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Abstract 

During spatial exploration, neural circuits in the hippocampus store memories of 

sequences of sensory events encountered in the environment. When sensory 
information is absent during “offline” resting periods, brief neuronal population bursts 

can “replay” sequences of activity that resemble bouts of sensory experience. These 
sequences can occur in either forward or reverse order, and can even include spatial 5 

trajectories that have not been experienced, but are consistent with the topology of the 
environment. The neural circuit mechanisms underlying this variable and flexible 
sequence generation are unknown. Here we demonstrate in a recurrent spiking 

network model of hippocampal area CA3 that experimental constraints on network 
dynamics such as population sparsity, stimulus selectivity, rhythmicity, and spike rate 10 

adaptation enable additional emergent properties, including variable offline memory 
replay. In an online stimulus-driven state, we observed the emergence of neuronal 

sequences that swept from representations of past to future stimuli on the timescale of 
the theta rhythm. In an offline state driven only by noise, the network generated both 

forward and reverse neuronal sequences, and recapitulated the experimental 15 

observation that offline memory replay events tend to include salient locations like the 
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site of a reward. These results demonstrate that biological constraints on the dynamics 
of recurrent neural circuits are sufficient to enable memories of sensory events stored 

in the strengths of synaptic connections to be flexibly read out during rest and sleep, 
which is thought to be important for memory consolidation and planning of future 20 

behavior. 

Introduction 

In mammals, the hippocampus is a brain region involved in the storage and recall of 

spatial and episodic memories. As an animal explores a spatial environment, different 25 

subpopulations of hippocampal neurons known as “place cells” are selectively 

activated at different positions in space, resulting in sequences of neuronal spiking that 
are on the seconds-long timescale of locomotor behavior (O’Keefe and Conway, 1978). 

The synchronous firing of these sparse neuronal ensembles is coordinated by 
population-wide oscillations referred to as theta (~4-10 Hz) and gamma (~30-100 Hz) 30 

rhythms (Colgin, 2016). Within each cycle of the theta rhythm (~125 ms), the spiking of 
active neurons is organized into fast timescale sequences such that neurons selective 

for just-visited positions spike first, then neurons selective for the current position, and 
finally neurons selective for the next and future positions spike last in the sequence 

(Drieu and Zugaro, 2019; Foster and Wilson, 2007). These order-preserving fast 35 

timescale “theta sequences” are thought to be involved in planning and learning of 

event order through associative synaptic plasticity (Jensen et al., 1996; Kay et al., 
2020).  

When an animal stops running, theta and gamma oscillations decrease, and 
neuronal circuits in the hippocampus instead emit intermittent synchronous bursts of 40 

activity that are associated with high-frequency oscillatory activity detectable in local 

field potential recordings in hippocampal area CA1. These ~100-200 ms long events 
are referred to as “sharp wave-ripples” (SWRs) (Colgin, 2016), and they occur during 

non-locomotor periods of quiet wakefulness, during reward consumption, and during 
slow-wave sleep, when sensory information about the spatial environment is reduced 45 

or absent. During SWRs, sparse subsets of neurons are co-activated, with a tendency 
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for neurons that fire sequentially during exploratory behavior to also fire sequentially 
during SWRs, either in the same order, in reverse, or with a mixture of both directions 

(Davidson et al., 2009; Pfeiffer, 2020; Stella et al., 2019; Wu and Foster, 2014). The 
hippocampus can also activate sequences of place cells during SWRs that correspond 50 

to possible paths through the environment that have not actually been experienced, 
suggesting a possible role for offline sequence generation in behavioral planning 

(Gupta et al., 2010; Igata et al., 2021; Ólafsdóttir et al., 2015, 2018; Wu and Foster, 
2014). Manipulations that disrupt neuronal activity during SWRs result in deficits in 

memory recall (Girardeau et al., 2009; Jadhav et al., 2012), supporting a hypothesis 55 

that offline reactivation of neuronal ensembles during SWRs is important for the 

maintenance and consolidation of long-term memories (Buzsáki, 1989; Joo and Frank, 
2018).  

Hippocampal SWRs are thought to be generated by the synchronous firing of 
subpopulations of neurons in the CA2 and CA3 regions of the hippocampus (Csicsvari 60 

et al., 2000; Oliva et al., 2016), which are characterized by substantial recurrent 
feedback connectivity (Duigou et al., 2014; Guzman et al., 2016; Okamoto and Ikegaya, 

2019). Recurrent networks have long been appreciated for their ability to generate rich 
internal dynamics (Amit and Brunel, 1997), including oscillations (Ermentrout, 1992). It 

has also been shown that associative plasticity at recurrent connections between 65 

excitatory neurons can enable robust reconstruction of complete memory 
representations from incomplete or noisy sensory cues (Amit and Brunel, 1997; 

Griniasty et al., 1993; Guzman et al., 2016; Hopfield, 1982; Marr, 1971; Treves and 
Rolls, 1994). However, this “pattern completion” function of recurrent networks 

requires that similarly tuned neurons activate each other via strong synaptic 70 

connections, resulting in sustained self-activation, rather than sequential activation of 

neurons that are selective for distinct stimuli (Lisman et al., 2005; Pfeiffer and Foster, 
2015; Renno-Costa et al., 2014). Previous work has shown that, in order for recurrent 

networks to generate sequential activity, some mechanism must be in place to “break 
the symmetry” and enable spread of activity from one ensemble of cells to another 75 

(Sompolinsky and Kanter, 1986; Tsodyks et al., 1996). During spatial navigation, 
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feedforward sensory inputs carrying information about the changing environment can 
provide the momentum necessary for sequence generation. However, during 

hippocampal SWRs, sensory inputs are reduced, and activity patterns are thought to 
be primarily internally generated by the recurrent connections within the hippocampus. 80 

In this study we use a computational model of hippocampal area CA3 to investigate 
the synaptic, cellular, and network mechanisms that enable flexible offline generation 

of memory-related neuronal sequences in the absence of ordered sensory information. 
 A number of possible mechanisms for sequence generation in recurrent 

networks have been proposed: 85 

1) Winner-take-all network mechanism (Almeida et al., 2007, 2009a; Lisman and 

Jensen, 2013): Within this framework, the subset of excitatory neurons receiving 
the most strongly weighted synaptic inputs responds first upon presentation of a 

stimulus. This active ensemble of cells then recruits feedback inhibition via local 
interneurons, which in turn prevents other neurons from firing for a brief time 90 

window (e.g. the ~15 ms duration of a single gamma cycle). This highlights the 
important roles that inhibitory neurons play in regulating sparsity (how many cells 

are co-active), selectivity (which cells are active), and rhythmicity (when cells fire) 
in recurrent networks (Almeida et al., 2009b; Rennó‐Costa et al., 2019; Stark et 

al., 2014; Stefanelli et al., 2016). However, while oscillatory feedback inhibition 95 

provides a network mechanism for parsing neuronal sequences into discrete 
elements, additional mechanisms are still required to ensure that distinct subsets 

of excitatory neurons are activated in a particular order across successive cycles 
of a rhythm (Lisman et al., 2005; Ramirez-Villegas et al., 2018). 

2) Heterogeneous cellular excitability (Luczak et al., 2007; Stark et al., 2015): If the 100 

intrinsic properties of neurons in a network are variable and heterogeneous, when 

a stimulus is presented, those neurons that are the most excitable will fire early, 
while neurons with progressively lower excitability will fire later, resulting in 

sequence generation. This mechanism can explain the offline generation of 
stereotyped, unidirectional sequences, but cannot account for variable generation 105 

of sequences in both forward and reverse directions. 
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3) Asymmetric distributions of synaptic weights (Sompolinsky and Kanter, 1986; 
Tsodyks et al., 1996): During learning, if changes in synaptic weights are 

controlled by a temporally asymmetric learning rule, recurrent connections can 
become biased such that neurons activated early in a sequence have stronger 110 

connections onto neurons activated later in a sequence (Levy, 1989; Malerba and 
Bazhenov, 2019; McNaughton and Morris, 1987; Reifenstein et al., 2021). This 

enables internally generated activity to flow along the direction of the bias in 
synaptic weights. While this mechanism accounts for offline replay of specific 

sequences in the same order experienced during learning, it cannot account for 115 

reverse replay or the flexible generation of non-experienced sequences (Gupta et 

al., 2010; Igata et al., 2021; Ólafsdóttir et al., 2015, 2018; Wu and Foster, 2014). 
4) Cellular or synaptic adaptation: It has also been proposed that short-term 

adaptation of either neuronal firing rate (Itskov et al., 2011; Treves, 2004) or 
synaptic efficacy (Romani and Tsodyks, 2015) can enable neuronal sequence 120 

generation in recurrent networks without asymmetric synaptic weights. According 
to this scheme, recently-activated neurons initially recruit connected partners with 

high efficacy, but continued spiking results in either a decrease in firing rate, or a 
decrease in the probability of neurotransmitter release. This causes connections 

to fatigue over time, and favors the sequential propagation of activity to more 125 

recently activated cells. These mechanisms do allow for the stochastic generation 
of neuronal sequences in either the forward or reverse direction, though they do 

not prescribe which or how many neurons will participate in a given replay event. 
In this study, we sought to understand how neuronal sequence generation in 

hippocampal area CA3 depends on the structure and function of the underlying 130 

network. To do this, we constructed a computational neuronal network model 

comprised of recurrently connected excitatory and inhibitory spiking neurons, and 
tuned it to match experimental constraints on the spiking dynamics of CA3 during 

spatial navigation, including sparsity, selectivity, rhythmicity, and spike rate adaptation. 
We then analyzed the direction and content of neuronal sequences generated both 135 

“online” during simulated navigation, and “offline” during simulated rest. We found that 
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when the network was driven by ordered sensory information in the online state, it 
generated forward-sweeping “theta sequences” that depended on the structure of 

recurrent connectivity in the network. In the offline state driven by noise, the network 
generated heterogenous memory replay events that moved either in forward, reverse, 140 

or mixed directions, and depended on network sparsity and rhythmicity, and neuronal 
stimulus selectivity and spike-rate adaptation. Model degeneracy analysis and network 

perturbations indicated that offline memory replay does not occur in networks with 
disrupted recurrent connectivity, or in networks lacking sparsity, selectivity, 

rhythmicity, or spike rate adaptation. Finally, when particular spatial locations were 145 

over-represented by the network, as occurs in the hippocampus at sites of reward (Lee 

et al., 2006; Turi et al., 2019; Zaremba et al., 2017), memory replay events were biased 
towards trajectories that included those salient positions (Gillespie et al., 2021; 

Ólafsdóttir et al., 2015; Singer and Frank, 2009). 
 150 

Results 

To investigate how sequential activity in the hippocampus generated “online” during 

spatial exploration can be recapitulated “offline” in the absence of sensory cues, we 
constructed a simple spiking neuronal network model of rodent hippocampal area CA3 

(Materials and Methods). Neural circuits in the hippocampus and cortex typically 155 

comprise a majority of excitatory neurons that project information to downstream 

circuits, and a minority of primarily locally connected inhibitory interneurons. We 
included populations of excitatory (1000) and inhibitory (200) neurons in proportion to 

experimental observations (Pelkey et al., 2017; Tremblay et al., 2016) (Figure 1A). Cell 
models were single-compartment, integrate-and-fire neurons with saturable, 160 

conductance-based excitatory and inhibitory synapses (Carnevale and Hines, 2006; 

