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Abstract

The phenotypic e�cacy of somatic copy number alterations (SCNAs) stems from their in-
cidence per base pair of the genome, which is orders of magnitudes greater than that of
point mutations. One mitotic event stands out in its potential to significantly change a cell’s
SCNA burden–a chromosome missegregation. We present a general deterministic frame-
work for modeling chromosome missegregations and use it to evaluate the possibility of
missegregation-induced population extinction (MIE). The model predicts critical curves that
separate viable from non-viable populations as a function of their turnover- and missegre-
gation rates. Missegregation- and turnover rates estimated from a PAN-cancer scRNA-seq
dataset of 15,464 cells are then compared to predictions. The majority of tumors across all
cancer types had missegregation- and turnover rates that were within viable regions of the
parameter space. When a dependency of missegregation rate on karyotype was introduced,
karyotypes associated with low missegregation rates acted as a stabilizing refuge, rendering
MIE impossible unless turnover rates are exceedingly high. Intra-tumor heterogeneity, in-
cluding heterogeneity in missegregation rates, increases as tumors progress, rendering MIE
unlikely.
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Author Summary

When a cell missegregates a chromosome while dividing, the chance is high that its two
daughter cells will behave drastically di↵erent from each other and from their parental cell.
Chromosome missegregations are therefore one of the most powerful forces of phenotypic
diversity. We developed a mathematical model of chromosome missegregations that allows
for this cell-to-cell diversity to be accounted for. The model serves to help understand
how selection acts upon cells with versatile chromosome contents, as a tool for genotype-to-
phenotype mapping in various microenvironments. As a first application example we used
the model to address whether there exists an upper limit on missegregation rate, beyond
which cancer populations collapse. Chromosome missegregations are common. They occur
in 1.2-2.3% per mitosis in normal cells [1] and in cancer cells their rate is between one and two
orders of magnitudes higher [2]. The model revealed that the upper limit of missegregation
rate is a function of the tumor’s turnover rate (i.e. how fast the tumor renews itself). In
heterogenous populations however, cells with low missegregation rates protect the population
from collapse. Intra-tumor heterogeneity, including heterogeneity in missegregation rates,
increases as tumors progress, rendering missegregation-induced extinction unlikely.

1 Introduction

Aneuploidy, defined as a chromosome number that is not the exact multiple of the haploid
karyotype, is common across several cancers, including non-small-cell lung, breast, colorectal,
prostate cancer and glioblastoma [3–7]. The main driver of aneuploidy is chromosomal
instability (CIN). CIN-induced genomic changes can be subdivided into two categories: the
whole gain or loss of a chromosome (numerical CIN) or changes within localized regions of
a chromosome (structural CIN).

Thompson and Compton used live cell imaging to evaluate the fidelity of chromosome
segregation, finding missegregation rates ranging from 0.025-1 % per chromosome per mito-
sis [2]. We distinguish between unpredictable and predictable factors governing a cell’s risk
to missegregate. Unpredictable events include DNA double-strand breaks (DSBs). Their
location in the DNA appears to be random, yet has been shown to influence the likeli-
hood of mitotic delay and subsequent missegregation events [8–11]. This delay allows for
DNA damage response (DDR) during mitosis and thus protects the genome from structural
damage, but at the expense of increasing risk for numerical instability [12]. Predictable
factors that increase the incidence of missegregations include high ploidy [13] and subop-
timal kinetochore-microtubule attachment stability. Tetraploid cells are more likely to fail
to cluster centrosomes into two poles, leading to multipolar division. While multipolar di-
visions are likely lethal, multipolar mitosis can also cause the poles to coalesce leading to
a pseudobipolar division and chromosome missegregations ( [14]). Kinetochore-microtubule
attachment stability must fall within a narrow permissible window to allow for faithful chro-
mosome segregation [12, 15–17] and is influenced by both cell-intrinsic [12] and extrinsic
factors. An example of extrinsic factors are Vinca alkaloids (e.g. vincristine, vinblastine),
– a class of cytotoxic drugs which act directly upon the microtubule network [18], caus-
ing increased missegregation rates [19]. But even cytotoxic drugs not directly targeting the
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microtubule network have been shown to significantly impede segregation fidelity, through
aforementioned stimulation of DDR and mitotic delay [20]. Drugs targeting the DDR are
likely to induce numerical instability [20], suggesting that DNA-damaging therapies impart
part of their cytotoxicity by interfering with chromosome segregation fidelity [21]. Changes
of the tumor microenvironment such as glucose deprivation, hypoxia and acidification have
also been linked to CIN [22,23].

Anueploidy and CIN are often coupled and can create a positive-feedback loop in which
further structural or whole chromosome aberrations accumulate over time [24,25]. But nor-
mal cells do not tolerate missegregations – aneuploid daughter cells are immediately cleared
from the cell pool through apoptosis during G1 following a missegregation [26, 27]. The
sudden genome-dosage imbalance caused by a missegregation event induces p53-mediated
cellular senescence in the subsequent G1 phase [13,26–28]. While cancer cells evolve to more
proficiently avert missegregation-induced cell death, missegregations still activate p53 in the
G1 phase, even among cancer cells [28], albeit less reliably [29]. High levels of CIN have
been observed to be tumor suppressive in breast [30], ovarian, gastric, and non–small cell
lung cancer [31]. The above suggests that a non-monotonic relationship between cell fitness
and CIN likely exists, with a threshold of a critical level of CIN (which may be cancer type
specific). A possible therapeutic avenue to target and exploit the degree of CIN in patients
is therefore guided by the premise that a Goldilocks window exists for cancer to thrive.

Gusev et al. [32] modeled the evolution of cell karyotypes via chromosome mis-segregations
as a random branching walk. Using this model, the authors estimated the fraction of clones
surviving as a function of mis-segregation rate and approximated a theoretical limit for
mis-segregation rate for a diploid population to survive without a complete loss of any chro-
mosome type. In a follow-up publication, the same authors used a semianalytical approach
to analyze the asymptotic behavior of this model, simulating evolution of the copy number of
just a single chromosome type [33]. They compared various mechanisms of chromosome mis-
segregations with respect to their ability to generate a stable distribution of chromosome
numbers. Elizalde et. al. explored the phenotypic impact of CIN using a Markov-chain
model and confirmed the existence of optimal chromosome missegregation rates [34]. The
authors assumed that cells were not viable if they contained nullisomy (the loss of all copies of
a chromosome), paired with a corresponding upper limit of eight copies. These assumptions
were justified through a sensitivity analysis [35]. The main conclusion of the paper estab-
lished that missegregation rates drove heterogeneity more than the age of the tumor. Under
what circumstances missegregations lead to tumor extinction however remains unclear. Here
we derive necessary conditions that drive a tumor population to nonviable karyotypes, typ-
ically through either nullisomy or an upper limit on the number of sustainable copies per
chromosome (e.g. eight [34]). We further refer to these conditions as missegregation-induced
extinction (MIE).

