

1 **The non-specific Lipid Transfer Protein (nsLTP) is involved at early and late**  
2 **stages of symbiosis between *Alnus glutinosa* and *Frankia alni*.**

3

4 Mélanie GASSER<sup>1</sup>, Nicole ALLOISIO<sup>1</sup>, Pascale FOURNIER<sup>1</sup>, Severine BALMAND<sup>2</sup>, Ons  
5 KHARRAT<sup>1</sup>, Joris TULUMELLO<sup>1,3</sup>, Abdelaziz HEDDI<sup>2</sup>, Pedro Da SILVA<sup>2</sup>, Philippe  
6 NORMAND<sup>1</sup>, Hasna BOUBAKRI<sup>1#</sup>, Petar PUJIC<sup>1</sup>

7

8 1-Université de Lyon, F-69361, Lyon, France ; Université Claude Bernard Lyon 1, CNRS,  
9 UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France

10 2-INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions,  
11 Villeurbanne, France

12 3-present address: Aix Marseille Univ, CEA, CNRS, BIAM, Lab Microbial Ecology of the  
13 Rhizosphere (LEMiRE), F-13108, Saint-Paul-Lez-Durance, France; BioIntrant 139, Rue  
14 Philippe de Girard, Pertuis F-84120, France.

15

16 **#corresponding author:** [hasna.boubakri@univ-lyon1.fr](mailto:hasna.boubakri@univ-lyon1.fr), tel: 33-472 44 82 00

17

18 **Summary**

19 *Alnus glutinosa* response to *Frankia alni* is driven by several sequential physiological  
20 modifications that include calcium spiking, root hair deformation, penetration, induction  
21 of primordium, formation and growth of nodule. Here, we have conducted a  
22 transcriptomic study to analyse plant responses to *Frankia alni* at early stages of  
23 symbiosis establishment.

24 Forty-two genes were significantly activated by either with a *Frankia* culture  
25 supernatant or with living cells separated from the roots by a dialysis membrane

26 permitted to identify plant genes which expression changes upon early contact with  
27 *Frankia*. Most of these genes encode biological processes, including oxidative stress and  
28 response to stimuli. The most upregulated gene is the non-specific lipid transfer protein  
29 (nsLTP) encoding gene with a fold change of 141. Physiological experiments showed  
30 that nsLTP increases *Frankia* nitrogen fixation at sub-lethal concentration.  
31 Immunohistochemistry experiments conducted at an early infection stage indicated that  
32 nsLTP protein is localized at the deformed root hair region after *Frankia* inoculation and  
33 later in nodules, precisely around bacterial vesicles. Taken together, these results  
34 suggest that nsLTP acts at early and late stages of symbiosis, probably by increasing  
35 nitrogen uptake by *Frankia*.

36

37 **Keywords:** nitrogen fixation, antimicrobial peptide, immunity, root hairs, oxidative  
38 stress, lipid, infection threads, nodule

39

## 40 **Introduction**

41 Symbiosis between *Alnus glutinosa* and the actinobacterium *Frankia alni* permits the  
42 establishment of root nodules in which nitrogen fixation takes place. This helps alder  
43 and other plants collectively called "actinorhizal" to grow on nitrogen-poor soils and  
44 initiate ecological successions. The determinants of this interaction are poorly known,  
45 due among other reasons to the lack of a transformation system in alder. *Alnus glutinosa*  
46 is the type species of the genus (Navarro *et al.*, 2003), it grows in pioneer biotopes such  
47 as glacial moraines, volcanic ashes and mine spoils (Normand & Fernandez, 2019) and  
48 its genome has been deciphered recently (Griesmann *et al.*, 2018).

49 The presence of a symbiotic bacterium like *Frankia* or simply that of its exudates,  
50 triggers in the host plant tissues a series of events leading to root hair deformation and

51 calcium spiking (Granqvist *et al.*, 2015). Later, penetration, primordium formation and  
52 growth of nodules follow with subsequent exchange of nutrients. Omic analyses have  
53 permitted to gain a global view of the physiological changes taking place upon specific  
54 challenges. In particular, transcriptomics of 21 day post-inoculation (dpi) nodules  
55 permitted to see on the plant side the presence of homologs of the whole common  
56 symbiotic signalling cascade or CSSP (Hocher, V. *et al.*, 2011; Hocher, Valérie *et al.*,  
57 2011), some of which have been lost in non-symbiotic neighbours (Griesmann *et al.*,  
58 2018).

59 This important conservation on the plant side of the common symbiotic pathway  
60 (Hocher, V. *et al.*, 2011) contrasts with the absence in most *Frankia* genomes (Normand  
61 *et al.*, 2007) of the canonical *nod* genes which are involved in the biosynthesis of Nod  
62 Factor (NF) in majority of Rhizobia (D'Haeze & Holsters, 2002). In mature nodules, the  
63 bacterial genes *nif*, *hup*, *shc* and *suf* are upregulated but no trace of a symbiotic island  
64 was found (Alloisio *et al.*, 2010). A study of the *Frankia alni* early response (2.5 dpi)  
65 showed that several determinants were upregulated among which a K-transporter, lipid  
66 modifying enzymes and a conserved cellulose synthase cluster (Pujic *et al.*, 2019).  
67 Proteomics was performed on a related species, *Frankia coriariae* that unravelled an  
68 upregulation of cell wall remodelling enzymes, signal transduction and host signal  
69 processing proteins (Ktari *et al.*, 2017). Metabolomics on an *Alnus*-infective strain  
70 showed the presence of various compounds absent from roots (Hay *et al.*, 2017), high  
71 levels of TCA intermediates citrate, fumarate and malate (Carro *et al.*, 2015a) and high  
72 levels of citrulline, glutamate and pyruvate (Brooks & Benson, 2016; Hay *et al.*, 2020).  
73 Signalling between alder and *Frankia alni* involves on the part of the bacterium the  
74 synthesis of an uncharacterized root hair deforming factor (Ghelue *et al.*, 1997;  
75 Cérémonie *et al.*, 1999) and that of the auxin PAA (Hammad *et al.*, 2003). On the plant

76 side, less is known besides the upregulation of defensins that modify the porosity of  
77 *Frankia* membranes (Carro *et al.*, 2015b; Carro *et al.*, 2016).  
78 We undertook the present study to better understand the initial steps of the actinorhizal  
79 symbiosis on the plant side where the symbiont must be recognized to pave the way for  
80 its internalization. To analyse this early plant responses to *Frankia* symbiont we have  
81 conducted a cell-free contact through two conditions: indirect contact with *Frankia*  
82 trapped in dialysis tube or its supernatant and by targeting 2.5 dpi response, by which  
83 time extensive root hair deformation has occurred (Berry & Torrey, 1983) and before  
84 primordium formation at 7dpi (Lalonde, 1979). We further focussed on the most  
85 upregulated gene coding a non-specific Lipid Transfer Protein (nsLTP), which is also one  
86 of the most overexpressed genes in the nodule. We showed that nsLTP increases *Frankia*  
87 nitrogen fixation at sub-lethal concentration. Taken into account that this protein shown  
88 to localize at the deformed root hairs and in *Frankia*'s vesicles inside nodules, we  
89 hypothesized that nsLTP acts at early and late stages of symbiosis.

90

## 91 **Materials and methods**

### 92 **Strains and growth condition before total RNA extraction**

93 Plant samples at early stages of infection were obtained as described previously (Pujic *et*  
94 *al.*, 2019). Briefly, *Frankia alni* ACN14a (Normand & Lalonde, 1982) was grown in BAP-  
95 PCM media until log-phase, collected by centrifugation, washed twice with sterile ultra-  
96 pure water and suspended in Farhaeus medium without KN<sub>3</sub>. *Frankia* cells were  
97 homogenised by forced passage through a series of needles (21G, 23G, 25G, 27G) before  
98 inoculation.

99 *Alnus glutinosa* seeds obtained from a single individual growing on the banks of the river  
100 Rhone in Lyon were surface sterilised and grown as described earlier (Pujic *et al.*, 2019).

101 Seedlings were transferred to Fåhraeus' solution (Fahraeus, 1957) in opaque plastic  
102 pots (8 seedlings/ pot) and grown for four weeks with 0.5 g.L<sup>-1</sup> KNO<sub>3</sub>, followed by one  
103 week without KNO<sub>3</sub> before inoculation.

104 Two independent experiments were performed. In experiment #1 (Exp 1- *Frankia*  
105 indirect contact (FIC)), 8ml of *Frankia* cells were transferred to dialysis tubing  
106 (MWCO=100kDa) and arranged into a plastic pot containing 8 seedlings and filled with  
107 Fåhraeus' solution without KNO<sub>3</sub>. Five biological replicates were performed with 4  
108 plastic pots per replicate. In experiment #2 (Exp2-*Frankia* supernatant direct contact  
109 (SupC)), *Frankia* supernatants were applied directly on *Alnus* roots. Supernatant extract  
110 was prepared as follow: 250 ml log-phase culture cells were removed by centrifugation  
111 and the supernatant filtered through 0.22 µm membranes (Millipore, Billerica, MA).  
112 Solid phase extractions of the supernatants were done using benzene sulphonic acid  
113 cation exchanger on silica (Macherey Nagel, Hoerdt, France). Elution was done using  
114 50:50 v/v methanol-water followed by 100 % methanol. Two fractions were lyophilised  
115 under vacuum, dissolved in water and tested for root hair deformation activity on  
116 independent plant roots. In parallel, as a control condition without supernatant, an  
117 equivalent volume of culture medium was treated with the same extraction protocol.  
118 Three biological replicates were performed with 6 seedlings per replicate.

119 The root hair deformation process took place similarly in both direct and indirect  
120 contact conditions, confirmed with stereomicroscope observations (Leica MZ8, Wetzlar,  
121 Germany). After 2.5 days (64 hours) with root hairs highly deformed, a 2 cm long  
122 segment representing the central part of the root was cut at 2 cm from the distal end,  
123 washed with sterile water before freezing in liquid nitrogen and storing at -80° C. In  
124 addition, a T0 control condition without *Frankia* was performed and plant roots were  
125 washed and frozen as described above.

126

127 **Transcriptomics of alder at 2.5dpi**

128 Transcriptomics was done as described earlier (Hocher, V. *et al.*, 2011). Total RNA was  
129 purified from roots using RNeasy plant mini kits (Qiagen, Courtaboeuf, France) and  
130 treated with DNases as before. Residual DNA was removed using the Turbo DNA free kit  
131 (Ambion, Thermo Fisher Scientific, Wilmington, DE), quantified using a NanoDrop  
132 spectrophotometer (Thermo Fischer Scientific) and qualitatively assessed using a  
133 Bioanalyzer 2100 (Agilent, Waldbronn, Germany).

134 Microarrays were designed (13909 probes; 1 probe/*A. glutinosa* unigene),  
135 manufactured and hybridised by Imaxio (<http://www.imaxio.com/index.php>), using  
136 Agilent Technologies (<http://www.home.agilent.com/agilent/home.jspx>) as previously  
137 described (Hocher, V. *et al.*, 2011). The microarrays were scanned with an Agilent  
138 G2505C Scanner. The Feature Extraction software (Agilent, version 11.5.1.1) was used  
139 to quantify the intensity of fluorescence signals and microarray raw data were analysed  
140 using GeneSpring GX 12.0 software (Agilent technologies). Normalisation per chip (to  
141 the 75th percentile) and per probe (to the median) were performed to allow comparison  
142 of samples. The two experiments Exp 1 and Exp 2 were analysed separately. In order to  
143 limit false positive results, microarray data were filtered according to the flag parameter  
144 “detected”. Thus, probes taken into account are uniform, non-outlying, non-saturated  
145 and displayed an intensity level above the background in at least one of the two  
146 biological conditions.

147 In Exp1, 1590 probes yielding an intensity level significantly below the background in  
148 the 10 samples were discarded. In addition, 1146 probes did not yield the flag  
149 “detected” in at least one of the two biological conditions and were also discarded. Thus,  
150 11 173 probes were taken into account for subsequent analyses of Exp 1.

151 In Exp 2, 1765 probes yielded an intensity level significantly below the background in  
152 the 6 samples and were discarded. In addition, 1113 probes did not yield the flag  
153 “detected” in at least one of the two biological conditions and were also discarded. Thus,  
154 11031 probes were taken into account for subsequent analyses of Exp 2. T-tests  
155 comparing *FIC* roots *vs.* control roots in Exp 1 and *SupC* roots *vs.* control roots in Exp 2  
156 were applied and only those genes with an average fold change (FC) above 2 (up-  
157 regulated) or below 0.5 (down-regulated) with a *p*-value<0.05 were considered  
158 significant. The normalized and raw microarray data values have been deposited in the  
159 Gene Expression Omnibus database ([www.ncbi.nlm.nih.gov/geo](http://www.ncbi.nlm.nih.gov/geo); accession nos. E-  
160 MTAB-8936 and E-MTAB-8937).

