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Modular structure and function are ubiquitous in biology, from the organization of animal
bodies and brains to the scale of ecosystems. However, the mechanisms of modularity emer-
gence remain unclear. Here we introduce the principle of peak selection, a process by which
purely local interactions and smooth gradients can result in global modular organization. It
can lead to the self-organization of discontinuous module boundaries from a smooth global
gradient, unifying the positional hypothesis and the Turing pattern formation hypothesis for
morphogenesis. Applied to the brain’s grid cell networks, peak selection results in the spon-
taneous emergence of functionally distinct modules with discretely spaced spatial periods.
Applied to ecological systems, a generalization of the process results in discrete systems-level
niches. The dynamics exhibits emergent self-scaling to variations in system size and “topo-
logical robustness” [1] that renders module emergence and module properties insensitive to
most parameters. Further, peak selection confers robustness within modules. It amelio-
rates the fine-tuning requirement of continuous attractor dynamics even in single grid cell
modules. It makes a detail-independent prediction that grid module period ratios should
approximate adjacent integer ratios, furnishing the most accurate match to data to date.
Additional testable predictions promise to bridge physiology, connectomics, and transcrip-
tomics. In sum, our results indicate that local interactions combined with low-information
global gradients can drive robust global module emergence.

INTRODUCTION5

Modular structures are ubiquitous in natural systems, from body structures to circuits in the6

brain, and from ecological niches to human communities. This is probably so because they are7

robust to localized perturbations [2, 3], can be faster to adapt if the world requires sparse or8

modular changes [4], or can permit flexible, high-capacity computation through compositionality9

[5–10]. In these senses, modularity is the crux of biological organization.10

The prevalence of modularity raises critical questions about its evolutionary, developmental,11

or ecological origins: Modular solutions to a given problem form a vanishingly small subset of12

all possible solutions, thus from an evolutionary perspective it is unclear how these solutions are13

found and selected. From the perspective of development, the question is how modular structures14

form, and whether module features such as size, number, and boundary locations need to be genet-15

ically instructed or spontaneously emerge through unfolding physical processes such as symmetry16

breaking. From an ecological perspective, the question is how modular structures emerge among17

interacting species even without a shared task or function that the system is seeking to optimize.18

One hypothesis for the developmental emergence of structure, which is our primary focus here,19

is the positional information hypothesis espoused by Lewis Wolpert (Fig. 1a): Gene expression20

generates spatial morphogen concentration gradients, and different downstream genes become ac-21

tivated in spatially localized regions by thresholding the morphogen concentration [11, 12]. In line22

with this hypothesis, body segmentation in Drosophila [13] is controlled by spatial bands of expres-23

sion of a family of genes (the gap genes) that are activated by different concentrations of maternally24

deposited Bicoid RNA (Fig. 1b-c). Modular gap gene expression precedes and directs modular25

body segmentation. A distinct hypothesis by Alan Turing is the idea that structured patterns can26
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spontaneously emerge from local competitive interactions, minimizing or removing the need for27

genetic instruction [12, 14] (Fig. 1d). Supporting this hypothesis is evidence that digit formation28

in hand morphogenesis is under control of spontaneous pattern formation [15]. Another clear ex-29

ample of Turing-like pattern formation comes from the grid cell system in the medial entorhinal30

cortex (MEC) of mammalian brains, Fig. 1e-f. MEC neurons fire in triangular grid-like activity31

patterns as a function of explored space when animals navigate [16]. Underlying these spatially32

periodic responses are intrinsic periodic activity patterns in the cortex [17, 18]. Extensive evidence33

[19–23] links these activity patterns with continuous attractor network (CAN) models based on34

Turing-like pattern formation [24–26]. However, it remains unclear whether and how these CAN35

models for single grid cell modules translate to the formation of the multiple discrete modules of36

grid cells with distinct periods found in the brain [27].37

The positional and Turing processes for structure emergence have distinct properties and pre-38

dictions [12, 28–30]: The positional mechanism is susceptible to noise in copy number [12, 31–33]39

and requires separate downstream genetic cascades to specify how and where each structure forms.40

Its prediction is that modular structure or function are driven by modularity in gene expression,41

which runs counter to at least some experimental studies that find that modular function can exist42

without evidence of modularity in the underlying cellular or molecular properties [31, 34–47]. Posi-43

tional processes possess scale invariance: the formed structures are self-scaling to occupy a constant44

fraction of the system as the system size is varied. The pattern forming mechanism typically only45

produces structure of a single scale, given by the width of the local lateral interactions. Thus, these46

models do not explain emergence of structures of multiple scales. However, pattern formation is47

robust to noise.48

We hypothesize that pattern forming and positional mechanisms can be unified into a combined49

process that exhibits the strengths of both, allowing modularity to emerge via self-organization from50

local interactions without the need for modularity in gene expression, and such that the resulting51

process is scale-invariant ( Fig. 1g). We show that such a process can explain the emergence of52

multi-scale structure in the form of multiple grid cell modules in mammalian cortex (Fig. 1h-i), and53

is robust to most parametric variation and noise. The model produces strikingly accurate predic-54

tions about the sequence of successive spatial period ratios in grid cells, improving substantially on55

existing models. The process exhibits a “topological robustness” property that substantially eases56

the usual fine-tuning requirements of continuous attractor models of grid cells [24]. It also gener-57

ates numerous predictions for future physiology, transcriptomics, and connectomics experiments in58

the system.59

Analyzing the underlying dynamical mechanisms of the process allows us to extract a general60

principle for global module emergence with smooth global gradients and local variations, which61

we call the peak selection principle. We then apply the peak selection principle to very different62

problems, showing the emergence of modular multi-species niches in an interacting ecological system63

and in a non-interacting system with two distinct external drives.64

GENERALIZATION OF SINGLE-MODULE CONTINUOUS ATTRACTOR MODELS65

Grid cells in the mammalian medial entorhinal cortex (MEC) of mammals exhibit spatially66

periodic response patterns as animals explore open spaces [16]. Before considering mechanisms67

for the formation of multiple discrete and functionally independent grid modules along the long68

(dorsoventral or DV) axis of MEC, Fig. 1h-i, , we extend the theory of single grid cell modules.69

The properties of grid cells within a module are consistent with continuous attractor neural70

network (CAN) models [19–26]. CAN models involve a linear, Turing-like instability driven by71

strong competitive local interactions between neurons, leading to spontaneous pattern formation72

and the verified prediction that the states of the circuit of thousands of cells lie on a two-dimensional73

set with the topology of a torus, Fig. 1e-f [22, 24].74
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FIG. 1. Positional versus pattern-forming mechanisms for structure formation and our hy-
pothesis. (a) The positional hypothesis: global gradients are thresholded by different downstream gene
expression cascades to generate structure [11]. (b) Fluorescence image of maternally deposited protein bcd
RNA (based on maternal bicoid RNA deposition) early in development of the Drosophila embryo [48] sets
up a polarity gradient. (c) A downstream gene-protein expression cascade, including gap and pair-rule
genes, sets up body segment-defining bands by thresholding the bicoid gradient (immunofluorescence im-
age adapted from [49]; segmentation figure adapted from [13].) (d) Spontaneous self-organized structure
emergence (pattern formation) through competitive lateral interactions [14]. (e-f) The continuous attractor
neural network (CAN) model for single grid cell modules [24] is based on Turing instability based on local
interactions, and its predictions are consistent with the experimental data [19–21, 23]. These include the
prediction of a continuous set of stable states with toroidal geometry across waking and sleep, and its recent
confirmation [22]. (g) Our hypothesis: Positional and pattern forming mechanisms can interact to lead to
structure emergence that exhibits the strengths of both mechanisms. Module boundaries are determined
by emergent pattern formation not modular gene expression, but an overall gradient permits the system
to exhibit self-scaling with system size. (h-i) The long dorsoventral (DV) axis of medial entorhinal cortex
(MEC; image of layers II and III) [35] exhibits smooth-seeming gradients in multiple cellular properties,
while along the same axis, grid cells are organized into discrete modules with discontinuous jumps in their
spatial periods (adapted from [27]).

Existing CAN models are based on two interaction profiles: a center excitation-surround inhi-75

bition (Mexican hat) shape [24, 50] (including an inhibition-only version [24]), or a uniform local76

inhibition shape (which we term a “Lincoln hat” [51]). Given the differences in these profiles,77

we sought to explore the implications for experiment: whether there was something unique about78

these profiles and to map the space of interactions that could generate grid cell-like responses.79

We derived a set of simple conditions on the neural input-output transfer function and the local80

interaction kernel W that we hypothesize would be sufficient for grid-like patterning (SI Sec. A):81

the neural transfer function is not an odd function; and the interaction kernel is such that it is82

radially symmetric; its integral is negative (inhibition dominated:
∫
W (x, x′)dx′ < 0); and that83
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it is sufficiently strong. These conditions define an infinitely large set of distinct interaction pro-84

files. We sampled randomly from this set and numerically implemented the network dynamics with85

rectified linear neurons, finding that all sampled profiles produce grid-like patterning (Fig. 2a).86

These results significantly expand the generality of CAN models for single grid cell modules. The87

experimental implication is that the interaction profiles of past models [24, 25, 50, 51] may not88

predict the profiles unearthed in future connectomic studies, but that the uncovered profile might89

conform to the more-general conditions defined here.90

LOCAL INTERACTIONS FOR MULTI-SCALE GLOBAL MODULARITY EMERGENCE91

Grid cells exhibit discrete jumps in period and independent functionality along the long (DV)92

axis of entorhinal cortex [27]. Physiological experiments reveal that several biophysical quanti-93

ties are graded along this axis, including in the neural time-constant, the strength of synaptic94

interactions, the width of connectivity, and other properties [35, 41, 45, 52], Fig. 1h. We re-95

placed the translation-invariant interaction kernel W (|x−x′|) in CAN grid cell models by a kernel96

W g(|x − x′|;σ(nDV )) with a slowly graded width σ(nDV ) along the DV axis of the model neural97

sheet (SI Fig.11a; nDV refers to DV location and x refers to the general 2-dimensional position on98

the neural strip). This variation of the local interaction width in the CAN model still produced99

hexagonally arranged activity bumps, with a growing period (SI Fig. 11b). However, the variation100

in pattern period was smooth, without emergent modularization (SI Fig. 11c).101

Because global modularity and local patterning involve two spatial scales, we reasoned that102

two scales of lateral interaction might be necessary to generate both. At the same time, just as103

local interactions can lead to globally periodic structure, we hypothesized that the addition of a104

second local interaction might be sufficient to induce global modular structure. However, the sum105

of two local kernels is simply another local kernel and from the previous section we should expect106

no difference in results, unless the second interaction is distinct from the first in some way beyond107

a mere shape difference. We therefore considered two types of local interaction with the following108

key difference: the first is graded across the DV axis while the second remains fixed. The combined109

interaction is:110

W (∆x;σ(nDV )) = W g(∆x;σ(nDV )) +W f (∆x). (1)

Both interactions are local and much smaller in width than the DV length (L) of the cortical sheet.111

We assume that the fixed interaction width (d) is larger than the largest width (σmax) of the112

graded interaction. Remarkably, the addition of such a fixed-scale interaction leads the network113

to spontaneously decompose into a few discrete modules, with coherent periodic activity patterns114

locally and discontinuous jumps in period globally, Fig. 2b-d.115

As before, there is broad latitude in the shapes of the interaction kernels W g and W f , so long116

as one is graded and the other is slightly wider but fixed in width along the DV axis, Fig. 2f-h117

(setting the fixed interaction to be narrower than the graded interaction resulted in a grid pattern118

whose period varied in a sawtooth-like instead of step-like modular fashion, SI Fig. 24; this result119

was also predicted by our analytic theory described below). This combination of a graded-width120

and a fixed-scale interaction also produces robust and spontaneous decomposition of dynamics into121

discrete modules in 2D network models, Fig. 2e,i. (See SI Sec. D 8 for additional model results122

for 2D networks.) The formation of K modules involves approximately K times the number of123

neurons as in single-module continuous attractor models (SI Sec. D 9 a, SI Fig. 22). We have124

used kernel width as a general proxy for some gradient in effective interaction along the DV axis.125

All these results generalize if we instead consider gradients in two other biophysical properties:126

the cellular time-constant and the synaptic strength instead of connectivity width (SI Sec. E)127

[35, 41, 45, 52–55].128
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FIG. 2. Two local interactions, with graded and fixed widths, respectively, lead to global module
emergence. (a) Generalization of CAN grid cell models: 5 examples from an infinite set of distinct local
interaction kernel shapes that can lead to grid-like patterning. (b) Combining two local interactions, one
whose width (σ(nDV )) scales smoothly along the DV axis (W g

nDV
, green) and a broader but still-local one

whose width (d) remains fixed along the neural strip. Interaction widths indicated below the gradient are
drawn to scale relative to the activity shown in (c). (c-e) The two interactions from (b) lead to spontaneous
emergence of modules with distinct periods in 1-dimensional (c) neural strip, with extracted periods shown
in (d). The same kernels applied to a 2-dimensional neural sheet (e), with the 2d autocorrelation function of
the local (single-module) patterns in the neural sheet (bottom). (f-i) Same as (c-e), but for a different pair of
interaction kernels W g

nDV
,W f with distinct gradient shape σ(nDV ) and endpoints (σmin, σmax) from (c-e).

(j) The response of the 1-dimensional neural strip shown over time when the network is driven by a smoothly
graded velocity input, white lines highlighting the temporal evolution of dynamics at the module boundary
(inset: magnification of the first boundary). (k) The independent velocity-driven pattern dynamics in each
module result in regular periodic spatial tuning curves (shown are 2 cells per module). See Methods for
parameter and simulation details.

