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Abstract

During spatial exploration, neural circuits in the hippocampus store memories of
sequences of sensory events encountered in the environment. When sensory
information is absent during “offline” resting periods, brief neuronal population bursts
can “replay” sequences of activity that resemble bouts of sensory experience. These
sequences can occur in either forward or reverse order, and can even include spatial
trajectories that have not been experienced, but are consistent with the topology of the
environment. The neural circuit mechanisms underlying this variable and flexible
sequence generation are unknown. Here we demonstrate in a recurrent spiking
network model of hippocampal area CAS3 that experimental constraints on network
dynamics such as population sparsity, stimulus selectivity, rhythmicity, and spike rate
adaptation enable additional emergent properties, including variable offline memory
replay. In an online stimulus-driven state, we observed the emergence of neuronal
sequences that swept from representations of past to future stimuli on the timescale of
the theta rhythm. In an offline state driven only by noise, the network generated both
forward and reverse neuronal sequences, and recapitulated the experimental

observation that offline memory replay events tend to include salient locations like the
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site of a reward. These results demonstrate that biological constraints on the dynamics

of recurrent neural circuits are sufficient to enable memories of sensory events stored

in the strengths of synaptic connections to be flexibly read out during rest and sleep,
20 which is thought to be important for memory consolidation and planning of future

behavior.

Introduction
In mammals, the hippocampus is a brain region involved in the storage and recall of

25 spatial and episodic memories. As an animal explores a spatial environment, different
subpopulations of hippocampal neurons known as “place cells” are selectively
activated at different positions in space, resulting in sequences of neuronal spiking that
are on the seconds-long timescale of locomotor behavior (O’Keefe and Conway, 1978).
The synchronous firing of these sparse neuronal ensembles is coordinated by

30 population-wide oscillations referred to as theta (~4-10 Hz) and gamma (~30-100 Hz)
rhythms (Colgin, 2016). Within each cycle of the theta rhythm (~125 ms), the spiking of
active neurons is organized into fast timescale sequences such that neurons selective
for just-visited positions spike first, then neurons selective for the current position, and
finally neurons selective for the next and future positions spike last in the sequence

35 (Drieu and Zugaro, 2019; Foster and Wilson, 2007). These order-preserving fast
timescale “theta sequences” are thought to be involved in planning and learning of
event order through associative synaptic plasticity (Jensen et al., 1996; Kay et al.,
2020).

When an animal stops running, theta and gamma oscillations decrease, and

40 neuronal circuits in the hippocampus instead emit intermittent synchronous bursts of
activity that are associated with high-frequency oscillatory activity detectable in local
field potential recordings in hippocampal area CA1. These ~100-200 ms long events
are referred to as “sharp wave-ripples” (SWRs) (Colgin, 2016), and they occur during
non-locomotor periods of quiet wakefulness, during reward consumption, and during

45  slow-wave sleep, when sensory information about the spatial environment is reduced

or absent. During SWRs, sparse subsets of neurons are co-activated, with a tendency
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for neurons that fire sequentially during exploratory behavior to also fire sequentially
during SWRs, either in the same order, in reverse, or with a mixture of both directions
(Davidson et al., 2009; Pfeiffer, 2020; Stella et al., 2019; Wu and Foster, 2014). The
hippocampus can also activate sequences of place cells during SWRs that correspond
to possible paths through the environment that have not actually been experienced,
suggesting a possible role for offline sequence generation in behavioral planning
(Gupta et al., 2010; Igata et al., 2021; Olafsdéttir et al., 2015, 2018; Wu and Foster,
2014). Manipulations that disrupt neuronal activity during SWRs result in deficits in
memory recall (Girardeau et al., 2009; Jadhav et al., 2012), supporting a hypothesis
that offline reactivation of neuronal ensembles during SWRs is important for the
maintenance and consolidation of long-term memories (Buzsaki, 1989; Joo and Frank,
2018).

Hippocampal SWRs are thought to be generated by the synchronous firing of
subpopulations of neurons in the CA2 and CAS regions of the hippocampus (Csicsvari
et al., 2000; Oliva et al., 2016), which are characterized by substantial recurrent
feedback connectivity (Duigou et al., 2014; Guzman et al., 2016; Okamoto and |Ikegaya,
2019). Recurrent networks have long been appreciated for their ability to generate rich
internal dynamics (Amit and Brunel, 1997), including oscillations (Ermentrout, 1992). It
has also been shown that associative plasticity at recurrent connections between
excitatory neurons can enable robust reconstruction of complete memory
representations from incomplete or noisy sensory cues (Amit and Brunel, 1997;
Griniasty et al., 1993; Guzman et al., 2016; Hopfield, 1982; Marr, 1971; Treves and
Rolls, 1994). However, this “pattern completion” function of recurrent networks
requires that similarly tuned neurons activate each other via strong synaptic
connections, resulting in sustained self-activation, rather than sequential activation of
neurons that are selective for distinct stimuli (Lisman et al., 2005; Pfeiffer and Foster,
2015; Renno-Costa et al., 2014). Previous work has shown that, in order for recurrent
networks to generate sequential activity, some mechanism must be in place to “break
the symmetry” and enable spread of activity from one ensemble of cells to another

(Sompolinsky and Kanter, 1986; Tsodyks et al., 1996). During spatial navigation,
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feedforward sensory inputs carrying information about the changing environment can
provide the momentum necessary for sequence generation. However, during
hippocampal SWRs, sensory inputs are reduced, and activity patterns are thought to
80 be primarily internally generated by the recurrent connections within the hippocampus.
In this study we use a computational model of hippocampal area CAS to investigate
the synaptic, cellular, and network mechanisms that enable flexible offline generation
of memory-related neuronal sequences in the absence of ordered sensory information.
A number of possible mechanisms for sequence generation in recurrent
85 networks have been proposed:
1) Winner-take-all network mechanism (Almeida et al., 2007, 2009a; Lisman and
Jensen, 2013): Within this framework, the subset of excitatory neurons receiving
the most strongly weighted synaptic inputs responds first upon presentation of a
stimulus. This active ensemble of cells then recruits feedback inhibition via local
90 interneurons, which in turn prevents other neurons from firing for a brief time
window (e.g. the ~15 ms duration of a single gamma cycle). This highlights the
important roles that inhibitory neurons play in regulating sparsity (how many cells
are co-active), selectivity (which cells are active), and rhythmicity (when cells fire)
in recurrent networks (Almeida et al., 2009b; Renné-Costa et al., 2019; Stark et
95 al., 2014; Stefanelli et al., 2016). However, while oscillatory feedback inhibition
provides a network mechanism for parsing neuronal sequences into discrete
elements, additional mechanisms are still required to ensure that distinct subsets
of excitatory neurons are activated in a particular order across successive cycles
of a rhythm (Lisman et al., 2005; Ramirez-Villegas et al., 2018).
100 2) Heterogeneous cellular excitability (Luczak et al., 2007; Stark et al., 2015): If the
intrinsic properties of neurons in a network are variable and heterogeneous, when
a stimulus is presented, those neurons that are the most excitable will fire early,
while neurons with progressively lower excitability will fire later, resulting in
sequence generation. This mechanism can explain the offline generation of
105 stereotyped, unidirectional sequences, but cannot account for variable generation

of sequences in both forward and reverse directions.
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3) Asymmetric distributions of synaptic weights (Sompolinsky and Kanter, 1986;
Tsodyks et al., 1996): During learning, if changes in synaptic weights are
controlled by a temporally asymmetric learning rule, recurrent connections can
become biased such that neurons activated early in a sequence have stronger
connections onto neurons activated later in a sequence (Levy, 1989; Malerba and
Bazhenov, 2019; McNaughton and Morris, 1987; Reifenstein et al., 2021). This
enables internally generated activity to flow along the direction of the bias in
synaptic weights. While this mechanism accounts for offline replay of specific
sequences in the same order experienced during learning, it cannot account for
reverse replay or the flexible generation of non-experienced sequences (Gupta et
al., 2010; Igata et al., 2021; Olafsdéttir et al., 2015, 2018; Wu and Foster, 2014).

4) Cellular or synaptic adaptation: It has also been proposed that short-term
adaptation of either neuronal firing rate (Itskov et al., 2011; Treves, 2004) or
synaptic efficacy (Romani and Tsodyks, 2015) can enable neuronal sequence
generation in recurrent networks without asymmetric synaptic weights. According
to this scheme, recently-activated neurons initially recruit connected partners with
high efficacy, but continued spiking results in either a decrease in firing rate, or a
decrease in the probability of neurotransmitter release. This causes connections
to fatigue over time, and favors the sequential propagation of activity to more
recently activated cells. These mechanisms do allow for the stochastic generation
of neuronal sequences in either the forward or reverse direction, though they do
not prescribe which or how many neurons will participate in a given replay event.

In this study, we sought to understand how neuronal sequence generation in
hippocampal area CA3 depends on the structure and function of the underlying
network. To do this, we constructed a computational neuronal network model
comprised of recurrently connected excitatory and inhibitory spiking neurons, and
tuned it to match experimental constraints on the spiking dynamics of CA3 during
spatial navigation, including sparsity, selectivity, rhythmicity, and spike rate adaptation.
We then analyzed the direction and content of neuronal sequences generated both

“online” during simulated navigation, and “offline” during simulated rest. We found that
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when the network was driven by ordered sensory information in the online state, it
generated forward-sweeping “theta sequences” that depended on the structure of
recurrent connectivity in the network. In the offline state driven by noise, the network
generated heterogenous memory replay events that moved either in forward, reverse,
or mixed directions, and depended on network sparsity and rhythmicity, and neuronal
stimulus selectivity and spike-rate adaptation. Model degeneracy analysis and network
perturbations indicated that offline memory replay does not occur in networks with
disrupted recurrent connectivity, or in networks lacking sparsity, selectivity,
rhythmicity, or spike rate adaptation. Finally, when particular spatial locations were
over-represented by the network, as occurs in the hippocampus at sites of reward (Lee
et al., 2006; Turi et al., 2019; Zaremba et al., 2017), memory replay events were biased
towards trajectories that included those salient positions (Gillespie et al., 2021;
Olafsdéttir et al., 2015; Singer and Frank, 2009).