161

## 162 **Quantitative real-time RT-PCR**

163 Reverse transcription (RT) and real time quantitative PCR (qRT-PCR) were performed  
164 with the same biological replicates used for microarray experiments. For *A. glutinosa*  
165 analyses, RT was performed with 5 µg of total mRNA using Transcriptor Reverse  
166 Transcriptase and oligo (dT)<sub>15</sub> primer (Roche, Mannheim, Germany). QRT-PCR was run  
167 on a LightCycler 480 (Roche) using LightCycler 480 SYBR Green I Master (Roche) under  
168 the following conditions: 95 °C for 5 min; 45 cycles of 95 °C for 20 s, 60 °C for 20 s and  
169 72 °C for 15 s. Primer sets were designed using ProbeFinder (Roche) and Primer 3  
170 softwares and can be seen as Supporting Information (Table S1). Two qRT-PCR  
171 reactions were run for each biological replicate and each primer set. Expression values  
172 were normalised using the expression level of the *Ag-ubi* gene that encodes ubiquitin  
173 (Hocher, V. *et al.*, 2011).

174

## 175 **Cloning of *agLTP24* gene**

176 The *agltp24* gene was PCR amplified from cDNA prepared above using designed  
177 primers (Table S1) under the following conditions: 98 °C for 30 s; 30 cycles of 98 °C for 7  
178 s, 63 °C for 20 s and 72 °C for 8 s. The reaction mixture of 50 µl PCR contained 1X  
179 Phusion HF buffer, 200 µM dNTPs, 0.5 µM Forward primer, 0.5 µM reverse primer, 87 ng  
180 template DNA and 1-units Phusion DNA Polymerase (NEB, Evry, France). The PCR  
181 product was cloned using the hot fusion method (Fu *et al.*, 2014) in pET30a+ vector  
182 (Merck, Molsheim France) pre-digested with *Eco*RI and *Bgl*II in order to fusion AgLTP24  
183 with a N- terminal 6XHis flag. Ligation mixture was transformed in *Escherichia coli*  
184 DH5 $\alpha$  chemocompetent cells (Chung *et al.*, 1989) for plasmid DNA propagation and  
185 sequencing (pET30a-HIS-AgLTP24, supplemental Fig. S1). Plasmids DNA was prepared  
186 using (Nucleospin Plasmid DNA kit Macherey Nagel) from 4 independent clones, 2 ml of  
187 each *E. coli* culture grown overnight in 5ml LB medium at 37°C with shaking. Cloned  
188 insert DNA was checked by Sanger sequencing (Biofidal, Lyon, France) and used for  
189 electrotransformation into iSHuffle T7 *lysY* *E. coli* cells (NEB, Evry, France), a strain used  
190 to obtain proteins with disulphide bonds (Lobstein *et al.*, 2012).

191

## 192 **AgLTP24 production and purification**

193 Cultures were grown in LB medium supplemented with kanamycin (40µg.ml<sup>-1</sup>) at 30°C  
194 at 130 rpm until log phase was reached (OD<sub>600</sub> ~0,5) then the HIS-AgLTP24 expression  
195 was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Induced cultures  
196 were incubated at 30°C for 3h at 130 rpm and harvested by centrifugation (5100 g for  
197 10 min at 4°C). Expression was analysed by 4-20% Tricine SDS-PAGE (Schagger, 2006).  
198 Pellets were lysed by freeze thaw and resuspended in a binding buffer (100 mM Tris,  
199 500 mM NaCl, 5mM Imidazole, pH 7.4). A second lysis was performed using silica beads  
200 and Fastprep 24™ 5G (MP Biomedicals). The cell lysate was harvested by centrifugation

201 at 5100 g, 4°C for 30min and used for the purification of HIS-AgLTP24 using His  
202 GravityTrap columns (GE Healthcare) with modified binding (100mM Tris, 500mM NaCl,  
203 5mM Imidazole, pH 7.4) and elution buffers (100 mM Tris, 500 NaCl, 500 mM Imidazole,  
204 pH 7.4). Purification of HIS-AgLTP24 was verified by 4-20% Tricine SDS-PAGE. Elution  
205 fractions was applied to a 3K MWCO Amicon Ultra-15 centrifugal filter (Merck Millipore)  
206 to buffer exchange with the enterokinase buffer (20 mM Tris, 50 mM NaCl, 2 mM CaCl<sub>2</sub>,  
207 pH 6.8) and concentrate. The HIS tag was removed from the mature sequence of  
208 AgLTP24 with enterokinase (NEB, Evry, France) for 16 h at room temperature. Cleavage  
209 was confirmed by 4-20% Tricine SDS-PAGE. The enterokinase was removed from the  
210 mixture using the Enterokinase Removal Kit (Sigma). His tag removal was done with a  
211 His GravityTrap column (GE-Healthcare) using an imidazole free binding buffer (100  
212 mM Tris, 500 mM NaCl, pH 7.4). Wash fractions containing AgLTP24 purified were  
213 applied to a 3K MWCO Amicon Ultra-15 centrifugal filter (Merck Millipore) for buffer  
214 exchange with NH<sub>4</sub><sup>+</sup>-free FBM medium (FBM-). Final concentration was determined with  
215 Qubit Protein Assay Kit (ThermoFisher). The purified AgLTP24 protein were further  
216 analysed by UPLC-ESI-HRMS. The system used for UPLC-ESI-HRMS was an ultra-  
217 performance liquid chromatography Ultimate 3000 (Thermo Fisher Scientific, Villebon-  
218 sur-Yvette, France) coupled to a high resolution hybrid quadrupole-time of flight mass  
219 spectrometer (Impact II, Bruker, Brême, Germany) equipped with electrospray  
220 ionization source (ESI) (Bruker, Brême Germany). Instrument control and data  
221 collection were performed using Data Analysis 5.0 software.

222

### 223 **Immunolocalization of AgLTP24**

224 Immunostaining and fluorescence microscopy was done as described earlier (Login *et*  
225 *al.*, 2011) with the synthesised epitope (DKHSTADFEKLAPCGKAAQD) injected to a

226 rabbit (Covalab). Plant immunolocalization was performed on *A. glutinosa* roots (2.5  
227 dpi) as described above in Exp 1 (FindC). In addition, nodules (21dpi) obtained as a  
228 previous study (Carro *et al.*, 2015b) were also used here to localise agLTP24 at the  
229 mature stage of symbiosis. T0 non-infected seedlings were used as control.

230

231 **Physiological assays with AgLTP24 on *Frankia alni*.**

232 The antimicrobial activity of AgLTP24 (using 1 $\mu$ M, 2 $\mu$ M, 5 $\mu$ M concentrations), was done  
233 using the resazurin assay in 24-well microplates (Greiner bio-one, Les Ulis, France). A 2-  
234 week-old *Frankia* ACN14a culture grown in FBM medium supplemented by 5mM of  
235 NH<sub>4</sub>Cl (FBM+) was centrifuged at 5100 g for 15 minutes, the supernatant was removed,  
236 and the pellet homogenized in FBM- by repeated passage through syringes. *Frankia*  
237 culture was done in 1ml of FBM- per well with a final optical density of 0.02 and with an  
238 appropriate concentration of AgLTP24 peptide. Four replicates were made for each  
239 condition. Negative (*Frankia* ACN14 in FBM-) and positive controls (*Frankia* ACN14a in  
240 FBM- supplemented by kanamycin at 40 $\mu$ g.ml<sup>-1</sup> final concentration) were performed.  
241 Microplates were incubated at 28°C, 80 rpm in a humid incubator. After 6 days of  
242 incubation, resazurin (Fisher Scientific SAS, Illkirch, France) was added to a final  
243 concentration of 6.25 $\mu$ g.ml<sup>-1</sup> in each well and the microplates were incubated at 28°C, 80  
244 rpm for 16 hours in the dark. Fluorescence measurements were performed with a  
245 microplate reader (infinite M200PRO, TECAN) with an excitation wavelength of 530nm  
246 and an emission wavelength of 590nm. The results obtained were normalised to the  
247 mean fluorescence of the negative control. Since data were normally distributed, mean  
248 comparisons with the negative control were performed with a Student's *t*-test.

249 A second bioassay was made by growing *F. alni* in FBM- and incubating from 1 to 14  
250 days at 28°C (5 replicates by kinetic point and by condition) as described previously. At

251 each kinetic point, the effects nitrogen fixation (or ARA), respiration (IRA) and on  
252 morphology were monitored (Prin *et al.*, 1990; Carro *et al.*, 2015b). Since data were  
253 normally distributed or not, different statistical tests were made using GraphPad Prism  
254 9.2.0 (GraphPad software Inc; San Diego, CA, USA).

255

## 256 **Bioinformatics**

257 Blast analyses and GO assignation were performed on Blast2GO v5.2 using BLASTx  
258 against NR, Gene Ontology (GOs) and Inter-ProScan (Conesa & Gotz, 2008). Fishers'  
259 exact test implemented in Blast2GO was used to identify significantly enriched GO  
260 categories. A GO category was considered significantly enriched only when the *p*-value  
261 for that category was < 0.05 after applying FDR correction. Molecular mass of proteins  
262 and their isoelectric point were calculated through the Expasy software  
263 (<https://web.expasy.org/protparam/>)

264

265

## 266 **Results**

### 267 **Transcriptomics response of alder at 2dpi**

268 In the first early response transcriptomic experiment (Exp 1), 300 and 225 genes were  
269 found to be significantly up- or down- regulated in *A. glutinosa* after 2.5 days post  
270 inoculation (dpi) of *Frankia* in a separated dialysis bag (cut off 100 KDa -*Frankia*  
271 indirect contact (FindC) roots/ control roots) by having a fold change (FC)  $\geq 2$  or  $\leq 0.5$  (*p*  
272  $\leq 0.05$ ), respectively (Table S2). In Exp2, 248 *A. glutinosa* genes were found to be  
273 significantly regulated 2.5 dpi with *Frankia* supernatant (*Frankia* supernatant contact  
274 (FsupC) roots/control roots). Of these, 176 and 76 genes were also up- and down-

275 regulated in Exp2; respectively (Table S3). By comparing ESTs present in both  
276 experiments, 84 genes were found significantly up- or down-regulated (See SI Table S4).

277

278 **Biological processes implicated in early steps of symbiosis**

279 A GO-based analysis of the biological processes enriched in up- and down-regulated  
280 genes within each experiment yielded 12 to 23 % of genes with no Blast hit (Fig. S2).  
281 Among the sequences with a Blast hit, 8 to 14% correspond to unknown proteins and  
282 could not be associated to any biological process. The annotated sequences retrieved  
283 were distributed in 21 different processes (Fig. 1a). The presence of *Frankia* at early  
284 stages strongly activated genes involved in response to stimuli and catabolic processes  
285 among which oxidative stress (oxidase, peroxidase) and defence (chitinase, defensin,  
286 thaumatin...) were upregulated in both conditions, as well as a large portion of genes  
287 involved in nitrogen compound metabolic processes with kinases, transferases, lyases or  
288 glucosidases. Globally, the number of sequences retrieved was higher in Exp1 than Exp2  
289 (Fig. 1a), suggesting a stronger signal detected in indirect interaction through dialysis  
290 tubing.

291 A statistical analysis permitted to identify certain enzyme families by comparing each  
292 pool of genes. Even this Fisher test made in both experiment, only Exp1 gave differences  
293 in GO assignation between up and down-regulated genes (Fig. 1b).

294 In Exp1, an overrepresentation of genes coding enzymes involved in oxidation-reduction  
295 biological processes and oxidative stress responses was seen with numerous  
296 peroxidases, catalases, oxidases or lipoxygenases overexpressed (Table S1). Also,  
297 chemical reactions involving alpha and aromatic amino acid metabolism and fatty acid  
298 beta-oxidation, selenocysteine methyltransferase, phenylalanine ammonia lyase or  
299 caffeic acid O-methyltransferase were seen following indirect contact with *Frankia* cells.

300 Nucleotide binding proteins such as a receptor kinase (AG-N01f\_037\_C05), a uridine  
301 kinase (AG-N01f\_030\_B06) or a calcium transporting membrane (AGCL1701Contig1)  
302 were also more abundant in the set of up-regulated proteins of Exp1. Finally, several  
303 genes coding defence response were overrepresented such as endochitinase, disease  
304 resistance protein, defensin, thaumatin, allergen or nsLTP. Conversely, we observed an  
305 enrichment in down-regulated genes of one molecular function of GO assignation:  
306 isomerase such as inositol-3-phosphate synthase, ribose-5-phosphate isomerase or  
307 beta-amyrin synthase.

308

### 309 **The most upregulated genes in both experimentations**

310 By compiling differentially regulated genes found in both experiments (Table 1 and  
311 Table S4), we compared them through GO-based analysis. An overrepresentation of only  
312 one biological process (lipid metabolism) in down-regulated genes was found with the  
313 same statistical restriction (FDR<0.05). Indeed, several genes, including synthase,  
314 reductase and oxidase and involved in triterpenoid (AG-N01f\_010\_H21) isopentenyl  
315 diphosphate (IPP) and dimethylallyl diphosphate (AG-N01f\_014\_J09); geranyl or  
316 geranylgeranyl diphosphate (GPP and GGPP) (AG-N01f\_005\_E08; AG-J07f\_004\_F15) or  
317 terpene (AG-J07f\_004\_M14; AGCL3086Contig1) biosynthesis were detected as more  
318 abundant in down-regulated genes and already observed by our first GO assignation  
319 (Fig. 1a).

320 Amongst the 42 most upregulated genes found in both conditions (Table 1), the most  
321 upregulated gene encodes a non-specific lipid transfer protein or nsLTP (fold changes:  
322 140.7 (FindC) and 74.8 (FsupC)), followed by a betabutilin and a pectin methylesterase  
323 inhibitor. Remarkably, 20 out these 42 up-regulated genes encoded proteins with a  
324 peptide signal (Table 1). Among them, numerous upregulated genes encode secreted

325 peptides (47%), some of them are classified as antimicrobial: three defensins (Ag5, Ag3  
326 and Ag11), a nsLTP and a thaumatin like-protein.

