

1 VOCAL TRACT ALLOMETRY IN A MAMMALIAN VOCAL LEARNER

2
3 Koen de Reus^{1,2,3*#}, Darryl Carlson^{3,4*}, Alice Lowry^{3,5}, Stephanie Gross⁶, Maxime Garcia^{7,8}, Ana
4 Rubio-Garcia³, Anna Salazar-Casals³, Andrea Ravignani^{1,3,9#}

5
6 ¹Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands

7 ²Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium

8 ³Research Department, Sealcentre Pieterburen, Pieterburen, the Netherlands

9 ⁴Department of Earth System Science, Stanford University, Stanford, USA

10 ⁵School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom

11 ⁶Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of
12 Veterinary Medicine Hannover, Foundation, Büsum, Germany

13 ⁷Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich,
14 Switzerland

15 ⁸Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zürich, Switzerland

16 ⁹Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of
17 Music Aarhus/Aalborg, Denmark

18 * These authors share joint first authorship.

19 # Corresponding Authors: koen.de.reus@mpi.nl; andrea.ravignani@mpi.nl

20 **Abstract**

21 Acoustic allometry occurs when features of animal vocalisations can be predicted from body size
22 measurements. Despite this being considered the norm, allometry sometimes breaks, resulting in
23 species sounding smaller or larger than expected for their size. A recent hypothesis suggests that
24 allometry-breaking mammals cluster into two groups: those with anatomical adaptations to their
25 vocal tracts and those capable of learning new sounds (vocal learners). Here we test which
26 mechanism is used to escape from acoustic allometry by probing vocal tract allometry in a
27 proven mammalian vocal learner, the harbour seal (*Phoca vitulina*). We test whether vocal tract
28 structures and body size scale allometrically in 68 young individuals. We find that both body
29 length and body mass accurately predict vocal tract length and one tracheal dimension.

30 Independently, body length predicts vocal fold length while body mass predicts a second tracheal
31 dimension. All vocal tract measures are larger in weaners than in pups and some structures are
32 sexually dimorphic within age classes. We conclude that harbour seals do comply with
33 anatomical allometric constraints. However, allometry between body size and vocal fold length
34 seems to emerge after puppyhood, suggesting that ontogeny may modulate the anatomy-learning
35 distinction previously hypothesised as clear-cut. We suggest that seals, like other species
36 producing signals that deviate from those expected from their vocal tract dimensions, may break
37 allometry without morphological adaptations. In seals, and potentially other vocal learning

40 mammals, advanced neural control over vocal organs may be the main mechanism for breaking
41 acoustic allometry.

42

43 **Key words:** pinniped, harbour seal, vocal anatomy, acoustic allometry, trachea, larynx, vocal
44 tract

45

46

47 **Introduction**
48 In many species, acoustic signals help mediate social interactions such as competition for mates
49 and territory, and parent-offspring recognition (Bradbury and Vehrenamp, 1998; Martin et al.,
50 2017). Signals can encode information about the caller's biology which can be readily
51 deciphered by the receiver, including age (Reby and McComb, 2003; Charlton et al., 2009), sex
52 (Vignal and Kelley, 2007; Charlton et al., 2009), body size (Fitch, 1997; Charlton et al., 2009;
53 Charlton et al., 2011; Garcia et al., 2016), hormone levels (Koren and Geffen, 2009), and
54 physical condition (Wyman et al., 2008; Koren and Geffen, 2009).
55
56 In particular, body size often shapes mammalian sounds by constraining the geometry of the
57 vocal tract (Fitch, 2000; Reby and McComb, 2003). Acoustic cues relating to the body size of
58 the caller can inform the receiver about the caller's competitive ability and reproductive success
59 (Poole, 1999; Reby and McComb, 2003; Kuester et al., 1995; Pfefferle and Fischer, 2006). For
60 example, in primates and carnivores, there is an inverse relationship between body size and call
61 frequency parameters, where larger animals produce calls with lower frequencies, i.e., have a
62 'deeper' voice (Bowling et al., 2017). This relationship between acoustical call features and body
63 size, where one accurately reflects the other, is known as 'acoustic allometry' (Taylor and Reby,
64 2010; Fitch, 1997). Here, signalling is considered *honest* when the acoustic parameters of
65 observed vocalisations accurately reflect an individual's body size (Zahavi, 1997; Fitch and
66 Hauser, 2003). Deviations from allometry can generate *dishonest* signals, with animals sounding
67 unexpectedly small or large for their body size (Garcia and Ravignani, 2020). Dishonest signals
68 may be produced when an animal shows 1) a lack of allometric scaling between their vocal tract
69 and their body size, or 2) shows enhanced control over their vocal organs which allows them to
70 learn new vocalisations or modify existing vocalisations: an ability known as 'vocal learning'
71 (Janik and Slater, 1997; Lattenkamp and Vernes, 2018). Recent work indeed showed that, given
72 a cross-species regression between sounds produced and body size, outlier species seem to
73 cluster either well below the regression line—those with anatomical adaptations—or markedly
74 above—the vocal learners. This led to a morphology vs. learning hypothesis (Garcia and
75 Ravignani, 2020; Ravignani and Garcia, 2021): dishonest signals in mammals may arise either
76 from anatomical adaptations or vocal learning capacities. This prediction has the potential to
77 identify new vocal learners or species with unexpected vocal tract morphology. Vocal learners

78 should therefore be able to violate acoustic allometry while possessing a vocal tract that scales
79 allometrically with the rest of their body. For the first time, we test this prediction, asking
80 whether vocal tract allometry is present in a vocal learning species which is known to violate
81 acoustic allometry.

82

83 Harbour seals (*Phoca vitulina*) are vocal learners that escape acoustic allometry by producing
84 sounds with different frequencies than expected from their body size, allowing them to transmit
85 dishonest body size information. Indeed, they stand out as outliers in cross-species allometric
86 regressions between body mass and frequency parameters (Ravignani and Garcia, 2021; see
87 Figure 1). Moreover, previous studies have shown that harbour seals can actively modulate the
88 call frequencies they produce based on auditory experience. In one special case, a human-raised
89 harbour seal, named Hoover, was found capable of mimicking human speech sounds (Ralls et al.,
90 1985). In a more recent study on harbour seal pups, young animals were found capable of
91 lowering their fundamental frequency (f_0) in the presence of background noise (Torres Borda et
92 al., 2021). Do the environmental noise conditions in which vocalisations are produced have a
93 stronger influence on the f_0 values than body size? To address this, we complemented acoustic
94 data from Torres Borda and colleagues (2021) with body mass information and reanalysed it to
95 show that acoustic allometric relationships do indeed break down in this species due to the large
96 vocal plasticity observed within individuals (see Figure 2, its caption and detailed explanations in
97 the Supplement). These re-analyses indicate that, also within-species, individual harbour seals
98 may sound bigger or smaller than predicted by body size. Seals can therefore escape the
99 constraints of acoustic allometry, both across and within species.

100

101 Harbour seals are particularly vocal during the first few weeks following birth (Perry and
102 Renouf, 1988). Pups produce individually distinctive mother attraction calls (Renouf, 1984)
103 which vary with age, sex, and body length (Khan et al., 2006; Sauvé et al., 2015). After weaning,
104 however, these calls disappear entirely from their vocal repertoire, with most vocalisations
105 ceasing aside from occasional clicks and growls (Renouf, 1984). During adulthood, female
106 harbour seals remain almost entirely vocally inactive (Van Parijs and Kovacs, 2002), but males
107 start vocalising again, producing underwater calls during the mating season (Hanggi and
108 Schusterman, 1994). The large variation in vocal repertoire observed across individuals, sexes,

109 and age classes makes harbour seals ideal candidates to test the morphology vs. learning
110 hypothesis, i.e., whether a vocal learning mammal does indeed escape acoustic allometry via
111 learning instead of via anatomical adaptations.

112

113 Most mammalian vocalizations are described using the source-filter theory of vocal production.
114 Within this framework, vocal signals are initially produced by a *source* and are then *filtered* by
115 the vocal tract before being released into the environment (Fant, 1970). In mammals, the source
116 of sound production consists of the vocal folds in the larynx, and the filter is composed of the
117 cavities making up the upper vocal tract (Fant, 1970) (see Figure 3). The vocal folds are shelves
118 of tissue lying across the airway that attach ventrally and laterally to the thyroid cartilage and
119 dorsally to the arytenoid cartilage (see Figure 4A). When vocalising, the air expelled from the
120 lungs rushes between the vocal folds, causing them to vibrate and produce sound (Elemans et al.,
121 2015). The sound then continues to propagate along the upper vocal tract and is modified by its
122 geometry (i.e., filtered) before being emitted as vocalisation. The source-filter framework
123 highlights which vocal tract structures determine specific features present in acoustic signals.
124 The rate of vibration of the vocal folds determines the f_0 and the cavities of the vocal tract
125 determine formant frequencies (Taylor and Reby, 2010). Measurements of these vocal tract
126 structures can thus be used to estimate certain acoustic features of vocalisations.

127

128 Bioacoustics studies often investigate allometric relationships between acoustic signal features
129 and body size, without consideration of the underlying allometric scaling between body size and
130 vocal anatomy. Most mammals show allometry between body size and upper vocal tract length
131 because the upper vocal tract is constrained by bony structures (Fitch, 1997; Fitch and Giedd,
132 1999; Fitch, 2000; Plotsky et al., 2013; Garcia et al., 2016). However, allometry between body
133 size and the size of the vocal folds is less common: the larynx is surrounded by cartilaginous
134 structures and is thus less constrained, suggesting that vocal fold length can be decoupled from
135 overall body size, as found in nonhuman primates (Fitch and Hauser, 1995; Fitch, 1997; Garcia
136 et al., 2017). In mammals, formants, the acoustic proxy of vocal tract length, are thus often a
137 stronger body size predictor than f_0 , the acoustic proxy of vocal fold length (Fitch, 1997; Garcia
138 et al., 2016).

139

140 Within the larger framework of the hypothesis above, this study tests for allometric relationships
141 between body size and vocal anatomy measurements in young harbour seals and tests how these
142 relationships vary with sex and age. Preliminary work found that harbour seals' body length
143 correlates with upper vocal tract length and tracheal diameter, but not with vocal fold length
144 (Ravignani et al., 2017). Here, we aim to expand on these findings by using a larger sample size
145 (353% increase), adding refined anatomical measurements, and comparing different age classes
146 (to test for developmental effects). Based on previous literature, we expect to find allometry
147 between body size and vocal tract structures that are surrounded—and hence constrained—by
148 bony structures, such as vocal tract length. However, based on harbour seals' vocal learning
149 abilities (Ralls et al., 1985; Torres Borda et al., 2021; Janik and Slater, 1997), we expect their
150 vocal flexibility to offer favourable grounds to find deviations from body size allometry for vocal
151 tract components surrounded by cartilage, such as the trachea and vocal fold length.

152

153 **Materials and methods**

154 *Sample collection*

155 Larynges were collected during necropsies on 68 young harbour seals (35 males). Fifty-two
156 samples came from seals that stranded on the Dutch coastline, the rest from animals found on the
157 German coastline (Schleswig-Holstein). Forty-two animals died in captivity at Sealcentre
158 Pieterburen, Pieterburen, the Netherlands, either naturally during rehabilitation despite intensive
159 care or by means of euthanasia due to the presence of severe clinical signs without any indication
160 for recovery. Euthanasia was performed by trained veterinarians, after sedation, with
161 pentobarbital sodium (100 mg/kg) using the method described in Greer and colleagues (2001).
162 The other 26 animals died in the wild, either naturally or were mercy killed by trained hunters
163 due to severe signs of illness (see Table 1 of the Supplement). No animals were euthanised or
164 mercy killed for the purpose of this study.