The remainder of this manuscript is structured as follows. We first motivate the existence
of MIE with a phenomenological equation of ploidy movement that takes the form of a
di↵usion-reaction equation. A heuristic argument comparing the time scales of net growth
and missegregation will imply the existence of turnover and missegregation rates that allow
for MIE. We then develop our mathematical framework–a general coupled compartment
model of chromosome mis-segregations. This model is simplified to a version more amendable
to theoretical analysis, while still retaining the qualitative behavior and form. Theoretical
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results are derived and presented on the existence of MIE and when it can be evaded. Next,
we derive turnover and missegregation rates from a PAN-cancer scRNA-seq dataset from
14 tumors and quantify their relationship to ploidy and to the copy number of individual
chromosomes. Finally, we use the scRNA-seq derived measurements to predict which tumors
are most sensitive to MIE.

Key terms and definitions

• A chromosome mis-segregation segregates chromosomes asymmetrically among daugh-
ter cells, causing an aneuploid state.

• Aneuploidy := a chromosome number that is not a multiple of the haploid complement.
An euploid cell carries a multiple of the same set of chromosomes. Haploids (1 copy
of each chromosome), diploids (2 copies) and polyploids (> 2 copies) are all examples of
euploidy.

• Karyotype := a numeric vector with one entry per chromosome type (e.g. we have
22 types when considering the set of human autosomes). Each entry indicates the copy

number of that type of chromosome. Each karyotype corresponds to a compartment of
a multi-compartment ODE.

• Ploidy := the total number of chromosomes occurring in the nucleus of a cell. Also
referred to as DNA content in the continuous setting.

• Karyotype composition := the relative frequency of all karyotypes in a population at
a given time.

• Set of viable karyotypes := all possible karyotypes associated with non-negative growth
rates. This can either be a single interval (e.g. 22 - 88 chromosomes) or multiple intervals
of karyotype viability interspersed between nonviable regions.

2 Results

2.1 Cell turnover rates and susceptibility to MIE

Consider a simple birth-death process on ploidy space, where, for the moment, we are inter-
ested only in the total amount of DNA content of a cell. If only missegregations facilitate the
movement in DNA content during mitosis, one can crudely approximate the total population
n(p) as a function of DNA content p by the following partial di↵erential equation (PDE):

@n

@t
= (�� µ)n+ ��

@2n

@p2
, (1)

where �, µ are the birth, death rates, respectively and � is the missegregation rate. For
boundary conditions, we make the assumption that there exists p 2 (pmin, pmax), such that
for DNA content outside this range, the population cannot survive. We also assume that
r = �� µ > 0, that is, in the absence of missegregation, this population is favored to grow.

We now appeal to a heuristic argument of time scales. Let Tp be the timescale on
which missegregation events happen, which, in Fickian di↵usion is proportional to: Tp ⇠ L2

p,
where Lp is the characteristic amount of DNA content shifted during a missegregation event.
Because only dividing cells mis-segregate, we have: Tp ⇠ L2

p/(��). Similarly, let Tr be
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the time scale on which the cell population grows: Tr = 1/r. If Tp ⌧ Tr then extinction
via missegregation (hereby “missegregation-induced extinction” or MIE) is possible. The
inequality implies that MIE can occur if

L2
p ⌧

��

r
=

��

�� µ
. (2)

An important takeaway from this simple argument is that the characteristic scale Lp can
play a significant role and is tied to the typical change in DNA content when a missegregation
occurs. The narrower the interval of viable DNA content, the weaker the condition, i.e. more
combinations of turnover and missegregation rate will exist that lead to MIE. . Second, it
is interesting to see that in theory, one does not need to increase missegregation, but rather
can also increase birth and death rates in such a way that the quantity (1� µ/�) decreases.
This suggests that tumors with high turnover rates may be more susceptible to MIE.

2.2 General discrete model of chromosome mis-segregations

Equation (2) was derived under the assumption that shifts in DNA content happen on a
continuous scale. But in reality chromosomes are discrete units of information. To inves-
tigate whether the impact of turnover rate on MIE remains valid in the discrete setting,
we developed a general compartment model that describes the evolution of populations by
their karyotypes. Let the M -dimensional vector~i = (i1, . . . iM) contain the number of copies
ik � 0 of the kth component. An example would be looking at the copy number of whole
chromosomes (i.e. M = 23). Alternatively one can parse the chromosome into the p, q
arm (i.e. M = 46). Movement between the compartments occurs via missegregation. We
encapsulate this information in the tensor q with non-negative components q~i~j, which is the

probability with which a cell from compartment ~i moves to compartment ~j (Fig. 1). We
require a conservation of copy number (which will hold for any resolution). Let ~i be the
parent and ~j(1) and ~j(2) be the o↵spring, then it must be that

2ik = j(1)k + j(2)k , for all k. (3)

This imposes structure on q since 0  jk  2ik, we must have q~i~j = 0 if jk > 2ik for any k,
thus q will be sparse for many applications.

We are now in a position to write a general M -dimensional birth-death process:

dn~i
dt

=
X

~j

�~jn~jq~j~i

| {z }
Inflow

��~in~i(1� q~i~i)| {z }
outflow

� µ~in~i|{z}
death

, (4)

where �~i, µ~i are the state-dependent birth and death rates, respectively. Equation (3) enters
into (4) with the flow rate �q. Model parameters are summaryzied in Table 1.

We note that in the absence of missegregation, we require q~i~j = �~i~j where we are using

the vector Kronecker delta that is 1 if ~i = ~j and 0 otherwise. This uncouples equation (4)
to the classic deterministic birth-death process dni/dt = (�i � µi)ni as expected.

