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34 ABSTRACT

35 The Enterobacter cloacae complex (ECC) encompasses heterogeneous clusters of
36  species that have been associated with nosocomial outbreaks. These species may
37  host different acquired antimicrobial resistance and virulence mechanisms and their
38 identification are challenging. This study aims to develop predictive models based on

39  MALDI-TOF MS spectral profiles and machine learning for species-level identification.

40 Atotal of 198 ECC and 116 K. aerogenes clinical isolates from the University Hospital
41 Ramon y Cajal (Spain) and the University Hospital Basel (Switzerland) were included.
42  The capability of the proposed method to differentiate the most common ECC species
43  (E. asburiae, E. kobei, E. hormaechei, E. roggenkampii, E. ludwigii, E. bugandensis)
44  and K. aerogenes was demonstrated by applying unsupervised hierarchical clustering
45  with PCA pre-processing. We observed a distinctive clustering of E. hormaechei and K.
46  aerogenes and a clear trend for the rest of the ECC species to be differentiated over
47  the development dataset. Thus, we developed supervised, non-linear predictive models
48  (Support Vector Machine with Radial Basis Function and Random Forest). The external
49  validation of these models with protein spectra from the two participating hospitals
50 yielded 100% correct species-level assignment for E. asburiae, E. kobei, and E.
51  roggenkampii and between 91.2% and 98.0% for the remaining ECC species. Similar

52 results were obtained with the MSI database developed recently (https://msi.happy-

53  dev.fr/) except in the case of E. hormaechei, which was more accurately identified by

54 Random Forest.

55  In short, MALDI-TOF MS combined with machine learning demonstrated to be a rapid

56  and accurate method for the differentiation of ECC species.

57

58 Keywords: Enterobacter species; mass spectrometry; MALDI-TOF MS; Peak analysis;

59  Machine Learning
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60 INTRODUCTION

61 Enterobacter is a facultative anaerobic Gram-negative genus that can be found as
62  a natural commensal in the gut microbiome of mammals (1). Several species have
63  been associated with nosocomial outbreaks causing urinary tract infection, skin and
64  soft tissue infection, pneumonia, and bacteremia (2, 3). Enterobacter cloacae complex
65 (ECC) is of particular clinical interest. This group is composed of 13 heterogenic
66  genetic clusters according to hsp60 gene sequencing: E. asburiae (cluster 1), E. kobei
67  (cluster Il), E. hormaechei subsp. hoffmannii (cluster Il), E. roggenkampii (cluster V),
68 E. ludwigii (cluster V), E. hormaechei subsp. oharae, and subsp. xiangfangensis
69  (cluster VI), E. hormaechei subsp. hormaechei (cluster VII), E. hormaechei subsp.
70  steigerwaltii (cluster VIII), E. bugandensis (cluster IX), E. nimipressuralis (cluster X), E.
71  cloacae subsp. cloacae (cluster Xl), E. cloacae subsp. dissolvens (cluster Xll), and a
72 heterogeneous group of E. cloacae sequences are considered as cluster XIII.
73  However, the taxonomy of this genus is still under debate (4, 5). In fact, Enterobacter
74  aerogenes has been recently reclassified into the Klebsiella genus as K. aerogenes (6).
75 A more comprehensive study based on whole-genome sequencing (WGS) data from
76  ECC isolates yielded a redistribution of the species defined by hsp60 sequencing (5)

77  into 22 clades (7) and allowed the characterization of new ECC species (8).

78 Discrimination of the ECC at the species level is usually performed by sequence-
79 based methods. The most commonly targeted gene is hsp60, although multi-locus
80  sequence typing (MLST) and WGS have also been applied (5, 9, 10). Sequence-based
81 diagnostic methods techniques are laborious and require specific equipment.
82 Therefore, new emerging techniques such as Matrix Assisted Laser
83  Desorption/lonization Time-of-flight Mass Spectrometry (MALDI-TOF MS) have been
84  proposed as an alternative to sequence-based methods. MALDI-TOF MS has shown to

85  be an excellent methodology for bacterial identification. It can easily identify E. cloacae
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86  complex isolates but it showed low discrimination power for the species in this group

87  when using standard analysis and commercial databases with low resolution (11, 12).