165

166 At the time of death, the seals studied were aged between 9 days and 12 months (median 6
167 months). The age of new-born individuals was estimated in number of days by expert seal
168 veterinarians based on the condition of the umbilical cord or the umbilicus. Older individuals
169 with a closed umbilicus were assigned June as their birth month, which is consistent with the
170 majority of harbour seal births in the Wadden Sea (Osinga et al., 2012; Reijnders et al., 2010).

171 Animals aged 1 month or younger were classified as pups, while those between 1 and 12 months
172 in age were classified as weaners, making age a binary variable. Of the 68 individuals included
173 in this study, 14 (8 males) were classified as pups and 54 (26 males) were classified as weaners.
174 A Fisher's exact test showed no significant association between age and sex ($\chi^2 = 0.765, p >$
175 .05), suggesting our sample is balanced between sexes and ages.
176

177 *Sample treatment and measurements*

178 Post-mortem examinations were performed by veterinarians who all trained at Sealcentre
179 Pieterburen and thereby used the same necropsy protocol (Pugliares et al., 2007). Dutch seals
180 were examined at Sealcentre Pieterburen and German seals were necropsied at the Institute for
181 Terrestrial and Aquatic Wildlife Research (ITAW), Büsum, Germany. Necropsies were
182 performed on either cooled or defrosted carcasses. Body mass, body length and axillary girth
183 were all measured prior to the start of the necropsy. Body length was measured from the tip of
184 the nose to the end of the tail in a non-curvilinear fashion, while the animal was in supine
185 position, and axillary girth was measured as the body circumference directly caudal to the front
186 flippers. The vocal apparatus including the upper vocal tract, the larynx, and part of the trachea
187 was then removed and immediately frozen at -20°C. All samples were in a similar condition (i.e.,
188 none presented signs of decomposition), comparable to pinniped vocal tracts in Schneider (1962)
189 and Ravignani and colleagues (2017).

190
191 Prior to measurement, samples were thawed in a refrigerator at 8°C and each larynx was cut
192 medially to produce two hemi-vocal tracts. The measurements taken on these hemi-vocal tracts
193 (see Figures 4B and 4C) include vocal tract length (VTL), vocal fold length (VFL), vocal fold
194 thickness (VFT), and tracheal measurements in the form of subglottic-tracheal dorsoventral
195 distances (STDVs) (called subglottic-tracheal anterior-posterior distance, STAP, in Roers et al.,
196 2009) using a calliper to an accuracy of ± 0.01 mm. Although the vocal tract can be divided into
197 lower (below larynx) and upper (above larynx) sections, formants (the resonant frequencies
198 which often encode information about body size) are only determined by the upper vocal tract
199 (Lester and LaGasse, 2008). VTL will henceforth refer to the length of the upper vocal tract.
200 VTL was measured as the linear distance from the caudal end of the epiglottis to the rostral end
201 of the tongue muscle while the tongue was kept straight. VFL was measured as the distance from

202 the ventral attachment of the vocal fold on the thyroid cartilage to the dorsal attachment of the
203 vocal fold on the arytenoid cartilage. VFT was measured as the distance between the anterior and
204 posterior sides of the vocal folds. The first STDV was measured as the distance between the
205 cricothyroid ligament and the caudal end of the arytenoid. The second STDV was measured as
206 the diameter of the first tracheal ring. All measurements were performed independently by two
207 raters (KdR and AR), different from the veterinarians who performed the dissections. For both
208 raters, VTL, VFL, and VFT were measured 4 times, twice for each hemi-vocal tract, and STDVs
209 were taken twice, once for each hemi-larynx, because the start and end measuring points were
210 composed of cartilage (as opposed to soft tissue) and hence, we assumed that the inter-rater
211 reliability for STDVs would be higher than for other measurements.

212

213 *Statistical analysis*

214 Statistical analyses were performed in RStudio version 1.1.463 (R version 4.0.4). First, for both
215 raters, the medians for VTL, VFL and VFT were computed from all values reported for every
216 right and left hemi-larynx. Second, using the medians from the first step, the median values for
217 all measurements including STDV1 and STDV2 were computed for each larynx. This provided,
218 for each larynx and rater, five measurements: VTL, VFL, VFT, STDV1 and STDV2. The inter-
219 rater reliability for VTL, VFL, VFT, STDV1 and STDV2 was evaluated using Pearson's
220 correlations. Finally, the overall median values between raters were computed for all
221 measurements. Using these new values, Spearman's correlations between body size and vocal
222 anatomy measurements were then calculated (see Table 1). For each measurement, normality
223 was assessed using the Shapiro-Wilk test and homogeneity of variance was assessed using an F-
224 test. If both assumptions were met, a two-tailed independent samples t-test was computed to
225 check for age and sex differences. When variables were not normally distributed, but samples
226 had equal variance, a Mann Whitney U-test was performed to assess group differences instead.

227

228 Predictive modelling was done using generalised linear models (GLMs) with the *stats* package
229 (R Core Team, 2013). A series of models were produced for all anatomical measurements with
230 high inter-rater reliability ($r > 0.70$; Salkind, 2010, p. 627). For every response variable, the full
231 model included the fixed effects body length, body mass, girth, sex, age and the interaction
232 effects of sex with all body size predictors, age with all body size predictors and the interaction

233 of age and sex. The reduced model was then obtained through stepwise regression based on
234 Akaike Information Criterion (AIC) values. An analysis of variance (ANOVA) test was
235 performed to ensure that the reduced model was not performing significantly worse than the full
236 one. Variance inflation factors (VIF) scores were calculated for all predictors included in the
237 reduced models using the *car* package (Fox and Weisberg, 2019). Multicollinearity was
238 considered problematic for subsequent model selection if VIF scores were greater than 5
239 (Akinwande et al., 2015). For all selected models, deviance explained was calculated from the
240 model output ($1 - \text{residual deviance} / \text{null deviance}$) and expressed as a percentage. Plots
241 displaying the predicted effects of every predictor retained in the final models were produced to
242 assess their relationship with the response variable. Diagnostic residual plots were used to verify
243 the model assumptions. Independence of residuals was tested using a Durbin Watson test (Fox
244 and Weisberg, 2019). Normality of residuals was assessed visually by plotting model fit against
245 the observed data. Homoscedasticity (i.e., constant variance) of residuals was also assessed
246 visually using quantile-quantile plots. Finally, influential data points were assessed by
247 calculating Cook's distance.

248

249 **Results**

250 Inter-rater reliability for VTL, VFL, VFT, and both STDVs was evaluated using Pearson
251 correlations. VTL ($r = 0.94$), VFL ($r = 0.88$), STDV1 ($r = 0.97$) and STDV2 ($r = 0.93$) showed
252 high inter-rater reliability. VFT ($r = 0.59$) showed lower inter-rater reliability and was
253 consequently excluded from further analysis. All correlations were significant at $p < 0.001$.

254

255 All Spearman correlations between body size and vocal anatomy measurements showed positive
256 relationships and significance at the 0.05 level (see Table 1). There were high correlations
257 between body mass and body length ($r_s = 0.70$), and between body mass and girth ($r_s = 0.86$).
258 Other notable correlations included those between VTL and VFL ($r_s = 0.72$), VTL and STDV1
259 ($r_s = 0.70$), VFL and STDV1 ($r_s = 0.82$), VFL and STDV2 ($r_s = 0.76$). Spearman correlations for
260 pups and weaners can be found in Table 2 of the Supplement.

261

262 All anatomical measurements were non-normally distributed but showed equal variances across
263 age and sex groups. A Mann Whitney U-test was used to test for group differences as only the
264 assumption for homogeneity of variance was satisfied. All anatomical measurements were

265 significantly larger in weaners than in pups ($p < 0.001$; see Table 2 and Figure 5). No significant
266 sex differences were found when considering pups and weaners together ($p > 0.05$). When
267 considering pups alone, both the normality and homoscedasticity assumptions were met. A two-
268 tailed independent samples t-test found significant sex differences for vocal tract length ($t = -$
269 3.42, $p < 0.05$; see Figure 6A). Male pups ($86.0 \text{ mm} \pm 2.9$) had a larger mean VTL than females
270 ($79.8 \text{ mm} \pm 3.7$). When considering weaners alone, variables showed non-normal distribution,
271 but equal variances. A series of Mann Whitney U-tests found that only the first subglottic-
272 tracheal dorsoventral distance was significantly different across sexes ($U = 218$, $p < 0.05$; see
273 Figure 6B). Weaned males ($25.1 \text{ mm} \pm 1.5$) had a wider mean STDV1 compared to weaned
274 females ($24.2 \text{ mm} \pm 1.2$).

275

276 A reduced GLM, obtained by stepwise regression based on AIC values, was produced for every
277 vocal tract measurement with high inter-rater reliability, including VTL, VFL, STDV1 and
278 STDV2. All VIF scores were lower than 5 suggesting that multicollinearity was not problematic
279 in the selected models. All model assumptions were satisfied. Moreover, ANOVA testing
280 indicated that the reduced models did not perform significantly worse than the full models ($p >$
281 0.90). GLM results showed that most vocal tract dimensions were best explained by body length,
282 body mass, age, and sex (see Table 3). Girth was not retained as a predictor term in any of the
283 selected models. For each model, the predictor estimates with their confidence intervals can be
284 found in Table 3 of the Supplement and plots of the predicted effects can be found in Figures 1-5
285 of the same document. Significant interaction effects are shown in Figure 7.

286

287 **Discussion**

288 This study reports on the allometric relationships between body size and vocal tract dimensions
289 in harbour seals. It shows that body length accurately predicts VTL, VFL, and STDV1, and body
290 mass predicts VTL and both tracheal measurements (STDVs). We also find age and sex to be
291 important predictors for the size of vocal tract structures. This is evidenced by significant
292 differences in measurements between age classes and significant sexual differences within age
293 classes.

294

295 Previous work showed that upper vocal tract (i.e., filter) dimensions in mammals are predicted
296 by body size measurements (Fitch, 1997; Fitch and Giedd, 1999; Fitch, 2000; Plotsky et al.,
297 2013; Garcia et al., 2016, Ravignani et al., 2017) and our results provide additional evidence to
298 support such allometry. Although most studies have used body length as a proxy for body size,
299 we find that body mass can also be used to predict VTL in harbour seals. In the first years of life,
300 harbour seals show a linear growth rate for both body length (Hauksson, 2006) and mass
301 (Markussen et al., 1989), suggesting that VTL may develop in a similar fashion during this
302 period. Acoustic proxies for the filter could thus provide a good estimation of a harbour seal's
303 size. In mammals, formant frequencies and formant spacing can be predicted from VTL and vice
304 versa (see Reby and McComb, 2003). Other acoustic proxies include energy quartiles, the
305 frequency of amplitude peaks, and the ratios between these amplitudes (Sauvé et al., 2015).
306 These parameters also encode individual signatures, suggesting that acoustic individuality may
307 partially be an allometric by-product (Ravignani et al., 2017). Harbour seals have the vocal tract
308 predispositions to produce vocalisations that accurately reflect body size whilst also sharing
309 individual-specific information, suggesting that learning does not need to be invoked to explain
310 individuality.