Results

To investigate how sequential activity in the hippocampus generated “online” during
spatial exploration can be recapitulated “offline” in the absence of sensory cues, we
constructed a simple spiking neuronal network model of rodent hippocampal area CA3
(Materials and Methods). Neural circuits in the hippocampus and cortex typically
comprise a majority of excitatory neurons that project information to downstream
circuits, and a minority of primarily locally connected inhibitory interneurons. We
included populations of excitatory (1000) and inhibitory (200) neurons in proportion to
experimental observations (Pelkey et al., 2017; Tremblay et al., 2016) (Figure 1A). Cell
models were single-compartment, integrate-and-fire neurons with saturable,
conductance-based excitatory and inhibitory synapses (Carnevale and Hines, 2006;
Izhikevich, 2007; Izhikevich and Edelman, 2008). Excitatory neurons were endowed
with spike-rate adaptation to support punctuated bursting behavior during theta
oscillations (O’Keefe and Recce, 1993; Scharfman, 1993), and inhibitory neurons

exhibited fast-spiking dynamics to sustain continuous high frequency firing during
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Figure 1. Sparsity, selectivity, and rhythmicity in a recurrent spiking neuronal network model of
hippocampal area CA3. (A) Diagram illustrates connectivity of network model. Feedforward (FF)

170 external excitatory inputs contact excitatory (E) and inhibitory (I) neurons. E and | neurons are recurrently
connected to other E and | neurons. (B) Simulations of rodent “online exploration” emulated the
response of the hippocampus during unidirectional locomotion along a circular linear track that takes 3
seconds to traverse at constant run velocity. (C) Population sparsity (active fraction of neurons) vs. time
shown for each cell population. (D) Mean firing rate of active neurons vs. time shown for each cell

175 population. (E) Firing rates vs. time of all neurons in each cell population are shown (average of 5 trials
from one example network instance). Cells in each population are sorted by the location of maximum
firing. (F) Average stimulus selectivity of each cell population. Trial-averaged activity of each cell was
centered around the location of maximum firing, and then averaged across cells. (G) The average activity
of each population on a single trial (top row) was bandpass filtered in the theta (middle row) and gamma

180  (bottom row) frequency bands. Colored traces show filtered signals (theta: green, gamma: purple).
Traces derived from one example network instance. (H) Power spectrum of average population activity
indicates dominant frequency components in the theta and gamma bands (one-sided paired t-tests:
theta: E vs. FF, p=0.00001; I vs. FF, p<0.00001; gamma: E vs. FF, p<0.00001; | vs. FF, p<0.00001). In
(C), (D), (F), and (H), data were first averaged across 5 trials per network instance. Mean (solid) + SEM

185 (shading) were computed across 5 independent instances of each network model. p-values reflect FDR
correction for multiple comparisons.

gamma oscillations (Csicsvari et al., 2003; Ylinen et al., 1995) (Supplementary Figure
S1A, Materials and Methods).
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190 To simulate the sensory experience of locomotion in a spatial environment, we
provided both excitatory and inhibitory neurons with external afferent inputs from a
population of 1000 excitatory neurons, each of which was selectively activated at
distinct but overlapping positions within a simulated circular track that took 3 seconds
to traverse (Figures 1A — 1C, Materials and Methods). Recurrent connections within

195 and between excitatory and inhibitory cell populations were also included (Figure 1A),
as they are hallmark features of hippocampal area CA3, and have been shown to
support rich network dynamics (Renno-Costa et al., 2014; Stark et al., 2014).
Specifically, inhibitory feedback connections have been shown to regulate the number
of simultaneously active neurons (sparsity) (Stefanelli et al., 2016), and to contribute to

200 the generation of theta and gamma network oscillations (Bezaire et al., 2016; Geisler et
al., 2005; Renné-Costa et al., 2019; Stark et al., 2014; Wang, 2010). Plastic excitatory
connections between excitatory neurons have long been implicated in stimulus
selectivity and the storage and recall of memories (Almeida et al., 2007; Hopfield, 1982;
Lisman and Jensen, 2013). It has been proposed that strong connections between

205 ensembles of co-active neurons could arise through a combination of biased
connectivity during brain development (Buzsaki et al., 2021; Dragoi and Tonegawa,
2013; Farooqg and Dragoi, 2019; Grosmark and Buzsaki, 2016), and experience-driven
synaptic plasticity during learning (Bittner et al., 2015, 2017; Brunel and Trullier, 1998;
Kali and Dayan, 2000; Milstein et al., 2020; O’Neill et al., 2008). While here we did not

210 simulate these dynamic processes explicitly, we implemented the structured
connectivity that is the end result of these processes by increasing the strengths of
synaptic connections between excitatory cells that share overlapping selectivity for
spatial positions in the environment (Table 1, Supplementary Figure S1B, Materials and
Methods) (Arkhipov et al., 2018).

215 Despite the relatively simple architecture of this network model, a wide range of
networks with distinct dynamics could be produced by varying a number of
parameters, including 1) the probabilities of connections between cell types (Kali and
Dayan, 2000), 2) the kinetics and strengths of synaptic connections between cell types

(Brunel and Wang, 2003), and 3) the magnitude of the above-mentioned increase in
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synaptic strengths between neurons with shared selectivity (Brunel, 2016; Dorkenwald
et al., 2019). To calibrate the network model to produce dynamics that matched
experimentally-derived targets, we performed an iterative stochastic search over these
parameters, and optimized the following features of the activity of the model network:
1) population sparsity - the fraction of active neurons of each cell type, 2) the mean
firing rates of active neurons of each cell type, 3) stimulus-selective firing of excitatory
cells, and 4) the frequency and amplitude of theta and gamma oscillations in the
synchronous spiking activity of each cell population (Materials and Methods).

This procedure identified a model with dynamics that met all of the above
constraints. Given sparse and selective feedforward inputs during simulated navigation
(Figures 1B and 1C), the excitatory neurons in the network responded with a fraction of
active cells (Figure 1D) and with average firing rates comparable to the those of the
feedforward input population (Figure 1E). The majority of inhibitory neurons were
activated continuously (Figures 1C and 1D) at high firing rates (Figure 1E). While
excitatory neurons received random connections from feedforward afferents and from
other excitatory neurons with heterogeneous spatial tuning, excitatory cells exhibited a
high degree of spatial selectivity (Figures 1C and 1F). This selective increase in firing
rate at specific spatial locations within the “place field” of each excitatory neuron was
supported by enhanced synaptic connection strengths between excitatory neurons
with overlapping tuning (Supplementary Figure S1B). While substantial background
excitation occurred in all cells at all spatial positions, firing outside the place field of
each cell was suppressed by sufficiently strong inhibitory input (Bittner et al., 2015;
Grienberger et al., 2017). Interestingly, inhibitory neurons also exhibited spatial
selectivity, albeit to a weaker degree and with a higher background firing rate (Figures
1C and 1F). This feature of the network dynamics was an emergent property that was
not explicitly designed or optimized. While excitatory connections onto inhibitory cells
were random and not weighted according to shared selectivity (Supplementary Figure
S1B), the total amount of excitatory input arriving onto individual inhibitory cells
fluctuated across spatial positions, and predicted a small degree of spatial selectivity

(Supplementary Figure S1C). Inhibitory inputs received by inhibitory cells reduced their
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average activity, effectively enabling fluctuations in excitation above the mean to stand
out from the background excitation (Supplementary Figure S1C and S1D). This
mechanism of background subtraction by inhibitory synaptic input may explain the
partial spatial selectivity previously observed in subpopulations of hippocampal
inhibitory neurons (Ego-Stengel and Wilson, 2007; Geiller et al., 2020; Grienberger et
al., 2017; Hangya et al., 2010; Marshall et al., 2002; Wilent and Nitz, 2007).

The tuned network model also exhibited oscillatory synchrony in the firing of the
excitatory and inhibitory neuron populations, despite being driven by an asynchronous
external input (Figures 1G and 1H). The requirement that the network self-generate
rhythmic activity in the theta band constrained recurrent excitatory connections to be
relatively strong, as this input provided the only source of rhythmic excitation within the
network (Supplementary Figure S1E). Interestingly, as the firing rates of inhibitory cells
increased within each cycle of the theta rhythm, their synchrony in the gamma band
increased, resulting in an amplitude modulation of gamma paced at the theta
frequency (Figure 1G and Supplementary Figure S1F). This “theta-nested gamma” is a
well-known feature of oscillations in the hippocampus (Soltesz and Deschenes, 19983;
Ylinen et al., 1995), and here emerged from fundamental constraints on dual band

rhythmicity without requiring additional mechanisms or tuning.

Position decoding reveals “theta sequences” during simulated navigation

Next, we analyzed neuronal sequence generation within the network during simulated
navigation. First, we simulated multiple trials and computed trial-averaged spatial firing
rate maps for all neurons in the network (Figure 1C). We then used these rate maps to
perform Bayesian decoding of spatial position given the spiking activity of all cells in
the network from individual held-out trials not used in constructing the decoding
template (Figure 2A, Materials and Methods) (Davidson et al., 2009; Zhang et al., 1998).
For the population of feedforward excitatory inputs, the underlying spatial firing rates
were imposed, and the spikes of each cell were generated by sampling from an
inhomogeneous Poisson process. Thus, decoding position from the activity of this

population served to validate our decoding method, and indeed simulated position

10


https://doi.org/10.1101/2021.10.27.466186
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466186; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Model with recurrent E < E synaptic weights structured by shared selectivity B Model with random recurrent E — E synaptic weights

E

[p— 0 pg 0

0
o L o
S 500 500 1001 2 500 100
£ : -
1000 + =4 1000 Oi"‘ 200 0""' y 1000 200
5 0.0 - 0.0 = 1 0.0 v, -§ 0.0 0.0 0.0 .
2 ", ) i 2 ™, My
S AL \ 13 \N \ﬁ“
© 0.5 0.5 0.5 " b 0.5 "\, 0.5 0.5 At
g . h g . ",
<] ™ 9 My
8 W, W "‘M\ S \,T y W,
01.0 1.0 1.0 010 1.0 = 1.0 -
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
C Model with recurrent E < E synaptic weights D Decoded position error FF
structured, but shuffled % — E
©
g — 1
- . | : =
= ! W‘ ; e 5002 = =
° v‘.ﬂo‘:} a3 B
| TR "hl o
S 5001} kL 100 s & 0.00
2 } R o Structured Random Shuffled
3 i P 14 m Tt E < E weights E < E weights E < E weights
10000' 3 200
5007, 0.0 0.0 E 3 Theta sequence score
= ™ "y 5
§ ‘«.,\ u'u,m '§ 05 E
2 N N B TN 0. o =
3 \ w, L £ — —_—
g " ""4 T
S 1.0 0 440 20.0
0 1 2 0 1 2 0 1 2 w Structured Random Shuffled
280 Time (s) Time (s) Time (s) E « E weights E « E weights E « E weights

Figure 2. Online neuronal sequence generation depends on recurrent excitatory synaptic
connectivity. (A) “Online exploration” was simulated for the same network model as in Figure 1, in which
recurrent excitatory connections between E cells were structured such that neurons with shared
selectivity have elevated synaptic weights. Top row: spike times of all neurons in each cell population on

285 a single trial of simulated “online exploration” are marked. A separate set of 5 trials was used to
construct a spatial firing rate template for each neuron (shown in Figure 1C). Cells in each population are
sorted by the location of maximum average spatial firing rate. Bottom row: the spatial firing rate
templates for all neurons were used to perform Bayesian decoding of spatial position from the single trial
spiking data shown in the top row. For each cell population, the likelihood of each spatial position in