Strikingly, the modules that emerge, Fig. 2c-e, g-i, are much larger than the widths of either129

local interaction, Fig. 2b, f (interaction widths shown to scale).130
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Formed modules are functionally independent131

We probed whether the emergent modules are functionally independent units. In single-module132

CAN models, velocity inputs drive the pattern to flow at a direction and speed proportional to133

the velocity. The network is thus an integrator of the velocity signal[24, 56–59]. For the formed134

modules to independently perform velocity integration, their patterns must flow independently and135

their phases pass each other discontinuously at module boundaries, even though connectivity is136

equally continuous within and across module boundaries. It seems intuitively unclear whether this137

could hold. However, when we drove all modules with a common velocity input, we found that the138

patterns flowed independently. The positions of the boundaries between modules remained fixed139

and sharp, and the phases on either side of a boundary updated independently so that there were140

spatiotemporally discontinuous dislocations in phase across the boundary, Fig. 2j. This dynamics141

results in veridical and independent velocity integration within and across modules, so that all142

cells (even those close to the module boundaries) have periodic spatial tuning curves, Fig. 2k. We143

conjecture that this independence arises from the integer-based selection of number of modules and144

module boundaries. At each moment, as the velocity input drives updates in the pattern phase145

across the system, the network performs module formation which forces a break across modules at146

the same location. This discrete jump at module boundaries preserves the structure and dynamics147

within each module, allowing each module to function independently.148

The independence of phase updating does not imply an independence in the angular tuning of149

modules: if all modules receive a common rotated velocity input, their spatial tuning curves will150

rotate. The only way to induce independent rotation of tuning in the grid modules is to provide151

separately rotated velocity inputs to each.152

ANALYTICAL THEORY OF MODULARIZATON: PEAK SELECTION, TOPOLOGICAL153

ROBUSTNESS, AND SELF-SCALING154

The generality and robustness with which discrete modules emerge from the combination of155

a fixed-scale and a graded-scale local interaction suggests a general principle at work. Starting156

from an initial condition of uniform activity, the network exhibits nearly immediate (within 1-157

2 biophysical time-constants τ) signs of modularization, Fig. 3a. Modularization begins before158

most neurons have crossed their nonlinear thresholds, and unfolds concurrently with local periodic159

patterning (Fig. 3a,e). The system also exhibits localized eigenvectors (SI sec H; similar Anderson160

localization in condensed matter physics [60]). These phenomena suggest that patterning and161

modularity might both be explained by a unified linear instability-based theory. We derive such a162

theory, summarizing it below with details in SI (Sec.B). Besides establishing how, why, and when163

modularity emerges, the theory accurately predicts the discrete pattern periods of all modules, the164

number and sizes of modules, and the locations of module boundaries (explored below).165

We considered how small perturbations evolve from an initial state s0(nDV ). In the local166

neighborhood of each DV location on the neural sheet (the neighborhood is assumed to be larger167

than the interaction width σ(nDV ), d but much smaller than the full sheet width L), the local168

interaction W (∆x;nDV ) changes only a little, and we can approximate it to be spatially uniform169

to solve the dynamics using Fourier modes (SI sectionD 8). As in the analytical theory of the170

earlier section (Generalization of single-module continuous attractor models), the network forms a171

patterned state within each neighborhood, with the spatially varying inverse periods as a function172

of DV location nDV :173

1

λ(nDV )
= arg maxk{W̃ f (k) + W̃ g(k;nDV )}, (2)

where W̃ is the Fourier transform of W .174
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FIG. 3. Theory of module emergence: multi-scale linear instability and topological peak se-
lection (a) Snapshots of population activity within a few neural time-constants (τ) of initializing the
dynamics at a uniform state. Modules appear in situ at the same time as local patterning, before most
neurons have hit their nonlinear thresholds, defined as the point when the presynaptic inputs to a neuron
reach the non-linear region of the input-output relationship. (b) Top: Schematics of fixed-width (orange)
and graded (green) interaction kernels. Kernels from two different DV locations (designated D for dorsal and
V for ventral). Bottom: their Fourier transforms. (c) Peak selection process: The global maxima in Fourier
space (blue) are based on combining the graded interaction (green) with the fixed interaction (orange). As
the green peak slides across, the global maximum (marked by red star) jumps abruptly from the position
of one orange peak to the next. (d) Top: Summed Fourier transform of the two local interactions (darker
(lighter) blue: more dorsal (ventral)). Middle: The location of the maximum of the graded interaction varies
smoothly as a function of DV location. Bottom: the maximum of the summed interaction jumps discon-
tinuously (bottom). (e) Dark to light blue curves: activity pattern periods from (a) for early to late times
after initialization. Module boundaries and periods remain unchanged from the earliest time-points. Pink:
theoretical prediction of periods and module boundaries from Eq. 2. (f) Left: Example simple fixed-scale
interaction profiles that produce modularization: profiles can be roughly categorized as diffuse, decaying, or
localized. Right: the dominant terms in their Fourier transforms. (g) The Fourier phases of the interactions
in (a). (h) Theoretically predicted sequence of period ratios for any value of ϕ (blue circles), for module
numbers 2-6. Black markers denote averages for each value of m. Any dependence on ϕ and thus the shape
of the fixed-scale interaction is weaker for higher module numbers (smaller period/dorsal modules). See
Methods for parameter and simulation details for (a) and (e).

We can understand how the peridocity varies spatially as follows. Suppose the fixed interaction175

kernel W f is simple in the sense that there is a single dominant length-scale d (details in SI Sec.176

D); then W̃ f (k) ∼ cos(kd− ϕ)), which has closely spaced peaks (every ∼ 1/d in k-space; Fig. 3b,177

bottom, orange) and a phase ϕ. These local maxima remain the same for each DV location in the178

neural strip because W f is not graded.179

By contrast, W̃ g
nDV exhibits a broad Fourier peak (of scale ∼ 1/σ(nDV ) ≫ 1/d). The width and180

location of this peak for different DV locations contract smoothly (as σ(nDV ) increases; Fig. 3b,181

bottom, green). The W g interaction drives spatial patterning and its graded variation is ultimately182

responsible for changes in period through the smooth variation of the peak of W̃ g(k). However,183
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the narrow peaks of W̃ f (k) determine the specific values of the maxima of the sum of W̃ f and W̃ g,184

while the smoothly moving peak of W̃ g(k;nDV ) performs “peak selection” on these possibilities to185

define the global maximum (Fig. 3c and SI Movie 1). As the broad peak of W̃ g(k;nDV ) smoothly186

sweeps through the set of narrow local maxima of W̃ f (as nDV is varied), the global maximum187

remains at one of the narrow maxima, then abruptly and discontinuously jumps to the next peak of188

W̃ f , generating a constant period within modules and abrupt changes in period between modules,189

Fig. 3c-d. The spatial periods are determined by the maxima of W̃ f , which occur at190

λ−1
m = k∗m ≈

{
2πm+ ϕ

d

∣∣∣∣m ∈ Z+

}
. (3)

In other words, the periods are determined by the width d of the fixed-scale interaction W f , with191

different module periods given by this scale divided by integers m. Module periods are independent192

of the length L of the neural strip.193

Permitted values of the integers m are given by which local maxima of W̃ f fall within a range194

[η/σmax, η/σmin], determined by the range of scales of the graded-width interaction (η is a fixed195

proportionality constant; SI Sec. D 7 for details). From this, we can determine the number of196

allowed modules, which is the set of integers m that fit in the following interval:197

ηd/σmax − ϕ

2π
≤ m ≤ ηd/σmin − ϕ

2π
(4)

The phase ϕ ∈ [−π, π] is a constant that reflects the only influence of the shape of W f on the198

formed modules (Fig. 3f-g): If W f is uniformly diffuse across its width d, then ϕ ≈ ±π/2 (sign199

determined by whether it is excitatory or inhibitory). If W f is locally concentrated around d, then200

ϕ is close to 0 or π (for excitatory or inhibitory interactions, respectively); a decaying W f also201

leads to ϕ close to 0 or π. Intermediate values of ϕ can be obtained by interpolating between these202

interaction shapes (See Fig. 12 for several examples).203

The analytical expression for module periods (Eq. 2 evaluated on the Fourier transform of W )204

exactly predicts the values from numerical simulation (Figs. 3e, 4b, SI Fig. 12). The even simpler205

analytical expression for period in Eq. 3 with ϕ computed from W f and without free parameters,206

also exactly predicts module periods from numerical simulation across diverse lateral interaction207

shapes (Figs. 3a, 4b, SI Fig. 12).208

Period ratio prediction and parameter invariance209

The (inverse) module period expression of Eq. 3 supplies a quantitative prediction about adja-210

cent module period ratios. Period ratios have been characterized experimentally [27] and are the211

subject of several theoretical models [61, 62], however these findings consider all adjacent module212

period ratios to have a single value. By contrast, our model’s period ratio predictions vary with213

module: the period ratio of the mth module to the m+ 1th module is:214

λm
λm+1

≡ r(m,ϕ) =
(m+ 1 + ϕ/2π)

(m+ ϕ/2π)
. (5)

The module period ratio prediction is strikingly and completely independent of any scale: neither215

d, σnDV , nor L, even though the module periods themselves scale with d. In other words, module216

period ratios in our model are completely independent of the widths of the interaction kernels, or217

the size of the cortical strip. The ratios are also independent of the functional form of gradient,218

σnDV , by which the graded interaction varies. The only parameter dependence in the period ratios219

is through the scalar phase ϕ. For ϕ = 0, The ratios of adjacent modules are simply successive220

integer ratios, with the integer indexing the module number (Fig.3h).221
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The extreme invariance of predicted period ratios to almost all parameters is due to robustness222

arising from a “topologically protected” [1] process (SI Sec.D 7): possible solutions to the dynamics223

of patterning form a topologically discrete set, with periods given by the successive integers which224

are generated by the peak selection process. Through all continuous variations in the parameters225

of the system, it must settle into one of these solutions. Thus, the modularization process and226

resulting predictions about module period ratios is a topologically protected robust process immune227

to nearly all parameteric variation.228

We implemented and theoretically analyzed models where the graded quantity is either the229

neural time constant or the strength of recurrent connectivity (rather than the width of neural230

connectivity), SI Sec. E. All the above results remain qualitatively unchanged, and the period231

ratio predictions remain qualitatively and quantitatively unchanged.232

Spontaneous self-scaling of modules233

Above, we noted that module periods are independent of the cortical strip length L and period234

ratios are independent of both L and the widths of the interaction kernels.235

Interestingly and surprisingly, the number of formed modules is also independent of system size,236

if the minimum and maximum widths (σ(0) = σmax, σ(L) = σmin) of the graded interaction remain237

the same as the network size L is varied. We can see this by setting σmin, σmax to be constant238

(independent of L) in Eq. 4, and deriving the number of modules Nmod to be:239

Nmod =

⌊
ηd

2πσmin
− ϕ

2π

⌋
−
⌈
ηd

2πσmax
− ϕ

2π

⌉
where ⌊ ⌋, ⌈ ⌉ indicate the floor and ceiling operations, respectively. The number of modules is240

determined by the interplay (difference) between the width ratios of the two local kernels, without241

depending on their specific widths or even the values of their ratios. This expression is independent242

of L.243

As a result, a prediction of our analytical results is that the module formation process self-scales244

to the system size, such that each module must grow in size (but with unchanged periodicity within245

the module) as the system size (cortical strip length) is increased. Indeed, in numerical simulations246

where we hold σmin, σmax fixed as we scale the cortical strip by several factors, each module scales247

in size with the overall network size (Fig.4a), and the number of modules and module periods248

remain the same (Fig.4a-b). Thus, if the neural sheet is large, the module sizes can be orders of249

magnitude larger than any of the lateral interaction scales, σmin, σmax, d, resolving the mystery of250

what sets the scale of individual modules, why they are unrelated to the local interaction scales,251

and why they are global in size, Fig. 2b-d,f-h. This scale-free nature of the emergence of modules252

is an entirely novel feature for pattern-forming models.253

The number of formed modules is also insensitive to the shape of the gradation σ(nDV ) of the254

graded parameter, depending as above only on its maximum and minimum values (Fig.4c-d). The255

only effect of changes in the shape of σ(nDV ) is on the relative sizes and boundary locations of the256

different modules, rather than their number. (We can make a more approximate but still fairly257

accurate prediction for where module boundaries will form, Fig. 3e, pink curves and Fig. 4d; see258

SI D 7 for details.)259

Finally, even if we smoothly vary one of the extremal values of σ(nDV ), the number of modules260

remains fixed until the change becomes large enough to accommodate one additional or one less261

module. At that point, we will obtain different numbers of modules (Fig.4c-d). However, we again262

we see remarkable robustness in the modules that do form: as the number of formed modules is263

reduced by increasing σmin, the formed module periods are identical to the periods of some of the264

modules in the bigger set (Fig.4c-d).265
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In sum, the dynamics of module formation exhibit an emergent invariance or self-scaling prop-266

erty with brain size, automatically adjusting to the size of the substrate. Variations in brain size267

across individuals and species can, via this property, be accommodated to generate a fixed number268

of modules with a fixed set of periods without tuning any biological parameters. Positional infor-269

mation models (like the French flag model, Fig. 1a [11]), which apply fixed thresholds to a global270

gradient, would also be expected to yield self-scaling, however here the modules and boundaries271

are self-generated through recurrent interactions, and do not require externally imposed thresholds272

or genetic control. An additional consequence is that increasing the number of modules involves273

simply changing the value of one endpoint (σmax or σmin) rather than creating new gene expression274

cascades for each added module (Fig. 4e).275
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FIG. 4. Emergent self-scaling of modules with system size. (a) Increasing the size of the neural
sheet while holding constant the minimum and maximum graded interaction widths and the fixed interaction
width, the within-module periods remain the same but module sizes expand so that the system has the same
number of modules regardless of system size. (b) Extracted periods from results in (a). The neural axis
is scaled (normalized) by network size to compare relative module sizes; the period axis is the same across
plots (preserved periods in each module). Pink: analytical predictions from Eq. 2. (c) Different functions
(shapes) for the monotonically graded interaction width σ(nDV ) are predicted theoretically to result in the
same number of modules if the minimum and maximum values of the width (σmin, σmax) remain unchanged.
Shape changes only affect the detailed positions of module boundaries. (d) k∗ calculated from numerical
Fourier transform of interaction matrix with two different gradient shapes, holding σmin and σmax fixed.
Module number and periods remain unchanged, while boundaries shift. (inset) The shapes of the gradient
in the width of the primary pattern-forming interaction for the two choices of gradient shapes. Green
dashed lines are scales corresponding to each local maxima of the secondary interaction. (e) k∗ calculated
from numerical Fourier transform of interaction matrix with three significantly different values of σmin while
holding the spatial extent of the system fixed. The number of formed modules changes from 3 to 5 to 8,
while the periods of the first few modules (that are common across all three simulations) remain unchanged.
(inset) The shapes of the gradient σ(x) in the primary pattern-forming interaction for the three choices of
gradient shapes. See Methods and SI SecD 7 for parameter and simulation details.

Neural data matches detailed predicted sequence of period ratios276

Our prediction of period ratios is module-specific and depends on the phase ϕ, Fig. 5a. First,277

we compare our prediction of period ratios with existing data is to average the predicted values278
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FIG. 5. Comparison of precise period ratio predictions with data (a) Period ratio predictions from
3h together with numerical simulation (other symbols) of neural circuit models with the set of fixed-scale
interaction profiles shown in 3f, same color code. Numerical simulations with all combinations of network
size and weight profiles are shown. σ(linear) and σ (square-root) denote two different profiles of σ(x) (refer
to Eq.11 for the functional form of the profiles). (b) Observed periods of grid cells from multiple modules
[27] (c) Successive period ratios computed from the observation (left column), and predicted period ratios
for ϕ = 0 (middle column). Ratios match predicted values with R2 = 0.999 (right column). See Methods
for parameter and simulation details.

across 4 modules and over all phases ϕ (SI Sec. D 6). This yields a predicted value of 1.37, in good279

agreement with experimental results of an average ratio of ∼ 1.42 across animals, as reported in280

[27]. For the animal shown in Fig. 5b, the average module period ratio is 1.368.281

Next, we compare our more fine-grained successive period ratio predictions with published per-282

module period values, selecting the best-fit value for ϕ. Our prediction with ϕ = 0 matches the283

sequence of observed period ratios from [27] strikingly well, Fig.5c, as well as other datasets in284

which multiple grid periods ratios are available from single individuals (SI Sec. E 1).285

PEAK SELECTION ENHANCES ROBUSTNESS WITHIN AND ACROSS MODULES286

Robustness within individual continuous attractor networks287

Above, we found that peak selection-based multi-module emergence leads is robust and invariant288

to variations in parameters, function shapes, and the form of the global gradients. Here we further289

report that two-scale interactions and the peak selection principle make the dynamics within single290

grid modules resistant to several forms of weight heterogeneity and activity perturbation. The291

requirement that continuous attractor models possess a high level of weight homogeneity (i.e.,292

perfect translation invariance) to generate a continuum of fixed points [23, 24, 63, 64] is a well-293

known Achilles heel that has led to debate about whether these models accurately describe the294

biological circuits. This susceptibility to noise is one of the fundamental open problems for most295

continuous attractor models[23].296

We simulated multi-bump CAN models [24] for one grid module (i.e. no gradient in the pattern297

forming interaction), and added inhomogeneities of two types to the weights: noise in the shared298

radial structure of all interaction weights and i.i.d. noise in each weight (SI Fig.20 and SI sec299

D 9 for details and visualizations). These inhomogeneities were sufficient to nearly destroy pattern300

formation (Fig. 6a, left). However, inclusion of a second wider-scale local interaction (also subject301

to the same amplitude of added noise) results in robust and homogeneous pattern formation (Fig.302

6a, right). We quantified this effect, finding stronger regularity in the formed pattern despite303

weight heterogeneity with the broader interaction than without, Fig. 6b. The susceptibility to304

heterogeneity and the gains from a broader interaction scale held whether the model was simulated305

with periodic or aperiodic boundary conditions (one version of CAN grid cell models consists of306

a single activity bump [50, 65, 66]; this version, which is likely inconsistent with the observation307
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that single modules exhibit a multi-bump pattern on the cortical sheet [67], would not benefit308

from the addition of a broader interaction profile). The formed attractor states are continuous309

enough to path integrate with fidelity despite weight inhomogeneity (SI Fig. 21). The same310

enhancement of within-module period regularity, despite the addition of significant weight noise,311

holds for simulations with graded weights that result in the formation of multiple modules, Fig.312

6c.313

Conceptually, the broader secondary interaction likely enhances pattern regularity because the314

narrower peaks it induces in Fourier space imposes discrete period selection, which greatly reduces315

the pattern variance-driving effects of noise, Fig. 6c: the wider local interaction “focuses” the316

dynamics to a narrower region than specified by the narrower local interaction alone (Fig. 6d).317
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FIG. 6. Enhanced robustness to weight heterogeneity, noise, and activity perturbation by
peak selection. (a) Left: Weight heterogeneity (here, radial asymmetry and i.i.d. noise) quickly destroys
discernable pattern structure in multi-bump continuous attractor models [24]). (Simulation of a 100x100
neuron network with kernel Wg as in Fig. 2d-e; scale shown by green bar.) Right: Addition of a secondary
wider local interaction (scale shown by orange bar), with noise in both sets of weights, rescues patterning.
(b) Variability in 1-dimensional patterning versus the magnitude of added noise in the weights, for single-
scale weights (green), and for networks with two local interaction scales (orange) with both periodic (circles)
and aperiodic (squares) boundary conditions. Pattern variation is the ratio of the standard deviation to
the mean of the pattern period. (c) The same as (a), showing regularity in period despite the addition of
noise in a 1-dimensional setting. (d) The mechanism for enhanced within-module robustness: the broader
local interaction scale enforces a narrower set of solutions in the energy landscape than possible with the
pattern-forming interaction alone. (e-g) Inter-module dynamical independence: (e) An entire module is
transiently silenced for 50 ms; (f) a large fraction of a module is externally driven by large-amplitude
fixed, random, independent perturbations; (g) a continguous region that spans two modules is transiently
silenced. In all cases, the perturbation remains local so neighboring regions and modules are unaffected,
and the perturbed module recovers within one neural time-constant after removal of the perturbation. See
Methods for parameter and simulation details.