311
312 Across mammals, source-related features such as f_0 can sometimes predict body size despite
313 showing weaker allometric scaling than filter-related features (Reby and McComb, 2003;
314 Charlton et al., 2011; Pfefferle et al., 2007; Charlton and Reby, 2016); it was unclear whether
315 this holds for harbour seals (Ravignani et al., 2017; Bowling et al., 2017). Our findings indicate
316 that VFL, which may be used to approximate f_0 , can be predicted by body size in harbour seals.
317 Moreover, Sauvé and colleagues (2015) reported a decrease in f_0 with an increase in body length
318 of harbour seal pups. Taken together, this suggests that a harbour seal's f_0 can be predicted from
319 vocal anatomy. Previous evidence against allometric scaling for VFL could be explained by low
320 statistical power or lack of testing for age effects on vocal tract measurements (Ravignani et al.,
321 2017). It is indeed notable that age is included in both interactions which were retained in the
322 selected VFL model. Our results, including both pups and weaners, show that allometric scaling
323 between body size and VFL only emerges after weaning, suggesting that VFL may not be
324 constrained in harbour seal pups (see bottom panel of Figure 7). This begs the following
325 question: how would escaping acoustic allometry for source-related features be beneficial for

326 pups? Broadcasting honest body size information may be detrimental for harbour seal pups as
327 they are significantly more likely to be displaced by larger conspecifics during agonistic
328 interactions (Neumann, 1999). However, pups may be able to benefit from lowering the f_0
329 (Torres Borda et al., 2021) of their calls to create an impression of size exaggeration. On the
330 other hand, pups may also benefit from increasing the f_0 of their calls to create an impression of
331 distress to the mother (Briefer, 2012). Future playback studies could and should contrast these
332 hypotheses.

333

334 Several phocid species use the trachea for sound production (Bryden and Felts, 1974), but this
335 could be a by-product of adaptive modifications to the respiratory tract required for diving
336 (Kooyman and Andersen, 1969; Tyack and Miller, 2002). Our results support the correlation
337 between tracheal diameter and body length found by Ravignani and colleagues (2017), but also
338 provide evidence that tracheal dimensions can be predicted by body mass. Previous literature
339 found that the trachea may potentially convey body size information if its size influences
340 acoustic call features (Ravignani et al., 2017). In humans, a wider tracheal diameter partially
341 predicts turbulence (i.e., unsteady air movements) for large airflows (Van den Berg et al., 1957).
342 Applying the same logic to other mammals, larger seals would have wider tracheal dimensions
343 which, in turn, would make vocalisations noisier. This could explain, for instance, why the
344 harmonics-to-noise ratio decreases as harbour seals get older (de Reus, 2017). Future work on
345 sound production in this species could test this prediction using sound-anatomy correlations and
346 excised larynx set-ups. Moreover, playback experiments could test whether adding noise to
347 vocalisations alters interactive behaviour to determine if harmonics-to-noise ratio may encode
348 body size information. Understanding whether and how the trachea is involved in sound
349 production will thus require further research.

350

351 As expected, all anatomical measurements are larger for weaners than they are for pups. In
352 Ravignani and colleagues (2017), animals up to 108 days old were classified as pups. However,
353 in the wild, the lactation period for harbour seals ranges from 23 to 42 days, after which the pups
354 are weaned (Renouf, 2012). Hence, for the sake of simplicity, we consider animals up to one
355 month old as pups and animals older than one month as weaners. Through this categorical
356 classification, we were able to identify how allometric trends develop over the harbour seal's

357 early life. At the time of data collection, we only had very few larynges from subadults and
358 adults, leading us to not include these data points in our analysis to avoid potential problems
359 caused by small sample size. Future research including larynges from subadults and adults will
360 further extend our knowledge of how vocal allometry develops in harbour seals.

361
362 There were no sexual differences when considering the sample size as a whole, but significant
363 sexual differences existed within age classes. These differences could be attributed to differing
364 levels of steroid hormones acting on the laryngeal structures in males and females (Aufdemorte
365 et al., 1983; Sauvé et al., 2015). In some mammals, sex hormones affect the structural
366 development of the larynx and the viscoelastic properties of the vocal fold tissue (Fitch and
367 Giedd, 1999; Beckford et al., 1985). At puberty of these animals, the male larynx descends in the
368 vocal tract causing an elongation of the length of the upper vocal tract, allowing males to convey
369 an exaggerated impression of size (Fitch and Giedd, 1999; Fitch and Reby, 2001). In harbour
370 seal pups of similar body size, males have larger VTLs than females, suggesting that laryngeal
371 descent in males possibly occurs early in life. Once weaned, however, females show a clear
372 increase in VTL whereas it remains relatively constant in males (see top panel of Figure 7),
373 suggesting that VTL differences across sexes may become less pronounced over time. In
374 mammalian males, sex hormone action also causes a rapid increase in cartilage size leading to an
375 enlarged larynx and an increase in the vibrating portion of the vocal folds (Fitch and Hauser,
376 2003). This could explain why, in weaners, STDV1 is larger in males than in females.
377 Nevertheless, these findings are somewhat surprising as young harbour seals normally show little
378 sexual dimorphism (Le Boeuf, 1991). In particular, there is a lack of evidence for sexual
379 differences regarding birth mass and growth rates among harbour seal pups (Bowen et al., 1994).
380 In our sample, there are no significant body size differences between sexes ($p > 0.05$), however,
381 male pups are slightly larger than female pups in body length ($M = 81.6 \text{ cm} \pm 4.4$, $F = 77.5 \text{ cm} \pm$
382 4.5), which could partially explain the VTL differences observed in this age class. Male ($9.8 \text{ kg} \pm$
383 1.5) and female ($9.8 \text{ kg} \pm 1.6$) pups do not differ in body mass, but it is important to note that the
384 sampled animals were sick and/or in poor condition; hence body mass values are not
385 representative of healthy individuals and should be interpreted with caution. In short, based on
386 these observed differences in vocal anatomy across sexes, formants are expected to differ in pups
387 and harmonics-to-noise ratio is expected to differ in weaners. The anatomical structures that

388 determine these acoustic features both show strong allometric scaling, hence these parameters
389 may provide distinct body size cues across age classes, potentially facilitating the discrimination
390 of male and female conspecific calls. Future research should investigate how sex hormones
391 affect the elastic properties of harbour seal laryngeal tissues. Hormone levels can be measured by
392 taking blood samples from healthy male and female seals at different developmental stages, and
393 results can be combined with magnetic resonance imaging (MRI) mapping of laryngeal tissue
394 elasticity.

395

396 The high inter-rater reliability observed for VTL, VFL and both STDVs demonstrates that these
397 quantities can be measured and replicated easily, making them reliable landmarks for vocal tract
398 measurements. However, tissue properties such as the viscoelasticity of certain vocal tract
399 structures, like the vocal folds, are significant obstacles to getting accurate measurements.

400 Indeed, raters struggled to produce precise data for VFT. Future research in the field of pinniped
401 vocal anatomy would benefit from improved measuring techniques using 2D pictures,
402 radiography, MRI and computed tomography scans as this would enable more accurate
403 measurements for structures that are difficult to handle. Finally, future similar studies should
404 include measurements of another vocal tract structure: the corniculate cartilage. Although widely
405 absent in terrestrial carnivores, harbour seals have rather large corniculate cartilages that help
406 close the trachea together with the epiglottis (Adams et al., 2020). These cartilages are located
407 close to the vocal folds and are possibly innervated by the same nerves and controlled by the
408 same muscles. It may be possible that these cartilages play a role in sound production by, for
409 example, lowering the f_0 by adding weight to the vocal folds. Taken together, these suggestions
410 will provide a more precise and detailed picture of the harbour seal's vocal anatomy.

411

412 Observed species-specific vocalisations are determined by both the species' vocal anatomy and
413 their capacity for vocal learning (Garcia and Ravignani 2020; Ravignani and Garcia 2021). The
414 vocal anatomy generates vocal predispositions by imposing biomechanical constraints, whereas
415 neural processes determine the degree of control species have over their vocal organs (Garcia
416 and Manser, 2020). Particularly, vocal learners, like the harbour seal, are capable of actively
417 modulating sounds, suggesting that they are less constrained by anatomy and have a refined
418 capacity for vocal motor control. Unfortunately, the relative contribution of both sound

419 production mechanisms is unclear. Here, we test a hypothesis trying to segregate anatomical vs.
420 learning mechanisms (Garcia and Ravignani, 2020; Ravignani and Garcia 2021). As shown here,
421 by testing for allometric relationships between body size and vocal tract structures, one can start
422 to disentangle the respective contributions of vocal anatomy and vocal motor control in shaping
423 acoustic signals. We find that harbour seals are mechanistically constrained by their vocal
424 anatomy, and their large vocal flexibility (Ralls et al., 1985; Torres Borda et al., 2021), which
425 may result in the production of dishonest signals, thus points towards extensive volitional control
426 over their vocalisations. In brief, we provide support for the morphology vs. learning hypothesis,
427 showing however that this relation may be mediated by ontogeny.

428

429 In sum, we provide evidence of allometry between body size and vocal tract measurements in
430 harbour seals. Body length is a strong predictor for VTL, VFL, and STDV1, and body mass is a
431 strong predictor for VTL and both tracheal measurements (STDVs). Age and sex are also
432 important in predicting the dimensions of these anatomical structures. Taken together, the
433 combined findings demonstrate that harbour seal vocal tracts do indeed scale with body size,
434 although allometry between VTL and body size may only emerge after weaning. One could now
435 make inferences about the vocal predispositions of harbour seals (e.g., f_0 , formants), based on
436 either their body size or the size of their vocal tract. However, to accurately predict f_0 , further
437 studies are needed in harbour seals to determine the range of stress they apply to their vocal folds
438 while vocalising and to infer the tissue density of their vocal folds (Titze et al., 1989). Once such
439 predictions are made, comparing them to data obtained from observed natural vocalisations
440 would shed light on the range of vocal flexibility resulting from their extensive vocal motor
441 control. Although formant spacing could be predicted from vocal tract length (Titze, 1994),
442 bioacousticians have not yet been able to consistently extract formants from harbour seal
443 vocalisations, meaning that predictions cannot currently be compared to observed vocalisations.
444 Finally, a critical next step to directly relate acoustic features to sound production structures is to
445 connect harbour seals' vocal anatomy measurements to the vocalisations they produce while
446 alive. Integrating such results with investigations of call function will eventually inform on
447 which vocal structures are responsible for generating the individual- and species-specific
448 information encoded in harbour seals' vocalisations.

449 **List of symbols and abbreviations**

450 f_0 – Fundamental frequency

451 C – Celsius

452 VTL – Vocal Tract Length

453 VFL – Vocal Fold Length

454 VFT – Vocal Fold Thickness

455 STDV – Subglottic-Tracheal Dorsoventral distance

456 STAP – Subglottic-Tracheal Anterior-Posterior distance

457 GLM – Generalised Linear Model

458 AIC – Akaike Information Criterion

459 ANOVA – Analysis Of Variance

460 VIF – Variance Inflation Factor

461 M – Male

462 F – Female

463 mg - milligram

464 kg – kilogram

465 cm – centimetre

466 MRI – Magnetic Resonance Imaging

467 **Acknowledgments**

468 We are grateful to Letty Stupers, Rebecca Andreini, Maria Jose Robles for help in gathering and
469 preparing samples for data collection. We thank Aline Joustra for her illustrations of seal vocal
470 tracts. We also greatly appreciate the extensive comments provided by Taylor Hersh, Laura
471 Verga and Yannick Jadoul. We would also like to thank all members and volunteers of
472 Sealcentre Pieterburen for their continued support in this research.

473

474 **Competing interests**

475 The authors declare no competing interests.

476

477 **Author contributions**

478 KdR, SG, MG, ARG, ASC and AR conceived the research and designed the experiment. SG,
479 ARG, and ASC performed the post-mortem examinations. KdR and AR performed the
480 measurements. KdR, DC, and AL performed the statistical analysis. All authors interpreted the
481 results, drafted the article, and helped to critically revise it. KdR and AR addressed the
482 reviewers' comments and incorporated them in the manuscript with support from SG, MG, ARG,
483 and ASC.

484

485 **Funding**

486 This work was supported by a Max Planck Research Group (MPRG) and a FWO Pegasus Marie
487 Curie fellowship 12N5517N awarded to AR. KdR was supported by the FWO project
488 'Interactive vocal rhythms' G034720N awarded to Bart de Boer. The German Ministry of
489 Energy, Agriculture, the Environment, Nature and Digitalization (MELUND) funded the marine
490 mammal stranding scheme and the necropsies in Schleswig-Holstein. The Sealcentre Pieterburen
491 funded the seal stranding scheme and the necropsies at the Sealcentre Pieterburen. MG was
492 supported by a research grant from the Ethologische Gesellschaft e.V.