Izhikevich, 2007; Izhikevich and Edelman, 2008). Excitatory neurons were endowed 
with spike-rate adaptation to support punctuated bursting behavior during theta 

oscillations (O’Keefe and Recce, 1993; Scharfman, 1993), and inhibitory neurons 
exhibited fast-spiking dynamics to sustain continuous high frequency firing during  165 

 

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2021.10.27.466186doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466186
http://creativecommons.org/licenses/by/4.0/


 
Figure 1. Sparsity, selectivity, and rhythmicity in a recurrent spiking neuronal network model of 
hippocampal area CA3. (A) Diagram illustrates connectivity of network model. Feedforward (FF) 
external excitatory inputs contact excitatory (E) and inhibitory (I) neurons. E and I neurons are recurrently 170 
connected to other E and I neurons. (B) Simulations of rodent “online exploration” emulated the 
response of the hippocampus during unidirectional locomotion along a circular linear track that takes 3 
seconds to traverse at constant run velocity. (C) Population sparsity (active fraction of neurons) vs. time 
shown for each cell population. (D) Mean firing rate of active neurons vs. time shown for each cell 
population. (E) Firing rates vs. time of all neurons in each cell population are shown (average of 5 trials 175 
from one example network instance). Cells in each population are sorted by the location of maximum 
firing. (F) Average stimulus selectivity of each cell population. Trial-averaged activity of each cell was 
centered around the location of maximum firing, and then averaged across cells. (G) The average activity 
of each population on a single trial (top row) was bandpass filtered in the theta (middle row) and gamma 
(bottom row) frequency bands. Colored traces show filtered signals (theta: green, gamma: purple). 180 
Traces derived from one example network instance. (H) Power spectrum of average population activity 
indicates dominant frequency components in the theta and gamma bands (one-sided paired t-tests: 
theta: E vs. FF, p=0.00001; I vs. FF, p<0.00001; gamma: E vs. FF, p<0.00001; I vs. FF, p<0.00001). In 
(C), (D), (F), and (H), data were first averaged across 5 trials per network instance. Mean (solid) ± SEM 
(shading) were computed across 5 independent instances of each network model. p-values reflect FDR 185 
correction for multiple comparisons. 
 

gamma oscillations (Csicsvari et al., 2003; Ylinen et al., 1995) (Supplementary Figure 
S1A, Materials and Methods). 
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To simulate the sensory experience of locomotion in a spatial environment, we 190 

provided both excitatory and inhibitory neurons with external afferent inputs from a 

population of 1000 excitatory neurons, each of which was selectively activated at 
distinct but overlapping positions within a simulated circular track that took 3 seconds 

to traverse (Figures 1A – 1C, Materials and Methods). Recurrent connections within 
and between excitatory and inhibitory cell populations were also included (Figure 1A), 195 

as they are hallmark features of hippocampal area CA3, and have been shown to 
support rich network dynamics (Renno-Costa et al., 2014; Stark et al., 2014). 

Specifically, inhibitory feedback connections have been shown to regulate the number 
of simultaneously active neurons (sparsity) (Stefanelli et al., 2016), and to contribute to 

the generation of theta and gamma network oscillations (Bezaire et al., 2016; Geisler et 200 

al., 2005; Rennó‐Costa et al., 2019; Stark et al., 2014; Wang, 2010). Plastic excitatory 

connections between excitatory neurons have long been implicated in stimulus 
selectivity and the storage and recall of memories (Almeida et al., 2007; Hopfield, 1982; 

Lisman and Jensen, 2013). It has been proposed that strong connections between 
ensembles of co-active neurons could arise through a combination of biased 205 

connectivity during brain development (Buzsáki et al., 2021; Dragoi and Tonegawa, 
2013; Farooq and Dragoi, 2019; Grosmark and Buzsáki, 2016), and experience-driven 

synaptic plasticity during learning (Bittner et al., 2015, 2017; Brunel and Trullier, 1998; 
Káli and Dayan, 2000; Milstein et al., 2020; O’Neill et al., 2008). While here we did not 
simulate these dynamic processes explicitly, we implemented the structured 210 

connectivity that is the end result of these processes by increasing the strengths of 
synaptic connections between excitatory cells that share overlapping selectivity for 

spatial positions in the environment (Table 1, Supplementary Figure S1B, Materials and 
Methods) (Arkhipov et al., 2018).  

Despite the relatively simple architecture of this network model, a wide range of 215 

networks with distinct dynamics could be produced by varying a number of 

parameters, including 1) the probabilities of connections between cell types (Káli and 
Dayan, 2000), 2) the kinetics and strengths of synaptic connections between cell types 

(Brunel and Wang, 2003), and 3) the magnitude of the above-mentioned increase in 
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synaptic strengths between neurons with shared selectivity (Brunel, 2016; Dorkenwald 220 

et al., 2019). To calibrate the network model to produce dynamics that matched 

experimentally-derived targets, we performed an iterative stochastic search over these 
parameters, and optimized the following features of the activity of the model network: 

1) population sparsity - the fraction of active neurons of each cell type, 2) the mean 
firing rates of active neurons of each cell type, 3) stimulus-selective firing of excitatory 225 

cells, and 4) the frequency and amplitude of theta and gamma oscillations in the 
synchronous spiking activity of each cell population (Materials and Methods). 

This procedure identified a model with dynamics that met all of the above 
constraints. Given sparse and selective feedforward inputs during simulated navigation 

(Figures 1B and 1C), the excitatory neurons in the network responded with a fraction of 230 

active cells (Figure 1D) and with average firing rates comparable to the those of the 

feedforward input population (Figure 1E). The majority of inhibitory neurons were 
activated continuously (Figures 1C and 1D) at high firing rates (Figure 1E). While 

excitatory neurons received random connections from feedforward afferents and from 
other excitatory neurons with heterogeneous spatial tuning, excitatory cells exhibited a 235 

high degree of spatial selectivity (Figures 1C and 1F). This selective increase in firing 
rate at specific spatial locations within the “place field” of each excitatory neuron was 

supported by enhanced synaptic connection strengths between excitatory neurons 
with overlapping tuning (Supplementary Figure S1B). While substantial background 
excitation occurred in all cells at all spatial positions, firing outside the place field of 240 

each cell was suppressed by sufficiently strong inhibitory input (Bittner et al., 2015; 
Grienberger et al., 2017). Interestingly, inhibitory neurons also exhibited spatial 

selectivity, albeit to a weaker degree and with a higher background firing rate (Figures 
1C and 1F). This feature of the network dynamics was an emergent property that was 

not explicitly designed or optimized. While excitatory connections onto inhibitory cells 245 

were random and not weighted according to shared selectivity (Supplementary Figure 

S1B), the total amount of excitatory input arriving onto individual inhibitory cells 
fluctuated across spatial positions, and predicted a small degree of spatial selectivity 

(Supplementary Figure S1C). Inhibitory inputs received by inhibitory cells reduced their 
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average activity, effectively enabling fluctuations in excitation above the mean to stand 250 

out from the background excitation (Supplementary Figure S1C and S1D). This 

mechanism of background subtraction by inhibitory synaptic input may explain the 
partial spatial selectivity previously observed in subpopulations of hippocampal 

inhibitory neurons (Ego‐Stengel and Wilson, 2007; Geiller et al., 2020; Grienberger et 
al., 2017; Hangya et al., 2010; Marshall et al., 2002; Wilent and Nitz, 2007). 255 

The tuned network model also exhibited oscillatory synchrony in the firing of the 
excitatory and inhibitory neuron populations, despite being driven by an asynchronous 

external input (Figures 1G and 1H). The requirement that the network self-generate 
rhythmic activity in the theta band constrained recurrent excitatory connections to be 

relatively strong, as this input provided the only source of rhythmic excitation within the 260 

network (Supplementary Figure S1E). Interestingly, as the firing rates of inhibitory cells 

increased within each cycle of the theta rhythm, their synchrony in the gamma band 
increased, resulting in an amplitude modulation of gamma paced at the theta 

frequency (Figure 1G and Supplementary Figure S1F). This “theta-nested gamma” is a 
well-known feature of oscillations in the hippocampus (Soltesz and Deschenes, 1993; 265 

Ylinen et al., 1995), and here emerged from fundamental constraints on dual band 
rhythmicity without requiring additional mechanisms or tuning. 

 

Position decoding reveals “theta sequences” during simulated navigation 

Next, we analyzed neuronal sequence generation within the network during simulated 270 

navigation. First, we simulated multiple trials and computed trial-averaged spatial firing 

rate maps for all neurons in the network (Figure 1C). We then used these rate maps to 
perform Bayesian decoding of spatial position given the spiking activity of all cells in 
the network from individual held-out trials not used in constructing the decoding 

template (Figure 2A, Materials and Methods) (Davidson et al., 2009; Zhang et al., 1998). 275 

For the population of feedforward excitatory inputs, the underlying spatial firing rates 

were imposed, and the spikes of each cell were generated by sampling from an 
inhomogeneous Poisson process. Thus, decoding position from the activity of this 

population served to validate our decoding method, and indeed simulated position  
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 280 
Figure 2. Online neuronal sequence generation depends on recurrent excitatory synaptic 
connectivity. (A) “Online exploration” was simulated for the same network model as in Figure 1, in which 
recurrent excitatory connections between E cells were structured such that neurons with shared 
selectivity have elevated synaptic weights. Top row: spike times of all neurons in each cell population on 
a single trial of simulated “online exploration” are marked. A separate set of 5 trials was used to 285 
construct a spatial firing rate template for each neuron (shown in Figure 1C). Cells in each population are 
sorted by the location of maximum average spatial firing rate. Bottom row: the spatial firing rate 
templates for all neurons were used to perform Bayesian decoding of spatial position from the single trial 
spiking data shown in the top row. For each cell population, the likelihood of each spatial position in 
each time bin (20 ms) is indicated by grayscale intensity. (B) Same as (A) for alternative network model 290 
with random synaptic strengths at recurrent excitatory connections between E cells. Spatial firing rate 
templates used for decoding are shown in Supplementary Figure S2B. (C) Same as (A) for alternative 
network model in which the structured excitatory recurrent synaptic weights between E cells were 
randomly shuffled. Spatial firing rate templates used for decoding are shown in Supplementary Figure 
S2H. (D) Decoded position error is quantified as the difference between actual and predicted position. 295 
The absolute value of decoded position error is expressed as a fraction of the track length (one-sided 
paired t-tests: Structured E ← E weights: E vs. FF, p<0.00001; I vs. FF, p<0.00001; Random E ← E 
weights: E vs. FF, p=0.00001; I vs. FF, p=0.00001; Shuffled E ← E weights: E vs. FF, p=0.00001; I vs. FF, 
p=0.00001; two-sided t-tests vs. data from model with structured E ← E weights: Random E ← E 
weights: E, p<0.00001, I, p=0.00001; Shuffled E ← E weights: E, p<0.00001, I, p=0.00001). (E) In the 300 
model with structured E ← E weights, decoded positions of E and I cell populations oscillated between 
past, current, and future positions at the timescale of the population theta oscillation. A theta sequence 
score was computed as the proportion of the variance in the decoded position error explained by a theta 
timescale oscillation (see Materials and Methods) (one-sided paired t-tests: Structured E ← E weights: 
E vs. FF, p=0.00005; I vs. FF, p-0.00005; Random E ← E weights: E vs. FF, p=0.00002; I vs. FF, 305 
p=0.28287; Shuffled E ← E weights: E vs. FF, p=0.00010; I vs. FF, p=0.99600; two-sided t-tests vs. data 
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from model with structured E ← E weights: Random E ← E weights: E, p<0.00001, I, p<0.00001; 
Shuffled E ← E weights: E, p<0.00001, I, p<0.00001). In (D) and (E), data were first averaged across 5 
trials per network instance. Box and whisker plots depict data from 5 independent instances of each 
network model (see Materials and Methods). p-values reflect FDR correction for multiple comparisons. 310 
 