327 To confirm the level of expression at this early step, we focussed on two genes, one  
328 coding the nsLTP and the second coding the basic blue copper protein (fold changes:  
329 (fold changes: 140.7 (*FindC*) and 74.8 (*FsupC*), 4.7 (*FindC*) and 11.7 (*FsupC*),  
330 respectively) as candidate genes for qRT-PCR with two primer pairs per gene (Table S1).

331 Up-regulation was confirmed by qRT-PCR with the same biological replicates previously  
332 used (Table S5).

333 In order to examine the temporal distribution of expression, we extracted from our  
334 previous work (Hocher, V. *et al.*, 2011) the fold change obtained with the same  
335 microarray but at 21 dpi when the nodule is formed and compared it to non-infected  
336 roots (Table 1, Fig. 2).

337 Almost down-regulated genes at early stage were either repressed or not modulated at  
338 nodule stage. Among them, we observed an enrichment of proteins associated to lipid  
339 metabolic process and lyase activity. Conversely, genes upregulated at 2.5 dpi are  
340 classified in three profiles. Sixteen are still induced when 17 are not modulated and 8  
341 are repressed in nodule. For instance, genes encoding proteins involved in stress  
342 response are found in the three profiles (Fig. 2) but we found mainly AMPs (defensin,  
343 thaumatin) in the first group when chitinase and peroxidase enriched the two other  
344 groups (Table 1). The nsLTP found as the most upregulated gene at early stage  
345 presented also a very high expression at 21 dpi (FC=2145 in nodule, Table 1) suggesting  
346 a requirement all along the symbiosis process. NsLTPs are classified as AMPs and  
347 annotated as systematic acquired resistance according GO analysis suggest its potential  
348 role in defense response. For all these reasons, we decided to focus our functional  
349 analysis on this protein.

350

351 **Structure and classification of AgLTP24**

352 The nsLTP from *A. glutinosa* overexpressed during its interaction with *Frankia* is named  
353 AgLTP24. The total nucleotide sequence is 552 base pairs and contains one exon. This  
354 sequence encodes a putative processed protein of 114 amino acids including a signal  
355 peptide with a sequence of 22 amino acids that allows its secretion [29]. The mature  
356 peptide has a molecular weight of 9700.28 Dalton and a cationic isoelectric point of 8.46,  
357 this nsLTPs is classified according to Edstam et al. (Edstam *et al.*, 2011) as Type D. It  
358 contains the characteristic motif of nsLTPs composed of 8 cysteines: C-X13-C-X14CC-X9-  
359 C-X1-C-X24-C-X10-C which stabilises the 3D structure by folding the  $\alpha$ -helices domains  
360 with disulphide bridges forming a hydrophobic cavity.

361

362 **Immunolocalization of AgLTP24 in planta**

363 In order to determine where this nsLTP is secreted during symbiosis establishment, we  
364 performed an immunohistolocalization within plant tissues. Antibodies anti-AgLTP24  
365 were applied to different alder tissues inoculated or not by *Frankia*. First, we produced  
366 deformed root hairs after an indirect contact of *Frankia* (F indC) and observed signals in  
367 extracellular nooks (Fig. 3b and Fig. 3c). These nooks were the specific site for *Frankia*  
368 binding. No signal was detected with control rabbit serum (Fig. 3a) or with anti-  
369 AgLTP24 against non-infected roots (Fig. S3). Microarrays and qRT-PCR showed  
370 overexpression of this protein in mature 21 dpi nodules. We observed a specific  
371 immunolocalization in plant cells infected by *Frankia* situated in the fixation zone of the  
372 nodule (Fig. 3e), specifically on *Frankia*'s vesicles (Fig. 3f).

373

374 **Biological production of AgLTP24**

375 The nsLTPs are low molecular weight peptides rich in cysteines. It has a signal sequence  
376 that allows the plant to address it to a target compartment. Those nsLTPs are  
377 characterized by a conserved motif of 8 cysteines in their mature sequence forming 4  
378 disulfide bonds important for the formation of the hydrophobic cavity, which makes  
379 their production difficult. Synthetic production is limited to small peptides with few  
380 disulfide bonds, so we developed a biological production of mature AgLTP24, i.e.  
381 without its signal peptide, in *E. coli* shuffle T7 *lysY* (Fig. S1) which are capable of forming  
382 disulfide bonds (Lobstein *et al.*, 2012). We obtained a yield of 0.1mg of pure protein per  
383 litre of culture. After peptide purification, UPLC-ESI-HRMS analysis of the purified  
384 AgLTP24 protein revealed a monoisotopic  $[M+H]^+$  m/z 9686.8008 (theoretical  
385 monoisotopic m/z calculated for  $C_{415}H_{676}N_{123}O_{126}S_9$ : 9686.7760) consistent with the  
386 formation of four disulfide bridges (Fig. S4). This analysis was made after each run of  
387 purification and before bioassays to check the purity and the good conformation of the  
388 protein with disulphide bridges.

389

### 390 **Physiology of *Frankia alni* in contact with AgLTP24**

391 A miniaturised, rapid and fluorescent bioassay using resazurin dye was successfully  
392 developed to determine whether AgLTP24 had antimicrobial activity against *Frankia*  
393 *alni* at 7 dpi. For this, we applied a range of concentrations of AgLTP24 from 1 to 5  $\mu$ M  
394 (Fig. 4) and used kanamycin as positive control of inhibition of *Frankia*. The cell viability  
395 of *Frankia* is reduced from a concentration of 5  $\mu$ M AgLTP24 (54  $\pm$  16% of cell viability)  
396 while no effect was detected below this concentration. AgLTP24 can thus be considered  
397 an antibacterial peptide against the symbiotic partner at this concentration. In addition,  
398 microscopy observation showed a negative effect of AgLTP24 on vesicles' production  
399 (Fig. 4b). Indeed, at 5  $\mu$ M of AgLTP24, no vesicle was observed whereas they are present

400 at sub-inhibitory concentrations. However, *Frankia* must be viable and efficient in the  
401 nodule to ensure nitrogen fixation for trophic exchange with its plant partner. This  
402 conducted us to perform a second physiological assay by using sub-inhibitory  
403 concentrations of AgLTP24. The second physiological assay was conducted with a range  
404 of AgLTP24 from 1nM to 1 $\mu$ M (Fig. 5). In this test, nitrogen fixation, respiratory activity  
405 ( $OD_{490nm}$ ) and growth effects ( $OD_{600nm}$ ) were monitored over a 10 days' time course (Fig.  
406 S5).

407 That range of AgLTP24 had little effect on *Frankia* growth. We noted a negative effect at  
408 10nM of AgLTP24 on respiratory activity at early time of the time course (Fig. **S5b**) but  
409 it was not maintained over time. Regarding respiratory activity, we observed a positive  
410 but not significant effect with AgLTP24 above 100nM and 5 days of growth. The most  
411 striking effect was observed on nitrogen fixation after 7 days of culture (Fig. 5) with a  
412 concentration above 100nM leading to inhibitory effect whereas no effect was observed  
413 on growth or respiratory activity. Conversely, at 1nM of this peptide, the AgLTP24  
414 improved this activity. Microscopy did show any effect on vesicle morphology (data not  
415 shown).

416

## 417 **Discussion**

418 Early steps of the interaction between alder and *Frankia* start with the molecular  
419 dialogue through the secretion of flavonoids by the plant (Benoit & Berry, 1997; Hughes  
420 *et al.*, 1999) and the bacterial “Nod-like” factors by *Frankia* (Cérémonie *et al.*, 1999;  
421 Perrine-Walker *et al.*, 2011). This factor also called root hair deforming factor (RHDF)  
422 because it triggers plant response by reorientating root-hair tip growth followed by the  
423 formation of an infection thread (IT) and cell division induction in inner cortical cells.  
424 This process leads to a nodule where *Frankia* will be housed and exchange with its plant

425 partner. Even though RHDF structure remains unknown, previous studies have shown  
426 that this factor of around 3KDa is present in *Frankia* cell free supernatant and acts at  
427 nanomolar dose (Cissoko *et al.*, 2018). In addition, this factor is able to induce a high  
428 frequency nuclear Ca<sup>2+</sup> spiking (Granqvist *et al.*, 2015). Due to the lack of a genetic  
429 transformation system for alder, other approaches besides genetic inactivation have  
430 been used to identify the host symbiotic determinants.

431 Focusing at nodule step (Hocher, V. *et al.*, 2011), transcriptomic analysis showed that  
432 the common symbiotic cascade known in Legumes (interacting with rhizobia) and in  
433 most land plants (interacting with VAM fungi) (Genre & Russo, 2016) was also present  
434 in actinorhizal plants (Gherbi *et al.*, 2008; Hocher, V. *et al.*, 2011; Hocher, Valérie *et al.*,  
435 2011). Previously, differential screening of cDNA libraries from root and nodules of  
436 *Alnus glutinosa* with nodule and root cDNAs permitted to identify several symbiotic  
437 genes among which a subtilisin-like protease (Ribeiro *et al.*, 1995), a sucrose synthase,  
438 an enolase (van Gheluwe *et al.*, 1996), and a dicarboxylate transporter (Jeong *et al.*, 2004).  
439 These genes are evocative of tissue reorganization and trophic exchanges but shed no  
440 light on the triggering of organogenesis. The present study aimed at investigating the  
441 plant molecular response at early symbiotic stages by using same transcriptomic  
442 microarray as in our previous work at nodule step (Hocher, V. *et al.*, 2011).

443

#### 444 **Global plant response at early step of symbiosis**

445 Firstly, the two experiments induced different level of response in the plant partners  
446 with stronger signal in the Exp1, suggesting that even though the supernatant is  
447 sufficient to trigger root-hair deformation, a sustained dynamic of interaction with  
448 *Frankia* is more efficient. These results suggest that *Frankia* secretome produced during  
449 Exp1 could be more diverse triggering a strong perception of its presence by plant

450 Indeed, *Frankia* secretes a variety of proteolytic enzymes such as glycosidases,  
451 esterases, or proteases presumably involved in root infection (Mastronunzio *et al.*,  
452 2008).

453 Plant global response reveals a common pattern with a strong modulation of genes  
454 involved in stress response. This biological process, specific to early response (Hocher,  
455 V. *et al.*, 2011) is constituted by genes encoding putative proteins involved in oxidative  
456 stress (oxidase, peroxidase); to defense against pathogens such as pathogenesis related  
457 (PR) proteins (chitinase, Defensin, thaumatin or nsLTP). Beside these biological  
458 processes, we can propose different steps in the plant response after *Frankia* contact.

459

460 *Oxidative stress in hairy roots repressed in nodule*

461 Focusing on oxidative stress, both the overall GO analysis showed a strong induction of  
462 genes involved in oxido-reduction metabolism (oxidase, peroxidase). These enzymes  
463 involved in oxidative stress to reduce reactive oxygen species (ROS) suggesting that  
464 *Frankia* supernatant induces a ROS stress such as previously observed for rhizobia at  
465 early steps of interaction (Peleg-Grossman *et al.*, 2009; Peleg-Grossman *et al.*, 2012). In  
466 legume roots, the enzymatic activities of catalase, ascorbate peroxidase, glutathione  
467 reductase or NADPH oxidase significantly increase upon inoculation with bacterial  
468 symbiont (Bueno *et al.*, 2001; Den Herder *et al.*, 2007; Peleg-Grossman *et al.*, 2009;  
469 Peleg-Grossman *et al.*, 2012). After this important release, ROS production reduced  
470 drastically to prevent root hair curling and IT formation (Shaw & Long, 2003; Lohar *et*  
471 *al.*, 2007).

472 To follow this dynamics of expression over the course of symbiosis establishment, we  
473 extracted transcriptional data from our previous work made at nodule step (Hocher, V.  
474 *et al.*, 2011). Few genes are not modulated or repressed in the nodule steps (Table S4,

475 Fig. 2), suggesting a similar profile. Consequently, plant after *Frankia* internalization  
476 would repress this stress response but the measure of ROS abundance over the time  
477 course of the symbiosis is necessary to support this tendency.

478

479 *Perception of Frankia factor, signaling and hormonal function*

480 Little is known about the symbiotic signals produced by *Frankia* but their perception  
481 requires plant receptor. Here, a statistical analysis revealed a moderate  
482 overrepresentation of gene involved in signal transduction (Table 1; AG-N01f\_037\_C05)  
483 encoding a putative receptor like kinase (RLK) somewhat repressed in the nodule  
484 suggesting its potential implication in *Frankia* recognition. However, other RLK similar  
485 to Lys6/Lys7/Nfr1 of legume NF receptors (AG-R01f\_025\_F02) already found in *A.*  
486 *glutinosa* (Hocher, V. *et al.*, 2011) are not modulated after 2.5 days, which raises the  
487 question of *Frankia* recognition. Plant RLKs have been shown to control the initiation,  
488 development, and maintenance of symbioses with beneficial mycorrhizal fungi and  
489 rhizobia (Buendia *et al.*, 2018; Chiu & Paszkowski, 2020) but the mechanism in  
490 actinorhizal symbiosis remain unknown (Svistoonoff *et al.*, 2014).