Across-module robustness to large-scale activity perturbations318

We next probed whether perturbing activity within entire modules or large across-module re-319

gions of the network will affect patterning in the rest of the modules, as might be expected given320

that the lateral interaction weights span across modules.321
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We entirely silenced activity in one module (mimicking optogenetic inactivation), to find that322

the other modules, their periods, and even adjacent module boundary locations remained stable,323

Fig.6e. When we force a subset of cells in one module to persistently fire at randomly selected rates324

between 0 and 20Hz, patterned activity is also disrupted in immediately adjacent regions of the325

module, Fig.6f, but the patterns are immediately restored upon removal of the forcing drive. During326

this perturbation in one module, no other modules are disrupted. If a region partly spanning two327

modules is silenced, the dynamics and periods in spared parts of the two modules remain unchanged,328

and the boundary re-emerges at its pre-perturbation position after removal of the suppressive input329

(Fig.6g). In all cases, pre-perturbation states are restored within one cellular time-constant (≈ τ).330

These findings contrast with existing models of module formation in which modules interact in a331

stacked architecture [68]: these models exhibit cascading dependencies between modules, so that332

perturbation of one module will have propagating effects in all downstream modules.333

GENERALIZED ENERGY LANDSCAPE VIEW OF MODULE EMERGENCE334

We hypothesize that the principle of peak selection could, applied in domains other than the335

Fourier space of a translationally invariant spatial system, supply a general mechanism for modu-336

larity emergence without periodic pattern formation. The theory can be generalized in two steps.337

First, by translating the linear dynamics of Fourier modes into nonlinear dynamics on an general338

energy landscape, and next translating the Fourier peaks and troughs into multiple rugged local339

optima in the energy landscape (SI Sec. F).340

Consider an arbitrary state variable x whose dynamics flow downhill on a generalized energy341

landscape (Lyapunov function) L(x; θ), such that dx/dt = −∇xL(x; θ), where θ is some parameter.342

The solution to the dynamics is some fixed point state x̄. Suppose the energy function is given by343

a sum of two terms (Fig. 7a):344

L(x; θ) = (1 − α)f1(x) + αf2(|x− g(θ)|) (6)

where the function f1(x) is rugged with multiple similar-depth minima in the state space x and345

a function f2(x; θ) that has a single broad minimum at x∗ such that x∗ = g(θ), where g is some346

monotonic function. The location of the broad minimum in the state space x smoothly moves as347

the parameter θ is smoothly varied (Fig. 7b). The dynamics of x can be viewed as regularized348

optimization on a rugged loss landscape, with a regularizer f2(|x−g(θ)|) that acts as a prior biasing349

solutions x̄ toward x∗ = g(θ). In our numerical simulations, the landscape is first governed by the350

broad quadratic term, then sculpted by the rugged landscape (with α gradually decreasing with351

time starting from α = 1, SI Sec. G). Smoothly varying the parameter θ results in a set of modular352

solutions x̄ (Fig. 7c).353

This version of topological peak selection generalizes the notion beyond linear instability, Fourier354

modes, spatial embedding, or periodic solutions. This general setting — in which a fixed function355

generates multiple local minima in some space and another “selecting” function that generates356

one broad minimum in that space, with the position of the minimum smoothly moving as another357

parameter is varied — can now be applied to generate modularity across diverse settings. Next,358

we explore modularity emergence with this principle at the ecological scale, for the emergence of359

spatial ecological niches and coordinated spawning in corals.360

SELF-ORGANIZATION OF ECOLOGICAL NICHES AND COORDINATED CORAL361

SPAWNING THROUGH PEAK SELECTION362

Consider a set of (N) species interacting cooperatively or competitively. Species are indexed363

by i, and si denotes their population levels. We follow the literature in the field to model the364
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FIG. 7. Generalized peak-selection mechanism leads to modularity emergence. (a) Energy land-
scape (Lyapunov function) for dynamics of the abstract state variable x consisting of a rugged multi-
minimum function and a smooth, broad single-minimum function with minimum located at x∗. (b) As a
parameter θ is varied, x∗ varies as g(θ), where g is some monotonic function. (c) The resulting fixed points
x̄, as a function of the smoothly varied θ, form sets with a constant value, followed by an abrupt jump to a
new set of values, and so on in a series of discrete steps, defining a set of discrete modules. (See SI Sec. G
for simulation details.)

dynamics of the population at a given location x and time t by a Hopfield network, defining the365

interaction between two co-localized species i and j by an interaction strength Wij , which can take366

positive (cooperative) or negative (competitive) values (Fig. 8a-b) [70–74]:367

s(i, x; t+ 1) = H

−δis(i, x; t) +
∑
j,x′

W (i, j)K(x, x′)s(j, x′; t) + bi · rg(θ)

 (7)

where δi is the death rate of species i; H[.] is a rectifying nonlinearity (populations levels are368

non-negative); and K(x, x′) ≡ K(x − x′) is a spatial interaction kernel (two species interact only369

if their ranges have some overlap, separated by no more than the width of the kernel, which is370

assumed to be much smaller than L, the size of the environment). Each species has different371

resource needs, specified by a resource feature vector (bi of dimension M (sampled i.i.d. for each372

species). The environment supplies resources rg. Ignoring the spatial aspect, the interactions W373

induce a rugged landscape that would result in a set of attractors in the state space, Fig. 8c,374

with each attractor representing a potential stable configuration relative population levels of the N375

species. (See Methods for details.) Next, we construct a parametric resource gradient by linearly376

interpolating between two random vectors rg1, r
g
2 drawn from {−1, 1}M , Fig. 8c (colored line).377

Different values of the input along this parametric gradient ”tilt” the landscape: when we slice the378

landscape along this gradient direction and consider one value of the input or another, the minima379

remain the same but their relative amplitudes vary, Fig. 8d.380

Finally, we assume that the parametric resource gradient is spatially organized (in other words,381

the parameter θ for the gradient rg(θ) = (1 − θ)rg1 + θ rg2 is some monotonic function of space,382

θ = g(x)). Such variations – such as in sunlight, temparature, humidity, precipitation – are common383

features of ecosystems and are believed to shape population dynamics and nice formation [75–84].384

We initialize this ecological model at a spatially homogeneous state, with continuous resource385

gradients, and examine the structure of the population vector and its normalized correlation matrix386

C(x, x′), (Fig. 8e-f). The population state self-organizes, through the process of peak selection, into387

a steady state with modular niches (Fig.8e-h): clusters of species form stable groupings of relative388

population abundances over local regions of the environment, with sharp and highly correlated389
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FIG. 8. Self-organization of ecological niches and synchronous spawning through peak selection:
(a) Schematic web of competitive and cooperative interactions between species. (b) Embedding of the
species from (a) into an environment with smoothly varying spatial resource gradients. (c) Schematic of
the state space of the interacting species system as in (a), ignoring the spatial distributions of species and
resources, has multiple attractor states (dots; basins boundaries depicted by black lines). Multi-colored line:
We set up a resource gradient rg(θ) = (1 − θ)rg1 + θ rg2 by smoothly and linearly interpolating between
two random resource vectors. (d) The same one-dimensional slice/view of the energy landscape in (c),
at three sampled values along the input resource gradient (top, middle, and bottom, respectively). The
resource gradient “tilts” the energy landscape, varying the relative heights of the local optima. (e-h) Plots
of species distributions as a function of space (x) (e,g), and their spatial cross-correlations (f,h). (e-f):
Initial distribution. (g-h): After convergence of the dynamics there is an emergent self-organization of four
ecological niches. (i) Global scale invariance: changing the spatial size of the system (L) while maintaining
the local interaction kernel (K) width and the end values of the resource gradient function results in the
same niche structure. (j) Data on a number of coral reefs and their mass spawning dates (adapted from [69]).
Note the widespread bands of synchronized spawning across the Indo-Pacific (same-color circles). (Open
circles: data not available.) (k) Model for synchronized coral spawning: ocean temperature is assumed to
undergo seasonal variation, with temperatures rising at lower latitudes first, and eventually in equatorial
regions. Along with this spatiotemporal temperature variation, the lunar cycle provides a faster time-scale
periodic cue towards coral spawning (l) Spawning occurs in the model at the full-moon lunar phase in all
regions where the ocean temperature is warmer than a given threshold. The dynamics results in a step-like
variation across latitudes in coral spawn times. See Methods for parameter and simulation details.

boundaries leading into distinct patterns of relative population abundances in different parts of the390

environment (Fig. 8g-h).391

As with grid cells, the system exhibits the theoretically predicted property of global scale392

invariance: if the resource values at the endpoints of the environment are held fixed as the size393

(L) of the environment is scaled, even though the spatial interaction width (set by K(x, x′)) is394

not, the number of formed niches and their composition remains unchanged (Fig. 8i). While we395

only examine the symmetric W (i, j) case here, we expect this mechanism for self-organization of396

modular niches to also hold in the more general non-symmetric W (i, j) case. Examining such397

species interaction networks could lead to spatio-temporal dynamics in species niche formation,398

which would be an interesting future direction.399

Finally, we consider a simplified model of the synchronization and timing of mass spawning400

by the Acropora genus of corals (the dominant shallow-water coral genus in the Indo-Pacific [85]).401

Across broad geographic swaths, Acropora coral colonies spawn in an impressive coordinated burst402

lasting only a few hours, once a year (Fig. 8j). The day of this spawning depends on multiple fac-403

tors, including surface water temperature and lunar phase[69, 85–87]: the water must have warmed404

sufficiently, and the lunar phase should be a few days after the full moon. In the temporal domain,405

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

temperature varies gradually (temporal gradient), while the lunar phase changes periodically and406

more rapidly. While temperature provides a broad permissive seasonal range for spawning, the407

faster-cycling lunar cycle locks in a specific spawning day within the broad warming trend, permit-408

ting broad synchronization across the population. The peak selection model predicts an additional409

form of emergence, in the form of spatial organization: surface temperature varies both temporally410

and spatially, gradually changing with latitude. The model predicts large step-like jumps in the411

spawning day as a function of space, with different and widely separated coral colonies at similar412

latitudes spawning on the same day, but others sufficiently offset in latitude spawning a month413

later, in a step-like spatial progression, Fig. 8k-l). This is broadly consistent with data from coral414

species in the Indian and Pacific ocean[69], Fig. 8j).415

DISCUSSION416

Summary We have shown how structure can robustly and spontaneously emerge at multiple417

scales from purely local interactions. The peak selection theory shows how modular structure can418

emerge without modular genetic specification (development) or modular interactions (development419

and ecology). The mechanism exhibits useful features of both positional and pattern formation420

processes [12]: structure is noise-tolerant as in pattern formation processes yet self-scaling as in421

positional processes. In the context of pattern formation systems (with multi-bump models for422

single grid modules being one example), the two-scale peak selection mechanism yields higher423

robustness to connectivity inhomogeneity beyond the capabilities of conventional attractor models424

[24].425

In the context of grid cells, this work extends and robustifies continuous attractor models [24–426

26], from single modules to multiple modules, from dependence on specific interaction profiles to an427

infinite set of kernels for grid emergence, and from dependence on homogeneous weights to a weaker428

dependence on weight homogeneity. It connects to observed DV gradients in MEC [35, 41, 45, 52–429

55], and also potentially more generally to observed gradients that underlie discontinuous function430

in cortex [34, 46].431

Predictions The model forms a mechanistic bridge between distinct scales and levels in the grid432

cell system, showing how biophysical properties, synaptic connectivity, and activity might interact,433

and providing predictions about whether and when perturbations on one level might constrain and434

affect outcomes on the other. Relationships between levels in the model provide low-dimensional435

“knobs” for experimental manipulation and testing. Under the assumption that spatial gradients436

in cellular properties are themselves driven by gradients in gene expression [88, 89], we highlight437

a few predictions for connectomics (C), transcriptomics (T), development (D), and physiology (P)438

studies and connections between them: 1) Functionally discrete modules with sharp boundaries can439

emerge without sharp boundaries in gene expression or cellular and synaptic properties (T,C,P).440

It is possible that these emerging modules are later consolidated by differential gene expression441

patterns, or that gene expression remains graded in the adult (D,T). 2) One type of interaction442

(synaptic strength or width) or biophysical property (like time-constant that affects interaction443

strength) that is fixed along the DV axis of MEC, and another that smoothly varies along it.444

These two types of interactions may reside in different cells and synapses. Alternatively, a single445

set of synapses might contain both scales, such as a synaptic connectivity profile whose shape446

is graded along the DV axis, but whose maximal cutoff radius is invariant across the DV axis.447

(C) 3) The detailed adjacent grid period ratio prediction, given by successive integer ratios or by448

integer ratios with a correction given by the coarse form of the (fixed-scale) interaction profile449

