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1 Global modules robustly emerge from local interactions and smooth gradients
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3 ! Physics, MIT
4 2Brain and Cognitive Sciences, and McGovern Institute, MIT

Modular structure and function are ubiquitous in biology, from the organization of animal
bodies and brains to the scale of ecosystems. However, the mechanisms of modularity emer-
gence remain unclear. Here we introduce the principle of peak selection, a process by which
purely local interactions and smooth gradients can result in global modular organization. It
can lead to the self-organization of discontinuous module boundaries from a smooth global
gradient, unifying the positional hypothesis and the Turing pattern formation hypothesis for
morphogenesis. Applied to the brain’s grid cell networks, peak selection results in the spon-
taneous emergence of functionally distinct modules with discretely spaced spatial periods.
Applied to ecological systems, a generalization of the process results in discrete systems-level
niches. The dynamics exhibits emergent self-scaling to variations in system size and “topo-
logical robustness” [I] that renders module emergence and module properties insensitive to
most parameters. Further, peak selection confers robustness within modules. It amelio-
rates the fine-tuning requirement of continuous attractor dynamics even in single grid cell
modules. It makes a detail-independent prediction that grid module period ratios should
approximate adjacent integer ratios, furnishing the most accurate match to data to date.
Additional testable predictions promise to bridge physiology, connectomics, and transcrip-
tomics. In sum, our results indicate that local interactions combined with low-information
global gradients can drive robust global module emergence.

5 INTRODUCTION

6  Modular structures are ubiquitous in natural systems, from body structures to circuits in the
7 brain, and from ecological niches to human communities. This is probably so because they are
robust to localized perturbations [2], [3], can be faster to adapt if the world requires sparse or
modular changes [4], or can permit flexible, high-capacity computation through compositionality
10 [5HIO]. In these senses, modularity is the crux of biological organization.

11 The prevalence of modularity raises critical questions about its evolutionary, developmental,
12 or ecological origins: Modular solutions to a given problem form a vanishingly small subset of
13 all possible solutions, thus from an evolutionary perspective it is unclear how these solutions are
12 found and selected. From the perspective of development, the question is how modular structures
15 form, and whether module features such as size, number, and boundary locations need to be genet-
16 ically instructed or spontaneously emerge through unfolding physical processes such as symmetry
17 breaking. From an ecological perspective, the question is how modular structures emerge among
18 interacting species even without a shared task or function that the system is seeking to optimize.
19 One hypothesis for the developmental emergence of structure, which is our primary focus here,
20 is the positional information hypothesis espoused by Lewis Wolpert (Fig. ): Gene expression
21 generates spatial morphogen concentration gradients, and different downstream genes become ac-
22 tivated in spatially localized regions by thresholding the morphogen concentration [11} [12]. In line
23 with this hypothesis, body segmentation in Drosophila [I3] is controlled by spatial bands of expres-
21 sion of a family of genes (the gap genes) that are activated by different concentrations of maternally
25 deposited Bicoid RNA (Fig. —c). Modular gap gene expression precedes and directs modular
2% body segmentation. A distinct hypothesis by Alan Turing is the idea that structured patterns can

© o

# Email: mkhona@nvidia.com

P Email: sarthakc@mit.edu

¢ Email: fiete@mit.edu

* These authors contributed equally to this work.


https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.28.466284; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

27 spontaneously emerge from local competitive interactions, minimizing or removing the need for
28 genetic instruction [12, [14] (Fig. ) Supporting this hypothesis is evidence that digit formation
20 in hand morphogenesis is under control of spontaneous pattern formation [I5]. Another clear ex-
s0 ample of Turing-like pattern formation comes from the grid cell system in the medial entorhinal
a1 cortex (MEC) of mammalian brains, Fig. —f. MEC neurons fire in triangular grid-like activity
32 patterns as a function of explored space when animals navigate [16]. Underlying these spatially
33 periodic responses are intrinsic periodic activity patterns in the cortex [17,[I§]. Extensive evidence
s [I9H23] links these activity patterns with continuous attractor network (CAN) models based on
ss Turing-like pattern formation [24H26]. However, it remains unclear whether and how these CAN
36 models for single grid cell modules translate to the formation of the multiple discrete modules of
37 grid cells with distinct periods found in the brain [27].

s The positional and Turing processes for structure emergence have distinct properties and pre-
30 dictions [12} 28-30]: The positional mechanism is susceptible to noise in copy number [12, [BTH33]
20 and requires separate downstream genetic cascades to specify how and where each structure forms.
a1 Its prediction is that modular structure or function are driven by modularity in gene expression,
a2 which runs counter to at least some experimental studies that find that modular function can exist
43 without evidence of modularity in the underlying cellular or molecular properties [31], [34H47]. Posi-
a4 tional processes possess scale invariance: the formed structures are self-scaling to occupy a constant
a5 fraction of the system as the system size is varied. The pattern forming mechanism typically only
a6 produces structure of a single scale, given by the width of the local lateral interactions. Thus, these
a7 models do not explain emergence of structures of multiple scales. However, pattern formation is
48 Tobust to noise.

a9 We hypothesize that pattern forming and positional mechanisms can be unified into a combined
s0 process that exhibits the strengths of both, allowing modularity to emerge via self-organization from
s1 local interactions without the need for modularity in gene expression, and such that the resulting
s2 process is scale-invariant ( Fig. ) We show that such a process can explain the emergence of
s3 multi-scale structure in the form of multiple grid cell modules in mammalian cortex (Fig. [Lh-i), and
54 is robust to most parametric variation and noise. The model produces strikingly accurate predic-
s5 tions about the sequence of successive spatial period ratios in grid cells, improving substantially on
s6 existing models. The process exhibits a “topological robustness” property that substantially eases
s7 the usual fine-tuning requirements of continuous attractor models of grid cells [24]. It also gener-
s3 ates numerous predictions for future physiology, transcriptomics, and connectomics experiments in
s0 the system.

60  Analyzing the underlying dynamical mechanisms of the process allows us to extract a general
61 principle for global module emergence with smooth global gradients and local variations, which
62 we call the peak selection principle. We then apply the peak selection principle to very different
63 problems, showing the emergence of modular multi-species niches in an interacting ecological system
64 and in a non-interacting system with two distinct external drives.

s GENERALIZATION OF SINGLE-MODULE CONTINUOUS ATTRACTOR MODELS

66 Grid cells in the mammalian medial entorhinal cortex (MEC) of mammals exhibit spatially
o7 periodic response patterns as animals explore open spaces [16]. Before considering mechanisms
es for the formation of multiple discrete and functionally independent grid modules along the long
s (dorsoventral or DV) axis of MEC, Fig. [lh-i, , we extend the theory of single grid cell modules.

70 The properties of grid cells within a module are consistent with continuous attractor neural
71 network (CAN) models [I9-26]. CAN models involve a linear, Turing-like instability driven by
72 strong competitive local interactions between neurons, leading to spontaneous pattern formation
73 and the verified prediction that the states of the circuit of thousands of cells lie on a two-dimensional
74 set with the topology of a torus, Fig. [Tp-f [22, 24].
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FIG. 1. Positional versus pattern-forming mechanisms for structure formation and our hy-
pothesis. (a) The positional hypothesis: global gradients are thresholded by different downstream gene
expression cascades to generate structure [I1]. (b) Fluorescence image of maternally deposited protein bed
RNA (based on maternal bicoid RNA deposition) early in development of the Drosophila embryo [48] sets
up a polarity gradient. (c) A downstream gene-protein expression cascade, including gap and pair-rule
genes, sets up body segment-defining bands by thresholding the bicoid gradient (immunofluorescence im-
age adapted from [49]; segmentation figure adapted from [13].) (d) Spontaneous self-organized structure
emergence (pattern formation) through competitive lateral interactions [I4]. (e-f) The continuous attractor
neural network (CAN) model for single grid cell modules [24] is based on Turing instability based on local
interactions, and its predictions are consistent with the experimental data [T9-H21] [23]. These include the
prediction of a continuous set of stable states with toroidal geometry across waking and sleep, and its recent
confirmation [22]. (g) Our hypothesis: Positional and pattern forming mechanisms can interact to lead to
structure emergence that exhibits the strengths of both mechanisms. Module boundaries are determined
by emergent pattern formation not modular gene expression, but an overall gradient permits the system
to exhibit self-scaling with system size. (h-i) The long dorsoventral (DV) axis of medial entorhinal cortex
(MEC; image of layers II and III) [35] exhibits smooth-seeming gradients in multiple cellular properties,
while along the same axis, grid cells are organized into discrete modules with discontinuous jumps in their
spatial periods (adapted from [27]).

75 Existing CAN models are based on two interaction profiles: a center excitation-surround inhi-
76 bition (Mexican hat) shape [24, 50] (including an inhibition-only version [24]), or a uniform local
77 inhibition shape (which we term a “Lincoln hat” [51]). Given the differences in these profiles,
78 we sought to explore the implications for experiment: whether there was something unique about
79 these profiles and to map the space of interactions that could generate grid cell-like responses.
g0 We derived a set of simple conditions on the neural input-output transfer function and the local
s1 interaction kernel W that we hypothesize would be sufficient for grid-like patterning (SI Sec. [A)):
82 the neural transfer function is not an odd function; and the interaction kernel is such that it is
g3 radially symmetric; its integral is negative (inhibition dominated: [ W (z,a')dz’ < 0); and that
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84 it is sufficiently strong. These conditions define an infinitely large set of distinct interaction pro-
85 files. We sampled randomly from this set and numerically implemented the network dynamics with
ss rectified linear neurons, finding that all sampled profiles produce grid-like patterning (Fig. [2h).
87 These results significantly expand the generality of CAN models for single grid cell modules. The
ss experimental implication is that the interaction profiles of past models [24, 25, 50, 51] may not
80 predict the profiles unearthed in future connectomic studies, but that the uncovered profile might
90 conform to the more-general conditions defined here.

91 LOCAL INTERACTIONS FOR MULTI-SCALE GLOBAL MODULARITY EMERGENCE

o2 Grid cells exhibit discrete jumps in period and independent functionality along the long (DV)
o3 axis of entorhinal cortex [27]. Physiological experiments reveal that several biophysical quanti-
s ties are graded along this axis, including in the neural time-constant, the strength of synaptic
os interactions, the width of connectivity, and other properties [35, 41l 45, [52], Fig. . We re-
o placed the translation-invariant interaction kernel W(|x —x'|) in CAN grid cell models by a kernel
o WI(|x — X'|;0(npy)) with a slowly graded width o(npy) along the DV axis of the model neural
os sheet (SI Fig; npy refers to DV location and x refers to the general 2-dimensional position on
o the neural strip). This variation of the local interaction width in the CAN model still produced
100 hexagonally arranged activity bumps, with a growing period (SI Fig. ) However, the variation
w01 in pattern period was smooth, without emergent modularization (SI Fig. [11k).

102 Because global modularity and local patterning involve two spatial scales, we reasoned that
103 two scales of lateral interaction might be necessary to generate both. At the same time, just as
104 local interactions can lead to globally periodic structure, we hypothesized that the addition of a
105 second local interaction might be sufficient to induce global modular structure. However, the sum
106 of two local kernels is simply another local kernel and from the previous section we should expect
107 no difference in results, unless the second interaction is distinct from the first in some way beyond
108 a mere shape difference. We therefore considered two types of local interaction with the following
100 key difference: the first is graded across the DV axis while the second remains fixed. The combined
110 interaction is:

W (Ax;a(npy)) = WI(Ax;o(npy)) + W/ (Ax). (1)

1 Both interactions are local and much smaller in width than the DV length (L) of the cortical sheet.
12 We assume that the fixed interaction width (d) is larger than the largest width (oy,4.) of the
us graded interaction. Remarkably, the addition of such a fixed-scale interaction leads the network
114 to spontaneously decompose into a few discrete modules, with coherent periodic activity patterns
us locally and discontinuous jumps in period globally, Fig. [2b-d.

116 As before, there is broad latitude in the shapes of the interaction kernels W9 and W/, so long
u7 as one is graded and the other is slightly wider but fixed in width along the DV axis, Fig. [2f-h
us (setting the fixed interaction to be narrower than the graded interaction resulted in a grid pattern
119 whose period varied in a sawtooth-like instead of step-like modular fashion, SI Fig. this result
120 was also predicted by our analytic theory described below). This combination of a graded-width
121 and a fixed-scale interaction also produces robust and spontaneous decomposition of dynamics into
122 discrete modules in 2D network models, Fig. ,i. (See SI Sec. for additional model results
123 for 2D networks.) The formation of K modules involves approximately K times the number of
124 neurons as in single-module continuous attractor models (SI Sec. SI Fig. . We have
125 used kernel width as a general proxy for some gradient in effective interaction along the DV axis.
126 All these results generalize if we instead consider gradients in two other biophysical properties:
127 the cellular time-constant and the synaptic strength instead of connectivity width (SI Sec. [E)
128 [35] [41) 45], 52H55].
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FIG. 2. Two local interactions, with graded and fixed widths, respectively, lead to global module
emergence. (a) Generalization of CAN grid cell models: 5 examples from an infinite set of distinct local
interaction kernel shapes that can lead to grid-like patterning. (b) Combining two local interactions, one
whose width (o(npv)) scales smoothly along the DV axis (W7, green) and a broader but still- local one
whose width (d) remains fixed along the neural strip. Interaction widths indicated below the gradient are
drawn to scale relative to the activity shown in (c¢). (c-e) The two interactions from (b) lead to spontaneous
emergence of modules with distinct periods in 1-dimensional (c) neural strip, with extracted periods shown
in (d). The same kernels applied to a 2-dimensional neural sheet (e), with the 2d autocorrelation function of
the local (single-module) patterns in the neural sheet (bottom). (f-i) Same as (c-e), but for a different pair of
interaction kernels W¢_ . W/ with distinct gradient shape o(npy) and endpoints (0min, Omax) from (c-e).
(j) The response of the 1-dimensional neural strip shown over time when the network is driven by a smoothly
graded velocity input, white lines highlighting the temporal evolution of dynamics at the module boundary
(inset: magnification of the first boundary). (k) The independent velocity-driven pattern dynamics in each
module result in regular periodic spatial tuning curves (shown are 2 cells per module). See Methods for
parameter and simulation details.

129 Strikingly, the modules that emerge, Fig. [2c-e, g-i, are much larger than the widths of either
130 local interaction, Fig. , f (interaction widths shown to scale).
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131 Formed modules are functionally independent

132 We probed whether the emergent modules are functionally independent units. In single-module
133 CAN models, velocity inputs drive the pattern to flow at a direction and speed proportional to
134 the velocity. The network is thus an integrator of the velocity signal[24] [56-59]. For the formed
135 modules to independently perform velocity integration, their patterns must flow independently and
136 their phases pass each other discontinuously at module boundaries, even though connectivity is
137 equally continuous within and across module boundaries. It seems intuitively unclear whether this
138 could hold. However, when we drove all modules with a common velocity input, we found that the
130 patterns flowed independently. The positions of the boundaries between modules remained fixed
1o and sharp, and the phases on either side of a boundary updated independently so that there were
141 spatiotemporally discontinuous dislocations in phase across the boundary, Fig. [2j. This dynamics
12 results in veridical and independent velocity integration within and across modules, so that all
us cells (even those close to the module boundaries) have periodic spatial tuning curves, Fig. 2k. We
144 conjecture that this independence arises from the integer-based selection of number of modules and
s module boundaries. At each moment, as the velocity input drives updates in the pattern phase
16 across the system, the network performs module formation which forces a break across modules at
147 the same location. This discrete jump at module boundaries preserves the structure and dynamics
1s within each module, allowing each module to function independently.