5

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2022. ; https://doi.org/10.1101/2021.11.03.466486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.466486
http://creativecommons.org/licenses/by-nc/4.0/


Table 1: Common model parameters used throughout the manuscript

Parameter Definition

~i state vector of copy numbers defining a karyotype

n~i cell representation of karyotype ~i

q~i~j probability that a cell of karyotype ~i will give rise to a cell of karyotype ~j

� dividing cells /day

µ dying cells /day

� missegregations /chromosome copy /division

Lp characteristic amount of DNA content shifted during a missegregation event

Tp timescale on which missegregations happen

r net growth rate (�� µ)

Tr timescale on which growth happens Tr = 1/r

We define the shift, t, as the net di↵erence in the copy number of a given chromosome
type k, between the parental cell and its daughter cells. t can be positive or negative and
accounts for the fact that missegregations can partly or entirely compensate each other. The
probability P (t|ik), that a cell with ik chromosome copies will have a daughter cell with a
shift of t copies has been derived by Gusev et al. [33] as:

P (t|ik) =
ikX

odd/even:zk=|t|

✓
ik
zk

◆
�zk(1� �)ik�zk0.5zk

✓
zk
zk�t
2

◆
, (5)

, where missegregations are assumed independent and � is the missegregation rate per
chromosome copy per division. If t = 0 this means that both daughter cells have the same
copy number for chromosome k. If t 6= 0, then there is one cell with ik + t copies and one
cell with ik � t copies. We can thus calculate the probability of transitioning from karyotype
~i to ~j as:

q~i~j =

(Q
k P (0|ik) if ~i = ~j,

Q
k P (ik � jk|ik) +

Q
k P (jk � ik|ik) otherwise,

(6)

Note there is no inconsistency, if 2~i = ~j(1) + ~j(2), then q~i~j(1) = q~i~j(2) , which satisfies the
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copy number conservation. Further, if we let � ! 0 we would have:

q~i~j =

(
1 if ~i = ~j,

0 otherwise,

which we recognize as the Kronecker delta defined above.

Missegregation

A. Missegregation event B. Individual cellular processes

Regular mitotic event

Mitotic event with missegregation

Regular cell death

Figure 1: Mathematical modeling of chromosome missegre-

gations. (A) Missegregation event. During anaphase, one daughter
cell improperly takes both chromosomes leading to aneuploidy. Note
the copy number conservation assumption here. (B) Model’s indi-
vidual cellular processes. The tensor qjk encodes the probability at
which a cell with copy number j may produce o↵spring with copy
number k (and also 2j � k by copy number conservation). Thus
karyotype j goes through anaphase with faithful chromosome seg-
regations at a rate �jqjj and missegregates into karyotype k (and
2j � k) at a rate �jqjk. Cell death occurs with rate µj .

In contrast to the contin-
uum model given in equation
1, this model takes into ac-
count that chromosomes are
discrete units of information.
We implemented this model
in R, allowing numerical sim-
ulations of karyotype evolu-
tion under variable initial con-
ditions and biological assump-
tions. Finer genomic resolu-
tion leads to more compart-
ments, thereby increasing com-
putational resources required for
numerical solutions. The re-
mainder of this manuscript will
use the resolution of whole
chromosomes to define a kary-
otype. When missegregation,
death and birth rates are inde-
pendent of karyotype, we will
refer to them as homogeneous.
Conversely, intra-tumor hetero-
geneity in either of these rates
will be modeled as a dependency
on karyotype. Homogeneous rates imply that these rates will always stay constant over time.
Constant rates however do not imply homogeneity within the population, since a heteroge-
neous but stable karyotype composition will appear constant despite representing multiple
rates. In summary, this is a flexible framework, o↵ering the possibility to model a variety of
biologically relevant dependencies (e.g. missegregation rate can vary across karyotypes) and
variable genomic resolutions.

2.3 Chromosomal aggregate model

The model given by equation (4) is complicated and cumbersome. A simpler model, amend-
able to analysis involves aggregating all chromosomal data into one index. Alternatively, it
can be thought of as focusing on a dosage-sensitive chromosome, that must be present at
copy numbers between one and five in order for a cell to survive. We note that this implies
that the existence of all but one chromosome is negligible; hence all three terms, “karyotype”,
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Table 2: Su�cient conditions to avoid MIE for various biological scenarios: 1) Only  1 chro-
mosome can missegregate per division; all rates are independent of karyotype (i.e. homogeneous). 2)
Heterogeneous birth-, death-, and/or missegregation rates. 3) Homogeneous missegregation rate.

Scenario Su�cient condition to avoid MIE

1. 8|i� j| > 1 : qij = 0, (µ,�,�) constant � < �c =
1
4

�
1� µ

�

�

2. (µ,�,�) vary with karyotype i 8i: �i(1� 3�i)� µi � �i+1�i+1 > 0

3. � is constant 8i: � < �c =
1

3+�i+1/�i

⇣
1� µi

�i

⌘

“copy number” and “ploidy” become equivalent. Mathematically, there are many ways to
collapse our M -dimensional model to 1D, and one such way is to just sum over all indices
to get the aggregated number of copies:

i = k~ik1 =
X

j

ij. (7)

Then our system is given by:

dni

dt
=

X

j

�jnjqji � �ini(1� qii)� µini. (8)

We will further suppose that the parameters of the model are not dependent on karyotype
prevalence (e.g. �i is not dependent on any ni, such as through a carrying capacity or Allee
e↵ect etc). This allows us to easily write the Jacobian, which is simply the coe�cients of nj

in equation (8)

Jij =

(
�i(2qii � 1)� µi if i = j,

�jqji if i 6= j.
(9)

Let [k,K] with k,K 2 N be the interval (not necessarily finite) of viable karyotypes of
the aggregate model (eq. (8)). The Jacobian (9) contains information on the local behavior
of the system near the extinction state ni = 0 for all i. If all the eigenvalues of the Jacobian
at the extinction point are negative, then MIE occurs. The critical curve that separates MIE
from exponential growth is when the maximum eigenvalue of J is 0.

2.4 Ruling out MIE

Here, we establish su�cient conditions for MIE to not occur based on Gershgorin’s circle
(GC) theorem [36]. The theorem bounds the locations of the eigenvalues in the complex plane
for a given matrix A, with elements aij. The GC theorem stipulates that the eigenvalues
must be contained in the circles with centers aii and radii R =

P
i 6=j |aij|.

Since MIE can be evaded if the maximum eigenvalue exceeds 0, a su�cient condition
is that none of the GCs contain a part of the negative reals. Table 2 describes su�cient
conditions to avoid MIE for various biological assumptions.
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The general problem for arbitrary q can be handled numerically, but analytical conclu-
sions can only be made for specific forms of q. The conditions required are given by finding
when the GC’s are all contained in the positive half-plane:

min
i

"
�i(2qii � 1)� µi � �i

X

j 6=i

qij

#
> 0, (10)

min
i

"
�i(2qii � 1)� µi �

X

j 6=i

�jqji

#
> 0. (11)

As both of these need to be positive, we can find the minimum of these, which will provide
su�cient condition to escape MIE (see also Supplementary Information 1.4).