(P). 4) Invariance of module number and periods to brain size, if endpoint interactions are fixed450

or change only slightly; specific predicted variation in module number if endpoint interaction451

properties are varied (T,C,P). 5) Predicted shift of module boundaries locations but not module452

number with gradient shape (T,C,P). 6) Predicted relationship between lateral interaction shape453
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and period ratios, through the scalar variable ϕ. (C,P) Predictions (3-6) can be probed on intra- or454

interspecies levels. 7) Independence of dynamics between modules and high robustness of dynamics455

to activity perturbation within and across modules: Effects of perturbation to activity are localized456

to the module it is applied to, without a cascading effect across modules [68]. Entirely suppressing457

one module should not alter others, and suppressing half a module boundary should not shift the458

rest of the boundary (P). 8) Following MEC-wide silencing, activity patterning in all modules459

should re-emerge independently and in parallel, rather than sequentially [68] (P). 9) If all grid cells460

receive a common velocity input, then grid modules should rotate in tandem under any remapping461

because their relative orientations on the cortical sheet are fixed (P); if they are able to rotate462

independently, it would require independent velocity inputs (P). 10) If two different cell types or463

processes mediate the graded and fixed components of the lateral interactions, then a manipulation464

to turn off the fixed-scale interaction should lead to patterning but with continuous variation of465

period across the DV axis instead of discrete modules.466

More broadly, as a mechanistic circuit model at the level of neurons and synaptic connectivity,467

the model is fully ”computable”. Thus, it is a tool for generating predictions about the result of468

any perturbation for which our model has a corresponding parameter or variable, which experi-469

mentalists might want to apply.470

Related work Our focus is on the theory and mechanisms of the emergence of multi-modular471

function from prespecified weights and is thus complementary to work that models the learning of472

weights in MEC, through biologically plausible Hebbian-like rules [90] or backpropagation-based473

learning [91–95]. The learning models generally do not produce multiple modules, and in the rare474

cases where they seem to, the circuit connectivity that produces them are unknown [91, 95]. The475

only other work that proposes a network mechanism for multi-grid module emergence [68] has a476

distinct (stacked) initial and final architecture, and its predictions on dynamics and connectivity477

as noted above are interestingly and distinguishably different.478

The peak-selection principle for module emergence is both an instance and a generalization in479

some ways of the idea of spatial bifurcation for the emergence of discrete function from smooth480

gradients [34, 96]. It permits a number of distinct modules to form from smooth variations in the481

spatial dimension, but the broader theoretical framework generalizes to variations along abstract482

parametric dimensions, and generalizes from linear instabilities and pattern formation to nonlinear483

systems like parameteric gradients in nonlinear Hopfield-like systems. We have shown three distinct484

flavors of peak selection-based modularity emergence: peak selection in a pattern-forming process485

interacting with smooth gradients in interaction parameters for grid cells; peak selection via a486

smoothly varying regularization term in dynamics on a rough landscape in the general Lyapunov487

function approach; and peak selection in a symmetry-breaking process (which is more general than488

Turing-like pattern formation) based on initial conditions or input gradients that tilt the landscape,489

with applications to ecological niche emergence and geographically extended bands of synchronized490

coral spawning.491

These concepts provide dynamical and mechanistic principles for how modular structure can492

emerge without modular components, in contrast to normative models that focus on why or when493

modular structure is favored [4, 9, 97–105]. Such a mechanistic understanding connects with494

literature on the emergence of discrete function in brain areas, the spinal cord and the body,495

despite the existence of smooth biophysical gradients[31, 34–38, 40–47, 96, 106, 107].496

An important vein in developmental research is to explore how structure can emerge with497

precision in the presence of noise [31, 32, 108, 109]. Some solutions within the positional hypothesis498

involve spatial or temporal integration of noisy gradients [12, 29, 108]. Pattern forming mechanisms499

confer robustness to noise because the patterned state is much lower-dimensional than the overall500

state space [110]. Our observation that peak selection contributes significant additional robustness501

raises the intriguing question of whether such a mechanism might assist in tandem with positional502

mechanisms during morphogenesis [111].503
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MATERIALS AND METHODS846

a. Grid cell continuous attractor network We use a continuous attractor network (CAN)847

model [112–114] for grid cells [18, 24, 115, 116], with neural dynamics obeying848
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∂s(i, t)

∂t
+
s(i, t)

τ
= ϕ

∑
j

W0(i, j)s(j, t) +B(i, t)

 , (8)

where s(i, t) represents the synaptic activation of neuron i at time t, W0(i, j) represents the synaptic849

strength of the coupling from neuron j to neuron i, B(i, t) represents the feed-forward bias to neuron850

i, and ϕ is a non-decreasing nonlinearity, for which we use the rectification function (ϕ(z) = [z]+ = z851

for z > 0 and 0 otherwise). Each neuron i has a preferred direction θi that is used to perform852

velocity integration. In the one-dimensional version of our setup, each spatial location x on the853

neural sheet has two neurons, with preferred directions θ = 0 and θ = π. Correspondingly, in854

the two-dimensional version of our setup, each location on the neural sheet has four neurons, with855

preferred directions θ = nπ/4 for n ∈ {0, 1, 2, 3}. The synaptic weights W0(i, j) are defined via an856

interaction kernel W (∆x) such that857

W0(i, j) = W (|xi − xj −∆s(θj)|), (9)

where xi represents the spatial location of neuron i, and l(θ) is a vector with length ∆s oriented858

parallel to the angle θ. The feed-forward bias B(i, t; θ) is given by859

B(i, t) = b+ bvel|v| cos(θi − ψ), (10)

where ψ is the direction of the input velocity signal and |v| is the speed. This results in neurons860

with direction preference θ driving activity in the network towards the direction of their outgoing861

weight shifts ∆s(θ). This mechanism is responsible for velocity integration by the network [24].862

We first described the dynamics under fixed arbitrary kernels, demonstrating that they result in863

hexagonal pattern formation. These arbitrary kernels were constructed by interpolating between864

random points via the following protocol: First, we construct ‘x-values’ by considering n + nzero865

uniformly spaced points from −L to L, which are then perturbed by the addition of a randomly866

sampled number from −L/4n to L/4n (this perturbation makes the points less regular, while867

disallowing consecutive points to be extremely close to each other). Second, we construct n ‘y-868

values’ sampled from a uniform distribution from −1 to 1, and define the remaining nzero y-values869

to be 0 (the nzero values at zero ensure that the interpolated function decays to zero). Then,870

a cubic spline interpolation (top row of Fig. 10a) or a linear interpolation (bottom row of Fig.871

10a) is performed between the y-values and the x-values to generate an arbitrary function ω(x).872

This generated function is however not symmetric, as is required for kernel functions — thus, we873

construct the interaction kernel as W (∆x) = ω(∆x) + ω(−∆x). Kernels whose dynamics lead to874

infinitely diverging firing rates are rejected and resampled. These kernels were simulated on sheets875

with 256 × 256 neurons with aperiodic boundary conditions[24]. n was randomly chosen between876

2, 3 or 4, and L was scaled as necessary to obtain a large number of activity bumps on the sheet877

to prevent finite-size effects from distorting the hexagonal lattice of activity.878

For the case of module formation through peak selection, the interaction weight kernel W is879

given by the sum of two components W = W g
nDV + W f . The first, W g

nDV drives local pattern880

formation, and has a spatial scale σ(nDV ), which varies smoothly in a gradient along the dorso-881

ventral axis, and the second, W f has a fixed spatial scale d everywhere on the neural sheet. A882883

variety of functions W g
x can drive local pattern formation. For concreteness, we use two specific884

examples: the Mexican-hat profile[24] (used in Figs. 2a-c,j,k, 11 and SI Fig. 12)885

W g
mexican-hat(∆x) =

αE exp

[
−γ (∆x)2

2σmh(nDV )2

]
− αI exp

[
− (∆x)2

2σmh(nDV )2

]
, (11)
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Steady state pattern
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FIG. 9. Local pattern formation in continuous attractor models of grid cells: Through local amplification
of random fluctuations, the lateral interaction forms periodic patterns.

and the box-function profile[117] (used in Fig. 2 and SI Fig. 12)886

W g
box(∆x) = α0 × 1|∆x|<σb(x) =

{
α0 if |∆x| < σb(nDV ),

0 if |∆x| ≥ σb(nDV ).
(12)

For the fixed-width interaction W f (∆x), we implement 3 main types — localized (used in Figs.887

2,3 and SI Fig. 12), diffuse (used in Fig. 2 and SI Fig. 12) and decaying (used in SI Fig. 12).888

W f
localized(∆x) = αS exp

[
−(|∆x| − dloc)

2

2ϵ2S

]
,

W f
diffuse(∆x) = α1 × 1|∆x|<ddif ,

W f
decaying(∆x) = αT × [ddec − |∆x|]+.

In particular,889

• In Figs. 11 we use only a smoothly varying Mexican-hat pattern forming kernel W =890

W g
mexican-hat891

• In Figs. 2a-c,g, j,k we use W = W g
mexican-hat +W f

localized892

• In Figs. 2d-f,h we use a ‘Lincoln hat’ profile W = W g
box +W f

diffuse893

• and, in SI Fig. 12 we present numerical simulations of other combinations of pattern forming894

and fixed-scale kernels.895

To construct spatially heterogeneous kernels for analyzing the robustness to inhomogeneity in896

Fig. 6 we use the box function to construct897

W g
ξ [x,x′] = α0 × 1|x−x′|×(1+ξg1 (x

′))<σ0
b (1+ξg2 (x

′)),

W f
ξ [x,x′] = α1 × 1|x−x′|×(1+ξf1 (x

′))<ddif (1+ξf2 (x
′))
,
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Parameter Value
τ 30
dt 0.05

b

{
70 in 1D

1 in 2D

bvel

{
105 in 1D

1 in 2D

∆s 2

TABLE I. Parameters held constant across all numerical simulations

W g
mexican-hat parameters Value

αE 1000
αI 1000
γ 1.05

N1D 3000
N2D

y 100
N2D

x 1000

σmh(nDV ) 1/
√

2β(nDV )
β(nDV ) β0 + (β1 − β0)nDV /N

′

N ′

{
N1D in 1D

N2D
x in 2D

β0

{
2.5 × 10−2 in 1D

3/676 in 2D

β1

{
2.5 × 10−1 in 1D

9/338 in 2D

W g
box parameters Value

N1D 5000
α0 -40

σb(nDV ) 15 + 30nDV /N

TABLE II. Pattern forming kernel parameters used for numerical simulations

where ξg,f1,2 (x′) are independent random numbers chosen uniformly from ϵg,f1,2 × [−1, 1]. In the898

particular case of Fig. 6b, ϵg2 is varied along the x-axis of the plot, and other noise terms are set to899

zero (In the one-dimensional case ϵ1 and ϵ2 have the same effect); for Fig. 6c, ϵg1 = 0.2, ϵg2 = 0.3,900

ϵf1 = 0.05 and ϵf2 = 0 (See SI Sec. D 9 for more details).901

In Table I we present a list of common parameters used across all numerical grid-cell simulations.902

Then, in Tables II,III we present the parameter values used for the kernels used in our numerical903

simulations904905

b. Ecological niche formation For the modular niche formation, we consider the setup as906

described in Eq. 7, with N = 1000 species, each characterized by a random M = 2000 dimensional907

random feature vector indicating resource preference. We numerically simulate our setup on a908

discrete lattice x ∈ {0, L} for L = 300 in Fig. 8i left, and L = 500 otherwise.We instantiate the909

nonlinearity H as a shifted Heaviside function, H[x] = 1 for x ≥ 0.5, and H[x] = 0 otherwise,910

and choose the death rate δi = 0.1 for all species. To construct W (i, j) as an interaction matrix911

that quantifies the cooperation and competition between species, we follow a set up similar to a912

Hopfield model with {0, 1} activity[118]. We first choose a set of random points in N -dimensional913

species space sq for q ∈ {1, · · · , Q}, denoting potential niches. We choose Q such that 1 ≪ Q≪ N .914

Each sq vectors consists of a +1 at elements corresponding to species that may co-exist, and −1915

otherwise. In practice, we draw each element uniformly from the set {0, 1}, constructing an N ×Q916
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W f
localized parameters Value

αS 4

dloc

{
84 in 1D

50 in 2D

ϵS

{
4.77 in 1D

1.6 in 2D

W f
diffuse parameters Value

αdif -0.25
ddif 135

W f
decaying parameters Value

αT 25
ddec 150

TABLE III. Fixed-scale kernel parameters used for numerical simulations

matrix. The weight matrix W (i, j) is then constructed as917

W (i, j) = 0.015 ×

{∑Q
i=1 sq(i)sq(j), for i ̸= j

c, for i = j
,

where c is a positive constant set to 10.918

The spatial interaction kernel K(x, x′) = K(x − x′) is chosen to be a Gaussian function with919

standard deviation 1.75 (which is much smaller than the entire spatial extent of the system, L).920

The end points of the resource gradient are chosen as two random M = 2000 dimensional vectors921

with elements draw independently from i.i.d. Gaussian distributions with zero mean and standard922

deviation 2/N , and the preference vectors bi are drawn from i.i.d. Gaussian distributions with923

zero mean and unit standard deviation.924

The initial condition for the simulation is set to be the uniform state s(i) = 0.5 for all i, and925

the simulation is run until the dynamics reach a fixed point state. The final formed fixed point926

state is examined by calculating the correlation matrix927

C(x, x′) =
N∑
i=1

∩s∗(i, x) ∩ s∗(i, x′)

where928

∩s(i) = [s(i) − ⟨s⟩]/
√∑

i

[s(i) − ⟨s⟩]2

where ⟨s⟩ = (1/N)
∑

j s(j).929

SUPPLEMENTARY TEXT930

The supplemental information is structured as follows: First, in SI Sec. A we present the931

mathematical analysis for pattern formation, and generalize the theory of CAN models of grid932

cells to show analytically and numerically that an infinite set of local interaction kernels can933

generate a grid cell network, as shown in Fig. 2 and Fig. 10. Second, we demonstrate analytically934

and numerically in SI Sec. B that simply introducing a gradient in the pattern forming kernel of935

the continuous attractor model is not sufficient to result in modularization, as demonstrated in936
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Fig. 1 of the main text. Third, in Sec. B 1 we show how the addition of a Gaussian localized937

kernel results in self-organized modularization. Fourth, we show in Sec. D that among arbitrary938

kernels, those with simple shapes result in a simple equation describing the detailed period ratios939

of the formed grid modules as shown in Fig. 4. Fifth, this will lead to simple estimates for the940

number of modules and their sizes in terms of other system parameters, which we derive in SI Sec.941

D 7. Sixth, after having described our results primarily for the case of one-dimensional grid cells,942

we then demonstrate in Sec. D 8 that our arguments extend naturally to two dimensions, and we943

present numerical results demonstrating the same. Seventh, in SI Sec. E 1 we then demonstrate944

that our results and predictions of grid period ratios are consistent with available data sources945

to a large extent. Finally, we generalize our result to the context of dynamics on a rough energy946

landscape (SI Sec. F), and provide broader perspectives of our results in the contexts of general947

loss optimization (Sec. G) and eigenvector localization (SI Sec. H).948

Appendix A: Generalization of grid cell CAN dynamics theory: infinite set of interactions949

produce grid cells950

It is known that Mexican hat-like kernels [24] and Lincoln hat-style kernels [51] generate grid951

patterning. While there are analytical results on why grid patterning emerges from a Mexican hat952

interaction, the Lincoln hat result is empirical, without theory. Here we seek to explain when grid953

patterning emerges, and to determine other kernel shapes that are consistent with it.954

Consider the standard equations for the dynamics of recurrently connected neurons (expressed955

for notational simplicity in the continuum or large neural number limit):956

∂s(x, t)

∂t
+
s(x, t)

τ
= ϕ

[∫ +∞

−∞
W (x,x′)s(x′, t)dx′ +B

]
, (A1)

where s(x) is the synaptic activation of the neuron at the vector position x on a 2-dimensional957

neural sheet, W (x,x′) is coupling strength from a neuron at x′ to a neuron at x, τ is the biophysical958

time-constant of individual neurons, ϕ is a non-negative monotonic transfer function, and B is a959

uniform feedforward input to all neurons. The neural nonlinearity is any non-odd (ϕ(−x) ̸= ϕ(−x)960

function, for reasons given below and in [119–122]). For simplicity, we select the rectification961

function (ϕ(z) = [z]+ = z for z > 0 and 0 otherwise.962

To obtain conditions for hexagonal pattern formation dynamics, we perform a linear stability963

analysis about the homogenous steady state[123]. While we will provide the details of this analysis964

in the more general setting with gradients in kernel widths in Sec. B, we summarize the key result965

here: for an interaction kernel W (x,x′) = W (|x − x′|), the growth rate α(k) of a periodic mode966

with wave vector k is related to the Fourier transform W̃ as α(k) = W̃ (k) − 1/τ .967

From this linear (in)stability analysis, four conditions on the interaction kernel weights W (x,x′)968

may be sufficient for grid-like patterning: 1) For global stability, let
∫
W (x,x′)dx < 0 (this is969

consistent with models of grid cells with negative recurrent coupling [24, 117] and with experiments970

suggesting that grid pattern formation might dominated by recurrent inhibitory circuitry [117]).971