could be decoded from the spiking activity of the feedforward input population with 
very low reconstruction error (Figures 2A and 2D). When we applied this method to the 

population of excitatory neurons within the network, reconstruction error was 
increased (Figures 2A and 2D). This reflected an increased fraction of temporal bins (20 315 

ms) where the decoded position was either behind or in advance of the actual position 
(Figure 2A). However, rather than simply reflecting reconstruction noise or poor spatial 

selectivity of individual cells (Figure 1F), these divergences from actual position 
resulted from consistent sequential structure in the spiking activity of cells in the 

excitatory population (Figure 2A). Ordered neuronal firing resulted in decoded positions 320 

that continuously swept from past positions, through the current actual position, to 

future positions, and then reset to past positions, on the timescale of the  
ongoing theta rhythm. These “theta sequences” caused decoded position estimates to 
oscillate around the actual position (Figure 2A), and this theta timescale oscillation 

accounted for a large proportion of the variance in decoded position (Figure 2E, 325 

Materials and Methods). Interestingly, we found that position could also be accurately 

decoded from the moderately spatially-tuned activity of inhibitory cells in the network 
(Figures 2A and 2D), and that the spiking activity of the inhibitory population was also 

organized into theta sequences (Figures 2A and 2E). 
A number of possible mechanisms have been proposed to account for theta 330 

sequence generation in vivo, including synaptic, cell-intrinsic, and network-level 

mechanisms (Chadwick et al., 2015, 2016; Drieu and Zugaro, 2019; Foster and Wilson, 
2007; Grienberger et al., 2017; Kang and DeWeese, 2019; Mehta et al., 2002; Skaggs 

et al., 1996). That theta sequences in the model emerged in both excitatory and 
inhibitory neuron populations implicates recurrent interactions within the network 335 

(Chadwick et al., 2016). To further investigate, we analyzed neuronal sequence 
generation in a variant of the model in which the strengths of recurrent connections 
between excitatory neurons were randomized and no longer depended on shared 
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spatial selectivity between connected pairs of cells (Supplementary Figure S2A). This 
alternative model could still be tuned to match experimental targets, including sparsity, 340 

selectivity, and rhythmicity (Supplementary Figures S2B – S2F). In this case the spatial 
selectivity of excitatory cells was entirely determined by the synaptic weights of the 

feedforward afferent inputs (Supplementary Figure S2A), while the recurrent excitatory 
input supported synchronization in the theta and gamma bands (Supplementary Figure 

S2F). However, in this model, theta timescale neuronal sequence generation in both 345 

excitatory and inhibitory cells was suppressed (Figures 2B and 2E). Decoding of 

position from spikes on single trials produced lower reconstruction error (Figure 2D), as 
neuronal population activity more faithfully followed the current spatial position 

provided by the feedforward inputs, and was not organized into the sweeps from past 
to future positions characteristic of theta sequences (Figures 2B and 2E). We also 350 

tested a related variant of the model in which the skewed distribution of recurrent 
excitatory synaptic weights used in the structured weights model (Figures 1 and 2A, 

and Supplementary Figure 1) was randomly shuffled (Figure 2C and Supplementary 
Figures S2G – S2L). Theta sequence generation was also reduced in this network 

model variant (Figure 2E). These results indicate that structure in the synaptic strengths 355 

of recurrent excitatory connections is required for the generation of fast timescale 

(~125 ms) neuronal sequences when network activity is driven by behavioral timescale 
(> 1 s) sequences of sensory inputs, as occurs during spatial exploration. 

 

Emergence of offline memory replay 360 

The above results show that the same network structure that enables population 
dynamics in CA3 to exhibit sparsity, selectivity, and rhythmicity also supports neuronal 

sequence generation in the online state when ordered sensory information is present. 
We next sought to understand how neuronal sequences consistent with the sensory 

environment are generated offline when sensory inputs are reduced. To mimic the 365 

transient (~50-150 ms) increase in population activity that occurs during a hippocampal 
SWR (Fernández-Ruiz et al., 2019), we transiently stimulated the network by randomly 

choosing sparse subsets of cells from the feedforward input population to emit spikes  
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Figure 3. Forward and reverse offline memory replay depends on recurrent excitatory synaptic 370 
connectivity. (A – B) “Offline rest” was simulated for the network model with structured E ← E weights 
(Figure 1). Top row: spike times of all neurons in each cell population on a single trial of simulated 
“offline rest” are marked. Data from 5 trials of simulated “online exploration” was used to construct a 
spatial firing rate template for each neuron (Figure 1C). Cells in each population are sorted by the 
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location of maximum average spatial firing rate. Bottom row: the spatial firing rate templates for all 375 
neurons were used to perform Bayesian decoding of spatial position from the single trial spiking data 
shown in the top row. For each cell population, the likelihood of each spatial position in each time bin 
(20 ms) is indicated by grayscale intensity. (A) and (B) correspond to two example trials from one 
example network instance. (C – G) This procedure was repeated for 1000 trials for each of 5 instances of 
the network. (C) Histogram of spatial positions decoded from each cell population across all simulated 380 
replay events (two-sided K-S tests: E vs. FF, p=0.99974; I vs. FF, p=0.99974). (D) Histogram of the path 
length of spatial sequences decoded from each cell population (two-sided K-S tests: E vs. FF, 
p<0.00001; I vs. FF, p<0.00001). (E) Histogram of the mean velocity of spatial sequences decoded from 
each cell population (two-sided K-S tests: E vs. FF, p=0.00235; I vs. FF, p=0.73515). (F) Fraction of 
events that met criterion for sequences consistent with continuous spatial trajectories (see Materials and 385 
Methods) (one-sided paired t-tests: E vs. FF, p<0.00001, I vs. FF, p=0.00084). (G) Power spectrum of 
average population activity indicates high frequency components (one-sided paired t-tests: 75 Hz – 300 
Hz frequency band: E vs. FF, p=1; I vs. FF, p<0.00001). (H – N) Same as (A – G) for an alternative 
network model with random E ← E weights. (H) and (I) correspond to two example trials from one 
example network instance. (J) Decoded positions (two-sided K-S tests: E vs. FF, p=0.99974; I vs. FF, 390 
p=0.99974; two-sided K-S tests vs. data from model with structured E ← E weights in (C): E, p=0.85869; 
I, p=0.87577). (K) Offline sequence path length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, 
p=0.99997; two-sided K-S tests vs. data from model with structured E ← E weights in (D): E, p<0.00001; 
I, p<0.00001). (L) Offline sequence velocity (two-sided K-S tests: E vs. FF, p=0.99877; I vs. FF, 
p=0.99877; two-sided K-S tests vs. data from model with structured E ← E weights in (E): E, p=0.01591; 395 
I, p=0.76837). (M) Fraction of events that met criterion for sequences consistent with continuous spatial 
trajectories (see Materials and Methods) (one-sided paired t-tests: E vs. FF, p=0.00005, I vs. FF, 
p=0.86564; two-sided t-tests vs. data from model with structured E ← E weights in (F): E, p<0.00001; I, 
p=0.00001). (N) Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency 
band: E vs. FF, p=0.97708; I vs. FF, p<0.00001; two-sided t-tests vs. data from model with structured 400 
E ← E weights in (G): E, p=0.64948; I, p<0.00001). In (C – E), (G), (J – L), and (N), mean (solid) ± SEM 
(shading) were computed across 5 independent instances of each network. In (F) and (M), box and 
whisker plots depict data from 5 independent instances of each network model (see Materials and 
Methods). p-values reflect FDR correction for multiple comparisons. 
 405 
(Figures 3A and 3B). We then used the same decoding templates as above, 
constructed from the trial-averaged activity during simulated run, to decode spatial 

position from spiking activity during these transient offline events (Materials and 
Methods). 

Given that the place field locations of the stimulated neurons in the feedforward 410 

input population were heterogeneous and unordered, the spatial positions decoded 

from their spiking were typically discontiguous across adjacent temporal bins (Figures 
3A, 3B and 3F). This input pattern evoked spiking in sparse subsets of both the 

excitatory and inhibitory populations in the network (Figures 3A and 3B). In contrast 
with the feedforward population, the activity evoked in excitatory neurons was 415 

structured such that neurons with nearby place field locations spiked in adjacent 

temporal bins, resulting in decoded spatial trajectories that were continuous (Figures 
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3A, 3B and 3F). Inhibitory neuron activity during these events was organized into high-
frequency oscillations (Figures 3A, 3B and 3G). This procedure was repeated to 

produce thousands of offline events evoked by stimulation of different random 420 

ensembles of inputs (Materials and Methods). Across these events, each position along 

the track was decoded with equal probability (Figure 3C). For each event, the length 
and mean velocity of the decoded trajectory was calculated from the differences in 

decoded positions between adjacent bins (Figures 3D and 3E). A mean velocity of zero 
corresponds to events with equal steps in the forward and reverse directions, while 425 

positive velocities correspond to net forward-moving trajectories, and negative 
velocities correspond to net backwards-moving trajectories. While the trajectories 

decoded from the random feedforward input population were comprised of large, 
discontiguous steps that traced out large path lengths with an average velocity near 

zero, the excitatory neuron population generated shorter, more continuous sequences 430 

that progressed in either the forward or reverse directions (Figures 3D – 3F). These 

trajectories on average covered ~0.5 the length of the track in the short (~150 ms) 
duration of the offline event. Compared to the run trajectory, which took 3 seconds to 

cover the full track length, this corresponded to a ~10-fold temporal compression 
(Figure 3E), similar to experimental data (Davidson et al., 2009). Spatial trajectories 435 

decoded from the inhibitory neuron population were intermediate in length, but with 
little forward or reverse momentum, similar to the feedforward inputs. However, the 
inhibitory cells exhibited high-frequency synchrony (Figures 3A, 3B and 3G), similar to 

experimentally recorded CA3 interneurons during hippocampal SWRs (Csicsvari et al., 
2000; Tukker et al., 2013).  440 

These data demonstrate that random, unstructured input can evoke sequential 
activity in a CA3-like recurrent spiking network, with sequences corresponding to 

forward, reverse, or mixed direction trajectories through an experienced spatial 
environment. This self-generated memory-related activity implicates information stored 

in the synaptic weights of the recurrent connections within the network as being 445 

important for offline replay of experience. However, in most previous models, 

sequence generation was unidirectional, and was enabled by an asymmetric bias in the  
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strengths of recurrent connections such that neurons encoding positions early in a 
sequence formed stronger synapses onto neurons encoding later positions (Levy, 

1989; Malerba and Bazhenov, 2019; McNaughton and Morris, 1987; Reifenstein et al., 450 

2021; Sompolinsky and Kanter, 1986; Tsodyks et al., 1996). In contrast, the current 

network flexibly generated sequences in forward, reverse, or mixed directions, and had 
symmetric recurrent connections such that synaptic strengths between pairs of 

excitatory neurons depend only on overlapping selectivity, not on sequence order. 
Does sequence generation in the present network still depend on recurrent 455 

connectivity? To test this, we first verified that including an asymmetric bias in the 
strengths of excitatory connections produced offline replay events that were biased 

towards forward sequences (Supplementary Figure S3). We next analyzed the 
sequence content of offline events generated in the variants of the network model with 

random (Figures 3H – 3N and Supplementary Figures S2A – S2F) or shuffled 460 

Supplementary Figures S2G – S2L and S4) recurrent connection weights. Indeed, 

without structure in the recurrent connection weights, spatial trajectories decoded from 
the activity of excitatory neurons was more similar to those of the feedforward inputs, 

consisting of large, discontinuous steps without forward or reverse momentum (Figures 
3H – 3M and Supplementary Figures S4A – S4F). Still, these networks exhibited high-465 

frequency oscillatory synchrony during these offline events (Figure 3N and 
Supplementary Figure S4G). 
 