290  each time bin (20 ms) is indicated by grayscale intensity. (B) Same as (A) for alternative network model
with random synaptic strengths at recurrent excitatory connections between E cells. Spatial firing rate
templates used for decoding are shown in Supplementary Figure S2B. (C) Same as (A) for alternative
network model in which the structured excitatory recurrent synaptic weights between E cells were
randomly shuffled. Spatial firing rate templates used for decoding are shown in Supplementary Figure

295 S2H. (D) Decoded position error is quantified as the difference between actual and predicted position.
The absolute value of decoded position error is expressed as a fraction of the track length (one-sided
paired t-tests: Structured E < E weights: E vs. FF, p<0.00001; | vs. FF, p<0.00001; Random E «— E
weights: E vs. FF, p=0.00001; | vs. FF, p=0.00001; Shuffled E < E weights: E vs. FF, p=0.00001; | vs. FF,
p=0.00001; two-sided t-tests vs. data from model with structured E «— E weights: Random E — E

300 weights: E, p<0.00001, I, p=0.00001; Shuffled E < E weights: E, p<0.00001, |, p=0.00001). (E) In the
model with structured E «— E weights, decoded positions of E and | cell populations oscillated between
past, current, and future positions at the timescale of the population theta oscillation. A theta sequence
score was computed as the proportion of the variance in the decoded position error explained by a theta
timescale oscillation (see Materials and Methods) (one-sided paired t-tests: Structured E «— E weights:

305 E vs. FF, p=0.00005; | vs. FF, p-0.00005; Random E < E weights: E vs. FF, p=0.00002; | vs. FF,
p=0.28287; Shuffled E «— E weights: E vs. FF, p=0.00010; I vs. FF, p=0.99600; two-sided t-tests vs. data

11
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from model with structured E « E weights: Random E « E weights: E, p<0.00001, I, p<0.00001;
Shuffled E < E weights: E, p<0.00001, I, p<0.00001). In (D) and (E), data were first averaged across 5
trials per network instance. Box and whisker plots depict data from 5 independent instances of each
network model (see Materials and Methods). p-values reflect FDR correction for multiple comparisons.

could be decoded from the spiking activity of the feedforward input population with
very low reconstruction error (Figures 2A and 2D). When we applied this method to the
population of excitatory neurons within the network, reconstruction error was
increased (Figures 2A and 2D). This reflected an increased fraction of temporal bins (20
ms) where the decoded position was either behind or in advance of the actual position
(Figure 2A). However, rather than simply reflecting reconstruction noise or poor spatial
selectivity of individual cells (Figure 1F), these divergences from actual position
resulted from consistent sequential structure in the spiking activity of cells in the
excitatory population (Figure 2A). Ordered neuronal firing resulted in decoded positions
that continuously swept from past positions, through the current actual position, to
future positions, and then reset to past positions, on the timescale of the

ongoing theta rhythm. These “theta sequences” caused decoded position estimates to
oscillate around the actual position (Figure 2A), and this theta timescale oscillation
accounted for a large proportion of the variance in decoded position (Figure 2E,
Materials and Methods). Interestingly, we found that position could also be accurately
decoded from the moderately spatially-tuned activity of inhibitory cells in the network
(Figures 2A and 2D), and that the spiking activity of the inhibitory population was also
organized into theta sequences (Figures 2A and 2E).

A number of possible mechanisms have been proposed to account for theta
sequence generation in vivo, including synaptic, cell-intrinsic, and network-level
mechanisms (Chadwick et al., 2015, 2016; Drieu and Zugaro, 2019; Foster and Wilson,
2007; Grienberger et al., 2017; Kang and DeWeese, 2019; Mehta et al., 2002; Skaggs
et al., 1996). That theta sequences in the model emerged in both excitatory and
inhibitory neuron populations implicates recurrent interactions within the network
(Chadwick et al., 2016). To further investigate, we analyzed neuronal sequence
generation in a variant of the model in which the strengths of recurrent connections

between excitatory neurons were randomized and no longer depended on shared
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spatial selectivity between connected pairs of cells (Supplementary Figure S2A). This
alternative model could still be tuned to match experimental targets, including sparsity,
selectivity, and rhythmicity (Supplementary Figures S2B — S2F). In this case the spatial
selectivity of excitatory cells was entirely determined by the synaptic weights of the
feedforward afferent inputs (Supplementary Figure S2A), while the recurrent excitatory
input supported synchronization in the theta and gamma bands (Supplementary Figure
S2F). However, in this model, theta timescale neuronal sequence generation in both
excitatory and inhibitory cells was suppressed (Figures 2B and 2E). Decoding of
position from spikes on single trials produced lower reconstruction error (Figure 2D), as
neuronal population activity more faithfully followed the current spatial position
provided by the feedforward inputs, and was not organized into the sweeps from past
to future positions characteristic of theta sequences (Figures 2B and 2E). We also
tested a related variant of the model in which the skewed distribution of recurrent
excitatory synaptic weights used in the structured weights model (Figures 1 and 2A,
and Supplementary Figure 1) was randomly shuffled (Figure 2C and Supplementary
Figures S2G - S2L). Theta sequence generation was also reduced in this network
model variant (Figure 2E). These results indicate that structure in the synaptic strengths
of recurrent excitatory connections is required for the generation of fast timescale
(~125 ms) neuronal sequences when network activity is driven by behavioral timescale

(> 1 s) sequences of sensory inputs, as occurs during spatial exploration.

Emergence of offline memory replay

The above results show that the same network structure that enables population
dynamics in CA3 to exhibit sparsity, selectivity, and rhythmicity also supports neuronal
sequence generation in the online state when ordered sensory information is present.
We next sought to understand how neuronal sequences consistent with the sensory
environment are generated offline when sensory inputs are reduced. To mimic the
transient (~50-150 ms) increase in population activity that occurs during a hippocampal
SWR (Fernandez-Ruiz et al., 2019), we transiently stimulated the network by randomly

choosing sparse subsets of cells from the feedforward input population to emit spikes
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370 Figure 3. Forward and reverse offline memory replay depends on recurrent excitatory synaptic
connectivity. (A — B) “Offline rest” was simulated for the network model with structured E < E weights
(Figure 1). Top row: spike times of all neurons in each cell population on a single trial of simulated
“offline rest” are marked. Data from 5 trials of simulated “online exploration” was used to construct a
spatial firing rate template for each neuron (Figure 1C). Cells in each population are sorted by the
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location of maximum average spatial firing rate. Bottom row: the spatial firing rate templates for all
neurons were used to perform Bayesian decoding of spatial position from the single trial spiking data
shown in the top row. For each cell population, the likelihood of each spatial position in each time bin
(20 ms) is indicated by grayscale intensity. (A) and (B) correspond to two example trials from one
example network instance. (C — G) This procedure was repeated for 1000 trials for each of 5 instances of
the network. (C) Histogram of spatial positions decoded from each cell population across all simulated
replay events (two-sided K-S tests: E vs. FF, p=0.99974; | vs. FF, p=0.99974). (D) Histogram of the path
length of spatial sequences decoded from each cell population (two-sided K-S tests: E vs. FF,
p<0.00001; I vs. FF, p<0.00001). (E) Histogram of the mean velocity of spatial sequences decoded from
each cell population (two-sided K-S tests: E vs. FF, p=0.00235; | vs. FF, p=0.73515). (F) Fraction of
events that met criterion for sequences consistent with continuous spatial trajectories (see Materials and
Methods) (one-sided paired t-tests: E vs. FF, p<0.00001, I vs. FF, p=0.00084). (G) Power spectrum of
average population activity indicates high frequency components (one-sided paired t-tests: 75 Hz — 300
Hz frequency band: E vs. FF, p=1; | vs. FF, p<0.00001). (H — N) Same as (A — G) for an alternative
network model with random E < E weights. (H) and () correspond to two example trials from one
example network instance. (J) Decoded positions (two-sided K-S tests: E vs. FF, p=0.99974; | vs. FF,
p=0.99974; two-sided K-S tests vs. data from model with structured E « E weights in (C): E, p=0.85869;
I, p=0.87577). (K) Offline sequence path length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF,
p=0.99997; two-sided K-S tests vs. data from model with structured E « E weights in (D): E, p<0.00001;
I, p<0.00001). (L) Offline sequence velocity (two-sided K-S tests: E vs. FF, p=0.99877; | vs. FF,
p=0.99877; two-sided K-S tests vs. data from model with structured E « E weights in (E): E, p=0.01591;
I, p=0.76837). (M) Fraction of events that met criterion for sequences consistent with continuous spatial
trajectories (see Materials and Methods) (one-sided paired t-tests: E vs. FF, p=0.00005, | vs. FF,
p=0.86564; two-sided t-tests vs. data from model with structured E < E weights in (F): E, p<0.00001; I,
p=0.00001). (N) Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz — 300 Hz frequency
band: E vs. FF, p=0.97708; | vs. FF, p<0.00001; two-sided t-tests vs. data from model with structured

E — E weights in (G): E, p=0.64948; |, p<0.00001). In (C - E), (G), (J - L), and (N), mean (solid) + SEM
(shading) were computed across 5 independent instances of each network. In (F) and (M), box and
whisker plots depict data from 5 independent instances of each network model (see Materials and
Methods). p-values reflect FDR correction for multiple comparisons.

(Figures 3A and 3B). We then used the same decoding templates as above,
constructed from the trial-averaged activity during simulated run, to decode spatial
position from spiking activity during these transient offline events (Materials and
Methods).

Given that the place field locations of the stimulated neurons in the feedforward
input population were heterogeneous and unordered, the spatial positions decoded
from their spiking were typically discontiguous across adjacent temporal bins (Figures
3A, 3B and 3F). This input pattern evoked spiking in sparse subsets of both the
excitatory and inhibitory populations in the network (Figures 3A and 3B). In contrast
with the feedforward population, the activity evoked in excitatory neurons was
structured such that neurons with nearby place field locations spiked in adjacent

temporal bins, resulting in decoded spatial trajectories that were continuous (Figures
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3A, 3B and 3F). Inhibitory neuron activity during these events was organized into high-
frequency oscillations (Figures 3A, 3B and 3G). This procedure was repeated to

420 produce thousands of offline events evoked by stimulation of different random
ensembles of inputs (Materials and Methods). Across these events, each position along
the track was decoded with equal probability (Figure 3C). For each event, the length
and mean velocity of the decoded trajectory was calculated from the differences in
decoded positions between adjacent bins (Figures 3D and 3E). A mean velocity of zero

425 corresponds to events with equal steps in the forward and reverse directions, while
positive velocities correspond to net forward-moving trajectories, and negative
velocities correspond to net backwards-moving trajectories. While the trajectories
decoded from the random feedforward input population were comprised of large,
discontiguous steps that traced out large path lengths with an average velocity near

430 zero, the excitatory neuron population generated shorter, more continuous sequences
that progressed in either the forward or reverse directions (Figures 3D — 3F). These
trajectories on average covered ~0.5 the length of the track in the short (~150 ms)
duration of the offline event. Compared to the run trajectory, which took 3 seconds to
cover the full track length, this corresponded to a ~10-fold temporal compression

435  (Figure 3E), similar to experimental data (Davidson et al., 2009). Spatial trajectories
decoded from the inhibitory neuron population were intermediate in length, but with
little forward or reverse momentum, similar to the feedforward inputs. However, the
inhibitory cells exhibited high-frequency synchrony (Figures 3A, 3B and 3G), similar to
experimentally recorded CA3 interneurons during hippocampal SWRs (Csicsvari et al.,

440 2000; Tukker et al., 2013).

