

1 Long-term effects of network-based 2 fMRI neurofeedback training for 3 sustained attention

4 Gustavo Santo Pedro Pamplona^{1,2,3,4}, Jennifer Heldner³, Robert Langner^{5,6}, Yury Koush⁷, Lars
5 Michels^{8,9}, Silvio Ionta¹, Carlos Ernesto Garrido Salmon^{2,***}, Frank Scharnowski^{3,9,10,11,*,**}

- 6 1. Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des
7 Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland
- 8 2. InBrain Lab, Department of Physics, University of Sao Paulo, Ribeirao Preto, Brazil
- 9 3. Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital,
10 University of Zurich, Switzerland
- 11 4. Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and
12 Technology, ETH Zurich, Zurich, Switzerland
- 13 5. Institute of Systems Neuroscience, Heinrich Heine University Dusseldorf, Dusseldorf,
14 Germany
- 15 6. Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre
16 Julich, Julich, Germany
- 17 7. Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale
18 University, New Haven, CT, USA
- 19 8. Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
- 20 9. Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of
21 Technology, Zurich, Switzerland
- 22 10. Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich,
23 Switzerland
- 24 11. Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology,
25 University of Vienna, Vienna, Austria

26 * Corresponding author: frank.scharnowski@univie.ac.at

27 ** Both authors contributed equally.

28

29 **ABSTRACT**

30 Neurofeedback allows for learning voluntary control over one's own brain activity, aiming to
31 enhance cognition and clinical symptoms. A recent study improved sustained attention
32 temporarily by training healthy participants to up-regulate the differential activity of the sustained
33 attention network (SAN) minus the default mode network (DMN). However, long-term learning
34 effects of functional magnetic resonance imaging (fMRI) neurofeedback training remain under-
35 explored. Here, we evaluate the effects of network-based fMRI neurofeedback training for
36 sustained attention by assessing behavioral and brain measures before, one day after, and two
37 months after training. The behavioral measures include task as well as questionnaire scores, and
38 the brain measures include activity and connectivity during self-regulation runs without feedback
39 (i.e., transfer runs) and during resting-state runs. Neurally, we found that participants maintained
40 their ability to control the differential activity during follow-up sessions. Further, exploratory
41 analyses showed that the training-induced increase in FC between the DMN and occipital gyrus
42 was maintained during follow-up transfer runs, but not during follow-up resting-state runs.
43 Behaviorally, we found that enhanced sustained attention right after training returned to baseline
44 level during follow-up. The discrepancy between lasting regulation-related brain changes but
45 transient behavioral and resting-state effects raises the question of how neural changes induced
46 by neurofeedback training translate to potential behavioral improvements. Since neurofeedback
47 directly targets brain measures to indirectly improve behavior long-term, a better understanding
48 of the brain-behavior associations during and after neurofeedback training is needed to develop
49 its full potential as a promising scientific and clinical tool.

50

51 **Keywords**

52 fMRI-neurofeedback; follow-up; sustained attention; functional connectivity; resting state;
53 psychophysiological interaction (PPI); behavioral effects.

54

55 **Key points**

56 • Participants were still able to self-regulate the differential activity between large-scale
57 networks two months after the end of neurofeedback training and this during transfer runs
58 without feedback.

59 • Lasting brain changes were also observed in the functional connectivity of trained regions
60 in runs during which participants engaged in active self-regulation as well as during
61 resting-state runs without concomitant self-regulation.
62 • The increased sustained attention we observed right after the end of neurofeedback
63 training did not persist two months later.

64 **1. INTRODUCTION**

65 Neurofeedback is a form of biofeedback that provides individuals with real-time sensory
66 information from their own brain activity, over which voluntary control can be learned with training
67 [Sitaram et al., 2017]. Neurofeedback training has been associated with behavioral changes,
68 which makes it an interesting approach for studying brain-behavior relationships [Sitaram et al.,
69 2017; Sulzer et al., 2013a]. Neurofeedback training has also produced clinical benefits, which
70 makes it a promising clinical intervention for the treatment of neurological and psychiatric
71 disorders (e.g. Linhartová et al., 2019; Martz et al., 2020; Sokunbi, 2017; Sulzer et al., 2013;
72 Taschereau-Dumouchel et al., 2022; Wang et al., 2018). The reported effects of neurofeedback
73 training include transient as well as lasting changes. For cognitive enhancement and clinical
74 applications of neurofeedback training, lasting effects are particularly important. Behaviorally,
75 several studies reported that neurofeedback was associated with changes that lasted beyond the
76 initial training [Amano et al., 2016; Mehler et al., 2018; Zilverstand et al., 2015a]. Some studies
77 even found that clinical symptoms “continue to improve for weeks after neurofeedback” training
78 [Rance et al., 2018]. Also neurally, lasting plastic brain changes have been reported, including
79 resting-state functional connectivity (FC) [Megumi et al., 2015; Scheinost et al., 2013; Yuan et al.,
80 2014; Zhang et al., 2013] and brain structural changes [Marins et al., 2019; Sampaio-Baptista et
81 al., 2021]. Lasting brain changes combined with behavioral modulations induced by
82 neurofeedback training provide new insights into how they relate to each other. Hence,
83 investigating long-term effects of neurofeedback training will help understanding its learning
84 mechanisms and might facilitate the use of neurofeedback for enhancing cognition and clinical
85 symptoms.

86 Here we investigate lasting behavioral and neural changes following neurofeedback training of
87 sustained attention. Sustained attention is a cognitive function that supports the continuous focus
88 on a particular external object for extended periods of time. Neuroimaging correlates of sustained
89 attention comprise the sustained attention network (SAN) [Langner and Eickhoff, 2013], which
90 combines regions from the frontoparietal control network [Dosenbach et al., 2008] and the dorsal
91 attention network (DAN) [Yeo et al., 2011]. In contrast, default mode network (DMN) activation is
92 related to internally-focused cognitive processes and mind-wandering [Andrews-Hanna et al.,
93 2014; Raichle et al., 2001]. DMN activation is therefore associated with stimulus-independent
94 thoughts and reduced attention during the execution of an externally-oriented task [Hinds et al.,
95 2011; Lawrence et al., 2003; Thompson et al., 2013; Weissman et al., 2006]. The SAN (more
96 specifically, its DAN components [Spreng, 2012]) and DMN are intrinsically anticorrelated, as they

97 are engaged in antagonistic processes reflecting externally- vs. internally-oriented attention [Fox
98 et al., 2005; Spreng, 2012]. We recently demonstrated that sustained attention can be improved
99 to some extent through training simultaneous up-regulation of the sustained attention network
100 (SAN) and down-regulation of the default-mode network (DMN) using fMRI neurofeedback
101 [Pamplona et al., 2020a]. We found that participants in the neurofeedback group were able to
102 regulate their differential SAN-DMN activity and showed improved sustained attention directly
103 after the training. No such improvement was observed in a test-retest control group, which only
104 performed the behavioral sustained attention tasks, but did not undergo neurofeedback training.
105 Regarding lasting effects, we hypothesize that the neural and behavioral changes induced by the
106 neurofeedback training persist beyond the training. Specifically, we hypothesized that regulation
107 performance in brain regions successfully trained using neurofeedback and the associated
108 improved sustained attention would be maintained long-term. We also hypothesized that
109 functional connectivity changes specific to the successfully trained brain regions would be
110 observed in the long term. To test these hypotheses, we analyzed unpublished data of runs
111 without feedback (i.e., transfer runs) and resting-state runs, from before, immediately after, and
112 two-months after neurofeedback training. We also explored the data in terms of immediate and
113 lasting whole-brain activation and functional connectivity changes. Finally, we explored
114 associations between brain connectivity changes and behavioral effects. Specifically, we
115 investigated (i) the persistence of learned regulation in SAN, DMN, and their constituent regions
116 two months after training to characterize maintained self-regulation; (ii) changes in pre-training
117 functional connectivity directly after training and two months later to investigate lasting brain
118 connectivity alterations with (transfer runs) and without regulation (resting-state runs); (iii)
119 changes in resting-state functional connectivity of SAN and DMN regions directly after training
120 and two months later using a graph theoretical approach; (iv) persistence of training-induced
121 attention measured by task and questionnaires two months after neurofeedback training to assess
122 the permanence of behavioral effects arising from neurofeedback training; and (v) associations
123 of functional connectivity changes in transfer and resting-state runs with behavioral changes
124 directly after training and two months later.