491 The CSSP transduction will trigger primordium organogenesis where hormonal balance  
492 plays a crucial function and particularly auxin. Indeed, exogenous auxins treatments  
493 lead to the formation of thick lateral roots resembling nodules in actinorhizal Fagales  
494 (Hammad *et al.*, 2003; Svistoonoff *et al.*, 2003) and an auxin influx inhibitor perturbs the  
495 formation of nodules in another actinorhizal model, *Casuarina glauca* (Peret *et al.*,  
496 2008). Transcriptional data at early steps sustain the pivotal function of auxin by  
497 demonstrating the overexpression of several genes encoding auxin binding proteins  
498 (Table 1: AGCL1169Contig1) or auxin inducing proteins (Table S2: AGCL1376Contig1;  
499 AG-N01f\_043\_C20). We did not detected genes involved in salicylic acid (SA) or jasmonic

500 acid (JA) biosynthesis in early steps of symbiosis however a fine bioinformatics study of  
501 metabolic routes using the genome alder is required to facilitate putative assignation  
502 and to validate or not their absence in those omic data.

503 In any case, perception of pathogen by plant triggers SA and JA accumulation and leads  
504 to the accumulation of PR proteins to minimize pathogen load or disease onset. In  
505 legume symbiosis, those hormones inhibit bacterial infection and nodule development  
506 (Liu *et al.*, 2018) suggesting that NF recognition represses this accumulation.

507

508 *Defense mechanisms activation*

509 After oxidative stress, following *Frankia* contact, alder activates numerous genes  
510 encoding PR proteins which are key components of plant innate immune system against  
511 both biotic and abiotic stresses (Ali *et al.*, 2018). More precisely, PR proteins have  
512 diverse functions such as glucanase, chitinases, thaumatin like, peroxidases, defensins,  
513 nsLTPs or thionins.

514 We found numerous upregulated chitinases as observed in legumes (Staehelin *et al.*,  
515 1994; Goormachtig *et al.*, 1998; Xie *et al.*, 1999) and described as important for rhizobia  
516 infection and IT formation (Malolepszy *et al.*, 2018). Also, genes for oxidative stress and  
517 chitinases are not modulated or repressed in late step of actinorhizal symbiosis (Table  
518 S4, Fig. 2) suggesting they are important in the early steps of *Frankia* infection.

519 Furthermore, genes encoding one uncharacterized PR proteins is upregulated after  
520 *Frankia* contact (AG-R01f\_016\_N10) and rapidly repressed at nodule step (Table 1). A  
521 similar profile was observed for PR10 in *Medicago trunculata* when associated to  
522 symbiont or pathogen infection, it is activated but in symbiotic pathway, its expression  
523 is transitory suggesting that defense signaling pathways are suppressed during the  
524 establishment of symbiosis (Chen *et al.*, 2017). Here, the transitory activation of the

525 Alder PR protein could be also induced by *Frankia* factors even though a specific  
526 response must be demonstrated by comparing to other biotic and abiotic stresses.

527 Some of the PR proteins are classified as AMPs based on their small size, the  
528 conservation of cysteine rich motif and their potential action as antimicrobial compound  
529 (Tam *et al.*, 2015). In alder transcriptome, we distinguished the overexpression of gene  
530 encoding plant defensins (Ag3, Ag5 and Ag11), thaumatin (AG-N01f\_038\_P13) and  
531 nsLTPs (AGCL115Contig1). Here, all AMPs induced at early steps are still overexpressed  
532 in nodule (Table S4, Fig. 2).

533 Like defensin, thaumatin like proteins considered as a member of defense protein but  
534 also in plant development (de Jesús-Pires *et al.*, 2020) is overinduced in alder during  
535 actinorhizal symbiosis. This expression profile is quite different to the well-documented  
536 thaumatin like gene in soybean. Indeed, the *rj4* thaumatin like gene was described as  
537 constitutively and similarly transcribed in roots and nodules and intervene at a very  
538 early stage of IT formation to inhibit nodule formation with an incompatible strain  
539 (Hayashi *et al.*, 2014). This suggests that thaumatin-like proteins in alder could  
540 intervene in incompatibility function but its overexpression in nodule step also raise  
541 question about another function in nodule organogenesis.

542

#### 543 **AgLTP24: from *Frankia* infection to nodule functioning**

544 *Function at early step*

545 Global omic approach made at early steps of alder symbiosis pointed to a strong signal  
546 from one protein belonging to nsLTPs family named here AgLTP24. The  
547 immunolocalization on curled hairy roots induced after *Frankia* contact showed the  
548 specific binding of AgLTP24 in nooks (Fig. 3) where *Frankia* embedding before  
549 internalization through IT formation. This suggests that AgLTP24 acts at the early phase

550 of infection. This is supported the induction of an nsLTP (MtN5) in *M. trunculata* at early  
551 stage of symbiosis and in the nodule (Pii *et al.*, 2009; Pii *et al.*, 2012). Because its  
552 silencing resulted in an increased number of curling events with a reduced number of  
553 invading primordia, whereas its overexpression resulted in an increased number of  
554 nodules, authors concluded that MtN5 is important at very early step of infection for the  
555 successful establishment of the symbiotic interaction but not in nodule formation (Pii *et*  
556 *al.*, 2013). Similar to MtN5 (Pii *et al.*, 2009), AgLTP24 possesses a slight antimicrobial  
557 activity *in vitro* against its symbiont at 5 $\mu$ M. As *Frankia* cell integrity must be preserved  
558 for infection, we hypothesize that AgLTP24 concentration in contact with *Frankia* must  
559 be below to 5 $\mu$ M. Further investigation to assess protein concentration in plant tissues is  
560 a great challenge but requires the development of high-performance mass spectrometry  
561 technology coupled to imagery (Gemperline *et al.*, 2015; Gemperline *et al.*, 2016).  
562 Finally, AgLTP24 could be a gene player at early step of symbiosis to transduce signal  
563 within plant roots to permit IT formation as well as induce stress response in *Frankia*  
564 cells.

565

#### 566 *Function at late step*

567 *AgLTP24* is also present in nodule (Table 1) and targets specifically *Frankia*'s vesicle in  
568 nodule fixation zone (Fig. 3f) but this localization is different from MtN5 binding in the  
569 distal zone of the nodule (Pii *et al.*, 2012). However, a nsLTP (AsE246) found in  
570 *Astragalus sinicus* specifically symbiosome membranes through binding a lipid  
571 component: digalactosyldiacylglycerol (DGG) (Lei *et al.*, 2014). In this model, the *asE246*  
572 silencing impacts nodule development with fewer matured infected plant cells.  
573 Thus, AgLTP24 could fix vesicle wall composed by a multilamellate hopanoid lipid  
574 envelopes (Berry *et al.*, 1993; Nalin *et al.*, 2000) or plant perisymbiotic membrane

575 coating *Frankia* cells in nodule. The perisymbiosome membrane composition is less  
576 documented but non-inoculated *Alnus rubra* roots are mainly composed of glycerol,  
577 phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine (Berry *et al.*,  
578 1991). A lipidomic study in *A. glutinosa* roots using recent technology followed by a  
579 bioassay binding is a great perspective to decipher AgLTP24 mechanisms involved.  
580 As observed *in vitro*, AgLTP24 could act as antimicrobial compound by reducing cell  
581 viability and vesicles formation of *Frankia* (Fig. 4) suggesting a potential role by  
582 controlling *Frankia* proliferation in nodule. However, because expression of nitrogen  
583 fixation gene cluster is more active in symbiotic conditions compared to N-free culture  
584 condition (Alloisio *et al.*, 2010; Lurthy *et al.*, 2018), the concentration probably present  
585 in the nodule fixation zone would be lower to this lethal concentration. It is worth to  
586 note that at 1nM concentration of AgLTP24, the nitrogen fixation activity is induced a  
587 higher but not statistically so significant without perturbing *Frankia* growth (Fig. 5). The  
588 improvement of nitrogen fixation was also observed for the AgDef5 defensin  
589 translocated by *A. glutinosa* to *Frankia*'s vesicle in nodule (Carro *et al.*, 2015b).  
590 In addition, this defensin is also upregulated at 2.5 dpi (Table 1) suggesting the plant  
591 could deliver a cocktail of molecules including AgLTP24 to improve bacterial infection  
592 and nitrogen fixation in nodule. A depth investigation of this synergic effect *in vitro*  
593 opens a new perspective in addition to their genetic silencing in plant as an exciting  
594 challenge to complete the gap of knowledge regarding their role in actinorhizal  
595 symbiosis.

596

## 597 **Acknowledgements**

598 Thanks are expressed to Elise Lacroix and the Greenhouse facility (FR 41), to Danis  
599 Abrouk in the ibio platform for help in submission of omic data to international

600 database, Jonathan Gervaix in the AME platform to access ARA measurement and  
601 Philippe Bulet for his technical advice on peptide purification. We thank the PGE  
602 platform for other measurements. This project has been funded by the FR BioEnviS  
603 (Biodiversité, Environnement et Santé, Université Lyon1, France) and the EC2CO  
604 (Ecosphère Continentale et Côtière) grant (reference: 10459).

605

606 **Author contribution**

607 M.G., N.A., A.H., P.N., P.P. and H.B. conceived and designed the study. M.G., N.A., P.F., S.B.,  
608 O.K, J.T., P.D.S., P.P and H.B carried out the experiments. M.G., P.N., P.P. and H.B.  
609 performed the data analysis. M.G., P.D.S., and H.B. performed the figure drawing. M.G.,  
610 P.N., P.P., A.H. and H.B. provided critical biological interpretations of the data. P.N. and  
611 H.B. wrote the manuscript.

612

613 **Competing Interests**

614 The authors declare no competing interests.

615

616 **Bibliography**

617 **Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, et al. 2018.** Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. *Microbiological Research* **212-213**: 29-37.

621 **Alloisio N, Queirooux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, Yamaura M, Kakoi K, Kuchio K. 2010.** The *Frankia alni* symbiotic transcriptome. *Mol Plant Microbe Interact* **23**(5): 593-607.

624 **Benoit LF, Berry AM. 1997.** Flavonoid-like compounds from seeds of red alder (*Alnus rubra*) influence host nodulation by *Frankia* (Actinomycetales). *Physiologia Plantarum* **99**(4): 588-593.

627 **Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD. 1993.** Hopanoid lipids compose the *Frankia* vesicle envelope, presumptive barrier of

629 oxygen diffusion to nitrogenase. *Proceedings of the National Academy of Sciences*  
630 **90**(13): 6091-6094.

631 **Berry AM, Moreau RA, Jones AD. 1991.** Bacteriohopanetetrol: abundant lipid in  
632 frankia cells and in nitrogen-fixing nodule tissue. *Plant Physiol* **95**(1): 111-115.

633 **Berry AM, Torrey JG. 1983.** Root hair deformation in the infection process of *Alnus*  
634 *rubra*. *Botany* **61**: 2863-2876.

635 **Brooks JM, Benson DRJS. 2016.** Comparative metabolomics of root nodules infected  
636 with *Frankia* sp. strains and uninfected roots from *Alnus glutinosa* and *Casuarina*  
637 *cunninghamiana* reflects physiological integration. *Symbiosis* **70**(1): 87-96.

638 **Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. 2018.** LysM Receptor-Like  
639 Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and  
640 Functional Characterization. *Frontiers in Plant Science* **9**(1531).

641 **Bueno P, Soto MJ, Rodríguez-Rosales MP, Sanjuan J, Olivares J, Donaire JP. 2001.**  
642 Time-course of lipoxygenase, antioxidant enzyme activities and H2O2  
643 accumulation during the early stages of *Rhizobium*-legume symbiosis. *New*  
644 *Phytologist* **152**(1): 91-96.

645 **Carro L, Persson T, Pujic P, Alloisio N, Fournier P, Boubakri H, Pawlowski K,**  
646 **Normand P. 2015a.** Organic acids metabolism in *Frankia alni*. *Symbiosis* **70**(1):  
647 37-48.

648 **Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Hay AE, Poly F, Francois P,**  
649 **Hocher V, Mergaert P, et al. 2015b.** *Alnus* peptides modify membrane porosity  
650 and induce the release of nitrogen-rich metabolites from nitrogen-fixing *Frankia*.  
651 *ISME J* **9**(8): 1723-1733.

652 **Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Poly F, Rey M, Heddi A,**  
653 **Normand P. 2016.** Physiological effects of major up-regulated *Alnus glutinosa*  
654 peptides on *Frankia* sp. ACN14a. *Microbiology* **162**(7): 1173-1184.

655 **Cérémonie H, Debelle F, Fernandez MP. 1999.** Structural and functional comparison  
656 of *Frankia* root hair deforming factor and rhizobia Nod factor. *Canadian Journal of*  
657 *Botany* **77**(9): 1293-1301.

658 **Chen T, Duan L, Zhou B, Yu H, Zhu H, Cao Y, Zhang Z. 2017.** Interplay of Pathogen-  
659 Induced Defense Responses and Symbiotic Establishment in *Medicago truncatula*.  
660 *Frontiers in Microbiology* **8**: 973-973.

661 **Chiu CH, Paszkowski U. 2020.** Receptor-Like Kinases Sustain Symbiotic  
662 Scrutiny1 [OPEN]. *Plant Physiology* **182**(4): 1597-1612.

663 **Chung CT, Niemela SL, Miller RH. 1989.** One-step preparation of competent  
664 *Escherichia coli*: transformation and storage of bacterial cells in the same  
665 solution. *Proc Natl Acad Sci U S A* **86**(7): 2172-2175.