These data demonstrate that random, unstructured input can evoke sequential
activity in a CA3-like recurrent spiking network, with sequences corresponding to
forward, reverse, or mixed direction trajectories through an experienced spatial
environment. This self-generated memory-related activity implicates information stored

445 in the synaptic weights of the recurrent connections within the network as being
important for offline replay of experience. However, in most previous models,

sequence generation was unidirectional, and was enabled by an asymmetric bias in the
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strengths of recurrent connections such that neurons encoding positions early in a
sequence formed stronger synapses onto neurons encoding later positions (Levy,
1989; Malerba and Bazhenov, 2019; McNaughton and Morris, 1987; Reifenstein et al.,
2021; Sompolinsky and Kanter, 1986; Tsodyks et al., 1996). In contrast, the current
network flexibly generated sequences in forward, reverse, or mixed directions, and had
symmetric recurrent connections such that synaptic strengths between pairs of
excitatory neurons depend only on overlapping selectivity, not on sequence order.
Does sequence generation in the present network still depend on recurrent
connectivity? To test this, we first verified that including an asymmetric bias in the
strengths of excitatory connections produced offline replay events that were biased
towards forward sequences (Supplementary Figure S3). We next analyzed the
sequence content of offline events generated in the variants of the network model with
random (Figures 3H — 3N and Supplementary Figures S2A — S2F) or shuffled
Supplementary Figures S2G — S2L and S4) recurrent connection weights. Indeed,
without structure in the recurrent connection weights, spatial trajectories decoded from
the activity of excitatory neurons was more similar to those of the feedforward inputs,
consisting of large, discontinuous steps without forward or reverse momentum (Figures
3H - 3M and Supplementary Figures S4A — S4F). Still, these networks exhibited high-
frequency oscillatory synchrony during these offline events (Figure 3N and

Supplementary Figure S4G).

Exploration of model diversity and degeneracy

The above results strongly supported the hypothesis that recurrent connectivity is
important for offline sequence generation. During optimization of each of the alternative
network model configurations shown above to meet the multiple objectives of sparsity,
selectivity, and rhythmicity, we evaluated 30,000 variants of each model with different
parameters (Materials and Methods). For each model configuration, the model with the
lowest overall multi-objective error was chosen as the “best” model for further analysis,
as shown in Figures 2 and 3 and Supplementary Figures S1, S2 and S4. However, we

noted that the parameter values that specified these “best” models were variable
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across the multiple network configurations (Table 1). This raised the possibility that
while many models with diverse parameters may produce networks with similar online
dynamics (referred to as model degeneracy (Marder and Taylor, 2011)), perhaps only a
smaller subset of models would additionally support the emergence of offline
sequence generation. The fact that sequence generation was not observed for either of
the “best” models with disrupted recurrent excitatory synaptic weights could reflect an
incomplete sampling of the parameter space and a failure to identify models that both
meet the objective criteria for online dynamics and produce offline sequences.
Therefore, in order to explore the diversity and degeneracy of models evaluated during
optimization, we devised a method to identify models that performed similarly with
respect to multiple optimization objectives, but were specified by divergent sets of
parameters (Materials and Methods). For each model configuration, all model variants
evaluated during parameter optimization were sorted by their Euclidean distance from
the “best” model in the space of model parameters. This resulted in an error landscape
(e.g. Figure 4A) in which models with similar parameters resulted in similar multi-
objective error scores. We then identified models located at local minima in this error
landscape, which formed a group of models that were distant from each other in
parameter space, but similar to each other in terms of overall multi-objective error. We
termed a set of such models as a “Marder group” after pioneering work characterizing
degeneracy in biological systems (Marder and Taylor, 2011). For each alternative
network model configuration, we selected the 5 members of this “Marder group” with
the lowest multi-objective error (labeled “best” and “M1” — “M4” in Figure 4A), and
evaluated their network dynamics during simulations of both online exploration and
offline rest. We first verified that for all model configurations with and without
structured recurrent excitatory connectivity analyzed above (Figures 1 — 3 and
Supplementary Figures S1, S2 and S4), model variants within a “Marder group”
exhibited considerable diversity across model parameters (Figures 4B and 4C), and
met all objective criteria for population sparsity (Figure 4D), neuronal stimulus
selectivity (Figure 4E), and rhythmogenesis in the theta and gamma bands (Figures 4F

and 4G). However, only model variants with synaptic weights structured by shared
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Figure 4. Exploration of model parameter diversity and degeneracy. (A) During network model
optimization, 30,000 model variants with different parameters were evaluated. To explore model diversity
and degeneracy, for each network model configuration, a subset of model variants termed a “Marder
group” were selected based on their large distance from each other in the space of parameters, but their
similar performance with respect to multiple optimization objectives (see Materials and Methods). This
selection procedure is illustrated here for the model with random E — E weights as an example. The 5

“Marder group” members with the lowest multi-objective error (labeled “best” and “M1” -

“M4”) were

selected for further evaluation. (B) For the network model configuration with structured E <— E weights,
the range of parameter values across 5 distinct “Marder group” models are shown. (C) Same as (B) for
the model with random E < E weights. In (D - I), features of the simulated network dynamics produced
by distinct model variants within a “Marder group” are compared across network model configurations.
Each data point (grey circles) depicts one “Marder group” model. (D) Spatial selectivity of the excitatory
neuron population during simulated “online exploration” is computed as a ratio of maximum to mean
activity (two-sided t-tests vs. data from model with structured E < E weights: Random E — E weights:
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p=1; Shuffled E — E weights: p=0.00224). (E) The fraction of the excitatory neuron population that is
synchronously active during simulated “online exploration” is shown (two-sided t-tests vs. data from
model with structured E — E weights: Random E «— E weights: p=1; Shuffled E < E weights:
p=0.12079). (F) Gamma rhythmicity of the excitatory neuron population is computed as the integrated
power spectral density in the gamma frequency band (two-sided t-tests vs. data from model with
structured E <« E weights: Random E « E weights: p=0.03552; Shuffled E < E weights: p=0.16364). (G)
Theta rhythmicity of the excitatory neuron population is computed as the integrated power spectral
density in the theta frequency band (two-sided t-tests vs. data from model with structured E — E
weights: Random E < E weights: p=0.00272; Shuffled E < E weights: p=0.01944). (H) Theta sequence
score (see Figure 2 and Materials and Methods) (two-sided t-tests vs. data from model with structured E
«— E weights: Random E < E weights: p=0.02817; Shuffled E « E weights: p=0.01473). (I) Fraction of
events during simulated “offline rest” that met criterion for sequences consistent with continuous spatial
trajectories (see Figure 3, Supplementary Figure S3, and Materials and Methods) (two-sided t-tests vs.
data from model with structured E < E weights: Random E < E weights: p<0.00001; Shuffled E — E
weights: p=0.00044). In (D - 1), for each network model configuration, box and whisker plots depict 5
distinct “Marder group” model variants with different parameters (see Materials and Methods). Data for
each model variant (grey circles) were first averaged across 5 independent instances of that model
variant. In (F - I), grey dashed lines indicate value for the feedforward input to the network for reference.
p-values reflect Bonferroni correction for multiple comparisons.

stimulus selectivity exhibited theta sequences during online run (Figure 4H) and
generated offline sequences consistent with continuous spatial trajectories (Figure 4l).
This analysis demonstrated that generation of memory-related neuronal sequences by
recurrent networks requires that information about the topology of the sensory
environment is stored in the strengths of recurrent excitatory connections between

excitatory neurons.

Constraints on online sparsity, selectivity and rhythmicity enable offline memory
replay

Our above findings suggest that experimental constraints on the online dynamics of
hippocampal area CA3 during spatial exploration are sufficient to enable the
emergence of offline memory replay. We next sought to determine whether all or only a
subset of these constraints were required for generation of memory-related sequences.
To determine the importance of rhythmicity, we removed the optimization criteria that
excitatory and inhibitory neuron populations synchronize in the theta and gamma
bands, and instead added an objective to minimize power density across the full
frequency spectrum (Supplementary Figure S5E). Following optimization, this
alternative network model exhibited reduced rhythmicity, but still met objectives related

to sparsity and selectivity (Supplementary Figures S5A — S5D). However, when
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challenged with random stimuli during simulated offline rest, this model with
suppressed rhythmicity failed to generate continuous forward or reverse sequences
(Supplementary Figures S5F — S5L). Rather, spatial trajectories decoded from offline
population activity contained large discontiguous jumps in position, and most events
had zero net velocity in either the forward or reverse direction. This indicated that the
same reciprocal interactions between excitatory and inhibitory neurons that support
rhythmogenesis in the theta and gamma bands also contribute to the sequential
organization of neuronal activity during offline memory replay.

We next optimized a network model variant without constraints on population
sparsity and neuronal stimulus selectivity (see Materials and Methods). In this network
model, while feedforward excitatory inputs remained spatially tuned, their connectivity
with excitatory neurons was shuffled to prevent inheritance of spatial selectivity. This
resulted in a complete loss of sparsity of excitatory neuron activity (Supplementary
Figures S6A and S6B), and suppressed stimulus selectivity in excitatory neurons even
below the level exhibited in the inhibitory neuron population (Supplementary Figures
S6C and S6D). Rhythmogenesis in the theta and gamma bands in excitatory and
inhibitory neurons was maintained (Supplementary Figure S6E). During simulation of
offline rest, this network generated highly synchronous population bursts that tended
to either hover at one decoded position, or make large discontiguous jumps between
positions (Supplementary Figure S6F — S6K). These results suggest that the network
connectivity parameters that support highly sparse and selective neuronal activity in
the online stimulus-driven state, also enable sparse reactivation of neuronal sequences
in the offline state. We also repeated the model degeneracy analysis described above
(Figure 4) for multiple model variants with compromised sparsity, selectivity or

rhythmicity, which corroborated these findings (Supplementary Figure S8).