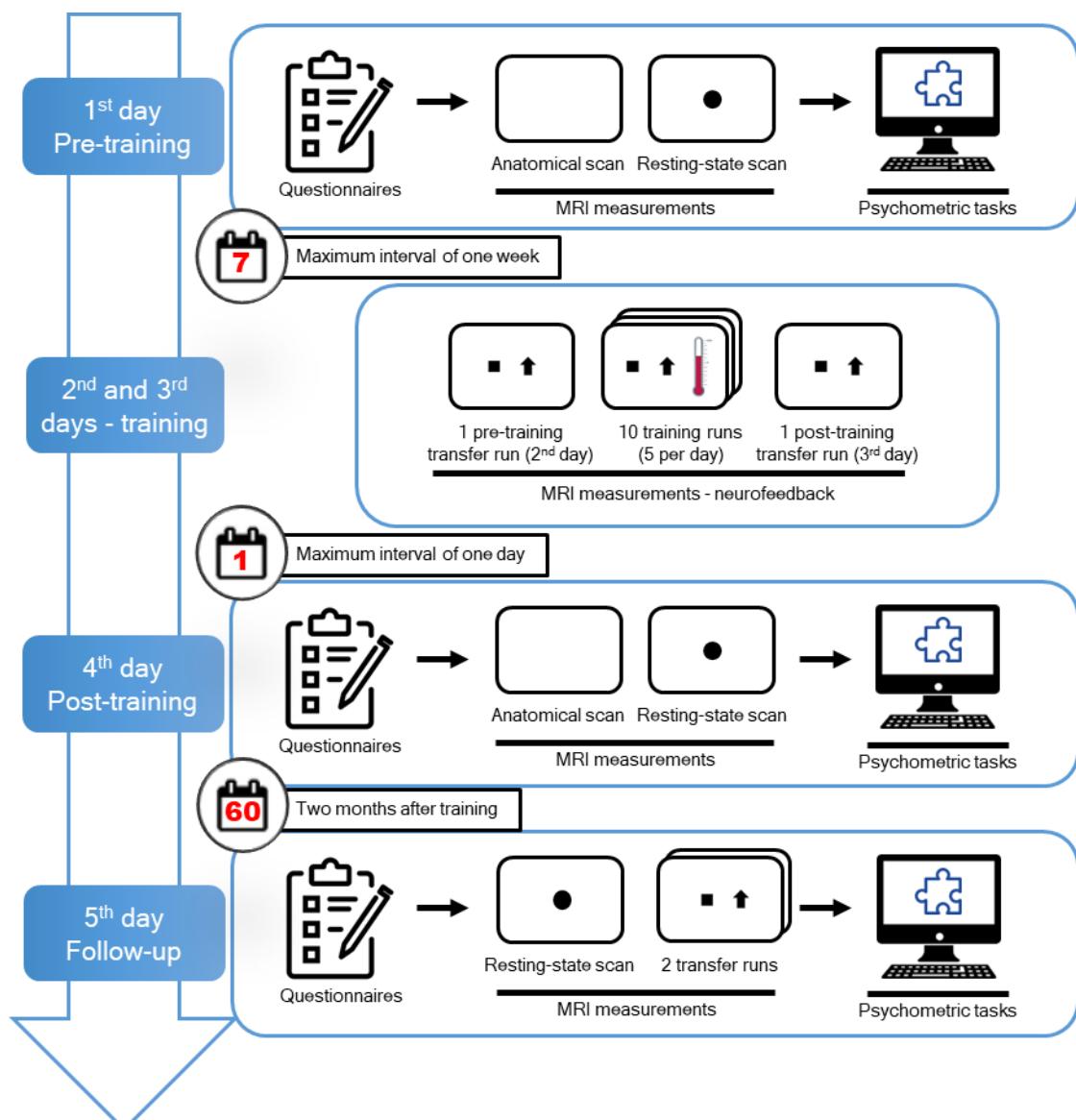
125 2. MATERIALS AND METHODS

126

127 2.1. Participants

128 We included data from a previously published study [Pamplona et al., 2020a] that comprised a
129 neurofeedback training group who performed sustained attention tasks before and after training.

130 The study also included a control group who only performed the sustained attention tasks twice
131 without neurofeedback training, separated by a two-week interval which corresponds to the
132 duration of the neurofeedback training in the experimental group. For the present study, we
133 analyzed data only from the neurofeedback group, which consisted of 15 healthy volunteers (5
134 females, mean age: 27.9 ± 3.3 years old, age range = [22.6, 34.5] years old). Data included
135 psychometric tasks, transfer and resting-state runs before, directly after, and two months after
136 neurofeedback training. Exclusion criteria were left-handedness, strong vision deficiency that
137 could not be corrected using contact lenses, insufficient knowledge of English, history of mental
138 and/or cardiovascular disorders, not being able to abstain from alcohol or other drugs during the
139 days of the experiment, and MRI contraindications. This study was approved by the local ethics
140 committee of the Canton of Zurich in Switzerland. All participants read and signed the informed
141 consent in accordance with the Declaration of Helsinki (2013) before taking part in the study. They
142 received financial compensation of 25 CHF per hour for their participation.


143

144 2.2. Experimental procedure

145 *Timeline of experimental procedure.* Each participant took part in a five-day longitudinal study
146 (Fig. 1) that involved fMRI-neurofeedback training and pre/post-training sessions for neural and
147 behavioral assessment of neurofeedback training. The neurofeedback training consisted of ten
148 real-time fMRI runs that took place on the second and third days of the experiment (Fig. 1), split
149 into five runs each day. Each neurofeedback training session lasted about 45 min. The interval
150 between training days for each participant was a maximum of seven days. Neurofeedback training
151 runs consisted of five cycles of baseline, regulation, and intermittent feedback blocks, lasting 30
152 s, 40 s, and 4 s, respectively. To indicate the period of baseline, regulation, and feedback blocks,
153 participants were presented with a black square, a black up-arrow, and a graded blue-to-red
154 thermometer on the center of a white screen, respectively. We acquired individual transfer runs –
155 used to test learned self-regulation in situations where feedback is not available – directly before
156 and directly after training (second and third days of the experiment, respectively), as well as two
157 transfer runs two months after the end of training (fifth day of the experiment). On the first, fourth,
158 and fifth days of the experiment, the participants filled attention-related questionnaires (see
159 section 2.3) and underwent anatomical and resting-state fMRI acquisitions. Attention tasks were
160 performed outside the scanner. These measurements were made approximately at the same time
161 of the day. The intervals between first and second days, between third and fourth days, and third
162 and fifth days were 7 days maximum, 1 day maximum, and 61 ± 3 days, respectively. Hence, the

163 terms pre-training, post-training, and follow-up correspond to measurements acquired on the first
164 and second days, third and fourth days, and fifth days of the experiment, respectively.

165

166

167 **Figure 1.** Timeline of the five-day neurofeedback experimental procedure. On the first, fourth, and fifth days of the
168 experiment, participants underwent resting-state fMRI acquisitions and completed attention-related questionnaires
169 (DSSQ and CFQ) as well as psychometric tasks on a computer (Continuous Performance Task, Switcher; PVT, Mental
170 Rotation Task and Attentional Network Test). The neurofeedback training sessions occurred on the second and third
171 days of the experiment and the participants performed self-regulation without feedback during transfer runs directly
172 before and directly after training. Additionally, participants also performed self-regulation without feedback on two
173 transfer runs on the fifth day. The five visits were conducted with a maximum of one week between the first and second
174 days, one day between the third and fourth days, and two months between the third and fifth days.

175

176 *Instructions.* Instructions for self-regulation strategies during neurofeedback training were
177 provided in written form outside the MR scanner room, prior to scanning. We instructed
178 participants to relax and let their minds wander during baseline blocks and to engage in one of
179 the suggested regulation strategies ((1) constantly reorienting the focus on different aspects of
180 the arrow every 5-10 s; (2) focusing on the black up-arrow and bringing attention back to it
181 whenever detecting task-unrelated thoughts; (3) staying in a state of high alertness) during
182 regulation blocks. Participants were told that they could explore other regulation strategies and
183 adopt the ones that worked best for them. Participants were also explicitly informed that, during
184 baseline blocks, they should not plan regulation tasks. For the pre-training transfer run,
185 participants were asked to choose one of the suggested regulation strategies and employ it during
186 this run. For the post-training and follow-up transfer runs, participants were asked to use the
187 strategy that worked best throughout the neurofeedback training.

188 *MRI acquisition.* All MR images were acquired on a Philips Achieva 3T MRI scanner with a 32-
189 channel head coil in the MR center of the Psychiatric Hospital, University of Zürich, Switzerland.
190 Functional images were acquired using a T2*-weighted gradient-echo-planar (EPI) sequence with
191 repetition time/echo time (TR/TE) = 2000/30 ms, flip angle = 80°, and field of view (FOV) = 240 x
192 240 mm². 37 slices were acquired in ascending order to cover the entire cerebrum (voxel size =
193 3 x 3 x 4 mm³, gap = 0.5 mm). SofTone mode was activated to reduce acoustic scanner noise.
194 Anatomical T1-weighted brain images were acquired using a 3D MPRAGE (magnetization
195 prepared gradient echo) sequence, TR/TE = 7.2/3.4 ms, 170 slices, voxel size = 1 x 1 x 1 mm³,
196 flip angle = 8°, FOV = 240 mm x 240 mm², duration = 3.5 min. Resting-state fMRI acquisitions
197 comprised 200 scans (6 min 40 s) during which participants were asked to not move, relax, breath
198 regularly, look at a central black circle presented on a white screen for visual fixation, and not to
199 think about anything in particular. Neurofeedback training and transfer acquisitions comprised
200 190 scans (6 min 20 s) and 180 scans (6 min), respectively. Before every functional acquisition,
201 five dummy scans were acquired to establish steady-state magnetizations. Visual stimuli were
202 presented with MR-compatible goggles (Resonance Technology Inc.).

203 *Definitions of target networks.* To improve sustained attention through neurofeedback training, we
204 simultaneously promoted the activation of four representative regions-of-interest (ROIs) from the
205 sustained attention network (SAN) and the deactivation of four representative ROIs from the
206 default mode network (DMN), areas positively and negatively associated with sustained attention
207 performance, respectively. The SAN ROIs were defined using a mask of meta-analytic clusters

208 from a comprehensive study on sustained attention [Langner and Eickhoff, 2013] (Table S1). The
209 selected SAN ROIs were the anterior mid-cingulate cortex (aMCC), the right inferior frontal
210 junction (R IFJ), the right temporoparietal junction (R TPJ), and the right intraparietal sulcus (R
211 IPS), chosen to represent multiple functional aspects of the ability of sustained attention. The
212 aMCC is related to conflict processing, monitoring performance, and enhanced vigilance [Hinds
213 et al., 2013; Langner and Eickhoff, 2013; Weissman et al., 2006]; the R IFJ is related to stimuli
214 discrimination and attention switching [Langner and Eickhoff, 2013]; the R TPJ is associated with
215 bottom-up attention reorienting [Corbetta and Shulman, 2002; Weissman et al., 2006]; and the R
216 IPS is associated with top-down attention reorienting [Corbetta and Shulman, 2002; Harris et al.,
217 2000]. The ROIs representing the aMCC and the R IFJ were spatially eroded from the original
218 meta-analytic clusters to reduce their volume. The selected DMN ROIs were the posterior
219 cingulate cortex (PCC), medial prefrontal cortex (mPFC), and bilateral angular gyri (L Ang and R
220 Ang). These regions are the most consistently reported DMN regions – the so-called core regions
221 of the DMN – and robustly activated during self-generated tasks [Andrews-Hanna et al., 2014], in
222 contrast to externally-oriented attention tasks. To account for individual differences, the DMN
223 ROIs were defined using the resting-state acquisitions from each participant. More specifically,
224 we first performed an independent component analysis (ICA) as implemented in Gift
225 (mialab.mrn.org/software/gift) with a predefined number of 30 components. Next, using the
226 Personode toolbox (Pamplona et al., 2020b; www.nitrc.org/projects/personode), we created 6-
227 mm-radius spherical ROIs centered on probabilistic peaks that maximally represented each DMN
228 regions for each individual (Table S1).