88 This study aimed to develop and validate prediction models for the automatic
89  species differentiation within the ECC using MALDI-TOF MS and supervised learning
90 algorithms. This task is important because of the diverse implications of ECC species
91 in human pathologies and their involvement in nosocomial outbreaks (4). Besides, E.
92 hormaechei, the most encountered ECC species in the clinical settings, has been
93 correlated with the enhanced acquisition of antimicrobial resistance mechanisms and
94 the expression of virulence factors (13, 14). To achieve this goal, two steps were
95 conducted in this study. First, we performed an unsupervised clustering to determine
96 the feasibility of MALDI-TOF MS data for the ECC species identification. Second, we
97  applied a supervised machine learning algorithm with isolates from University Hospital
98 Ramoén y Cajal, Madrid -Madrid, Spain - and validated our findings with different ECC

99 isolates from the same hospital and from the University Hospital of Basel, Switzerland.

100

101  MATERIALS AND METHODS

102 Bacterial isolates

103 Overall, we analyzed 198 clinical isolates belonging to the ECC and nine 116 K.
104  aerogenes (formerly E. aerogenes). Among them, 164 ECC and 9 K. aerogenes were
105 collected in a surveillance study of antimicrobial resistance in the Hospital Universitario
106 Ramon y Cajal -UHRC- (Madrid, Spain) between 2005 and 2018 and identified by
107  partial sequencing of the hsp60 gene (15). We collected the remaining isolates (34
108 ECC and 107 K. aerogenes) at the University Hospital Basel (UHB; Basel, Switzerland)
109 between 2016 and 2021 and identified the isolates by whole genome sequencing

110 (WGS) using KmerFinder 3.2 (16-18). MALDI-TOF MS spectral profiles of these
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111  isolates were obtained in Basel and submitted to the Hospital General Universitario

112 Gregorio Marafion (Madrid, Spain) for further analysis.

113 All isolates from UHRC were incubated overnight at 37°C and metabolically
114  activated after three subcultures on Columbia Blood Agar (bioMérieux, Marcy I'Etoile,
115  France) before their analysis with MALDI-TOF MS at the Hospital General Universitario

116  Gregorio Marafion.

117  Spectra acquisition using MALDI-TOF MS

118 We identified the isolates using the MBT Smart MALDI Biotyper (Bruker
119  Daltonics, Bremen, Germany). We spotted all strains from UHRC in duplicate onto the
120 MALDI target plate and overlaid with 1 pl of 70% formic acid. After drying at room
121  temperature, we covered and dried the spots with 1 pl HCCA matrix, according to the
122 manufacturer’s indications (Bruker Daltonics). We obtained two spectra in the range of
123 2,000-20,000 Da on each spot, resulting in 4 spectra per isolate. The isolates from

124  UHB were analysed in one spot per strain and one spectrum from spot was acquired.

125 Data processing of MALDI-TOF MS protein spectra and development of

126  predictive models

127 For both, feasibility, and supervised studies, we processed all MALDI-TOF MS
128  spectral profiles with the Clover MS Data Analysis software (Clover Biosoft, Granada,
129  Spain). We applied pre-processing pipeline to all protein spectra that consisted of: 1)
130  smoothing -Savitzky-Golay Filter: window length=11; polynomial order=3- and baseline
131  subtraction -Top-Hat filter method with factor=0.02-; 2) creation of an average
132 spectrum per isolate; 3) alignment of the average spectra from different isolates -shift:
133  medium; constant tolerance: 2 Da; linear mass tolerance: 600 ppm-; 4) normalization

134 by Total lon Current (TIC).

135 Unsupervised feasibility study
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136 To study the feasibility of MALDI-TOF MS for differentiation of ECC species, we
137  proposed an unsupervised study based on Principal Component Analysis (PCA), and t-
138  distributed Stochastic Neighbour Embedding (t-SNE). For this purpose, an
139  oversampled balanced dataset of each ECC species was used. We included in total,
140 126 spectra from the 7 ECC species analysed in this study (sourcing from UHRC and

141  UHB), as indicated in Table 1.

142 Supervised model development

143 Once the feasibility of the study was determined, we proposed the supervised
144  model development. In this case, three different datasets were created: training
145 validation set, internal validation set, and external validation set. The details of these

146 datasets are shown in Table 1.

147 Due to the lack of validation samples of E. ludwigii and E. bugandensis, these
148  were not included in the development of the supervised model. Therefore, our
149  supervised model was developed to predict the five ECC species: E. asburiae (cluster
150 1), E. kobei (cluster 1l), and E. hormaechei (clusters Ill, VI, and VIl considered
151  together), and E. roggenkampii (cluster IV). We applied three different supervised
152  models: Partial Least Square-Discriminant Analysis (PLS-DA), Support Vector Machine
153  (SVM) with Linear kernel (SVM-L) and with Radial Basis Function (SVM-R) kernel, and
154 Random Forest (RF). The hyperparameter selection was performed by a 5-fold cross-

155  validation technique.