149 The independence of phase updating does not imply an independence in the angular tuning of
150 modules: if all modules receive a common rotated velocity input, their spatial tuning curves will
151 rotate. The only way to induce independent rotation of tuning in the grid modules is to provide
152 separately rotated velocity inputs to each.

153 ANALYTICAL THEORY OF MODULARIZATON: PEAK SELECTION, TOPOLOGICAL
154 ROBUSTNESS, AND SELF-SCALING

155 The generality and robustness with which discrete modules emerge from the combination of
156 a fixed-scale and a graded-scale local interaction suggests a general principle at work. Starting
157 from an initial condition of uniform activity, the network exhibits nearly immediate (within 1-
158 2 biophysical time-constants ) signs of modularization, Fig. [3h. Modularization begins before
150 most neurons have crossed their nonlinear thresholds, and unfolds concurrently with local periodic
160 patterning (Fig. ,e). The system also exhibits localized eigenvectors (SI sec [H} similar Anderson
161 localization in condensed matter physics [60]). These phenomena suggest that patterning and
162 modularity might both be explained by a unified linear instability-based theory. We derive such a
163 theory, summarizing it below with details in SI (Sec. Besides establishing how, why, and when
16« modularity emerges, the theory accurately predicts the discrete pattern periods of all modules, the
165 number and sizes of modules, and the locations of module boundaries (explored below).

166 We considered how small perturbations evolve from an initial state so(npy). In the local
17 neighborhood of each DV location on the neural sheet (the neighborhood is assumed to be larger
168 than the interaction width o(npy),d but much smaller than the full sheet width L), the local
160 interaction W(Ax;npy) changes only a little, and we can approximate it to be spatially uniform
10 to solve the dynamics using Fourier modes (SI sectionD8). As in the analytical theory of the
171 earlier section (Generalization of single-module continuous attractor models), the network forms a
172 patterned state within each neighborhood, with the spatially varying inverse periods as a function
173 of DV location npy:

1

Noor) = arg max, {W/ (k) + W9(k;npv)}, (2)
npyv)

172 where W is the Fourier transform of W.
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FIG. 3. Theory of module emergence: multi-scale linear instability and topological peak se-
lection (a) Snapshots of population activity within a few neural time-constants (7) of initializing the
dynamics at a uniform state. Modules appear in situ at the same time as local patterning, before most
neurons have hit their nonlinear thresholds, defined as the point when the presynaptic inputs to a neuron
reach the non-linear region of the input-output relationship. (b) Top: Schematics of fixed-width (orange)
and graded (green) interaction kernels. Kernels from two different DV locations (designated D for dorsal and
V for ventral). Bottom: their Fourier transforms. (c) Peak selection process: The global maxima in Fourier
space (blue) are based on combining the graded interaction (green) with the fixed interaction (orange). As
the green peak slides across, the global maximum (marked by red star) jumps abruptly from the position
of one orange peak to the next. (d) Top: Summed Fourier transform of the two local interactions (darker
(lighter) blue: more dorsal (ventral)). Middle: The location of the maximum of the graded interaction varies
smoothly as a function of DV location. Bottom: the maximum of the summed interaction jumps discon-
tinuously (bottom). (e) Dark to light blue curves: activity pattern periods from (a) for early to late times
after initialization. Module boundaries and periods remain unchanged from the earliest time-points. Pink:
theoretical prediction of periods and module boundaries from Eq. (f) Left: Example simple fixed-scale
interaction profiles that produce modularization: profiles can be roughly categorized as diffuse, decaying, or
localized. Right: the dominant terms in their Fourier transforms. (g) The Fourier phases of the interactions
in (a). (h) Theoretically predicted sequence of period ratios for any value of ¢ (blue circles), for module
numbers 2-6. Black markers denote averages for each value of m. Any dependence on ¢ and thus the shape
of the fixed-scale interaction is weaker for higher module numbers (smaller period/dorsal modules). See
Methods for parameter and simulation details for (a) and (e).

175 We can understand how the peridocity varies spatially as follows. Suppose the fixed interaction
176 kernel W7 is simple in the sense that there is a single dominant length-scale d (details in SI Sec.
177 @); then W/ (k) ~ cos(kd — ¢)), which has closely spaced peaks (every ~ 1/d in k-space; Fig. ,
178 bottom, orange) and a phase ¢. These local maxima remain the same for each DV location in the
170 neural strip because W/ is not graded.

1w By contrast, W, exhibits a broad Fourier peak (of scale ~ 1/a(npy) > 1/d). The width and
181 location of this peak for different DV locations contract smoothly (as o(npy) increases; Fig. ,
12 bottom, green). The WY interaction drives spatial patterning and its graded variation is ultimately
183 responsible for changes in period through the smooth variation of the peak of W (k). However,
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184 the narrow peaks of W/ (k) determine the specific values of the maxima of the sum of W/ and W9,
185 while the smoothly moving peak of Wg(k; npy) performs “peak selection” on these possibilities to
186 define the global maximum (Fig. 3¢ and SI Movie 1). As the broad peak of W9(k; npy ) smoothly
167 sweeps through the set of narrow local maxima of W (as npy is varied), the global maximum
188 remains at one of the narrow maxima, then abruptly and discontinuously jumps to the next peak of
s W7, generating a constant period within modules and abrupt changes in period between modules,
1o Fig. [3c-d. The spatial periods are determined by the maxima of W/, which occur at

2
)\mlzk;m{W’mGZJr}. (3)

101 In other words, the periods are determined by the width d of the fixed-scale interaction W/, with
102 different module periods given by this scale divided by integers m. Module periods are independent
103 of the length L of the neural strip.

10s  Permitted values of the integers m are given by which local maxima of W/ fall within a range
195 [1)/Omax; 7/ Omin), determined by the range of scales of the graded-width interaction (1 is a fixed
106 proportionality constant; SI Sec. for details). From this, we can determine the number of
107 allowed modules, which is the set of integers m that fit in the following interval:

Nd/Tmax — ¢ nd/Tmin — ¢

<m<

27 2w (4)

s The phase ¢ € [—m,7] is a constant that reflects the only influence of the shape of W/ on the
199 formed modules (Fig. —g): If W7 is uniformly diffuse across its width d, then ¢ ~ £m/2 (sign
200 determined by whether it is excitatory or inhibitory). If W7 is locally concentrated around d, then
201 ¢ is close to 0 or 7 (for excitatory or inhibitory interactions, respectively); a decaying W7 also
202 leads to ¢ close to 0 or w. Intermediate values of ¢ can be obtained by interpolating between these
203 interaction shapes (See Fig. for several examples).

20 The analytical expression for module periods (Eq. [2| evaluated on the Fourier transform of W)
205 exactly predicts the values from numerical simulation (Figs. , , SI Fig. . The even simpler
206 analytical expression for period in Eq. [3| with ¢ computed from W/ and without free parameters,
207 also exactly predicts module periods from numerical simulation across diverse lateral interaction

208 shapes (Figs. , , SI Fig. .

209 Period ratio prediction and parameter invariance

210 The (inverse) module period expression of Eq. |3| supplies a quantitative prediction about adja-
211 cent module period ratios. Period ratios have been characterized experimentally [27] and are the
212 subject of several theoretical models [61], [62], however these findings consider all adjacent module
213 period ratios to have a single value. By contrast, our model’s period ratio predictions vary with
214 module: the period ratio of the mth module to the m + 1th module is:

Am
>\m+1

(m+14¢/2m)
(m + ¢/2m)

=r(m,¢) = (5)
215 The module period ratio prediction is strikingly and completely independent of any scale: neither
216 d, 0y, DO L, even though the module periods themselves scale with d. In other words, module
217 period ratios in our model are completely independent of the widths of the interaction kernels, or
218 the size of the cortical strip. The ratios are also independent of the functional form of gradient,
219 0y, -, by Which the graded interaction varies. The only parameter dependence in the period ratios
20 is through the scalar phase ¢. For ¢ = 0, The ratios of adjacent modules are simply successive
221 integer ratios, with the integer indexing the module number (Fig).
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222 The extreme invariance of predicted period ratios to almost all parameters is due to robustness
223 arising from a “topologically protected” [I] process (SI Sec: possible solutions to the dynamics
24 of patterning form a topologically discrete set, with periods given by the successive integers which
25 are generated by the peak selection process. Through all continuous variations in the parameters
26 of the system, it must settle into one of these solutions. Thus, the modularization process and
227 resulting predictions about module period ratios is a topologically protected robust process immune
28 to nearly all parameteric variation.

29 We implemented and theoretically analyzed models where the graded quantity is either the
230 neural time constant or the strength of recurrent connectivity (rather than the width of neural
231 connectivity), SI Sec. All the above results remain qualitatively unchanged, and the period
232 ratio predictions remain qualitatively and quantitatively unchanged.

233 Spontaneous self-scaling of modules

234 Above, we noted that module periods are independent of the cortical strip length L and period
235 ratios are independent of both L and the widths of the interaction kernels.

236 Interestingly and surprisingly, the number of formed modules is also independent of system size,
237 if the minimum and maximum widths (6(0) = omax, 0(L) = omin) of the graded interaction remain
238 the same as the network size L is varied. We can see this by setting opin, 0max to be constant
230 (independent of L) in Eq. 4} and deriving the number of modules N4 to be:

I N

2T0 min 27 2m0 max  2m

20 where | |, | ] indicate the floor and ceiling operations, respectively. The number of modules is
21 determined by the interplay (difference) between the width ratios of the two local kernels, without
202 depending on their specific widths or even the values of their ratios. This expression is independent
23 of L.

24 As aresult, a prediction of our analytical results is that the module formation process self-scales
215 to the system size, such that each module must grow in size (but with unchanged periodicity within
216 the module) as the system size (cortical strip length) is increased. Indeed, in numerical simulations
247 where we hold onin, omax fixed as we scale the cortical strip by several factors, each module scales
s in size with the overall network size (Figlth), and the number of modules and module periods
29 remain the same (Fig[h-b). Thus, if the neural sheet is large, the module sizes can be orders of
250 magnitude larger than any of the lateral interaction scales, oin, Omax, d, resolving the mystery of
251 what sets the scale of individual modules, why they are unrelated to the local interaction scales,
252 and why they are global in size, Fig. 2p-d,f-h. This scale-free nature of the emergence of modules
253 is an entirely novel feature for pattern-forming models.

254 The number of formed modules is also insensitive to the shape of the gradation o(npy) of the
255 graded parameter, depending as above only on its maximum and minimum values (Fig—d). The
256 only effect of changes in the shape of o(npy) is on the relative sizes and boundary locations of the
257 different modules, rather than their number. (We can make a more approximate but still fairly
258 accurate prediction for where module boundaries will form, Fig. [Be, pink curves and Fig. [ld; see
259 SI[D 7 for details.)

20  Finally, even if we smoothly vary one of the extremal values of o(npy ), the number of modules
261 remains fixed until the change becomes large enough to accommodate one additional or one less
262 module. At that point, we will obtain different numbers of modules (Fig—d). However, we again
263 we see remarkable robustness in the modules that do form: as the number of formed modules is
264 reduced by increasing o, the formed module periods are identical to the periods of some of the
265 modules in the bigger set (Fig—d).
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266 In sum, the dynamics of module formation exhibit an emergent invariance or self-scaling prop-
267 erty with brain size, automatically adjusting to the size of the substrate. Variations in brain size
268 across individuals and species can, via this property, be accommodated to generate a fixed number
260 of modules with a fixed set of periods without tuning any biological parameters. Positional infor-
270 mation models (like the French flag model, Fig. [11]), which apply fixed thresholds to a global
on gradient, would also be expected to yield self-scaling, however here the modules and boundaries
a2 are self-generated through recurrent interactions, and do not require externally imposed thresholds
273 or genetic control. An additional consequence is that increasing the number of modules involves
274 simply changing the value of one endpoint (0max Or opin) rather than creating new gene expression
s cascades for each added module (Fig. [dp).

a
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FIG. 4. Emergent self-scaling of modules with system size. (a) Increasing the size of the neural
sheet while holding constant the minimum and maximum graded interaction widths and the fixed interaction
width, the within-module periods remain the same but module sizes expand so that the system has the same
number of modules regardless of system size. (b) Extracted periods from results in (a). The neural axis
is scaled (normalized) by network size to compare relative module sizes; the period axis is the same across
plots (preserved periods in each module). Pink: analytical predictions from Eq. (c) Different functions
(shapes) for the monotonically graded interaction width o(npy ) are predicted theoretically to result in the
same number of modules if the minimum and maximum values of the width (min, Omax) remain unchanged.
Shape changes only affect the detailed positions of module boundaries. (d) k* calculated from numerical
Fourier transform of interaction matrix with two different gradient shapes, holding oy and opax fixed.
Module number and periods remain unchanged, while boundaries shift. (inset) The shapes of the gradient
in the width of the primary pattern-forming interaction for the two choices of gradient shapes. Green
dashed lines are scales corresponding to each local maxima of the secondary interaction. (e) k* calculated
from numerical Fourier transform of interaction matrix with three significantly different values of o, while
holding the spatial extent of the system fixed. The number of formed modules changes from 3 to 5 to 8,
while the periods of the first few modules (that are common across all three simulations) remain unchanged.
(inset) The shapes of the gradient o(z) in the primary pattern-forming interaction for the three choices of
gradient shapes. See Methods and SI SedD 7 for parameter and simulation details.

276 Neural data matches detailed predicted sequence of period ratios

277 Our prediction of period ratios is module-specific and depends on the phase ¢, Fig. Ph. First,
278 we compare our prediction of period ratios with existing data is to average the predicted values
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FIG. 5. Comparison of precise period ratio predictions with data (a) Period ratio predictions from
together with numerical simulation (other symbols) of neural circuit models with the set of fixed-scale
interaction profiles shown in [3f, same color code. Numerical simulations with all combinations of network
size and weight profiles are shown. o(linear) and o (square-root) denote two different profiles of o(x) (refer
to Eq[11] for the functional form of the profiles). (b) Observed periods of grid cells from multiple modules
[27] (c) Successive period ratios computed from the observation (left column), and predicted period ratios
for ¢ = 0 (middle column). Ratios match predicted values with R? = 0.999 (right column). See Methods
for parameter and simulation details.

279 across 4 modules and over all phases ¢ (SI Sec. . This yields a predicted value of 1.37, in good
230 agreement with experimental results of an average ratio of ~ 1.42 across animals, as reported in
261 [27]. For the animal shown in Fig. [fp, the average module period ratio is 1.368.

282 Next, we compare our more fine-grained successive period ratio predictions with published per-
283 module period values, selecting the best-fit value for ¢. Our prediction with ¢ = 0 matches the
284 sequence of observed period ratios from [27] strikingly well, Fig, as well as other datasets in
2s which multiple grid periods ratios are available from single individuals (SI Sec. .

6 PEAK SELECTION ENHANCES ROBUSTNESS WITHIN AND ACROSS MODULES

287 Robustness within individual continuous attractor networks

288 Above, we found that peak selection-based multi-module emergence leads is robust and invariant
280 to variations in parameters, function shapes, and the form of the global gradients. Here we further
200 report that two-scale interactions and the peak selection principle make the dynamics within single
201 grid modules resistant to several forms of weight heterogeneity and activity perturbation. The
202 Tequirement that continuous attractor models possess a high level of weight homogeneity (i.e.,
203 perfect translation invariance) to generate a continuum of fixed points [23] 24, 63| [64] is a well-
204 known Achilles heel that has led to debate about whether these models accurately describe the
205 biological circuits. This susceptibility to noise is one of the fundamental open problems for most
206 continuous attractor models[23].