229 *Feedback estimation and presentation.* Real-time signal processing was performed using
230 OpenNFT [Koush et al., 2017]. Before each real-time fMRI session, the MNI (Montreal
231 Neurological Institute)-based ROIs were transformed into the current native space using SPM12
232 (www.fil.ion.ucl.ac.uk). First, for neurofeedback training runs, the signal averaged within each ROI
233 was rescaled in real-time [Koush et al., 2012; Pamplona et al., 2020a; Scharnowski et al., 2012].
234 Next, the resulting signals were averaged within SAN and DMN separately. Finally, the difference
235 between SAN and DMN signals (differential activity SAN minus DMN) was fed back intermittently
236 to the participant as the thermometer level, right after regulation blocks. Participants were asked
237 to raise the thermometer level as much as possible, which could be achieved either by SAN
238 upregulation, DMN downregulation, or both. The thermometer level, comprised of 10 negative (for
239 DMN > SAN), zero, and 10 positive readings (for SAN > DMN), was proportional to the
240 participant's performance in the current block. Feedback presentation was adaptive for each run
241 based on performance in previous runs, i.e., feedback was made more difficult if the task was

242 relatively easy for the participant and vice-versa. At the end of each run, a monetary reward
243 proportional to their performance in each run was shown to the participant (CHF 20.6 ± 5.4 in total
244 per participant) and added to the final compensation to the participation.

245

246 2.3. Psychometric tasks and questionnaires

247 To evaluate mental strategies associated with neurofeedback training, we asked participants to
248 report the used strategies immediately after each neurofeedback training run. In addition, at the
249 end of training and transfer runs, participants rated their level of concentration on the previous
250 run on a scale ranging from 1 (very low) to 10 (very high). Self-reported concentration ratings from
251 two participants were not collected due to technical issues with the communication system.

252 At the beginning of the first, fourth, and fifth days, participants also completed attention
253 questionnaires [Cognitive Failure Questionnaire (CFQ) [Broadbent et al., 1982]] and their current
254 state of attentiveness and stress in real-life situations [Dundee State Questionnaire (DSSQ)
255 [Helton, 2004]]. Technical failures in the acquisition led to incomplete data collection: inclusion of
256 14-15 participants in the pre-training session, 6-7 participants in the post-training session, and
257 12-15 participants in the follow-up session (the number of participants varies depending on
258 missing data specific to the sub-score).

259 At the end of the first, fourth, and fifth days, participants performed five attention-related tasks, as
260 implemented in the Psychology Experiment Building Language (PEBL) software [Mueller and
261 Piper, 2014], outside the scanner (Fig. 1). Attention tests were performed on a dedicated
262 computer and in a separate experimental room with constant luminosity and noise (participants
263 were asked to use earplugs). The selected tasks from PEBL were: (1) Continuous Performance
264 Task (CPT) [Conners et al., 2003; Ogg et al., 2008; Piper et al., 2016], a go/no-go task designed
265 to measure the sustained ability to either execute or withhold a speeded response; (2) Task-
266 Switching Performance (Switcher) [Anderson, et al., 2012], designed to evaluate the cognitive
267 flexibility in reorienting attention to switching rules; (3) Psychomotor Vigilance Test (PVT) [Dinges
268 and Powell, 1985; Helton et al., 2007; Loh et al., 2004], designed to measure the level of alertness
269 and its maintenance over time (sustained attention); (4) Mental Rotation Task [Berteaupavy et
270 al., 2011; Shepard and Metzler, 1971], designed to evaluate the visual imagery ability in
271 transforming spatial characteristics of an image; (5) Attentional Network Test (ANT) [Fan et al.,
272 2002], designed to provide measurements of different facets of attention: phasic alerting,
273 endogenous spatial orientating, and conflict resolution. The tasks were presented always in the

274 same order. To avoid fatigue, there were 5-min breaks between the 2nd and 3rd tests and
275 between the 4th and 5th tests.

276

277 2.4. Data analysis

278 Functional images from the transfer and resting-state runs as well the anatomical images were
279 preprocessed using SPM12 in MATLAB (The MathWorks, Natick, MA, USA). First, functional
280 images were slice-time corrected using the middle slice as reference. Then, three translation and
281 three rotation parameters of head motion were estimated, and the functional images were
282 spatially realigned to a created mean functional image. Next, the anatomical image was
283 coregistered to the mean functional image and then segmented into tissue probability masks for
284 gray matter, white matter, and cerebrospinal fluid (CSF) compartments. During the segmentation
285 process, a deformation field was created, which was used to normalize the anatomical and
286 functional images to the standard MNI template. Finally, the normalized functional images from
287 the transfer runs were spatially smoothed using a Gaussian kernel of 8 mm full-width at half
288 maximum (FWHM), and the normalized functional images from the resting-state runs were
289 smoothed with a kernel of 6-mm FWHM.

290 2.4.1. Transfer run activity and regulation-specific functional connectivity analyses

291 *First-level analysis of transfer runs.* We investigated differences in training-induced neural activity
292 changes across pre-training, post-training, and follow-up transfer runs. For the first-level analysis,
293 we specified for each run a general linear model (GLM) with two regressors of interest
294 representing regulation and baseline conditions, and six covariates representing head motion.
295 Regressors of interest were modeled as boxcar functions and convolved with the canonical
296 hemodynamic response function implemented in SPM12. Next, beta values (regression weights)
297 of regulation and baseline blocks for each participant and run were estimated voxel-wise.
298 Contrasts were created for the activation differences between regulation and baseline blocks for
299 each participant and run.

300 *Long-term effects of regulation in trained networks.* To examine the follow-up effects in brain self-
301 regulation after neurofeedback training, we investigated whether the differential SAN-DMN
302 activity, as well as activations within the SAN and the DMN and their constituent ROIs, differed
303 between follow-up and the pre-training transfer runs. First, contrast values (regulation vs.
304 baseline) were extracted using MarsBaR (marsbar.sourceforge.net, Brett, Anton, Valabregue, &
305 Poline, 2002). Then, we averaged the contrasts from the four SAN and the four DMN ROIs to

306 compute the SAN and DMN contrasts for each session, respectively, as well as the differential
307 SAN-DMN signal. The contrasts from the two follow-up transfer runs were collapsed together. We
308 then compared the differential SAN-DMN signal, as well as the contrasts for SAN and DMN and
309 for their constituent ROIs separately, across follow-up and pre-training sessions using paired t-
310 tests using RStudio (www.rstudio.com). The normality of each run-specific distribution was
311 verified using Shapiro-Wilk tests. Statistical tests of the comparison of activity during follow-up
312 compared to pre-training sessions were one-tailed because we hypothesized more positive
313 estimates for differential SAN-DMN activity difference and for SAN activity, as well as more
314 negative estimates for the DMN activity. We also estimated the effect sizes of the follow-up minus
315 pre-training differences using Cohen's d.

316 *Long-term effects of regulation across the whole brain.* First, individual contrast maps (regulation
317 vs. baseline) for each session (i.e., pre-training, post-training, and follow-up) were entered into a
318 second-level analysis in which subjects were treated as random effects. Then, voxel-wise one-
319 sample t-tests were performed to map the group activations and deactivations for each session.
320 We also created statistical maps comparing post- vs. pre-training sessions and follow-up vs. pre-
321 training sessions. These statistical maps were obtained by entering individual contrast maps
322 (post- minus pre-training or follow-up minus pre-training) as random effects in one-sample t-tests
323 (which is equivalent to paired t-tests with partitioned errors [Henson, 2015]). All resulting group-
324 level maps were submitted to the threshold-free cluster estimation (TFCE) approach (voxel-level
325 threshold of $p < 0.001$ uncorrected for multiple comparisons, 10000 permutations). This approach
326 provides high sensitivity for detecting both large and small clusters [Smith and Nichols, 2009] and
327 is particularly suitable for small sample sizes. The thresholded group-level maps were
328 anatomically labeled using the bspmview toolbox (www.bobspunt.com/software/bspmview/;
329 Spunt, 2016).

330 *Changes in regFC across transfer runs.* We applied a psychophysiological interaction (PPI)
331 analysis to investigate changes in FC between target SAN/DMN ROIs and the whole brain,
332 modulated by task blocks during transfer runs [McLaren et al., 2012; O'Reilly et al., 2012], using
333 the toolbox CONN (version 19.c) [Whitfield-Gabrieli and Nieto-Castanon, 2012]. Seed-based PPI
334 maps were estimated across pre-training, post-training, and follow-up sessions using a two-level
335 analysis. As seeds we defined the four ROIs that comprised the SAN and the four DMN ROIs that
336 were targeted during neurofeedback training. The SAN and DMN regions were masked with
337 subject-specific gray matter maps prior to their time-course extraction. For the first-level analysis,
338 the interactions between the task blocks and the time courses of the targeted regions were defined

339 as regressors of interest in separate GLMs for each seed and the betas were estimated.
340 Regressors of no-interest were defined as the six realignment parameters, their first-level
341 derivatives, and the five principal components from white matter and CSF time-series (Behzadi,
342 Restom, Liau, & Liu, 2007). Additional denoising included bandpass filtering (0.008-0.09 Hz),
343 despiking, and linear detrending. For the second-level analysis, beta images of all participants
344 were entered into Wilks' Lambda tests (a multivariate approach alternative to the repeated-
345 measures ANOVA, robust against the violation of the compound-symmetry assumption). The
346 group variance was then inferred across pre-training, post-training, and follow-up sessions for
347 each seed. Thresholded statistical t-value maps were generated using the Gaussian random-field
348 theory [Worsley et al., 1996] with a cluster-level threshold of $p < 0.05$, FWE (family-wise error)-
349 corrected for multiple comparisons, and a voxel-level inclusion threshold of $p < 0.001$. Post-hoc
350 analyses were performed to determine pairwise differences within the resulting PPI clusters
351 across sessions using the library 'emmeans' in RStudio with $p < 0.05$, Tukey-corrected for multiple
352 comparisons. Brain areas where regFC changes were found were anatomically labeled using
353 xjView (www.alivelearn.net/xjview).

354

355 2.4.2. Resting-state functional connectivity analyses

356 *Seed-based rsFC.* We used rsFC to investigate changes in FC between target ROIs and the
357 whole brain at rest due to neurofeedback training. This rsFC analysis was performed using the
358 CONN toolbox. Seed-based rsFC maps were estimated using two-level analyses across pre-
359 training, post-training, and follow-up sessions. As seeds we defined the four ROIs that comprised
360 the SAN and the four DMN ROIs that were targeted during neurofeedback training, masked with
361 subject-specific gray matter maps prior to their time-course extraction. For the first-level analysis,
362 the seed-based time-courses were defined as regressors and beta values were estimated voxel-
363 wise for each participant and region using GLMs. The regressors of no-interest included the six
364 realignment parameters and their first-level derivatives, and the five principal components from
365 white matter and CSF time-series. Denoising included bandpass filtering, despiking, and linear
366 detrending. For the second-level analysis, beta images of all participants were entered into a
367 Wilks' Lambda test and the group variance was inferred across sessions. Thresholded statistical
368 t-value maps were generated using Gaussian random-field theory with a cluster-level threshold
369 of $p < 0.05$, FWE-corrected for multiple comparisons, and a voxel-level inclusion threshold of
370 $p < 0.001$. Post-hoc analyses were performed to determine pairwise differences across sessions

371 within the thresholded clusters. Brain areas where rsFC changes were found were anatomically
372 labeled using xjView.

