/p@hwwy (41)

where h is an arbitrary function and y € R¢ an arbitrary normally distributed random variable, i.e.
y ~ N (m,X). We can obtain such approximations using the unscented transformation f,;, which was
first introduced by Julier et al. [7] and is defined in Algorithm 5. Given the mean m and the covariance
¥, the unscented transformation f,; generates so called sigma points ) € R?¢+1x4 whose locations
are systematically spread around the mean m based on the covariance X:

Algorithm 5

1: function f(m, X)

2 L+ fcholesky (Z)

3 yl —m
4 foric{2,...,d+ 1} do
5: yi<—m+\/d+)\LTi
6
7
8

foric {d+2,..,2d+1} do
y,-%m—\/d—i—)\LTi

return )

Here fonolesky (2) denotes the Cholesky decomposition of matrix 3, which computes a lower trian-
gular matrix L such that LLT = ¥, and X can be calculated as follows:

A=a?(d+k)—d (42)
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2d+1 2d+1
~ Y wih(Y) = Zwl fur (m, X);) (43)
i=1
with the weights w:
A
= — 44
R 44
1 .
which due to our choice of a and « simplifies to:
wy; =0 (46)
W €{2,...,2d + 1}. (47)

Y= 9g

4.4 Expectation step

In the E-step we need to infer the probability density function of the latent variable z; for all time
points ¢ of a behavioral sequence, given the set of all measurements = and the model parameters O,
noted as p (z:|x, ©). Since all random variables of the model are assumed to be normally distributed,
this property is maintained for the latent variable z; as well. Therefore, z; is drawn form a normal
distribution with mean y; and covariance Vi, i.e. z; ~ N (u, V;). By using all measurements = of
the sequence for the inference of p (z:|z,©) at time point ¢, information of the past as well as of
the future is processed, which is what the unscented RTS smoother is used for. However, to derive
the equations of the smoother we first need to focus on the inference when only information of the
past is available, i.e. we want to infer p (z|z1, ..., ¢, ©) where only measurements until time point ¢
are given, which can be achieved by utilizing the unscented Kalman filter. To avoid confusions, we
denote mean values and covariance matrices obtained from the unscented Kalman smoother as /i,
and V;, whereas those calculated via the unscented RTS smoother are denoted as /i; and V.

4.4.1 The unscented Kalman filter

The unscented Kalman filter is an iterative algorithm, which calculates the filtered values for the mean
fix and covariance V, at a time point ¢, based on the filter output for these values ji;_; and V,_, at
the previous time point ¢ — 1 as well as the measurement variable x; for time point ¢. The inference
scheme for obtaining p (z¢|z1, ..., z:—1, ©) is given by Algorithm 6 and 7 [11,12]:

10
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1. funetion fuug, (fi—1, Vi1, V2, Va

2: Z+ 1ty ( -1, Vt 1> > Form sigma points Z
3z Yty > Compute predicted mean z
4 P+« V. + Z?’;Z“ wi(Z;i —2)(Z — 2)" > Compute predicted covariance P
5: Z + fu (2, P) > Form sigma points Z
6: X <+—g(2) > Propagate sigma points through emission function g
7: T+ ZQ”ZH > Compute predicted mean &
8 S« V,+ ijz+1 wi(X; — 2)(X —z)T > Compute predicted covariance S
o: foriec {1,...,n,} do

10: if z;; is missing measurement then

11: for j € {1,....,n,} do

12: Sij 0 > Set rows of missing measurements to 0
13: Sji 0 > Set columns of missing measurements to 0
14: Sii 1 > Set diagonal entries to 1 to allow computing S—*
15:  C ¢ Sty (2, - 2) (a0 —1)" > Compute cross-covariance C
16: foriec {1,...,n,} do

17: if x;; is missing measurement then

18: for j € {1,....n,} do

19: Cji <0 > Set columns of missing measurements to 0

200 K<« CS™! > Compute filter gain K

21: T Ty —X

22: foriec {1,..,n,} do

23: if x;; is missing measurement then

24: Z;i < 0 > Set entries of missing measurements to 0

25: fir < Z+ KZ > Compute filtered mean /i,

26: Vi« P—KCT > Compuite filtered covariance V;