Exploration of model diversity and degeneracy 

The above results strongly supported the hypothesis that recurrent connectivity is 470 

important for offline sequence generation. During optimization of each of the alternative 
network model configurations shown above to meet the multiple objectives of sparsity, 

selectivity, and rhythmicity, we evaluated 30,000 variants of each model with different 
parameters (Materials and Methods). For each model configuration, the model with the 

lowest overall multi-objective error was chosen as the “best” model for further analysis, 475 

as shown in Figures 2 and 3 and Supplementary Figures S1, S2 and S4. However, we 

noted that the parameter values that specified these “best” models were variable 
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across the multiple network configurations (Table 1). This raised the possibility that 
while many models with diverse parameters may produce networks with similar online 

dynamics (referred to as model degeneracy (Marder and Taylor, 2011)), perhaps only a 480 

smaller subset of models would additionally support the emergence of offline 

sequence generation. The fact that sequence generation was not observed for either of 
the “best” models with disrupted recurrent excitatory synaptic weights could reflect an 

incomplete sampling of the parameter space and a failure to identify models that both 
meet the objective criteria for online dynamics and produce offline sequences. 485 

Therefore, in order to explore the diversity and degeneracy of models evaluated during 
optimization, we devised a method to identify models that performed similarly with 

respect to multiple optimization objectives, but were specified by divergent sets of 
parameters (Materials and Methods). For each model configuration, all model variants 

evaluated during parameter optimization were sorted by their Euclidean distance from 490 

the “best” model in the space of model parameters. This resulted in an error landscape 

(e.g. Figure 4A) in which models with similar parameters resulted in similar multi-
objective error scores. We then identified models located at local minima in this error 

landscape, which formed a group of models that were distant from each other in 
parameter space, but similar to each other in terms of overall multi-objective error. We 495 

termed a set of such models as a “Marder group” after pioneering work characterizing 
degeneracy in biological systems (Marder and Taylor, 2011). For each alternative 
network model configuration, we selected the 5 members of this “Marder group” with 

the lowest multi-objective error (labeled “best” and “M1” – “M4” in Figure 4A), and 
evaluated their network dynamics during simulations of both online exploration and 500 

offline rest. We first verified that for all model configurations with and without 
structured recurrent excitatory connectivity analyzed above (Figures 1 – 3 and 

Supplementary Figures S1, S2 and S4), model variants within a “Marder group” 
exhibited considerable diversity across model parameters (Figures 4B and 4C), and 

met all objective criteria for population sparsity (Figure 4D), neuronal stimulus 505 

selectivity (Figure 4E), and rhythmogenesis in the theta and gamma bands (Figures 4F  

and 4G). However, only model variants with synaptic weights structured by shared 
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Figure 4. Exploration of model parameter diversity and degeneracy. (A) During network model 
optimization, 30,000 model variants with different parameters were evaluated. To explore model diversity 510 
and degeneracy, for each network model configuration, a subset of model variants termed a “Marder 
group” were selected based on their large distance from each other in the space of parameters, but their 
similar performance with respect to multiple optimization objectives (see Materials and Methods). This 
selection procedure is illustrated here for the model with random E ← E weights as an example. The 5 
“Marder group” members with the lowest multi-objective error (labeled “best” and “M1” – “M4”) were 515 
selected for further evaluation. (B) For the network model configuration with structured E ← E weights, 
the range of parameter values across 5 distinct “Marder group” models are shown. (C) Same as (B) for 
the model with random E ← E weights. In (D – I), features of the simulated network dynamics produced 
by distinct model variants within a “Marder group” are compared across network model configurations. 
Each data point (grey circles) depicts one “Marder group” model. (D) Spatial selectivity of the excitatory 520 
neuron population during simulated “online exploration” is computed as a ratio of maximum to mean 
activity (two-sided t-tests vs. data from model with structured E ← E weights: Random E ← E weights: 
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p=1; Shuffled E ← E weights: p=0.00224). (E) The fraction of the excitatory neuron population that is 
synchronously active during simulated “online exploration” is shown (two-sided t-tests vs. data from 
model with structured E ← E weights: Random E ← E weights: p=1; Shuffled E ← E weights: 525 
p=0.12079). (F) Gamma rhythmicity of the excitatory neuron population is computed as the integrated 
power spectral density in the gamma frequency band (two-sided t-tests vs. data from model with 
structured E ← E weights: Random E ← E weights: p=0.03552; Shuffled E ← E weights: p=0.16364). (G) 
Theta rhythmicity of the excitatory neuron population is computed as the integrated power spectral 
density in the theta frequency band (two-sided t-tests vs. data from model with structured E ← E 530 
weights: Random E ← E weights: p=0.00272; Shuffled E ← E weights: p=0.01944). (H) Theta sequence 
score (see Figure 2 and Materials and Methods) (two-sided t-tests vs. data from model with structured E 
← E weights: Random E ← E weights: p=0.02817; Shuffled E ← E weights: p=0.01473). (I) Fraction of 
events during simulated “offline rest” that met criterion for sequences consistent with continuous spatial 
trajectories (see Figure 3, Supplementary Figure S3, and Materials and Methods) (two-sided t-tests vs. 535 
data from model with structured E ← E weights: Random E ← E weights: p<0.00001; Shuffled E ← E 
weights: p=0.00044). In (D – I), for each network model configuration, box and whisker plots depict 5 
distinct “Marder group” model variants with different parameters (see Materials and Methods). Data for 
each model variant (grey circles) were first averaged across 5 independent instances of that model 
variant. In (F – I), grey dashed lines indicate value for the feedforward input to the network for reference. 540 
p-values reflect Bonferroni correction for multiple comparisons. 
 
stimulus selectivity exhibited theta sequences during online run (Figure 4H) and 

generated offline sequences consistent with continuous spatial trajectories (Figure 4I). 
This analysis demonstrated that generation of memory-related neuronal sequences by 545 

recurrent networks requires that information about the topology of the sensory 
environment is stored in the strengths of recurrent excitatory connections between 

excitatory neurons. 
 

Constraints on online sparsity, selectivity and rhythmicity enable offline memory 550 

replay 

Our above findings suggest that experimental constraints on the online dynamics of 
hippocampal area CA3 during spatial exploration are sufficient to enable the 

emergence of offline memory replay. We next sought to determine whether all or only a 
subset of these constraints were required for generation of memory-related sequences. 555 

To determine the importance of rhythmicity, we removed the optimization criteria that 
excitatory and inhibitory neuron populations synchronize in the theta and gamma 

bands, and instead added an objective to minimize power density across the full 
frequency spectrum (Supplementary Figure S5E). Following optimization, this 

alternative network model exhibited reduced rhythmicity, but still met objectives related 560 

to sparsity and selectivity (Supplementary Figures S5A – S5D). However, when 
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challenged with random stimuli during simulated offline rest, this model with 
suppressed rhythmicity failed to generate continuous forward or reverse sequences 

(Supplementary Figures S5F – S5L). Rather, spatial trajectories decoded from offline 
population activity contained large discontiguous jumps in position, and most events 565 

had zero net velocity in either the forward or reverse direction. This indicated that the 
same reciprocal interactions between excitatory and inhibitory neurons that support 

rhythmogenesis in the theta and gamma bands also contribute to the sequential 
organization of neuronal activity during offline memory replay. 

We next optimized a network model variant without constraints on population 570 

sparsity and neuronal stimulus selectivity (see Materials and Methods). In this network 

model, while feedforward excitatory inputs remained spatially tuned, their connectivity 
with excitatory neurons was shuffled to prevent inheritance of spatial selectivity. This 

resulted in a complete loss of sparsity of excitatory neuron activity (Supplementary 
Figures S6A and S6B), and suppressed stimulus selectivity in excitatory neurons even 575 

below the level exhibited in the inhibitory neuron population (Supplementary Figures 
S6C and S6D). Rhythmogenesis in the theta and gamma bands in excitatory and 

inhibitory neurons was maintained (Supplementary Figure S6E). During simulation of 
offline rest, this network generated highly synchronous population bursts that tended 

to either hover at one decoded position, or make large discontiguous jumps between 580 

positions (Supplementary Figure S6F – S6K). These results suggest that the network 
connectivity parameters that support highly sparse and selective neuronal activity in 

the online stimulus-driven state, also enable sparse reactivation of neuronal sequences 
in the offline state. We also repeated the model degeneracy analysis described above 

(Figure 4) for multiple model variants with compromised sparsity, selectivity or 585 

rhythmicity, which corroborated these findings (Supplementary Figure S8).  