207 We simulated multi-bump CAN models [24] for one grid module (i.e. no gradient in the pattern
208 forming interaction), and added inhomogeneities of two types to the weights: noise in the shared
200 radial structure of all interaction weights and i.i.d. noise in each weight (SI Fig and SI sec
300 for details and visualizations). These inhomogeneities were sufficient to nearly destroy pattern
formation (Fig. [6p, left). However, inclusion of a second wider-scale local interaction (also subject
s02 to the same amplitude of added noise) results in robust and homogeneous pattern formation (Fig.
303 |§|a, right). We quantified this effect, finding stronger regularity in the formed pattern despite
304 weight heterogeneity with the broader interaction than without, Fig. [Bpb. The susceptibility to
305 heterogeneity and the gains from a broader interaction scale held whether the model was simulated
s06 with periodic or aperiodic boundary conditions (one version of CAN grid cell models consists of
s07 a single activity bump [50, 65] [66]; this version, which is likely inconsistent with the observation

30
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s08 that single modules exhibit a multi-bump pattern on the cortical sheet [67], would not benefit
s00 from the addition of a broader interaction profile). The formed attractor states are continuous
s10 enough to path integrate with fidelity despite weight inhomogeneity (SI Fig. . The same
s enhancement of within-module period regularity, despite the addition of significant weight noise,
312 holds for simulations with graded weights that result in the formation of multiple modules, Fig.
313 Eb

sie Conceptually, the broader secondary interaction likely enhances pattern regularity because the
s1s narrower peaks it induces in Fourier space imposes discrete period selection, which greatly reduces
s16 the pattern variance-driving effects of noise, Fig. [6k: the wider local interaction “focuses” the
s17 dynamics to a narrower region than specified by the narrower local interaction alone (Fig. |§|d)
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FIG. 6. Enhanced robustness to weight heterogeneity, noise, and activity perturbation by
peak selection. (a) Left: Weight heterogeneity (here, radial asymmetry and i.i.d. noise) quickly destroys
discernable pattern structure in multi-bump continuous attractor models [24]). (Simulation of a 100x100
neuron network with kernel W, as in Fig. —e; scale shown by green bar.) Right: Addition of a secondary
wider local interaction (scale shown by orange bar), with noise in both sets of weights, rescues patterning.
(b) Variability in 1-dimensional patterning versus the magnitude of added noise in the weights, for single-
scale weights (green), and for networks with two local interaction scales (orange) with both periodic (circles)
and aperiodic (squares) boundary conditions. Pattern variation is the ratio of the standard deviation to
the mean of the pattern period. (c¢) The same as (a), showing regularity in period despite the addition of
noise in a 1-dimensional setting. (d) The mechanism for enhanced within-module robustness: the broader
local interaction scale enforces a narrower set of solutions in the energy landscape than possible with the
pattern-forming interaction alone. (e-g) Inter-module dynamical independence: (e) An entire module is
transiently silenced for 50 ms; (f) a large fraction of a module is externally driven by large-amplitude
fixed, random, independent perturbations; (g) a continguous region that spans two modules is transiently
silenced. In all cases, the perturbation remains local so neighboring regions and modules are unaffected,
and the perturbed module recovers within one neural time-constant after removal of the perturbation. See
Methods for parameter and simulation details.

318 Across-module robustness to large-scale activity perturbations

si9 We next probed whether perturbing activity within entire modules or large across-module re-
320 gions of the network will affect patterning in the rest of the modules, as might be expected given
s2z1 that the lateral interaction weights span across modules.
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322 We entirely silenced activity in one module (mimicking optogenetic inactivation), to find that
323 the other modules, their periods, and even adjacent module boundary locations remained stable,
324 Figlop. When we force a subset of cells in one module to persistently fire at randomly selected rates
35 between 0 and 20Hz, patterned activity is also disrupted in immediately adjacent regions of the
326 module, Fig[0f, but the patterns are immediately restored upon removal of the forcing drive. During
327 this perturbation in one module, no other modules are disrupted. If a region partly spanning two
328 modules is silenced, the dynamics and periods in spared parts of the two modules remain unchanged,
320 and the boundary re-emerges at its pre-perturbation position after removal of the suppressive input
330 (Fig@g). In all cases, pre-perturbation states are restored within one cellular time-constant (= 7).
331 These findings contrast with existing models of module formation in which modules interact in a
332 stacked architecture [68]: these models exhibit cascading dependencies between modules, so that
333 perturbation of one module will have propagating effects in all downstream modules.

334 GENERALIZED ENERGY LANDSCAPE VIEW OF MODULE EMERGENCE

335 We hypothesize that the principle of peak selection could, applied in domains other than the
336 Fourier space of a translationally invariant spatial system, supply a general mechanism for modu-
337 larity emergence without periodic pattern formation. The theory can be generalized in two steps.
338 First, by translating the linear dynamics of Fourier modes into nonlinear dynamics on an general
330 energy landscape, and next translating the Fourier peaks and troughs into multiple rugged local
340 optima in the energy landscape (SI Sec. .

341 Consider an arbitrary state variable x whose dynamics flow downhill on a generalized energy
2 landscape (Lyapunov function) L(x;#), such that dz/dt = —V,L(x;0), where 6 is some parameter.
a3 The solution to the dynamics is some fixed point state . Suppose the energy function is given by
s a sum of two terms (Fig. [Th):

L(z;0) = (1 — ) fi(x) + afo(|z — g(0)]) (6)

us where the function fi(z) is rugged with multiple similar-depth minima in the state space x and
us a function fo(x;6) that has a single broad minimum at z* such that * = g(0), where g is some
37 monotonic function. The location of the broad minimum in the state space z smoothly moves as
us the parameter 6 is smoothly varied (Fig. E]b) The dynamics of x can be viewed as regularized
:9 optimization on a rugged loss landscape, with a regularizer fo(]z—g(0)|) that acts as a prior biasing
ss0 solutions z toward z* = ¢g(6). In our numerical simulations, the landscape is first governed by the
ss1 broad quadratic term, then sculpted by the rugged landscape (with « gradually decreasing with
32 time starting from o = 1, SI Sec. [G)). Smoothly varying the parameter 6 results in a set of modular
33 solutions z (Fig. [Tk).

3¢ This version of topological peak selection generalizes the notion beyond linear instability, Fourier
355 modes, spatial embedding, or periodic solutions. This general setting — in which a fixed function
356 generates multiple local minima in some space and another “selecting” function that generates
357 one broad minimum in that space, with the position of the minimum smoothly moving as another
s5s parameter is varied — can now be applied to generate modularity across diverse settings. Next,
350 we explore modularity emergence with this principle at the ecological scale, for the emergence of
360 spatial ecological niches and coordinated spawning in corals.

361  SELF-ORGANIZATION OF ECOLOGICAL NICHES AND COORDINATED CORAL
362 SPAWNING THROUGH PEAK SELECTION

363 Consider a set of (IN) species interacting cooperatively or competitively. Species are indexed
364 by 4, and s; denotes their population levels. We follow the literature in the field to model the
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Fala:0)

FIG. 7. Generalized peak-selection mechanism leads to modularity emergence. (a) Energy land-
scape (Lyapunov function) for dynamics of the abstract state variable x consisting of a rugged multi-
minimum function and a smooth, broad single-minimum function with minimum located at z*. (b) As a
parameter 6 is varied, x* varies as g(6), where g is some monotonic function. (c) The resulting fixed points
T, as a function of the smoothly varied 6, form sets with a constant value, followed by an abrupt jump to a
new set of values, and so on in a series of discrete steps, defining a set of discrete modules. (See SI Sec.
for simulation details.)

365 dynamics of the population at a given location x and time ¢ by a Hopfield network, defining the
366 interaction between two co-localized species ¢ and j by an interaction strength W;;, which can take
se7 positive (cooperative) or negative (competitive) values (Fig. [B-b) [70H74]:

s(t,x;t+1) = H | —6;s(i, z5t) + Z W (i, j) K (x,2")s(j,2';t) + b; - v9(0) (7)

j7xl

ss where 0; is the death rate of species i; HJ[.] is a rectifying nonlinearity (populations levels are
30 non-negative); and K(z,z') = K(z — 2’) is a spatial interaction kernel (two species interact only
a0 if their ranges have some overlap, separated by no more than the width of the kernel, which is
sn1 assumed to be much smaller than L, the size of the environment). Each species has different
312 resource needs, specified by a resource feature vector (b; of dimension M (sampled i.i.d. for each
373 species). The environment supplies resources r9. Ignoring the spatial aspect, the interactions W
74 induce a rugged landscape that would result in a set of attractors in the state space, Fig. [,
s7s with each attractor representing a potential stable configuration relative population levels of the N
s species. (See Methods for details.) Next, we construct a parametric resource gradient by linearly
37 interpolating between two random vectors r{,rj drawn from {—1,1}*  Fig. (colored line).
s7s Different values of the input along this parametric gradient ”tilt” the landscape: when we slice the
379 landscape along this gradient direction and consider one value of the input or another, the minima
ss0 remain the same but their relative amplitudes vary, Fig. [8d.

381 Finally, we assume that the parametric resource gradient is spatially organized (in other words,
352 the parameter 6 for the gradient r9(f) = (1 — 6)r{ + 6 rj is some monotonic function of space,
383 0 = g(x)). Such variations — such as in sunlight, temparature, humidity, precipitation — are common
ss4 features of ecosystems and are believed to shape population dynamics and nice formation [75H84].
a5 We initialize this ecological model at a spatially homogeneous state, with continuous resource
386 gradients, and examine the structure of the population vector and its normalized correlation matrix
se7 C(z, ), (Fig. —f). The population state self-organizes, through the process of peak selection, into
388 a steady state with modular niches (Fig—h): clusters of species form stable groupings of relative
330 population abundances over local regions of the environment, with sharp and highly correlated
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FIG. 8. Self-organization of ecological niches and synchronous spawning through peak selection:
(a) Schematic web of competitive and cooperative interactions between species. (b) Embedding of the
species from (a) into an environment with smoothly varying spatial resource gradients. (c¢) Schematic of
the state space of the interacting species system as in (a), ignoring the spatial distributions of species and
resources, has multiple attractor states (dots; basins boundaries depicted by black lines). Multi-colored line:
We set up a resource gradient r?(f) = (1 — 0)r{ + 6 rJ by smoothly and linearly interpolating between
two random resource vectors. (d) The same one-dimensional slice/view of the energy landscape in (c),
at three sampled values along the input resource gradient (top, middle, and bottom, respectively). The
resource gradient “tilts” the energy landscape, varying the relative heights of the local optima. (e-h) Plots
of species distributions as a function of space (x) (e,g), and their spatial cross-correlations (f,h). (e-f):
Initial distribution. (g-h): After convergence of the dynamics there is an emergent self-organization of four
ecological niches. (i) Global scale invariance: changing the spatial size of the system (L) while maintaining
the local interaction kernel (K) width and the end values of the resource gradient function results in the
same niche structure. (j) Data on a number of coral reefs and their mass spawning dates (adapted from [69]).
Note the widespread bands of synchronized spawning across the Indo-Pacific (same-color circles). (Open
circles: data not available.) (k) Model for synchronized coral spawning: ocean temperature is assumed to
undergo seasonal variation, with temperatures rising at lower latitudes first, and eventually in equatorial
regions. Along with this spatiotemporal temperature variation, the lunar cycle provides a faster time-scale
periodic cue towards coral spawning (1) Spawning occurs in the model at the full-moon lunar phase in all
regions where the ocean temperature is warmer than a given threshold. The dynamics results in a step-like
variation across latitudes in coral spawn times. See Methods for parameter and simulation details.

o boundaries leading into distinct patterns of relative population abundances in different parts of the
1 environment (Fig. [8g-h).

32 As with grid cells, the system exhibits the theoretically predicted property of global scale
3 invariance: if the resource values at the endpoints of the environment are held fixed as the size
304 (L) of the environment is scaled, even though the spatial interaction width (set by K(z,z’)) is
305 not, the number of formed niches and their composition remains unchanged (Fig. ) While we
306 only examine the symmetric W (i, j) case here, we expect this mechanism for self-organization of
so7 modular niches to also hold in the more general non-symmetric W (i, j) case. Examining such
308 species interaction networks could lead to spatio-temporal dynamics in species niche formation,
390 which would be an interesting future direction.

200  Finally, we consider a simplified model of the synchronization and timing of mass spawning
a1 by the Acropora genus of corals (the dominant shallow-water coral genus in the Indo-Pacific [85]).
402 Across broad geographic swaths, Acropora coral colonies spawn in an impressive coordinated burst
s03 lasting only a few hours, once a year (Fig. [8j). The day of this spawning depends on multiple fac-
s0s tors, including surface water temperature and lunar phase[69) [85-87]: the water must have warmed
405 sufficiently, and the lunar phase should be a few days after the full moon. In the temporal domain,
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a06 temperature varies gradually (temporal gradient), while the lunar phase changes periodically and
407 more rapidly. While temperature provides a broad permissive seasonal range for spawning, the
408 faster-cycling lunar cycle locks in a specific spawning day within the broad warming trend, permit-
400 ting broad synchronization across the population. The peak selection model predicts an additional
410 form of emergence, in the form of spatial organization: surface temperature varies both temporally
s and spatially, gradually changing with latitude. The model predicts large step-like jumps in the
412 spawning day as a function of space, with different and widely separated coral colonies at similar
a3 latitudes spawning on the same day, but others sufficiently offset in latitude spawning a month
414 later, in a step-like spatial progression, Fig. —1). This is broadly consistent with data from coral
a5 species in the Indian and Pacific ocean[69], Fig. [}).

416 DISCUSSION

417 Summary We have shown how structure can robustly and spontaneously emerge at multiple
a8 scales from purely local interactions. The peak selection theory shows how modular structure can
a19 emerge without modular genetic specification (development) or modular interactions (development
a0 and ecology). The mechanism exhibits useful features of both positional and pattern formation
a1 processes [12]: structure is noise-tolerant as in pattern formation processes yet self-scaling as in
422 positional processes. In the context of pattern formation systems (with multi-bump models for
a3 single grid modules being one example), the two-scale peak selection mechanism yields higher
424 Tobustness to connectivity inhomogeneity beyond the capabilities of conventional attractor models
a5 [24].

426 In the context of grid cells, this work extends and robustifies continuous attractor models [24-
427 [26], from single modules to multiple modules, from dependence on specific interaction profiles to an
428 infinite set of kernels for grid emergence, and from dependence on homogeneous weights to a weaker
220 dependence on weight homogeneity. It connects to observed DV gradients in MEC [35], 411, 145, [521-
a30 [55], and also potentially more generally to observed gradients that underlie discontinuous function
a31 in cortex [34. [46].