493

494

495 **Reference list**

496 Adams, A., Vogl, W., Dawson, C., Raverty, S., Haulena, M., & Skoretz, S. A. (2020). Laryngeal and soft palate
497 valving in the harbour seal (*Phoca vitulina*). *Journal of Experimental Biology*, 223(20).

498 Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance inflation factor: as a condition for the inclusion of
499 suppressor variable (s) in regression analysis. *Open Journal of Statistics*, 5(07), 754.

500 Aufdemorte, T. B., Sheridan, P. J., & Holt, G. R. (1983). Autoradiographic evidence of sex steroid receptors in
501 laryngeal tissues of the baboon (*Papio cynocephalus*). *The Laryngoscope*, 93(12), 1607–1611.
502 <https://doi.org/10.1288/00005537-198312000-00013>

503 Beckford, N. S., Schaid, D., Rood, S. R., & Schanbacher, B. (1985). Androgen stimulation and laryngeal
504 development. *Annals of Otology, Rhinology and Laryngology*, 94(6 I), 634–640.
505 <https://doi.org/10.1177/000348948509400622>

506 Bowen, W., Oftedal, O., Boness, D., & Iverson, S. (1994). The effect of maternal age and other factors on birth mass
507 in the harbour seal. *Canadian Journal of Zoology*, 72, 8–14.

508 Bowling, D. L., Garcia, M., Dunn, J. C., Ruprecht, R., Stewart, A., Frommolt, K. H., & Fitch, W. T. (2017). Body
509 size and vocalization in primates and carnivores. *Scientific reports*, 7(1), 1-11.

510 Bradbury, J. W., & Vehrencamp, S. L. (1998). *Principles of animal communication*. Sunderland, MA: Sinauer
511 Associates.

512 Briefer, E. F. (2012). Vocal expression of emotions in mammals: mechanisms of production and evidence. *Journal
513 of Zoology*, 288(1), 1-20.

514 Bryden, M. M., & Felts, W. J. (1974). Quantitative anatomical observations on the skeletal and muscular systems of
515 four species of Antarctic seals. *Journal of Anatomy*, 118(Pt 3), 589–600.

516 Charlton, B., Zhihe, Z., & Snyder, R. (2009). The information content of giant panda, *Ailuropoda melanoleuca*,
517 bleats: acoustic cues to sex, age and size. *Animal Behaviour*, 78(4), 893–898.

518 Charlton, B., Ellis, W., McKinnon, A., Cowin, G., Brumm, J., Nilsson, K., & Fitch, W. (2011). Cues to body size in
519 the formant spacing of male koala (*Phascolarctos cinereus*) bellows: honesty in an exaggerated trait.
520 *Journal of Experimental Biology*, 214(20), 3414–3422. <https://doi.org/10.1242/jeb.061358>

521 Charlton, B. D., & Reby, D. (2016). The evolution of acoustic size exaggeration in terrestrial mammals. *Nature
522 Communications*, 7(1), 1–8. <https://doi.org/10.1038/ncomms12739>

523 Elemans, C. P., Rasmussen, J. H., Herbst, C. T., Düring, D. N., Zollinger, S. A., Brumm, H., ... & Švec, J. G.
524 (2015). Universal mechanisms of sound production and control in birds and mammals. *Nature
525 communications*, 6(1), 1-13.

526 Fant, G. (1970). *Acoustic theory of speech production* (2nd ed.). The Hague: Mouton.

527 Fitch, W. T., & Hauser, M. D. (1995). Vocal production in nonhuman primates: Acoustics, physiology, and
528 functional constraints on “honest” advertisement. *American Journal of Primatology*, 37(3), 191–219.
529 <https://doi.org/10.1002/ajp.1350370303>

530 Fitch, W. T. (1997). Vocal tract length and formant frequency dispersion correlate with body size in rhesus
531 macaques. *The Journal of the Acoustical Society of America*, 102(2), 1213–1222.
532 <https://doi.org/10.1121/1.421048>

533 Fitch, W. T., & Giedd, J. (1999). Morphology and development of the human vocal tract: A study using magnetic
534 resonance imaging. *The Journal of the Acoustical Society of America*, 106(3), 1511–1522.
535 <https://doi.org/10.1121/1.427148>

536 Fitch, W. T. (2000). The evolution of speech: a comparative review. *Trends in Cognitive Sciences*, 4(7), 258–267.

537

538

539

540

541

542

543

544

545 Fitch, W.T., & Reby, D. (2001). The descended larynx is not uniquely human. *Proceedings of the Royal Society of*
546 *London. Series B: Biological Sciences*, 268(1477), 1669–1675. <https://doi.org/10.1098/rspb.2001.1704>

547

548 Fitch, W. T., & Hauser, M. D. (2003). Unpacking “Honesty”: Vertebrate Vocal Production and the Evolution of
549 Acoustic Signals. In *Acoustic Communication* (pp. 65–137). Springer-Verlag. https://doi.org/10.1007/0-387-22762-8_3

551

552 Fox, J., & Weisberg, S. (2019). *An R Companion to Applied Regression*, Third edition. Sage, Thousand Oaks CA.
553 <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>.

554

555 Garcia, M., Wondrak, M., Huber, L., & Fitch, W. T. (2016). Honest signaling in domestic piglets (*Sus scrofa*
556 *domesticus*): vocal allometry and the information content of grunt calls. *The Journal of Experimental*
557 *Biology*, 219, 1913–1921. <https://doi.org/10.1242/jeb.138255>

558

559 Garcia, M., Herbst, C. T., Bowling, D. L., Dunn, J. C., & Fitch, W. T. (2017). Acoustic allometry revisited:
560 morphological determinants of fundamental frequency in primate vocal production. *Scientific reports*, 7(1),
561 1–11.

562

563 Garcia, M., & Manser, M. (2020). Bound for Specific Sounds: Vocal Predisposition in Animal Communication.
564 *Trends in Cognitive Sciences*, 24(9), 690–693.

565

566 Garcia, M., & Ravignani, A. (2020). Acoustic allometry and vocal learning in mammals. *Biology Letters*, 16(7),
567 20200081.

568

569 Greer, L. L., Whaley, J., Rowles, T. K. (2001). Euthanasia. In: L. Dierauf & F. M. D. Gulland (Eds.), *CRC*
570 *Handbook of Marine Mammal Medicine: Health, Disease and Rehabilitation* (pp. 729–737). Boca Raton,
571 FL: CRC Press, Inc.

572

573 Hanggi, E. B., & Schusterman, R. J. (1994). Underwater acoustic displays and individual variation in male harbour
574 seals, *Phoca vitulina*. *Animal Behaviour*, 48(6), 1275–1283. <https://doi.org/10.1006/anbe.1994.1363>

575

576 Hauksson, E. (2006). Growth and reproduction in the Icelandic common seal (*Phoca vitulina* L., 1758). *Marine*
577 *Biology Research*, 2(01), 59–73.

578

579 Janik, V. M., & Slater, P. J. (1997). Vocal learning in mammals. In: P. Slater, C. Snowdon, J. Rosenblatt, & M.
580 Milinski (Eds.), *Advances in the Study of Behaviour*, 26, 59–100.

581

582 Khan, C. B., Markowitz, H., & McCowan, B. (2006). Vocal development in captive harbor seal pups, *Phoca vitulina*
583 *richardii*: Age, sex, and individual differences. *The Journal of the Acoustical Society of America*, 120(3),
584 1684–1694. <https://doi.org/10.1121/1.2226530>

585

586 Kooyman, G., & Andersen, H. (1969). Deep diving. *The Biology of Marine Mammals*, 65–94.

587

588 Koren, L., & Geffen, E. (2009). Androgens and social status in female rock hyraxes. *Animal Behaviour*, 77(1), 233–
589 238.

590

591 Kuester, J., Paul, A., & Arnemann, J. (1995). Age-related and individual differences of reproductive success in male
592 and female barbary macaques (*Macaca sylvanus*). *Primates*, 36(4), 461–476.

593

594 Lattenkamp, E. Z., & Vernes, S. C. (2018). Vocal learning: a language-relevant trait in need of a broad cross-species
595 approach. *Current opinion in behavioral sciences*, 21, 209–215.

596

597 Le Boeuf, B. J. (1991). Pinniped mating systems on land, ice and in the water: Emphasis on the Phocidae. In *The*
Behaviour of Pinnipeds (pp. 45–65). Springer Netherlands. https://doi.org/10.1007/978-94-011-3100-1_2

598 Lester, B. M., & LaGasse, L. L. (2008). Crying. In *Encyclopedia of Infant and Early Childhood Development* (Vol.
599 1–3, pp. 332–343). Elsevier Inc. <https://doi.org/10.1016/B978-012370877-9.00045-1>

600 Markussen, N. H., Bjørge, A., & Ørntsland, N. A. (1989). Growth in harbour seals (*Phoca vitulina*) on the
601 Norwegian coast. *Journal of Zoology*, 219(3), 433–440.

602

603 Martin, K., Tucker, M. A., & Rogers, T. L. (2017). Does size matter? Examining the drivers of mammalian
604 vocalizations. *Evolution*, 71(2), 249–260. <https://doi.org/10.1111/evo.13128>

605

606 Neumann, D. R. (1999). Agonistic behavior in harbor seals (*Phoca vitulina*) in relation to the availability of haul-out
607 space. *Marine Mammal Science*, 15(2), 507–525.

608

609 Osinga, N., Nussbaum, S. B., Brakefield, P. M., & de Haes, H. A. U. (2012). Response of common seals (*Phoca*
610 *vitulina*) to human disturbances in the Dollard estuary of the Wadden Sea. *Mammalian Biology*, 77(4),
611 281–287. <https://doi.org/10.1016/j.mambio.2012.02.005>

612

613 Perry, E. A., & Renouf, D. (1988). Further studies of the role of harbour seal (*Phoca vitulina*) pup vocalizations in
614 preventing separation of mother–pup pairs. *Canadian Journal of Zoology*, 66(4), 934–938.
615 <https://doi.org/10.1139/z88-138>

616

617 Pfefferle, D., & Fischer, J. (2006). Sounds and size: identification of acoustic variables that reflect body size in
618 hamadryas baboons, *Papio hamadryas*. *Animal Behaviour*, 72(1), 43–51.

619

620 Pfefferle, D., West, P. M., Grinnell, J., Packer, C., & Fischer, J. (2007). Do acoustic features of lion, *Panthera leo*,
621 roars reflect sex and male condition? *The Journal of the Acoustical Society of America*, 121(6), 3947.
622 <https://doi.org/10.1121/1.2722507>

623

624 Plotsky, K., Rendall, D., Riede, T., & Chase, K. (2013). Radiographic analysis of vocal tract length and its relation
625 to overall body size in two canid species. *Journal of Zoology*, 291(1), 76–86.
626 <https://doi.org/10.1111/jzo.12048>

627

628 Poole, J. H. (1999). Signals and assessment in African elephants: Evidence from playback experiments. *Animal*
629 *Behaviour*, 58(1), 185–193. <https://doi.org/10.1006/anbe.1999.1117>

630

631 Pugliares, K. R., Bogomolni, A., Touhey, K. M., Herzig, S. M., Harry, C. T., & Moore, M. J. (2007). Marine
632 mammal necropsy: an introductory guide for stranding responders and field biologists. *Woods Hole*
633 *Oceanographic Institution Technical Report*, 6, 1–133.

634

635 R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical
636 Computing, Vienna, Austria. ISBN 3-900051-07-0, URL <http://www.R-project.org/>.