156 Finally, we performed two external validations of the predictive models. First,
157 126 MALDI-TOF MS from UHRC and then 141 MALDI-TOF MS from UHB were blindly
158 classified by the same predictive models using Clover BioSoft v0.6.1. This software
159  uses the scikit-learn 0.23.2 python library to implement all statistical methods used in

160 this study. For reproducibility purposes under FAIR principles, free access to all spectra


https://doi.org/10.1101/2021.11.02.467040
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.02.467040; this version posted July 26, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

161 and to reproduce the analyses in this work can be found at the following url:

162  https://platform.clovermsdataanalysis.com/public-repository.

163 MSI Database

164 Recently, an online database has been developed for the rapid differentiation of
165 ECC species based on their MALDI-TOF MS protein profile (19). This database has

166  free access (https://msi.happy-dev.fr/) and has been built using protein spectra from 42

167 ECC isolates characterized by sequencing the hsp60 gene. This identification method
168 is considered the state-of-the-art method for the identification of ECC isolates at the
169  species level. Therefore, both external validation datasets were also identified using
170  the MSI database as a comparison to the methods proposed in this article. As stated
171  above, MALDI-TOF MS spectra associated to this study have been also made publicly

172 available.

173 Ethics statement

174 The Ethics Committee of the Gregorio Marafion Hospital (CEIm) evaluated this
175  project and considered that all the conditions for waiving informed consent were met
176  since the study was conducted with microbiological samples and not with human
177  products. At the University Hospital Basel only anonymized data was used with the
178  purpose of quality control and assay validation. According to the Swiss Human
179  Research Act no specific consent is required in this case. Data was either acquired in
180  routine microbiological diagnostics (excluding cases with a rejected general consent) or

181  used from a previously published dataset (DRIAMS).

182

183 RESULTS

184  Feasibility study
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185 To prove the feasibility of MALDI-TOF MS to differentiate ECC species, an
186  unsupervised hierarchical clustering with PCA and t-SNE pre-processing was
187 performed (Figure 1). The protein spectra of the seven ECC species (E. asburiae, E.
188  kobei, E. hormaechei, E. roggenkampii, E. ludwigii, E. bugandensis, and K.
189  aerogenes), which are equally represented in the model, were compared. The
190 dendrogram built with these data showed three main clusters: one containing E.
191 hormaechei, a second cluster with K. aerogenes, and a third cluster with the rest of the
192  species. Inside the latter cluster, E. bugandensis strains were clustered together and
193 so did E. asburiae, E. ludwigii, E. kobei, and E. roggenkampii, although in these four
194  cases some of the spectra were clustered with the wrong species (Figure 1A, 1B and

195  1C).

196 The implementation of PCA to reduce the dimensionality showed that 14
197 components were needed to explain 95% of the variance (Figure 1D). This fact and
198 the relatively accurate classification of ECC species using an unsupervised algorithm

199 demonstrated the potentiality of MALDI-TOF MS to differentiate ECC species.

200  Supervised models based on MALDI-TOF MS.

201 To solve the limitations of unsupervised learning, we added the label knowledge
202  to the training phase by using supervised algorithms such as PLS-DA, SVM, and RF.
203  We trained these models using the development dataset shown in Table 1, and
204  selected their hyperparameters by a 5-fold cross-validation technique. This cross-
205 validation process led to the next hyperparameter selection: for PLS-DA 2 components
206  were used, for SVM-L the value of C was 10, and for SVM-R the value of C was 10 and
207  the value of y was 1000. Table 2 shows the results obtained for the internal 5-fold

208 cross-validation, which have been further detailed in Table S1.

209 Both E. hormaechei and K. aerogenes presented the same trend as in the feasibility

210  study and their differentiation was 100% using non-linear approaches (SVM-R and RF)
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211  Only the implementation of a linear approach (SVM-L) yielded lower results for K.
212 aerogenes (Table 2). For the rest of the analysed ECC species, we also obtained

213 100% correct classification by the application of non-linear approaches (Table 2).

214  In Figure 2, the distance between samples calculated by the RF classifier is shown.
215  We detected a unique cluster for each species. Due to the results presented in Table
216 2, only SVM-R and RF were considered for further analysis. Table 3 shows the results

217 of SVM-R and RF for the validation dataset collected at UHRC and UHB.