 

Role of neuronal spike rate adaptation in forward and reverse offline memory 

replay 

Above we showed that structure in the synaptic connectivity of the CA3 network is 590 

important for neuronal sequence generation. However, unlike previous models of 
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sequence generation where asymmetry in connection strengths biased the direction of 
neuronal sequences (Levy, 1989; Malerba and Bazhenov, 2019; McNaughton and 

Morris, 1987; Reifenstein et al., 2021; Sompolinsky and Kanter, 1986; Tsodyks et al., 
1996), here synaptic connectivity was symmetric, and yet variable neuronal sequences 595 

were flexibly generated in both forward and reverse directions (Figure 3A, 3B and 3E). 
If this symmetric connectivity enables recurrent networks to generate either forward or 

backward steps, what “breaks” this symmetry and produces sequences that make net 
progress in either the forward or backward direction? We next wondered if 

directionality of offline sequences in our network model was facilitated by our choice of 600 

“bursty” excitatory cell model, which exhibited spike-rate adaptation (Figure 5A). As 

mentioned before, use-dependent decreases in either firing rate or synaptic 
transmission over time can provide momentum to neuronal sequences by favoring the 

recruitment of new neurons that have not yet been activated during a network 
population event (Itskov et al., 2011; Romani and Tsodyks, 2015; Treves, 2004). To test 605 

a possible role for cellular adaptation in sequence generation in our model network, we 
replaced the “bursting” excitatory cell model with a “regular spiking” model without 

spike rate adaptation (Figure 5A). This cell model did not support the high 
instantaneous firing rates of the bursting cell model, which compromised the peak 

firing rates of excitatory cells in the network and their entrainment by higher frequency 610 

gamma oscillations during simulated online navigation (Supplementary Figure S7). 
Otherwise, this variant of the network did meet criterion for sparsity, selectivity, and 

rhythmicity (Supplementary Figures S7 and S8A – S8D). However, during simulated 
offline rest, random feedforward inputs evoked a truncated response from the network 

(Figures 5B and 5C), with the high frequency rhythmic activity of the inhibitory neurons 615 

diminishing before the end of the stimulus period (Figures 5B, 5C and 5H). Spatial 

trajectories decoded from the activity of excitatory neurons in the network were 
comprised of large steps that did not progress in either forward or reverse directions, 

similar to the random feedforward inputs (Figures 5E – 5G and Supplementary Figure 
S8E). These data show that adaptation of neuronal spiking provides a cellular-level  620 
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Figure 5. Neuronal spike rate adaptation supports offline memory replay. (A) Intracellular voltage 
recordings of three neuronal cell models with distinct spiking dynamics in response to simulated square-
shaped intracellular current injections. (B – H) Same as Figures 3A – 2G for an alternative network model 625 
in which E cells are regular-spiking cell models without spike rate adaptation. (B) and (C) correspond to 
two example trials from one example network instance. (D) Decoded positions (two-sided K-S tests: E 
vs. FF, p=0.99974; I vs. FF, p=0.89825; two-sided K-S tests vs. data from model with structured E ← E 
weights in Figure 3C: E, p=0.84875; I, p=0.85869). (E) Offline sequence length (two-sided K-S tests: E 
vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S tests vs. data from model with structured E ← E 630 
weights in Figure 3D: E, p<0.00001; I, p=0.99997). (F) Offline sequence velocity (two-sided K-S tests: E 
vs. FF, p=0.15282; I vs. FF, p=0.73515; two-sided K-S tests vs. data from model with structured E ← E 
weights in Figure 3E: E, p=0.03099; I, p=0.91017). (G) Fraction of events that met criterion for sequences 
consistent with continuous spatial trajectories (see Materials and Methods) (one-sided paired t-tests: E 
vs. FF, p=0.00038, I vs. FF, p=0.00119; two-sided t-tests vs. data from model with structured E ← E 635 
weights in Figure 3F: E, p<0.00001; I, p=0.03860). (H) Offline high-frequency rhythmicity (one-sided 
paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, p=0.00114; I vs. FF, p=0.00003; two-sided t-
tests vs. data from model with structured E ← E weights in Figure 3G: E, p<0.00001; I, p=0.00027). In 
(D – F) and (H), mean (solid) ± SEM (shading) were computed across 5 independent instances of each 
network. In (G), box and whisker plots depict data from 5 independent instances of each network model 640 
(see Materials and Methods). p-values reflect FDR correction for multiple comparisons. 
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mechanism for flexible and reversible sequence generation in recurrent spiking 
networks. 

 

Preferential replay of reward location 645 

Thus far, we have simulated network activity during spatial navigation, and identified 
features of the network that enable offline replay of behavioral sequences stored in 

memory. However, in these simulations all spatial positions were visited with equal 
occupancy, and considered to be of equal salience or relevance to the virtual animal. 

This resulted in all positions being replayed with equal probability offline (Figure 3C), 650 

mimicking experimental conditions where all spatial positions contain discriminable 

sensory cues, and opportunities for reward are provided at random times and positions 
(Turi et al., 2019; Zaremba et al., 2017). However, it has been shown that when reward 

is provided at a fixed location that the animal must discover through learning, offline 
memory replay events become biased towards sequences of place cells that encode 655 

positions nearby and including the site of reward (Gillespie et al., 2021; Ólafsdóttir et 
al., 2018; Pfeiffer, 2020; Singer and Frank, 2009). In parallel with the development of 

this bias in offline memory replay during learning, it has been shown that the fraction of 
hippocampal pyramidal cells that selectively fire along the path to reward increases 

(Lee et al., 2006; Turi et al., 2019; Zaremba et al., 2017). Here we sought to test the 660 

hypothesis that this network-level over-representation of reward location is sufficient to 

bias the content of offline memory replay. 
We chose a position along the virtual track to be the fixed location of a 

simulated reward, and biased the allocation of place field locations such that an 
increased fraction of excitatory neurons were selectively activated at positions near the 665 

reward (Figure 6A). As before, feedforward and recurrent synaptic connection strengths 

were increased between neurons with overlapping selectivity (Supplementary Figure 
S9A). Aside from an enhanced fraction of active excitatory neurons near the reward site 

(Supplementary Figure S9B), this produced network dynamics during simulated 
navigation that conformed to experimental constraints for sparsity, selectivity, and 670 

rhythmicity (Figure 6A and Supplementary Figures S9B – S9E). During simulated offline  
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Figure 6. Offline memory replay is biased towards reward positions over-represented by the 
network. (A) In this variant of the network, an increased proportion of E cells are selective for spatial 
positions near the site of a simulated reward. Firing rates vs. time of all neurons in each cell population 675 
are shown (average of 5 trials from one example network instance). Cells in each population are sorted 
by the location of maximum firing. The simulated reward site is marked with red dashed line. (B – H) 
Same as Figures 3A – 2G for an alternative network model with population-level over-representation of 
reward location in E cells. (B) and (C) correspond to two example trials from one example network 
instance. The simulated reward site is marked with red dashed line. (D) Decoded positions (two-sided K-680 
S tests: E vs. FF, p<0.00001; I vs. FF, p=0.41580; two-sided K-S tests vs. data from model with 
structured E ← E weights in Figure 3C: E, p<0.00001; I, p=0.84875). (E) Offline sequence length (two-
sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S tests vs. data from model with 
structured E ← E weights in Figure 3D: E, p=0.25150; I, p<0.00001). (F) Offline sequence velocity (two-
sided K-S tests: E vs. FF, p=0.02742; I vs. FF, p=0.73515; two-sided K-S tests vs. data from model with 685 
structured E ← E weights in Figure 3E: E, p=0.16847; I, p=0.62023). (G) Fraction of events that met 
criterion for sequences consistent with continuous spatial trajectories (see Materials and Methods) (one-
sided paired t-tests: E vs. FF, p<0.00001, I vs. FF, p=0.00027; two-sided t-tests vs. data from model 
with structured E ← E weights in Figure 3F: E, p=0.05397; I, p=0.00754). (H) Offline high-frequency 
rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, p=0.00067; I vs. FF, 690 
p=0.00006; two-sided t-tests vs. data from model with structured E ← E weights in Figure 3G: E, 
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p=0.00003; I, p=0.00001). In (D – F) and (H), mean (solid) ± SEM (shading) were computed across 5 
independent instances of each network. In (G), box and whisker plots depict data from 5 independent 
instances of each network model (see Materials and Methods). p-values reflect FDR correction for 
multiple comparisons. 695 
 
rest, the excitatory neurons in the network responded to random feedforward inputs by 

generating neuronal sequences corresponding to forward, reverse, and mixed direction 
trajectories through the environment (Figures 6B – 6G), paced by high frequency 

oscillations in the inhibitory cells (Figure 6H), as before (Figures 3A – 3G). However, 700 

now positions near the simulated reward site were replayed in a higher proportion of 

replay events (Figure 6D). This preferential replay of locations over-represented by the 
network recapitulated experimental findings and supported the hypothesis that 

nonuniform place cell allocation and biased memory replay are causally linked (Levy, 
1989). 705 

 

Discussion 

In this study we used a simple recurrent spiking network model of hippocampal area 
CA3 to investigate the structural and functional requirements for offline replay of spatial 

memories. We optimized synaptic, cellular, and network parameters of the network to 710 

produce population dynamics that match experimentally observed sparsity, selectivity 

and rhythmicity. We found that networks that fit these constraints exhibit additional 
emergent properties, including the ability to generate fast timescale memory-related 

neuronal sequences. During simulated spatial navigation, when ordered sensory 
information was provided on the seconds-long timescale of locomotion behavior, the 715 

network produced neuronal sequences that swept from past to future positions on the 
faster timescale (~125 ms) of the theta rhythm (“theta sequences”). During simulated 

offline rest, the network responded to transient noisy activation of random, sparse 
inputs by generating neuronal sequences that corresponded to forward, reverse, or 
mixed direction trajectories through the spatial environment. 720 

 Both online and offline sequence generation depended on structure in the 
strengths of excitatory synaptic connections such that pairs of neurons with 

overlapping spatial tuning were more strongly connected. In the online phase, different 
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sparse subsets of excitatory neurons were activated at different spatial positions due 
to structure in the strengths of connections from spatially-tuned feedforward afferent 725 

inputs. The constraint that recurrent excitation must drive rhythmic synchronization in 
the theta band resulted in relatively strong recurrent connections. During each cycle of 

the theta rhythm, when the firing rates of the excitatory neurons were at their 
maximum, synaptic excitation from recurrent connections exceeded that from the 

feedforward afferents (Supplementary Figure S1E). This caused the sum of forward-730 

moving feedforward inputs and symmetric mixed-direction feedback inputs to favor 

activation of cells encoding positions at or ahead of the current position. This 
generated forward-sweeping sequences that outpaced the speed of locomotion. 

However, at the opposite phase of the theta rhythm, when the firing rates of the 
excitatory cells reached their minimum, the non-rhythmic feedforward input became 735 

greater than recurrent excitation (Supplementary Figure S1E), causing theta sequences 
to reverse direction and relax back towards the current position encoded by the 

feedforward inputs.  
 In the offline phase, the feedforward inputs were not activated in a sequence, so 

momentum had to be entirely internally generated by the network. In this case, the 740 

particular subset of active feedforward inputs initially selected a sparse subset of 

excitatory neurons to begin to fire, which set a starting position for the replayed 
trajectory. Slight biases in the feedforward input could then influence whether the 
active ensemble of excitatory neurons next recruited neurons encoding spatial 

positions in either the forward or reverse direction. Once activity began moving in one 745 

direction, spike-rate adaptation facilitated continued sequence movement along that 

direction. However, depending on fluctuations in the feedforward inputs, sequences 
were also generated that included changes in direction. Interestingly, this process is 

akin to interpolation or smoothing – the recurrent connections within the network 
served to bridge large, discontinuous jumps in position encoded by the noisy 750 

feedforward inputs with smaller, more continuous steps. This produced offline 
sequences that were consistent with the topology of the spatial environment, but did 

not necessarily replay exact experienced trajectories. These findings are consistent 
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with a recent report that neuronal sequences activated during hippocampal SWRs in 

vivo resembled Brownian motion, or a random walk through the sensory space, rather 755 

than precise replay of experience (Stella et al., 2019). This suggests that, rather than 
serving mainly to consolidate specific episodic memories of ordered sensory 

experiences, neuronal sequences during SWRs could also explore possible 
associations within the environment that had not been fully sampled during experience. 