Role of neuronal spike rate adaptation in forward and reverse offline memory
replay
Above we showed that structure in the synaptic connectivity of the CA3 network is

important for neuronal sequence generation. However, unlike previous models of
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sequence generation where asymmetry in connection strengths biased the direction of
neuronal sequences (Levy, 1989; Malerba and Bazhenov, 2019; McNaughton and
Morris, 1987; Reifenstein et al., 2021; Sompolinsky and Kanter, 1986; Tsodyks et al.,
1996), here synaptic connectivity was symmetric, and yet variable neuronal sequences
were flexibly generated in both forward and reverse directions (Figure 3A, 3B and 3E).
If this symmetric connectivity enables recurrent networks to generate either forward or
backward steps, what “breaks” this symmetry and produces sequences that make net
progress in either the forward or backward direction? We next wondered if
directionality of offline sequences in our network model was facilitated by our choice of
“bursty” excitatory cell model, which exhibited spike-rate adaptation (Figure 5A). As
mentioned before, use-dependent decreases in either firing rate or synaptic
transmission over time can provide momentum to neuronal sequences by favoring the
recruitment of new neurons that have not yet been activated during a network
population event (ltskov et al., 2011; Romani and Tsodyks, 2015; Treves, 2004). To test
a possible role for cellular adaptation in sequence generation in our model network, we
replaced the “bursting” excitatory cell model with a “regular spiking” model without
spike rate adaptation (Figure 5A). This cell model did not support the high
instantaneous firing rates of the bursting cell model, which compromised the peak
firing rates of excitatory cells in the network and their entrainment by higher frequency
gamma oscillations during simulated online navigation (Supplementary Figure S7).
Otherwise, this variant of the network did meet criterion for sparsity, selectivity, and
rhythmicity (Supplementary Figures S7 and S8A — S8D). However, during simulated
offline rest, random feedforward inputs evoked a truncated response from the network
(Figures 5B and 5C), with the high frequency rhythmic activity of the inhibitory neurons
diminishing before the end of the stimulus period (Figures 5B, 5C and 5H). Spatial
trajectories decoded from the activity of excitatory neurons in the network were
comprised of large steps that did not progress in either forward or reverse directions,
similar to the random feedforward inputs (Figures 5E — 5G and Supplementary Figure

S8E). These data show that adaptation of neuronal spiking provides a cellular-level
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Figure 5. Neuronal spike rate adaptation supports offline memory replay. (A) Intracellular voltage
recordings of three neuronal cell models with distinct spiking dynamics in response to simulated square-
shaped intracellular current injections. (B — H) Same as Figures 3A — 2G for an alternative network model
in which E cells are regular-spiking cell models without spike rate adaptation. (B) and (C) correspond to
two example trials from one example network instance. (D) Decoded positions (two-sided K-S tests: E
vs. FF, p=0.99974; | vs. FF, p=0.89825; two-sided K-S tests vs. data from model with structured E < E
weights in Figure 3C: E, p=0.84875; |, p=0.85869). (E) Offline sequence length (two-sided K-S tests: E
vs. FF, p<0.00001; | vs. FF, p<0.00001; two-sided K-S tests vs. data from model with structured E < E
weights in Figure 3D: E, p<0.00001; I, p=0.99997). (F) Offline sequence velocity (two-sided K-S tests: E
vs. FF, p=0.15282; | vs. FF, p=0.73515; two-sided K-S tests vs. data from model with structured E < E
weights in Figure 3E: E, p=0.03099; |, p=0.91017). (G) Fraction of events that met criterion for sequences
consistent with continuous spatial trajectories (see Materials and Methods) (one-sided paired t-tests: E
vs. FF, p=0.00038, | vs. FF, p=0.00119; two-sided t-tests vs. data from model with structured E < E
weights in Figure 3F: E, p<0.00001; I, p=0.03860). (H) Offline high-frequency rhythmicity (one-sided
paired t-tests: 75 Hz — 300 Hz frequency band: E vs. FF, p=0.00114; | vs. FF, p=0.00003; two-sided t-
tests vs. data from model with structured E < E weights in Figure 3G: E, p<0.00001; I, p=0.00027). In

(D - F) and (H), mean (solid) + SEM (shading) were computed across 5 independent instances of each
network. In (G), box and whisker plots depict data from 5 independent instances of each network model
(see Materials and Methods). p-values reflect FDR correction for multiple comparisons.
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mechanism for flexible and reversible sequence generation in recurrent spiking

networks.

645 Preferential replay of reward location
Thus far, we have simulated network activity during spatial navigation, and identified
features of the network that enable offline replay of behavioral sequences stored in
memory. However, in these simulations all spatial positions were visited with equal
occupancy, and considered to be of equal salience or relevance to the virtual animal.

650 This resulted in all positions being replayed with equal probability offline (Figure 3C),
mimicking experimental conditions where all spatial positions contain discriminable
sensory cues, and opportunities for reward are provided at random times and positions
(Turi et al., 2019; Zaremba et al., 2017). However, it has been shown that when reward
is provided at a fixed location that the animal must discover through learning, offline

655 memory replay events become biased towards sequences of place cells that encode
positions nearby and including the site of reward (Gillespie et al., 2021; Olafsdéttir et
al., 2018; Pfeiffer, 2020; Singer and Frank, 2009). In parallel with the development of
this bias in offline memory replay during learning, it has been shown that the fraction of
hippocampal pyramidal cells that selectively fire along the path to reward increases

660 (Lee et al., 2006; Turi et al., 2019; Zaremba et al., 2017). Here we sought to test the
hypothesis that this network-level over-representation of reward location is sufficient to
bias the content of offline memory replay.

We chose a position along the virtual track to be the fixed location of a

simulated reward, and biased the allocation of place field locations such that an

665 increased fraction of excitatory neurons were selectively activated at positions near the
reward (Figure 6A). As before, feedforward and recurrent synaptic connection strengths
were increased between neurons with overlapping selectivity (Supplementary Figure
S9A). Aside from an enhanced fraction of active excitatory neurons near the reward site
(Supplementary Figure S9B), this produced network dynamics during simulated

670 navigation that conformed to experimental constraints for sparsity, selectivity, and

rhythmicity (Figure 6A and Supplementary Figures S9B — S9E). During simulated offline
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Figure 6. Offline memory replay is biased towards reward positions over-represented by the
network. (A) In this variant of the network, an increased proportion of E cells are selective for spatial
positions near the site of a simulated reward. Firing rates vs. time of all neurons in each cell population
are shown (average of 5 trials from one example network instance). Cells in each population are sorted
by the location of maximum firing. The simulated reward site is marked with red dashed line. (B — H)
Same as Figures 3A — 2G for an alternative network model with population-level over-representation of
reward location in E cells. (B) and (C) correspond to two example trials from one example network
instance. The simulated reward site is marked with red dashed line. (D) Decoded positions (two-sided K-
S tests: E vs. FF, p<0.00001; | vs. FF, p=0.41580; two-sided K-S tests vs. data from model with
structured E < E weights in Figure 3C: E, p<0.00001; I, p=0.84875). (E) Offline sequence length (two-
sided K-S tests: E vs. FF, p<0.00001; | vs. FF, p<0.00001; two-sided K-S tests vs. data from model with
structured E < E weights in Figure 3D: E, p=0.25150; I, p<0.00001). (F) Offline sequence velocity (two-
sided K-S tests: E vs. FF, p=0.02742; | vs. FF, p=0.73515; two-sided K-S tests vs. data from model with
structured E <« E weights in Figure 3E: E, p=0.16847; I, p=0.62023). (G) Fraction of events that met
criterion for sequences consistent with continuous spatial trajectories (see Materials and Methods) (one-
sided paired t-tests: E vs. FF, p<0.00001, | vs. FF, p=0.00027; two-sided t-tests vs. data from model
with structured E « E weights in Figure 3F: E, p=0.05397; I, p=0.00754). (H) Offline high-frequency
rhythmicity (one-sided paired t-tests: 75 Hz — 300 Hz frequency band: E vs. FF, p=0.00067; | vs. FF,
p=0.00006; two-sided t-tests vs. data from model with structured E «— E weights in Figure 3G: E,
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p=0.00003; I, p=0.00001). In (D - F) and (H), mean (solid) + SEM (shading) were computed across 5
independent instances of each network. In (G), box and whisker plots depict data from 5 independent
instances of each network model (see Materials and Methods). p-values reflect FDR correction for
multiple comparisons.

rest, the excitatory neurons in the network responded to random feedforward inputs by
generating neuronal sequences corresponding to forward, reverse, and mixed direction
trajectories through the environment (Figures 6B — 6G), paced by high frequency
oscillations in the inhibitory cells (Figure 6H), as before (Figures 3A — 3G). However,
now positions near the simulated reward site were replayed in a higher proportion of
replay events (Figure 6D). This preferential replay of locations over-represented by the
network recapitulated experimental findings and supported the hypothesis that
nonuniform place cell allocation and biased memory replay are causally linked (Levy,
1989).

Discussion
In this study we used a simple recurrent spiking network model of hippocampal area
CAS to investigate the structural and functional requirements for offline replay of spatial
memories. We optimized synaptic, cellular, and network parameters of the network to
produce population dynamics that match experimentally observed sparsity, selectivity
and rhythmicity. We found that networks that fit these constraints exhibit additional
emergent properties, including the ability to generate fast timescale memory-related
neuronal sequences. During simulated spatial navigation, when ordered sensory
information was provided on the seconds-long timescale of locomotion behavior, the
network produced neuronal sequences that swept from past to future positions on the
faster timescale (~125 ms) of the theta rhythm (“theta sequences”). During simulated
offline rest, the network responded to transient noisy activation of random, sparse
inputs by generating neuronal sequences that corresponded to forward, reverse, or
mixed direction trajectories through the spatial environment.

Both online and offline sequence generation depended on structure in the
strengths of excitatory synaptic connections such that pairs of neurons with

overlapping spatial tuning were more strongly connected. In the online phase, different
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sparse subsets of excitatory neurons were activated at different spatial positions due
to structure in the strengths of connections from spatially-tuned feedforward afferent
inputs. The constraint that recurrent excitation must drive rhythmic synchronization in
the theta band resulted in relatively strong recurrent connections. During each cycle of
the theta rhythm, when the firing rates of the excitatory neurons were at their
maximum, synaptic excitation from recurrent connections exceeded that from the
feedforward afferents (Supplementary Figure S1E). This caused the sum of forward-
moving feedforward inputs and symmetric mixed-direction feedback inputs to favor
activation of cells encoding positions at or ahead of the current position. This
generated forward-sweeping sequences that outpaced the speed of locomotion.
However, at the opposite phase of the theta rhythm, when the firing rates of the
excitatory cells reached their minimum, the non-rhythmic feedforward input became
greater than recurrent excitation (Supplementary Figure S1E), causing theta sequences
to reverse direction and relax back towards the current position encoded by the
feedforward inputs.

In the offline phase, the feedforward inputs were not activated in a sequence, so
momentum had to be entirely internally generated by the network. In this case, the
particular subset of active feedforward inputs initially selected a sparse subset of
excitatory neurons to begin to fire, which set a starting position for the replayed
trajectory. Slight biases in the feedforward input could then influence whether the
active ensemble of excitatory neurons next recruited neurons encoding spatial
positions in either the forward or reverse direction. Once activity began moving in one
direction, spike-rate adaptation facilitated continued sequence movement along that
direction. However, depending on fluctuations in the feedforward inputs, sequences
were also generated that included changes in direction. Interestingly, this process is
akin to interpolation or smoothing — the recurrent connections within the network
served to bridge large, discontinuous jumps in position encoded by the noisy
feedforward inputs with smaller, more continuous steps. This produced offline
sequences that were consistent with the topology of the spatial environment, but did

not necessarily replay exact experienced trajectories. These findings are consistent
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with a recent report that neuronal sequences activated during hippocampal SWRs in
vivo resembled Brownian motion, or a random walk through the sensory space, rather
than precise replay of experience (Stella et al., 2019). This suggests that, rather than
serving mainly to consolidate specific episodic memories of ordered sensory
experiences, neuronal sequences during SWRs could also explore possible
associations within the environment that had not been fully sampled during experience.
Our modeling results showing that increased population representations of goal sites
bias the content of offline memory replay also corroborate recent findings that
previously rewarded locations are replayed more readily than immediate past or
immediate future trajectories (Gillespie et al., 2021). Within this framework, synaptic
plasticity during offline replay could modify connection strengths to increase the
chance that a new path will be taken that is likely to lead to a desired outcome
(Olafsdéttir et al., 2015).