2) Let the interactions be radially and translationally symmetric, W (x,x′) ≡W (|x−x′|;σ), which972

means that the Fourier transform can be written in terms of its radial part: W̃ (k) = W̃ (|k|) =973

W̃ (k). 3-4) To ensure a non-zero wavelength k of pattern emergence, the Fourier transform of W974

should satisfy that its maximum occurs at a non-zero value of k, k∗ = arg max W̃ (k) > 0, and that975

this maximum should be positive and sufficiently large, W̃ (k∗) > 1/τ . Note that conditions 3-4)976

can be easily made true so long as W is not everywhere negative, and we are permitted a global977

scaling factor to ensure that the positive component is sufficiently large.978

The emergent activity pattern will consist of superpositions of waves with period 2π/k∗ [14,979

24, 120, 123–125]. This period scales as σ, the characteristic width of the interaction kernel W .980

The specific geometry of the emergent period-2π/k∗ pattern depends on the relative strengths and981
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interactions of the waves of wavenumber k∗. If the interaction kernel is isotropic and the boundary982

conditions are infinite or isotropic, the formed pattern will be an equally-weighted superposition of983

all three waves of wavenumber k∗, defining a triangular lattice. The phase of the formed pattern984

will be set by spontaneous symmetry breaking.985

The non-odd nature of the transfer function results in patterns with hexagonal rather than986

other symmetries [119–122]. This can be intuitively seen by noting that upon addition of plane987

wave solutions Re[
∑

n e
ikn·x], hexagonal patterning formed by adding three plane waves such that988

k1 + k2 + k3 = 0 is the smallest summation that breaks inversion symmetry (i.e., the maxima are989

more positive than the minima are negative). Thus, hexagonal patterns emerge when the transfer990

function provides inversion symmetry breaking.991

How many kernel functions W satisfy these conditions? Essentially, an infinite set does so992

(with rare exceptions). First we discuss some of the exceptions to gain some insight. Gaussian993

and Lorentzian functions, when they are positive, have a single peak in their Fourier transforms994

at k = 0 when the functions are positive. When the functions are negative everywhere, they fail995

to satisfy condition 1). Thus, Gaussian and Lorentzian functions are two special functions that996

do not satisfy the criteria 1)-4). However, as argued in Sec. C, making small perturbations to997

functions that do not satisfy 1)-4) results in the conditions 1)-4) being satisfied, suggesting that998

the functions that do not satisfy 1)-4) are a small and very special set, and that most functions999

can be scaled to satisfy 1)-4).1000

We next performed numerical experiments to test the hypothesis that randomly generated1001

functions will generically have Fourier Transforms that are not negative everywhere or only non-1002

negative at 0, and therefore might generate grid-like patterning (see Methods for details of random1003

sampling of kernel functions). We found that indeed randomly constructed kernel functions satisfied1004

the hypothesized property for their Fourier transforms: we generated 106 random localized kernel1005

functions, and all of these satisfied the conditions of being not negative everywhere or being non-1006

negative only at k = 0 (SI Fig.10). We further found that these kernel functions, under the further1007

condition that they did not produce diverging neural activity, generated hexagonal patterns. Some1008

of these are shown in Fig. 2a. In sum, an infinite set of local interaction profiles will generate grid1009

cell-like activation patterns. Such candidate profiles can be generated at random and with very1010

high probability generate grid-like patterning.1011

Appendix B: Pattern formation with graded kernels1012

Motivated by the experimental observations described in the main text, we modify the Mexican-1013

hat function to introduce a smooth gradient in the characteristic interaction widths σE , σI .1014

W g
nDV

(∆x) = αE exp

(
− ∆x2

2σE(nDV )

)
− αI exp

(
− ∆x2

2σI(nDV )

)
, (B1)

where σE(nDV ) and σI(nDV ) are now functions that depend on position in the neural sheet, and1015

encode the smoothly varying characteristic scale of the Mexican-hat interaction along the dorso-1016

ventral axis:1017

σE/I(nDV ) = σE/I + σ′E/I(0) · nDV . (B2)

For such graded kernels, we will use W (x,x′) and WnDV (x−x′) = WnDV (∆x) interchangeably. In1018

this case, Eq. A1 then becomes1019

∂s(x, t)

∂t
+
s(x, t)

τ
= ϕ

[∫ +∞

−∞
WnDV (x− x′)s(x′, t)dx′ +B(x)

]
, (B3)

10201021
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FIG. 10. All kernels satisfying the conditions laid out in the main text can result in pattern formation, with
appropriate scaling.

Under this approximation, we perform a linear stability analysis of the neural dynamics, to1022

identify the growing periodic modes locally at the position on the neural sheet nDV .1023

We first identify an unstable steady-state solution to Eq. (B3), which we denote as s0(x). This1024

solution satisfies1025

s0(nDV )

τ
= ϕ

[∫ +∞

−∞
WnDV (x− x′)s0(x

′)dx′ +B(x)

]
. (B4)

In the limit of very slowly varying changes in WnDV (∆x) as a function of nDV , the unstable steady1026

state solution will be1027

s0(nDV ) =
τB̄

1 − τW̄
, (B5)

where B̄ =
∫
B(x)dx and W̄ =

∫
WnDV (x− x′)dx′. (For τW̄x > 1, the only locally homogeneous1028

steady state is s0(nDV ) = 0 due to the rectifying nonlinearity, which as we justify shortly cannot1029

support periodic pattern formation due to being a stable fixed point).1030

We then consider a perturbative analysis, by examining the evolution of s(x, t) = s0(nDV ) +1031

ϵ(x, t). We apply our analysis to the early time evolution of this initial condition, such that1032

ϵ(x, t) ≪ s0(nDV ). Inserting our form of s(x, t) in Eq. (B3), we obtain1033

∂ϵ(x, t)

∂t
+
ϵ(x, t)

τ
=

ϕ′(W̄s0(nDV ) + B̄)

∫ ∞

−∞
WnDV (x− x′)ϵ(x′, t)dx′. (B6)

Since WnDV (x − x′) is a local kernel, we approximate the above integral with one evaluated over1034

the region {x′ : |x − x′| < l}, with l much larger than the length-scale of the kernel WnDV at all1035

x. Over this interval, we posit that ϵ(x′, t) = ϵeik·x
′+α(k)t, where α(k) denotes the growth rate of1036

this ϵ perturbation. Inserting this form into Eq. (B6) yields,1037

α(k) + 1/τ = ϕ′(W̄s0(nDV ) + B̄)

∫ ∞

∞
WnDV (x− x′)e−ik·(x−x′)dx′, (B7)

= ϕ′[W̄s0(nDV ) + B̄]F [WnDV (x− x′)], (B8)

= ϕ′[W̄s0(nDV ) + B̄]FWnDV (k) (B9)
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FIG. 11. (a-c) Naive merger of the two mechanisms by smoothly scaling the width of the pattern-forming
lateral interaction (j) in the grid cell CAN model [24] does not generate global modularity in 2-dimensional
(b) or 1-dimensional (c) grid models: the result is one smoothly varying periodic pattern.

where F [WnDV (x−x′)] = FWnDV (k) is the Fourier transform of the interaction kernel correspond-1038

ing to position nDV on the neural sheet. For the rectifying nonlinearity ϕ′ = 1, and the requirement1039

for the periodic perturbation to be growing is α(k) = FWnDV (k) − 1/τ > 0.1040

Note that since WnDV (∆x) is a kernel, it is a radially-symmetric real function, and hence the1041

Fourier transform FWnDV (k) will also be real function that is radially-symmetric in k. Thus, for1042

simplicity, we will only focus on the magnitude of k, which we denote as k = |k| ≥ 0 (In this1043

context, for the two-dimensional case, one may re-interpret the radial component of the Fourier1044

transform of WnDV (∆x) as the Hankel transform of WnDV (|∆x|)).1045

By definition, the magnitude of the wave vector k∗ that corresponds to the fastest growing1046

mode locally around position x on the neural sheet will be the k that maximizes α(k). Under1047

the approximation of slow changes in the length-scale of the interaction kernel WnDV (∆x), we see1048

from Eq. (B9) that1049

k∗(nDV ) = arg maxk FWnDV (k), (B10)
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since WnDV (∆x) (and hence s0(nDV )) has been assumed to have a negligible dependence on nDV .1050

For WnDV (∆x) given by Eq. (B1), i.e., without any additional fixed-scale interaction, we obtain1051

from Eq. (B10)1052

[k∗(nDV )]2 =
2

σE(nDV )2 − σI(nDV )2
log

(
αEσE(nDV )3

αIσI(nDV )3

)
. (B11)

If we assume that σE/I(x) = ηE/Iσ(nDV ), where ηE and ηI are x-independent constants, then1053

we obtain1054

k∗(nDV ) ∝ 1/σ(nDV ), (B12)

and hence1055

λ∗(nDV ) ∝ σ(nDV ), (B13)

where λ∗(nDV ) is the periodicity of the grid pattern formed locally around position nDV . This1056

results in a smooth change of grid period, corresponding to the observation in Fig. 1g of the main1057

text.1058

Note that this result is generally true for any pattern forming kernel W g
nDV (∆x) that has a1059

Fourier transform with at least one local maximum, and does not rely on the specific form of a1060

Mexican-hat interaction. Indeed, Eq. (B13) holds for any kernel W g
nDV (∆x) that depends on a1061

length-scale σ(nDV ). As an example, we present the corresponding analysis for the box-shaped1062

kernel employed for pattern formation in Ref. [117].1063

In this case1064

W g
nDV

(∆x) = −W01∆x≤σ(nDV ). (B14)

As discussed above, the quantity of interest is FW g
nDV (k)1065

FW g
nDV

(k) =

∫ ∞

−∞
−W01|x|≤σ(nDV )e

ik·xdx (B15)

= −W0

∫
|x|≤σ(nDV )

eik·xdx. (B16)

The above integral can be calculated in a one-dimensional setup to obtain1066

FW g
nDV

(k) = −2W0
sin(kσ(nDV ))

k
(B17)

and can be calculated in a two-dimensional setup to obtain1067

FW g
nDV

(k) = −2πW0σ(nDV )
J1(kσ(nDV ))

k
. (B18)

In both of the above cases, note that k∗ ∝ 1/σ(nDV ) since σ(nDV ) is the only length-scale charac-1068

terizing the kernel W g
nDV . In particular, numerical maximization yields1069

k∗ ≈

{
4.493/σ(nDV ) on a one-dimensional sheet, and

5.136/σ(nDV ) on a two-dimensional sheet.
(B19)
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1. Fixed-scale interactions and modularization1070

We now claim that the addition of a fixed-scale kernel, W f (∆x) is sufficient to result in modu-1071

larization of grid periods, with discrete changes in grid period as a function of spatial position along1072

the dorso-ventral axis. This set of interactions can effectively be implemented by two populations1073

of interneurons - one with fixed arborization and weaker synaptic connections and one with varying1074

arborization length and stronger synaptic connections.1075

For simplicity, we shall present the specific Fourier transform computations for the one-1076

dimensional problem, although we note that all of the qualitative results hold in two dimensions as1077

well, with the Fourier transforms of the relevant functions replaced with their Hankel transforms1078

(as shown in Sec. D 8).1079

We include an additional weak interaction term W f that critically does not depend on the1080

neural sheet position x. For reasons that will become apparent soon, we choose kernels W f (∆x)1081

such that the Fourier transform changes sign a sufficiently large number of times. We hypothesize1082

that this requirement is not particularly restrictive, and will demonstrate that this holds for most1083

kernels W f .1084

The entire interaction profile is then given by1085

WnDV (∆x) = W g
nDV

(∆x) +W f (∆x). (B20)

We first demonstrate our result with an example of a simple kernel, to justify how Eq. (B10)1086

leads to the emergence of discrete grid modules. Consider the localized excitatory interaction1087

W f (∆x) = αS exp

(
−(∆x− d)2

2ϵ2S

)
+ αS exp

(
−(∆x+ d)2

2ϵ2S

)
. (B21)

Corresponding to our interpretation of W f (∆x) above being a localized kernel, we choose ϵS ≪ d.1088

This choice of WnDV (∆x) = W g
nDV (∆x) +W f (∆x) leads to the the Fourier transform,1089

FWnDV (k) = FW g
nDV

(k) + FW f (k), (B22)

=
√

2π

[
αEσE(nDV ) exp

(
−σE(nDV )2k2

2

)
− αIσI(nDV ) exp

(
−σI(nDV )2k2

2

)
+2αSϵS cos(kd) exp

(
−
ϵ2Sk

2

2

)]
. (B23)

In our model, the magnitude of the W f (∆x), i.e., αS , is chosen to be smaller than the mag-1090

nitude of the Mexican-hat interaction. Thus we interpret FW f (k) in Eq. (B23) as being a small1091

perturbation to the Fourier transform of the usual Mexican-hat interaction, FW g
nDV (k). Further,1092

since d is assumed to be much larger than the scale of the Mexican-hat, σE/I , then the term cos(kd)1093

in FW f (k) oscillates at a k-scale much smaller than the relevant scales of FW g
nDV (k) (see Fig.1094

3b-c of the main text). Additionally, since ϵS ≪ d, the gaussian envelope multiplying the rapidly1095

oscillating term has a scale 1/ϵ, which is much larger than the periodicity 1/d.1096

Thus, in k-space, the rapidly oscillating term, FW f (k) can be thought of as predefining a set1097

S = {k1, k2, . . .} of local maxima. Under the approximations made above, the addition of the1098

smoother function FW g
nDV (k), will not change the position of the local maxima. This results in1099

the local maxima of FWnDV (k) also being the same set S. Importantly, we note that since S was1100

predefined purely via FW f (k), there is no nDV dependence on the set S.1101
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Following Eq. (B10), the wave-vector corresponding to the pattern formation at point x on1102

the neural sheet corresponds to the global maxima of FWnDV (k). Thus, at all points, the pattern1103

formation corresponds to one of the discrete set of choices of wave vectors, S = {k1, k2 . . .}. As1104

can be seen from Fig. 3c, the smoothly varying gradient in the Mexican-hat term, FW g
nDV as a1105

function of x picks different choices of ki depending on the position nDV — the k ∈ S that is1106

nearest to the maxima of FW g
nDV (k) will be chosen as the global maxima, and will be the wave1107

vector corresponding to the pattern at nDV . We refer to this mechanism as “peak selection”.1108

For our particular choice of W f (x) made in Eq. (B21), we obtained1109

FW f (k) = 2αSϵS cos(kd) exp

(
−
ϵ2Sk

2

2

)
. (B24)

We can then approximate the local maxima of FW f (k) as occurring at1110

S =

{
2mπ

d

∣∣∣∣m ∈ Z+

}
. (B25)

This immediately indicates that the ratios of periods of successive grid modules will be given by1111

λm+1

λm
=
m+ 1

m
. (B26)

Thus, the addition of a fixed-scale interaction, W f such as Eq. (B21) results in discrete grid1112

modules. We now show that this peak-selection mechanism, and hence modularization, occurs for1113

arbitrary choices of the fixed-scale interaction kernel W f (∆x).1114

Appendix C: Kernels that lead to modularization1115

The peak-selection modularization mechanism described above arises naturally from the pres-1116

ence of the rapidly oscillating term in FW f (k). In fact, for discrete grid modules to occur, the1117

only constraints imposed on the fixed-scale kernel W f are: (a) the Fourier transform FW f (k)1118

must have a sufficiently large number of maxima (at least 4 maxima, corresponding to the 4 grid1119

modules observed in experimental observations); and, (b) these maxima must be at scales smaller1120

than 1/σ in k-space. Here we argue that this is generally true for arbitrary kernels, modulo a single1121

scaling parameter.1122

We hypothesize and give support, without formal proof, that almost every arbitrarily chosen1123

kernel W f (∆x) will have a Fourier transform with multiple maxima satisfying condition (a). We1124

will then argue that this kernel can always be scaled to satisfy condition (b).1125

To motivate our hypothesis, we first note that it is actually possible to construct specific kernels1126