637

638 Ralls, K., Fiorelli, P., & Gish, S. (1985). Vocalizations and vocal mimicry in captive harbor seals, *Phoca vitulina*.
639 *Canadian Journal of Zoology*, 63(5), 1050–1056. <https://doi.org/10.1139/z85-157>

640

641 Ravignani, A., Gross, S., Garcia, M., Rubio-Garcia, A., & De Boer, B. (2017). How small could a pup sound? The
642 physical bases of signaling body size in harbor seals. *Current Zoology*, 63(4), 457–465.

643

644 Ravignani, A., & Garcia, M. (2021). A cross-species framework to identify vocal learning abilities in mammals.
645 *Philosophical Transactions of the Royal Society B: Biological Sciences*. 376, 20200394.
646 <https://doi.org/10.1098/rstb.2020.0394>

647

648 Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty: Acoustic cues to age and weight in the
649 roars of red deer stags. *Animal Behaviour*, 65(3), 519–530. <https://doi.org/10.1006/anbe.2003.2078>

650

651 Reijnders, P. J. H., Brasseur, S. M. J. M., & Meesters, E. H. W. G. (2010). Earlier pupping in harbour seals, *Phoca*
652 *vitulina*. *Biology Letters*, 6(6), 854–857. <https://doi.org/10.1098/rsbl.2010.0468>

653

654 Renouf, D. (1984). The vocalization of the Harbour seal pup (*Phoca vitulina*) and its role in the maintenance of
655 contact with the mother. *Journal of Zoology*, 202(4), 583–590. <https://doi.org/10.1111/j.1469-7998.1984.tb05055.x>

656

657

658 Renouf, D. (2012). *The behaviour of pinnipeds*. Springer Science & Business Media.

659

660 de Reus, K. (2017). Talking seals: vocal development in Eastern Atlantic harbour seal pups (*Phoca vitulina*
661 *vitulina*). MSc Thesis, Royal Veterinary College, University of London.

662

663 Roers, F., Mürbe, D., & Sundberg, J. (2009). Predicted singers' vocal fold lengths and voice classification—a study
664 of x-ray morphological measures. *Journal of Voice*, 23(4), 408–413.

665

666 Salkind, N. J. (2010). *Encyclopedia of research design* (Vols. 1-0). Thousands Oaks, CA: SAGE Publications.

667

668 Sauvé, C., Beauplet, G., Hammill, M., & Charrier, I. (2015). Acoustic analysis of airborne, underwater, and
669 amphibious mother attraction calls by wild harbor seal pups (*Phoca vitulina*). *Journal of Mammalogy*,
670 96(3), 591–602.

671

672 Schneider, R. (1962). Vergleichende untersuchungen am kehlkopf der robben (mammalia, carnivora, pinnipedia).
673 *Gegenbaurs Morph Jb*, 103, 177–262.

674

675 Taylor, A. M., & Reby, D. (2010). The contribution of source-filter theory to mammal vocal communication
676 research. *Journal of Zoology*, 280(3), 221–236.

677

678 Titze, I. R. (1994). *Principles of Voice Production*. Englewood Cliffs, New Jersey: Prentice Hall.

679

680 Titze, I. R., Luschei, E. S., & Hirano, M. (1989). Role of the thyroarytenoid muscle in regulation of fundamental
681 frequency. *Journal of Voice*, 3(3), 213–224.

682

683 Torres Borda, L., Jadoul, Y., Rasilo, H., Casals, A. S., & Ravignani, A. (2021). Vocal plasticity in harbour seal
684 pups. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 376, 20200456.
685 <https://doi.org/10.1098/rstb.2020.0456>

686

687 Tyack, P., & Miller, E. (2002). Vocal anatomy, acoustic communication and echolocation. In *Marine mammal
688 biology: An evolutionary approach* (pp. 142–184). Oxford: Wiley-Blackwell.

689

690 Van den Berg, J., Zantema, J. T., & Doornenbal, P. (1957). On the Air Resistance and the Bernoulli Effect of the
691 Human Larynx. *The Journal of the Acoustical Society of America*, 29(5), 626–631.
692 <https://doi.org/10.1121/1.1908987>

693

694 Van Parijs, S. M., & Kovacs, K. M. (2002). In-air and underwater vocalizations of eastern Canadian harbour seals,
695 *Phoca vitulina*. *Canadian Journal of Zoology*, 80(7), 1173–1179. <https://doi.org/10.1139/z02-088>

696

697 Vignal, C., & Kelley, D. (2007). Significance of temporal and spectral acoustic cues for sexual recognition in
698 *Xenopus laevis*. *Proceedings of the Royal Society B: Biological Sciences*, 274(1609), 479–488.
699 <https://doi.org/10.1098/rspb.2006.3744>

700

701 Wyman, M., Mooring, M., McCowan, B., Penedo, M., & Hart, L. (2008). Amplitude of bison bellows reflects male
702 quality, physical condition and motivation. *Animal Behaviour*, 76(5), 1625–1639.

703

704 Zahavi, A. (1977). The cost of honesty (further remarks on the handicap principle). *Journal of theoretical
705 Biology*, 67(3), 603–605.

706

707 **Figure legends**

708

709 **Figure 1.** PGLS regressions between frequency parameters (frequency range in the left panel,
710 maximum frequency in the right panel) and body mass across 164 mammalian species. All
711 variables are log-transformed and the figure is adapted from Ravignani and Garcia (2021). The
712 dotted lines represent a threshold at 2,5 standard deviations from the main regression lines used
713 to define outliers. Non-outlier species (which show acoustic allometry between frequency
714 parameters and body mass) are represented by smaller sized circles and outlier species (which
715 escape acoustic allometry) are represented by bigger sized circles. The two red data points,
716 representing harbour seals, are both outliers.

717

718 **Figure 2.** Lack of acoustic allometry relationships in harbour seals. Panel A shows the
719 correlations between median f_0 for each noise condition (silence, low and high) and body mass.
720 The respective correlation coefficients (τ) and associated p-values (p) for each correlation are
721 reported above the regression line. At first sight, the characteristic inverse relationship between
722 f_0 and body size may seem present, but there is some overlap in the range of f_0 values (whiskers
723 on the right side of the plot) produced by individuals of differing body size between noise
724 conditions. Non-significant p-values suggest that, at least in this sample, there is a lack of
725 acoustic allometry. In addition, allometry may break if calls are produced in different noise
726 conditions. In other words, do the environmental conditions in which vocalisations are produced
727 strongly affect the f_0 values, as much as or even more than body mass? We produced density
728 distributions (panels B-D) by computing 10,000 different combinations of randomly selected
729 median f_0 values (1 of the 3 median frequency values per seal) to assess if allometric
730 relationships hold across noise conditions. The coloured vertical lines in these plots represent the
731 respective values for each of the noise conditions. The median value of the distribution is
732 represented by black circle on the density curve. Panel B shows the density distribution of the
733 Kendall rank correlation coefficients. The median value lies around -0.18, pointing to a weak
734 negative correlation. Panel C shows the density distribution of the correlation p-values associated
735 with the correlations from Panel B. The median p-value is 0.38 which means that in most of the
736 simulated cases we would not reject the null hypothesis (i.e., the correlation is not significantly
737 different from 0). In fact, in only 2.2% of cases (217 out of 10,000) is the correlation significant;
738 this is indicated by the red vertical line. In other words, in 10,000 simulated samples of 8 seals,

739 we generally find no acoustic allometry. Panel D shows the density distribution of the simulated
740 linear regression coefficients, where the median value is -10.8 Hz. Given a 5.1 kg difference in
741 body mass between the smallest and the largest seal, we would expect, on average, a frequency
742 shift of 55.08 Hz. For every individual, we calculated the difference of the median f_0 values
743 between the silent and high noise condition; the median range across all individuals is 73.6 Hz.
744 This suggests that the differences caused by individual variability in f_0 in response to noise
745 conditions are larger than the f_0 differences expected from body mass differences alone. Seals of
746 differing body sizes (e.g., 7 vs. 12 kg) could thus potentially produce the same f_0 value. This
747 would mean that, in harbour seal pups, vocal plasticity can outweigh and mask acoustic
748 allometric relationships.

749

750 **Figure 3.** Illustration of the source-filter theory of sound production using the vocal anatomy of
751 the harbour seal.

752

753 **Figure 4.** Vocal anatomy of the harbour seal. (A) shows the main anatomical structures
754 composing the vocal tract, (B) depicts the measurements shown on a digital rendering and (C)
755 depicts the measurements shown on a picture of a hemi-larynx from a harbour seal pup. In panel
756 C, the black square outlined on the white paper serves as reference and is exactly 1 cm². The
757 vocal tract measurements taken include (1) vocal tract length (VTL), (2) vocal fold length (VFL),
758 (3) vocal fold thickness (VFT), (4) subglottic-tracheal dorsoventral distance 1 (STDV1), and (5)
759 subglottic-tracheal dorsoventral distance 2 (STDV2).

760

761 **Figure 5.** Boxplots illustrating the significant age differences between pups and weaners for (A)
762 VTL, (B) VFL, (C) STDV1, and (D) STDV2. The level of significance is denoted by asterisks,
763 where *** = 0.001.

764

765 **Figure 6.** Boxplots illustrating the significant sex differences for (A) VTL in pups and (B)
766 STDV1 in weaners. The level of significance is denoted by asterisks, where * = 0.05 and ** =
767 0.01.

768

769 **Figure 7.** Predicted effects of the body length and sex interaction for VTL including both sexes
770 (top), and the body mass and age interaction for VFL including both age classes (bottom). The
771 shading around each line of best fit indicates the 95% confidence interval.
772

773 **Tables**

774

775 Table 1

776

777 *Pairwise Spearman correlations*

778

Variable	Body Length (cm)	Body Mass (kg)	Girth (cm)	VTL (mm)	VFL (mm)	VFT (mm)	STDV1 (mm)
Body Mass (kg)	0.70						
Girth (cm)	0.53	0.86					
VTL (mm)	0.62	0.69	0.63				
VFL (mm)	0.73	0.79	0.65	0.72			
VFT (mm)	0.44	0.67	0.68	0.52	0.60		
STDV1 (mm)	0.63	0.78	0.65	0.70	0.82	0.69	
STDV2 (mm)	0.58	0.72	0.62	0.67	0.76	0.60	0.81

779

780 *Note.* All correlations were significant at $p < 0.05$ after correcting for multiple comparisons using
781 the Holm-Bonferroni method.