373 *Changes in rsFC.* We investigated modulations in rsFC within the SAN and DMN ROIs across
374 pre-training, post-training, and follow-up sessions using a graph theoretical approach. In graph
375 theory applied to neuroimaging, the degree of FC is defined as the number of edges of an
376 individual node for a given network and a given threshold [Rubinov and Sporns, 2010]. Here, the
377 degree of FC estimates to which extent a target network region is connected to the rest of the
378 brain. We computed the degree of rsFC using the intrinsic connectivity distribution (ICD) approach
379 [Scheinost et al., 2012], which does not require the choice of an arbitrary threshold. Specifically,
380 for this analysis, slice-time corrected and realigned resting-state functional images were first
381 normalized and resampled to a voxel size of 4x4x4 mm³, to reduce computational load in ICD
382 computation, and smoothed using a kernel of 8 mm FWHM. The ICD was computed voxel-wise
383 and for each participant and session using a customized code as reported in [Scheinost et al.,
384 2012]. To assess changes in the degree of SAN and DMN regions, we averaged the ICD voxel
385 values within these regions for each participant and session. One-way repeated-measures
386 ANOVAs were computed for each region, with session being defined as within-subject factor.
387 Post-hoc analyses were performed to determine pairwise differences across sessions. p-values
388 were adjusted for multiple comparisons at the region level using the Tukey method. We estimated
389 effect sizes for the main effect and the pairwise comparisons, i.e., partial η^2 and Cohen's d,
390 respectively.

391

392 2.4.3. Analysis of behavioral effects

393 We investigated changes in sustained attention across sessions, as measured by PVT. We
394 previously reported that sustained attention improved right after neurofeedback training
395 [Pamplona et al., 2020a]. Specifically, participants improved in the first few minutes of the PVT
396 task, but this improvement was no longer found in later trials of the PVT. Here, we tested whether
397 this initial improvement persisted in follow-up sessions. We used linear mixed models to account
398 for the hierarchical structure (multiple measurements of response time for each subject), with the
399 factors Session and Trial; Trial being a continuous variable. Since we were interested in
400 differences in reaction time over trials across sessions, we checked whether the two-way
401 interaction Session x Trial was significant. We then performed post-hoc analyses to pairwise
402 compare the reaction time across sessions at early and late trials separately. The post-hoc

403 analysis of Trial as a continuous variable was performed following the procedures described in
404 [Cohen and Cohen, 1983; West et al., 1996]; i.e., early and late trials were defined as the average
405 trial minus and plus one standard deviation, respectively. Subject was defined as a random factor,
406 Session and Trial were defined as fixed factors. For linear mixed model and post-hoc analyses,
407 we used the libraries 'lme4' and 'emmeans' in RStudio (adjusted p-values for multiple
408 comparisons using the Tukey method), respectively. Effect sizes for post-hoc analysis following
409 linear mixed models were estimated with the library 'emmeans'.

410 In addition, we investigated changes in self-reported attention, namely those DSSQ sub-scores
411 that were thought to be modulated between follow-up and pre-training sessions (i.e., motivation,
412 self-focused attention, concentration, control and confidence, task-related interference). The
413 other DSSQ score are not specific to relevant attention measures and were not tested. Also the
414 CFQ scores were not tested here because they are assumed to be stable over long periods
415 [Broadbent et al., 1982]. We used paired t-tests and dependent two-group Wilcoxon signed-rank
416 tests for parametric and nonparametric distributions, respectively, as assessed by Shapiro-Wilk
417 tests. For each analysis, the p-values were adjusted for multiple comparisons using the false
418 discovery rate (FDR). Furthermore, we semantically compared and described the most reported
419 strategies for both regulation and baseline blocks, as well as how many participants kept the same
420 strategy in the follow-up transfer runs compared to the post-training transfer runs. We also
421 separated the participants in two groups, one comprised of participants that reported using the
422 same strategies in both post-training and follow-up transfer runs and one that reported different
423 strategies, and compared the betas of regulation performance between groups with a two-sample
424 t-test. In addition, we compared the self-rated concentration level between pre-training and follow-
425 up transfer runs with a paired t-test.

426 Finally, we performed an exploratory analysis in which we investigated associations of improved
427 sustained attention with changes in functional connectivity between the DMN ROIs and the
428 occipital gyrus. We first computed the absolute changes (i.e., the simple difference) of the average
429 reaction time during the first half of the PVT for post- minus pre-training sessions and for follow-
430 up minus pre-training sessions. Only the first half of the PVT was considered here since we
431 observed attentional improvement after neurofeedback training only during the first minutes of its
432 application. We then computed the absolute changes of regFC estimates between the occipital
433 gyrus and the PCC, the L Ang, and the R Ang, as well the absolute change of rsFC estimate
434 between the occipital gyrus and the R Ang, for post- minus pre-training sessions and for follow-
435 up minus pre-training sessions. These regFC and rsFC estimates were selected because of the

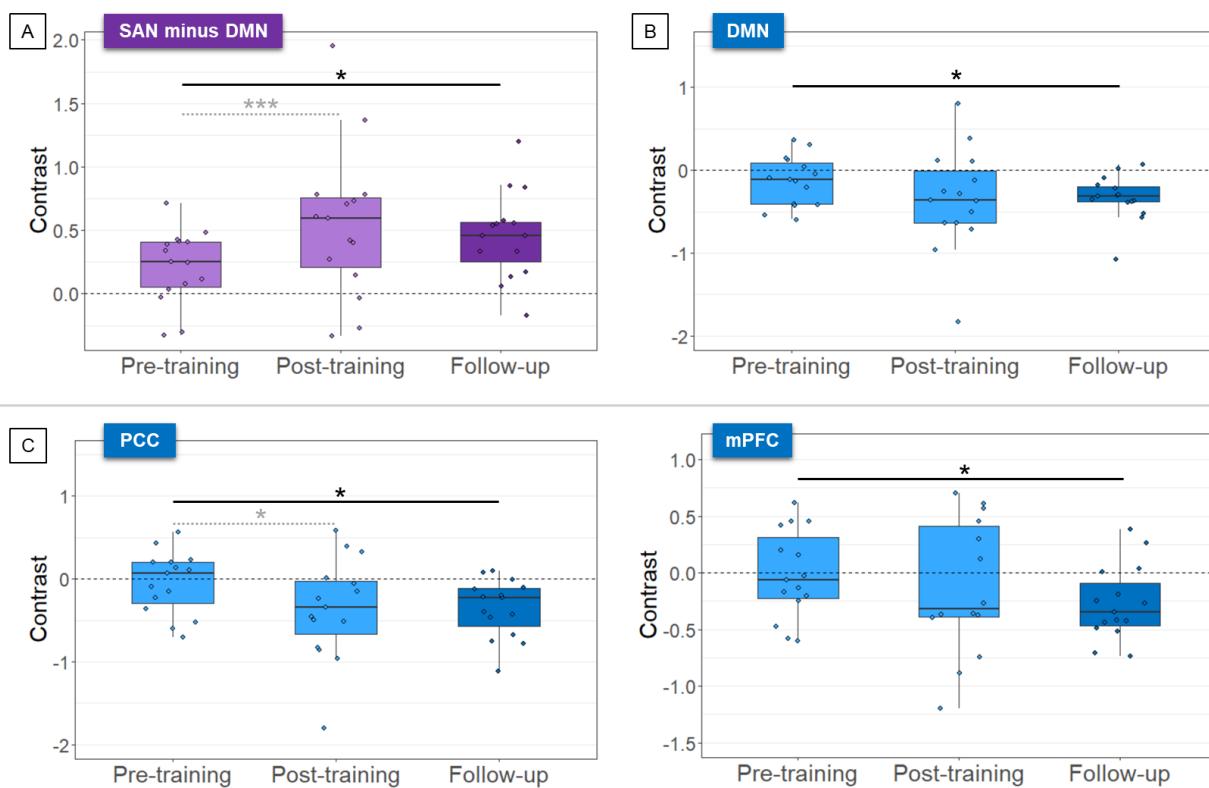
436 significant findings between DMN ROIs and the occipital gyrus (Figs. 4 and 5). Finally, we
437 computed the Spearman correlation between PVT reaction time and functional connectivity
438 estimates separately for absolute changes post- minus pre-training sessions and follow-up minus
439 pre-training sessions. The p-values were adjusted using the FDR for the multiple comparisons
440 post- minus pre-training sessions and follow-up minus pre-training sessions, separately.

441

442

443 **3. RESULTS**

444


445 **3.1. Long-term effects of neurofeedback training during follow-up transfer runs**

446 **3.1.1. Long-term effects in the trained networks during follow-up transfer runs**

447 Previously we found that participants learned to control the differential activity SAN-DMN, mainly
448 through down-regulating the DMN [Pamplona et al., 2020a]. Here, our new results show that
449 learned self-regulation of the differential SAN-DMN activity was maintained during transfer runs
450 without feedback two months after the neurofeedback training (paired t-test between pre-training
451 and follow-up runs: $t(14) = 1.92$, $d = 0.51$, $p = 0.038$ (Fig. 2A). Also during follow-up runs, self-
452 regulation was primarily driven by a persistent down-regulation of the DMN (paired t-test between
453 pre-training and follow-up runs: $t(14) = -1.80$, $d = -0.46$, $p = 0.047$ (Fig. 2B). Compared to pre-
454 training, self-regulation of the SAN activity was neither different during post-training runs nor
455 during follow-up runs (paired t-test between pre-training and follow-up runs: $t(14) = 0.59$, $d = 0.15$,
456 $p = 0.28$) (Fig. S1A).