27: return i, Vt

To obtain values for filtered means i = {/i, ..., fir} and covariances V = {Vj, ..., V} for all time
points one needs to iterate through the entire behavioral sequence:

Algorithm 7
1: function fy¢ (1o, Vo, Va, Vi)
2 fo < 1o

3: Vo<W

4

5

forte {1,...,7} do
lata ‘715 — fukfo (lat—17 ";vt—l) V27 VJ})
6: return i,V

4.4.2 The unscented RTS smoother

The unscented RTS smoother is also an iterative algorithm, which calculates the smoothed values for
the mean /i, and covariance V; at a time point ¢, based on the smoother output for these values fi;;1
and V. at the next time point ¢ + 1 as well as the corresponding output from the unscented Kalman
filter /i; and V; for time point ¢. The inference scheme for obtaining p (z|x, ©) is given by Algorithm 8
and 9 [12]:
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2: Z <+ fu (ut, Vt> > Form sigma points Z (1)
3z Yty > Compute predicted mean z (3.1)
4 P+ V.+ 22”2“ wi(Z; — 2)(Z — )" > Compute predicted covariance P (3.2)
5 D« ZQ”Z“ (Zi — ) (2 — 2)T > Compute cross-covariance D (3.3)
6: Gy + DP7! > Compute smoother gain G, (4.1)
7 fe < fir + Gy (figr1 — 2) > Compute smoothed mean ji; (4.2)
8 ViV, + (th/tﬂ - D) GT > Compute smoothed covariance V; (4.3)
9:  return i, Vi, Gy

To obtain values of the smoothed means /i = {ji, ..., ir} and covariances V = {Vj, ..., V} for all

time points one needs to run the forward filtering path and then iterate backwards through the entire
behavioral sequence:

Algorithm 9

1: function (0, Vo, Vz, V)

2: i, Ve furp (110, Vo, Va, Vi)

3: /fT — [fT

4: Vi < Vp

5 forte {T—1,...,0} do

6 fi, Vi, Gy < i, (ﬂta Vi, b1, Vt+1,Vz>

7. return i, V,G

Here, the set of all smoother gains G = {Gy, ..., Gr_1} is heeded for performing the M-step later

on.

4.4.3 Enforcing anatomical constraints

The plain formulation of the unscented RTS smoother does not allow constraining the state variables.
However, in order to enforce joint angle limits we need to ensure that Rodrigues vectors encoding
bone rotations stay within specified limits. Therefore, we introduce a mapping function £ -_, , which
allows for mapping a redefined state variable z; € R™= onto the original one z; € R"=, while enforcing
that entries of z; corresponding to bone rotations stay within their respective lower and upper bounds.

The respective mapping function £, is given by Algorithm 10.

Algorithm 10
1: function f -, (z})
20 t* (20,20 2fs) > Obtain normalized global translation ¢*
3 1o < (23,254, 25) > Obtain normalized global rotation
4 for i € {1, .., npone} dO
5 k+3(i+1) > Calculate correct index k
6: R N S > Obtain normalized bone rotation r;
7: forj € {1,..,3} do
8 n < erf <§r;“]) >Map 77, € (—inf,inf) ton € (-1,1)
9 Tij < bOij + % (blij — bOij) (1 + n) > Compute Tij € (bOij7 blij)
10: 2= (51 e P ) > Obtain z; via concatenation
1 return z

12
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vector r;, which encodes the rotafiGieBf Besisear aha et e mpisipientRst function, i.e. the error function

given by:
erf (y / exp t2 dt 48
\f (48)

for y € R. In order to enforce joint angle limits we just replace the original transmission and emission
equation in our state space model given by equations 13 and 14 with:

2=z te (49)
rr =g (f,5, (2F)) + € (50)

In the following we always refer to the state space model given by equations 49 and 50 and therefore
also to the redefined state variables z* but we drop * in the notation.

4.5 Maximization step

In the M-step we find a new set of model parameters O, by maximizing the ELBO L, given the
smoothed means /i and covariances V' as well as the smoother gains G, which we obtained in the
E-step using a current estimate of the model parameters ©.