782 Table 2

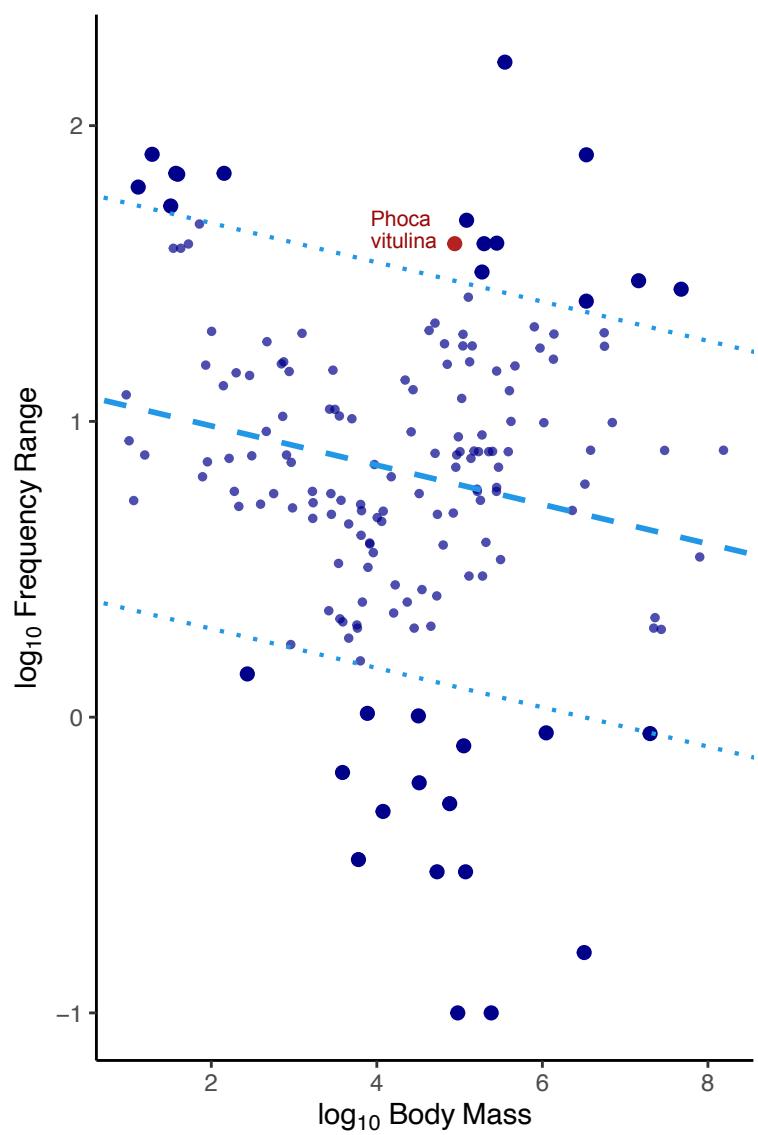
783

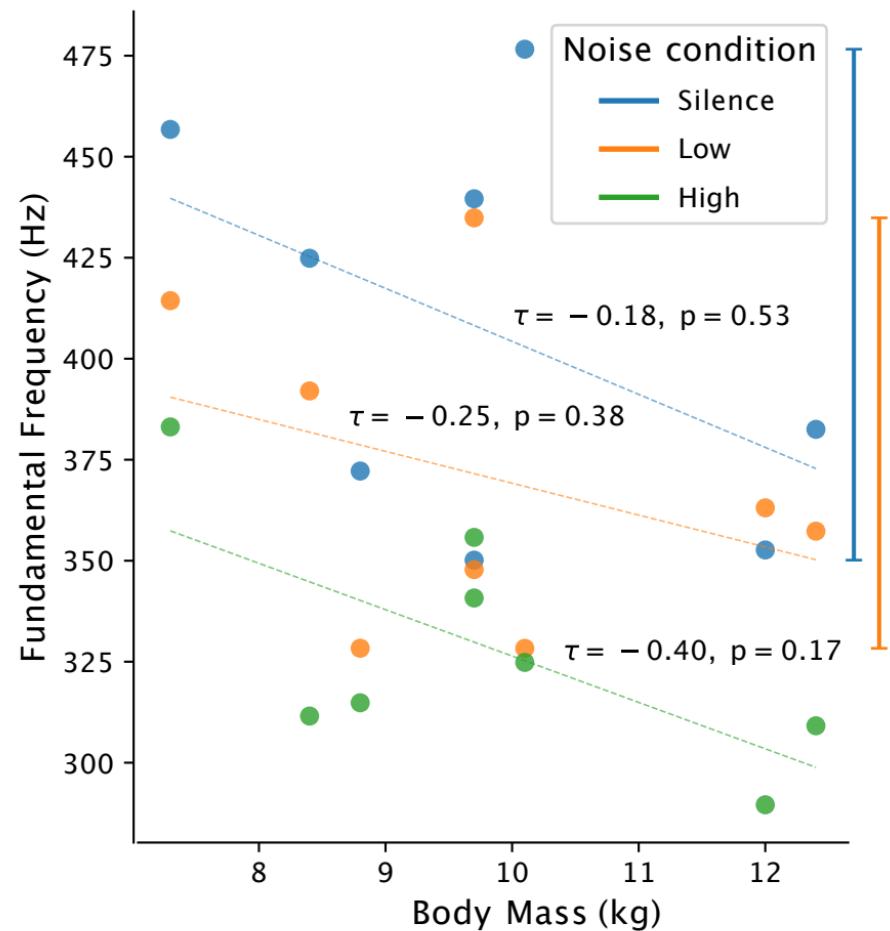
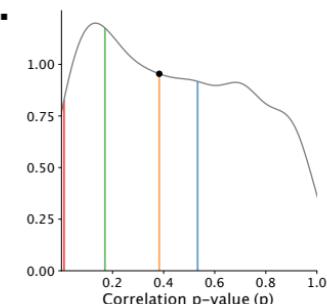
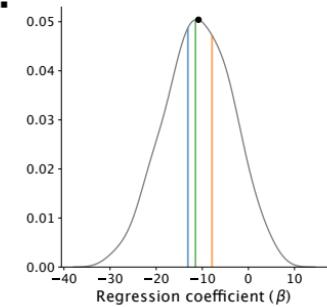
784 *Means and standard deviations*

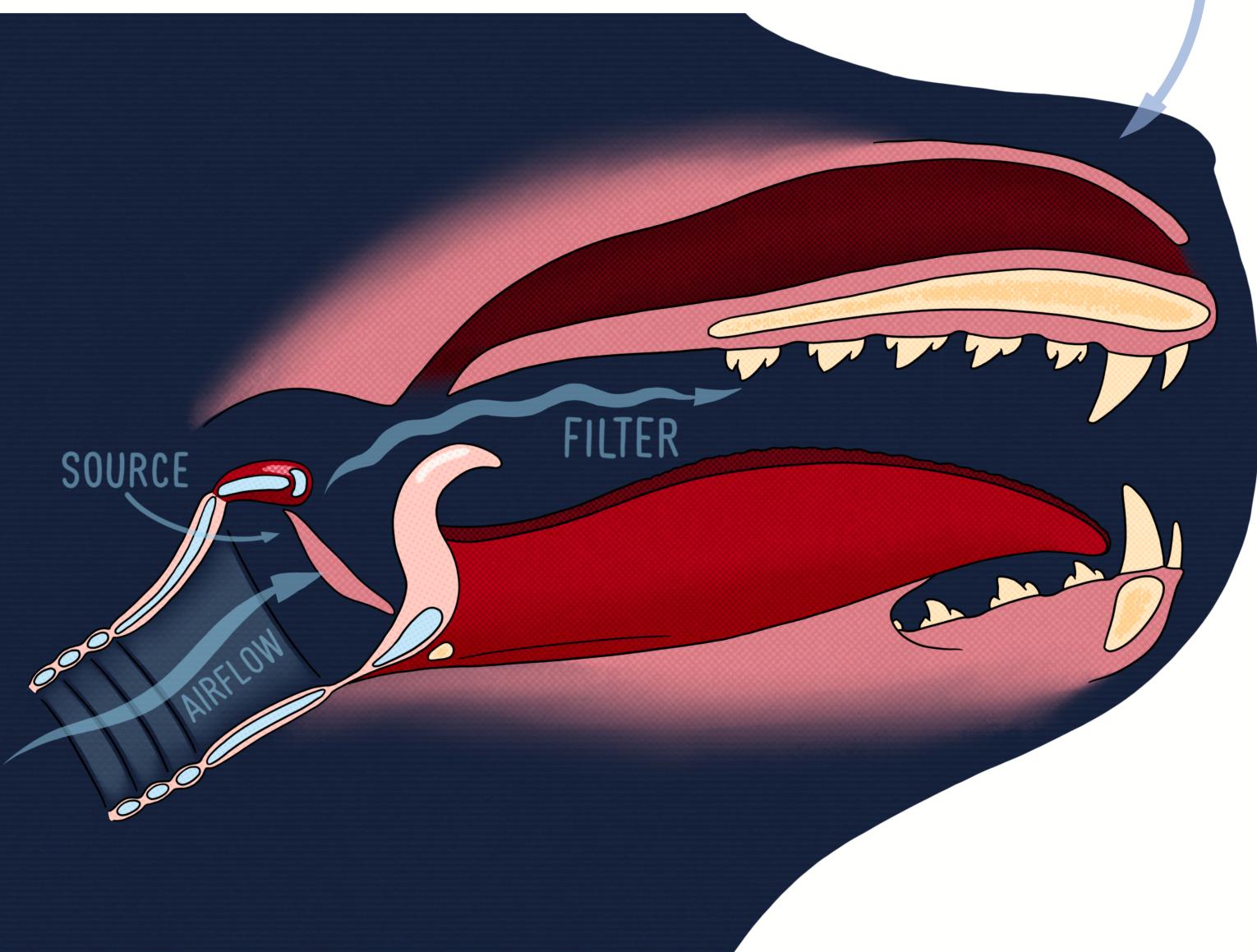
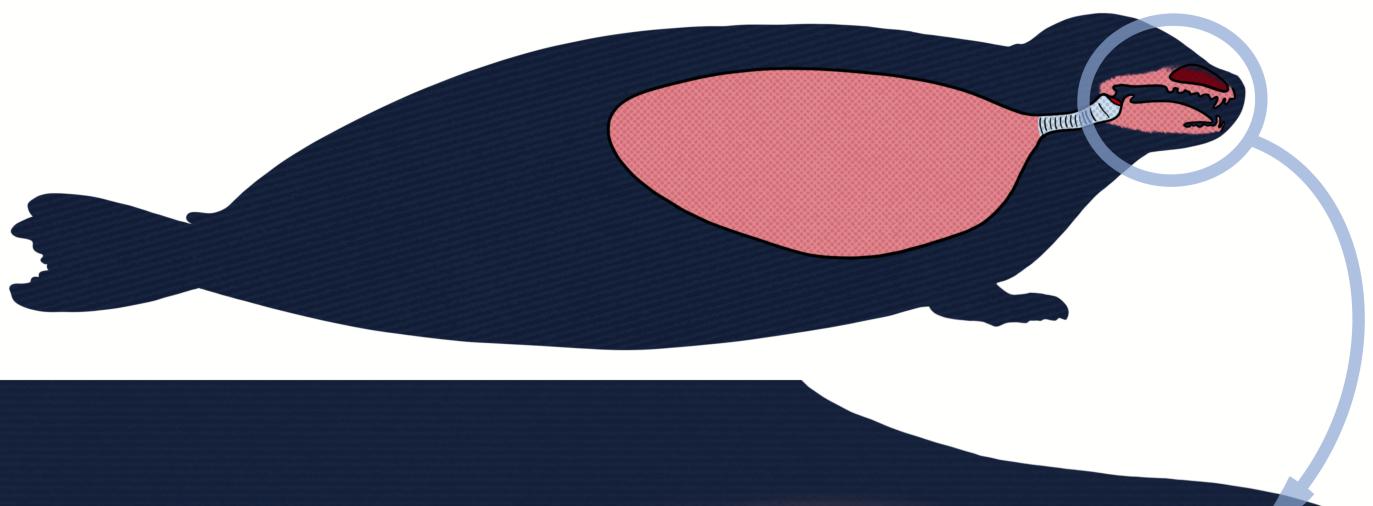
785