2.5 Predicting sensitivity to MIE

Figure 2: Predicting MIE as a function of homogeneous missegregation

and turnover rates. (A-B) Critical curves were obtained by finding (�, µ
� ) for

which the maximum eigenvalues of the Jacobian (eq. (9)) is 0. (A) We consider
two types of viable karyotype intervals with di↵erent biological interpretations:
intervals modeling the copy number of a single individual chromosome (dashed
line) and intervals modeling the ploidy of a cell (solid line). (B) We assume
existence of two critical chromosomes i and j, with intervals of viable karyotypes
[ki,Ki] and [kj ,Kj ] respectively. We calculate the critical curves assuming cell
viability is restricted by only one of the two chromosomes (dashed lines), or by
both chromosomes jointly (solid line). Note that the size of the Jaccobian is a
function of 1 +K � k.

Given a fixed birth-
and death-rate, can
we predict at what
missegregation rate a
population will go
extinct? Here we
derive critical curves
that separate viable
from non-viable pop-
ulations as a function
of their turnover- (µ�)
and missegregation rates
(�). Herein we
make three assump-
tions: (i) all misseg-
regation events are
possible (e.g. if par-
ent after synthesis
phase has 2i copies,
then a daughter cell
can have any in-
teger in the range
[0, 2i]); (ii) homoge-
neous turnover- and
missegregation rates regardless of karyotype; and (iii) that the interval of viable karyotypes
[k,K] is finite. Hereby we consider two types of viable karyotype intervals with di↵erent
biological interpretations: intervals modeling the copy number of a single individual chro-
mosome (e.g. k = 1, K = 5) and intervals modeling the ploidy of a cell (e.g. k = 22, K = 88).
The former assumes there exists at least one single critical chromosome for which copy num-
ber must stay within a defined range for a cell to be viable. The latter treats all chromosomes
as equal and models ploidy as the critical quantity.
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To calculate the critical curves conditional on these assumptions, we consider the time
evolution of the system given by the matrix form of eq. (8):

dni

dt
= niJ, (12)

, with J defined in eq. (9) and the row vector ni is the number of cells with copy number
state i. It is clear that the system reaches a steady state when niJ = 0. Nontrivial solutions
(i.e. those with nonzero ni) can be found by choosing functions for the mis-segregation rate
� and death rate µ (which parameterise the matrix J) such that the dominant eigenvalue is
zero (Supplementary Information 1.1). We also simulated the ODE given by eq. (8) until
the karyotype distribution reached a steady state (Supplementary Fig. 1A,C,E). Numerical
simulations confirmed that the theoretical critical curves separate exponential growth from
population extinction (Supplementary Fig. 2).

We compared scenarios where the viable interval for ploidy is finite to scenarios where
the viable interval for the copy number of individual chromosomes is finite (Fig. 2A). The
latter contracted the viability region considerably more than the former, suggesting ploidy
does not constrain the mis-segregation rates of cancer cell populations. When modeling
single individual chromosomes, MIE was impossible at low turnover rates, even for very
high � (Fig. 2B). This was because, as � ! 1, none of the sister chromatids are properly
segregated, i.e. they end up in the same cell, resulting in a high representation of cells with an
even number of chromosomes. These in turn have a high enough fraction of viable daughter
cells, su�cient to keep net growth above 0. In contrast, having more than one chromosome
with finite viable karyotype intervals substantially contracted the viability region (Fig. 2B),
albeit with diminishing costs in viability for each extra chromosome (Supplementary Fig.
4).

2.6 Quantification of mis-segregation and turnover rates across
cancers

When measuring missegregation- and turnover rates in cancers we would expect these rates to
lie below the predicted critical curves. To test this we quantified turnover- and missegregation
rates at cellular resolution using scRNA-seq data from 15,464 single cells from the TISCH
database [37]. Cells originated from 14 tumor biopsies across 12 patients spanning four
cancer types across three tissue sites (Lung, Breast and Skin). We leverage the relation
between turnover rates of cancers and their respective tissue site of origin [38,39] (Methods
4.2.3), in order to learn to estimate turnover rate from transcriptomic signatures. A cell’s
transcriptome is a channel of information propagation; it is a snapshot of how a cell interacts
with and responds to its environment. Transcriptomic signatures have been used to infer
various aspects about a tumor, ranging from the level of hypoxia [40], to its cell of origin [41],
its mitotic index [42] and other surrogates of cell fitness and risk of disease progression [43,44].
Cells co-existing in the same tumor, or in the same cell line [45, 46], often di↵er in their
transcriptomes. Together these intra-tumor di↵erences as well as inter-tumor di↵erences in
gene expression have the potential to inform how cells and tumors di↵er in their turnover
rates.
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Figure 3: Predicting proximity of a PAN-cancer cohort to MIE. (A-D) Quantification of mis-
segregation and turnover rates. (A) Expression of regulators of cell death genes (x-axis) varies across tissue
sites (color code) along with turnover rates reported for tumors of the same origin (y-axis; adjusted R2 =
0.999;P = 0.07). (B) A regression model was built from (A) and used to predict turnover rate in 15,464
cells across 14 tumors. (C) Interferon Gamma gene expression (x-axis) measured in 7,879 cells from three
human breast cancer cell lines [47] (color code) varies with their % lagging chromosomes quantified from
imaging (y-axis; adjusted R2 = 0.88;P = 0.157). (D) A regression model was build from (C) and used to
predict turnover rate in 23,343 cells across 17 tumors. (E,F) Missegregation- (�), and turnover rates (µ/�)
derived for 22,433 cells from 13 tumors across three tissue types (colors) are displayed alongside the critical
curve predicted for two chromosome types (E) and all 22 autosomes (F). The interval of viable karyotypes
is between one and eight copies for each chromosome type.
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After preprocessing (Methods 4.2.1), we performed Gene Set Variation Analysis (GSVA)
[48] to quantify the expression activity of 1,629 REACTOME pathways [49] at single cell
resolution. For each pathway involved in cell death and apoptosis (12 pathways), we calcu-
lated the median expression for a given tissue site and compared it to the median turnover
rates [50–59] reported for cancers from the corresponding tissue site (Supplementary Table
1). Of the 12 tested pathways, five had an association with turnover rate (adjusted R2

� 0.8;
Methods 4.2.3), including “FOXO-mediated transcription of cell death genes” (Fig. 3A, ad-
justed R2 = 0.999;P = 0.07). We used this pathway signature to estimate turnover rate
at single-cell resolution across the 14 tumors (Fig. 3B). All but one tumor had predicted
turnover rates that were high, but below one (Supplementary Fig. 6), consistent with an ex-
panding tumor mass. We note one exception, wherein a pre-treatment breast cancer sample
had a median inferred turnover rate of 1.04 (Supplementary Fig. 6) – this case was excluded
from further analysis.