218 Both algorithms, SVM-R and RF, yielded the same results in the external
219  validation performed on the MALDI-TOF MS spectra from the validation dataset
220  sourcing from the same hospital (UHRC). In this case, all K. aerogenes, E. asburiae,
221  and E. kobei isolates were correctly classified meanwhile one E. hormaechei strain was
222  misclassified as E. kobei with both algorithms. For E. roggenkampii, two isolates were
223  misclassified as E. hormeachei and one as E. kobei (Table S2). The accuracy of the

224  model is shown in Figures 3A and 3B.

225 Since SVM-R and RF algorithms performed equally, both of them were
226 considered for external validation with MALDI-TOF MS spectral profiles obtained at the
227  UHB. In this case, 91.2% of the E. hormaechei (n=33), 100% of the E. roggenkampii
228 (n=1), and 98.1% of the K. aerogenes isolates were correctly classified by RF, as
229  shown in Table 3. The application of SVM-R yielded lower results for E. hormaechei
230 and K. aerogenes. Figures 3C and 3C show the accuracy of both SVM-R and RF for

231 the external validation collection from UHB.

232 ldentification of the ECC isolates using the MSI Database

233 Finally, the MSI Platform was also used as an identification tool for ECC
234  species to compare the automatic approach developed in this study versus the current
235  state-of-the-art method (19). Among the UHRC isolates, the identification rate for E.

236  asburiae, E. hormaechei, and E. kobei was similar to the rates yielded by the predictive

10
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237  models developed in this study (Table 3). The only difference detected between both
238 methods was that the MSI database correctly classified one more E. roggenkampii
239 isolate. As for the protein spectra sourcing from the UHB, 84.8% of the E. hormaechei
240 and 100% of the E. roggenkampii isolates (n=1) were correctly identified with the MSI
241  platform. In this case, the MSI platform provided a lower rate of correct identifications

242  for E. hormaechei than the RF algorithm (Table 3).

243  DISCUSSION

244 In this study, the implementation of supervised, non-linear algorithms (SVM-R
245 and RF) to MALDI-TOF MS spectra allowed the correct species assignment of 100%
246  isolates belonging to two ECC species (E. asburiae and E. kobei) and between 91.2%
247 and 98.1% for E. hormaechei, E. roggenkampii, and K. aerogenes (formerly E.

248  aerogenes) sourcing from two different hospitals.

249 Poor discrimination of E. cloacae complex species by MALDI-TOF MS has been
250  previously reported either by using commercial (11, 15) or enriched, in-house
251  databases (20). However, a recent study from a research group with broad experience
252 in MALDI-TOF MS and the creation of expanded libraries reported 92.0% correct
253  species-level identification by implementing a specific in-house library enriched with
254  well-characterized ECC strains and correct discrimination of 97.0% E. hormaechei
255  isolates (19). This approach can be useful for the discrimination of close-related
256  species, but the construction of a database is cumbersome and requires highly trained
257  personnel. The implementation of the MSI platform allowed 94.9% correct species-level
258 identification of 155 ECC protein spectra in this study. This rate was slightly lower than

259  the obtained with the non-linear algorithms proposed by our approach.

260 In this study, we demonstrate the feasibility of MALDI-TOF MS to identify
261  species within the ECC. First, hierarchical clustering showed that it is possible to

262  differentiate between species using the information contained in MALDI-TOF MS as

11
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263 reported before (20). Secondly, a supervised study using machine learning algorithms
264  yielded the correct classification of all ECC species. Therefore, different supervised
265 classification algorithms were implemented to correctly provide species assignment of
266 ECC species. The internal validation experiment demonstrated that non-linear
267  approaches, such as SVM-R or RF, were needed to correctly identify all species. Both

268  models perfectly classified all samples in internal cross-validation.

269 To further demonstrate that the model can perform in different scenarios with
270  data different than the spectral profile used for model training, we performed two
271  validation experiments. First, we carried out a validation with MADI-TOF MS protein
272 spectra sourcing from UHRC. From a total number of samples of 116, both SVM-R and
273  RF only misclassified four isolates, i.e., a 96.5% of accuracy in classifying species
274  within the ECC was yielded. Secondly, we performed an external validation with
275  MALDI-TOF MS sourcing from UHB to simulated a real-world scenario. These MALDI-
276  TOF MS protein spectra originated in a different epidemiological scenario and were
277  processed by operators from the UHB. In this case, SVM-R showed to be overfitted to
278  the UHRC distribution, which was already pointed out by the value of y value, scoring
279 an 83.7% of accuracy. On the other hand, the current state-of-the-art tool -the MSI
280 database- performed better than SVM-R with 94.9% of accuracy although it was not
281  able to distinguish the K. aerogenes (19). However, RF outperformed both approaches
282  with over 96.0% of accuracy in identifying the three species. Hence, it is demonstrated
283  that supervised machine learning algorithms are feasible and, indeed, applicable in