422 Predictions The model forms a mechanistic bridge between distinct scales and levels in the grid
433 cell system, showing how biophysical properties, synaptic connectivity, and activity might interact,
434 and providing predictions about whether and when perturbations on one level might constrain and
435 affect outcomes on the other. Relationships between levels in the model provide low-dimensional
436 “knobs” for experimental manipulation and testing. Under the assumption that spatial gradients
a37 in cellular properties are themselves driven by gradients in gene expression [88] [89], we highlight
a3 a few predictions for connectomics (C), transcriptomics (T), development (D), and physiology (P)
a3 studies and connections between them: 1) Functionally discrete modules with sharp boundaries can
a0 emerge without sharp boundaries in gene expression or cellular and synaptic properties (T,C,P).
441 It is possible that these emerging modules are later consolidated by differential gene expression
a2 patterns, or that gene expression remains graded in the adult (D,T). 2) One type of interaction
as3 (synaptic strength or width) or biophysical property (like time-constant that affects interaction
aas strength) that is fixed along the DV axis of MEC, and another that smoothly varies along it.
a5 These two types of interactions may reside in different cells and synapses. Alternatively, a single
a6 set of synapses might contain both scales, such as a synaptic connectivity profile whose shape
47 is graded along the DV axis, but whose maximal cutoff radius is invariant across the DV axis.
us (C) 3) The detailed adjacent grid period ratio prediction, given by successive integer ratios or by
a9 integer ratios with a correction given by the coarse form of the (fixed-scale) interaction profile
ss0 (P). 4) Invariance of module number and periods to brain size, if endpoint interactions are fixed
451 or change only slightly; specific predicted variation in module number if endpoint interaction
a2 properties are varied (T,C,P). 5) Predicted shift of module boundaries locations but not module
ss3 number with gradient shape (T,C,P). 6) Predicted relationship between lateral interaction shape
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ssa and period ratios, through the scalar variable ¢. (C,P) Predictions (3-6) can be probed on intra- or
ass interspecies levels. 7) Independence of dynamics between modules and high robustness of dynamics
456 to activity perturbation within and across modules: Effects of perturbation to activity are localized
ss7 to the module it is applied to, without a cascading effect across modules [68]. Entirely suppressing
458 one module should not alter others, and suppressing half a module boundary should not shift the
as0 rest of the boundary (P). 8) Following MEC-wide silencing, activity patterning in all modules
aso should re-emerge independently and in parallel, rather than sequentially [68] (P). 9) If all grid cells
461 receive a common velocity input, then grid modules should rotate in tandem under any remapping
a2 because their relative orientations on the cortical sheet are fixed (P); if they are able to rotate
a3 independently, it would require independent velocity inputs (P). 10) If two different cell types or
464 processes mediate the graded and fixed components of the lateral interactions, then a manipulation
465 to turn off the fixed-scale interaction should lead to patterning but with continuous variation of
466 period across the DV axis instead of discrete modules.

67  More broadly, as a mechanistic circuit model at the level of neurons and synaptic connectivity,
468 the model is fully ”computable”. Thus, it is a tool for generating predictions about the result of
460 any perturbation for which our model has a corresponding parameter or variable, which experi-
470 mentalists might want to apply.

471 Related work Our focus is on the theory and mechanisms of the emergence of multi-modular
472 function from prespecified weights and is thus complementary to work that models the learning of
a3 weights in MEC, through biologically plausible Hebbian-like rules [90] or backpropagation-based
a7a learning [91H95]. The learning models generally do not produce multiple modules, and in the rare
a5 cases where they seem to, the circuit connectivity that produces them are unknown [91) 95]. The
a6 only other work that proposes a network mechanism for multi-grid module emergence [68] has a
a7 distinct (stacked) initial and final architecture, and its predictions on dynamics and connectivity
478 as noted above are interestingly and distinguishably different.

479 The peak-selection principle for module emergence is both an instance and a generalization in
480 some ways of the idea of spatial bifurcation for the emergence of discrete function from smooth
ss1 gradients [34] [96]. It permits a number of distinct modules to form from smooth variations in the
42 spatial dimension, but the broader theoretical framework generalizes to variations along abstract
g3 parametric dimensions, and generalizes from linear instabilities and pattern formation to nonlinear
484 systems like parameteric gradients in nonlinear Hopfield-like systems. We have shown three distinct
45 flavors of peak selection-based modularity emergence: peak selection in a pattern-forming process
46 interacting with smooth gradients in interaction parameters for grid cells; peak selection via a
457 smoothly varying regularization term in dynamics on a rough landscape in the general Lyapunov
ass function approach; and peak selection in a symmetry-breaking process (which is more general than
a0 Turing-like pattern formation) based on initial conditions or input gradients that tilt the landscape,
100 with applications to ecological niche emergence and geographically extended bands of synchronized
401 coral spawning.

492 These concepts provide dynamical and mechanistic principles for how modular structure can
193 emerge without modular components, in contrast to normative models that focus on why or when
soa modular structure is favored [ 9, 97HI05]. Such a mechanistic understanding connects with
405 literature on the emergence of discrete function in brain areas, the spinal cord and the body,
a06 despite the existence of smooth biophysical gradients[31], B4-38), 4047, 96, 106, 107].

297 An important vein in developmental research is to explore how structure can emerge with
a08 precision in the presence of noise [31],[32] 108, 109]. Some solutions within the positional hypothesis
a99 involve spatial or temporal integration of noisy gradients [12],29] [T08]. Pattern forming mechanisms
s00 confer robustness to noise because the patterned state is much lower-dimensional than the overall
sor state space [110]. Our observation that peak selection contributes significant additional robustness
s02 raises the intriguing question of whether such a mechanism might assist in tandem with positional
s03 mechanisms during morphogenesis [111].
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Os(i,t)  s(i,t)
ot + T

=¢ Zwom)s(j?t)w(i,t) : (8)

J

sa0 where s(i, t) represents the synaptic activation of neuron 7 at time ¢, Wy (i, j) represents the synaptic
sso strength of the coupling from neuron j to neuron i, B(i, t) represents the feed-forward bias to neuron
ss1 7, and ¢ is a non-decreasing nonlinearity, for which we use the rectification function (¢(z) = [z]+ = =
ss2 for z > 0 and 0 otherwise). Each neuron i has a preferred direction 6; that is used to perform
853 velocity integration. In the one-dimensional version of our setup, each spatial location x on the
54 neural sheet has two neurons, with preferred directions § = 0 and 6 = w. Correspondingly, in
855 the two-dimensional version of our setup, each location on the neural sheet has four neurons, with
sse preferred directions § = nw/4 for n € {0,1,2,3}. The synaptic weights Wy (i, j) are defined via an
ss7 interaction kernel W (Ax) such that

Wo (i, ) = W(|x: — x; — As(6;)]), (9)

sss where x; represents the spatial location of neuron i, and 1() is a vector with length As oriented
sso parallel to the angle §. The feed-forward bias B(i,t;6) is given by

B(i,t) = b+ byer|v| cos(6; — 1), (10)

sso where 1 is the direction of the input velocity signal and |v| is the speed. This results in neurons
ss1 with direction preference 6 driving activity in the network towards the direction of their outgoing
ss2 weight shifts As(#). This mechanism is responsible for velocity integration by the network [24].
83 We first described the dynamics under fixed arbitrary kernels, demonstrating that they result in
864 hexagonal pattern formation. These arbitrary kernels were constructed by interpolating between
sss random points via the following protocol: First, we construct ‘x-values’ by considering n + n,ero
ss6 uniformly spaced points from —L to L, which are then perturbed by the addition of a randomly
ss7 sampled number from —L/4n to L/4n (this perturbation makes the points less regular, while
s disallowing consecutive points to be extremely close to each other). Second, we construct n ‘y-
ss0 values’ sampled from a uniform distribution from —1 to 1, and define the remaining n.¢-, y-values
s70 to be 0 (the n,eq, values at zero ensure that the interpolated function decays to zero). Then,
s71 a cubic spline interpolation (top row of Fig. ) or a linear interpolation (bottom row of Fig.
s72 [10p) is performed between the y-values and the x-values to generate an arbitrary function w(x).
s73 This generated function is however not symmetric, as is required for kernel functions — thus, we
s74 construct the interaction kernel as W (Az) = w(Azx) + w(—Ax). Kernels whose dynamics lead to
s7s infinitely diverging firing rates are rejected and resampled. These kernels were simulated on sheets
s76 with 256 x 256 neurons with aperiodic boundary conditions[24]. n was randomly chosen between
s77 2,3 or 4, and L was scaled as necessary to obtain a large number of activity bumps on the sheet
s78 to prevent finite-size effects from distorting the hexagonal lattice of activity.
g9 For the case of module formation through peak selection, the interaction weight kernel W is
ss0 given by the sum of two components W = Wy, + W/. The first, W, drives local pattern
ss1 formation, and has a spatial scale o(npy), which varies smoothly in a gradient along the dorso-
sea ventral axis, and the second, W/ has a fixed spatial scale d everywhere on the neural sheet. A
ssa variety of functions Wy can drive local pattern formation. For concreteness, we use two specific
sss examples: the Mexican-hat profile[24] (used in Figs. 2h-c,j.k, [11] and SI Fig.

Wg

mexican-hat (A‘T) =
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FIG. 9. Local pattern formation in continuous attractor models of grid cells: Through local amplification
of random fluctuations, the lateral interaction forms periodic patterns.

sss and the box-function profile[I17] (used in Fig. 2 and SI Fig.

ag if ‘AZ” < Ub(an),

12
0 if |Ax| > op(npy). (12)

Wgox(Aw) = oo X 1‘A73‘<0b(x) = {

ss7  For the fixed-width interaction W/ (Ax), we implement 3 main types — localized (used in Figs.
se 2,3 and SI Fig. [12)), diffuse (used in Fig. 2 and SI Fig. [12)) and decaying (used in SI Fig. [12)).

(|Az] _dloc)2:| ,

I/Vlicalized(Ax) = Qg exXp | — 2
2€g

W({iffuse(Ax) =a1 X 1|Aw|<ddif7
Wl (Az) = ar X [dgec — |Az]] 4.

decaying

80 In particular,

890 e In Figs. we use only a smoothly varying Mexican-hat pattern forming kernel W =
g

8ot Wmexican—hat

802 e In Figs. —c,g, jkweuse W=wW7_ . o+ Wlécalized

893 e In Figs. —f,h we use a ‘Lincoln hat’ profile W = W7 + W(ﬁﬂuse

box
894 e and, in SI Fig. [12| we present numerical simulations of other combinations of pattern forming
895 and fixed-scale kernels.

sos 1o construct spatially heterogeneous kernels for analyzing the robustness to inhomogeneity in
so7 Fig. [6] we use the box function to construct

W{[x,x'] = ag x Lk x (1460 (x)) <09 (1465 (x'))

Wix,x]=a x 1

é x| x (1+&] () <dai r (14€] (x'))’
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Parameter Value
T 30
dt 0.05
b 70 in 1D
1 in 2D
b 105 in 1D
vel 1 in2D
As 2
TABLE I. Parameters held constant across all numerical simulations
W ieanhat Darameters Value
o5, 1000
af 1000
~y 1.05
NP 3000
N2D 100
NZD 1000
Omh(NDV) 1/y/2B8(npv)
B(npv) Bo + (81 — Bo)npy /N’
N NP in 1D
N2D in 2D
5 2.5x1072 in 1D
0 3/676 in 2D
3 25x 107!  in 1D
! 9/338 in 2D
W7 parameters Value
N1D 5000
(7)) -40
O'b(’npv) 15+30an/N

TABLE II. Pattern forming kernel parameters used for numerical simulations

where 5{’7’5 (x') are independent random numbers chosen uniformly from efjg x [-1,1]. In the

particular case of Fig. |§|b, €J is varied along the z-axis of the plot, and other noise terms are set to
zero (In the one-dimensional case €; and ez have the same effect); for Fig. |§|c, €] =0.2, 5 = 0.3,

el =0.05 and ¢} = 0 (See SI Sec. for more details).

In Table[[]we present a list of common parameters used across all numerical grid-cell simulations.
Then, in Tables we present the parameter values used for the kernels used in our numerical
simulations

b. FEcological niche formation For the modular niche formation, we consider the setup as
described in Eq. [7} with N = 1000 species, each characterized by a random M = 2000 dimensional
random feature vector indicating resource preference. We numerically simulate our setup on a
discrete lattice z € {0, L} for L = 300 in Fig. |8} left, and L = 500 otherwise.We instantiate the
nonlinearity H as a shifted Heaviside function, H[x] = 1 for = > 0.5, and H|[zx] = 0 otherwise,
and choose the death rate §; = 0.1 for all species. To construct W (i, j) as an interaction matrix
that quantifies the cooperation and competition between species, we follow a set up similar to a
Hopfield model with {0, 1} activity[I18]. We first choose a set of random points in N-dimensional
species space s, for ¢ € {1,--- , @}, denoting potential niches. We choose ) such that 1 < @ < N.
Each s, vectors consists of a +1 at elements corresponding to species that may co-exist, and —1
otherwise. In practice, we draw each element uniformly from the set {0, 1}, constructing an N x Q
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VVI{)MH -q Parameters Value
Qg 4
d 84 in 1D
foe 50 in 2D
477 in 1D
€g .
1.6 in 2D
Wc{iﬂuse parameters Value
Qdif -0.25
daif 135
W(fecaying parameters Value
ar 25
ddec 150

TABLE III. Fixed-scale kernel parameters used for numerical simulations

o1i7 matrix. The weight matrix W (i, j) is then constructed as

W (i, ) = 0.015 x {Ei@ﬂ sa(d)sq(j), fori#j

c, fori=1j
918 Where c is a positive constant set to 10.
a9 The spatial interaction kernel K(z,2') = K(x — 2’) is chosen to be a Gaussian function with
o20 standard deviation 1.75 (which is much smaller than the entire spatial extent of the system, L).
921 The end points of the resource gradient are chosen as two random M = 2000 dimensional vectors
922 with elements draw independently from i.i.d. Gaussian distributions with zero mean and standard
o23 deviation 2/N, and the preference vectors b; are drawn from i.i.d. Gaussian distributions with
924 zero mean and unit standard deviation.
o5 The initial condition for the simulation is set to be the uniform state s(i) = 0.5 for all 4, and
026 the simulation is run until the dynamics reach a fixed point state. The final formed fixed point
o7 state is examined by calculating the correlation matrix

N
C(z,2") = Z Ns*(i,2) N s*(i,2")
i=1

Ns(i) = [s(7) = (s)]/, /Z[S(i) — (s))?

930 SUPPLEMENTARY TEXT

928 Where

929 where (s) = (1/N)>_; s(j)-

031 The supplemental information is structured as follows: First, in SI Sec. [A] we present the
032 mathematical analysis for pattern formation, and generalize the theory of CAN models of grid
o33 cells to show analytically and numerically that an infinite set of local interaction kernels can
o34 generate a grid cell network, as shown in Fig. [2| and Fig. Second, we demonstrate analytically
o35 and numerically in SI Sec. [B] that simply introducing a gradient in the pattern forming kernel of
036 the continuous attractor model is not sufficient to result in modularization, as demonstrated in
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os7 Fig. 1 of the main text. Third, in Sec. we show how the addition of a Gaussian localized
o38 kernel results in self-organized modularization. Fourth, we show in Sec. [D] that among arbitrary
o039 kernels, those with simple shapes result in a simple equation describing the detailed period ratios
a0 of the formed grid modules as shown in Fig. 4. Fifth, this will lead to simple estimates for the
o1 number of modules and their sizes in terms of other system parameters, which we derive in SI Sec.
042 Sixth, after having described our results primarily for the case of one-dimensional grid cells,
o3 we then demonstrate in Sec. that our arguments extend naturally to two dimensions, and we
a4 present numerical results demonstrating the same. Seventh, in SI Sec. we then demonstrate
a5 that our results and predictions of grid period ratios are consistent with available data sources
a6 to a large extent. Finally, we generalize our result to the context of dynamics on a rough energy
o7 landscape (SI Sec. , and provide broader perspectives of our results in the contexts of general
us loss optimization (Sec. and eigenvector localization (SI Sec. [H).

o9  Appendix A: Generalization of grid cell CAN dynamics theory: infinite set of interactions
950 produce grid cells

os1 It is known that Mexican hat-like kernels [24] and Lincoln hat-style kernels [51] generate grid
o052 patterning. While there are analytical results on why grid patterning emerges from a Mexican hat
053 interaction, the Lincoln hat result is empirical, without theory. Here we seek to explain when grid
os4 patterning emerges, and to determine other kernel shapes that are consistent with it.