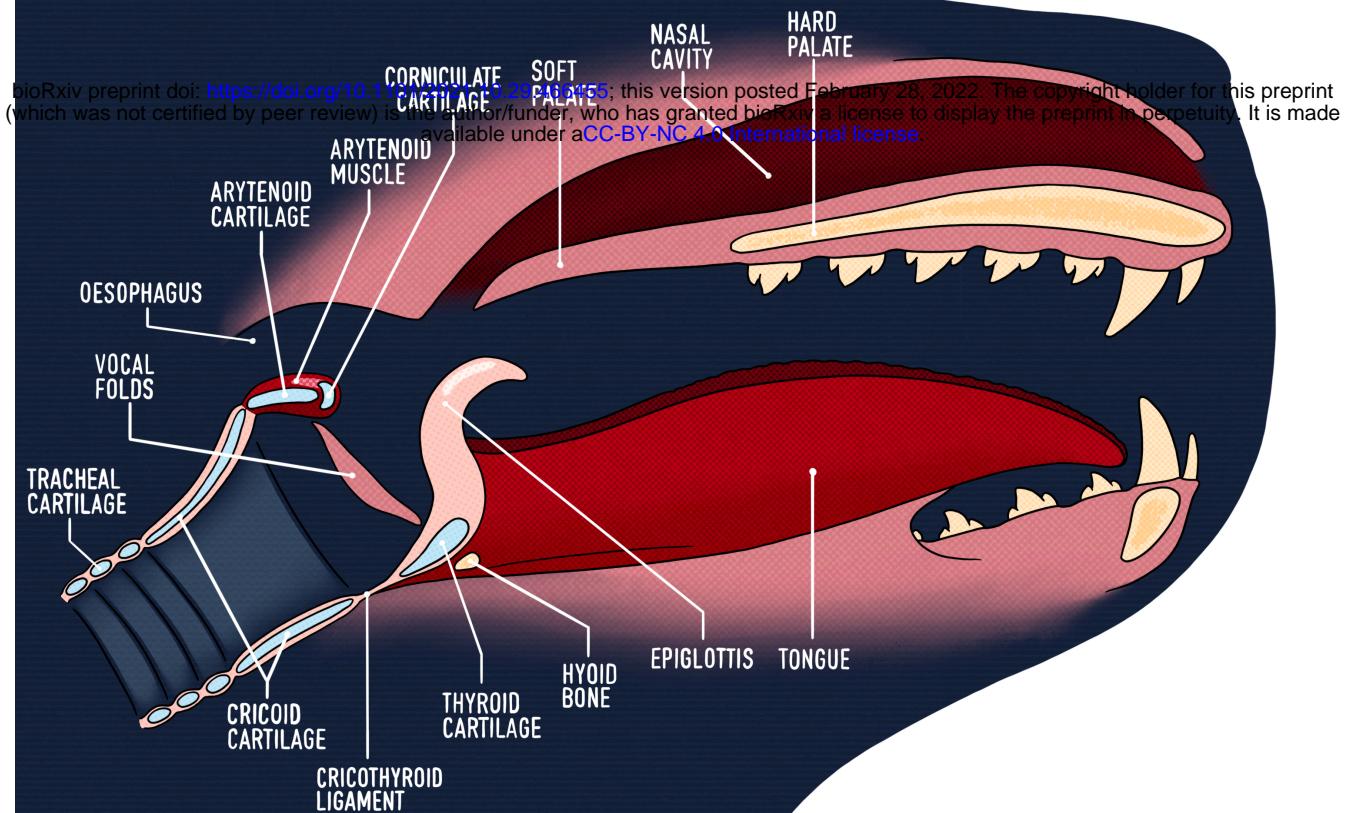
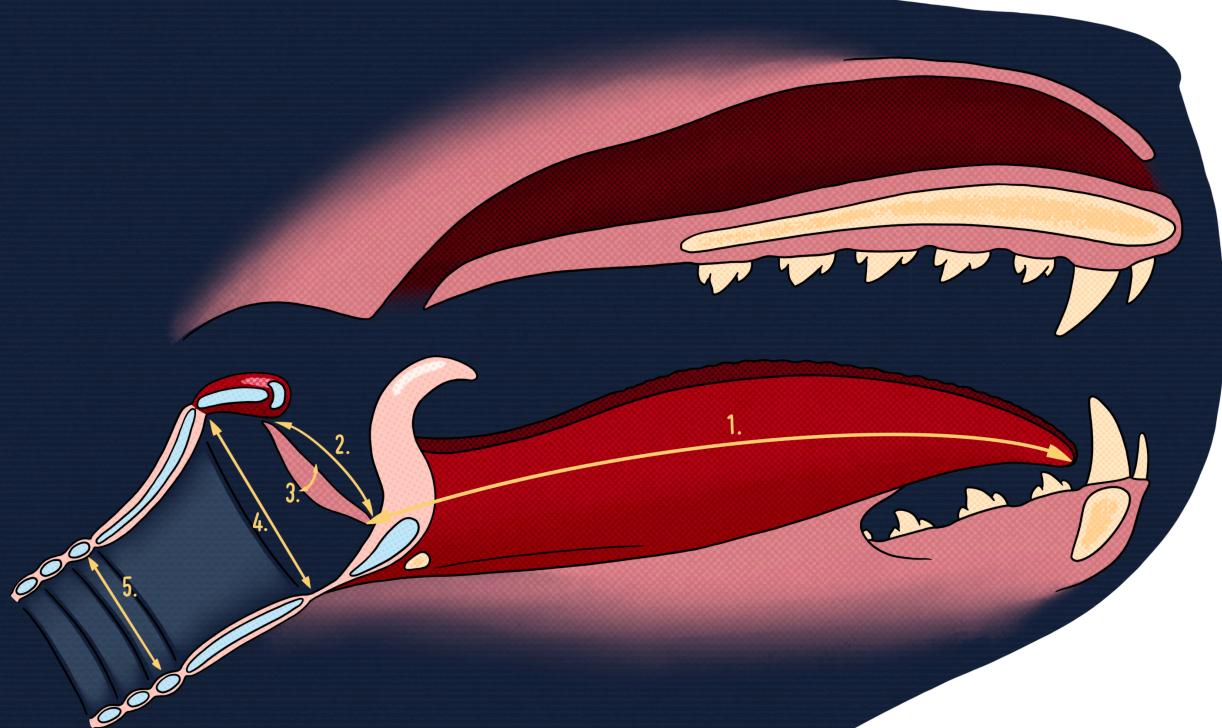
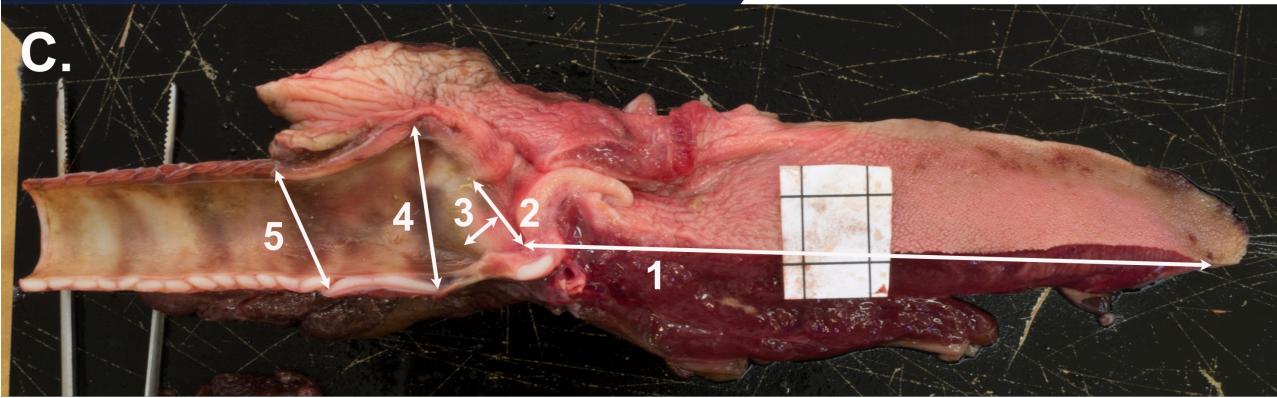
Variable	All		Pups		Weaners	
	Mean	SD	Mean	SD	Mean	SD
Body Length (cm)	88.07	8.03	79.86	4.79	90.19	7.32
Body Mass (kg)	14.53	3.92	9.81	1.46	15.75	3.39
Girth (cm)	57.55	9.62	46.54	5.66	60.41	8.30
VTL (mm)	91.43	6.77	83.36	4.48	93.53	5.60
VFL (mm)	10.92	1.16	9.26	0.90	11.35	0.77
VFT (mm)	5.15	0.61	4.50	0.43	5.35	0.51
STDV1 (mm)	23.97	1.95	21.35	1.37	24.65	1.43
STDV2 (mm)	17.43	1.82	15.17	1.04	18.02	1.49