666 **Cissoko M, Hocher V, Gherbi H, Gully D, Carré-Mlouka A, Sane S, Pignoly S,**  
667 **Champion A, Ngom M, Pujic P, et al. 2018.** Actinorhizal Signaling Molecules:  
668 *Frankia* Root Hair Deforming Factor Shares Properties With NIN Inducing Factor.  
669 *Frontiers in Plant Science* **9**(1494).

670 **Conesa A, Gotz S. 2008.** Blast2GO: A comprehensive suite for functional analysis in  
671 plant genomics. *Int J Plant Genomics* **2008**: 619832.

672 **D'Haeze W, Holsters M. 2002.** Nod factor structures, responses, and perception during  
673 initiation of nodule development. *Glycobiology* **12**(6): 79R-105R.

674 **de Jesús-Pires C, Ferreira-Neto JRC, Pacifico Bezerra-Neto J, Kido EA, de Oliveira**  
675 **Silva RL, Pandolfi V, Wanderley-Nogueira AC, Binneck E, da Costa AF, Pio-**  
676 **Ribeiro G, et al. 2020.** Plant Thaumatin-like Proteins: Function, Evolution and  
677 Biotechnological Applications. *Curr Protein Pept Sci* **21**(1): 36-51.

678 **Den Herder J, Lievens S, Rombauts S, Holsters M, Goormachtig S. 2007.** A Symbiotic  
679 Plant Peroxidase Involved in Bacterial Invasion of the Tropical Legume *Sesbania*  
680 *rostrata* *Plant Physiology* **144**(2): 717-727.

681 **Edstam MM, Viitanen L, Salminen TA, Edqvist J. 2011.** Evolutionary history of the  
682 non-specific lipid transfer proteins. *Mol Plant* **4**(6): 947-964.

683 **Fahraeus G. 1957.** The infection of clover root hairs by nodule bacteria studied by a  
684 simple glass slide technique. *J Gen Microbiol* **16**(2): 374-381.

685 **Fu C, Donovan WP, Shikapwashya-Hasser O, Ye X, Cole RH. 2014.** Hot Fusion: an  
686 efficient method to clone multiple DNA fragments as well as inverted repeats  
687 without ligase. *PLoS One* **9**(12): e115318.

688 **Gemperline E, Jayaraman D, Maeda J, Ane JM, Li L. 2015.** Multifaceted investigation  
689 of metabolites during nitrogen fixation in *Medicago* via high resolution MALDI-  
690 MS imaging and ESI-MS. *J Am Soc Mass Spectrom* **26**(1): 149-158.

691 **Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané JM, Li L. 2016.**  
692 Examination of Endogenous Peptides in *Medicago truncatula* Using Mass  
693 Spectrometry Imaging. *J Proteome Res* **15**(12): 4403-4411.

694 **Genre A, Russo G. 2016.** Does a common pathway transduce symbiotic signals in plant-  
695 microbe interactions? *Front Plant Sci*. **7**: 96.

696 **Ghelue MV, Løvaas E, Ringø E, Solheim B. 1997.** Early interactions between *Alnus*  
697 *glutinosa* and *Frankia* strain Arl3. Production and specificity of root hair  
698 deformation factor(s). *Physiologia Plantarum* **99**(4): 579-587.

699 **Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret**  
700 **B, Laplaze L, Franche C, et al. 2008.** SymRK defines a common genetic basis for  
701 plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and  
702 *Frankiabacteria*. *Proc Natl Acad Sci U S A* **105**(12): 4928-4932.

703 **Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M. 1998.**  
704 Srchi13, a Novel Early Nodulin from *Sesbania rostrata*, Is Related to Acidic Class  
705 III Chitinases. *The Plant Cell* **10**(6): 905-915.

706 **Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Morris RJ, Downie JA,**  
707 **Geurts R, Oldroyd GE. 2015.** Bacterial-induced calcium oscillations are common  
708 to nitrogen-fixing associations of nodulating legumes and nonlegumes. *New*  
709 *Phytol* **207**(3): 551-558.

710 **Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B,**  
711 **Lauressergues D, Keller J, Imanishi L, et al. 2018.** Phylogenomics reveals  
712 multiple losses of nitrogen-fixing root nodule symbiosis. *Science* **361**(6398):  
713 eaat1743.

714 **Hamad Y, Nalin R, Marechal J, Fiasson K, Pepin Rg, Berry AM, Normand P,**  
715 **Domenach A-M. 2003.** A possible role for phenyl acetic acid (PAA) on *Alnus*  
716 *glutinosa* nodulation by *Frankia*. *Plant Soil* **254**(1): 193-205.

717 **Hay A-E, Herrera-Belaroussi A, Rey M, Fournier P, Normand P, Boubakri H. 2020.**  
718 Feedback Regulation of N Fixation in *Frankia-Alnus* Symbiosis Through Amino  
719 Acids Profiling in Field and Greenhouse Nodules. *Molecular Plant-Microbe*  
720 *Interactions®* **33**(3): 499-508.

721 **Hay AE, Boubakri H, Buonomo A, Rey M, Meiffren G, Cotin-Galvan L, Comte G,**  
722 **Herrera-Belaroussi A. 2017.** Control of endophytic *Frankia* sporulation by  
723 *Alnus* nodule metabolites. *Mol Plant Microbe Interact* **30**: 205-214.

724 **Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T,**  
725 **Nishioka M, Takahashi M, Ishimoto M, Katayose Y, et al. 2014.** A Thaumatin-  
726 Like Protein, Rj4, Controls Nodule Symbiotic Specificity in Soybean. *Plant and Cell*  
727 *Physiology* **55**(9): 1679-1689.

728 **Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C,**  
729 **Da Silva C, Wincker P, et al. 2011.** Transcriptomics of actinorhizal symbioses  
730 reveals homologs of the whole common symbiotic signaling cascade. *Plant*  
731 *Physiol* **156**(2): 700-711.

732 **Hocher V, Alloisio N, Bogusz D, Normand P. 2011.** Early signaling in actinorhizal  
733 symbioses. *Plant signaling & behavior* **6**(9): 1377-1379.

734 **Hughes M, Donnelly C, Crozier A, Wheeler CT. 1999.** Effects of the exposure of roots  
735 of *Alnus glutinosa* to light on flavonoids and nodulation. *Canadian Journal of*  
736 *Botany* **77**(9): 1311-1315.

737 **Jeong J, Suh S, Guan C, Tsay YF, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski**  
738 **K, Lee Y. 2004.** A nodule-specific dicarboxylate transporter from alder is a  
739 member of the peptide transporter family. *Plant Physiol* **134**(3): 969-978.

740 **Ktari A, Gueddou A, Nouiou I, Miotello G, Sarkar I, Ghodbane-Gtari F, Sen A,**  
741 **Armengaud J, Gtari M. 2017.** Host Plant Compatibility Shapes the  
742 Proteogenome of *Frankia coriariae*. *Front Microbiol* **8**: 720.

743 **Lalonde M. 1979.** Immunological and Ultrastructural Demonstration of Nodulation of  
744 the European *Alnus glutinosa* (L.) Gaertn. Host Plant by an Actinomycetal Isolate  
745 from the North American *Comptonia peregrina* (L.) Coul. Root Nodule. *Botanical  
746 Gazette* **140**: S35-S43.

747 **Lei L, Chen L, Shi X, Li Y, Wang J, Chen D, Xie F, Li Y. 2014.** A Nodule-Specific Lipid  
748 Transfer Protein AsE246 Participates in Transport of Plant-Synthesized Lipids to  
749 Symbiosome Membrane and Is Essential for Nodule Organogenesis in Chinese  
750 Milk Vetch. *Plant Physiology* **164**(2): 1045-1058.

751 **Liu H, Zhang C, Yang J, Yu N, Wang E. 2018.** Hormone modulation of legume-rhizobial  
752 symbiosis. *Journal of Integrative Plant Biology* **60**(8): 632-648.

753 **Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. 2012.** SHuffle, a  
754 novel *Escherichia coli* protein expression strain capable of correctly folding  
755 disulfide bonded proteins in its cytoplasm. *Microbial cell factories* **11**: 56-56.

756 **Login FH, Balmand S, Vallier A, Vincent-Monégat C, Vigneron A, Weiss-Gayet M,  
757 Rochat D, Heddi A. 2011.** Antimicrobial peptides keep insect endosymbionts  
758 under control. *Science* **334**(6054): 362-365.

759 **Lohar DP, Haridas S, Gantt JS, VandenBosch KA. 2007.** A transient decrease in  
760 reactive oxygen species in roots leads to root hair deformation in the legume-  
761 rhizobia symbiosis. *New Phytol* **173**(1): 39-49.

762 **Lurthy T, Alloisio N, Fournier P, Anchisi S, Normand P, Pujic P, Boubakri H. 2018.**  
763 Molecular response to nitrogen starvation by *Frankia alni* ACN14a revealed by  
764 transcriptomics and functional analysis with a fosmid library in *Escherichia coli*.  
765 *Research in Microbiology*

766 **Malolepszy A, Kelly S, Sørensen KK, James EK, Kalisch C, Bozsoki Z, Panting M,  
767 Andersen SU, Sato S, Tao K, et al. 2018.** A plant chitinase controls cortical  
768 infection thread progression and nitrogen-fixing symbiosis. *eLife* **7**: e38874.

769 **Mastronunzio JE, Tisa LS, Normand P, Benson DR. 2008.** Comparative secretome  
770 analysis suggests low plant cell wall degrading capacity in *Frankia* symbionts.  
771 *BMC Genomics* **9**: 47.

772 **Nalin R, Putra S, Domenach AM, Rohmer M, Gourbière F, Berry A. 2000.** High  
773 hopanoid/total lipids ratio in *Frankia* mycelia is not related to the nitrogen  
774 status. *Microbiology* **146** ( Pt 11): 3013-3019.

775 **Navarro E, Bousquet J, Moiroud A, Munive A, Piou D, Normand P. 2003.** Molecular  
776 phylogeny of *Alnus* (Betulaceae), inferred from nuclear ribosomal DNA ITS  
777 sequences. *Plant and Soil* **254**(1): 207-217.

778 **Normand P, Fernandez MP 2019.** *Frankia. Bergey's Manual of Systematics of Archaea  
779 and Bacteria*: (eds W.B. Whitman, F.A. Rainey, P. Kämpfer, M.E. Trujillo, P. DeVos,  
780 B. Hedlund and S. Dedysh), 1-19.

781 **Normand P, Lalonde M. 1982.** Evaluation of *Frankia* strains isolated from provenances  
782 of two *Alnus* species. *Canadian Journal of Microbiology* **28**(10): 1133-1142.

783 **Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry**  
784 **AM, Bickhart DM, Choisne N, et al. 2007.** Genome characteristics of  
785 facultatively symbiotic *Frankia* sp. strains reflect host range and host plant  
786 biogeography. *Genome Res* **17**(1): 7-15.

787 **Peleg-Grossman S, Golani Y, Kaye Y, Melamed-Book N, Levine A. 2009.** NPR1  
788 protein regulates pathogenic and symbiotic interactions between *Rhizobium* and  
789 legumes and non-legumes. *PLoS One* **4**(12): e8399.

790 **Peleg-Grossman S, Melamed-Book N, Levine A. 2012.** ROS production during  
791 symbiotic infection suppresses pathogenesis-related gene expression. *Plant*  
792 *signaling & behavior* **7**(3): 409-415.

793 **Peret B, Svistoonoff S, Lahouze B, Auguy F, Santi C, Doumas P, Laplaze L. 2008.** A  
794 Role for auxin during actinorhizal symbioses formation? *Plant Signal Behav* **3**(1):  
795 34-35.

796 **Perrine-Walker F, Gherbi H, Imanishi L, Hocher V, Ghodhbane-Gtari F, Lavenus J,**  
797 **Benabdoun FM, Nambiar-Veeti M, Svistoonoff S, Laplaze L. 2011.** Symbiotic  
798 signaling in actinorhizal symbioses. *Curr Protein Pept Sci* **12**(2): 156-164.

799 **Pii Y, Astegno A, Peroni E, Zaccardelli M, Pandolfini T, Crimi M. 2009.** The *Medicago*  
800 truncatula N5 gene encoding a root-specific lipid transfer protein is required for  
801 the symbiotic interaction with *Sinorhizobium meliloti*. *Mol Plant Microbe Interact*  
802 **22**(12): 1577-1587.

803 **Pii Y, Molesini B, Masiero S, Pandolfini T. 2012.** The non-specific lipid transfer  
804 protein N5 of *Medicago truncatula* is implicated in epidermal stages of *rhizobium*-  
805 host interaction. *BMC Plant Biol* **12**: 233.

806 **Pii Y, Molesini B, Pandolfini T. 2013.** The involvement of *Medicago truncatula* non-  
807 specific lipid transfer protein N5 in the control of rhizobial infection. *Plant*  
808 *signaling & behavior* **8**(7): e24836-e24836.

809 **Prin Y, Neyra M, Diem HG. 1990.** Estimation of *Frankia* growth using Bradford protein  
810 and INT reduction activity estimations: application to inoculum standardization.  
811 *FEMS Microbiology Letters* **69**(1-2): 91-95.

812 **Pujic P, Alloisio N, Fournier P, Roche D, Sghaier H, Miotello G, Armengaud J, Berry**  
813 **AM, Normand P. 2019.** Omics of the early molecular dialogue between *Frankia*  
814 *alni* and *Alnus glutinosa* and the cellulase syton. *Environmental Microbiology*  
815 **0**(0).