Given appropriate ground truth data, the same principle can be applied to estimate mis-
segregation rates. To estimate mis-segregation rates at cellular resolution we used Interferon
Gamma Signaling as a surrogate measure of chromosome missegregarions [47] (Methods
4.2.4). The rationale for this is that chromosome missegregations can trigger the formation
of micronuclei. When micronuclei rupture, their genomic DNA spills into the cytosol. Cy-
tosolic dsDNA is sensed by the cGAS–STING pathway [60], leading to induction of type
I interferon stimulated genes [61, 62]. Missegregations lead to the upregulation of inter-
feron production, which in turn subverts lethal epithelial responses to cytosolic DNA. To
go from Interferon Gamma expression to mis-segregation rate we integrated aforementioned
scRNA-seq dataset with 7,879 transcriptomes sequenced in Bakhoum et al. [47] (Methods
4.2.1). These transcriptomes originated from three cell lines, where members of the kinesin
superfamily of proteins were knocked down to increase or decrease mis-segregation rate in
a controlled fashion [47]. Live cell imaging of these cells to quantify the resulting misseg-
regation rate was also available [47], allowing for a linear regression model to be fit on this
data. As previously reported [47], Interferon Gamma Signaling was correlated to the %
lagging chromosomes derived from imaging (Fig. 3C; adjusted R2 = 0.88;P = 0.157). The
resulting model translates Interferon Gamma expression into units of mis-segregation rate
per cell division and was used to estimate mis-segregation rates in the remaining scRNA-seq
samples (Fig. 3D).

The number of chromosomes a mitotic cell has to segregate among daughter cells varies
with ploidy. Therefore, the risk of mis-segregating at least one chromosome should increase
with ploidy, rendering the per chromosome missegregation rate a quantity of interest. Cal-
culating the missegregation rate per chromosome requires knowing the karyotype of each
cell. To extract this information from the scRNA-seq data we extended an approach we pre-
viously described [43] to distinguish chromosome-arms a↵ected by SCNAs from those that
are copy number neutral (Methods 4.2.2). The resulting profiles were then clustered into
subpopulations of cells with unique karyotypes as previously described [43] (Supplementary
Fig. 5A), allowing for inference of mis-segregation rates per cell division per chromosome
for each subpopulation (Supplementary Fig. 5B).

The variability in missegregation rates and the proximity of turnover rates to homeosta-
sis warrants further investigation into whether increasing missegregation rate is a poten-
tial mechanism of extinction in these tumors. We therefore compared missegregation- and
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turnover rates derived from scRNA-seq data (Supplementary Fig. 6) to the critical curves.
Since most tumors had high turnover rates, we focused on the critical curves at µ

� > 0.6 (Fig.
3E,F). Of note is the close proximity of the measured rates to the theoretical MIE curves.
When imposing between one and eight copies on only two chromosome types, all tumors had
median missegregation- and turnover rates that were compatible with our viability predic-
tions (Fig. 3E). When imposing between one and eight copies on all 22 autosomes, one of
the three skin cancers slipped into the region predicted as non-viable. But for all remaining
tumors, even when considering all 22 autosomes, the majority of cells stayed in the viable
region (Fig. 3F).

2.7 Intra-tumor heterogeneity in mis-segregations and turnover

The critical curves shown in Fig. 3E,F assume a cell population with homogeneous mis-
segregation and turnover rates. The scRNA-seq derived results however suggest that both
are likely heterogeneous in reality. We therefore asked whether relaxing this assumption
changes the critical curves. To model intra-tumor heterogeneity in missegregation rates,
we looked at their relation to ploidy and chromosome copy number. While no significant
association between ploidy and turnover rate was evident, the relationship between ploidy
and missegregation rate per chromosome per cell division showed a surprising resemblance
to the recently hypothesized fitness function of ploidy [63] (Supplementary Figs. 7, 6B,C).
Hereby the commonly observed near-triploid karyotype [35,64,65] stands out as a local max-
imum. A sinus function was therefore chosen to model mis-segregation as a function of
ploidy (adjusted R2 = 0.80; Estimated Variance: 49%, Supplementary Fig. 7D). A linear
association between copy number and missegregation rate was also observed for three of the
22 individual autosomes (adjusted R2 > 0.1;P << 1E � 5, Supplementary Fig. 7A-C). The
observed relation between missegregation rate per chromosome and ploidy (either of specific
chromosomes or in aggregate), is an opportunity to model missegregation rate as a function
of ploidy, thereby accounting for intra-tumor heterogeneity.

Modeling missegregation rate as linear or sinusoidal functions of the copy number of
chromosome 4 and overall ploidy respectively (Fig. 4A,B), we calculated how parameters of
both functions shape the critical curve (Fig. 4C,D; Supplementary Fig. 1B,D,F). In both
cases the population evolved toward the karyotype with the lowest mis-segregation rate (Fig.
4E,F). Unless turnover rates are exceedingly high, this convergence to the global minimum
mis-segregation rates e↵ectively rendered MIE impossible (Fig. 4G,H). The absolute value
of that minimum explains the di↵erence in the location of the critical curve between the two
scenarios (Fig. 4G,H), and the overall low risk of MIE in large cell populations.