W f (∆x) whose Fourier transform does not present multiple maxima. For example, the Gaussian1127

kernel, Wgauss(∆x) = exp[−(∆x)2/2], results in a Fourier transform that is unimodal. However,1128

we hypothesize that such functions are rare in the space of all continuous functions in L2. Indeed,1129

we can construct a function that is arbitrarily close to the Gaussian kernel whose Fourier transform1130

will have an infinite number of maxima: Let f0(∆x) = 1[−1,1] be the box function. Define1131

fn = f ∗ fn−1

for all n ≥ 1, where f ∗ g represents the convolution of functions f and g. By the central limit1132

theorem,
√
nfn(

√
n∆x) will approach Wgauss(∆x). However,1133

Ffn(k) = [2 sin(k)/k]n, (C1)
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which clearly has an infinite number of maxima. Thus, even though the Gaussian kernel has a1134

unimodal Fourier transform, we can construct a function gn(∆x) =
√
nfn(

√
n∆x) that is arbitrarily1135

close to the Gaussian kernel (for sufficiently large n) but has a Fourier transform that presents an1136

infinite number of maxima.1137

In this context, we claim that almost every arbitrarily chosen kernel W f (∆x) will have a Fourier1138

transform with multiple maxima. This may be intuited as follows: First note that Fourier space is1139

a dual space, and hence instead of considering arbitrary kernels in real space we may equivalently1140

choose arbitrary kernels in Fourier space. Further assuming that FW f (k) is a smooth function,1141

we hypothesize that generically smooth functions that are in L2 will almost always have multiple1142

maxima and minima. Note that this heuristic also applies to the pattern forming kernel as well —1143

we hypothesize that generic L2 smooth functions will have some maxima and minima with a global1144

maxima that exists at k > 0 with probability 1, and will not be always negative (in which case1145

a rescaling will make the maxima larger than the constant specified by requirement 2 for pattern1146

forming kernels in the main text). Thus we expect that kernels will generically result in hexagonal1147

pattern formation, as demonstrated in Fig. 10.1148

Thus condition (a) may be satisfied for arbitrary kernels W f (∆x).1149

Next, note that scaling a function in real space results in an inverse scaling of the Fourier1150

transform, i.e., F [W f (a∆x) = FW f (k/a). Hence, we can always scale the function W f (∆x) to1151

obtain a Fourier transform with maxima that are within any desired scale, allowing condition (b)1152

to be satisfied.1153

In Fig. 12, we show examples of modularization arising from different combinations of graded1154

pattern forming kernels (W g) and fixed-scale kernels (W f ). In each case, we also present the1155

expected periodicity in each module as a function of spatial position as given by the perturbative1156

analysis Eq. (B10). The analytical result based on linear stability provides an excellent prediction1157

of the pattern periods per module (see also Main text, Fig. 3e). It also predicts the locations of1158

the module boundaries (see also Main text, Fig. 3e) though not as accurately: module boundary1159

predictions tend to be slightly but systematically offset relative to the simulated dynamics, due to1160

the effects of nonlinearity in the later stages of pattern formation.1161

Appendix D: Simple kernels and period ratios1162

What kinds of fixed-scale interactions might be present in the medial-entorhinal cortex? As1163

described in the main text, in the context of biology, we might expect simple interaction kernels1164

W f to be relevant i.e., the fixed-scale interaction profile W f has the following characteristics: (a)1165

there exists a single length-scale d that primarily characterizes the shape of W f ; (b) any other1166

length-scales relevant to W f , say scales ϵ1, ϵ2, ... are each much smaller than the primary length1167

scale d. Further, we assume that the primary length-scale associated with the fixed-scale interaction1168

is larger than the length-scales of the pattern forming kernel, i.e., d≫ σE/I(nDV ).1169

We will demonstrate that simple fixed-scaled interaction kernels result in analytic expressions1170

for grid periods that are characterized by a single angular variable ϕ1171

λm+1

λm
=
m+ 1 + ϕ/(2π)

m+ ϕ/(2π)
. (D1)

Before filling in the details of our argument, we present an intuitive explanation of the general1172

idea:1173

Consider the following basic classes of simple kernels that satisfy the above-described criteria1174

corresponding to a length-scale d:1175

(a) g(|∆x|−d), for arbitrary functions g(ρ) that are nonzero only over scales |ρ| < ϵi (a localized1176

kernel), and,1177
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FIG. 12. Examples of modularization and population activity (right column) with various pattern forming
and fixed-scale lateral interactions (left column). In each case the dark-blue curve shows the predicted value
of the grid period from Eq. (B10), and is in close agreement with the numerical simulation of the population
activity. Each of the fixed-scale interactions has a qualitatively different shape, spanning different values of
ϕ (see Fig. 3)
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FIG. 13. Sample tuning curves from several neurons in all modules from the network of Fig 2a.

(b) A constant term, that is uniform everywhere up to ∆x = d, after which it falls to zero (a1178

diffuse kernel),1179

(c) A decaying term, that decreases from a constant value at ∆x = 0 to zero at ∆x = d (a1180

decaying kernel).1181

We also define short-range kernels, as any arbitrary function h(∆x) that is nonzero only over1182

scales |x| < ϵi.1183

Any simple kernel W f (∆x) can be generally constructed as a linear combination of the above1184

basic classes. In addition, simple kernels may also contain an added component of a short-range1185

kernel.1186

To see that simple kernels will generally result in grid period ratios corresponding to Eq. (D1),1187

we will examine the approximate Fourier transform structure for each component of the linear1188

combination of simple kernels corresponding to a given length-scale d. We first demonstrate that1189

each of the basic simple kernels will result in Fourier transforms that are sinusoidal functions with1190

phase shifts and decaying envelopes and hence each basic simple kernel will satisfy Eq. (D1). We1191

then show that short-range kernels present Fourier transforms that vary only at large scales, and1192

can be ignored in our analyses of simple kernels. We then use these results to demonstrate that all1193

simple kernels constructed as the above-described linear combination will have sinusoidal Fourier1194

transforms and will satisfy Eq. (D1).1195

1. Localized kernels1196

For a general localized kernel W f (∆x) = g(|∆x| − d) we obtain1197

FW f (k) = ℜ[e−ikdFg(k)]. (D2)

Since g(x) is supported over a scale ϵ, the Fourier transform Fg(k) will only vary at scales k ∼1198

1/ϵ≫ 1/d. Thus for 1/d≪ k ≪ 1/ϵ, we can approximate Eq. (D2) as1199

FW f (k) = |Fg(k)| cos (kd− ψ) , (D3)

where ψ = arg[Fg(k)]. The local maxima of FW f (k) will then occur at1200

S =

{
2mπ + ψ

d

∣∣∣∣m ∈ Z+

}
, (D4)

resulting in period ratios described by1201

λm+1

λm
=
m+ 1 + ψ/(2π)

m+ ψ/(2π)
, (D5)

which is identical to Eq. (D1) for ϕ = ψ. We also note that we can now ascribe an interpretation1202

to the phase angle ϕ — it is the phase difference between FW f (k) and cos(kd).1203
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2. Diffuse kernels1204

We model a diffuse interaction kernel W f (nDV ) as1205

W f (nDV ) = −W01[−d,d] =

{
−W0 if |nDV | ≤ d

0 if |nDV | > d
. (D6)

Corresponding to the discussion above, we look at the Fourier transform FW f (k)1206

FW f (k) =

∫ +∞

−∞
−W01[−d,d]e

ikxdx =

∫ +d

−d
−W0e

ikxdx (D7)

= −2W0
sin(kd)

k
= −2W0d sinc(kd). (D8)

Note that once again, similar to Eqn. (B24), we obtain a functional form consisting of a periodic1207

function (sin(kd)) that is multiplied by a decaying envelope 1/(kd). Ignoring the effects of the1208

envelope function, the maxima of this function occur at1209

S ≈
{

2mπ − π/2

d

∣∣∣∣m ∈ Z+

}
, (D9)

which immediately results in period ratios of the form1210

λm+1

λm
≈ m+ 1 − 1/4

m− 1/4
, (D10)

which corresponds to the result in Eq. (D1) for ϕ = π/2.1211

More precisely, the extrema of FW f (k) occur at kmd = q − 1/q − 2/3q3 +O(q−5)1212

where q =

(
m+

1

2

)
π. Notably, the errors decay approximately as 1/(πm), and thus for modules1213

generated corresponding to m ≳ 2 will result in period ratios that approximate Eq. (D1) closely.1214

3. Decaying kernels1215

Decaying kernels with a scale d may be modeled as any monotonically decreasing function that1216

decays from some constant W0 at ∆x = 0, to zero, at ∆x = d. For simplicity, we consider the1217

simplest linear approximation to such a kernel, modeled as a triangular kernel. For additional1218

subtleties in the treatment of other decaying kernels, see D 5 a The triangular kernel can be written1219

as:1220

W f (∆nDV ) =

{
W0(∆nDV − d)/d if ∆nDV < d

0 if ∆nDV ≥ d
(D11)

This function can be written as the convolution of 2 diffuse box functions:1221

W f (∆nDV ) = (−W01[−d/2,d/2]) ∗ (W01[−d/2,d/2]).

Thus, its Fourier transform is:1222

FW f (k) = −W 2
0 d

2

(
sin(kd/2)

(kd/2)

)2

= −2W 2
0

k2
[1 − cos(kd)].
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Once again, we obtain a simple trigonometric function, with maxima at1223

S ≈
{

2mπ

d

∣∣∣∣m ∈ Z+

}
, (D12)

which immediately results in period ratios of the form1224

λm+1

λm
≈ m+ 1

m
, (D13)

which corresponds to the result in Eq. (D1) for ϕ = 0.1225

4. Short-range kernels1226

For the case of a short-range kernel W f (∆x) that extends upto a scale ϵ, we note from the1227

Fourier uncertainty principle that the characteristic k-scales of FW f (k) will ∼ 1/ϵ ≫ 1/d. Thus,1228

unlike the three other types of simple kernels discussed above, short range kernels do not have1229

structure at the scale of 1/d. Since all relevant scales are much larger than 1/d, adding short range1230

kernels to any of the other types of simple kernels will not change the structure of local maxima1231

at scales of 1/d.1232

5. Arbitrary simple kernels1233

We now consider a general form for simple kernels, by constructing linear combinations of the1234

above described three basic classes of simple kernels each corresponding to the same length scale1235

d and additional short-range kernels.1236

W f = alocalW
f
local + adiffuseW

f
diffuse + adecayingW

f
decaying + ashortW

f
short. (D14)

As demonstrated in the preceding sections, the Fourier transform FW f (k) will be given as1237

FW f (k) = alocal|Fg(k)| cos(kd− ψ) − 2W0adiffuse sin(kd)/k − 2W 2
0 adecaying(1 − cos(kd))/k + Fh(k)

(D15)

= H0(k) +

3∑
i=0

Hi(k) cos(kd+ ϕi) (D16)

for some constants ϕi, and some envelope functions Hi(k) for i = 0, 1, 2, 3 that are slowly varying1238

for kd ≳ O(1). Under this approximation, FW f (k) is simply the sum of multiple sinusoidal waves1239

with different phases and identical frequencies. Thus,1240

FW f (k) ≈ cos(kd− ϕ) (D17)

for some ϕ and kd ≳ O(1). Hence, the maxima of FW f (k) occur at1241

S ≈
{

2nπ + ϕ

d

∣∣∣∣n ∈ Z+

}
, (D18)

which immediately results in period ratios of the form Eq. (D1). Note that the approximations1242

made above imply that there may be deviations from our results for the maxima corresponding to1243

small k values — this may manifest as deviations in the largest period grid module away from Eq.1244

D1.1245
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FIG. 14. Randomly constructed fixed-scale interactions (left column) and their Fourier transforms (right
column), in addition to the hand-designed ones in Fig.3, that give ϕ = 0 .

a. Caveats1246

Clearly there exist simple kernels with Fourier transforms that are not given by FW f (k) ≈1247

cos(kd − ϕ). For example the Gaussian kernel, W f (∆x) = exp[−∆x2/(2d2)]/(d
√

2π) is a simple1248

decaying kernel (since it has only a single scale d). Yet, its Fourier transform is simply FW f (k) =1249

exp[−k2d2/2], which has only a single maximum! However, as we have shown earlier, there exist1250

kernels that are arbitrarily close to the Gaussian kernel, whose Fourier transforms are given by1251

powers of trigonometric functions, and hence have multiple regularly-spaced maxima with a spacing1252

of ∼ 1/d. Similarly, there exist additional simple functions[126–128], f(∆x), (like the Gaussian1253

kernel) whose Fourier transforms Ff(k) have a small number of maxima. We hypothesize that for1254

all such functions f(∆x) there exist simple kernels g(∆x) that are arbitrarily close to f(∆x) and1255

possess regularly spaced maxima.1256

6. Period ratios1257

Having demonstrated analytically that simple kernels result in a sequence of period ratios1258

given by Eq. (D1), we now address the question of the mean period ratio over the sequence and1259

over different values of ϕ. In the main text we have demonstrated that setting ϕ = 0 results in1260

a detailed period ratio sequence that is in close agreement with the sequence of experimentally1261

observed values. Here we consider the period ratios obtained for other values of ϕ, to demonstrate1262

that the experimental observation of mean period ratios being approximated by 1.4 [27] emerges1263

naturally from our setup.1264

From Eq. (D1), we obtained that the period ratio, rm = λm+1/λm can be written as1265

rm = 1 + 1/(m+ f), (D19)

where f = ϕ/(2π). We ignore m = 1, since that results in a period ratio close to 2, which does1266

not correspond to experimental observations. Averaging the period ratio over the next 4 modules1267

(corresponding to rm for m ∈ {2 . . . 4}) results in1268

⟨rm⟩m = 1 +
1

3

(
1

f + 2
+

1

f + 3
+

1

f + 4

)
(D20)

As can be seen in Fig. 15, this mean period ratio lies in the range [1.3,1.45], indicating that at all1269

values of ϕ, the period ratio obtained from Eq. (D1) matches well with experimental observations.1270

The average of these period ratios over all values of ϕ can also be calculated as12711272

⟨rm⟩ϕ,m = 1 +
1

3

[
log

(
5

3

)
+ log

(
7

5

)
+ log

(
9

7

)]
(D21)
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FIG. 15. Mean grid-period ratios Ratios of grid periods averaged over 4 modules as a function of the
phase shift ϕ in Eq. (D1)

which is approximately equal to 1.37.1273

7. Module size; number of modules as a topological quantity1274

As discussed in the main text, peak-selection for modularization is a highly robust mechanism1275

that is largely indifferent to system parameters such as the the particular forms of the fixed-scale1276

interaction and the shape of the gradient. Here we provide an analysis of the number of modules,1277

the scaling of module sizes, and the positions of module boundaries, which also exhibit the same1278

robustness. Further, we also describe how this robustness may be interpreted as arising from a1279

topological origin, similar to topological robustness in other physical systems like the quantum hall1280

effect.1281

Recall that for the continuously graded kernel W g
nDV (∆x) with characteristic spatial scale1282

σ(nDV ) at position nDV , the wave-vector of the formed pattern was proportional to 1/σ(nDV ):1283

k∗g(nDV ) = η/σ(nDV ), (D22)

where η is an nDV -independent constant that depends on only the particular form of the graded1284

kernel. Let the spatial extent of the system be nDV ∈ [0, L], with σ(nDV ) monotonic such that1285

σmin = σ(0) ≤ σ(nDV ) ≤ σ(L) = σmax.1286

We assume for simplicity that the fixed-scale lateral interaction is a simple kernel, such that1287

FW f (k) ∼ cos(kd−ϕ). Thus, the local maxima generated by FW f (k) occur at kn ≈ (2nπ+ϕ)/d,1288

where n are the natural numbers. As discussed in the main text, each of these local maxima is1289

‘selected’ in turn by the moving broad peak of the Fourier transform of the graded kernel, whose1290

position according to Eq. D22 occurs at k∗g(nDV ) = η/σ(nDV ).1291

Notably, the selected maximum km will be robust to small perturbations in the selection function1292

FW g
nDV (k), since km will remain quantized to one of the discrete values prespecified by the set1293