457

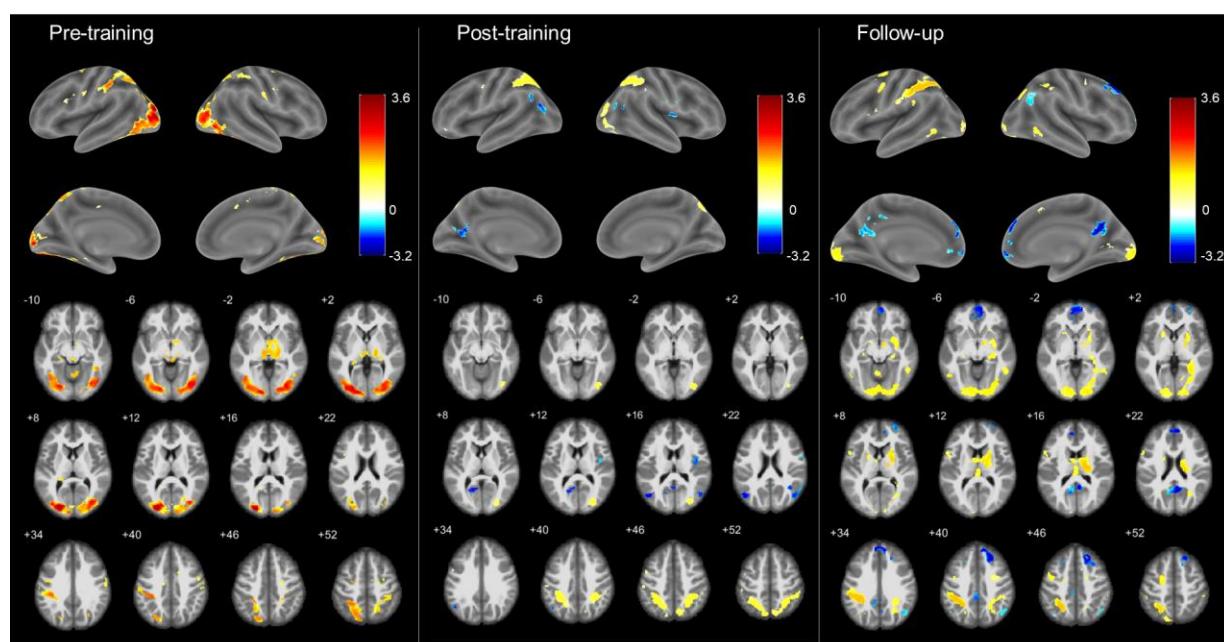
458

459

460 **Figure 2.** Learned self-regulation of the differential SAN-DMN activity was maintained during follow-up transfer runs
461 two months after neurofeedback training (A). Self-regulation was mainly driven by down-regulation of the DMN (B).
462 Specifically, the posterior cingulate cortex (PCC) and the medial prefrontal cortex (mPFC) as part of the DMN showed
463 maintained down-regulation during follow-up runs (C). The graphs show the activation contrast between regulation and
464 baseline blocks for pre-training, post-training, and the two follow-up transfer runs. Purple and blue colors represent the
465 differential SAN-DMN activity and DMN regions, respectively. Light and dark colors represent pre-/post-training and
466 follow-up sessions, respectively. The gray dashed lines represent significant differences previously reported in
467 [Pamplona et al., 2020a]. Asterisks indicate significant session differences (**p < 0.001, *p < 0.05, uncorrected).

468

469 When analyzing self-regulation performance of each of the SAN and DMN ROIs separately, we
470 observed that increased ability in down-regulating the PCC was maintained during follow-up runs
471 ($t(14) = 2.49$, $d = -0.64$, $p = 0.013$) (Fig. 2C). Furthermore, the mPFC was down-regulated during
472 follow-up ($t(14) = -2.94$, $d = -0.50$, $p = 0.037$) (Fig. 2C), but not during the post-training session.
473 No other regulation effects within SAN / DMN ROIs changed significantly across transfer runs
474 (Fig. S1B).


475

476 3.1.2. Long-term effects during follow-up transfer runs across the whole brain

477 Whole-brain analyses showed significant deactivation (i.e., estimated betas at regulation <
478 baseline) in the DMN during the follow-up transfer session (i.e., averaged over the two follow-up
479 runs) (Fig. 3 and Table 1). Brain areas showing deactivation in the PCC and mPFC were larger
480 in the follow-up compared to the post-training session. While the right IPS was activated during
481 all transfer runs and the bilateral angular gyri were deactivated during the post-training run, all
482 DMN ROIs were deactivated during follow-up transfer runs. Activation in the dorsal attention
483 network (DAN) was detected in all transfer sessions. The thalamus was also activated in the
484 follow-up session. A complete list of activated and deactivated brain areas is reported in Table 1.
485 The contrasts post- vs. pre-training and follow-up vs. pre-training showed decreased activity in
486 the left and right middle occipital gyrus, respectively (Fig. S2 and Table 1).

487

488

489

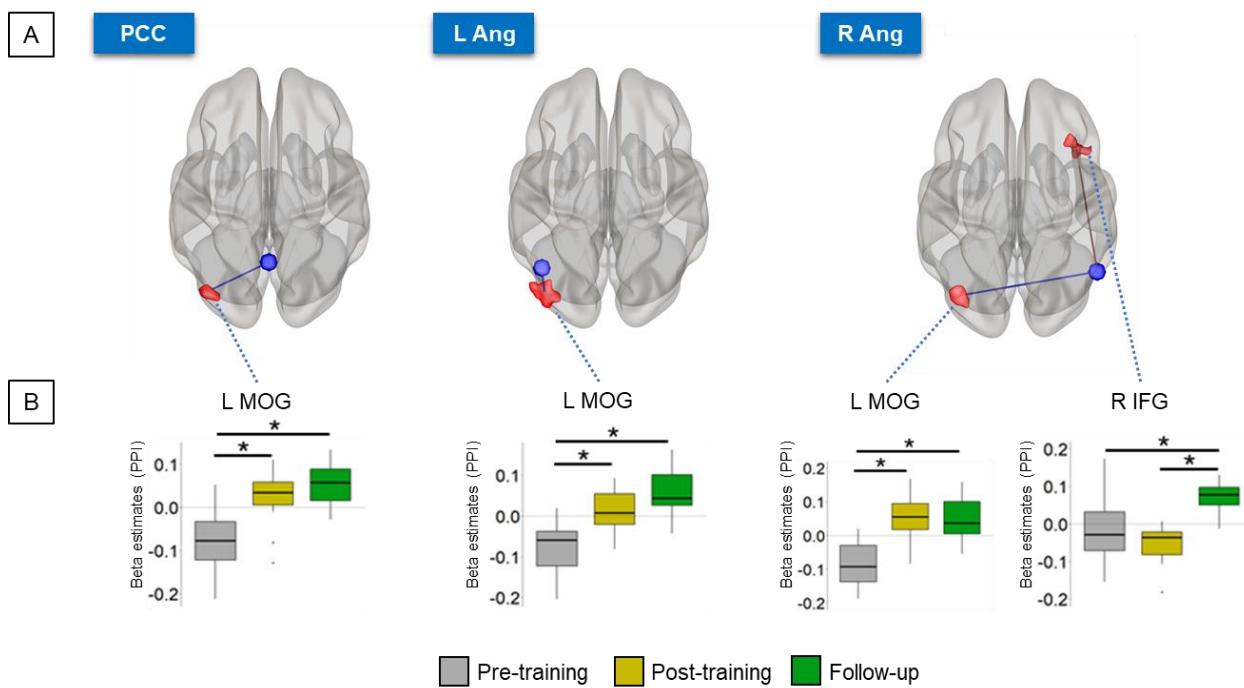
490 **Figure 3.** Whole-brain analyses showed greater down-regulation of the DMN during follow-up transfer sessions
491 compared to the pre- and post-training transfer sessions. The dorsal attention network (DAN) was activated in all
492 sessions. Left, middle, and right columns show pre-training, post-training, and follow-up transfer sessions, respectively.
493 Hot and cold colors represent significant activation and deactivations during regulation compared to baseline blocks,
494 respectively, overlaid on surface-rendered (top) and axial slices (bottom) from a brain template. T-maps were generated
495 by TFCE, thresholded at $p < 0.001$ unc. for illustration.

496

497 **Table 1.** Significant positive and negative activations during the pre-training, post-training, and follow-up transfer
 498 sessions, as shown in Figure 3, including contrasts for the post- minus pre-training and follow-up minus pre-training
 499 sessions, as shown in Figure S2.

Activation direction	Region Label	Laterality	Extent	Peak t-value	Peak MNI coordinates		
					x	y	z
Pre-training session							
Positive	Middle Occipital Gyrus, Inferior Temporal Gyrus	L	4629	3.56	-24	-90	6
	Inferior Occipital Gyrus, Fusiform Gyrus, Inferior Temporal Gyrus	R	3560	3.45	36	-76	-6
	Superior Frontal Gyrus	L	84	3.30	-20	-4	60
	Caudate Nucleus	R	596	3.30	18	-20	0
	Superior Parietal Lobule, Postcentral Gyrus	R	616	3.26	26	-40	48
	White matter	C	46	3.25	2	-36	-6
	Paracentral Lobule, Posterior-Medial Frontal	C	114	3.24	-6	-38	70
	Cerebellum (VI)	L	51	3.23	-18	-60	-20
	Precentral Gyrus	L	71	3.22	-42	-4	32
	Hippocampus	L	50	3.19	-22	-38	6
	White matter	R	24	3.18	26	-28	2
	White matter	R	30	3.16	24	-14	50
	Inferior Frontal Gyrus (p. Triangularis)	L	100	3.14	-44	20	28
	Precentral Gyrus	R	105	3.13	58	-2	36
Post-training session							
Positive	Mid Orbital Gyrus	R	152	3.06	26	42	-18
	Inferior Occipital Gyrus	R	220	3.06	40	-82	-8
	Middle Occipital Gyrus	R	205	3.06	28	-84	8
	Middle Occipital Gyrus, Precuneus	L	1604	3.06	-32	-44	36
	Inferior Parietal Lobule	R	1519	3.06	36	-44	38
	Mid Orbital Gyrus	L	54	2.88	-24	50	-14
	Precentral Gyrus	L	32	2.83	-48	-4	48
	Supramarginal Gyrus	L	55	2.77	-54	-30	48
Negative	Middle Temporal Gyrus	L	271	3.06	-46	-74	20
	Lingual Gyrus	L	144	3.04	-12	-58	8
	Middle Temporal Gyrus	R	233	3.01	48	-72	18
	Rolandic Operculum	R	90	2.98	42	-8	18
	Rolandic Operculum	R	24	2.77	62	0	20
Follow-up							
Positive	Thalamus, Putamen	R	1526	3.22	16	-14	14
	Supramarginal Gyrus, Middle Occipital Gyrus	L	1302	3.22	-30	-44	32
	Fusiform Gyrus, Lingual Gyrus	R	4028	3.18	30	-52	2
	Superior Frontal Gyrus	L	327	3.16	-24	-12	52
	Superior Parietal Lobule	L	137	3.15	-30	-62	64
	Inferior Temporal Gyrus	L	50	3.13	-50	-64	-6
	Precentral Gyrus	L	97	3.11	-44	-4	46
	Supramarginal Gyrus	R	665	3.11	24	-54	40
	White matter	C	168	3.11	0	-22	16
	Putamen	L	106	3.09	-22	0	8
	White matter	L	28	3.09	-28	-66	26
	Inferior Temporal Gyrus	R	147	3.08	52	-52	-6
	Caudate	L	27	3.07	-16	0	18
	Superior Parietal Lobule, Precuneus	R	120	3.05	32	-60	62
	Precuneus	C	119	3.05	-8	-80	52
Negative	Inferior Frontal Gyrus (p. Opercularis)	L	127	3.05	-54	10	12
	Cingulate Gyrus	R	24	3.04	16	-4	48
	White matter	R	93	3.00	28	2	40
	Postcentral Gyrus	L	34	2.99	-50	-38	56
	Superior Frontal Gyrus, Superior Medial Gyrus	R	1032	3.22	20	34	46
	Precuneus	C	563	3.15	6	-58	22
	Mid Orbital Gyrus, Mid Orbital Gyrus	C	443	3.06	6	60	-6
	Posterior Cingulate Cortex	C	152	2.98	2	-42	36
Post- minus pre-training							
Negative	Middle Occipital Gyrus	L	75	3.06	-34	-86	8