Our modeling results showing that increased population representations of goal sites 760 

bias the content of offline memory replay also corroborate recent findings that 

previously rewarded locations are replayed more readily than immediate past or 
immediate future trajectories (Gillespie et al., 2021). Within this framework, synaptic 
plasticity during offline replay could modify connection strengths to increase the 

chance that a new path will be taken that is likely to lead to a desired outcome 765 

(Ólafsdóttir et al., 2015). 

 In summary, our modeling results identified a minimal set of elements sufficient 
to enable flexible and bidirectional memory replay in neuronal networks: spike rate 

adaptation, and recurrent connectivity between excitatory and inhibitory neuron 
populations with strengths and kinetics optimized for rhythmogenesis and sparse and 770 

selective stimulus representations. In previous models of neuronal sequence 
generation, additional network components were proposed to enable unidirectional 

sequences stored in memory to be reversed during offline recall, including 
neuromodulation (Gauy et al., 2018), excitability of neuronal dendrites (Gauy et al., 

2018; Jahnke et al., 2015), coordinated plasticity at both excitatory and inhibitory 775 

synapses (Ramirez-Villegas et al., 2018), and functional specialization of diverse 

subpopulations of inhibitory interneurons (Cutsuridis and Hasselmo, 2011). While these 
mechanisms may regulate and enhance memory replay, our results suggest that they 

are not necessarily required. 
This model also makes some experimentally-testable predictions. First, it implies 780 

that ion channel mutations that disrupt neuronal spike rate adaptation may also 
degrade neuronal sequence generation and memory consolidation (Peters et al., 2005). 

Secondly, while the direction and content of offline sequences may be largely 
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controlled by internal dynamics and information stored in the synaptic weights within a 
recurrent neuronal circuit, the model network still required a small amount of random 785 

feedforward afferent input to evoke an offline population burst, suggesting that 
experimental manipulations of afferent projections to hippocampal area CA3 may alter 

the frequency or content of memory replay events (Chenani et al., 2019; Sasaki et al., 
2018). Recent work has also begun to explore the advantages of generative replay for 

learning in artificial neural networks (Roscow et al., 2021). In addition to better 790 

understanding the biological mechanisms of memory consolidation and flexible 

planning of behavior, characterizing the minimal mechanisms of memory replay could 
facilitate the engineering of artificial systems that can refine their internal 

representations of the environment during periods of offline rest (Buzsáki, 1989).  
 795 
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Materials and Methods 

Simulations of a recurrent network of excitatory and inhibitory spiking neurons were 805 

executed using the python interface for the NEURON simulation software (Hines et al., 
2009). Cell models were single-compartment integrate-and-fire neuronal cell models, 

as defined by Izhikevich (Izhikevich, 2007), and as implemented for the NEURON 
simulator by Lytton et al (Lytton et al., 2016). Previously calibrated cell models were 

replicated from those previous reports without modification – the “intrinsically bursting 810 

cell” model was used for excitatory neurons (E) with spike rate adaptation, the “regular 

spiking pyramidal cell” model was used for excitatory neurons without spike rate 
adaptation, and the “fast-spiking interneuron” model was used for inhibitory neurons (I) 
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(Izhikevich, 2007; Lytton et al., 2016). Individual spikes in presynaptic neurons 
activated saturable conductance-based synapses with exponential rise and decay 815 

kinetics after a constant delay of 1 ms to emulate axonal conduction time (Carnevale 
and Hines, 2006). Excitatory synapses had a reversal potential of 0 mV (like AMPA-type 

glutamate receptors), and inhibitory synapses had a reversal potential of -80 mV (like 
GABA(A)-type receptors). In addition to the excitatory (E) and inhibitory (I) neuron 

populations, a population of feedforward afferent inputs (FF) provided a source of 820 

external excitatory synaptic drive to the model network. 

The baseline weights of excitatory synapses onto E cells were sampled from a 
log-normal distribution (Almeida et al., 2009b; Buzsaki and Mizuseki, 2014), while the 

weights of excitatory synapses onto I cells, and all inhibitory synapses were sampled 
from a normal distribution (Grienberger et al., 2017). In addition to the random baseline 825 

synaptic weights assigned to excitatory synapses onto E cells, input strengths were 
increased by a variable additive factor that depended on the distance between the 

place fields of cells with overlapping spatial selectivity (Supplementary Figure S1B). 
The place field locations of the FF and E populations were assigned by distributing 

locations throughout the circular simulated track at equal intervals, and randomly 830 

assigning them to cells within each population. Random connectivity resulted in each E 

neuron receiving inputs from many FF and E neurons with heterogeneous selectivity, 
which produced substantial out-of-field excitation at all positions along the track. 

For each of six types of connections between the three cell types (E <- FF, E <- 

E, E <- I, I <- FF, I <- E, I <- I), a number of parameters were varied and explored during 835 

optimization to identify model configurations that produced dynamics comparable to 

experimental observations. These parameters included: the mean and variance of the 
synaptic weight distribution for each connection type, the decay time constants of the 

synaptic conductances, the mean number of synapses made by one presynaptic cell 
onto one postsynaptic cell for each pair of cell types, and the maximum increase in 840 

synaptic weight due to shared selectivity, as mentioned above. Self-connections were 
not permitted. 
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Optimization was performed using a population-based iterative multi-objective 
algorithm. During each of 50 iterations, a population of 600 models with different 

parameters were simulated for one trial of simulated online run, and for 5 trials of 845 

simulated offline rest. During offline rest trials, a random subset of 25% of feedforward 

inputs were active with a mean rate of 12.5 Hz for an event duration of 160 ms (8 bins 
of 20 ms each). Different trials were implemented by using a distinct random number 

stream to sample unique spike times of the feedforward inputs from an 
inhomogeneous Poisson process. The following features of the network dynamics were 850 

evaluated for each model: average minimum and maximum firing rates of E cells during 
run, average mean firing rates of I cells during run, average fraction of active E and I 

cells during run, mean firing rates of E cells during rest, average fraction of active E 
cells during rest, and finally, features related to the frequency and power of theta and 

gamma band oscillations in E and I cells during run. These features were compared to 855 

target values to obtain a set of multiple objective error values. Models within a 

population were compared to each other and ranked with a non-dominated sorting 
procedure (Deb, 2011). Then, a new population of models was generated by making 

small perturbations to the parameter values of the most highly-ranked models from the 
previous iteration. This algorithm effectively identified model configurations that 860 

satisfied multiple objective criterion. Below, the final optimized parameter values (Table 
1) and measured features of the network dynamics (Table 2) are compared for various 
model configurations discussed in this study: 

 

Table 1. Model parameter values 
Parameter Bounds Structured 

E <- E 
weights 

Random 
E <- E 
weights 

Shuffled 
E <- E 
weights 

Suppressed 
rhythmicity 

No sparsity 
or selectivity 
constraints 

No spike 
rate 
adaptation 

E <- FF 
weight 
mean 

0.1 – 5 1.28 0.29 1.30 0.37 1.57 0.55 

E <- FF 
weight st. 
dev. 

0.1 – 5 1.09 0.21 0.91 0.80 0.88 0.41 

E <- E weight 
mean 

0.1 – 5 0.75 0.50 1.43 0.90 0.54 2.45 
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E <- E weight 
st. dev. 

0.1 – 5 0.52 0.48 0.58 0.25 0.73 1.74 

E <- I weight 
mean 

0.1 – 5 0.87 0.70 2.06 0.86 0.59 0.54 

E <- I weight 
st. dev. 

0.1 – 5 0.47 0.32 0.41 0.76 0.73 0.16 

I <- FF weight 
mean 

0.1 – 5 1.50 1.83 2.44 0.38 1.53 1.60 

I <- FF weight 
st. dev. 

0.1 – 5 0.68 0.82 0.45 0.38 0.55 0.22 

I <- E weight 
mean 

0.1 – 5 1.85 1.31 1.44 1.63 1.77 0.82 

I <- E weight 
st. dev. 

0.1 – 5 0.22 0.28 0.21 0.17 0.14 0.79 

I <- I weight 
mean 

0.1 – 5 0.16 1.07 0.26 2.51 0.15 0.23 

I <- I weight 
st. dev. 

0.1 – 5 0.12 0.68 0.47 0.33 0.77 0.05 

E <- FF and 
E <- E max 

structured 
Dweight 

1 - 5 3.63 2.80 4.42 3.91 3.63 4.00 

E <- FF and  
E <- E decay 

(ms) 

2 - 20 3.43 10.76 3.48 19.87 3.53 5.91 

E <- I decay 
(ms) 

2 - 30 2.32 3.89 2.72 17.05 2.53 27.87 

I <- FF and  
I <- E decay 

(ms) 

2 - 20 15.04 18.53 17.94 13.49 17.10 18.39 

I <- I decay 
(ms) 

2 - 30 8.09 5.65 8.12 9.24 10.19 22.35 

E <- FF # 
synapses 
/ pair 

0 - 2 0.62 0.96 0.70 0.57 0.73 0.18 

E <- E # 
synapses 
/ pair  

0 - 2 0.55 0.57 0.55 0.05 0.33 0.46 

E <- I # 
synapses 
/ pair 

0 - 10 5.12 3.36 4.75 7.93 5.71 7.79 

I <- FF # 
synapses 
/ pair 

0 - 2 0.26 0.77 0.19 0.21 0.19 0.12 

I <- E # 
synapses 
/ pair 

0 - 2 0.31 0.47 0.19 0.22 0.13 0.60 

I <- I # 
synapses 
/ pair 

0 - 10 8.17 4.81 9.07 8.83 9.43 7.38 
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Table 2. Features of model network dynamics 
Feature Target Structured 

E <- E 
weights 

Random 
E <- E 
weights 

Shuffled 
E <- E 
weights 

Suppressed 
rhythmicity 

No sparsity 
or selectivity 
constraints 

No spike 
rate 
adaptation 

E peak rate 
(run) (Hz) 

20. 17.20 19.96 10.42 20.07 19.73 7.30 

E min rate (run) 
(Hz) 

0. 0.24 0.25 0.27 0.25 12.37 0.39 

I mean rate 
(run) (Hz) 

20. 19.58 32.05 12.08 2.77 19.90 6.17 

E fraction 
active (run) 

0.6 0.59 0.60 0.61 0.60 1.00 0.60 

I fraction active 
(run) 

0.95 1.00 1.00 0.95 0.23 0.98 0.87 

E theta 
amplitude 
(run) 

0.5 0.78 0.37 0.63 0.15 0.77 1.29 

I theta 
amplitude 
(run) 

0.5 0.48 0.14 0.19 0.26 0.53 1.15 

E gamma 
amplitude 
(run) 

0.25 0.53 0.40 0.66 0.20 0.59 0.27 

I gamma 
amplitude 
(run) 

0.25 1.19 1.85 1.33 1.67 1.39 1.27 

E theta 
frequency 
(run) (Hz) 

7. 7.09 7.45 7.64 11.27 7.09 6.73 

I theta 
frequency 
(run) (Hz) 

7. 6.91 7.27 7.45 12.55 6.91 6.73 

E gamma 
frequency 
(run) (Hz) 