816 **Ribeiro A, Akkermans AD, van Kammen A, Bisseling T, Pawłowski K. 1995.** A  
817 nodule-specific gene encoding a subtilisin-like protease is expressed in early  
818 stages of actinorhizal nodule development. *Plant Cell* **7**(6): 785-794.

819 **Schagger H. 2006.** Tricine-SDS-PAGE. *Nat Protoc* **1**(1): 16-22.

820 **Shaw SL, Long SR. 2003.** Nod factor inhibition of reactive oxygen efflux in a host  
821 legume. *Plant Physiology* **132**(4): 2196-2204.

822 **Staehelin C, Granado J, Müller J, Wiemken A, Mellor RB, Felix G, Regenass M,**  
823 **Broughton WJ, Boller T. 1994.** Perception of Rhizobium nodulation factors by  
824 tomato cells and inactivation by root chitinases. *Proceedings of the National  
825 Academy of Sciences* **91**(6): 2196-2200.

826 **Svistoonoff S, Hocher V, Gherbi H. 2014.** Actinorhizal root nodule symbioses: what is  
827 signalling telling on the origins of nodulation? *Curr Opin Plant Biol* **20C**: 11-18.

828 **Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C,**  
829 **Bogusz D. 2003.** *cg12* expression is specifically linked to infection of root hairs  
830 and cortical cells during *Casuarina glauca* and *Allocasuarina verticillata*  
831 actinorhizal nodule development. *Mol Plant Microbe Interact* **16**(7): 600-607.

832 **Tam JP, Wang S, Wong KH, Tan WL. 2015.** Antimicrobial Peptides from Plants.  
833 *Pharmaceuticals* **8**(4): 711-757.

834 **van Ghelue M, Ribeiro A, Solheim B, Akkermans AD, Bisseling T, Pawlowski K.**  
835 **1996.** Sucrose synthase and enolase expression in actinorhizal nodules of *Alnus*  
836 *glutinosa*: comparison with legume nodules. *Mol Gen Genet* **250**(4): 437-446.

837 **Xie Z-P, Staehelin C, Wiemken A, Broughton WJ, Müller J, Boller T. 1999.** Symbiosis-  
838 stimulated chitinase isoenzymes of soybean (*Glycine max* (L.) Merr.). *Journal of  
839 Experimental Botany* **50**(332): 327-333.

840

841 **Figure legends**

842

843 **Table 1:** The up-regulated genes during early root hair deformation of *Alnus glutinosa* in  
844 both experiments, with *Frankia* indirect contact (FIndC) and with *Frankia* supernatant  
845 contact (FSupC).

846

847 **Figure 1:** Gene Ontology (GO) functional classification analysis. A. Distribution of  
848 annotated genes into functional categories according to GO biological process. B. GO  
849 functional classification analysis was made by comparing (A) up and down-regulated  
850 genes found in Exp1 (Table S2) according to biological process, molecular function and

851 cellular component through Fisher test. Number of sequences (Nr) were indicated for  
852 each category. BLAST2GO pipeline was used to get this GO annotation.

853

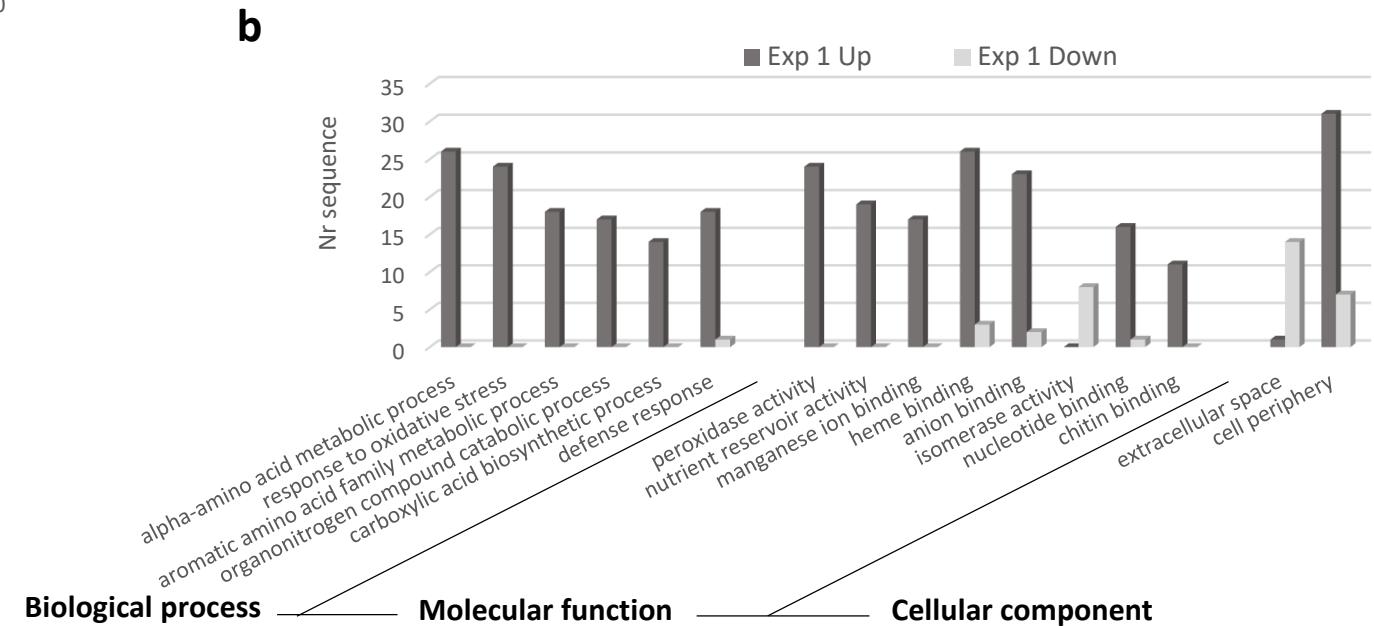
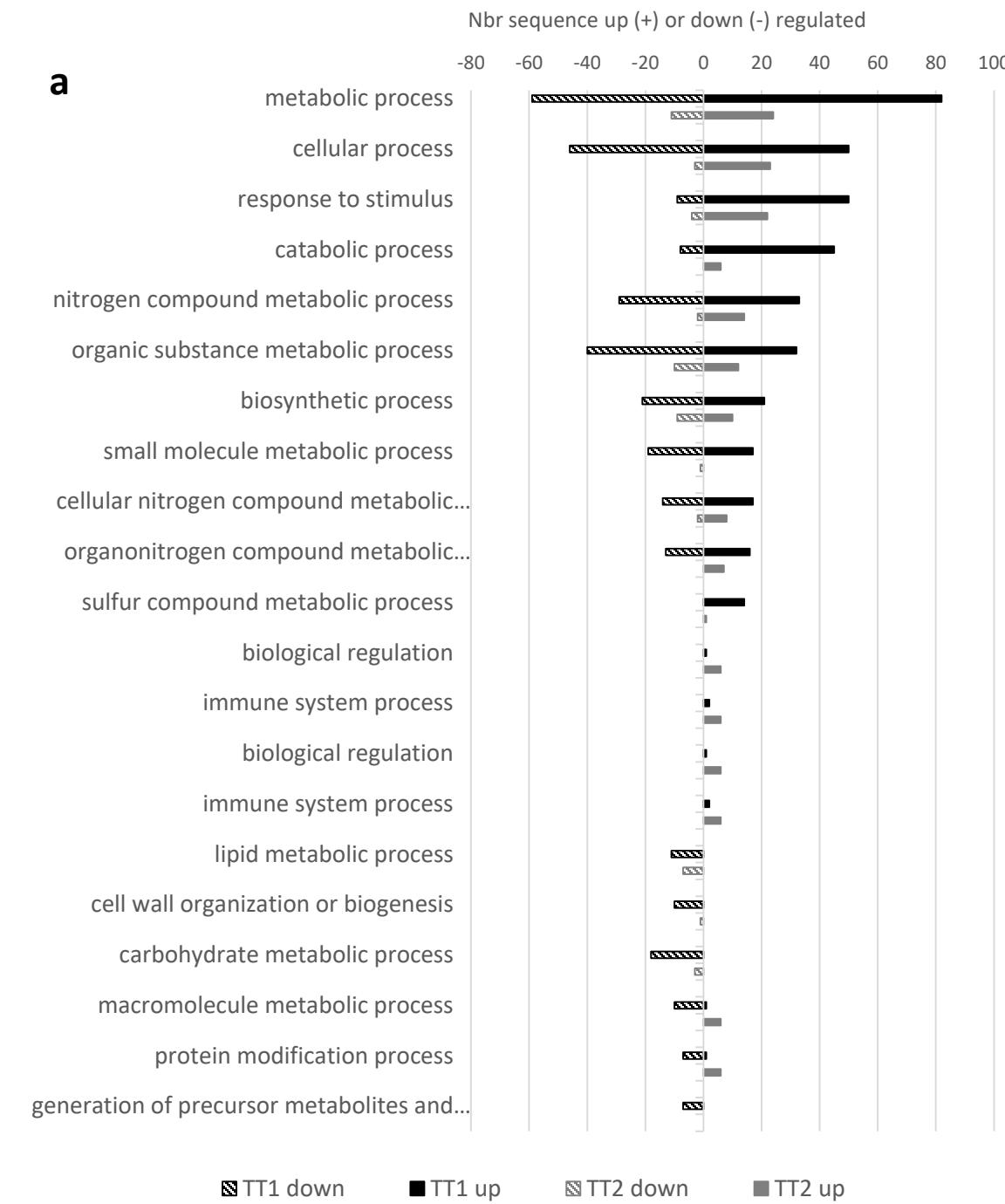
854 **Figure 2:** Expression levels of the genes which were commonly upregulated and  
855 downregulated in FindC and FsupC conditions. The expression level values in nodule  
856 were extracted from our previous work ((5); Table S4). The expression values were  
857 expressed as Fold change (FC) with a color gradient from red (down-regulated;  $\leq 0.5$ )  
858 and orange-yellow (no-regulated) to green (up-regulated;  $\geq 2$ ) in infected roots or  
859 nodules compared to control roots without Frankia. The GO annotations were assigned  
860 by noting preferentially biological process and if not present, the molecular function.  
861 Certain genes have no GO assignation after blast2Go analysis. The heatmap was  
862 generated by GraphPad Prism 9.2.0.

863

864 **Figure 3:** AgLTP24 localization in roots after 2.5 days (A, B,C) or nodule of 21 dpi (D, E,  
865 F). Hair magnification of a specific zone of the infected root (C) or nodule (F).  
866 Immunofluorescence localization of AgLTP24 in hairy roots (B, C) and around Frankia  
867 vesicles in infected cells (E and F). Negative control with rabbit serum before  
868 intramuscular injection of AgLTP24 epitope (A, D) showed no green fluorescence in  
869 hairy roots (A) or infected cells (D).

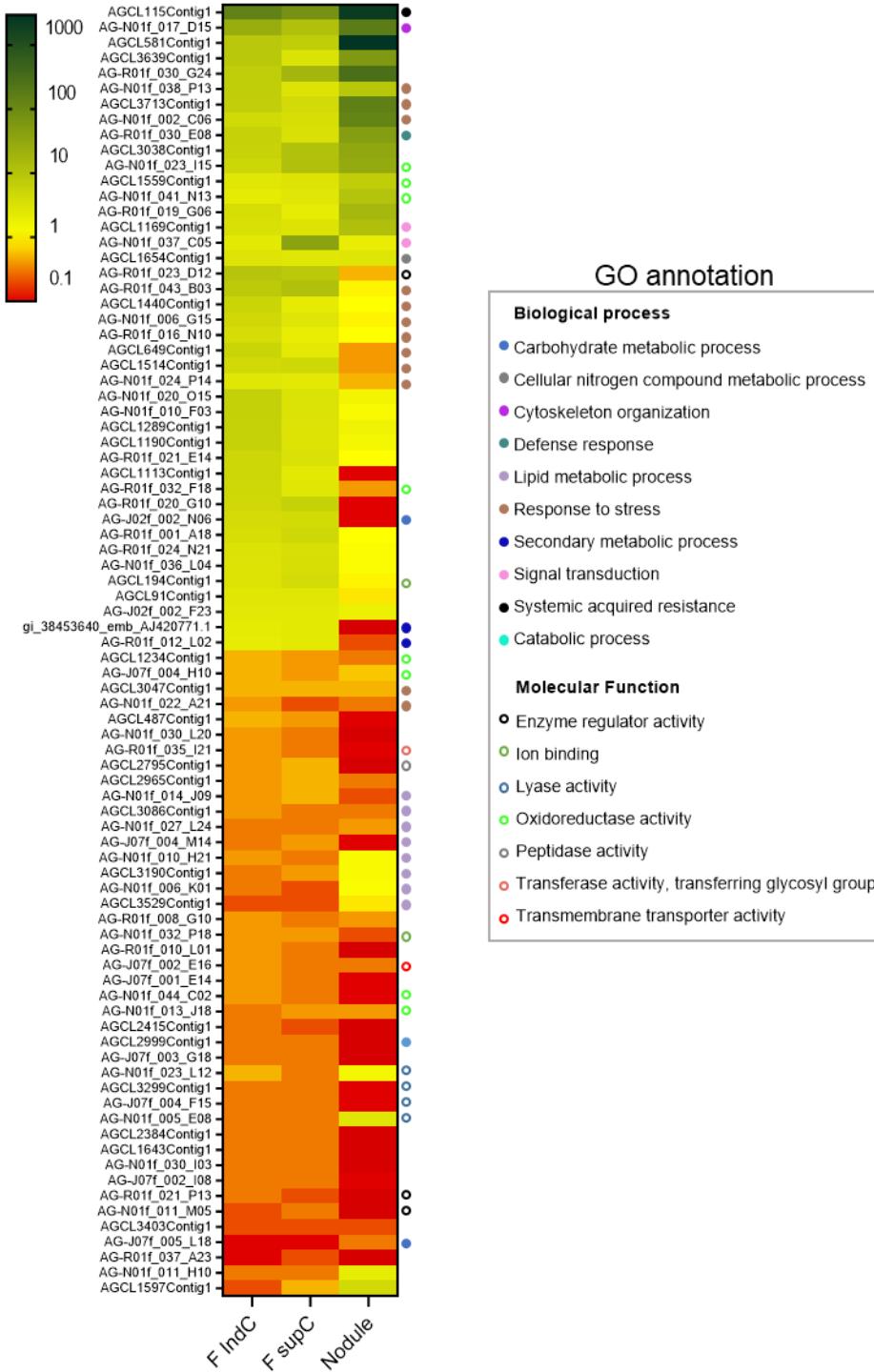
870 Blue: DAPI; red: autofluorescence; green: Alexa Fluor 488 dye anti-rabbit antibody (Life  
871 Technologies, Saint Aubin, France). c, infected cells; nc, noninfected cells; v, *Frankia*  
872 vesicles; x, xylem.