{kn∥n ∈ N}. In this sense, the chosen maximum km (and hence the corresponding module)1294

presents the hallmarks of a topologically protected state[1]. The topological number corresponding1295

to a given module is the module number m, which is a topological invariant similar to a winding1296

number[1](Note that in our convention the module number m is ordered such that the largest grid1297

period module is the first module. This is opposite to the numbering usually used in the literature,1298

such as in [27]).1299

The set of modules expressed through the length of the system corresponds to the set of local1300

maxima kn that lie within the range [η/σmax, η/σmin] that is delineated by the range of peak1301

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


43

positions of the graded interaction. It follows that the maxima selected by the graded interaction1302

obey:1303

η

σmax
≤ 2nπ + ϕ

d
≤ η

σmin
. (D23)

Thus, the set of formed modules are determined by the set of integers n that fit in the following1304

interval:1305

−ϕ+ ηd/σmax

2π
≤ n ≤ −ϕ+ ηd/σmin

2π
(D24)

and hence the number of modules Nmod is:1306

# modules ≡ Nmod

=

⌊
−ϕ+ ηd/σmin

2π

⌋
−
⌈
−ϕ+ ηd/σmax

2π

⌉
=

⌊
−ϕ+ k∗g(0)d

2π

⌋
−
⌈
−ϕ+ k∗g(L)d

2π

⌉
(D25)

where ⌊ ⌋, ⌈ ⌉ indicate the floor and ceiling operations, respectively.1307

The above result leads to the following observations: First, the central quantity essential for1308

determining the number of modules is the difference in the integer ratios of the fixed-scale inter-1309

action width to the extremal lateral interaction widths, d/σmin, d/σmax. Second, the number of1310

modules depends only on the end-point values σmin, σmax of the smoothly varying width σ(nDV )1311

the graded interaction; notably, it does not depend on the detailed shape of σ(nDV ). Moreover, if1312

σmin, σmax are varied smoothly (while d is held fixed), or if d is varied smoothly (while σmin, σmax1313

are held fixed), the number of modules will remain fixed, until the change becomes large enough to1314

accommodate one additional or one less module. Thus, the number of modules is also a topological1315

invariant of the system, through the module number m. Third, the number of modules does not1316

depend on the system size L, or the number of neurons nDV the system is discretized into (cf. Fig.1317

3f). Fourth, since the average module size will be L/Nmod, the module sizes are extensive in L.1318

Thus, for sufficiently large L, the module sizes can be orders of magnitude larger than the scales1319

of the lateral interaction d and σ.1320

Note that the above argument on topological robustness of the modularization of the system1321

is not restricted to the case of simple fixed-scale kernels. Indeed, for any fixed-scale interaction1322

W f , the topological number m for any given expressed module will correspond to selecting the mth
1323

maximum of FW f (k), for k > 0.1324

a. Module boundary locations1325

Following the peak-selection arguments made earlier, the module boundaries will occur at spatial1326

locations that have k∗g(nDV ) in between kn and kn+1 (the specific location will depend on the1327

particular forms of the kernels). As a zeroth order approximation, we can assume that the module1328

boundaries will occur near (kn + kn+1)/2,1329

k∗g(nboundary) ≈ (2n+ 1)π + ϕ

d
(D26)

and thus1330

nboundary ≈ σ−1

(
ηd

(2n+ 1)π

)
. (D27)
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where σ−1 is the inverse function of σ(nDV ), σ−1 ◦ σ(x) = x. Thus, while the specific positions1331

of the module boundaries are dependent on the shape of the gradient σ(nDV ), qualitative features1332

such as the number of modules, module periods and module sizes are indifferent to the particular1333

forms of the gradient (cf. Fig. 3f).1334

In (Fig. 4d), we vary the width of the σ(x) in two different ways: linearly along and in a square1335

root along nDV . This leads to a shift in the module boundary locations that is predicted by fourier1336

theory.1337

8. 2D analysis1338

We have presented a majority of the above analysis for the case of one-dimensional grid cells.1339

Here we briefly present the analogous computations for the Fourier transforms in two dimensions.1340

We first demonstrate a classical result relating the Fourier transform of radially symmetric functions1341

to the Hankel transform, which we shall then use to compute the relevant transforms. Consider1342

the Fourier transform of a function f(x) = f(x, y)1343

Ff(k) =

∫
f(x)eik·xdx

Ff(kx, ky) =

∫
f(x, y)eikxx+ikyydxdy.

Define polar coordinates in real and Fourier space such that:1344

x = r cos θ

y = r sin θ

kx = k cosϕ

ky = k sinϕ

This leads to the dot product k · x to be simplified as1345

kxx+ kyy = rk(cos θ cosϕ+ sin θ sinϕ)

= rk cos(θ − ϕ)

Thus,1346

Ff(kx, ky) = Ff(k, ϕ) =

∫ ∞

0

∫ 2π

0
rdrdθf(r, θ)eikr cos(θ−ϕ)

In all cases of interest, the function f is a kernel, and is hence a radially-symmetric real function1347

f(r, θ) = f(r). Similarly, the Fourier transform Ff will also be a real radially-symmetric function1348

Ff(k, ϕ) = Ff(k). Thus1349

Ff(k) =

∫ ∞

0

∫ 2π

0
rdrdθf(r)eikr cos(θ−ϕ), (D28)

=

∫ ∞

0
rdrf(r)

∫ 2π

0
eikr cos(θ−ϕ)dθ, (D29)

= 2π

∫ ∞

0
rf(r)J0(kr)dr, (D30)

where J0 is the Bessel function of the first kind, defined by1350

J0(x) =
1

2π

∫ 2π

0
eix cos(θ−ϕ)dθ.
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FIG. 16. Bessel functions (left column) and period ratios for Bessel function maxima (right column) with
their best-fit values of ϕ for the period ratios corresponding to Eq. (D1)

Equation (D30) defines the Hankel transform (of order zero) of f(r) — the radial component of1351

the Fourier transform of the kernel f(x) is simply the Hankel transform of f(|x|).1352

For the localized gaussian secondary interaction, we can calculate the Fourier transform ana-1353

lytically.1354

FWlocal(k) = 2π

∫ ∞

0
r
[
αEe

−r2/2σ2
E − αIe

−r2/2σ2
I + αSe

−(r−d)2/2σ2
S

]
J0(kr)dr

= 2π
[
αEσ

2
Ee

−k2σ2
E/2 − αIσ

2
Ie

−k2σ2
I/2 + αSJ0(kd)σ2Se

−k2σ2
S/2

]
We can also analytically calculate the Fourier transform for a box-like interaction:1355

FWdiffuse(k) = 2πW

∫ d

0
rJ0(kr)dr

=
2πW

k2

∫ kd

0
ρJ0(ρ)dr

=
2πW

k2
[kdJ1(kd)]

=
2πWd2J1(kd)

kd

We can similarly also define a two-dimensional equivalent of the decaying kernel, as the convo-1356

lution of the half-sized circular box kernel with itself. Thus, by applying convolution theorem to1357

the result on diffuse kernels we obtain1358

FWdecaying(k) =

[
πWdJ1(kd/2)

k

]2
.

Note that J0(x) and J1(x) display qualitatively similar behavior to cos(x) and sin(x) respec-1359

tively, apart from an amplitude modulation of the peaks — particularly, we note that the Bessel1360

functions display approximately periodic maxima, which was the central property required for all1361

of our results on modularization and peak selection to apply. We demonstrate this in Fig.16, where1362

we show that the maxima of the Bessel functions are approximately periodic, and fit the form of1363

Eq. (D1) well. In particular, note that the best-fit value of ϕ for J0(k) is approximately 0, which1364

is similar to cos(k), and the best-fit value of ϕ for J1(k) is approximately π/4, which is similar to1365

sin(k).1366

We implemented a 2d simulation that generates 3 discrete modules as shown in Figure 18. For1367

computational feasibility, the simulation was performed in 2 parts: one with x ∈ [0, 0.6N2d
x ] and the1368
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FIG. 17. Fixed interactions(left, in orange) and their oscillatory Fourier transforms in 1D (left column) and
2D (right column).
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FIG. 18. 2d simulation with 3 modules: (top) Snapshots of population activity showing 3 discrete
2d grid modules, (bottom) plot of grid spacing and comparision with Hankel transform predictions. Grid
spacing determined by calculating the (neural) spatial auto-correlation of the population firing activity.

other with x ∈ [0.6N2d
x , N2d

x ]. The weight matrices for each network were of size 100x1000 each.1369

The weight matrix for a single large 100x2000 network would have contained 4x1010 elements,1370

which we found prohibitively difficult and slow to run.1371

Fig 19(a) shows another instance of a modular 2d network, the only difference being the value1372

of dloc, which changed from 50 to 45. Fig 19(b) shows the same simulation with 2 distinct random1373

initializations. The pair of resulting modules in each simulation have different relative orientations.1374
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a

b
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low

high

FIG. 19. (a) Top: Another instance of a spontaneously formed modularized two dimensional network with
parameters given in Table 4. Bottom: autocorrelation plots of regions within the two formed modules,
demonstrating the six-fold symmetry of the pattern formation. (b) Two different random initializations of
the network from Fig 2h show different relative orientations between the 2 formed modules.

Because finite size effects from our simulations also partially constrain the orientations of the1375

modules (data not shown), we cannot make predictions about the relative orientations of the grid1376

modules found in experiments [27].1377

9. Robustness to spatial noise1378

In the main text, we discussed how the topological robustness properties of peak selection result1379

in the formed modules being stable to several forms of noise. Particularly, here we focus on the1380

robustness to spatial heterogeneities in the lateral interaction kernels.1381

We first examine the robustness to spatial heterogeneities in the pattern forming kernel W g.1382

To construct such an inhomogeneous pattern-forming interaction, we construct the noisy kernel at1383

location x, by replacing the spatially homogeneous kernel W g[x,x′] = W g[x−x′], with a spatially1384

heterogeneous kernel W g
ξ [x,x′] = W g[|x − x′| + ξ(x′)], where ξ(x′) is a random number sampled1385

independently for each spatial location x′ with mean zero and variance ϵ2. In Fig. 20d we present1386

examples of such kernels for the case of W g[x,x′] described by the box function Eq. (12). Note1387

how the independent sampling of ξ(x′) at each location results in a heterogenous kernel W g
ξ that1388

varies in scale at different x, and is no longer radially symmetric.1389

Recall that peak selection entails that the grid period at any location nDV is dependent on the1390

set of potential maxima defined by FW f (k), with a selection between these maxima performed by1391

the broader peak of FW g(k). If noise in the form of spatial heterogeneities are only introduced in1392

W g (and hence introduced in FW g) this results in a noisy selection function. However, since the1393

same maxima will be chosen for a range of selection functions (See Fig. 20a-b), the heterogeneity1394

in W g will not be manifested in the emergent grid period.1395

We next consider the addition of similar heterogeneities in the fixed-scale interaction as well,1396

W f (such as in Fig. 20c). Note that maxima induced by simple W f are at kn ≈ (2nπ + ϕ)/d,1397

where n are the natural numbers, and hence the grid periodicity of the nth module is given by1398

λn ≈ d/(n+ϕ/2π). If we consider O(ϵ) noise added to W f in the form of spatial heterogeneities, this1399

would result in an O(ϵ) error in the effective fixed-scale d. However, since λn is approximately d/n,1400

thus the effective noise in periodicity of the nth module, λn, will be O(ϵ/n). Thus, higher module1401

numbers (corresponding to modules with smaller grid periods) have additional error correction1402

beyond the robustness conferred by the topological nature of the peak selection process. This1403
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results in clean hexagonal firing fields despite inhomogeneities introduced in all lateral interactions1404

as shown in Fig. 6.1405

b

c d

a

FIG. 20. Noise robustness in peak selection process demonstrating how the additional of the smaller
oscillatory fourier transform of the fixed interaction leads to no change in maxima despite smooth movement
of the primary peak. (a) Example pattern forming interaction kernels from 4 neurons without a secondary
fixed scale interaction (b) Example composite kernels from 4 neurons showing both the pattern forming
interaction (black) and fixed scale interaction (grey)(c-d) The movement of the pattern forming interaction
leads to a shift in the location of the gloabl maxima in the absence of a secondary interaction. This secondary
interaction prevents any shift in the location of the global maxima when defined by the sum of the pattern
forming interaction and the fixed scale interaction.

a. Peak selection stabilizes against finite-neuron-number effects1406

This robustness to spatial noise discussed in the above section, through the addition of a sec-1407

ondary length-scale kernel, also manifests itself in terms of added stability towards finite-neuron-1408

a b

tim
e

tim
e

neuron index neuron index

FIG. 21. Addition of secondary length-scale interaction provides robustness to path integration
(a) With a noisy kernel and the inclusion of fixed length interaction, the model can perfectly path integrate.
(b) With a noisy kernel but without the fixed length interaction, the model’s path integration performance
is noisy.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


49

high

low

a b
Ny=35

constant interaction 
width

gradient in interaction width, with 
fixed-scale interaction

Ny=70

Ny=140

FIG. 22. Addition of secondary fixed-scale interaction stabilizes against finite-neuron-number
effects (a) Simulations of 2d grid cell network with a single length scale in the interaction kernel, with
system sizes 35× 35, 70× 70 and 140× 140 neurons. The largest system results in pattern formation, while
the smaller ones do not, due to finite size effects. Left and right correspond to two different interaction
kernel widths. (b) Simulations of a 2d module forming grid cell network with system size along the shorter,
non-gradient dimension being 35, 70 and 140 respectively. The gradient in interaction widths along the
longer dimension linearly changes from between the two widths considered in the corresponding row in
(a). The secondary interaction encourages the formation of module even at sizes where the single module
simulation does not.

number effects. To examine this effect, we first compare the grid pattern formation on neural1409

sheets with N = 35 × 35, N = 70 × 70 and N = 140 × 140 neurons, Fig. 22a by using a single1410

homogeneous pattern forming kernel. Here, we note that the neural sheet with 140 × 140 neurons1411

is large enough for stable pattern formation, whereas in the smaller sheets (with scaled kernel in-1412

teraction widths) the patterned dynamics is washed out due to finite-neuron-number effects. Then,1413

we considered rectangular sheets whose shorter axes had 35, 70 and 140 neurons, and longer axes1414

scaled sufficiently to fit two modules. On these sheets, we simulated dynamics with an interac-1415

tion kernel given by the sum of a graded W g and a fixed W f , similar to Fig. 2. For a neural1416

sheet with only 35 neurons along the short axis we could not observe stable hexagonal pattern1417

formation. Remarkably, even when the short axis has only 70 neurons (a neuron number that was1418

too small to permit pattern formation in the single pattern forming kernel case), we continue to1419

obtain hexagonal pattern formation, Fig. 22b, top. At this neural sheet size, when simulating with1420

different random initial conditions (not shown here), a small fraction of simulations also failed to1421

show pattern formation.1422

Thus, we empirically observe that the addition of a secondary scale as W f can stabilize against1423

finite neuron-number effects, implying that the formation of K modules through peak selection1424

may require marginally fewer than K times as many neurons as would be necessary for a single1425

grid cell module.1426

Appendix E: Alternative biophysical gradients1427

For introducing a gradient in time constant, we introduce two populations of neurons with1428

different time constants. In this model, we consider two interacting cell types such that one of1429

the cell types has a fixed time constant along the DV axis, and the other whose time constant is1430

smoothly graded along that axis. The time-constant affects the time-constant of dendritic integra-1431

tion. Though biologically distinct, the effect of modulating the dendritic integration time-constant1432

of one cell type is mathematically similar to the effect of modulating the width of connectivity of1433
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one cell type while keeping the other fixed:1434

ṡ1 = −s1/τ1 + ReLU[

∫
W1(x, x

′)s1(x
′)dx′ +

∫
W2(x, x

′)s2(x
′)dx′]

ṡ2 = −s2/τ2 + ReLU[

∫
W1(x, x

′)s1(x
′)dx′ +

∫
W2(x, x

′)s2(x
′)dx′]