In summary, our modeling results identified a minimal set of elements sufficient
to enable flexible and bidirectional memory replay in neuronal networks: spike rate
adaptation, and recurrent connectivity between excitatory and inhibitory neuron
populations with strengths and kinetics optimized for rhythmogenesis and sparse and
selective stimulus representations. In previous models of neuronal sequence
generation, additional network components were proposed to enable unidirectional
sequences stored in memory to be reversed during offline recall, including
neuromodulation (Gauy et al., 2018), excitability of neuronal dendrites (Gauy et al.,
2018; Jahnke et al., 2015), coordinated plasticity at both excitatory and inhibitory
synapses (Ramirez-Villegas et al., 2018), and functional specialization of diverse
subpopulations of inhibitory interneurons (Cutsuridis and Hasselmo, 2011). While these
mechanisms may regulate and enhance memory replay, our results suggest that they
are not necessarily required.

This model also makes some experimentally-testable predictions. First, it implies
that ion channel mutations that disrupt neuronal spike rate adaptation may also
degrade neuronal sequence generation and memory consolidation (Peters et al., 2005).

Secondly, while the direction and content of offline sequences may be largely
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controlled by internal dynamics and information stored in the synaptic weights within a
recurrent neuronal circuit, the model network still required a small amount of random
feedforward afferent input to evoke an offline population burst, suggesting that
experimental manipulations of afferent projections to hippocampal area CA3 may alter
the frequency or content of memory replay events (Chenani et al., 2019; Sasaki et al.,
2018). Recent work has also begun to explore the advantages of generative replay for
learning in artificial neural networks (Roscow et al., 2021). In addition to better
understanding the biological mechanisms of memory consolidation and flexible
planning of behavior, characterizing the minimal mechanisms of memory replay could
facilitate the engineering of artificial systems that can refine their internal

representations of the environment during periods of offline rest (Buzsaki, 1989).
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Materials and Methods

Simulations of a recurrent network of excitatory and inhibitory spiking neurons were
executed using the python interface for the NEURON simulation software (Hines et al.,
2009). Cell models were single-compartment integrate-and-fire neuronal cell models,
as defined by Izhikevich (Izhikevich, 2007), and as implemented for the NEURON
simulator by Lytton et al (Lytton et al., 2016). Previously calibrated cell models were
replicated from those previous reports without modification — the “intrinsically bursting
cell” model was used for excitatory neurons (E) with spike rate adaptation, the “regular
spiking pyramidal cell” model was used for excitatory neurons without spike rate

adaptation, and the “fast-spiking interneuron” model was used for inhibitory neurons (l)
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(Izhikevich, 2007; Lytton et al., 2016). Individual spikes in presynaptic neurons
activated saturable conductance-based synapses with exponential rise and decay
kinetics after a constant delay of 1 ms to emulate axonal conduction time (Carnevale
and Hines, 2006). Excitatory synapses had a reversal potential of 0 mV (like AMPA-type
glutamate receptors), and inhibitory synapses had a reversal potential of -80 mV (like
GABA(A)-type receptors). In addition to the excitatory (E) and inhibitory (I) neuron
populations, a population of feedforward afferent inputs (FF) provided a source of
external excitatory synaptic drive to the model network.

The baseline weights of excitatory synapses onto E cells were sampled from a
log-normal distribution (Almeida et al., 2009b; Buzsaki and Mizuseki, 2014), while the
weights of excitatory synapses onto | cells, and all inhibitory synapses were sampled
from a normal distribution (Grienberger et al., 2017). In addition to the random baseline
synaptic weights assigned to excitatory synapses onto E cells, input strengths were
increased by a variable additive factor that depended on the distance between the
place fields of cells with overlapping spatial selectivity (Supplementary Figure S1B).
The place field locations of the FF and E populations were assigned by distributing
locations throughout the circular simulated track at equal intervals, and randomly
assigning them to cells within each population. Random connectivity resulted in each E
neuron receiving inputs from many FF and E neurons with heterogeneous selectivity,
which produced substantial out-of-field excitation at all positions along the track.

For each of six types of connections between the three cell types (E <- FF, E <-
E,E<-1,1<-FF, |1<-E,I<-1), anumber of parameters were varied and explored during
optimization to identify model configurations that produced dynamics comparable to
experimental observations. These parameters included: the mean and variance of the
synaptic weight distribution for each connection type, the decay time constants of the
synaptic conductances, the mean number of synapses made by one presynaptic cell
onto one postsynaptic cell for each pair of cell types, and the maximum increase in
synaptic weight due to shared selectivity, as mentioned above. Self-connections were

not permitted.
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Optimization was performed using a population-based iterative multi-objective
algorithm. During each of 50 iterations, a population of 600 models with different
parameters were simulated for one trial of simulated online run, and for 5 trials of
simulated offline rest. During offline rest trials, a random subset of 25% of feedforward
inputs were active with a mean rate of 12.5 Hz for an event duration of 160 ms (8 bins
of 20 ms each). Different trials were implemented by using a distinct random number
stream to sample unique spike times of the feedforward inputs from an
inhomogeneous Poisson process. The following features of the network dynamics were
evaluated for each model: average minimum and maximum firing rates of E cells during
run, average mean firing rates of | cells during run, average fraction of active E and |
cells during run, mean firing rates of E cells during rest, average fraction of active E
cells during rest, and finally, features related to the frequency and power of theta and
gamma band oscillations in E and | cells during run. These features were compared to
target values to obtain a set of multiple objective error values. Models within a
population were compared to each other and ranked with a non-dominated sorting
procedure (Deb, 2011). Then, a new population of models was generated by making
small perturbations to the parameter values of the most highly-ranked models from the
previous iteration. This algorithm effectively identified model configurations that
satisfied multiple objective criterion. Below, the final optimized parameter values (Table
1) and measured features of the network dynamics (Table 2) are compared for various

model configurations discussed in this study:

Table 1. Model parameter values

Parameter Bounds | Structured | Random | Shuffled | Suppressed | No sparsity No spike
E<-E E<-E E<-E rhythmicity | or selectivity | rate
weights weights | weights constraints adaptation

E<-FF 01-5 |1.28 0.29 1.30 0.37 1.57 0.55

weight
mean

E<-FF 0.1-5 |1.09 0.21 0.91 0.80 0.88 0.41

weight st.
dev.

E <- Eweight | 0.1-5 | 0.75 0.50 1.43 0.90 0.54 2.45

mean
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E <- Eweight | 0.1-5 | 0.52 0.48 0.58 0.25 0.73 1.74
st. dev.
E<-lweight | 0.1-5 | 0.87 0.70 2.06 0.86 0.59 0.54
mean
E<-lweight | 0.1-5 |0.47 0.32 0.41 0.76 0.73 0.16
st. dev.
| <- FF weight | 0.1-5 | 1.50 1.83 2.44 0.38 1.53 1.60
mean
| <- FF weight | 0.1-5 | 0.68 0.82 0.45 0.38 0.55 0.22
st. dev.
|l <-Eweight | 0.1-5 |1.85 1.31 1.44 1.63 1.77 0.82
mean
| <-Eweight | 0.1-5 |0.22 0.28 0.21 0.17 0.14 0.79
st. dev.
| <- | weight 0.1-5 |0.16 1.07 0.26 2.51 0.15 0.23
mean
| <- | weight 01-5 |0.12 0.68 0.47 0.33 0.77 0.05
st. dev.
E <- FF and 1-5 3.63 2.80 4.42 3.91 3.63 4.00
E <- E max
structured
Aweight
E <- FF and 2-20 3.43 10.76 3.48 19.87 3.53 5.91
E <- E decay
(ms)
E <- | decay 2-30 2.32 3.89 2.72 17.05 2.53 27.87
(ms)
| <- FF and 2-20 15.04 18.53 17.94 13.49 17.10 18.39
| <- E decay
(ms)
| <- | decay 2-30 8.09 5.65 8.12 9.24 10.19 22.35
(ms)
E<-FF# 0-2 0.62 0.96 0.70 0.57 0.73 0.18
synapses
/ pair
E<-E# 0-2 0.55 0.57 0.55 0.05 0.33 0.46
synapses
/ pair
E<-14# 0-10 5.12 3.36 4.75 7.93 5.71 7.79
synapses
/ pair
| <- FF # 0-2 0.26 0.77 0.19 0.21 0.19 0.12
synapses
/ pair
l<-E# 0-2 0.31 0.47 0.19 0.22 0.13 0.60
synapses
/ pair
l<- 1 # 0-10 8.17 4.81 9.07 8.83 9.43 7.38
synapses
/ pair
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Table 2. Features of model network dynamics

Feature Target | Structured | Random | Shuffled | Suppressed | No sparsity | No spike
E<-E E<-E E<-E rhythmicity | or selectivity | rate
weights weights | weights constraints adaptation
E peak rate 20. 17.20 19.96 10.42 20.07 19.73 7.30

(run) (Hz)

E min rate (run) | O. 0.24 0.25 0.27 0.25 12.37 0.39
(Hz)

| mean rate 20. 19.58 32.05 12.08 2.77 19.90 6.17
(run) (Hz)

E fraction 0.6 0.59 0.60 0.61 0.60 1.00 0.60
active (run)

| fraction active | 0.95 1.00 1.00 0.95 0.23 0.98 0.87
(run)

E theta 0.5 0.78 0.37 0.63 0.15 0.77 1.29
amplitude
(run)

| theta 0.5 0.48 0.14 0.19 0.26 0.53 1.15
amplitude
(run)

E gamma 0.25 0.53 0.40 0.66 0.20 0.59 0.27
amplitude
(run)

| gamma 0.25 1.19 1.85 1.33 1.67 1.39 1.27
amplitude
(run)

E theta 7. 7.09 7.45 7.64 11.27 7.09 6.73
frequency
(run) (Hz)

| theta 7. 6.91 7.27 7.45 12.55 6.91 6.73
frequency
(run) (Hz)

E gamma 70. 71.06 72.93 71.06 57.98 72.93 39.29
frequency
(run) (Hz)

| gamma 70. 71.06 72.93 69.19 87.88 76.67 69.19
frequency
(run) (Hz)