If we also model heterogeneous death rates, the interplay between mis-segregation and
death rate, rather than the minimum mis-segregation rate alone, determine whether MIE
will occur. More generally, when both missegregation- and death rates are heterogeneous,
a necessary condition for MIE is that karyotypes with low mis-segregation rates must also
have high death rates (Supplementary Fig. 3A,B). This condition is exactly identical to
the su�cient condition for ruling out MIE described by eq. (10), and was corroborated
by combinations of kernels of missegregation- and death rate (Supplementary Fig. 3C).
Taken together these results suggests that heterogeneous missegregation rates can protect a
population from extinction.
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Figure 4: Predicting MIE when missegregation rates are heterogeneous. (A,B) Missegregation
rate is modeled as a function of copy number or ploidy (x-axis), with color coded shape parameters ✓1 (A) and
✓2 (B). We consider the copy number of either chromosome 4 alone (A) or of all 22 autosomes in aggregate,
i.e. ploidy (B). Varying ✓1, ✓2 yields di↵erent missegregation rates (�). (C) Critical curve was obtained for
(A) by finding (✓1,

µ
� ) for which the maximum eigenvalues of the Jacobian (eq. (9)) is 0. (D) Critical curve

was obtained for (B) in the same manner as in (C), but here equations were solved for (✓2,
µ
� ). (E,F) We used

the parameters highlighted in (C,D) to simulate missegregations until the karyotype composition reached a
steady state. (G,H) The eigenvectors corresponding to the eigenvalues found in C/D are the steady state
karyotype proportions. These are used in conjunction with the kernels in A/B to determine the population
average and minimum missegregation rates.
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3 Discussion

We have presented a general approach for modeling whole chromosome missegregations, in-
cluding a deterministic mathematical framework and scRNA-seq analysis methods to infer ef-
fective model parameters. In contrast to prior models of chromosome missegregations [32–34],
our model does not rest on the assumption that the fitness e↵ect of a mis-segregation is
the same, regardless of the karyotype context in which it happens. This feature o↵ers the
flexibility to identify potential synergies between copy number changes of multiple chromo-
somes [66]. A second di↵erence to prior models of missegregations [32], is the decoupling of
a cell’s life cycle from the life cycle of individual chromosomes. This allows simulating intra-
tumor heterogeneity in mis-segregation, death- and proliferation rates across cells, which can
manifest as temporal variations in these rates (when the karyotype composition changes over
time).

Theoretical analysis of the mathematical model has shown the existence of a potential
mechanism of tumor control through the region in parameter space we have called MIE. As a
first application of the model we have thus focused on the identification of critical curves that
separate viable populations from MIE, as a function of their turnover- and missegregation
rates. A central assumption of these calculations is that cells are not viable unless they carry
a certain number of copies of a given chromosome, that must lie within a predefined interval.
To our knowledge, Fig. 2 contains the first predictions of MIE that consider viable kary-
otype intervals of multiple chromosomes simultaneously, as well as the turnover rate of the
population. We compared these theoretical critical curves to missegregation- and turnover
rates inferred from scRNA-seq of 13 tumors across four cancer types from three tissue sites.
The majority of tumors across all tissue sites studied had missegregation- and turnover rates
that were compatible with our viability predictions (Fig. 3E,F). This remained true when
a dependency of missegregation rates on ploidy was introduced. In populations with het-
erogeneous mis-segregation rates, the subpopulation with the minimum mis-segregation rate
protects the population from extinction (Fig. 4G,H). Our results emphasize that large, het-
erogeneous tumors have an inbuilt protection from MIE. That each tumor consists of cells
with heterogeneous missegregation rates, the measurement being just the population-average
rate, is a likely scenario supported by recent results [43,67]. Karyotypes associated with low
missegregation rates act as a stabilizing refuge, protecting the population from extinction.
Intra-tumor heterogeneity, including heterogeneity in missegregation rates, increases as tu-
mors progress. Our predictions suggest that this intra-tumor heterogeneity renders MIE
unlikely.

The model raises some important theoretical questions related to malignant and non-
malignant cells. In particular, it is well known that normal cells maintain a level of home-
ostasis through a balanced turnover rate µ/� ⇡ 1. This seems to imply that all normal cells
lay at the MIE boundary and are even more sensitive to MIE than malignant cells. Any finite
missegregation rate would thus lead to the slow removal of normal cells over time. There are
two potential explanations for this behavior. A likely explanation is given by our assump-
tion that the birth rate is independent of population size. It is easy to see that introducing
dependency on the total populations size (e.g. carrying capacity) could alleviate this issue
as cell death would increase the birth rate in order to return to homeostasis. An alternative
explanation is that this is just another natural aging mechanism through which normal cells
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are slowly displaced. Transformed cells often lose the homeostatic control mechanisms and
so are likely less susceptible to contact inhibition.

Limitations of our approach include unknown precision of mis-segregation and turnover
rates inferred from scRNA-seq. In line with prior reports [68], mis-segregation rates were
higher in higher stage cancer, while normal tissue used as control had the lowest mis-
segregation rates (Supplementary Fig. 9). The number of subpopulations with distinct
karyotypes was also by trend higher in late stage tumors – a finding that is also consistent
with prior reports [68–70]. Other limitations include those of ordinary di↵erential equa-
tion models, such as the lack of stochasticity, rendering all conclusions valid only for large
populations, where all karyotypes are accessible and represented. Understanding how misseg-
regations shape extinction events in early stage cancers would require a di↵erent approach.
Our model does not explicitly account for several biological mechanisms which are relevant
to karyotype evolution, including WGD, missegregation induced apoptosis in the subsequent
G1 phase of the cell cycle, and the formation of micronuclei. Extensions to model these
phenomena are discussed in Supplementary Information 1.5.

Future applications of this model will include studying the fitness costs and benefits of
high ploidy. Coexistence of cancer cells at opposite extremes of the ploidy spectrum occurs
frequently in cancer and missegregations are a major contributor to heterogeneous ploidy
states within a population. Our model can help understand how much robustness high
ploidy confers to the sudden genome-dosage imbalance caused by a missegregation event [13]
and can help quantify the energetic requirements of high ploidy cells. Modeling intra-tumor
heterogeneity in mis-segregation rates and their e↵ect on karyotype evolution over hundreds
of generations can reveal how selection acts upon coexisting karyotypes, as a powerful tool
for genotype-to-phenotype mapping in various microenvironments.

4 Materials and Methods

4.1 Numerical Simulations

Numerical simulations were performed for a range of input parameters (�, µ) to validate
the predicted critical curves. All simulations had a uniform diploid population as initial
condition. Each simulation ran until a quasi-steady-state (QSS) had been reached, considered
to occur when the rate of change in karyotype composition was less than 0.1%day�1 (although
the cell population may still be growing or shrinking – therefore “quasi”). Upon satisfaction
of this condition, simulations with a positive rate of change in the total cell population were
considered to be in the exponential growth regime.