955 Consider the standard equations for the dynamics of recurrently connected neurons (expressed
os6 for notational simplicity in the continuum or large neural number limit):

88(5;,0 N s(>: ) _ 4 [ W X)) s(x )+ B (A1)

—00

os7 where s(x) is the synaptic activation of the neuron at the vector position x on a 2-dimensional
oss neural sheet, W (x,x’) is coupling strength from a neuron at x’ to a neuron at x, 7 is the biophysical
959 time-constant of individual neurons, ¢ is a non-negative monotonic transfer function, and B is a
o0 uniform feedforward input to all neurons. The neural nonlinearity is any non-odd (¢(—x) # ¢(—x)
o1 function, for reasons given below and in [I19HI22]). For simplicity, we select the rectification
o2 function (¢(z) = [z]; = z for z > 0 and 0 otherwise.

963 1o obtain conditions for hexagonal pattern formation dynamics, we perform a linear stability
o4 analysis about the homogenous steady state[123]. While we will provide the details of this analysis
o5 in the more general setting with gradients in kernel widths in Sec. [B], we summarize the key result
o6 here: for an interaction kernel W (x,x') = W (|x — x’|), the growth rate a(k) of a periodic mode
o7 With wave vector k is related to the Fourier transform W as a(k) = W (k) — 1/7.

os  From this linear (in)stability analysis, four conditions on the interaction kernel weights W (x, x’)
960 may be sufficient for grid-like patterning: 1) For global stability, let [ W (x,x')dx < 0 (this is
o70 consistent with models of grid cells with negative recurrent coupling [24] [117] and with experiments
o711 suggesting that grid pattern formation might dominated by recurrent inhibitory circuitry [117]).
o2 2) Let the interactions be radially and translationally symmetric, W (x,x") = W(|x — x/|; o), which
or3 means that the Fourier transform can be written in terms of its radial part: W (k) = W(|k|) =
ora W (k). 3-4) To ensure a non-zero wavelength k of pattern emergence, the Fourier transform of W
ors should satisfy that its maximum occurs at a non-zero value of k, k* = arg max W (k) > 0, and that
o76 this maximum should be positive and sufficiently large, W (k*) > 1/7. Note that conditions 3-4)
o77 can be easily made true so long as W is not everywhere negative, and we are permitted a global
o7s scaling factor to ensure that the positive component is sufficiently large.

079 The emergent activity pattern will consist of superpositions of waves with period 27/k* [14]
o [24), [120), 123HI25]. This period scales as o, the characteristic width of the interaction kernel W.
se1 The specific geometry of the emergent period-27/k* pattern depends on the relative strengths and

9
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082 interactions of the waves of wavenumber k*. If the interaction kernel is isotropic and the boundary
o83 conditions are infinite or isotropic, the formed pattern will be an equally-weighted superposition of
o4 all three waves of wavenumber k*, defining a triangular lattice. The phase of the formed pattern
oss will be set by spontaneous symmetry breaking.

o866  The non-odd nature of the transfer function results in patterns with hexagonal rather than
os7 other symmetries [IT9HI22]. This can be intuitively seen by noting that upon addition of plane
088 wave solutions Re[) e’knX] hexagonal patterning formed by adding three plane waves such that
o0 k1 + ko + kg = 0 is the smallest summation that breaks inversion symmetry (i.e., the maxima are
o0 More positive than the minima are negative). Thus, hexagonal patterns emerge when the transfer
o1 function provides inversion symmetry breaking.

92 How many kernel functions W satisfy these conditions? KEssentially, an infinite set does so
o3 (with rare exceptions). First we discuss some of the exceptions to gain some insight. Gaussian
904 and Lorentzian functions, when they are positive, have a single peak in their Fourier transforms
o5 at k = 0 when the functions are positive. When the functions are negative everywhere, they fail
o6 to satisfy condition 1). Thus, Gaussian and Lorentzian functions are two special functions that
o7 do not satisfy the criteria 1)-4). However, as argued in Sec. making small perturbations to
o8 functions that do not satisfy 1)-4) results in the conditions 1)-4) being satisfied, suggesting that
oo the functions that do not satisfy 1)-4) are a small and very special set, and that most functions
1000 can be scaled to satisfy 1)-4).

w01 We next performed numerical experiments to test the hypothesis that randomly generated
1002 functions will generically have Fourier Transforms that are not negative everywhere or only non-
1003 negative at 0, and therefore might generate grid-like patterning (see Methods for details of random
104 sampling of kernel functions). We found that indeed randomly constructed kernel functions satisfied
100s the hypothesized property for their Fourier transforms: we generated 10% random localized kernel
106 functions, and all of these satisfied the conditions of being not negative everywhere or being non-
1007 negative only at k = 0 (SI Fig. We further found that these kernel functions, under the further
1008 condition that they did not produce diverging neural activity, generated hexagonal patterns. Some
1000 of these are shown in Fig. [2h. In sum, an infinite set of local interaction profiles will generate grid
w10 cell-like activation patterns. Such candidate profiles can be generated at random and with very
1011 high probability generate grid-like patterning.

1012 Appendix B: Pattern formation with graded kernels

1013 Motivated by the experimental observations described in the main text, we modify the Mexican-
1014 hat function to introduce a smooth gradient in the characteristic interaction widths og, o7.

Ax? Ax?
W9  (Ax) = == ) _ S B1
oy (AX) = ap exp < zaE(an)) arep < 201(an)> ’ (B1)

115 where og(npy) and o7(npy) are now functions that depend on position in the neural sheet, and
1016 encode the smoothly varying characteristic scale of the Mexican-hat interaction along the dorso-
1017 ventral axis:

og/1(npv) = oy + o, r(0) - npy. (B2)

1018 For such graded kernels, we will use W (x,x’) and W,,,,, (x —x') = W,,,,, (Ax) interchangeably. In
w19 this case, Eq. then becomes

Wy (x — x')s(x', t)dx' + B(x) |, (B3)

Os(x,t) | s(x,t) teo
ot * T ¢ [

— 00

1020
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W(lx —x'|)
”&U Jx = x| ii‘ J\; i/ \’
1

fraction

Wk)>0 W(k)<o0

FIG. 10. All kernels satisfying the conditions laid out in the main text can result in pattern formation, with
appropriate scaling.

1022 Under this approximation, we perform a linear stability analysis of the neural dynamics, to
1023 identify the growing periodic modes locally at the position on the neural sheet npy .

1024 We first identify an unstable steady-state solution to Eq. , which we denote as so(x). This
1025 solution satisfies

W,

solnov) _ [ T Wy (¢ — X0 + B(x)] . (B4)

T —00

1026 In the limit of very slowly varying changes in W), (Ax) as a function of npy, the unstable steady
1027 state solution will be

B

— B5
1—7W (BS)

so(npv) =
1028 where B = [ B(x)dx and W = [ W, (x — x')dx’. (For TWx > 1, the only locally homogeneous
1020 steady state is so(npy) = 0 due to the rectifying nonlinearity, which as we justify shortly cannot
1030 support periodic pattern formation due to being a stable fixed point).
w1 We then consider a perturbative analysis, by examining the evolution of s(x,t) = so(npy) +

032 €(x,t). We apply our analysis to the early time evolution of this initial condition, such that
1033 €(X,t) < so(npy). Inserting our form of s(x,t) in Eq. (B3)), we obtain

Oe(x,t)  e(x,t)
ot + T

¢/(Wso(npv) + B) /_OO Wy (x — X,)E(X,’ t)dx’, (B6)

103 Since W, (x — x') is a local kernel, we approximate the above integral with one evaluated over
1035 the region {x’ : |x — x/| < [}, with [ much larger than the length-scale of the kernel W, at all
w03 X. Over this interval, we posit that e(x’,t) = ee™®*'T2®)t where a(k) denotes the growth rate of

1037 this € perturbation. Inserting this form into Eq. yields,

a(k) +1/7 = ¢'(Wso(npy) + B) / - Wiy (x — x)e O g/ (B7)
= ,[WSO(nDV) + B]]:[WnDV (X X/)]’ (BS)
= ,[WSO(nDV) + B]’FWTLDV (k) (B9)
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FIG. 11. (a-c) Naive merger of the two mechanisms by smoothly scaling the width of the pattern-forming
lateral interaction (j) in the grid cell CAN model [24] does not generate global modularity in 2-dimensional
(b) or 1-dimensional (c¢) grid models: the result is one smoothly varying periodic pattern.

103 where F[W,,,, (x—x')] = FW,,, (k) is the Fourier transform of the interaction kernel correspond-
1039 ing to position npy on the neural sheet. For the rectifying nonlinearity ¢’ = 1, and the requirement
140 for the periodic perturbation to be growing is a(k) = FW,,,, (k) —1/7 > 0.

s Note that since Wy, (Ax) is a kernel, it is a radially-symmetric real function, and hence the
142 Fourier transform FW, (k) will also be real function that is radially-symmetric in k. Thus, for
1043 simplicity, we will only focus on the magnitude of k, which we denote as k& = |k| > 0 (In this
1044 context, for the two-dimensional case, one may re-interpret the radial component of the Fourier
1045 transform of W), (Ax) as the Hankel transform of W, (|Ax])).

146 By definition, the magnitude of the wave vector k* that corresponds to the fastest growing
147 mode locally around position x on the neural sheet will be the k that maximizes a(k). Under
1048 the approximation of slow changes in the length-scale of the interaction kernel W, , (Ax), we see

1049 from Eq. that
k*(npy) = arg max, FW, ., (k), (B10)
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10s0 since Wy, ., (Ax) (and hence so(npy)) has been assumed to have a negligible dependence on npy .
ws1  For W, (Ax) given by Eq. (B1)), i.e., without any additional fixed-scale interaction, we obtain
1052 from Eq. (B10))

. 2 _ 2 apogp(npy)®
W o) = o — arlnpy 2 8 ( aror(npv)? > ' (B11)

ws3  If we assume that og/;(x) = ng/r0(npv), where ng and 7; are x-independent constants, then
1054 We obtain

k*(an) X 1/0’(npv), (B12)

1055 and hence
A (npv) o< a(npv), (B13)

wse  where \*(npy ) is the periodicity of the grid pattern formed locally around position npy. This
1057 results in a smooth change of grid period, corresponding to the observation in Fig. 1g of the main
1058 text.
s Note that this result is generally true for any pattern forming kernel W, (Ax) that has a
1060 Fourier transform with at least one local maximum, and does not rely on the specific form of a
1061 Mexican-hat interaction. Indeed, Eq. holds for any kernel W;J,, (Ax) that depends on a
w62 length-scale o(npy). As an example, we present the corresponding analysis for the box-shaped
1063 kernel employed for pattern formation in Ref. [117].
1064  In this case

W3 (AX) = _Wolega(nDV)' (B14)

npv

1065 As discussed above, the quantity of interest is FW;,,, (k)

FWi o (K) :/ —W01|x\ga(an)€ik'de (B15)

=W / e*Xdx. (B16)
[x|<c(npv)

1066 T'he above integral can be calculated in a one-dimensional setup to obtain

in(k
FW (k) = —2WOM (B17)
1067 and can be calculated in a two-dimensional setup to obtain
Ji(ko(n
FWE (k) = —2WWOJ(an)M. (B18)

k

s In both of the above cases, note that k* o< 1/0(npy) since o(npy) is the only length-scale charac-
1060 terizing the kernel Wi, . In particular, numerical maximization yields

*N
[~

(B19)

4.493/c(npy) on a one-dimensional sheet, and
5.136/c(npy) on a two-dimensional sheet.
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1070 1. Fixed-scale interactions and modularization

w1 We now claim that the addition of a fixed-scale kernel, W/(Ax) is sufficient to result in modu-
w72 larization of grid periods, with discrete changes in grid period as a function of spatial position along
1073 the dorso-ventral axis. This set of interactions can effectively be implemented by two populations
1074 of interneurons - one with fixed arborization and weaker synaptic connections and one with varying
1075 arborization length and stronger synaptic connections.

w76 For simplicity, we shall present the specific Fourier transform computations for the one-
1077 dimensional problem, although we note that all of the qualitative results hold in two dimensions as
107s well, with the Fourier transforms of the relevant functions replaced with their Hankel transforms
wro (as shown in Sec. D).

w0 We include an additional weak interaction term W/ that critically does not depend on the
1081 neural sheet position z. For reasons that will become apparent soon, we choose kernels W/ (Ax)
1082 such that the Fourier transform changes sign a sufficiently large number of times. We hypothesize
1083 that this requirement is not particularly restrictive, and will demonstrate that this holds for most
1084 kernels W7,

10ss  The entire interaction profile is then given by

Wiy (Az) = W2 (Az) + W/ (Ax). (B20)

npv

wss  We first demonstrate our result with an example of a simple kernel, to justify how Eq. (B10))
1087 leads to the emergence of discrete grid modules. Consider the localized excitatory interaction

W/ (Az) = agexp (-W) + agexp (-W) . (B21)

1088 Corresponding to our interpretation of W/ (Az) above being a localized kernel, we choose €5 < d.

s This choice of W, (Az) = Wi, (Azx) + W/ (Az) leads to the the Fourier transform,

FWapy (k) = FWE (k) + FW/(k), (B22)
o )2 k2
=27 [CJ&EUE(TLDV)GXP <—UE( D2V) d )
) 2k2
— aror(npy) exp <_UI(D2V)k>
212
+2ageg cos(kd) exp <—52k>] . (B23)

1090 In our model, the magnitude of the W/ (Ax), i.e., ag, is chosen to be smaller than the mag-
1001 nitude of the Mexican-hat interaction. Thus we interpret FW/ (k) in Eq. as being a small
192 perturbation to the Fourier transform of the usual Mexican-hat interaction, FWy,, (k). Further,
1003 since d is assumed to be much larger than the scale of the Mexican-hat, o7, then the term cos(kd)
w00s in FW/ (k) oscillates at a k-scale much smaller than the relevant scales of FW,, (k) (see Fig.
1005 3b-c of the main text). Additionally, since eg < d, the gaussian envelope multiplying the rapidly
1006 oscillating term has a scale 1/¢, which is much larger than the periodicity 1/d.

w7 Thus, in k-space, the rapidly oscillating term, FW/ (k) can be thought of as predefining a set
w98 S = {k1,ko,...} of local maxima. Under the approximations made above, the addition of the
1000 smoother function FW,,, (k), will not change the position of the local maxima. This results in
100 the local maxima of FW, (k) also being the same set S. Importantly, we note that since S was
no1 predefined purely via FWf(k), there is no npy dependence on the set S.
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1102 Following Eq. , the wave-vector corresponding to the pattern formation at point z on
103 the neural sheet corresponds to the global maxima of FW,, ., (k). Thus, at all points, the pattern
1o+ formation corresponds to one of the discrete set of choices of wave vectors, S = {ki,ka2...}. As
10s can be seen from Fig. 3c, the smoothly varying gradient in the Mexican-hat term, FW; . as a
nos function of x picks different choices of k; depending on the position npy — the k € S that is
107 nearest to the maxima of FWy, (k) will be chosen as the global maxima, and will be the wave
108 vector corresponding to the pattern at npy. We refer to this mechanism as “peak selection”.

1o For our particular choice of W/ (z) made in Eq. , we obtained

2 k‘2
FW/(k) = 2ages cos(kd) exp (—652> . (B24)
1110 We can then approximate the local maxima of FW/ (k) as occurring at

2mm
s- {2

m € z+} : (B25)

un This immediately indicates that the ratios of periods of successive grid modules will be given by

Am_t,_l . m—+1

B26
™ - (B26)

1112 Thus, the addition of a fixed-scale interaction, W/ such as Eq. (B21)) results in discrete grid
1113 modules. We now show that this peak-selection mechanism, and hence modularization, occurs for
1114 arbitrary choices of the fixed-scale interaction kernel W/ (Az).