E theta >5. 6.40 6.30 7.00 0.00 29.05 150.67
frequency
tuning
index (run)

| theta >5. 9.83 6.10 3.99 0.00 34.16 150.59
frequency
tuning
index (run)

E gamma >5. 10.67 10.90 5.08 -0.37 10.18 -0.01
frequency
tuning
index (run)

| gamma >5. 16.16 414 31.65 0.36 6.02 3.43
frequency
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tuning
index (run)
E fraction 0.25 0.37 0.20 0.53 0.36 1.00 0.40
active
(rest)
E mean rate 12.5 7.11 6.56 712 7.65 17.77 6.97
(rest) (Hz)

865
In the above table, theta and gamma amplitudes were quantified as follows:

average population firing rates were band-pass filtered, and the envelopes of the
filtered traces were computed from the Hilbert transformation. Then power was
expressed as a ratio of the average envelope amplitude to the average population firing

870 rate. To quantify theta and gamma frequency, bandpass filtered traces were subject to
frequency decomposition, and the frequency corresponding to the centroid or center-
of-mass of the power spectral density distribution was taken as the dominant
frequency within the band. The area of the power spectral density distribution was also
used to compute a “frequency tuning index” which quantified how concentrated the

875 power distribution was around the centroid frequency. This metric was akin to a signal-
to-noise ratio in the frequency domain instead of the time domain, and was computed

as follows:

S—N

20w

1) FTI=

where S is the average power at frequencies within the center of mass quartile

880 containing the centroid frequency (signal), N is the average power at frequencies in the
extreme high and low quartiles outside the center of mass quartile (noise), o is the
standard deviation of the power distribution, and w is the half-width of the power
distribution in the frequency domain normalized to the width of the bandpass filter. This
metric has values near zero when power is distributed uniformly within the filter band,

885 and values larger than one when power is concentrated around the centroid frequency.

Following parameter optimization, each variant of the network was evaluated by

simulating 5 trials of online run, and 1000 trials of offline rest for each of 5 independent
network instances. For a given set of model parameters, independent instances of

each network variant were constructed by using distinct random number streams to
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assign place field locations, input spike times, synaptic connections, and synaptic
weights for all cells in the network.

Bayesian decoding of spatial position from spike times recorded during a single
trial (Figures 2, 3, 5 and 6, and Supplementary Figures S3 — S6) was performed using
the procedure described in (Davidson et al., 2009). The spatial firing rates of all cells
were averaged across 5 trials of simulated online run to compute the spiking
probabilities of each neuron in 20 ms bins. Then, spiking data was taken from either a
held-out set of 5 trials of simulated run (Figure 2), or offline rest trials (Figures 3, 5 and
6, and Supplementary Figures S3 — S6). The numbers of spikes emitted by each cell in
20 ms bins were used to determine a likelihood distribution over spatial positions. The
position with maximum likelihood was used as the decoded position estimate for each
temporal bin. In Figure 2A, decoded positions of E and | cells sweep smoothly from
past to future positions, and then relax back to the current position on the timescale of
the ongoing theta rhythm. To quantify this form of online neuronal sequence
generation, a theta sequence score (Figures 2E and 4H) was computed as follows:
decoded position error was first bandpass filtered in the theta band (4 — 10 Hz). Then
the contribution of this oscillation to the total variance in decoded position error was
calculated as the square of the correlation (R? between the original mean-subtracted
error signal and the theta filtered signal. In Figures 3F, 3M, 41, 5G and 6G, and
Supplementary Figures S3H, S4F, S5K, S6K and S8E, offline sequences were
categorized as consistent with a continuous trajectory through space if they met the
following criterion: 1) at least one cell in a population must emit at least one spike in
each temporal bin, 2) the change in decoded position between any two adjacent bins
must not exceed 35% of the track length, 3) the total path length of the decoded
trajectory must not exceed 100% of the track length, and 4) the net speed of the
trajectory (absolute value of net change in position divided by the 160 ms offline event
duration) must exceed 50% of the run speed of 0.33 track lengths / sec used during
simulation of online exploration.

In Figure 4 and Supplementary Figure S8, the diversity and degeneracy of

various model configurations was explored as follows: for each model configuration,
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30,000 models were evaluated during parameter optimization, and the model with the
lowest multi-objective error score was considered the “best” model. The remaining
models were sorted by their Euclidean distance from the “best” model in the space of
model parameters. This resulted in an error landscape (e.g. Figure 4A) in which models
with similar parameters resulted in similar multi-objective error scores. We then
identified models located at local minima in this error landscape, which as a group
comprised models that were distant from each other in parameter space, but similar to
each other in terms of overall multi-objective error. We further enforced that selected
models had to be a minimum distance of 0.15 from each other in parameter space, and
selected 5 such models with the lowest error score to be included in a “Marder group”
of models for further analysis. For each alternative network model configuration (i.e.
network models with and without structured recurrent excitatory connections), each of
5 “Marder group” model variants with different parameters were evaluated for offline
sequence generation by simulating 1000 trials for each of 5 independent network
instances.

In box and whisker plots in Figures 2D, 2E, 3F, 3M, 4D - 4l, 5G and 6G, and
Supplementary Figures S1C, S1D, S3H, S4F, S5K, S6K and S8A - S8E, center lines
indicate median, boxes span the first and third quartile of the data, and whiskers

extend to 1.5 times the inter-quartile range.

Data and Code Availability

All code necessary to reproduce the data and analysis presented in this work are
available here:

Network simulation and analysis code:
https://github.com/neurosutras/optimize_simple_network

Network optimization code: https://github.com/neurosutras/nested
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Supplementary Figure S1. Related to Figures 1, 2 and 3. Structure and online dynamics of network
model with excitatory synaptic connectivity structured by shared stimulus selectivity. (A)
Intracellular voltage recordings from example E and | cells during simulated “online” spatial exploration.
(B) The strengths of synaptic connections within the network model shown in Figure 1 are indicated by
grayscale intensity. Cells in each population are sorted by the location of maximum average spatial firing
rate. Excitatory connections from FF and E cells onto E cells are increased in strength for pairs of cells
with overlapping spatial selectivity. (C) Spatial modulation for each cell is computed as a ratio of
maximum to mean activity. The degree of spatial modulation expected from a linear weighted sum of
excitatory inputs is larger for E cells than | cells due to the structure of the weight distributions shown in
(B). However, the actual spatial modulation measured from the firing rate outputs of each cell is larger

47


https://doi.org/10.1101/2021.10.27.466186
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466186; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

than expected in both E and | cells due to suppression of background activity by synaptic inhibition
(one-sided paired t-tests: Expected vs. Actual: E, p<0.00001; I, p<0.00001). (D) The distance between
the expected location of maximum firing, and the actual location is quantified as a fraction of the circular
track (one-sample t-tests: E, p<0.00001; I, p=0.00005). (E) Traces depict average population firing rates
of E and FF cells during an example trial for one instance of the network. E cells and FF cells dominate
at different phases of the population theta oscillation. (F) In Figure 1G (bottom row), the amplitudes of the
gamma-filtered (purple) population firing rates for E and | populations vary in time. Here, the amplitudes
or envelopes of the gamma-filtered population firing rates were subject to frequency decomposition. The
resulting frequency distributions show peaks in the theta band (one-sided paired t-tests: 4 Hz - 10 Hz
frequency band: E vs. FF, p=0.00002; | vs. FF, p=0.00002). Mean (solid) + SEM (shading) were computed
across 5 independent network instances. In (C) and (D), box and whisker plots depict data across cells
for one example instance of the network (see Materials and Methods). Statistics were computed across
5 independent instances of the network. p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S2. Related to Figures 1, 2 and 3. Structure and online dynamics of
alternative network models with random recurrent excitatory connectivity. (A) Same as
Supplementary Figure S1B for an alternative network model with random E < E weights. (B — F) Same
as Figures 1C — 1F and 1H for alternative network model. (F) Rhythmicity (one-sided paired t-tests: theta:
E vs. FF, p=0.00003; | vs. FF, p<0.00001; gamma: E vs. FF, p<0.00001; | vs. FF, p<0.00001; two-sided t-
tests vs. data from model with structured E <— E weights in Figure 1H: theta: E, p<0.00001; |, p<0.00001;
gamma: E, p<0.00001; I, p<0.00001). (G — L) Same as (A - F) for an alternative network model with
structured, but shuffled E <— E weights. (H) Rhythmicity (one-sided paired t-tests: theta: E vs. FF,
p=0.00009; | vs. FF, p=0.00003; gamma: E vs. FF, p=0.00002; | vs. FF, p<0.00001; two-sided t-tests vs.
data from model with structured E <— E weights in Figure 1H: theta: E, p<0.00001; I, p<0.00001; gamma:
E, p=0.00001; I, p<0.00001). In (C - F) and (I - L), data were first averaged across 5 trials per network
instance. Mean (solid) + SEM (shading) were computed across 5 independent network instances. p-
values reflect FDR correction for multiple comparisons.
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Supplementary Figure

S3

A Model with past-skewed asymmetric E «— FF and E «— E synaptic weights
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Supplementary Figure S3. Related to Figures 1 and 3. Offline replay is unidirectional in an
alternative network model with asymmetric synaptic connectivity. (A) Same as Supplementary
Figure S1B for an alternative network model with E <— E and E < FF synaptic weights biased such that
neurons encoding the current position of the animal during run preferentially activate neurons encoding
future positions. This biases offline replay towards forward-moving unidirectional sequences. (B) Same
as Figure 1C for alternative network model. (C - I) Same as Figures 3A — 3G for alternative network
model. (C) and (D) correspond to two example trials from one example network instance. (E) Decoded
positions (two-sided K-S tests: E vs. FF, p=0.99974; | vs. FF, p=0.99974; two-sided K-S tests vs. data
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from model with structured E < E weights in Figure 3C: E, p=0.99974; |, p=0.99974). (F) Offline
sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S tests vs.
data from model with structured E <— E weights in Figure 3D: E, p<0.00001; I, p=0.31278). (G) Offline
sequence velocity (two-sided K-S tests: E vs. FF, p<0.00001; | vs. FF, p=0.00026; two-sided K-S tests
vs. data from model with structured E <— E weights in Figure 3E: E, p<0.00001; I, p=0.00026). (H)
Fraction of events that met criterion for sequences consistent with continuous spatial trajectories (see
Materials and Methods) (one-sided paired t-tests: E vs. FF, p<0.00001, | vs. FF, p=0.00003; two-sided t-
tests vs. data from model with structured E < E weights in Figure 3F: E, p<0.00001; I, p=0.00112). (I)
Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz — 300 Hz frequency band: E vs. FF,
p=0.00100; I vs. FF, p=0.00001; two-sided t-tests vs. data from model with structured E <— E weights in
Figure 3G: E, p=0.00001; I, p=0.02509). In (E — G) and (I), mean (solid) + SEM (shading) were computed
across 5 independent instances of each network. In (H), box and whisker plots depict data from 5
independent instances of each network model (see Materials and Methods). p-values reflect FDR
correction for multiple comparisons.
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Supplementary Figure S4

A Model with recurrent E < E synaptic weights B
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Supplementary Figure S4. Related to Figure 3. Offline replay is disrupted in an alternative network
model with structured, but shuffled recurrent excitatory connectivity.