In order to determine the population average missegregation rates �pop and death rates
µpop which are viable QSS’s for the system, we performed numerical simulations for each
pairwise combination of missegregation- and death rate kernels – �(i, B) and µ(i,M) respec-
tively. For each pairwise combination of kernels, simulations were performed using large,
manually curated ranges for the input parameters (B,M), before �pop and µpop were cal-
culated based on the QSS reached by the system. Population average missegregation rate
(�pop) was defined as fraction of divisions in which a missegregation occurs (i.e. 1� (1��)i).

Numerical simulations were performed using R, all code is available on Github.
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4.2 Quantification of ploidy, missegregation- and turnover rates
across cancers

To parametrize our ODE, we derive ploidy, mis-segregation and turnover rates from an
integrated scRNA-seq dataset. Fourteen samples from 12 patients across four cancer types
were downloaded from the TISCH database [37] and analyzed as follows.

4.2.1 scRNA-Seq data integration

Filtered gene-barcodes matrices containing only barcodes with UMI counts passing threshold
for cell detection were imported to Seurat v4.0 for downstream analysis. Barcodes with fewer
than 500 genes expressed or more than 25% mitochondrial UMIs were filtered out; genes
expressed in fewer than 3 barcodes were also excluded. Raw counts of di↵erent datasets were
merged using merge function. Standard library size and log-normalization was performed
on raw UMI counts using NormalizeData, and top 5000 most variable genes were identified
by the “vst” method in FindVariableFeatures. S and G2/M cell cycle phase scores were
assigned to cells based on previously defined gene sets(9) using CellCycleScoring function.
Normalized UMI counts were further scaled using ScaleData function by regressing against
total reads count, % of mitochondrial UMIs, and cell cycle phase scores (G2M.Score, and
S.Score) to mitigate the e↵ects of sequencing depth and cell cycle heterogeneity. UMAP
analysis of the data after these normalization steps were performed shows that cells cluster
by cell types, rather than by study, which indicated that the batch e↵ects were delimited
by normalization and scaling (Supplementary Fig. 8). Because 10X measures UMI (copy
of transcripts), not number of reads mapped to genes and because GSVA uses the ranking
of the transcripts, the data from di↵erent experiments are comparable when quantified into
pathway activity.

4.2.2 Estimating ploidy from scRNA-Seq

Our goal was to distinguish chromosome(-arm)s a↵ected by SCNAs from those that are copy
number neutral, given a set of tumor cells and normal cells from same patient. Normal cells
(often immune cells) were not of the same type as tumor cells (epithelial). Hence, using
them directly as a control to calculate absolute copy number in tumor cells is problematic:
immune cells express di↵erent numbers of genes (often less), and may have a di↵erent viability
during scRNA-seq library preparation. To overcome this challenge, we assume that at least
one chromosome is diploid in all tumor cells and that most SCNAs are clonal (i.e. they a↵ect
all tumor cells) [71].

We first sort chromosomes by the p-value of di↵erential chromosome-specific gene ex-
pression between tumor and normal cells in descending order of significance. We chose an
x 2 {1..22} and define~i and~j as the vectors of the first x and last (22�x) chromosomes in the
sorted set respectively. We then proceed as follows: (i) We assume all chromosomes in~i have
identical (diploid) copy number in tumor and normal cells. The average ratio of expression
between tumor and normal cells for these x chromosomes should thus be 1. Deviation from
1 is the bias (✏x) we estimate between tumor and normal cells: ✏x = 1 � tumor~i/normal~i.
(ii) We calculate the vector ~j of copy numbers of chromosomes with SCNAs (all except the
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first x), with entries jk as: jk = (2/✏x) ⇤ (tumork/normalk) for each chromosome k. (iii) We
evaluate deviation of ~j from the closest integers: Ex = 1

k~jk

P
k2~j(ik �bike)2. Repeating steps

(i-iii) for all possible values of x lets us choose the x⇤ := argminx Ex (Supplementary Fig.
10). This classifies the last (22� x⇤) chromosomes as chromosomes a↵ected by SCNAs and
gives us their absolute copy numbers in the respective ~j.

We then used LIAYSON [43] to classify cells into subpopulations with distinct kary-
otypes. The number of subpopulations was by trend higher in tumors of high ploidy
(Spearman r = 0.484;P = 0.079), but lower in tumors with high turnover rates (Spearman
r = �0.489;P = 0.076; Supplementary Fig. 6). We also observed that a clone’s ploidy was
positively associated with its variance in turnover rates (Spearman r = 0.41;P = 7.9E � 5).
This positive association was also observed when considering each of the three tissue sites
(Breast, Lung, Skin) individually, albeit it only reached significance in Lung cancer (Spear-
man r = 0.63;P = 8.1E � 6).

4.2.3 Estimating turnover rates from scRNA-seq

Reported proliferation rates from tumors correlate to turnover rates from their respective
normal tissue of origin (Pearson r = 0.93, P = 0.021; Supplementary Table 1). The same
is true for reported cancer cell death rates, which also correlate to the death rates of their
tissue of origin (Pearson r = 0.92, P = 0.025; Supplementary Table 1). The relation between
turnover rates of cancers and their respective tissue site of origin [38, 39], is an opportunity
to learn how to read these rates from transcriptomic signatures. We performed Gene Set
Variation Analysis (GSVA) [48] to quantify the expression activity of 1,629 REACTOME
pathways [49] in a cumulative total of 43,596 single cells from 15 samples across three tissue
sites. For each pathway involved in cell death and apoptosis (12 pathways), we calculated
the average expression among all cells of a given tissue site and used it to model the median
turnover rates [50–59] reported for cancers from the corresponding tissue site (Supplementary
Table 1):

We fitted a linear regression model on the combined dataset as follows:

⌧ = a ⇤ x+ b, (13)

where x is the average pathway expression signature per cancer and ⌧ is the turnover rate
reported in literature for that cancer type. Of all tested pathways, five had an association
with turnover rate (adjusted R2

� 0.8), including “FOXO-mediated transcription of cell
death genes” (adjusted R2 = 0.999;P = 0.07). This pathway signature was then used to
estimate ⌧ in each single cell across the four cancer types (Fig. 3B). We set birth rate to 1,
and used µ := ⌧ as death rate for all further mathematical modeling.

4.2.4 Estimating missegregation rate from scRNA-seq

Interferon Signaling has been proposed as potential surrogate measure for CIN [47]. To
predict missegregation rate from expression of genes involved in Interferon Gamma Signaling,
we used a similar approach as for turnover rate. We fitted a linear regression on the breast
cancer data from [47] as follows:

� = a� + b, (14)
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where � is the log2 of observed percentage of cells with lagging chromosomes and � the
Interferon Gamma Signaling activity as quantified with GSVA (adjusted R-square=0.999,
p-value=0.0103; Fig. 3C). The resulting model was then used to predict missegregation
rate in 15,464 single cells from the 14 tumor samples (Fig. 3D). We divided the predicted
missegregation rate by ploidy to obtain � for all further mathematical modeling.