1115 Appendix C: Kernels that lead to modularization

1116 The peak-selection modularization mechanism described above arises naturally from the pres-
117 ence of the rapidly oscillating term in FW7 (k). In fact, for discrete grid modules to occur, the
118 only constraints imposed on the fixed-scale kernel W/ are: (a) the Fourier transform FW/ (k)
9 must have a sufficiently large number of maxima (at least 4 maxima, corresponding to the 4 grid
120 modules observed in experimental observations); and, (b) these maxima must be at scales smaller
uz1 than 1/0 in k-space. Here we argue that this is generally true for arbitrary kernels, modulo a single
u2 scaling parameter.

123 We hypothesize and give support, without formal proof, that almost every arbitrarily chosen
1124 kernel W/ (Ax) will have a Fourier transform with multiple maxima satisfying condition (a). We
u2s will then argue that this kernel can always be scaled to satisfy condition (b).

26 To motivate our hypothesis, we first note that it is actually possible to construct specific kernels
1127 W (Az) whose Fourier transform does not present multiple maxima. For example, the Gaussian
128 kernel, Wyayss(Az) = exp[—(Ax)?/2], results in a Fourier transform that is unimodal. However,
1120 we hypothesize that such functions are rare in the space of all continuous functions in L?. Indeed,
1130 we can construct a function that is arbitrarily close to the Gaussian kernel whose Fourier transform
uz will have an infinite number of maxima: Let fo(Ax) = 1_; ; be the box function. Define

fn :f*fn—l

us2 for all n > 1, where f % g represents the convolution of functions f and g. By the central limit
uss theorem, v/nf,(v/nAz) will approach Wygss(Az). However,

Ffn(k) = [2sin(k)/k]", (C1)


https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.28.466284; this version posted November 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

36

113¢ which clearly has an infinite number of maxima. Thus, even though the Gaussian kernel has a
uss unimodal Fourier transform, we can construct a function g, (Azx) = v/nf,(y/nAz) that is arbitrarily
uss close to the Gaussian kernel (for sufficiently large n) but has a Fourier transform that presents an
u37 infinite number of maxima.

s In this context, we claim that almost every arbitrarily chosen kernel W/ (Ax) will have a Fourier
130 transform with multiple maxima. This may be intuited as follows: First note that Fourier space is
140 a dual space, and hence instead of considering arbitrary kernels in real space we may equivalently
a1 choose arbitrary kernels in Fourier space. Further assuming that FW/ (k) is a smooth function,
1142 we hypothesize that generically smooth functions that are in L? will almost always have multiple
1123 maxima and minima. Note that this heuristic also applies to the pattern forming kernel as well —
1144 we hypothesize that generic L? smooth functions will have some maxima and minima with a global
145 maxima that exists at k& > 0 with probability 1, and will not be always negative (in which case
146 a rescaling will make the maxima larger than the constant specified by requirement 2 for pattern
u47 forming kernels in the main text). Thus we expect that kernels will generically result in hexagonal
148 pattern formation, as demonstrated in Fig.

a9 Thus condition (a) may be satisfied for arbitrary kernels W/ (Ax).

mso  Next, note that scaling a function in real space results in an inverse scaling of the Fourier
s transform, i.e., F[W/(aAz) = FW/(k/a). Hence, we can always scale the function W/(Az) to
us2 obtain a Fourier transform with maxima that are within any desired scale, allowing condition (b)
1153 to be satisfied.

uss  In Fig. [I2] we show examples of modularization arising from different combinations of graded
1155 pattern forming kernels (WW9) and fixed-scale kernels (/). In each case, we also present the
156 expected periodicity in each module as a function of spatial position as given by the perturbative
us7 analysis Eq. . The analytical result based on linear stability provides an excellent prediction
uss of the pattern periods per module (see also Main text, Fig. 3e). It also predicts the locations of
use the module boundaries (see also Main text, Fig. 3e) though not as accurately: module boundary
160 predictions tend to be slightly but systematically offset relative to the simulated dynamics, due to
u61 the effects of nonlinearity in the later stages of pattern formation.

1162 Appendix D: Simple kernels and period ratios

163  What kinds of fixed-scale interactions might be present in the medial-entorhinal cortex? As
164 described in the main text, in the context of biology, we might expect simple interaction kernels
16s W7 to be relevant i.e., the fixed-scale interaction profile W/ has the following characteristics: (a)
166 there exists a single length-scale d that primarily characterizes the shape of W/; (b) any other
67 length-scales relevant to W/, say scales €1, €9, ... are each much smaller than the primary length
ues scale d. Further, we assume that the primary length-scale associated with the fixed-scale interaction
1160 is larger than the length-scales of the pattern forming kernel, i.e., d > og/(npy).

1170 We will demonstrate that simple fixed-scaled interaction kernels result in analytic expressions
un for grid periods that are characterized by a single angular variable ¢

Amy1  m~+14¢/(27)
A mA¢/2m)

(D1)

uz  Before filling in the details of our argument, we present an intuitive explanation of the general
173 idea:

uzs  Consider the following basic classes of simple kernels that satisfy the above-described criteria
urs corresponding to a length-scale d:

ue  (a) g(|Ax|—d), for arbitrary functions g(p) that are nonzero only over scales |p| < €; (a localized
1177 kernel), and,
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FIG. 12. Examples of modularization and population activity (right column) with various pattern forming
and fixed-scale lateral interactions (left column). In each case the dark-blue curve shows the predicted value
of the grid period from Eq. , and is in close agreement with the numerical simulation of the population
activity. Each of the fixed-scale interactions has a qualitatively different shape, spanning different values of

¢ (see Fig. [3)
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FIG. 13. Sample tuning curves from several neurons in all modules from the network of Fig 2a.
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firing rate (Hz)

external space (m)

us  (b) A constant term, that is uniform everywhere up to Az = d, after which it falls to zero (a
1179 diffuse kernel),

uso  (c) A decaying term, that decreases from a constant value at Az = 0 to zero at Az = d (a
1181 decaying kernel).

usz  We also define short-range kernels, as any arbitrary function h(Azx) that is nonzero only over
uss scales |z| < €.

uss  Any simple kernel W/ (Az) can be generally constructed as a linear combination of the above
uss basic classes. In addition, simple kernels may also contain an added component of a short-range
1186 kernel.

usz  To see that simple kernels will generally result in grid period ratios corresponding to Eq. ,
uss we will examine the approximate Fourier transform structure for each component of the linear
180 combination of simple kernels corresponding to a given length-scale d. We first demonstrate that
190 each of the basic simple kernels will result in Fourier transforms that are sinusoidal functions with
uo1 phase shifts and decaying envelopes and hence each basic simple kernel will satisfy Eq. . We
1192 then show that short-range kernels present Fourier transforms that vary only at large scales, and
1103 can be ignored in our analyses of simple kernels. We then use these results to demonstrate that all
1104 simple kernels constructed as the above-described linear combination will have sinusoidal Fourier
1os transforms and will satisfy Eq. .

1196 1. Localized kernels

oz For a general localized kernel W/ (Az) = g(|Az| — d) we obtain
FW (k) = Rle™ " Fg(k)]. (D2)

uos Since g(x) is supported over a scale €, the Fourier transform Fg(k) will only vary at scales k ~
n9 1/e > 1/d. Thus for 1/d < k < 1/e, we can approximate Eq. (D2]) as

FWH (k) = |Fg(k)| cos (kd — 1), (D3)
1200 where ¢ = arg[Fg(k)]. The local maxima of FW7(k) will then occur at
S:{%ﬁﬁﬂmEZﬁ, (D4)

o1 resulting in period ratios described by

)\m+1_m—|—1+w/(27r)
Am m+9/(2m)

1202 which is identical to Eq. (D1]) for ¢ = 1. We also note that we can now ascribe an interpretation
1203 to the phase angle ¢ — it is the phase difference between FW/ (k) and cos(kd).

(D5)
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1204 2. Diffuse kernels
1205 We model a diffuse interaction kernel W/ (npy) as
—WO if ”I”LD\/| < d
w! = —Wollgq = : D6
(npv) 0l—qq {0 it npy| > d (D6)
1206 Corresponding to the discussion above, we look at the Fourier transform FW/ (k)
+o00 ) +d )
FW/ (k) = / —Woll_gqe™de = / —Woek® dg: (D7)
—00 —d
in(kd
— _2, Sm; ) oWid sinc(kd). (DS)

1207 Note that once again, similar to Eqn. (B24)), we obtain a functional form consisting of a periodic
1208 function (sin(kd)) that is multiplied by a decaying envelope 1/(kd). Ignoring the effects of the
1200 envelope function, the maxima of this function occur at

S%{W‘méZ*}, (D9)

1210 which immediately results in period ratios of the form

Ami1 _ m+1-1/4
A m—1/4

(D10)

1211 which corresponds to the result in Eq. (D1)) for ¢ = /2.
1212 More precisely, the extrema of FW/ (k) occur at k,,d = q —1/q —2/3¢> + O(q™)

1
1213 where ¢ = | m + 2> 7. Notably, the errors decay approximately as 1/(7m), and thus for modules

1214 generated corresponding to m 2 2 will result in period ratios that approximate Eq. (D1)) closely.

1215 3. Decaying kernels

1216 Decaying kernels with a scale d may be modeled as any monotonically decreasing function that
1217 decays from some constant Wy at Az = 0, to zero, at Ax = d. For simplicity, we consider the
1218 simplest linear approximation to such a kernel, modeled as a triangular kernel. For additional
1210 subtleties in the treatment of other decaying kernels, see The triangular kernel can be written
1220 AS:

Wo(ATLDV — d)/d if Anpy <d

. (D11)
0 if AnDV Z d

Wf(Aan) = {

1221 This function can be written as the convolution of 2 diffuse box functions:

W/ (Anpy) = (—Wollas2.as9) * (Woll_aja.d/9)-

1222 Thus, its Fourier transform is:

. 2
- (425

2W¢
k2

[1 — cos(kd)].
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1223 Once again, we obtain a simple trigonometric function, with maxima at
2mm n
S =~ T|m ez’ }, (D12)
1224 which immediately results in period ratios of the form
A 1
mit  mAL (D13)

Am m

1225 which corresponds to the result in Eq. (D1f) for ¢ = 0.

1226 4. Short-range kernels

127 For the case of a short-range kernel W/ (Az) that extends upto a scale ¢, we note from the
1228 Fourier uncertainty principle that the characteristic k-scales of FW/ (k) will ~ 1/e > 1/d. Thus,
1220 unlike the three other types of simple kernels discussed above, short range kernels do not have
1230 structure at the scale of 1/d. Since all relevant scales are much larger than 1/d, adding short range
1231 kernels to any of the other types of simple kernels will not change the structure of local maxima
1232 at scales of 1/d.

1233 5. Arbitrary simple kernels

123¢  We now consider a general form for simple kernels, by constructing linear combinations of the
1235 above described three basic classes of simple kernels each corresponding to the same length scale
1236 d and additional short-range kernels.

+ Qshort Wf

_ f f f
Wf - alocalWlocal + adiﬁusewdiﬁuse + adecayingW short*

decaying (D 14)

37 As demonstrated in the preceding sections, the Fourier transform FW/ (k) will be given as
fo(k) = Qiocal| Fg(k)| cos(kd — ¥) — 2Whagiruse sin(kd) /k — QWgadecaying(l — cos(kd))/k + Fh(k)

(D15)
3
= Ho(k) + Y _ H;(k) cos(kd + ¢;) (D16)
=0

1238 for some constants ¢;, and some envelope functions H;(k) for i = 0,1, 2,3 that are slowly varying
1230 for kd > O(1). Under this approximation, FW/ (k) is simply the sum of multiple sinusoidal waves
1240 with different phases and identical frequencies. Thus,

FW/(k) = cos(kd — ¢) (D17)

1241 for some ¢ and kd > O(1). Hence, the maxima of FW/ (k) occur at

S%{erd—i_(b‘nEZJr}, (D18)

122 which immediately results in period ratios of the form Eq. (D1)). Note that the approximations
1243 made above imply that there may be deviations from our results for the maxima corresponding to
1244 small k values — this may manifest as deviations in the largest period grid module away from Eq.

1245 m
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FIG. 14. Randomly constructed fixed-scale interactions (left column) and their Fourier transforms (right
column), in addition to the hand-designed ones in Fig that give ¢ =0 .

1246 a. Caveats

1207 Clearly there exist simple kernels with Fourier transforms that are not given by FW/(k) ~
1248 cos(kd — ¢). For example the Gaussian kernel, W/ (Az) = exp[—Ax?/(2d?)]/(dv/27) is a simple
1240 decaying kernel (since it has only a single scale d). Yet, its Fourier transform is simply FW7 (k) =
1250 exp[—k2d? /2], which has only a single maximum! However, as we have shown earlier, there exist
1251 kernels that are arbitrarily close to the Gaussian kernel, whose Fourier transforms are given by
1252 powers of trigonometric functions, and hence have multiple regularly-spaced maxima with a spacing
1253 of ~ 1/d. Similarly, there exist additional simple functions[I26H128], f(Ax), (like the Gaussian
1254 kernel) whose Fourier transforms F f (k) have a small number of maxima. We hypothesize that for
1255 all such functions f(Axz) there exist simple kernels g(Ax) that are arbitrarily close to f(Ax) and
125 possess regularly spaced maxima.

1257 6. Period ratios

1258 Having demonstrated analytically that simple kernels result in a sequence of period ratios
1250 given by Eq. , we now address the question of the mean period ratio over the sequence and
1260 over different values of ¢. In the main text we have demonstrated that setting ¢ = 0 results in
1261 a detailed period ratio sequence that is in close agreement with the sequence of experimentally
1262 observed values. Here we consider the period ratios obtained for other values of ¢, to demonstrate
1263 that the experimental observation of mean period ratios being approximated by 1.4 [27] emerges
1264 naturally from our setup.

1265 From Eq. , we obtained that the period ratio, r,, = Amt1/Am can be written as

P =14 1/(m+ f), (D19)

166 where f = ¢/(2m). We ignore m = 1, since that results in a period ratio close to 2, which does
1267 not, correspond to experimental observations. Averaging the period ratio over the next 4 modules
168 (corresponding to ry, for m € {2...4}) results in

1 1 1 1
@mm:1+3<f+2+f+3+f+4> (D20)

1260 As can be seen in Fig. this mean period ratio lies in the range [1.3,1.45], indicating that at all
1270 values of ¢, the period ratio obtained from Eq. (D1]) matches well with experimental observations.
1212 The average of these period ratios over all values of ¢ can also be calculated as

S R R I
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FIG. 15. Mean grid-period ratios Ratios of grid periods averaged over 4 modules as a function of the
phase shift ¢ in Eq. (D1))

1273 which is approximately equal to 1.37.

1274 7. Module size; number of modules as a topological quantity

1275 As discussed in the main text, peak-selection for modularization is a highly robust mechanism
1276 that is largely indifferent to system parameters such as the the particular forms of the fixed-scale
1277 interaction and the shape of the gradient. Here we provide an analysis of the number of modules,
1278 the scaling of module sizes, and the positions of module boundaries, which also exhibit the same
1279 robustness. Further, we also describe how this robustness may be interpreted as arising from a
1280 topological origin, similar to topological robustness in other physical systems like the quantum hall
1281 effect.

e Recall that for the continuously graded kernel Wy, (Az) with characteristic spatial scale
1283 0(npy) at position npy, the wave-vector of the formed pattern was proportional to 1/o(npy):

k*(npy) =n/o(npy), (D22)

128« where 1 is an npy-independent constant that depends on only the particular form of the graded
1265 kernel. Let the spatial extent of the system be npy € [0, L], with o(npy) monotonic such that
1286 Oin = 0(0) < o(npy) < 0(L) = omax-

1s7  We assume for simplicity that the fixed-scale lateral interaction is a simple kernel, such that
1288 FW7 (k) ~ cos(kd — ¢). Thus, the local maxima generated by FW7 (k) occur at k, ~ (2n7 + ¢)/d,
1280 where n are the natural numbers. As discussed in the main text, each of these local maxima is
1200 ‘selected’ in turn by the moving broad peak of the Fourier transform of the graded kernel, whose
1291 position according to Eq. occurs at k™ (npy) =n/o(npy).