4.5.1 Obtaining new model parameters by maximizing the evidence lower bound

We can take advantage of the specific structure of the state space model when maximizing the ELBO
L [8]. In the state space model the state variables fulfill the Markov property, i.e. each state variable z;
only depends on the previous one z;_;. Based on this we can compute the model’s joint distribution:

T
p(z,2) =p (20 Hp (2t|ze—1) p (ze|21) - (51)
t=1

When we now take the logarithm of the joint distribution and acknowledge that the model parameters
O are also required for computing the joint distribution we obtain:

T

T
Inp (2,210) = Inp (20/m0, Vo) + Y _Inp (2|21, Vo) + > Inp (welar, Vi) - (52)
t=1 t=1

However, to maximize Q (0, ©;) we actually need to consider the expectation value of Inp (z, z|©):

Q(0,0;) = E[lnp (z, 2(0)] (53)
T T

= E [lnp (2000, Vo)l + S E[Inp (ztlz-1, Vo) + S E [lnp (weze, Va)] (54)
t=1 t=1

=Ily+1, +1, (55)

with Iy = E[Inp (20lp0, Vo), I = Sr_ E[Inp (2|21, V2)] and I, = S5 E[Inp (4|2, V)] If we
now acknowledge that all random variables in our state space model are normally distributed, i.e. z; ~

N (ﬂt, V;) it becomes clear that computing Q (©, ©,) only involves evaluating the expectation values

of log-transformed normal distributions (see Appendix A). Consequently, we can obtain simplified
terms for the individual components Iy, I, and I, of Q(©,0y) using the smoothed means /i and
covariances V' as well as the smoother gains G. For I, we get:

I = —% In det (27Vp) — %u (V6 'E [(20 — 10) (20 — )] ) (56)

- —% In det (27Vp) — %tr (Wl (Vo + (fio — o) (a0 — MO)T)) . (57)
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evaluating the expectation values of the underlying log-transformed normal distributions in I,. For
each of the T transition steps we generate the pairwise mean vector ji; € R?"=:

. fut
= 58
et (ut_1> (58)
as well as the pairwise covariance matrix V; € R2"=*2n=:
- Vi Vth1T>
VvV, = . A 59
! (thVZ Vi1 (59)

and calculate the pairwise sigma points P, as follows:

Py = <fli> = fu (ju, V2) (60)

where concatenating the incomplete pairwise sigma points B; € R4 1xn= gand A4, € R¥=+1x"= gjves
P, € Rin=+1x2n= Gonsequently, the weights @ associated with the pairwise sigma points P; are then
given in accordance with the concepts discussed in Section 4.3:

Wy = 0 (61)

yendng, + 1} (62)

A simplified term for I is then given by:

I, = —g Indet (27V}) — ;itr (VZ_IIE [(zt —2zi-1) (2 — Zt—l)TD (63)

T T d

:—2lndet(27rV)—2tr< (TZ [ 2t — 2z-1) (2t — 2t— 1)T}>> (64)
T T T o nz+1

Sy Indet (27V,) — 5 ; ( ( z_: i (Bii — Asi) (Bii — .Ati)T>) ) (65)

To evaluate the expectation value in I, it is sufficient to just use the normal sigma points Z; =
fut (ﬂt, VZ) and propagate them through our emission function g:

N[ =

T

I = _g Indet (27V;,) - % >t (Vo 'E [ — g (2)) (w0 — g (20)]) (66)

t=1

= —g Indet (27V,) — %tr (‘fml (; ZE {(l’t —g(2)) (v — g (%))ﬂ)) (67)

t=1

T T T . 1 2n,+1 .
~ =g Indet (27V2) — 5 o (Vx (T > wi (e —g(Zn)) (1 — g (2)) )) : (68)
t=1

=1

To finally obtain new model parameters Oy1 = {10 k+1, Vok+1, Vakt1, Vak+1} We still need to differ-
entiate Q (0, ) with respect to ug, Vo, V., and V., set the resulting derivatives to zero and solve them

14

rint
ade


https://doi.org/10.1101/2021.11.03.466906
http://creativecommons.org/licenses/by/4.0/