The hereby obtained relationship between missegregation rate and karyotype (Supple-
mentary Fig. 7D), was similar to how karyotype and fitness are thought to be linked [63].
Namely, triploid karyotypes had higher mis-segregation rates and missegregation rates of eu-
ploid states tended to decrease with ploidy. This trend was only evident when looking at the
ploidy spectrum across all four cancer types. Variability in ploidy was too low to test if this
observation holds across tumors of a given type and especially across subpopulations within
a given tumor. That ploidy and cancer type are confounded prevents any causal conclusions
to be drawn from this analysis. This correlation is however to be expected, because ploidy
is highly cancer types specific [72–74].
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Supplementary Information: Legends

Supplementary Table 1: In vivo tumor dynamics across nine cancer types. Birth rates taken
from [50] and growth rates taken from multiple sources (cited in third column). The death rate is inferred.
Many of the birth rates are comparable, but the net growth rates vary over orders of magnitude, which
implies very di↵erent death rates. Last column shows percent contribution of respective normal human cell
types to a total daily mass turnover of 80 g (taken from [75]) – these are correlated to both birth and death
rates reported in tumors (Pearson r � 0.923;P < 0.026).

Supplementary Figure 1: Predicted changes in missegregation rate during tumor evolution.

(A-B) Critical curves displayed as a function of the population average missegregation rate (y-axis) and
departure from homeostasis (1 - turnover rate; x-axis). � := 1 in all calculations, i.e. cells divide once per
day. Copy number ranges from [1, 8] and death rate is independent of copy number (µ(i) := M), whereas
missegregation is either also independent (A, �(i) := ⇥1) or dependent on copy number (B, �(i) := ⇥2 �

1.4i). (C-D) Population average missegregation and turnover rates over time are shown for three parameter
combinations ✓ 2 a, b, c highlighted in (A,B) respectively. (E-F) Evolution of karyotype composition for each
of the three parameter combinations is also shown.

Supplementary Figure 2: Numerical simulations confirm theoretical MIE curves. Numerical
simulations confirm that the theoretical critical curves shown in Fig. 2A,B separate exponential growth
from population extinction.

Supplementary Figure 3: Heterogeneous missegregation and death rates can render MIE

impossible. Kernels used to model intra-tumor heterogeneity in missegregation- (A) and turnover rates
(B). (C) Critical curves calculated assuming homogeneous or heterogeneous missegregation and turnover
rates are compared with each other. Functions used to model heterogeneous rates are displayed as row
and column labels and have ploidy (i) as parameter. For each of these functions, we calculated the critical
missegregation rate parameter (B) and death rate parameter (M). Note that for M = 1, the turnover rate
function in the first column becomes the constant rate from the second column. MIE requires M ! 1,
explaining why critical curves look identical in both columns. (D) We also simulated the ODE assuming
combinations of the functional forms of missegregation and turnover rates shown in C. Shown here is the
number of days needed to reach steady state karyotype composition as a function of population average
missegregation rate.

Supplementary Figure 4: Risk of MIE as a function of the number of chromosome types

with finite viable copy number intervals. (A-C) Critical curves were obtained by finding (�, µ
� ) for

which the maximum eigenvalues of the Jacobian (eq. (9)) is 0. We assume existence of up to m = 22
critical chromosomes, where intervals of viable karyotypes for each chromosome type x 2 1..m are defined
by kx  ix  Kx. We calculate the critical curves assuming cell viability is restricted by all 22 of the
chromosomes or by only a subset of them (color code). Hereby we assume each chromosome must have at
least one and no more than three (A), five (B) or eight copies respectively (C).
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Supplementary Figure 5: Karyotype profiles inferred for two metastatic TNBC samples .
(A) Copy number profiles from two of the metastatic samples from patient S4 TNBC1 (marked red in Fig.
3B,D) were clustered into subpopulations of cells with unique karyotypes (left color code). The two metastatic
samples originate from the same patient and have significant similarities in their karyotype profiles, even
though they were called independently from each other. (B) Inferred mis-segregation rates per cell division
per chromosome for each subpopulation in (A).

Supplementary Figure 6: Variability in turnover, missegregation and ploidy across coexisting

subpopulations in 14 tumors. Every column represents a subpopulation of cells with unique karyotype.
Subpopulations from the same tumor are grouped together. Their ploidy (A), departure from homeostasis
(B) and log2-transformed % missegregation rate (C) are shown.

Supplementary Figure 7: Relationship between karyotype and missegregation rates. Mis-
segregation rates per chromosome (y-axis) vary with the copy number (x-axis) of specific chromosomes
(A-C) and with ploidy (i.e. copy numbers of all chromosomes in aggregate; D).

Supplementary Figure 8: E↵ect of normalization and scaling for integration of scRNA-seq

datasets. (A-C) UMAP plots using the normalized and scaled data, with the cells labeled by (A) sample
name, (B) cancer type of the patients and (C) cell types. Tumor cells cluster by sample origin, and tumor
cells from similar cancer types are closer to each other. The PBMC sample of the MCC patient clusters
with other normal cells, instead of with the tumor cells from the same patient. Normal cells cluster mostly
by cell type. (D-F) Analogous plots to (A-C), but generated using non-normalized data. Generally the cells
are more clustered by study, and the tumor cells from di↵erent samples are less distinguished, emphasizing
the need for normalization and scaling.

Supplementary Figure 9: Mis-segregation rates inferred from scRNA-seq derived gene sig-

natures. Distribution of median mis-segregation rate across all sequenced G1 cells of a given sample are
grouped by disease stage (A) or site (B). PBMC:= peripheral blood mononuclear cells.

Supplementary Figure 10: Classification of aneuploid chromosomes with scRNA-Seq derived

bias profiles. Minimum deviation from integer copy numbers (y-axis) guides the choice of x (highlighted
red). The more to the right the minimum, the more chromosomes are assumed to be diploid. Shown are the
bias profiles for 15 scRNA-seq samples, sorted by global minimum. Samples from late-stage tumors (stage
IV) have by trend more non-diploid chromosome arms and their global minimum is higher. Range of x-axis
varies because only chromosomes that express a su�cient number of genes in both tumor and normal cells
were considered.
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