70. 71.06 72.93 71.06 57.98 72.93 39.29 

I gamma 
frequency 
(run) (Hz) 

70. 71.06 72.93 69.19 87.88 76.67 69.19 

E theta 
frequency 
tuning 
index (run) 

>5. 6.40 6.30 7.00 0.00 29.05 150.67 

I theta 
frequency 
tuning 
index (run) 

>5. 9.83 6.10 3.99 0.00 34.16 150.59 

E gamma 
frequency 
tuning 
index (run) 

>5. 10.67 10.90 5.08 -0.37 10.18 -0.01 

I gamma 
frequency 

>5. 16.16 4.14 31.65 0.36 6.02 3.43 

33

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2021.10.27.466186doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.27.466186
http://creativecommons.org/licenses/by/4.0/


tuning 
index (run) 

E fraction 
active 
(rest) 

0.25 0.37 0.20 0.53 0.36 1.00 0.40 

E mean rate 
(rest) (Hz) 

12.5 7.11 6.56 7.12 7.65 17.77 6.97 

 865 

 In the above table, theta and gamma amplitudes were quantified as follows: 
average population firing rates were band-pass filtered, and the envelopes of the 

filtered traces were computed from the Hilbert transformation. Then power was 
expressed as a ratio of the average envelope amplitude to the average population firing 

rate. To quantify theta and gamma frequency, bandpass filtered traces were subject to 870 

frequency decomposition, and the frequency corresponding to the centroid or center-

of-mass of the power spectral density distribution was taken as the dominant 
frequency within the band. The area of the power spectral density distribution was also 

used to compute a “frequency tuning index” which quantified how concentrated the 
power distribution was around the centroid frequency. This metric was akin to a signal-875 

to-noise ratio in the frequency domain instead of the time domain, and was computed 
as follows: 

1) 𝐹𝑇𝐼 = !"#
$∙&∙'

 

where 𝑆 is the average power at frequencies within the center of mass quartile 

containing the centroid frequency (signal), 𝑁 is the average power at frequencies in the 880 

extreme high and low quartiles outside the center of mass quartile (noise), 𝜎 is the 

standard deviation of the power distribution, and 𝑤 is the half-width of the power 

distribution in the frequency domain normalized to the width of the bandpass filter. This 

metric has values near zero when power is distributed uniformly within the filter band, 
and values larger than one when power is concentrated around the centroid frequency. 885 

 Following parameter optimization, each variant of the network was evaluated by 
simulating 5 trials of online run, and 1000 trials of offline rest for each of 5 independent 

network instances. For a given set of model parameters, independent instances of 
each network variant were constructed by using distinct random number streams to 
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assign place field locations, input spike times, synaptic connections, and synaptic 890 

weights for all cells in the network. 

 Bayesian decoding of spatial position from spike times recorded during a single 
trial (Figures 2, 3, 5 and 6, and Supplementary Figures S3 – S6) was performed using 

the procedure described in (Davidson et al., 2009). The spatial firing rates of all cells 
were averaged across 5 trials of simulated online run to compute the spiking 895 

probabilities of each neuron in 20 ms bins. Then, spiking data was taken from either a 
held-out set of 5 trials of simulated run (Figure 2), or offline rest trials (Figures 3, 5 and 

6, and Supplementary Figures S3 – S6). The numbers of spikes emitted by each cell in 
20 ms bins were used to determine a likelihood distribution over spatial positions. The 

position with maximum likelihood was used as the decoded position estimate for each 900 

temporal bin. In Figure 2A, decoded positions of E and I cells sweep smoothly from 

past to future positions, and then relax back to the current position on the timescale of 
the ongoing theta rhythm. To quantify this form of online neuronal sequence 

generation, a theta sequence score (Figures 2E and 4H) was computed as follows: 
decoded position error was first bandpass filtered in the theta band (4 – 10 Hz). Then 905 

the contribution of this oscillation to the total variance in decoded position error was 
calculated as the square of the correlation (R2) between the original mean-subtracted 

error signal and the theta filtered signal. In Figures 3F, 3M, 4I, 5G and 6G, and 
Supplementary Figures S3H, S4F, S5K, S6K and S8E, offline sequences were 
categorized as consistent with a continuous trajectory through space if they met the 910 

following criterion: 1) at least one cell in a population must emit at least one spike in 
each temporal bin, 2) the change in decoded position between any two adjacent bins 

must not exceed 35% of the track length, 3) the total path length of the decoded 
trajectory must not exceed 100% of the track length, and 4) the net speed of the 

trajectory (absolute value of net change in position divided by the 160 ms offline event 915 

duration) must exceed 50% of the run speed of 0.33 track lengths / sec used during 

simulation of online exploration. 
 In Figure 4 and Supplementary Figure S8, the diversity and degeneracy of 

various model configurations was explored as follows: for each model configuration, 
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30,000 models were evaluated during parameter optimization, and the model with the 920 

lowest multi-objective error score was considered the “best” model. The remaining 

models were sorted by their Euclidean distance from the “best” model in the space of 
model parameters. This resulted in an error landscape (e.g. Figure 4A) in which models 

with similar parameters resulted in similar multi-objective error scores. We then 
identified models located at local minima in this error landscape, which as a group 925 

comprised models that were distant from each other in parameter space, but similar to 
each other in terms of overall multi-objective error. We further enforced that selected 

models had to be a minimum distance of 0.15 from each other in parameter space, and 
selected 5 such models with the lowest error score to be included in a “Marder group” 

of models for further analysis. For each alternative network model configuration (i.e. 930 

network models with and without structured recurrent excitatory connections), each of 

5 “Marder group” model variants with different parameters were evaluated for offline 
sequence generation by simulating 1000 trials for each of 5 independent network 

instances. 
In box and whisker plots in Figures 2D, 2E, 3F, 3M, 4D – 4I, 5G and 6G, and 935 

Supplementary Figures S1C, S1D, S3H, S4F, S5K, S6K and S8A – S8E, center lines 
indicate median, boxes span the first and third quartile of the data, and whiskers 

extend to 1.5 times the inter-quartile range. 
 
Data and Code Availability 940 

All code necessary to reproduce the data and analysis presented in this work are 

available here: 
Network simulation and analysis code: 

https://github.com/neurosutras/optimize_simple_network  
Network optimization code: https://github.com/neurosutras/nested 945 
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Supplementary Figure S1 



Supplementary Figure S1. Related to Figures 1, 2 and 3. Structure and online dynamics of network 
model with excitatory synaptic connectivity structured by shared stimulus selectivity. (A) 
Intracellular voltage recordings from example E and I cells during simulated “online” spatial exploration. 
(B) The strengths of synaptic connections within the network model shown in Figure 1 are indicated by 
grayscale intensity. Cells in each population are sorted by the location of maximum average spatial firing 
rate. Excitatory connections from FF and E cells onto E cells are increased in strength for pairs of cells 
with overlapping spatial selectivity. (C) Spatial modulation for each cell is computed as a ratio of 
maximum to mean activity. The degree of spatial modulation expected from a linear weighted sum of 
excitatory inputs is larger for E cells than I cells due to the structure of the weight distributions shown in 
(B). However, the actual spatial modulation measured from the firing rate outputs of each cell is larger 
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than expected in both E and I cells due to suppression of background activity by synaptic inhibition 
(one-sided paired t-tests: Expected vs. Actual: E, p<0.00001; I, p<0.00001). (D) The distance between 
the expected location of maximum firing, and the actual location is quantified as a fraction of the circular 
track (one-sample t-tests: E, p<0.00001; I, p=0.00005). (E) Traces depict average population firing rates 
of E and FF cells during an example trial for one instance of the network. E cells and FF cells dominate 
at different phases of the population theta oscillation. (F) In Figure 1G (bottom row), the amplitudes of the 
gamma-filtered (purple) population firing rates for E and I populations vary in time. Here, the amplitudes 
or envelopes of the gamma-filtered population firing rates were subject to frequency decomposition. The 
resulting frequency distributions show peaks in the theta band (one-sided paired t-tests: 4 Hz – 10 Hz 
frequency band: E vs. FF, p=0.00002; I vs. FF, p=0.00002). Mean (solid) ± SEM (shading) were computed 
across 5 independent network instances. In (C) and (D), box and whisker plots depict data across cells 
for one example instance of the network (see Materials and Methods). Statistics were computed across 
5 independent instances of the network. p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S2 



Supplementary Figure S2. Related to Figures 1, 2 and 3. Structure and online dynamics of 
alternative network models with random recurrent excitatory connectivity. (A) Same as 
Supplementary Figure S1B for an alternative network model with random E ← E weights. (B – F) Same 
as Figures 1C – 1F and 1H for alternative network model. (F) Rhythmicity (one-sided paired t-tests: theta: 
E vs. FF, p=0.00003; I vs. FF, p<0.00001; gamma: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided t-
tests vs. data from model with structured E ← E weights in Figure 1H: theta: E, p<0.00001; I, p<0.00001; 
gamma: E, p<0.00001; I, p<0.00001). (G – L) Same as (A – F) for an alternative network model with 
structured, but shuffled E ← E weights. (H) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, 
p=0.00009; I vs. FF, p=0.00003; gamma: E vs. FF, p=0.00002; I vs. FF, p<0.00001; two-sided t-tests vs. 
data from model with structured E ← E weights in Figure 1H: theta: E, p<0.00001; I, p<0.00001; gamma: 
E, p=0.00001; I, p<0.00001). In (C – F) and (I – L), data were first averaged across 5 trials per network 
instance. Mean (solid) ± SEM (shading) were computed across 5 independent network instances. p-
values reflect FDR correction for multiple comparisons.
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Supplementary Figure S3 




Supplementary Figure S3. Related to Figures 1 and 3. Offline replay is unidirectional in an 
alternative network model with asymmetric synaptic connectivity. (A) Same as Supplementary 
Figure S1B for an alternative network model with E ← E and E ← FF synaptic weights biased such that 
neurons encoding the current position of the animal during run preferentially activate neurons encoding 
future positions. This biases offline replay towards forward-moving unidirectional sequences. (B) Same 
as Figure 1C for alternative network model. (C – I) Same as Figures 3A – 3G for alternative network 
model. (C) and (D) correspond to two example trials from one example network instance. (E) Decoded 
positions (two-sided K-S tests: E vs. FF, p=0.99974; I vs. FF, p=0.99974; two-sided K-S tests vs. data 
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from model with structured E ← E weights in Figure 3C: E, p=0.99974; I, p=0.99974). (F) Offline 
sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S tests vs. 
data from model with structured E ← E weights in Figure 3D: E, p<0.00001; I, p=0.31278). (G) Offline 
sequence velocity (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p=0.00026; two-sided K-S tests 
vs. data from model with structured E ← E weights in Figure 3E: E, p<0.00001; I, p=0.00026). (H) 
Fraction of events that met criterion for sequences consistent with continuous spatial trajectories (see 
Materials and Methods) (one-sided paired t-tests: E vs. FF, p<0.00001, I vs. FF, p=0.00003; two-sided t-
tests vs. data from model with structured E ← E weights in Figure 3F: E, p<0.00001; I, p=0.00112). (I) 
Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, 
p=0.00100; I vs. FF, p=0.00001; two-sided t-tests vs. data from model with structured E ← E weights in 
Figure 3G: E, p=0.00001; I, p=0.02509). In (E – G) and (I), mean (solid) ± SEM (shading) were computed 
across 5 independent instances of each network. In (H), box and whisker plots depict data from 5 
independent instances of each network model (see Materials and Methods). p-values reflect FDR 
correction for multiple comparisons.
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Supplementary Figure S4 



Supplementary Figure S4. Related to Figure 3. Offline replay is disrupted in an alternative network 
model with structured, but shuffled recurrent excitatory connectivity. 