Follow-up minus pre-training							
Negative	Middle Occipital Gyrus	R	53	2.87	40	-78	8
	Inferior Occipital Gyrus	R	29	2.60	44	-70	-6


500 Note: Coordinates represent local maxima peak. Only clusters with more than 20 voxels are shown. L/R/C =
 501 left/right/center.

502

503 3.1.3. Regulation-specific FC changes across transfer runs

504 Significant regFC changes between pre-training, post-training, and follow-up transfer runs were
 505 found mainly between the DMN regions PCC, L Ang, R Ang and the left middle occipital gyrus
 506 (Fig. 4). RegFC changes were also found between the SAN regions and the right angular gyrus,
 507 left hippocampus, and postcentral gyrus (Fig. S3). Summary group results of brain areas with
 508 significant regFC changes are shown in Table 2.

509

510

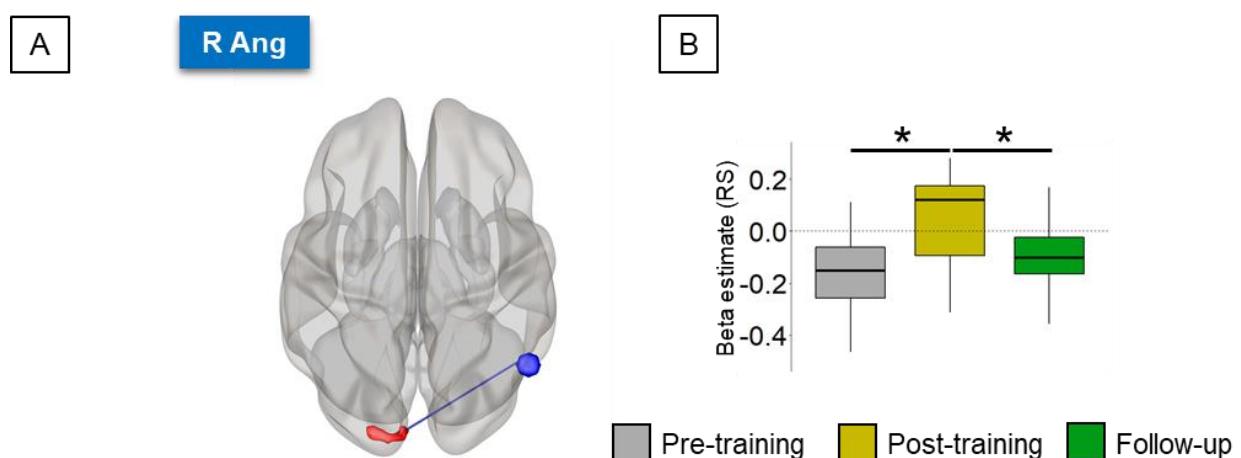
511 **Figure 4.** (A) Regulation-specific FC analysis showed increased FC between DMN regions (PCC, L Ang, R Ang) and
 512 the left middle occipital gyrus during post-training and follow-up transfer runs compared to pre-training runs. Blue and
 513 red regions represent DMN ROIs and significant seed-to-voxel FC regions, respectively, projected onto glass brains.
 514 (B) Boxplots represent the individual betas estimated for the PPI regressor of the DMN ROIs for each session; gray,
 515 yellow, and green represent pre-training, post-training, and follow-up transfer sessions, respectively. Asterisks indicate
 516 significant differences corrected for multiple comparisons using the Tukey method ($p < 0.05$). MOG = middle occipital
 517 gyrus, IFG = inferior frontal gyrus, L/R = left/right.

518

519 **Table 2.** Changes in regulation-specific (regFC) and resting-state (rsFC) functional connectivity between SAN/DMN
 520 and other brain areas across sessions, as illustrated in Figs. S3, 4, and 5.

regFC												
Seed	Connecting brain area		Extent (voxels)	Follow-up minus pre-training			Post-training minus pre-training			Follow-up minus post-training		
	Label	MNI peak coordinates (mm)		t(28)	Cohen's d	p-value	t(28)	Cohen's d	p-value	t(28)	Cohen's d	p-value
SAN1	Right angular gyrus	(34, -66, 44)	120	+5.38	+2.16	<0.0001	-	-	-	+3.97	+1.29	0.0013
SAN2	Left postcentral gyrus	(-44, -30, 54)	142	-4.13	-1.41	0.0008	-	-	-	-5.73	-2.29	<0.0001
SAN3	Left hippocampus	(-18, -8, -20)	133	+4.86	+2.00	0.0001	-	-	-	+4.66	+1.68	0.0002
SAN4	Left postcentral gyrus	(-44, -16, 48)	125	-3.16	-1.31	0.010	+2.50	+1.00	0.05	-5.66	-2.46	0.0001
DMN1	Left middle occipital gyrus	(-42, -82, 12)	121	+4.20	+1.52	0.0007	+5.44	+2.14	<0.0001	-	-	-
DMN3	Left middle occipital gyrus	(-46, -82, 8)	165	+5.83	+2.09	<0.0001	+3.97	+1.53	0.0013	-	-	-
DMN4	Left middle occipital gyrus	(-40, -76, 10)	113	+4.79	+2.09	<0.0001	+4.79	+2.08	<0.0001	-	-	-
	Right inferior frontal gyrus	(36, 24, -16)	136	+4.11	+1.45	0.0009	-	-	-	+5.76	+2.69	<0.0001
rsFC												
DMN4	Left superior occipital gyrus	(-6, -94, 18)	87	-	-	-	+5.35	+1.23	<0.0001	-3.67	-0.87	0.0028

521 Note: Results from post-hoc analyses of the pairwise differences (follow-up minus pre-training, post-training minus
 522 pre-training, and follow-up minus post-training). Blank cells indicate non-significant contrasts.

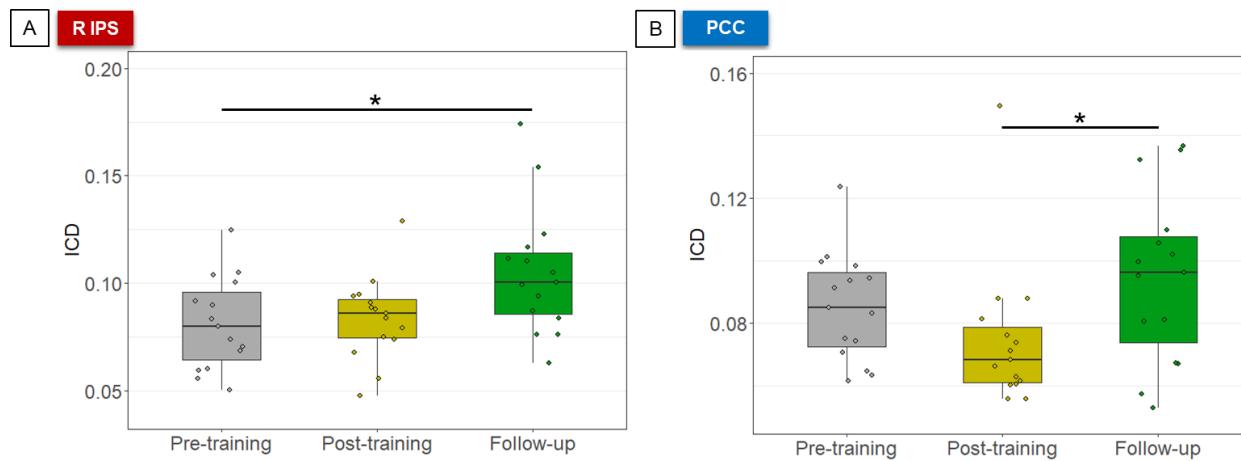

523

524 3.2. Changes in seed-based rsFC

525 Significant seed-based rsFC changes across pre-training, post-training, and follow-up resting-
 526 state sessions were found between the right angular gyrus and the superior occipital gyrus
 527 (Fig. 5). Summary group results of the regions with significant rsFC changes is shown in Table 2.

528

529


530

531 **Figure 5.** (A) Resting-state (RS) FC between the R Ang DMN region and the middle occipital gyrus increased during
532 post-training compared to pre-training runs, but returned to pre-training levels during the follow-up runs. Blue and red
533 brain areas represent DMN regions and significant seed-to-voxel rsFC regions, respectively, projected onto a glass
534 brain. (B) Boxplots represent the individual betas estimated for the regressor constructed with the average time-course
535 within the R Ang; gray, yellow, and green represent pre-training, post-training, and follow-up sessions, respectively.
536 The dashed black lines in the boxplots represent the zero level. Asterisks indicate significant differences corrected for
537 multiple comparisons using the Tukey method ($p < 0.05$). R Ang = right angular gyrus.