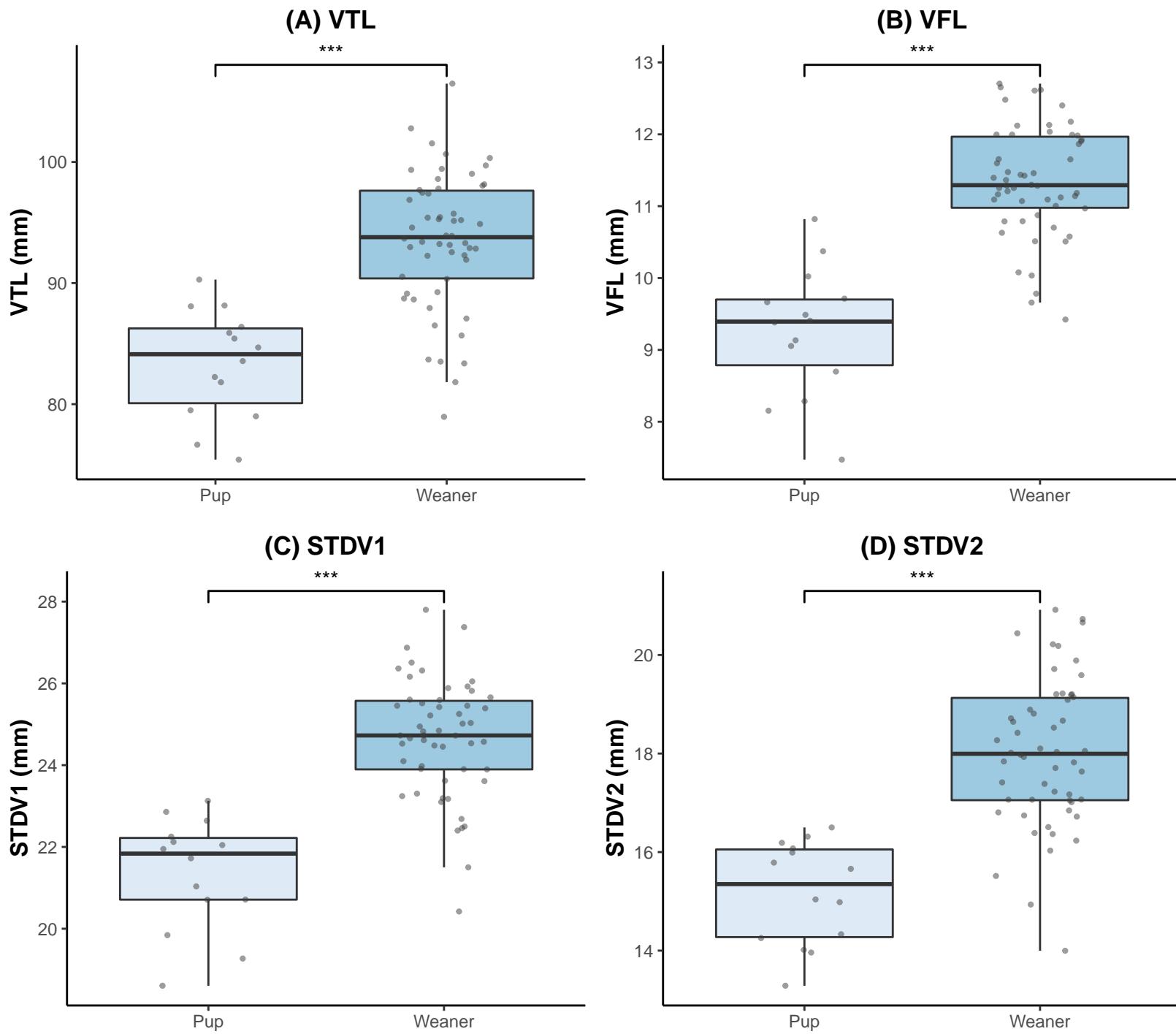
786

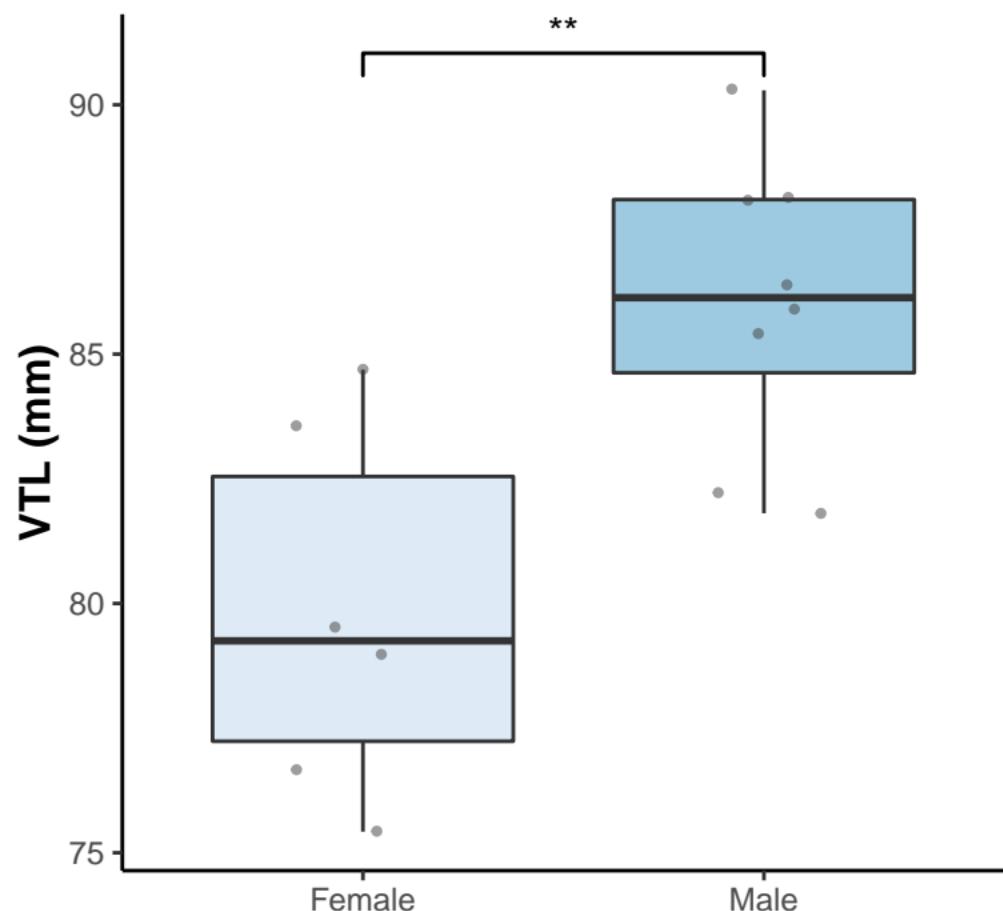

787 Table 3

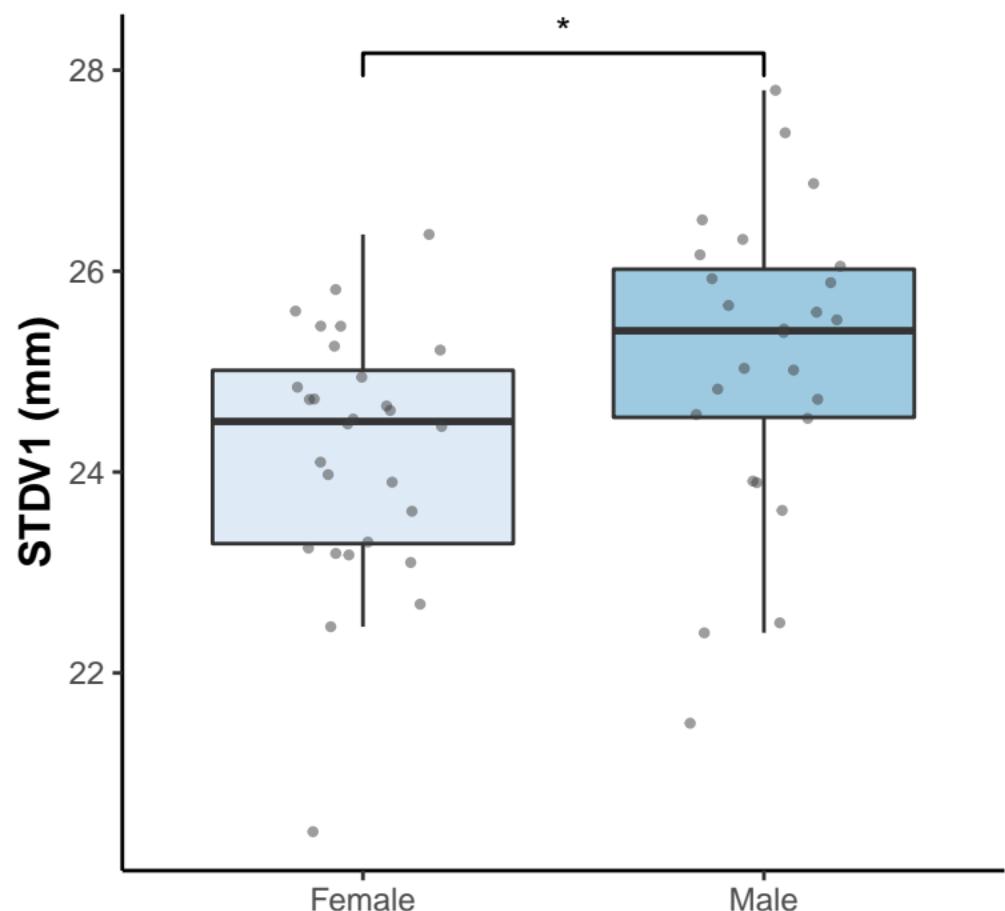



788

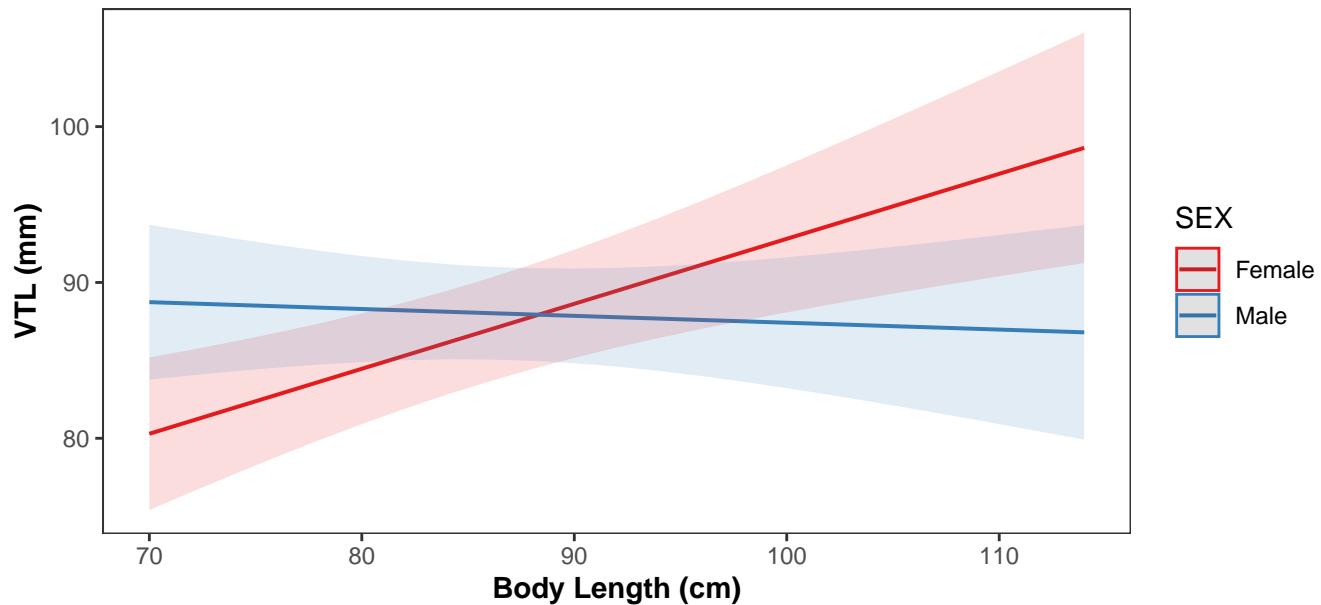


789 *Selected models for each vocal tract structure*

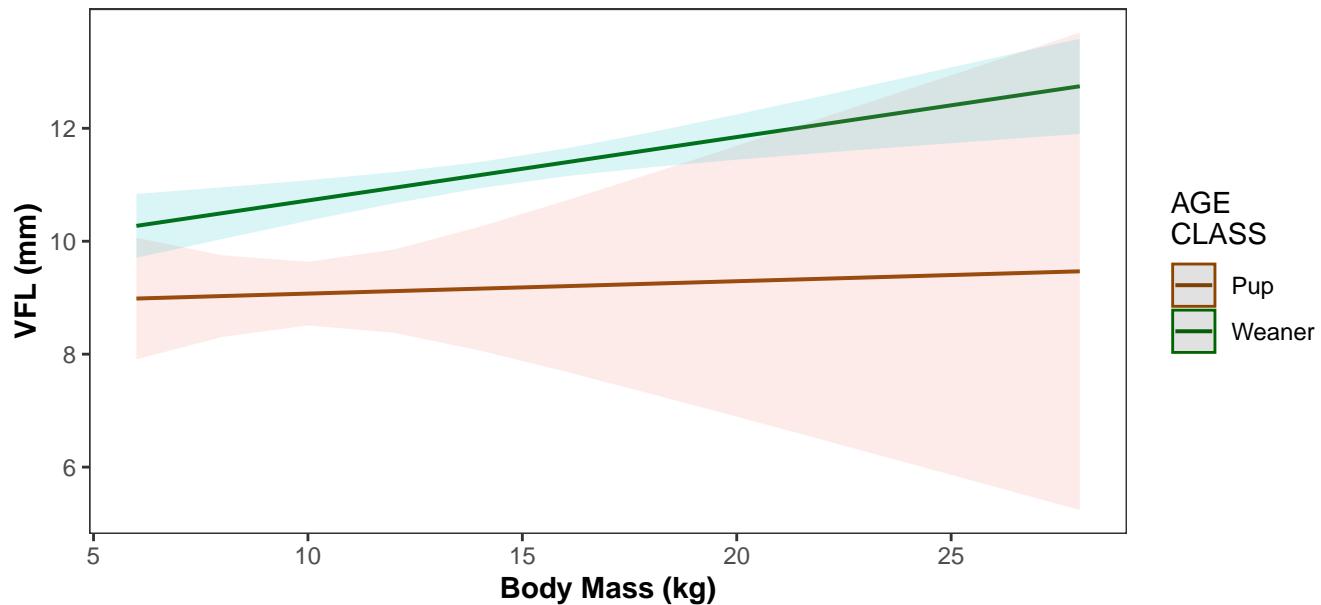



Measurement	Selected model	Deviance explained (%)
VTL	<u>BL</u> + <u>BM</u> + <u>A</u> + <u>S</u> + <u>BL</u> * <u>S</u>	59.30
VFL	<u>BL</u> + BM + A + <u>S</u> + A*BM + <u>A</u> * <u>S</u>	74.89
STDV1	<u>BL</u> + <u>BM</u> + <u>A</u> + <u>S</u>	69.99
STDV2	BL + <u>BM</u> + <u>A</u> + S	58.38


790 *Note.* Models included the predictors body length (BL), body mass (BM), age class (A) and sex
791 (S). Predictor terms joined by an asterisk denote an interaction effect. Significant predictor terms
792 are shown as underlined.


A.**B.****C.****D.**


A.**B.****C.**


(A) Pup VTL


(B) Weaner STDV1

Predicted values of VTL

Predicted values of VFL