873

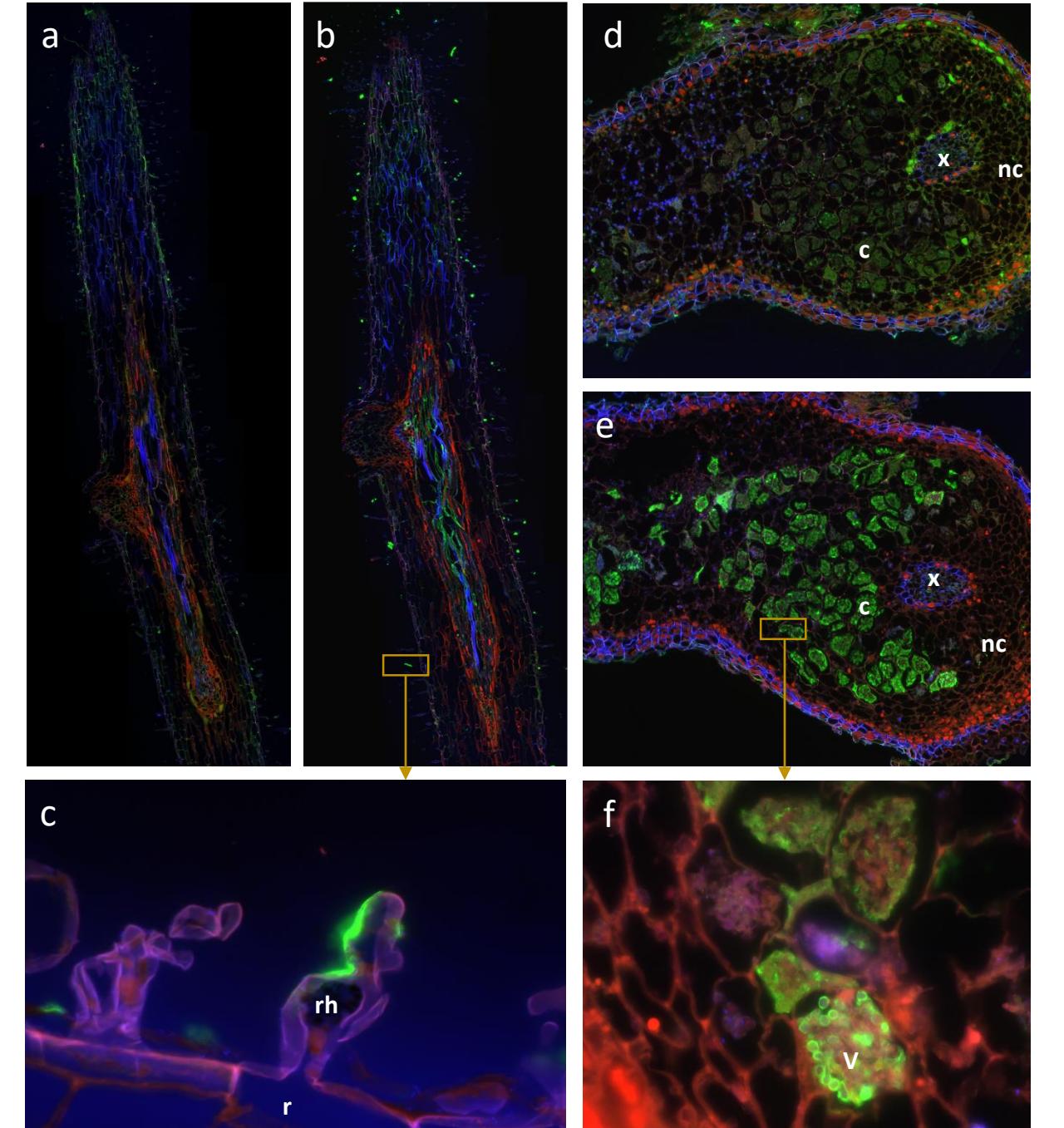


874 **Figure 4: physiological bioassays on *Frankia* growth and cellular development. A.**  
875 Resazurin bioassay on *Frankia* ACN14a growth after supplementation of 1 to 5  $\mu$ M of

876 AgLTP24. Cell viability was calculated by normalizing the fluorescence of the assay with  
877 the mean of the negative control (*Frankia* without AgLTP24). Kanamycin (40 µg.ml<sup>-1</sup>)  
878 was used as positive control. Data are expressed as mean values ± SD. Differences  
879 between normalized data were assessed by the Mann Whitney test (bilateral and  
880 unpaired) compared to control. Graphic representation and statistical analysis of results  
881 was conducted with GraphPad Prism version 9.2.0. \*p value <0.05, \*\*p value <0.01.  
882 **B.** *Frankia* cells observation without or with gradual concentration of AgLTP24 from 0  
883 (Control) to 5 µM and obtained during the different physiological bioassays. v, *Frankia*  
884 vesicles

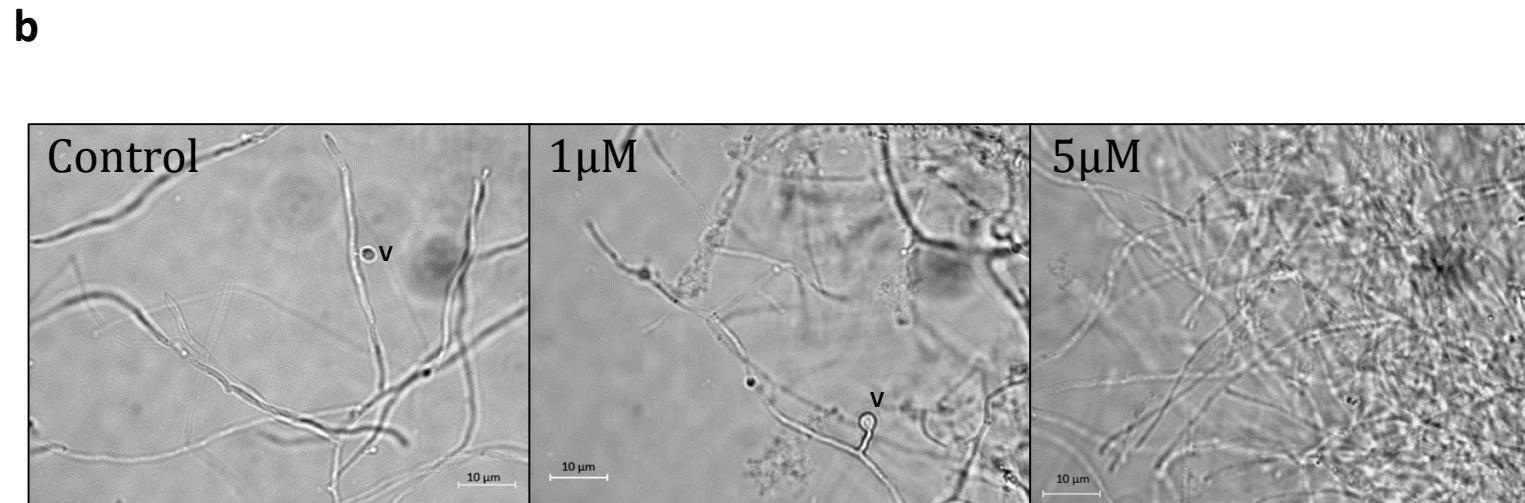
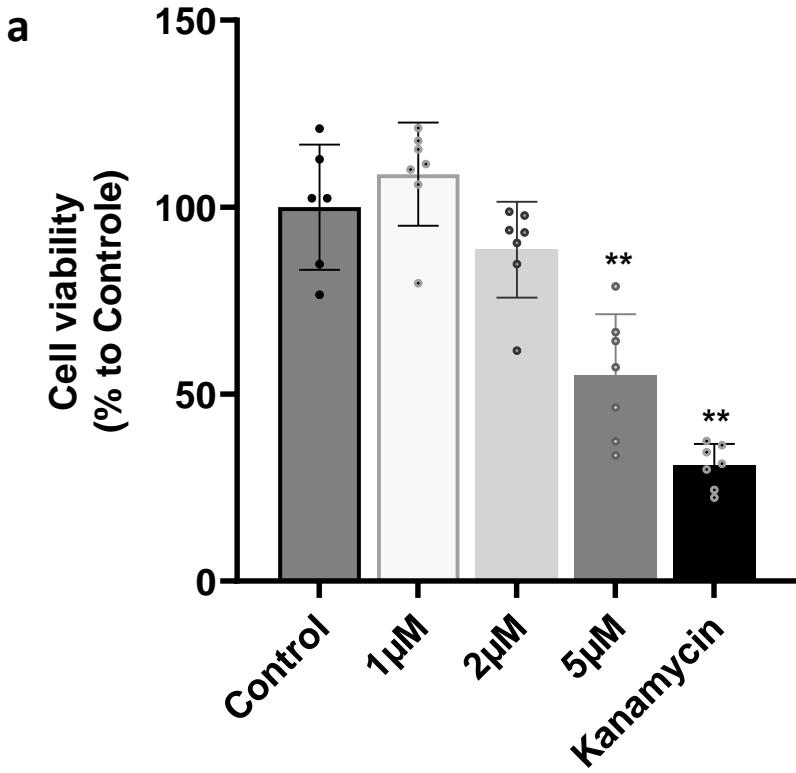
885


886 **Figure 5: effect of AgLTP24 in physiology of *Frankia* after 7 days of growth on A.**  
887 Nitrogen fixation; **B.** respiratory activity and **C.** growth by measuring OD<sub>600nm</sub>. Data were  
888 extracted from the kinetic assay (Fig. S5).  
889 Data are expressed as mean values ± SD. Differences between means were assessed by  
890 the Mann Whitney test (bilateral and unpaired) compared to control. Graphic  
891 representation and statistical analysis of results was conducted with GraphPad Prism  
892 9.2.0. \*p value <0.05, \*\*p value < 0.01.

893

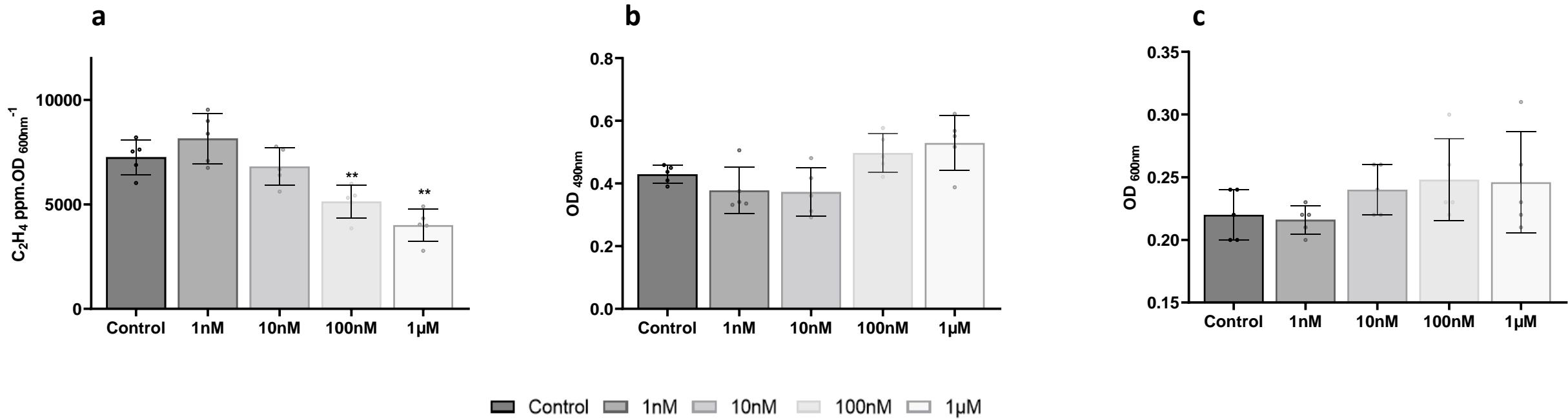



**Fig. 1: Gene Ontology (GO) functional classification analysis.**



**a.** Distribution of annotated genes into functional categories according to GO biological process. **b.** GO functional classification analysis was made by comparing up and down-regulated genes found in Exp1 (Table S2) according to biological process, molecular function and cellular component through Fisher test. Number of sequences (Nr) were indicated for each category. BLAST2GO pipeline was used to get this GO annotation.