538

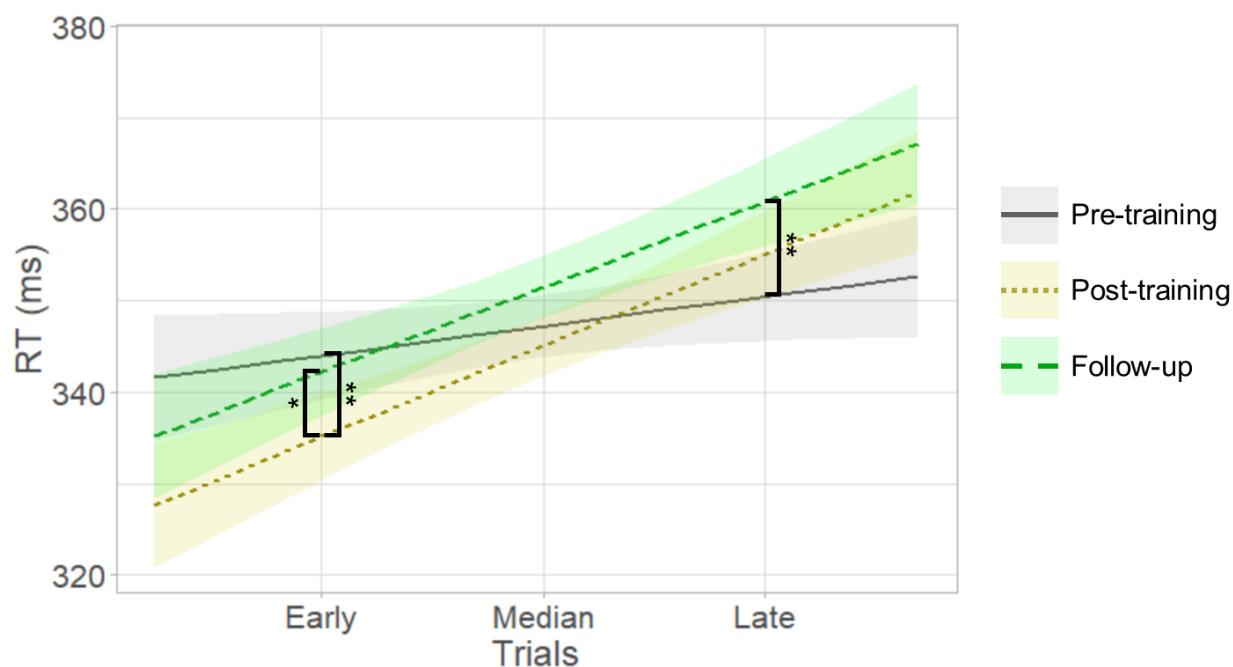
539

540 Graph-theoretical analysis revealed that the degree of rsFC changed over the course of pre-
541 training, post-training, and follow-up resting-state sessions in two of the trained regions: right IPS
542 ($F(2,28) = 4.40$, $\eta^2 = 0.24$, $p = 0.022$) and PCC ($F(2,28) = 3.86$, $\eta^2 = 0.22$, $p = 0.03$) (Fig. 6). Post-
543 hoc analyses showed that the degree of rsFC increased in the right IPS from pre-training to follow-
544 up ($\text{mean}_{\text{pre-training}} = 0.08 \pm 0.02$, $\text{mean}_{\text{follow-up}} = 0.10 \pm 0.03$, $t(28) = 2.41$, $d = 0.93$, $p = 0.03$) and in
545 the PCC from post-training to follow-up ($\text{mean}_{\text{post-training}} = 0.07 \pm 0.02$, $\text{mean}_{\text{follow-up}} = 0.09 \pm 0.02$,
546 $t(28) = 2.78$, $d = 0.79$, $p = 0.03$).

547

548 **Figure 6.** Higher degree of rsFC was observed in the follow-up session in (A) the right IPS (compared to pre-training),
549 and (B) the PCC (compared to post-training). Asterisks indicate significant differences in post-hoc analyses, corrected
550 for multiple comparisons using the Tukey method ($p < 0.05$). R IPS = right intraparietal sulcus, PCC = posterior cingulate
551 cortex.

552


553 3.3. Behavioral effects cease to exist

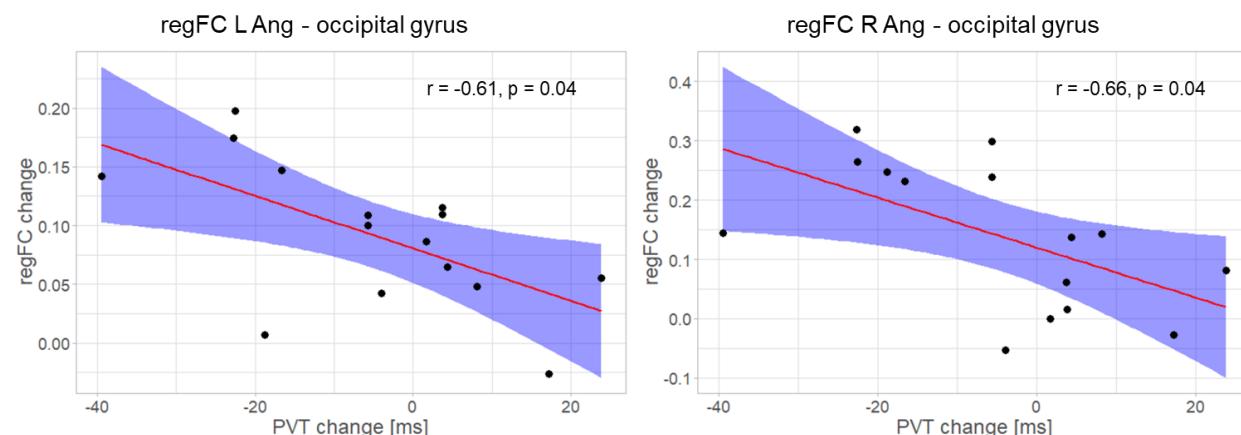
554 We previously found that neurofeedback training led to shorter reaction times in early trials of the
555 PVT (effect size = 0.15), indicating improved sustained attention in the first minutes of the task
556 following neurofeedback training [Pamplona et al., 2020a]. However, the training-induced
557 improved sustained attention in early trials of the PVT was not maintained in follow-up tests two
558 months after the training (Fig. 7). Specifically, there was a significant interaction between the
559 factors Day and Trial ($F(1,5091) = 6.58$, $p = 0.0014$). According to the procedure described for
560 post-hoc analysis following linear mixed models with continuous variables [Cohen and Cohen,
561 1983; West et al., 1996], reaction time for the PVT during early trials in the follow-up was longer
562 than in the post-training session ($t(5091) = 2.40$, effect size = 0.12, $p = 0.04$; follow-up: $M = 343$
563 ms, CI = [318, 368] ms; post-training: $M = 336$ ms, CI = [311, 361] ms) and was not different from
564 the pre-training session ($t(5091) = 0.66$, effect size = 0.03, $p = 0.8$; pre-training: $M = 344$ ms, CI
565 = [320, 369] ms). In addition, the PVT reaction time during late trials was longer in the follow-up
566 compared to the pre-training session ($t(5091) = 3.60$, effect size = 0.18, $p = 0.0010$; follow-up: M
567 = 361 ms, CI = [336, 386] ms; pre-training: $M = 351$ ms, CI = [326, 376] ms), and was not different
568 from the post-training session ($t(5091) = 2.07$, effect size = 0.10, $p = 0.10$; $M = 356$ ms, CI = [331,
569 381] ms).

570 Attentional/motivational states, measured by the DSSQ, during follow-up transfer runs were not
571 different from pre-training sessions (all FDR-corr. $ps > 0.05$). A list of strategies used for regulation
572 and baseline blocks during pre-training, post-training, and follow-up transfer sessions is shown in
573 Table S2. The most reported strategies for regulation blocks were keeping the attentional focus
574 on the geometry of the up-arrow (N = 6), thoughts related with past memories or future projection
575 (2), and performing mental math (2). The most reported strategies for baseline blocks were trying
576 to think about nothing in particular (4), mind-wandering (3), and mental imagery of sports (2).
577 Eight of the participants reported the same strategies (for both blocks) that they reported for
578 transfer runs right after the end of the training. Considering strategies adopted in the follow-up
579 and the post-training run, self-regulation performance was not different between participants that
580 used the same reported strategies and participants that used different ones (Welch two sample t-
581 test: $T(7.4) = 0.07$, $p = 0.9$). There were no differences between self-rated concentration reported
582 after pre-training and follow-up transfer runs (paired t-test: $T(12) = 0.97$, $p = 0.4$).

583

584

585


586 **Figure 7.** Differences between PVT reaction time (RT) in pre-, post-training, and follow-up sessions indicate that
587 improved sustained attention after neurofeedback training was no longer evident two months later. Also, during follow-
588 up, performance during late trials was worse compared to pre-training. Gray, yellow, and green colors represent

589 measurements at pre-training, post-training, and follow-up sessions, respectively. Asterisks indicate significant
590 differences in post-hoc analyses, corrected for multiple comparisons using the Tukey correction (** $p < 0.01$, * $p < 0.05$).

591

592 In an exploratory analysis, we found that the absolute change in the regFC between the L Ang/R
593 Ang and the occipital gyrus was correlated with the absolute change in the reaction time in the
594 first half of the PVT across individuals and considering the difference post- minus pre-training
595 runs (L Ang: $r = -0.61$, $p = 0.04$; R Ang: $r = -0.66$, $p = 0.04$). The significant negative correlation
596 indicates that the degree of regFC increase during the post-training run is associated with the
597 degree of reaction time reduction. The reaction time change in the first half of the PVT was not
598 correlated with the post- minus pre-training change in the regFC between the PCC and the
599 occipital gyrus ($r = -0.23$, $p = 0.5$), nor with the post- minus pre-training change in the rsFC between
600 the R Ang and the occipital gyrus ($r = -0.12$, $p = 0.7$). Correlations considering follow-up minus
601 pre-training changes were not significant (all $p > 0.05$).

602

603

604 **Figure 8.** The change in the regFC between the bilateral angular gyri, brain areas that are part of the DMN, and the
605 occipital gyrus was correlated with the reaction time change for the first half of the PVT across individuals,
606 considering the difference post- minus pre-training sessions.

607

608 4. DISCUSSION

609 In this study, we investigated the maintenance of brain and behavioral changes associated with
610 network-based fMRI neurofeedback training for sustained attention during transfer and resting-
611 state runs conducted before, one day after, and two months after the training. We found evidence
612 for maintenance of learned self-regulation and lasting, plastic brain changes. Specifically, we

613 found that after two months, participants were still able to up-regulate the differential SAN-DMN
614 activity, and that successful self-regulation was driven mainly by down-regulating the DMN. Also,
615 the training-induced increase in functional coupling between DMN and occipital cortex during
616 transfer runs was maintained. Finally, the degree of FC during resting-state runs increased in
617 those brain regions that were successfully trained with neurofeedback. On the other hand, the
618 increase in functional coupling between DMN and occipital cortex during resting-state runs after
619 training returned to baseline level during follow-up runs. Behaviorally, the improved sustained
620 attention right after neurofeedback training also returned to baseline level two months later.