192 Notably, the selected maximum k,,, will be robust to small perturbations in the selection function
oy FWi ., (k), since ky, will remain quantized to one of the discrete values prespecified by the set
1204 {kp|ln € N}. In this sense, the chosen maximum k, (and hence the corresponding module)
1205 presents the hallmarks of a topologically protected state[I]. The topological number corresponding
1206 to a given module is the module number m, which is a topological invariant similar to a winding
12¢7 number[I] (Note that in our convention the module number m is ordered such that the largest grid
1208 period module is the first module. This is opposite to the numbering usually used in the literature,
1200 such as in [27]).

1300 The set of modules expressed through the length of the system corresponds to the set of local
1301 maxima kj, that lie within the range [1/0max,”/0min] that is delineated by the range of peak
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1302 positions of the graded interaction. It follows that the maxima selected by the graded interaction
1303 obey:

n <2n7r+¢< n

Omax d "~ Omin

(D23)

130+ Thus, the set of formed modules are determined by the set of integers n that fit in the following
1305 interval:

—¢+ nd/Umax <n< _¢ + nd/o'min (D24)
2 27
1306 and hence the number of modules V,,,q is:
# modules = N4
_ -9+ nd/gmin . -9+ nd/amax
N 2w 27
_ *g _ *g
_ o+ k*9(0)d B o+ k*9(L)d (D25)
27 27

1307 where | |, [ ] indicate the floor and ceiling operations, respectively.

s  The above result leads to the following observations: First, the central quantity essential for
1300 determining the number of modules is the difference in the integer ratios of the fixed-scale inter-
1310 action width to the extremal lateral interaction widths, d/omin, d/0max. Second, the number of
131 modules depends only on the end-point values omin, Omax of the smoothly varying width o(npy)
1312 the graded interaction; notably, it does not depend on the detailed shape of o(npy ). Moreover, if
1313 Opmin, Omax are varied smoothly (while d is held fixed), or if d is varied smoothly (while omin, Omax
1314 are held fixed), the number of modules will remain fixed, until the change becomes large enough to
1315 accommodate one additional or one less module. Thus, the number of modules is also a topological
1316 invariant of the system, through the module number m. Third, the number of modules does not
1317 depend on the system size L, or the number of neurons npy the system is discretized into (cf. Fig.
1318 [3f ). Fourth, since the average module size will be L/N,,,q, the module sizes are extensive in L.
1319 Thus, for sufficiently large L, the module sizes can be orders of magnitude larger than the scales
1320 of the lateral interaction d and o.

1321 Note that the above argument on topological robustness of the modularization of the system
1322 is not restricted to the case of simple fixed-scale kernels. Indeed, for any fixed-scale interaction
1323 W/, the topological number m for any given expressed module will correspond to selecting the m™
13« maximum of FW/(k), for k > 0.

1325 a. Module boundary locations

1326 Following the peak-selection arguments made earlier, the module boundaries will occur at spatial
1327 locations that have k*9(npy) in between k, and k,41 (the specific location will depend on the
1328 particular forms of the kernels). As a zeroth order approximation, we can assume that the module
1320 boundaries will occur near (ky, + kp+1)/2,

. 2n+1)m+
k g(nboundary) ~ ( d) (Z) <D26)

1330 and thus

-1 nd
ndary ~ ool K D2
Nboundary g ((27’L + 1)7’() ( 7)
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1331 where o1 is the inverse function of o(npy), 0~! o o(x) = 2. Thus, while the specific positions
1332 of the module boundaries are dependent on the shape of the gradient o(npy ), qualitative features
1333 such as the number of modules, module periods and module sizes are indifferent to the particular
133 forms of the gradient (cf. Fig. [3f).

135 In (Fig. [ld), we vary the width of the () in two different ways: linearly along and in a square
133 root along npy . This leads to a shift in the module boundary locations that is predicted by fourier
1337 theory.

1338 8. 2D analysis

1330 We have presented a majority of the above analysis for the case of one-dimensional grid cells.
13s0 Here we briefly present the analogous computations for the Fourier transforms in two dimensions.
131 We first demonstrate a classical result relating the Fourier transform of radially symmetric functions
132 to the Hankel transform, which we shall then use to compute the relevant transforms. Consider
1343 the Fourier transform of a function f(x) = f(x,y)

/ f Zk de
Filkesky) = [ . g)eertrdady.

1324 Define polar coordinates in real and Fourier space such that:

x =rcosf
y =rsinf
ky = kcos¢
ky = ksin ¢

13as This leads to the dot product k - x to be simplified as

kyx + kyy = rk(cos 6 cos ¢ + sin 0 sin ¢)
= rkcos(f — ¢)

1346 Thus,

00 2
F [k, ky) = Ff(k, ¢) = /O /0 rdrdf f (r, ) et ©os(0=9)

1347 In all cases of interest, the function f is a kernel, and is hence a radially-symmetric real function
w48 f(r,6) = f(r). Similarly, the Fourier transform F f will also be a real radially-symmetric function

o Ff(k, ) = Ff(k). Thus

27
/ / rdrd f (r)et*r cos(0=9), (D28)

:/ Td?“f( )/ zkrcos(@ d))de7 (D29)

0 0

= 271/ rf(r)Jo(kr)dr, (D30)
0

1350 where Jy is the Bessel function of the first kind, defined by

1 o iz cos(0—¢)
Jo(x) = o e do.
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FIG. 16. Bessel functions (left column) and period ratios for Bessel function maxima (right column) with
their best-fit values of ¢ for the period ratios corresponding to Eq. (D1)

1351 Equation defines the Hankel transform (of order zero) of f(r) — the radial component of
1352 the Fourier transform of the kernel f(x) is simply the Hankel transform of f(|x]).

1353 For the localized gaussian secondary interaction, we can calculate the Fourier transform ana-
1354 lytically.

FWiscal(k) = 277/ T [OéEefTZ/QU?E — Oqe*TQ/QU? + aSe*(rfd)Q/Qag] Jo(kr)dr
0
= 2r [apobe B2 — ayote W 4 agdy(kd)ode o]

1355 We can also analytically calculate the Fourier transform for a box-like interaction:
d
]:Wdiffuse(k’) = 27TW/ ’I“J()(k‘T‘)dT
0

2nW [
:kz/o pJo(p)dr

2 W
=2 [kdJy (kd)]

27 W2, (kd)
- kd

1356 We can similarly also define a two-dimensional equivalent of the decaying kernel, as the convo-
1357 lution of the half-sized circular box kernel with itself. Thus, by applying convolution theorem to
1358 the result on diffuse kernels we obtain

2
deecaying<k) - |:7TWdJ]1€(kd/2):| :
139 Note that Jo(z) and Ji(x) display qualitatively similar behavior to cos(x) and sin(z) respec-
1360 tively, apart from an amplitude modulation of the peaks — particularly, we note that the Bessel
1361 functions display approximately periodic maxima, which was the central property required for all
1362 of our results on modularization and peak selection to apply. We demonstrate this in Fig[T6, where
1363 we show that the maxima of the Bessel functions are approximately periodic, and fit the form of
1364 Eq. well. In particular, note that the best-fit value of ¢ for Jy(k) is approximately 0, which
1365 is similar to cos(k), and the best-fit value of ¢ for Ji(k) is approximately 7/4, which is similar to
1366 sin(k).

1367 We implemented a 2d simulation that generates 3 discrete modules as shown in Figure For
1368 computational feasibility, the simulation was performed in 2 parts: one with z € [0, 0.6N§d] and the
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FIG. 17. Fixed interactions(left, in orange) and their oscillatory Fourier transforms in 1D (left column) and
2D (right column).
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FIG. 18. 2d simulation with 3 modules: (top) Snapshots of population activity showing 3 discrete
2d grid modules, (bottom) plot of grid spacing and comparision with Hankel transform predictions. Grid
spacing determined by calculating the (neural) spatial auto-correlation of the population firing activity.

1300 other with x € [0.6N24, N29]. The weight matrices for each network were of size 100x1000 each.
1370 The weight matrix for a single large 100x2000 network would have contained 4210'° elements,
1371 which we found prohibitively difficult and slow to run.

w2 Fig (a) shows another instance of a modular 2d network, the only difference being the value
1373 Of djoe, which changed from 50 to 45. Fig (b) shows the same simulation with 2 distinct random
1374 initializations. The pair of resulting modules in each simulation have different relative orientations.
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FIG. 19. (a) Top: Another instance of a spontaneously formed modularized two dimensional network with
parameters given in Table 4. Bottom: autocorrelation plots of regions within the two formed modules,
demonstrating the six-fold symmetry of the pattern formation. (b) Two different random initializations of
the network from Fig 2h show different relative orientations between the 2 formed modules.

1375 Because finite size effects from our simulations also partially constrain the orientations of the
1376 modules (data not shown), we cannot make predictions about the relative orientations of the grid
1377 modules found in experiments [27].

1378 9. Robustness to spatial noise

1379 In the main text, we discussed how the topological robustness properties of peak selection result
1380 in the formed modules being stable to several forms of noise. Particularly, here we focus on the
1381 Tobustness to spatial heterogeneities in the lateral interaction kernels.

1382 We first examine the robustness to spatial heterogeneities in the pattern forming kernel W9.
1383 To construct such an inhomogeneous pattern-forming interaction, we construct the noisy kernel at
1384 location x, by replacing the spatially homogeneous kernel W9[x, x'] = W9[x — x'], with a spatially
1385 heterogeneous kernel Wg [x,x'] = WY[|x — x'| + £(x)], where £(x') is a random number sampled
138 independently for each spatial location x’ with mean zero and variance €2. In Fig. we present
1387 examples of such kernels for the case of W9[x,x’] described by the box function Eq. . Note
1388 how the independent sampling of £(x’) at each location results in a heterogenous kernel Wg that
1380 varies in scale at different x, and is no longer radially symmetric.

130 Recall that peak selection entails that the grid period at any location npy is dependent on the
1301 set of potential maxima defined by FW7(k), with a selection between these maxima performed by
1392 the broader peak of FWY(k). If noise in the form of spatial heterogeneities are only introduced in
1303 WY (and hence introduced in FWY) this results in a noisy selection function. However, since the
1304 same maxima will be chosen for a range of selection functions (See Fig. —b), the heterogeneity
1305 in W9 will not be manifested in the emergent grid period.

1396  We next consider the addition of similar heterogeneities in the fixed-scale interaction as well,
157 W/ (such as in Fig. ) Note that maxima induced by simple W7 are at k, ~ (2n7 + ¢)/d,
1308 where n are the natural numbers, and hence the grid periodicity of the n'" module is given by
1590 \y = d/(n+¢/27). If we consider O(e) noise added to W/ in the form of spatial heterogeneities, this
1400 would result in an O(e) error in the effective fixed-scale d. However, since \,, is approximately d/n,
1o thus the effective noise in periodicity of the n'" module, A, will be O(e/n). Thus, higher module
102 numbers (corresponding to modules with smaller grid periods) have additional error correction
103 beyond the robustness conferred by the topological nature of the peak selection process. This
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104 Tesults in clean hexagonal firing fields despite inhomogeneities introduced in all lateral interactions
105 as shown in Fig. [6]
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FIG. 20. Noise robustness in peak selection process demonstrating how the additional of the smaller
oscillatory fourier transform of the fixed interaction leads to no change in maxima despite smooth movement
of the primary peak. (a) Example pattern forming interaction kernels from 4 neurons without a secondary
fixed scale interaction (b) Example composite kernels from 4 neurons showing both the pattern forming
interaction (black) and fixed scale interaction (grey)(c-d) The movement of the pattern forming interaction
leads to a shift in the location of the gloabl maxima in the absence of a secondary interaction. This secondary
interaction prevents any shift in the location of the global maxima when defined by the sum of the pattern
forming interaction and the fixed scale interaction.

1406 a. Peak selection stabilizes against finite-neuron-number effects

1407 This robustness to spatial noise discussed in the above section, through the addition of a sec-
uos ondary length-scale kernel, also manifests itself in terms of added stability towards finite-neuron-

time
time

neuron index neuron index

FIG. 21. Addition of secondary length-scale interaction provides robustness to path integration
(a) With a noisy kernel and the inclusion of fixed length interaction, the model can perfectly path integrate.
(b) With a noisy kernel but without the fixed length interaction, the model’s path integration performance
is noisy.
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constant interaction gradient in interaction width, with
a width fixed-scale interaction y i

N,=70
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FIG. 22. Addition of secondary fixed-scale interaction stabilizes against finite-neuron-number
effects (a) Simulations of 2d grid cell network with a single length scale in the interaction kernel, with
system sizes 35 x 35, 70 x 70 and 140 x 140 neurons. The largest system results in pattern formation, while
the smaller ones do not, due to finite size effects. Left and right correspond to two different interaction
kernel widths. (b) Simulations of a 2d module forming grid cell network with system size along the shorter,
non-gradient dimension being 35, 70 and 140 respectively. The gradient in interaction widths along the
longer dimension linearly changes from between the two widths considered in the corresponding row in
(a). The secondary interaction encourages the formation of module even at sizes where the single module
simulation does not.

100 number effects. To examine this effect, we first compare the grid pattern formation on neural
1410 sheets with N = 35 x 35, N = 70 x 70 and N = 140 x 140 neurons, Fig. by using a single
1s11 homogeneous pattern forming kernel. Here, we note that the neural sheet with 140 x 140 neurons
112 is large enough for stable pattern formation, whereas in the smaller sheets (with scaled kernel in-
113 teraction widths) the patterned dynamics is washed out due to finite-neuron-number effects. Then,
1214 we considered rectangular sheets whose shorter axes had 35, 70 and 140 neurons, and longer axes
115 scaled sufficiently to fit two modules. On these sheets, we simulated dynamics with an interac-
116 tion kernel given by the sum of a graded W9 and a fixed W/, similar to Fig. For a neural
1417 sheet with only 35 neurons along the short axis we could not observe stable hexagonal pattern
118 formation. Remarkably, even when the short axis has only 70 neurons (a neuron number that was
1419 too small to permit pattern formation in the single pattern forming kernel case), we continue to
1420 obtain hexagonal pattern formation, Fig. [22pb, top. At this neural sheet size, when simulating with
1421 different random initial conditions (not shown here), a small fraction of simulations also failed to
122 show pattern formation.

w2z Thus, we empirically observe that the addition of a secondary scale as W/ can stabilize against
1224 finite neuron-number effects, implying that the formation of K modules through peak selection
1425 may require marginally fewer than K times as many neurons as would be necessary for a single
126 grid cell module.