(A – G) Same as Figures 3A – 3G for an alternative network model with structured, but shuffled E ← E 
weights. (A) and (B) correspond to two example trials from one example network instance. (C) Decoded 
positions (two-sided K-S tests: E vs. FF, p=0.99974; I vs. FF, p=0.99974; two-sided K-S tests vs. data 
from model with structured E ← E weights in Figure 3C: E, p=0.99974; I, p=0.99974). (D) Offline 
sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p=0.11015; two-sided K-S tests vs. 
data from model with structured E ← E weights in Figure 3D: E, p<0.00001; I, p<0.00001). (E) Offline 
sequence velocity (two-sided K-S tests: E vs. FF, p=0.96717; I vs. FF, p=0.73515; two-sided K-S tests 
vs. data from model with structured E ← E weights in Figure 3E: E, p=0.00272; I, p=0.24955). (F) Fraction 
of events that met criterion for sequences consistent with continuous spatial trajectories (see Materials 
and Methods) (one-sided paired t-tests: E vs. FF, p=0.06713, I vs. FF, p=0.99967; two-sided t-tests vs. 
data from model with structured E ← E weights in Figure 3F: E, p<0.00001; I, p<0.00001). (G) Offline 
high-frequency rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, 
p=0.00092; I vs. FF, p=0.00004; two-sided t-tests vs. data from model with structured E ← E weights in 
Figure 3G: E, p=0.00006; I, p=0.00059). In (C – E) and (G), mean (solid) ± SEM (shading) were computed 
across 5 independent instances of each network. In (F), box and whisker plots depict data from 5 
independent instances of each network model (see Materials and Methods). p-values reflect FDR 
correction for multiple comparisons.
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Supplementary Figure S5 



Supplementary Figure S5. Related to Figures 1 and 3. Offline replay is disrupted in an alternative 
network model optimized to suppress rhythmicity. (A – E) Same as Figures 1C – 1F and 1H for 
alternative network model optimized to suppress theta and gamma rhythmicity in E and I cells. (E) 
Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; I vs. FF, p=0.99754; gamma: E vs. FF, 
p<0.00001; I vs. FF, p=0.00003; two-sided t-tests vs. data from model with structured E ← E weights in 
Figure 1H: theta: E, p<0.00001; I, p<0.00001; gamma: E, p<0.00001; I, p<0.00001). (F – L) Same as 
Figures 3A – 3G for alternative network model. (F) and (G) correspond to two example trials from one 
example network instance. (H) Decoded positions (two-sided K-S tests: E vs. FF, p=0.99974; I vs. FF, 
p=0.99974; two-sided K-S tests vs. data from model with structured E ← E weights in Figure 3C: E, 
p=0.99974; I, p=0.99974). (I) Offline sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, 
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p<0.00001; two-sided K-S tests vs. data from model with structured E ← E weights in Figure 3D: E, 
p<0.00001; I, p<0.00001). (J) Offline sequence velocity (two-sided K-S tests: E vs. FF, p=0.73515; I vs. 
FF, p=0.00001; two-sided K-S tests vs. data from model with structured E ← E weights in Figure 3E: E, 
p=0.09901; I, p=0.00004). (K) Fraction of events that met criterion for sequences consistent with 
continuous spatial trajectories (see Materials and Methods) (one-sided paired t-tests: E vs. FF, 
p=0.00004, I vs. FF, p=0.00002; two-sided t-tests vs. data from model with structured E ← E weights in 
Figure 3F: E, p<0.00001; I, p=0.00001). (L) Offline high-frequency rhythmicity (one-sided paired t-tests: 
75 Hz – 300 Hz frequency band: E vs. FF, p=1; I vs. FF, p=1; two-sided t-tests vs. data from model with 
structured E ← E weights in Figure 3G: E, p=0.00001; I, p<0.00001). In (B – E), (H – J) and (L), mean 
(solid) ± SEM (shading) were computed across 5 independent instances of each network. In (K), box and 
whisker plots depict data from 5 independent instances of each network model (see Materials and 
Methods). p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S6 



Supplementary Figure S6. Related to Figures 1 and 3. Offline replay is disrupted in an alternative 
network model optimized without sparsity or selectivity constraints. (A – E) Same as Figures 1C – 
1F and 1H for alternative network model optimized without sparsity or selectivity constraints in E cells. 
(E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; I vs. FF, p<0.00001; gamma: E vs. 
FF, p<0.00001; I vs. FF, p<0.00001; two-sided t-tests vs. data from model with structured E ← E weights 
in Figure 1H: theta: E, p<0.00001; I, p<0.00001; gamma: E, p<0.00001; I, p<0.00001). (F – L) Same as 
Figures 3A – 3G for alternative network model. (F) and (G) correspond to two example trials from one 
example network instance. (H) Decoded positions (two-sided K-S tests: E vs. FF, p=0.00019; I vs. FF, 
p=0.99974; two-sided K-S tests vs. data from model with structured E ← E weights in Figure 3C: E, 
p=0.00010; I, p=0.99974). (I) Offline sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, 
p=0.00030; two-sided K-S tests vs. data from model with structured E ← E weights in Figure 3D: E, 
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p<0.00001; I, p<0.00001). (J) Offline sequence velocity (two-sided K-S tests: E vs. FF, p=0.00015; I vs. 
FF, p=0.31270; two-sided K-S tests vs. data from model with structured E ← E weights in Figure 3E: E, 
p=0.00093; I, p=0.06213). (K) Fraction of events that met criterion for sequences consistent with 
continuous spatial trajectories (see Materials and Methods) (one-sided paired t-tests: E vs. FF, 
p=0.14499, I vs. FF, p=0.99967; two-sided t-tests vs. data from model with structured E ← E weights in 
Figure 3F: E, p=0.00027; I, p<0.00001). (L) Offline high-frequency rhythmicity (one-sided paired t-tests: 
75 Hz – 300 Hz frequency band: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided t-tests vs. data from 
model with structured E ← E weights in Figure 3G: E, p<0.00001; I, p<0.00001). In (B – E), (H – J) and (L), 
mean (solid) ± SEM (shading) were computed across 5 independent instances of each network. In (K), 
box and whisker plots depict data from 5 independent instances of each network model (see Materials 
and Methods). p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S7 



Supplementary Figure S7. Related to Figures 1 and 5. Online dynamics in network model without 
spike rate adaptation. (A – E) Same as Figures 1C – 1F and 1H for alternative network model without 
spike rate adaptation in E cells. (E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p=0.00016; I vs. 
FF, p=0.00007; gamma: E vs. FF, p=0.98658; I vs. FF, p=0.00002; two-sided t-tests vs. data from model 
with structured E ← E weights in Figure 1H: theta: E, p=0.03333; I, p<0.00001; gamma: E, p<0.00001; I, 
p<0.00001). In (B – E), mean (solid) ± SEM (shading) were computed across 5 independent instances of 
each network. p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S8 



Supplementary Figure S8. Related to Figures 1, 3, 4, and 5. Exploration of model parameter 
diversity and degeneracy in additional alternative network models. To explore model diversity and 
degeneracy, for various network model configurations, a subset of model variants termed a “Marder 
group” were selected based on their large distance from each other in the space of parameters, but their 
similar performance with respect to multiple optimization objectives (see Figure 4 and Materials and 
Methods). Features of the simulated network dynamics produced by distinct model variants within a 
“Marder group” are compared across network model configurations. (A) Spatial selectivity of the 
excitatory neuron population during simulated “online exploration” is computed as a ratio of maximum to 
mean activity (two-sided t-tests vs. data from model with structured E ← E weights: Random E ← E 
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weights: p=1; Shuffled E ← E weights: p=0.00224; No rhythmicity constraints: p=1; No sparsity or 
selectivity constraints: p<0.00001; No spike rate adaptation: p=1). (B) The fraction of the excitatory 
neuron population that is synchronously active during simulated “online exploration” is shown (two-sided 
t-tests vs. data from model with structured E ← E weights: Random E ← E weights: p=1; Shuffled E ← E 
weights: p=0.12079; No rhythmicity constraints: p=1; No sparsity or selectivity constraints: p<0.00001; 
No spike rate adaptation: p=0.19538). (C) Gamma rhythmicity of the excitatory neuron population is 
computed as the integrated power spectral density in the gamma frequency band (two-sided t-tests vs. 
data from model with structured E ← E weights: Random E ← E weights: p=0.03552; Shuffled E ← E 
weights: p=0.16364; No rhythmicity constraints: p=0.00014; No sparsity or selectivity constraints: 
p=0.00091; No spike rate adaptation: p=0.00012). (D) Theta rhythmicity of the excitatory neuron 
population is computed as the integrated power spectral density in the theta frequency band (two-sided 
t-tests vs. data from model with structured E ← E weights: Random E ← E weights: p=0.00272; Shuffled 
E ← E weights: p=0.01944; No rhythmicity constraints: p=0.00030; No sparsity or selectivity constraints: 
p=0.00984; No spike rate adaptation: p=1). (E) Fraction of events during simulated “offline rest” that met 
criterion for sequences consistent with continuous spatial trajectories (see Figure 3, Supplementary 
Figure S3, and Materials and Methods) (two-sided t-tests vs. data from model with structured E ← E 
weights: Random E ← E weights: p<0.00001; Shuffled E ← E weights: p=0.00044; No rhythmicity 
constraints: p=<0.00001; No sparsity or selectivity constraints: p=0.00120; No spike rate adaptation: 
p=0.00751). In (A – E), for each network model configuration, box and whisker plots depict 5 distinct 
“Marder group” model variants with different parameters (see Materials and Methods). Data for each 
model variant (grey circles) were first averaged across 5 independent instances of that model variant. For 
each network model configuration, In (C – E), grey dashed lines indicate value for the feedforward input 
to the network for reference. p-values reflect Bonferroni correction for multiple comparisons.
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Supplementary Figure S9 



Supplementary Figure S9. Related to Figures 1 and 6. Online activity in network model with 
population over-representation of reward. (A) Same as Supplementary Figure S1B for an alternative 
network model with population-level over-representation of reward location in E cells. Simulated reward 
site is marked with red dashed line. (B – E) Same as Figures 1D – 1F and 1H for alternative network 
model. (E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; I vs. FF, p<0.00001; gamma: 
E vs. FF, p=0.00003; I vs. FF, p<0.00001; two-sided t-tests vs. data in Figure 1H: theta: E, p=0.00440; I, 
p=0.16525; gamma: E, p=0.00043; I, p=0.01695). In (B – E), mean (solid) ± SEM (shading) were 
computed across 5 independent instances of each network. p-values reflect FDR correction for multiple 
comparisons.
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