**Fig. 2: Expression levels of the genes which were commonly upregulated and downregulated in *FindC* and *FsupC* conditions.** The expression level values in nodule were extracted from our previous work ((5); Table S4). The expression values were expressed as Fold change (FC) with a color gradient from red (down-regulated;  $\leq 0.5$ ) and orange-yellow (no-regulated) to green (up-regulated;  $\geq 2$ ) in infected roots or nodules compared to control roots without *Frankia*. The GO annotations were assigned by noting preferentially biological process and if not present, the molecular function. Certain genes have no GO assignation after blast2Go analysis. The heatmap was generated by GraphPad Prism 9.2.0.




**Fig. 3: AgLTP24 localization in roots after 2.5 days (a, b, c) or nodule of 21 dpi (d, e, f).** Hair magnification of a specific zone of the infected root (c) or nodule (f). Immunofluorescence localization of AgLTP24 in hairy roots (b, c) and around *Frankia* vesicles in infected cells (e, f). Negative control with rabbit serum before intramuscular injection of AgLTP24 epitope showed no green fluorescence in hairy roots (a) or infected cells (d). Blue: DAPI; red: autofluorescence; green: Alexa Fluor 488 dye anti-rabbit antibody (Life Technologies, Saint Aubin, France). c, infected cells; nc, noninfected cells; v, *Frankia* vesicles; x, xylem; rh, root hairs.



**Fig. 4: physiological bioassays on *Frankia* growth and cellular development. a.** Resazurin bioassay on *Frankia* ACN14a growth after supplementation of 1 to 5µM of AgLTP24. Cell viability was calculated by normalizing the fluorescence of the assay with the mean of the negative control (*Frankia* without AgLTP24). Kanamycin (40µg.ml<sup>-1</sup>) was used as positive control. Data are expressed as mean values  $\pm$  SD. Differences between normalized data were assessed by the Mann Whitney test (bilateral and unpaired) compared to control. Graphic representation and statistical analysis of results was conducted with GraphPad Prism version 9.2.0. \*p value <0.05, \*\*p value <0.01.

**b.** *Frankia* cells observation without or with gradual concentration of AgLTP24 from 0 (Control) to 5µM and obtained during the different physiological bioassays. v, *Frankia* vesicles



**Fig. 5: effect of AgLTP24 in physiology of *Frankia* after 7 days of growth on a. Nitrogen fixation; b. respiratory activity and c. growth by measuring  $OD_{600\text{nm}}$ . Data were extracted from the kinetic assay (Fig. S5). Data are expressed as mean values  $\pm$  SD. Differences between means were assessed by the Mann Whitney test (bilateral and unpaired) compared to control. Graphic representation and statistical analysis of results was conducted with GraphPad Prism 9.2.0. \* $p$  value  $<0.05$ , \*\* $p$  value  $< 0.01$ .**

bioRxiv preprint doi: <https://doi.org/10.1101/2021.10.29.465983>; this version posted January 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The significant difference of gene expression between *F*IndC roots and control roots and between *F*SupC roots and control roots ( $FC \geq 2$  or  $\leq 0.05$ ) was assessed by a T-test at  $p < 0.05$

\*:Results of the previously reported microarray study with *Arbus glutinosa* nodules are indicated:  $FC^*$  is the ratio between nodules and non inoculated root and  $p^*$  is the p value of a T-student test comparing these two conditions (Hocher et al, 2011). ns indicated non significant difference between nodules and non inoculated root ( $p > 0.05$ )

For EMBL-accession number, see Suppl Table 3.

\*\* AGCL3038Contig1 sequence is the 3' non coding region of basic blue copper gene (AG-N01f\_023\_115).

| Clone Name                 | Frankia indirect contact ( <i>F</i> IndC)<br>FC<br>p < 0.05 | Frankia supernatant contact ( <i>F</i> SupC)<br>FC<br>p < 0.05 | Nodule*<br>FC*<br>p* | Sequence homology   | GO annotation                                          | Peptide signal                 | Theoretical pMw      |                 |
|----------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------|---------------------|--------------------------------------------------------|--------------------------------|----------------------|-----------------|
| AGCL115Contig1             | 140.65                                                      | 1.78E-04                                                       | 74.8<br>1.12E-05     | 2145.65<br>1.38E-02 | lipid transfer protein<br>microtubule-based process    | Yes                            | 8.46 / 9700.28       |                 |
| AG-N01f_017_D15            | 34.72                                                       | 1.72E-04                                                       | 11.7<br>2.09E-03     | 172.71<br>5.64E-03  | beta-tubulin 14<br>pectin methylesterase inhibitor     | No                             | ND                   |                 |
| AG-R01f_023_D12            | 10.02                                                       | 3.30E-04                                                       | 8.4<br>3.79E-04      | 0.55<br>NS          | pectin methylesterase inhibitor activity               | Yes                            | 4.41 / 16267.16      |                 |
| AGCL3639Contig1            | 8.78                                                        | 5.70E-04                                                       | 7.1<br>4.17E-03      | 294.04<br>7.08E-04  | pectinesterase inhibitor activity                      | 0 Yes                          | 10.07 / 11702.98*    |                 |
| AG-N01f_043_B03            | 8.57                                                        | 1.35E-05                                                       | 3.1<br>5.13E-04      | 55.49<br>288.39     | NA                                                     | 0 ?                            | ND                   |                 |
| AG-R01f_030_G24            | 7.89                                                        | 4.73E-04                                                       | 12.0<br>6.70E-03     | 0.90<br>NS          | Major pollen allergen Aln g 1                          | cellular response to stimulus  | No                   | 5.57 / 15622.87 |
| AG-N01f_038_P13            | 7.07                                                        | 4.26E-08                                                       | 17.4<br>5.13E-04     | 288.39<br>42.77E-03 | plant basic secretary protein (BSP), peptidase M       | 0 Yes                          | ND                   |                 |
| AG-N01f_037_G15            | 7.06                                                        | 3.27E-04                                                       | 2.9<br>1.54E-02      | 9.13<br>1.52E-02    | thaumatin like protein precursor                       | 0 Yes                          | ND                   |                 |
| AGCL3713Contig1            | 6.77                                                        | 5.79E-03                                                       | 4.1<br>2.17E-02      | 155.02<br>1.24E-03  | defensin-like cysteine rich antimicrobial protein, Ag5 | cellular response to stimulus  | Yes                  | 9.22 / 8145.27  |
| AGCL1289Contig1            | 6.04                                                        | 4.08E-08                                                       | 2.9<br>7.15E-03      | 1.54<br>6.22E-03    | defensin cysteine rich antimicrobial protein-like      | 0 Yes                          | 9.60 / 16039.35      |                 |
| AG-R01f_030_E08            | 6.04                                                        | 4.62E-04                                                       | 3.4<br>7.87E-03      | 46.10<br>31.43      | proline-rich extensin-related protein-like             | cellular response to stimulus  | Yes                  | 7.01 / 6276.13  |
| AGCL3639Contig1            | 5.67                                                        | 4.95E-06                                                       | 11.3<br>3.92E-04     | 0.91<br>3.12E-03    | basic blue copper gene                                 | 0 Non coding region            | ND                   |                 |
| AGCL449Contig1             | 5.21                                                        | 1.80E-05                                                       | 2.3<br>8.49E-03      | 0.43<br>4.82E-03    | chlorophyll a/b binding protein                        | Yes                            | ND                   |                 |
| AGCL140CContig1            | 5.20                                                        | 9.33E-04                                                       | 2.2<br>2.81E-02      | 1.01<br>0.95        | chlorophyll a/b binding protein                        | 0 Yes                          | 5.01 / 18391.98      |                 |
| AGCL1113Contig1            | 4.71                                                        | 1.92E-03                                                       | 2.3<br>4.94E-02      | 0.14<br>2.92E-03    | chlorophyll / Hevein / PR-4 / Wheatwin                 | cellular response to stimulus  | 0 Very small peptide | ND              |
| AG-N01f_023_J15            | 4.71                                                        | 5.29E-07                                                       | 11.7<br>3.03E-05     | 28.29<br>4.21E-03   | basic blue copper protein                              | oxidation-reduction process    | Yes                  | 9.82 / 10324.85 |
| AG-R01f_032_F16            | 4.56                                                        | 3.81E-06                                                       | 2.5<br>1.20E-02      | 0.42<br>5.29E-03    | cytochrome P450                                        | oxidation-reduction process    | Yes                  | ND              |
| AG-R01f_020_G15            | 4.41                                                        | 3.52E-07                                                       | 5.9<br>9.86E-05      | 0.11<br>0.11        | germin like protein 5                                  | 0 Yes                          | ND                   |                 |
| AG-N01f_006_G15            | 4.37                                                        | 6.67E-07                                                       | 2.7<br>4.29E-04      | 0.91<br>0.78E-02    | cationic peroxidase                                    | oxidation-reduction process    | Yes                  | ND              |
| AG-N01f_002_C06            | 4.34                                                        | 6.70E-03                                                       | 3.6<br>6.67E-03      | 125.38<br>7.39E-04  | defensin cysteine rich antimicrobial protein, Ag3      | 0 Yes                          | 9.36 / 6178.00       |                 |
| AGCL1514Contig1            | 4.19                                                        | 1.79E-04                                                       | 4.5<br>3.88E-03      | 0.36<br>0.36        | class IV chitinase                                     | chitin catabolic process       | Partial sequence     | ND              |
| AG-R01f_031_C06            | 3.88                                                        | 9.15E-06                                                       | 4.0<br>2.54E-02      | 0.06<br>1.41E-02    | class V chitinase                                      | carbohydrate metabolic process | Partial sequence     | ND              |
| AG-R01f_030_C06            | 3.64                                                        | 2.45E-05                                                       | 2.1<br>2.05E-02      | 0.08<br>1.32E-02    | PRP27-like protein                                     | 0 ?                            | ND                   |                 |
| AG-R01f_001_A18            | 3.59                                                        | 3.12E-07                                                       | 4.5<br>2.70E-03      | 1.03<br>0.95        | PRP27-like protein                                     | 0 Yes                          | 6.10 / 23102.67      |                 |
| AGCL1610Contig1            | 3.29                                                        | 4.34E-03                                                       | 2.9<br>7.86E-03      | 124.2<br>12.42      | oxin-binding protein ABP20                             | cellular response to stimulus  | Yes                  | ND              |
| AG-R01f_024_N21            | 3.14                                                        | 4.19E-06                                                       | 3.5<br>4.05E-03      | 1.11<br>1.11        | PRP27-like protein                                     | 0 Partial sequence             | ND                   |                 |
| AG-N01f_036_L04            | 3.03                                                        | 2.01E-05                                                       | 3.6<br>1.09E-03      | 1.10<br>1.10        | PRP27-like protein                                     | 0 Partial sequence             | ND                   |                 |
| AGCL194Contig1             | 2.99                                                        | 5.21E-05                                                       | 3.9<br>9.30E-05      | 0.92<br>0.92        | germin like protein 5                                  | cellular response to stimulus  | Yes                  | 6.07 / 21323.34 |
| AGCL1654Contig1            | 2.81                                                        | 2.39E-05                                                       | 2.5<br>2.47E-02      | 2.70<br>1.03E-02    | glutathione S-transferase                              | 0 No                           | ND                   |                 |
| AG-N01f_024_P14            | 2.56                                                        | 1.89E-04                                                       | 2.4<br>3.49E-02      | 0.45<br>0.20E-02    | cationic peroxidase                                    | Partial sequence               | ND                   |                 |
| AGC191Contig1              | 2.50                                                        | 4.18E-05                                                       | 2.5<br>1.21E-02      | 0.83<br>0.83        | PRP27-like protein                                     | 0 Yes                          | 5.79 / 23032.54      |                 |
| AGCL1559Contig1            | 2.45                                                        | 8.83E-05                                                       | 2.9<br>1.87E-02      | 7.18<br>2.70E-03    | mannitol dehydrogenase                                 | oxidation-reduction process    | Partial sequence     | ND              |
| AG-J02f_002_F23            | 2.37                                                        | 8.29E-06                                                       | 2.4<br>4.34E-05      | 1.77<br>1.77        | NS                                                     | 0 Small sequence               | ND                   |                 |
| AG-N01f_037_C05            | 2.26                                                        | 9.10E-05                                                       | 38.9<br>2.25E-05     | 1.97<br>6.01E-03    | receptor protein kinase perk1-like protein             | cellular response to stimulus  | No                   | ND              |
| AG-R01f_012_L02            | 2.12                                                        | 1.18E-02                                                       | 2.3<br>3.32E-03      | 0.22<br>0.22        | phenylalanine ammonia lyase                            | Partial sequence               | ND                   |                 |
| gi_38453640_emb_A1420771.1 | 2.18                                                        | 9.83E-03                                                       | 2.31<br>3.66E-03     | ND<br>ND            | phenylalanine ammonia-lyase                            | No                             | ND                   |                 |