1427 Appendix E: Alternative biophysical gradients

128 For introducing a gradient in time constant, we introduce two populations of neurons with
1220 different time constants. In this model, we consider two interacting cell types such that one of
130 the cell types has a fixed time constant along the DV axis, and the other whose time constant is
1131 smoothly graded along that axis. The time-constant affects the time-constant of dendritic integra-
132 tion. Though biologically distinct, the effect of modulating the dendritic integration time-constant
133 of one cell type is mathematically similar to the effect of modulating the width of connectivity of
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1134 one cell type while keeping the other fixed:

s1=—s1/11 + ReLU[/ Wi(z,2')s1(2))da’ + /Wg(x,az/)sz(l‘/)daz/]

Sy = —89/T9 + ReLU[/ Wi (z,2')s1(2))da’ + /Wz(m,m’)@(m’)dw’]

135 Here, Wy is parametrized as the fixed-scale interaction described in the main text, i.e., Wy; and
136 W1 incorporates the effect of dendritic attenuation as

Wiz, 2') = Wapy (¢ — ') = Wyp(a — o) x exp(—|a — o/| /o (npy))

137 where W, ¢ is the pattern forming kernel (similar to Wy in the main text, but without any explicit
138 gradient in widths), and /o, captures the gradient in time constant via an exponential attenuation.
1239 Thus, in combination with the dendritic attenuation, the W7 interaction plays the role of W9 in
10 the main text, providing an effective gradient in spatial lengthscale though only a gradient in the
1441 neural time constant.

12 To obtain multiscale pattern formation, we also examine a gradient in synaptic strength. Here,
1243 a nonlinearity is imposed on the synaptic strength that thresholds the maximum possible coupling
1144 strength. The summed graded plus fixed-scale interaction W is thus changed to:

Wapv (Ax) = @[y(npv)W(AX)], (E1)

s where y(npy) is the gradient in synaptic strength, and ® is a thresholding function, ®[z] = —©
s if © < —0O, O[z] = © if x > © and ®[r] = x otherwise. This nonlinearity results in an interplay
1247 between synaptic strength and an effective interaction width. For example, the effective lengthscale
ws o(npy) will scale as ~ y/logy(npy) for a mexican-hat W9 (assuming that |[W/| < © as would be
149 the case for weak W/).

uso  Note that in each of the two cases described above, there is an effective lengthscale that varies in
us1 a gradient in the main pattern-forming interaction, akin to W9 in the main text. Further, in both
ws2 cases the secondary interaction, W/ remains unaffected. Thus, following the arguments presented
1453 in the main text, the length scale of the pattern formation will be governed by the local maxima
ws4 of the Fourier transform of W/, exactly equivalent to the pattern formation dynamics described
uss for the case of a gradient in the explicit interaction width. As a result, the period ratio prediction
156 will have the exact same form as Eq. , and similarly all other derived results follow through for
157 these alternative biophysical gradients in time constant or synaptic strength.

1458 1. Comparison of experimental observations with predicted period ratios

1459 The general mechanism of peak-selection presented above describes how discrete modules can
uso spontaneously arise in the presence of continuous gradients, by consideration of an additional fixed-
w61 scale lateral interaction W7. However, this mechanism does not provide any testable predictions
w2 for the ratio of grid periods unless additional assumptions are made. If indeed we assume that W/
163 is a simple kernel, i.e., W7 is primarily defined by a single spatial scale, then we demonstrated in
use SI Sec. [D] that the period ratios will be given by the simple formula, Eq. In this section, we
ues show that experimental observations of grid periods largely appear to match our predicted period
uss ratios for simple kernels with ¢ = 0.

1467 For verification of our main results on the predicted form of period ratios, we examine the
ues literature for grid period measurements for multiple simultaneously measured grid modules in
ueo rats[27, 129HI3T]. We note that a large fraction of experimental observations of grid cells with
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FIG. 23. Alternative biophysical gradients: (a) Neuronal time-constant: We introduce 2 populations
of cells, one with fixed neuronal time constant and one with a gradient in the neuronal time constant. (b)
Synaptic strength: We introduce a gradient in the inhibitory strength along with a thresholding non-linearity
that couples the strength of interaction with the width. Shown in the figure panels are weight matrices,
steady state activity pattern showing 2 discrete modules and grid periods measured as distance between
activity bumps in number of neurons (top-bottom)
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FIG. 24. Adding a gradient in the longer-scale interaction does not lead to modules: Steady
state activity pattern and grid periods measured as distance between activity bumps with a gradient in
longer-scale interaction kernel (left) and gradient in the shorter-scale interaction kernel (right).

1470 more than one module measure only two modules. For a single pair of grid periods A1 and Ay > Aq,
171 we can always explicitly solve for ¢ and m in Eq. (D1)), to obtain

¢ A2 Ao

A L B G E2

27 PYED VY A Vv (E2)
172 where {x} represents that fractional part of z, and [2] = x — {z} represents the integer part of

173 . Thus, a single ratio, because it can always be fit by Eq. (D1]), imposes no constraints on the
174 accuracy of the expression.
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FIG. 25. The 3 rats from Stensola et al. with 4 modules and their corresponding periods.

urs It is possible to obtain a value of ¢ from Eq. and a single pair of periods; however, the
176 estimate obtained from a single pair is not robust: r,, depends too sensitively on ¢. For example,
177 in [27], Rat 13388 exhibits grid periods of ~ 53.24 cm and ~ 43.00 cm (as estimated from SI Fig.
us 12b in [27]); Eq. then yields ¢/(27) = 0.199. Assuming a very small measurement error
19 of ~ 0.5¢m in the larger period, such that if it were 53.75 cm instead of 53.24, would yield ¢
ugo exactly equal to zero. A simple sensitivity analysis of the magnitude of error in estimating ¢ can
us1 be performed from Eq. :

A

d0p = 36F2)\2 ~ 3em, (E3)
us2 where € represents the fractional error in the estimate of grid period. Thus, particularly for smaller
g3 grid periods (corresponding to larger m), even small errors in grid period estimation can result in
184 a large error in ¢, making the errorbars in the estimation of ¢ from a single pair of periods large.
ugs  'To obtain results with significant statistical certainty, we focus our analysis on published exper-
186 imental studies that measure at least 50 grid cells per animal, spanning at least 3 distinct modules.
ug7 This restriction results in grid period data sets for three rats — we present kernel density estimates
ugs of the module periods for each of them in Fig. (Fig. corresponds to the data presented in
1o the main text in Fig. 5)).
uo  We have already demonstrated in Fig. 5[ that Rat 14257 presents an extremely accurate match
1o to the period ratio prediction for ¢ = 0 (i.e., predicted period ratios of 2, 3/2, 4/3, 5/4,...); in
12 addition, Rat 14147 (observed period ratios of 1.27 , 1.46 ~ 3/2, 1.37 ~ 4/3) and Rat 15708
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o3 (observed period ratios of 1.31, 1.49 ~ 3/2, 1.32 ~ 4/3) also match ¢ = 0 very well (R? values
104 of 0.999, 0.979, and 0.968 for Rats 14257, 15708, 14147 resp.) for all grid modules except for the
1205 module with the largest period.

s  Why is there an observed discrepancy for the grid module with the largest period? We pro-
197 pose four possible reasons for this discrepancy: Firstly, this discrepancy may be a result of the
108 approximation made in arriving at Eq. — since the approximation is particularly accurate
19 for kd 2 O(1), the potentialy mismatch would primarily affect only the largest grid period module.
1500 Secondly, as demonstrated in Sec. [D9] the grid module corresponding to the largest grid period
1501 will have the least robustness to noise in the fixed-scale interaction, potentially introducing a large
1502 variance in the grid period for that module. Thirdly, as can be seen in Fig. and Eq. ,
1503 the error in estimating the grid period for the first module (m = 1) is the most susceptible to
1504 errors in the value of ¢ Lastly, our predictions for grid period ratios Eq. are for the case of
1505 simple kernels that have a single spatial scale. A discrepancy at only the largest grid module may
1506 thus be suggestive of fixed-scale interactions that are primarily described by a single scale, with an
1507 additional low frequency perturbation at a larger spatial scale.

1508 However, note that (particularly for Rats 14147 and 14257) there are relatively few grid cells
1500 observed from this largest period module, and the resulting uncertainty in period estimation may
1510 instead contribute to the error. In sum, apart from the possibility of some additional low frequency
s perturbations, the experimental data for rats with several simultaneously observed grid modules
1512 is largely consistent with the predicted period ratios for simple kernels with ¢ = 0.

1513 Skipped modules: Sometimes, neural recordings can miss a module. This can cause a large
1514 deviation from our predictions. For example, for a set of 5 modules following period ratios M4/M5
1515 = 1.20, M3/M4 = 1.25, M2/M3 = 1.33, M1/M2 = 1.5. If recordings had missed module M4, the
1516 measured ratios would be M1/M2 = 1.5, M2/M3 = 1.33, M3/M5 = 1.5.

157 However, we do note that available data on multiple modules with a statistically large number
1518 of grid cells per module are quite sparse. To obtain further verification of our theoretical results,
1519 including the prediction of Eq. and even more specifically the hypothesis that ¢ is close to
1520 zero, additional data with multiple simultaneously observed grid modules will be important.

1521 Appendix F: Lyapunov Function

152 The energy function of continuous time neural networks can be written as [132]:

B(s) = — ;Z 5(i)Wigs ()

s(1)
+Z/O o1 (s) ds—ZIis(i), (F1)

1523 where s represents a vector of the synaptic activation at each neuron in the network, and I; is
1524 the input bias to neuron i. For simplicity and since linear analysis does a remarkably good job
1525 in predicting the formed modules, let us restrict ourselves to the case of ¢(x) = z. Also, since
1526 the system is locally translationally invariant, we know that the dominant modes are going to be
1527 periodic. Hence, we may evaluate the energy function of the network dynamics (in the linearized
1528 regime) by assessing the energy of the periodic neural activity modes:

si(x) = Asin(k - x + 0) + B, (F2)

1520 where k = kk is an arbitrary Fourier space vector, and A,B and ¢ are arbitrary constants. For
1530 these modes, we can write the energy function in the continuum limit as:

Els(x) :—/dxdx W (5, %) 81 (X) 81 (x /dxsk
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1531 Assuming that the system size L is large,

1532

1533

1534

1535
1536
1537
1538

1539

1540
1541

1542
1543
1544
1545
1546
1547

1548

1549

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

1561

2E[sk(x)]

- / W (x — x')[Asin(k - x + §) + B][Asin(k - x' + ) + B]dxdx' + /[A sin(k - x + A) + B]%dx
—A? / dudvW (u) cos(k - u) + A? / dudvW (u) cos(2k - v + §) + B? / dxdx'W(x —x') + L(A%/2 +

—A%L / due™ W (u) + A2 /duW(u) / dv cos(2k - v + 6) + B? / dudvW (u) + L(A%/2 + B%)/2

= —A’LW (k) + LB*W + L(A?/2 + B?),

—constant; X W(k) -+ constants

where have used the simple trigonometric identity, 2sin(C')sin(D) = cos(C' — D) — cos(C + D),
and a change of variables, [dxdx’ = (1/2) [d(x — x")d(x + x') = [ dudv, with u = x — x” and

1
v=_—(x+x).

2

Thus, we obtain that the energy function E[sk] is a simple linear function of the Fourier trans-
form W (k) of the recurrent weight matrix. The minimum energy solution corresponds to the
Fourier mode that maximizes W (k). In other words, the dynamics is dominated by the k* that
maximizes W (k). This result, derived from an energy landscape perspective, is equivalent to the
result in Eq. (B10]), which we obtained earlier via perturbation analysis.

Appendix G: General formulation of module formation dynamics: Discrete peak selection

via loss minimization

In Sec. [F] we demonstrated how the pattern formation on the neural sheet can be derived via
an energy minimization approach. Here, we use an energy landscape view to describe how loss
function minimization results in modular solutions.

The key components for spatially modular solutions to arise from energy minimization are as
follows: 1) A spatially-independent loss function f(#) with multiple local maxima and minima;
2) A gradient in a spatially-dependent variable, 6y(z); and 3) A coupling between the system
parameters 6 and 6, that results in a combined loss function

L(8,6(x)) = (1 — @) f(6) + all§ — 6o ()| (G1)

Under appropriate constraints on f(6), solving the following optimization at each x

0*(xz) = arg maxy L(0, z) (G2)

will produce discrete, step-like changes as a function of x. This happens because the smooth
minimum given by the ||§ — (x)||* term effectively selects one of the local minima in f(6) as

the global minimum. As the function ||6 — 0y(x)

||? slides smoothly along with x, the peak of f(6)

selected as the global minimum remains the same for some time, then jumps abruptly. These step-
like changes are modular solutions to the global optimization problem. The energy function defined
in Eq. (G1) can be viewed as a regularized optimization problem, with the spatially-dependent

regularizer || — ()

(Fig. [26).

||? acting as a prior that selects one of the minima of f(#) at each location

The correspondence of this general picture with the peak selection mechanism described in the
main text follows directly with the following identifications: the spatially independent nonlinear
loss function f(#) with the fixed-scale interaction W/; the spatially varying parameter prior g(z)
with the graded scale o(npy ) of the pattern-forming kernel; the combined loss L(6, z) with the full
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1562 kernel W, . ; and the spatially-varying, multi-step-like set of optima 6*(x) with the grid periods
1563 \* (), respectively. Similar to peak selection for grid cells, the formed modules in this generalized
1564 setting will also inherit topological robustness and stability.

1565 We demonstrate a numerical example of this in Fig. |7} where we construct f(6) as a random
1566 sample from a Gaussian process with a radial basis function kernel, and simulate gradient descent
1567 dynamics on the loss function L(6,60y(x)). To prevent the dynamics from getting stuck in local
1568 minima of L, we simulate the gradient descent first purely on the regularization term, with gradually
1560 increasing strength of the rugged loss function, through gradually decreasing o with increasing time.
1570 Although we primarily focused on the peak selection process in Fourier space for multi-periodic
1571 patterning in grid cells, we also showed that it has a general formulation in terms of dynamics on
1572 an energy landscape: One (spatially invariant) interaction sets up an optimization problem with
1573 multiple local minima, while a second (spatially graded) interaction defines a locally shallow single-
1574 optimum landscape, with a smoothly shifting optimum as a function of space. Thus, the shallow
1575 optimum selects one of the narrow local optima as the global optimum, with discontinuous jumps
1576 to the next local minimum even as the parameters vary smoothly. This analytical formulation
1577 provides a simplifying mathematical perspective on how smooth gradients could lead to discrete
1578 patterning and modular specialization in the brain and body [34) 43} [133].

HV

FIG. 26. A general setting for peak-selection Assuming a loss function f(f) (blue) and a spatially
dependent quantity 0y (red), a combined loss function L(6, z) can be constructed such that the z-dependent
optimizer of L(f, ) will be modular (green), since it will be constrained to correspond to one of the minima

of £(6).
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1579 Appendix H: The emergence of modules corresponds to the formation of localized
1580 eigenvectors

1551 As has been observed before [I134], a neural network endowed with slowly varying local interac-
1582 tions shows diverse timescales that are spatially localized: different parts of the network respond
1583 with disparate temporal dynamics. We also find a localization of eigenvectors in our multi-module
1ss grid network, Fig. 27A. Similar to [I34], our interaction matrix has a locally circulant form (due to
1sss the slowly varying gradient in lateral inhibition width). This is a signature of a phase transition,
1586 similar to the Anderson localization transition in condensed matter physics [60]. The eigenvectors
1ss7 for a regular pattern forming interaction in traditional continuous attractor models are delocalized
1588 fourier waves which are then transformed into localized fixed-wavelength gaussian wavepackets
1580 with the addition of the gradient and fixed scale interaction.

150 We find that in the resulting set of localized eigenvectors, each has a different but constant
1501 period, Fig. 27B. These periods exactly match the spatial periods of the modules formed in steady
1502 state. In sum, the locally circulant matrix gives rise to eigenvector localization, and the localized
1503 eigenvectors correspond to the modules.
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FIG. 27. Localization of eigenvectors: A) Eigenvectors of various one-dimensional interaction weight
matrices along with the corresponding inter-peak spacings are localized, B) The periodicity within an eigen-
vector is constant.
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