ICHeT RorCermid e SERAHVENE e meadi @R Wi aINIeP S v Ve o ooy R TSR RER RN T hace

available under aCC-BY 4.0 International license.

d
—Q 0,0 —1 69
" (0,0;) = i 0 0 (69)
= Vo (o — po) (70)
d
06,00 = Iy 7
=W+ o (V4 (o — ) (o — o) ") Vo™ (72)
=73 0 5 0 0 Ho — Ho) (Mo — Ho 0
d d
v Q(0,0;) = d—VzIZ (73)
T 7z | =l
= —5‘/2_1 + 5 Z v, (T Z w; (Be; — Agi) (Br; — Ati)T> v, (74)
=1 i=1
d d
v 0(0,0;) = d—VzLE (75)

2n,+1

Z wi (vt — g (21;)) (2t — 8 (Zn’))T) v, L (76)

T
) Ve 2 ;Vx (T

=1

Setting these derivatives to zero and solving for ug, Vg, V. and V,, yields the following:

to = flo (77)
Vo = Vo + (fio — o) (fio — p0)" (78)
T 4n.+1
Z Z Wi (Br; — Ati) (Bri — Awi)" (79)
t 1 =1
| I 201
c= 50 D wilwe—g(2w) (e — g (20) (80)
t=1 =1

The resulting values for p x+1, V2 x+1 and V, x4+1 are then given by equations 77, 79 and 80. To
obtain V; 1+1 Wwe need to substitute 1 ;41 into equation 78, giving Vg ;41 = Vo. Lastly, we still need to
adjust the solution for V,, ;.41 to also account for missing measurements. Besides that, we note that
it is sufficient to only compute the diagonal entries of V,, ;.;1, since we enforce the covariance matrix
of the measurement noise V, to be a diagonal matrix. Thus, the final solution for a diagonal entry
j€{l,....,n.} of V141 is given by:

2n,+1

diag (Vo k+1); Z% > wi(wtj—g(zti)j)2 (81)

=1

where the function diag gives the diagonal entries of the input matrix, &;; indicates if at time point
t the entry j of z; is associated with a missing measurement, i.e. §;; = 0, or not, i.e. §;; = 1, and
Tj is the total number of successful measurements for entry j in the entire behavioral sequence, i.e.

T = 23:1 5tj-
4.6 Convergence of the expectation-maximization algorithm

We calculate the changes in the model parameters © in each iteration & of the EM algorithm to
check for convergence [1]. Particularly, we are computing the vectors Ay € R"=, Adiag (Vp) € R,
Adiag (V) € R™ and Adiag (V,) € R™, which contain the relative changes of 1, Vo, V, and V,, at
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Apg; = abs (Mo’ki_uo’k_li Vie{l,..,n.} (82)
Ho,k—1;
Vork:: — Vo k—1.:
Adiag (Vp), = abs < Dby "0k 1”) Vie{l,..,n;} (83)
Vb,k—lii
Vs — Vak—14
A diag (V2), = abs ( ki — ok 1%) Vie{l, .. n.} (84)
‘/tzvk_lii
Vor —Var1:\
Adiag (V); = abs ( kl‘l/ L 1“) Vie{l,..,ng.} (85)
z,k—1;;

where abs is a function returning the absolute value of its input argument and g, Vo, V2 and
V.., are the model parameters at iteration k whereas i -1, Vo r—1, V2 x—1 and V, ;_, are those at
iteration &k — 1. We only focus on the diagonal entries of the covariances V; and V, since a fraction of
their off-diagonal entries is expected to be zero. Using these relative changes we construct a vector
Av € R3%=+"= containing all relative changes via concatenation:

Av = (Apg, Adiag (Vo) , Adiag (V2) , Adiag (V)T (86)

and assume convergence is reached when the mean Ao of Av falls below a threshold ¢;:

1 3n.+ng
AV= ——— Av; < 87
v 3, + 1y ; Vi < €tol ( )

where we set ¢, = 0.05.