284  microbiology laboratories

285 One limitation of this study was the fact that all UHRC isolates were
286  carbapenemase producing isolates, because this was the source of the previously
287  analysed collection (15). However, the present study provides the first proof of concept
288  for differentiating ECC species based on machine learning. For a definitive validation,

289  improvement, and implementation of these predictive models, future studies will involve

12
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290 strains from a more diverse epidemiological and geographical origin and
291  characteristics. Besides, not all analysed ECC species could be represented in the
292  external validation dataset due to the lack of isolates from the species E. ludwigii and

293  E. bugandensis.

294 The present study provides promising results for differentiating ECC species
295  based on machine learning and MALDI-TOF MS protein spectra. It also highlights the
296 facts that MALDI-TOF MS data should be linked to WGS data in order to allow future
297 work and providing a reference standard. The MALDI-TOF MS and machine learning
298 approach has been demonstrated to be a rapid and cost-effective method, suitable for
299  correct species-level assignment of closely-related species, as in the case of ECC. The
300 use of spectra analysis tools is becoming user-friendly and easy to apply and its use
301 may provide species-level identification in a fast and inexpensive way. Once the model
302 is validated with a comprehensive number of ECC species, an open web application

303  will be deployed to be used by the community freely.
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339  Figure 1. A. Dendrogram built with 126 MALDI-TOF MS spectra. B. PCA of feasibility
340 study spectra. C. t-SNE of study spectra. D. PCA Eigenvalues showing the variance of

341 each component.

342  Figure 2. MALDI-TOF MS Euclidean distance between species by Random Forest

343 classifier.

344  Figure 3. ROC Curves and AUC values for both SVM-R (A and C) and RF models (B
345 and D) were applied to the external validations with MALDI-TOF MS protein spectra

346  from UHRC (A and B) and UHB (C and D).
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435

Table 1. Number of ECC isolates used for the unsupervised feasibility study and the

supervised model development.

Unsupervised study

Supervised study

ECC species Number of balanced Development Validation dataset  External validation
samples dataset (UHRC) (UHRC) dataset (UHB)
K. aerogenes 18 18 3 107
E. asburiae 18 18 1 0
E. bugandensis 18 0 0 0
E. hormaechei 18 18 51 33
E. kobei 18 18 9 0
E. ludwigii 18 0 0 0
E. roggenkampii 18 18 62 1
Total 126 90 126 141

Table 2. Accuracy results for internal 5-fold cross-validation over development dataset

(90 spectral profiles). PLS-DA: Partial Least Squares-Discriminant Analysis; SVM-L.:

Support Vector Machine-Linear kernel; SVM-R: Support Vector Machine-Radial Basis

Function kernel; RF: Random Forest.

Algorithm E. asburiae  E. hormaechei E. kobei E. roggenkampii K. aerogenes
PLS-DA 9/18 50% 18/18 100% 5/18 27.8% 4/18 22.2%  18/18 100%
SVM-L 6/18 33.3% 18/18 100% 3/18 16.7% 6/18 33.3% 14/18 77.8%
SVM-R 18/18 100% 18/18 100% 18/18 100% 18/18 100% 18/18 100%

RF 18/18 100% 18/18 100% 18/18 100% 18/18 100% 18/18 100%
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436  Table 3. Accuracy results for the validation dataset from UHRC and UHB, and the
437  identification accuracy obtained by the MSI database. The MSI platform, specific for the
438 identification of ECC species (19), was also applied for the classification of ECC

439  species.

440
Algorithm  E. asburiae E. hormaechei E. kobei E. roggenkampii K. aerogenes
UHRC
SVM-R 1/1  100% 50/51 98.0% 9/9 100% 59/62 95.2% 3/3 100%
RF 1/1  100% 50/51 98.0% 9/9 100% 59/62 95.2% 3/3 100%
MSI 1/1  100% 50/51 98.0% 9/9 100% 60/62 96.8% - -
UHB
SVM-R - - 15/33 44.1% - - 1/1 100% 102/107 95.3%
RF - - 31/33 91.2% - - 1/1 100% 105/107 98.1%
MSI - - 28/33  84.8% - - 1/1 100% - -
441
442

18
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