Here, W2 is parametrized as the fixed-scale interaction described in the main text, i.e., Wf ; and1435

W1 incorporates the effect of dendritic attenuation as1436

W1(x, x
′) = WnDV (x− x′) = Wpf (x− x′) ∗ exp(−|x− x′|/στ (nDV ))

where Wpf is the pattern forming kernel (similar to Wg in the main text, but without any explicit1437

gradient in widths), and /στ captures the gradient in time constant via an exponential attenuation.1438

Thus, in combination with the dendritic attenuation, the W1 interaction plays the role of W g in1439

the main text, providing an effective gradient in spatial lengthscale though only a gradient in the1440

neural time constant.1441

To obtain multiscale pattern formation, we also examine a gradient in synaptic strength. Here,1442

a nonlinearity is imposed on the synaptic strength that thresholds the maximum possible coupling1443

strength. The summed graded plus fixed-scale interaction W is thus changed to:1444

WnDV (∆x) = Φ[γ(nDV )W (∆x)], (E1)

where γ(nDV ) is the gradient in synaptic strength, and Φ is a thresholding function, Φ[x] = −Θ1445

if x < −Θ, Φ[x] = Θ if x > Θ and Φ[x] = x otherwise. This nonlinearity results in an interplay1446

between synaptic strength and an effective interaction width. For example, the effective lengthscale1447

σ(nDV ) will scale as ∼
√

log γ(nDV ) for a mexican-hat W g (assuming that |W f | < Θ as would be1448

the case for weak W f ).1449

Note that in each of the two cases described above, there is an effective lengthscale that varies in1450

a gradient in the main pattern-forming interaction, akin to W g in the main text. Further, in both1451

cases the secondary interaction, W f remains unaffected. Thus, following the arguments presented1452

in the main text, the length scale of the pattern formation will be governed by the local maxima1453

of the Fourier transform of W f , exactly equivalent to the pattern formation dynamics described1454

for the case of a gradient in the explicit interaction width. As a result, the period ratio prediction1455

will have the exact same form as Eq. (5), and similarly all other derived results follow through for1456

these alternative biophysical gradients in time constant or synaptic strength.1457

1. Comparison of experimental observations with predicted period ratios1458

The general mechanism of peak-selection presented above describes how discrete modules can1459

spontaneously arise in the presence of continuous gradients, by consideration of an additional fixed-1460

scale lateral interaction W f . However, this mechanism does not provide any testable predictions1461

for the ratio of grid periods unless additional assumptions are made. If indeed we assume that W f
1462

is a simple kernel, i.e., W f is primarily defined by a single spatial scale, then we demonstrated in1463

SI Sec. D that the period ratios will be given by the simple formula, Eq. D1. In this section, we1464

show that experimental observations of grid periods largely appear to match our predicted period1465

ratios for simple kernels with ϕ = 0.1466

For verification of our main results on the predicted form of period ratios, we examine the1467

literature for grid period measurements for multiple simultaneously measured grid modules in1468

rats[27, 129–131]. We note that a large fraction of experimental observations of grid cells with1469
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FIG. 23. Alternative biophysical gradients: (a) Neuronal time-constant: We introduce 2 populations
of cells, one with fixed neuronal time constant and one with a gradient in the neuronal time constant. (b)
Synaptic strength: We introduce a gradient in the inhibitory strength along with a thresholding non-linearity
that couples the strength of interaction with the width. Shown in the figure panels are weight matrices,
steady state activity pattern showing 2 discrete modules and grid periods measured as distance between
activity bumps in number of neurons (top-bottom)

FIG. 24. Adding a gradient in the longer-scale interaction does not lead to modules: Steady
state activity pattern and grid periods measured as distance between activity bumps with a gradient in
longer-scale interaction kernel (left) and gradient in the shorter-scale interaction kernel (right).

more than one module measure only two modules. For a single pair of grid periods λ1 and λ2 > λ1,1470

we can always explicitly solve for ϕ and m in Eq. (D1), to obtain1471

ϕ

2π
=

{
λ2

λ1 − λ2

}
,m =

⌊
λ2

λ1 − λ2

⌋
, (E2)

where {x} represents that fractional part of x, and ⌊x⌋ = x − {x} represents the integer part of1472

x. Thus, a single ratio, because it can always be fit by Eq. (D1), imposes no constraints on the1473

accuracy of the expression.1474
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FIG. 25. The 3 rats from Stensola et al. with 4 modules and their corresponding periods.

It is possible to obtain a value of ϕ from Eq. (D1) and a single pair of periods; however, the1475

estimate obtained from a single pair is not robust: rm depends too sensitively on ϕ. For example,1476

in [27], Rat 13388 exhibits grid periods of ≈ 53.24 cm and ≈ 43.00 cm (as estimated from SI Fig.1477

12b in [27]); Eq. (D1) then yields ϕ/(2π) = 0.199. Assuming a very small measurement error1478

of ∼ 0.5cm in the larger period, such that if it were 53.75 cm instead of 53.24, would yield ϕ1479

exactly equal to zero. A simple sensitivity analysis of the magnitude of error in estimating ϕ can1480

be performed from Eq. (E2):1481

δϕ = 3ϵ
λ2

λ1 − λ2
≈ 3ϵm, (E3)

where ϵ represents the fractional error in the estimate of grid period. Thus, particularly for smaller1482

grid periods (corresponding to larger m), even small errors in grid period estimation can result in1483

a large error in ϕ, making the errorbars in the estimation of ϕ from a single pair of periods large.1484

To obtain results with significant statistical certainty, we focus our analysis on published exper-1485

imental studies that measure at least 50 grid cells per animal, spanning at least 3 distinct modules.1486

This restriction results in grid period data sets for three rats — we present kernel density estimates1487

of the module periods for each of them in Fig. 25 (Fig. 25c corresponds to the data presented in1488

the main text in Fig. 5).1489

We have already demonstrated in Fig. 5 that Rat 14257 presents an extremely accurate match1490

to the period ratio prediction for ϕ = 0 (i.e., predicted period ratios of 2, 3/2, 4/3, 5/4,...); in1491

addition, Rat 14147 (observed period ratios of 1.27 , 1.46 ≈ 3/2, 1.37 ≈ 4/3) and Rat 157081492

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2024. ; https://doi.org/10.1101/2021.10.28.466284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466284
http://creativecommons.org/licenses/by-nc-nd/4.0/


53

(observed period ratios of 1.31, 1.49 ≈ 3/2, 1.32 ≈ 4/3) also match ϕ = 0 very well (R2 values1493

of 0.999, 0.979, and 0.968 for Rats 14257, 15708, 14147 resp.) for all grid modules except for the1494

module with the largest period.1495

Why is there an observed discrepancy for the grid module with the largest period? We pro-1496

pose four possible reasons for this discrepancy: Firstly, this discrepancy may be a result of the1497

approximation made in arriving at Eq. (D17) — since the approximation is particularly accurate1498

for kd ≳ O(1), the potentialy mismatch would primarily affect only the largest grid period module.1499

Secondly, as demonstrated in Sec. D 9, the grid module corresponding to the largest grid period1500

will have the least robustness to noise in the fixed-scale interaction, potentially introducing a large1501

variance in the grid period for that module. Thirdly, as can be seen in Fig. 3h and Eq. (E3),1502

the error in estimating the grid period for the first module (m = 1) is the most susceptible to1503

errors in the value of ϕ Lastly, our predictions for grid period ratios Eq. (D1) are for the case of1504

simple kernels that have a single spatial scale. A discrepancy at only the largest grid module may1505

thus be suggestive of fixed-scale interactions that are primarily described by a single scale, with an1506

additional low frequency perturbation at a larger spatial scale.1507

However, note that (particularly for Rats 14147 and 14257) there are relatively few grid cells1508

observed from this largest period module, and the resulting uncertainty in period estimation may1509

instead contribute to the error. In sum, apart from the possibility of some additional low frequency1510

perturbations, the experimental data for rats with several simultaneously observed grid modules1511

is largely consistent with the predicted period ratios for simple kernels with ϕ = 0.1512

Skipped modules: Sometimes, neural recordings can miss a module. This can cause a large1513

deviation from our predictions. For example, for a set of 5 modules following period ratios M4/M51514

= 1.20, M3/M4 = 1.25, M2/M3 = 1.33, M1/M2 = 1.5. If recordings had missed module M4, the1515

measured ratios would be M1/M2 = 1.5, M2/M3 = 1.33, M3/M5 = 1.5.1516

However, we do note that available data on multiple modules with a statistically large number1517

of grid cells per module are quite sparse. To obtain further verification of our theoretical results,1518

including the prediction of Eq. (D1) and even more specifically the hypothesis that ϕ is close to1519

zero, additional data with multiple simultaneously observed grid modules will be important.1520

Appendix F: Lyapunov Function1521

The energy function of continuous time neural networks can be written as [132]:1522

E(s) = − 1

2

∑
ij

s(i)Wijs(j)

+
∑
i

∫ s(i)

0
ϕ−1 (s) ds−

∑
i

Iis(i), (F1)

where s represents a vector of the synaptic activation at each neuron in the network, and Ii is1523

the input bias to neuron i. For simplicity and since linear analysis does a remarkably good job1524

in predicting the formed modules, let us restrict ourselves to the case of ϕ(x) = x. Also, since1525

the system is locally translationally invariant, we know that the dominant modes are going to be1526

periodic. Hence, we may evaluate the energy function of the network dynamics (in the linearized1527

regime) by assessing the energy of the periodic neural activity modes:1528

sk(x) = A sin(k · x + δ) +B, (F2)

where k = kk̂ is an arbitrary Fourier space vector, and A,B and δ are arbitrary constants. For1529

these modes, we can write the energy function in the continuum limit as:1530

E[sk(x)] = −1

2

∫
dxdx′W (x,x′)sk(x)sk(x′) +

1

2

∫
dxsk(x)2
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Assuming that the system size L is large,1531

2E[sk(x)] = −
∫
W (x− x′)[A sin(k · x + δ) +B][A sin(k · x′ + δ) +B]dxdx′ +

∫
[A sin(k · x + ∆) +B]2dx

= −A2

∫
dudvW (u) cos(k · u) +A2

∫
dudvW (u) cos(2k · v + δ) +B2

∫
dxdx′W (x− x′) + L(A2/2 +B2)

= −A2L

∫
dueik·uW (u) +A2

∫
duW (u)

∫
dv cos(2k · v + δ) +B2

∫
dudvW (u) + L(A2/2 +B2)/2

= −A2LW̃ (k) + LB2W̄ + L(A2/2 +B2),

= −constant1 × W̃ (k) + constant2

where have used the simple trigonometric identity, 2 sin(C) sin(D) = cos(C − D) − cos(C + D),1532

and a change of variables,
∫
dxdx′ = (1/2)

∫
d(x − x′)d(x + x′) =

∫
dudv, with u = x − x′ and1533

v =
1

2
(x + x′).1534

Thus, we obtain that the energy function E[sk] is a simple linear function of the Fourier trans-1535

form W̃ (k) of the recurrent weight matrix. The minimum energy solution corresponds to the1536

Fourier mode that maximizes W̃ (k). In other words, the dynamics is dominated by the k∗ that1537

maximizes W̃ (k). This result, derived from an energy landscape perspective, is equivalent to the1538

result in Eq. (B10), which we obtained earlier via perturbation analysis.1539

Appendix G: General formulation of module formation dynamics: Discrete peak selection1540

via loss minimization1541

In Sec. F, we demonstrated how the pattern formation on the neural sheet can be derived via1542

an energy minimization approach. Here, we use an energy landscape view to describe how loss1543

function minimization results in modular solutions.1544

The key components for spatially modular solutions to arise from energy minimization are as1545

follows: 1) A spatially-independent loss function f(θ) with multiple local maxima and minima;1546

2) A gradient in a spatially-dependent variable, θ0(x); and 3) A coupling between the system1547

parameters θ and θ0, that results in a combined loss function1548

L(θ, θ0(x)) = (1 − α)f(θ) + α∥θ − θ0(x)∥2 (G1)

Under appropriate constraints on f(θ), solving the following optimization at each x1549

θ∗(x) = arg maxθ L(θ, x) (G2)

will produce discrete, step-like changes as a function of x. This happens because the smooth1550

minimum given by the ||θ − θ0(x)||2 term effectively selects one of the local minima in f(θ) as1551

the global minimum. As the function ||θ − θ0(x)||2 slides smoothly along with x, the peak of f(θ)1552

selected as the global minimum remains the same for some time, then jumps abruptly. These step-1553

like changes are modular solutions to the global optimization problem. The energy function defined1554

in Eq. (G1) can be viewed as a regularized optimization problem, with the spatially-dependent1555

regularizer ||θ − θ0(x)||2 acting as a prior that selects one of the minima of f(θ) at each location1556

(Fig. 26).1557

The correspondence of this general picture with the peak selection mechanism described in the1558

main text follows directly with the following identifications: the spatially independent nonlinear1559

loss function f(θ) with the fixed-scale interaction W f ; the spatially varying parameter prior θ0(x)1560

with the graded scale σ(nDV ) of the pattern-forming kernel; the combined loss L(θ, x) with the full1561
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kernel WnDV ; and the spatially-varying, multi-step-like set of optima θ∗(x) with the grid periods1562

λ∗(x), respectively. Similar to peak selection for grid cells, the formed modules in this generalized1563

setting will also inherit topological robustness and stability.1564

We demonstrate a numerical example of this in Fig. 7, where we construct f(θ) as a random1565

sample from a Gaussian process with a radial basis function kernel, and simulate gradient descent1566

dynamics on the loss function L(θ, θ0(x)). To prevent the dynamics from getting stuck in local1567

minima of L, we simulate the gradient descent first purely on the regularization term, with gradually1568

increasing strength of the rugged loss function, through gradually decreasing α with increasing time.1569

Although we primarily focused on the peak selection process in Fourier space for multi-periodic1570

patterning in grid cells, we also showed that it has a general formulation in terms of dynamics on1571

an energy landscape: One (spatially invariant) interaction sets up an optimization problem with1572

multiple local minima, while a second (spatially graded) interaction defines a locally shallow single-1573

optimum landscape, with a smoothly shifting optimum as a function of space. Thus, the shallow1574

optimum selects one of the narrow local optima as the global optimum, with discontinuous jumps1575

to the next local minimum even as the parameters vary smoothly. This analytical formulation1576

provides a simplifying mathematical perspective on how smooth gradients could lead to discrete1577

patterning and modular specialization in the brain and body [34, 43, 133].1578

FIG. 26. A general setting for peak-selection Assuming a loss function f(θ) (blue) and a spatially
dependent quantity θ0 (red), a combined loss function L(θ, x) can be constructed such that the x-dependent
optimizer of L(θ, x) will be modular (green), since it will be constrained to correspond to one of the minima
of f(θ).
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Appendix H: The emergence of modules corresponds to the formation of localized1579

eigenvectors1580

As has been observed before [134], a neural network endowed with slowly varying local interac-1581

tions shows diverse timescales that are spatially localized: different parts of the network respond1582

with disparate temporal dynamics. We also find a localization of eigenvectors in our multi-module1583

grid network, Fig. 27A. Similar to [134], our interaction matrix has a locally circulant form (due to1584

the slowly varying gradient in lateral inhibition width). This is a signature of a phase transition,1585

similar to the Anderson localization transition in condensed matter physics [60]. The eigenvectors1586

for a regular pattern forming interaction in traditional continuous attractor models are delocalized1587

fourier waves which are then transformed into localized fixed-wavelength gaussian wavepackets1588

with the addition of the gradient and fixed scale interaction.1589

We find that in the resulting set of localized eigenvectors, each has a different but constant1590

period, Fig. 27B. These periods exactly match the spatial periods of the modules formed in steady1591

state. In sum, the locally circulant matrix gives rise to eigenvector localization, and the localized1592

eigenvectors correspond to the modules.1593
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FIG. 27. Localization of eigenvectors: A) Eigenvectors of various one-dimensional interaction weight
matrices along with the corresponding inter-peak spacings are localized, B) The periodicity within an eigen-
vector is constant.
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