4.7 Implementation of the expectation-maximization algorithm

We initialize the mean of the state variables 1o by minimizing the objective function given by equation
9 but keep the bone lengths [ and the surface marker positions v constant and set ngme = 1, i.e. we
only include a single time point in the optimization, which is identical to the first time point of a respec-
tive behavioral sequence. The covariances Vp, V. and V. are initialized as matrices whose diagonal
elements all equal 0.001 and off-diagonal entries are set to zero. To learn new model parameters i,
Vo, Vz and V, we run the EM algorithm, given by Algorithm 11, with the stated initial values using
measurements z obtained from the behavioral sequence. Finally, once the EM algorithm converged,
we use the unscented RTS smoother with the resulting learned model parameters to reconstruct
poses of the behavioral sequence.

Algorithm 11
1: function fgy(po, Vo, Vs, Vi)
2: k<« 0 > Initialize iteration number &
3 Ho.k < o > Initialize state mean
4: Vo < Vo > Initialize state covariance
5: Vi < Vo > Initialize covariance of transition noise
6 Vo — Vi > Initialize covariance of measurement noise
7 AT + inf
8: while A > ¢, do
9: i1,V G = fures (o> Voo, Vaks V) > Perform E-step
10: HOk+15 Vokt1> Vakt1, Vakt1 < fu (ﬂ, Vv, G) > Perform M-step
11: k+—k+1 > Increase iteration number k
12: AV < fio1 (po,k—15 Vo k-1, Va k=15 Vi k=15 Ho,k> Voks Vaks Vi) > Compute change in ©

13: return 10,k s V()’k, Vz,ka Vx,kz
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12, performs the M-step and furigigRefiniegivers oy O ATgH AT it19sScomputes the mean Av of the

relative changes of the model parameters ©.

Algorithm 12

1: function fy(2, V, G)
22 forte{l,..,T}do

B, fut ) ( Vi WGHT»
3: «— f, R , N N
() e () (0 M5,

4. Zy 4~ fut (ﬂt, ‘715)

5: 110,k+1 = fio

6: Voer1 < Vo

7: Vg1 < 7 Z?:l St (B — Ay) (B — Ai)"

8: forje{l,..,n,}do

1 T Mmst1 2

o: Vakt1j; € 75 2o0=1 015 221 wi <$tj -g (Zti)j>
10: return po g1, Vo k1, Va1, Vi kgt
Algorithm 13

1: function i1 (0 k-1, Vor—1, Va k=1, Va k=15 to.k> Vo ks Va ks V)

2: foric {1,....,n.} do
. Ho,k; —H0,k—1;
3 Apg; < abs (7“%_” )
4: Adiag (V),; < abs (W)
. Vadoi Vb1
5: Adiag (V;), < abs <7k{} kilk 1“)

6: foric {1,..,n,} do
7: Adiag (V;), < abs (M)

Vz,kflii
8 Av < (Apo, Adiag (Vp), Adiag (V.), Adiag (V,))"
9: AD ?mzi_nx SUImet A,
10: return Av
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A Evaluating expected values of log-transformed normal distributions

Given a d-dimensional normal distribution pperm With mean p, € R? and covariance V, € R4,
evaluating it for a normally distributed random variable y ~ N (m, X) takes the following form:

1

Pnorm (Y|#ty, Vi) = (27) % det (Vy)_% exp <—2(y — ) VT y - uy)> (88)

where det (V,) € R denotes the determinant of matrix V,. Applying a logarithmic transformation
yields:

1 1 _
In pnorm (y!uy, Vy) = -3 In det (277Vy) ) tr (Vy ! (y— Ny) (3/ - My)T) (89)

where tr (V,) € R denotes the trace of matrix V,,. Noticing that E [yy”| = = + mm™ [8], we can take
the expected value of equation 89 with respect to y and obtain:

E 10 Do (4, Vi) = —5 Indet (22V;) = 3 11 (V18 [y = ) (v — )" ) (90)

= —% In det (27V,,) — %tr (Vy*1 (E + (m = py) (m — uy)T)) (91)

B Derivatives

Given a d-dimensional vector v € R?, two symmetric matrices M € R%*¢ and C' € R as well as a
scalar ¢ € R, we can obtain the following derivatives:

d%} tr (CUUT) =Cv+CTv =200 (92)
d _ -1
FIYi Indet (cM) =M (93)
S (M10) = (M) O (M) = Mo (94)
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