(A — G) Same as Figures 3A — 3G for an alternative network model with structured, but shuffled E < E
weights. (A) and (B) correspond to two example trials from one example network instance. (C) Decoded
positions (two-sided K-S tests: E vs. FF, p=0.99974; | vs. FF, p=0.99974; two-sided K-S tests vs. data
from model with structured E < E weights in Figure 3C: E, p=0.99974; |, p=0.99974). (D) Offline
sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p=0.11015; two-sided K-S tests vs.
data from model with structured E < E weights in Figure 3D: E, p<0.00001; I, p<0.00001). (E) Offline
sequence velocity (two-sided K-S tests: E vs. FF, p=0.96717; | vs. FF, p=0.73515; two-sided K-S tests
vs. data from model with structured E < E weights in Figure 3E: E, p=0.00272; |, p=0.24955). (F) Fraction
of events that met criterion for sequences consistent with continuous spatial trajectories (see Materials
and Methods) (one-sided paired t-tests: E vs. FF, p=0.06713, | vs. FF, p=0.99967; two-sided t-tests vs.
data from model with structured E < E weights in Figure 3F: E, p<0.00001; I, p<0.00001). (G) Offline
high-frequency rhythmicity (one-sided paired t-tests: 75 Hz — 300 Hz frequency band: E vs. FF,
p=0.00092; | vs. FF, p=0.00004; two-sided t-tests vs. data from model with structured E <— E weights in
Figure 3G: E, p=0.00006; I, p=0.00059). In (C - E) and (G), mean (solid) + SEM (shading) were computed
across 5 independent instances of each network. In (F), box and whisker plots depict data from 5
independent instances of each network model (see Materials and Methods). p-values reflect FDR
correction for multiple comparisons.
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Supplementary Figure S5

A Model optimized to suppress rhythmicity
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Supplementary Figure S5. Related to Figures 1 and 3. Offline replay is disrupted in an alternative
network model optimized to suppress rhythmicity. (A — E) Same as Figures 1C — 1F and 1H for
alternative network model optimized to suppress theta and gamma rhythmicity in E and | cells. (E)
Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; | vs. FF, p=0.99754; gamma: E vs. FF,
p<0.00001; I vs. FF, p=0.00003; two-sided t-tests vs. data from model with structured E <— E weights in
Figure 1H: theta: E, p<0.00001; I, p<0.00001; gamma: E, p<0.00001; I, p<0.00001). (F — L) Same as
Figures 3A — 3G for alternative network model. (F) and (G) correspond to two example trials from one
example network instance. (H) Decoded positions (two-sided K-S tests: E vs. FF, p=0.99974; | vs. FF,
p=0.99974; two-sided K-S tests vs. data from model with structured E < E weights in Figure 3C: E,
p=0.99974; |, p=0.99974). (I) Offline sequence length (two-sided K-S tests: E vs. FF, p<0.00001; | vs. FF,
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p<0.00001; two-sided K-S tests vs. data from model with structured E < E weights in Figure 3D: E,
p<0.00001; I, p<0.00001). (J) Offline sequence velocity (two-sided K-S tests: E vs. FF, p=0.73515; | vs.
FF, p=0.00001; two-sided K-S tests vs. data from model with structured E < E weights in Figure 3E: E,
p=0.09901; I, p=0.00004). (K) Fraction of events that met criterion for sequences consistent with
continuous spatial trajectories (see Materials and Methods) (one-sided paired t-tests: E vs. FF,
p=0.00004, I vs. FF, p=0.00002; two-sided t-tests vs. data from model with structured E <— E weights in
Figure 3F: E, p<0.00001; I, p=0.00001). (L) Offline high-frequency rhythmicity (one-sided paired t-tests:
75 Hz — 300 Hz frequency band: E vs. FF, p=1; | vs. FF, p=1; two-sided t-tests vs. data from model with
structured E < E weights in Figure 3G: E, p=0.00001; I, p<0.00001). In (B - E), (H - J) and (L), mean
(solid) + SEM (shading) were computed across 5 independent instances of each network. In (K), box and
whisker plots depict data from 5 independent instances of each network model (see Materials and
Methods). p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S6

A Model optimized without sparsity or selectivity constraints
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Supplementary Figure S6. Related to Figures 1 and 3. Offline replay is disrupted in an alternative
network model optimized without sparsity or selectivity constraints. (A — E) Same as Figures 1C -
1F and 1H for alternative network model optimized without sparsity or selectivity constraints in E cells.
(E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; | vs. FF, p<0.00001; gamma: E vs.
FF, p<0.00001; | vs. FF, p<0.00001; two-sided t-tests vs. data from model with structured E < E weights
in Figure 1H: theta: E, p<0.00001; I, p<0.00001; gamma: E, p<0.00001; I, p<0.00001). (F - L) Same as
Figures 3A — 3G for alternative network model. (F) and (G) correspond to two example trials from one
example network instance. (H) Decoded positions (two-sided K-S tests: E vs. FF, p=0.00019; | vs. FF,
p=0.99974; two-sided K-S tests vs. data from model with structured E < E weights in Figure 3C: E,
p=0.00010; I, p=0.99974). (I) Offline sequence length (two-sided K-S tests: E vs. FF, p<0.00001; | vs. FF,
p=0.00030; two-sided K-S tests vs. data from model with structured E < E weights in Figure 3D: E,
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p<0.00001; I, p<0.00001). (J) Offline sequence velocity (two-sided K-S tests: E vs. FF, p=0.00015; | vs.
FF, p=0.31270; two-sided K-S tests vs. data from model with structured E < E weights in Figure 3E: E,
p=0.00093; I, p=0.06213). (K) Fraction of events that met criterion for sequences consistent with
continuous spatial trajectories (see Materials and Methods) (one-sided paired t-tests: E vs. FF,
p=0.14499, | vs. FF, p=0.99967; two-sided t-tests vs. data from model with structured E <— E weights in
Figure 3F: E, p=0.00027; I, p<0.00001). (L) Offline high-frequency rhythmicity (one-sided paired t-tests:
75 Hz - 300 Hz frequency band: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided t-tests vs. data from
model with structured E < E weights in Figure 3G: E, p<0.00001; I, p<0.00001). In (B - E), (H - J) and (L),
mean (solid) + SEM (shading) were computed across 5 independent instances of each network. In (K),
box and whisker plots depict data from 5 independent instances of each network model (see Materials
and Methods). p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S7

A Model without spike rate adaptation in E cells
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Supplementary Figure S7. Related to Figures 1 and 5. Online dynamics in network model without
spike rate adaptation. (A — E) Same as Figures 1C — 1F and 1H for alternative network model without
spike rate adaptation in E cells. (E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p=0.00016; | vs.
FF, p=0.00007; gamma: E vs. FF, p=0.98658; | vs. FF, p=0.00002; two-sided t-tests vs. data from model
with structured E < E weights in Figure 1H: theta: E, p=0.03333; I, p<0.00001; gamma: E, p<0.00001; I,
p<0.00001). In (B - E), mean (solid) + SEM (shading) were computed across 5 independent instances of
each network. p-values reflect FDR correction for multiple comparisons.
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Supplementary Figure S8
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Supplementary Figure S8. Related to Figures 1, 3, 4, and 5. Exploration of model parameter
diversity and degeneracy in additional alternative network models. To explore model diversity and
degeneracy, for various network model configurations, a subset of model variants termed a “Marder
group” were selected based on their large distance from each other in the space of parameters, but their
similar performance with respect to multiple optimization objectives (see Figure 4 and Materials and
Methods). Features of the simulated network dynamics produced by distinct model variants within a
“Marder group” are compared across network model configurations. (A) Spatial selectivity of the
excitatory neuron population during simulated “online exploration” is computed as a ratio of maximum to
mean activity (two-sided t-tests vs. data from model with structured E <— E weights: Random E <— E
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weights: p=1; Shuffled E < E weights: p=0.00224; No rhythmicity constraints: p=1; No sparsity or
selectivity constraints: p<0.00001; No spike rate adaptation: p=1). (B) The fraction of the excitatory
neuron population that is synchronously active during simulated “online exploration” is shown (two-sided
t-tests vs. data from model with structured E < E weights: Random E <— E weights: p=1; Shuffled E < E
weights: p=0.12079; No rhythmicity constraints: p=1; No sparsity or selectivity constraints: p<0.00001;
No spike rate adaptation: p=0.19538). (C) Gamma rhythmicity of the excitatory neuron population is
computed as the integrated power spectral density in the gamma frequency band (two-sided t-tests vs.
data from model with structured E <— E weights: Random E < E weights: p=0.03552; Shuffled E < E
weights: p=0.16364; No rhythmicity constraints: p=0.00014; No sparsity or selectivity constraints:
p=0.00091; No spike rate adaptation: p=0.00012). (D) Theta rhythmicity of the excitatory neuron
population is computed as the integrated power spectral density in the theta frequency band (two-sided
t-tests vs. data from model with structured E < E weights: Random E < E weights: p=0.00272; Shuffled
E < E weights: p=0.01944; No rhythmicity constraints: p=0.00030; No sparsity or selectivity constraints:
p=0.00984; No spike rate adaptation: p=1). (E) Fraction of events during simulated “offline rest” that met
criterion for sequences consistent with continuous spatial trajectories (see Figure 3, Supplementary
Figure S3, and Materials and Methods) (two-sided t-tests vs. data from model with structured E < E
weights: Random E < E weights: p<0.00001; Shuffled E <- E weights: p=0.00044; No rhythmicity
constraints: p=<0.00001; No sparsity or selectivity constraints: p=0.00120; No spike rate adaptation:
p=0.00751). In (A — E), for each network model configuration, box and whisker plots depict 5 distinct
“Marder group” model variants with different parameters (see Materials and Methods). Data for each
model variant (grey circles) were first averaged across 5 independent instances of that model variant. For
each network model configuration, In (C - E), grey dashed lines indicate value for the feedforward input
to the network for reference. p-values reflect Bonferroni correction for multiple comparisons.
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Supplementary Figure S9

A Model with population over-representation of reward location
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Supplementary Figure S9. Related to Figures 1 and 6. Online activity in network model with
population over-representation of reward. (A) Same as Supplementary Figure S1B for an alternative
network model with population-level over-representation of reward location in E cells. Simulated reward
site is marked with red dashed line. (B — E) Same as Figures 1D — 1F and 1H for alternative network
model. (E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; I vs. FF, p<0.00001; gamma:
E vs. FF, p=0.00003; | vs. FF, p<0.00001; two-sided t-tests vs. data in Figure 1H: theta: E, p=0.00440; I,
p=0.16525; gamma: E, p=0.00043; I, p=0.01695). In (B — E), mean (solid) + SEM (shading) were

computed across 5 independent instances of each network. p-values reflect FDR correction for multiple
comparisons.
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