621 **4.1. Lasting neurofeedback effects on the differential SAN-DMN activity**

622 The ability to self-regulate differential SAN-DMN activity, acquired through neurofeedback
623 training, was still present two months after training. This is in line with previous findings showing
624 that brain self-regulation learned through neurofeedback training is maintained for months
625 [Amano et al., 2016; Robineau et al., 2017]. Whereas these previous studies trained for three
626 sessions, neurofeedback training in our study was limited to two sessions of 45 min each, showing
627 that relatively short neurofeedback training allows participants to learn lasting self-regulation skills
628 (i.e., at least two months).

629 Learned self-regulation of the differential feedback signal was primarily driven by down-regulation
630 of the DMN, which was observed right after training and during follow-up two months later(Figs.
631 2 and 3). Interestingly, DMN down-regulation during transfer runs was even more pronounced
632 during follow-up compared to right after training. For example, down-regulation of the mPFC and
633 right angular gyrus was observed only during follow-up after two months but not directly after
634 neurofeedback training (Figs. 2C and 3). Akin to improvements following behavioral interventions,
635 it might be that after training participants continue practicing self-regulation in everyday life, thus
636 further improving [Rance et al., 2018]. Since activation in the DMN is associated with internally
637 oriented attention [Bonnelle et al., 2011; Gusnard et al., 2001; Hinds et al., 2013; Mason et al.,
638 2007], the improvement in DMN down-regulation over time might reflect a reduced propensity for
639 mind-wandering in favor of a greater externally oriented attention. Therefore, learning and
640 maintenance of self-regulation of large-scale networks might have implications in the ability of
641 censoring spontaneous task-irrelevant thoughts. However, these remain speculations as we
642 currently do not have data on practice outside the experiment and reduced mind-wandering.

643 Apart from DMN down-regulation, the only SAN ROI that was up-regulated in the post-training
644 session was the right IPS. However, this was not maintained in the follow-up session (Fig. S1).
645 The IPS is part of the DAN, which was active during all transfer runs (Fig. 3). DAN activity is

646 related to the preparation and execution of top-down or goal-directed attention (Fox et al., 2005)
647 and the IPS, specifically, is associated with reorienting top-down attention [Corbetta and Shulman,
648 2002]. At least 40% of the participants used a strategy that involves reorienting top-down attention
649 ("constantly reorienting the attentional focus on the geometry of the up-arrow" (Table S2), thus
650 likely resulting in activation of the DAN (Fig. 3). The increased ability to activate IPS during the
651 post- compared to the pre-training session might indicate improved engagement of neural
652 resources mediating top-down attention. However, the follow-up session showed that the lasting
653 effects were unrelated to the SAN, but primarily driven by lasting increased DMN down-regulation.
654 The lack of lasting increased SAN up-regulation might have been a consequence of having
655 trained healthy participants with intact top-down attention. It remains to be tested if our
656 neurofeedback training in patients with attention-deficits would lead to lasting SAN (and DMN)
657 changes.

658 When comparing post-training and follow-up transfer runs to pre-training transfer runs, we found
659 reduced activity in the occipital gyri (Figs. 3 and S2). Hence, for participants who focused their
660 attention on visual features of the feedback display during training (Table S2), reduced occipital
661 activity might indicate habituation to re-occurring visual stimuli [Weigelt et al., 2008]. Alternatively,
662 for participants who focused on internally-oriented attention (see, for example, participants #2 and
663 #8 in Table S2), reduced occipital gyrus activity might also indicate reduced processing of visual
664 information as a function of training sustained, internal-focused attention [Benedek et al., 2016].

665 Finally, we observed increased thalamus activity during follow-up transfer runs (Fig. 3). Thalamic
666 activity is related to general arousal maintaining alertness [Sarter et al., 2001]. Thalamic activity
667 during vigilant attention decreases over time, but returns when new conditions are presented,
668 playing a role in compensatory attentional effort [Langner and Eickhoff, 2013]. Since we observed
669 thalamic activity during self-regulation a long time after the end of training, it might be that the
670 thalamus activity was associated with arousal related to compensating for a less automatic state
671 of sustained attention, compared to directly after training.

672

673 4.2. Lasting neurofeedback effects on functional connectivity vs. transient behavioral 674 changes

675 Our neurofeedback training induced both short- and long-term changes in regFC and rsFC (Table
676 2). Previous studies have reported changes in FC due to neurofeedback training in patients
677 [Scheinost et al., 2013; Yuan et al., 2014] and healthy participants [Megumi et al., 2015; Zhang

678 et al., 2013]. As argued by Rance and colleagues, changes in FC may be continuously reinforced
679 after neurofeedback training [Rance et al., 2018] over the course of days [Harmelesh et al., 2013],
680 weeks [Yuan et al., 2014], or months [Megumi et al., 2015]. Our findings further support claims
681 that neurofeedback can induce FC changes that are maintained for several months.

682 The most consistent FC changes that we observed were related to increased FC between the
683 DMN and the occipital cortex (Figs. 4 and 5). More specifically, we observed that the regFC
684 between DMN and occipital cortex increased during post-training and follow-up runs compared to
685 pre-training runs. A previous PPI study showed that, when the frontoparietal control network is
686 engaged, the connectivity between DMN and the occipital cortex increases [Karten et al., 2013].
687 It was suggested that the increase in the DMN-occipital cortex connectivity reveals a competitive
688 interaction suppressing the bottom-up visual stream [Karten et al., 2013] and protecting internal
689 attentive processes from potentially distracting sensory stimulation [Benedek et al., 2016]. In
690 addition, the suppression of externally and internally distracting information, i.e., generated in the
691 visual cortex and the DMN, respectively, is closely linked to each other and predictive of task
692 performance [Anticevic et al., 2012]. In our study, the SAN has components from the frontoparietal
693 control network, specifically the aMCC and the rTPJ. The aMCC was clearly engaged during the
694 post-training and follow-up runs (Fig. S1). Therefore, the engagement of frontoparietal control
695 network during transfer runs might have also increased the connectivity between DMN and
696 occipital cortex. In fact, we observed that greater regFC between DMN and occipital cortex were
697 associated with faster response time (Fig. 8), when comparing post-training with pre-training
698 sessions. Such an association might indicate that participants learn to simultaneously suppress
699 distracting externally and internally information and that this ability was also employed during the
700 sustained attention task. As the task was conducted one day after the neurofeedback training,
701 these effects might be lasting. However, these associations were not observed when comparing
702 follow-up and pre-training sessions. Thus, while the improved regulation-related FC was
703 maintained long term, the improved attentional performance was not. This dissociation indicates
704 that learned brain self-regulation can be applied upon request, but does not necessarily translate
705 in behavioral effects long-term.

706 Interestingly, we also observed FC changes in resting-state runs following the end of training.
707 First, the rsFC between DMN and occipital cortex increased one day after the end of training, but
708 was not different from pre-training runs two months after the end of training (Fig. 5). Akin to the
709 behavioral effects that did not last, also the rsFC changes that indicated plastic changes in the
710 functional coupling between DMN and the occipital cortex were not maintained even though

711 participants were still able to regulate and regFC changes persisted. However, lasting changes in
712 the degree of FC in successfully trained ROIs during resting-state runs were observed (Fig. 6).
713 Because during resting-state runs no active self-regulation was required, such FC changes likely
714 represent plastic brain changes that are unrelated to concurrent mental strategies activations.
715 And it is unlikely that they are artefactual, as the change in the degree of rsFC was specific to
716 regions that were successfully trained with neurofeedback (Fig. 2C and Fig. S1B), probably
717 supporting the acquired ability to regulate brain activity. Previous studies have found lasting
718 resting-state changes following neurofeedback training [Megumi et al., 2015]. Some recent
719 studies have even reported brain structural changes associated with neurofeedback training
720 [Papoutsi et al., 2018; Sampaio-Baptista et al., 2021], showing the potential of neurofeedback to
721 produce lasting effects on brain structure and processing.

722 Sustained attention improved to some extent right after neurofeedback training, but this
723 improvement did not last (Fig. 7). In contrast, other studies reported persistent or even increasing
724 behavioral effects following neurofeedback training [Amano et al., 2016; Cortese et al., 2017;
725 Rance et al., 2018; Shibata et al., 2011]. However, also other neurofeedback studies found that
726 behavioral effects that were present right after training did not persist. For example, an EEG-
727 based neurofeedback study on nicotine addiction reported that short-term changes in symptom
728 reduction were followed by a gradual return toward the baseline in the long term [Bu et al., 2019].
729 Why neurofeedback training sometimes induces lasting or even improving behavioral effects
730 while sometimes such effects do not persist is a crucial question especially for clinical
731 neurofeedback applications. Here, we can only speculate that, for example, the effect size of the
732 initial behavioral improvement might matter. Our study trained healthy participants in a cognitive
733 domain that we are highly trained in – attention. As a consequence, the behavioral improvement
734 was rather small, possibly due to ceiling effects. This might be different in clinical samples (e.g.,
735 Rance et al., 2018). Therefore, studies on follow-up neurofeedback should, whenever possible,
736 contain information about effect sizes to help elucidate this argument. Another factor might be
737 that for behavioral effects to increase over time, frequent use of learned self-regulation in
738 everyday situations might be important. Such practice is more likely the case in clinical
739 populations and can be promoted by, for example, electronic diaries [Zaehringer et al., 2019]. In
740 general, the association between neurofeedback-induced brain changes and behavioral effects
741 remains yet to be clarified. For example, Shibata et al. (2011) found improved perceptual
742 sensitivity after neurofeedback training even when participants did not actively self-regulate their
743 visual cortex activity, whereas another study found that sensitivity improved only when
744 participants actively up-regulated visual cortex activity [Scharnowski et al., 2012]. In the present

745 study we found lasting brain changes but the behavioral effects were only transient. Only the rsFC
746 brain changes showed the same pattern as the behavioral effects: they were present during post-
747 training runs but no longer during follow-up runs. Following this temporal coincidence, one might
748 speculate that rsFC changes might serve as a correlate for behavioral effects, but such a
749 speculation requires further investigation.

750 Also, the relationship between mental strategies and behavioral changes requires further
751 investigation. In our study, the individual choice of mental strategies cannot easily explain that
752 sustained attention improved one day after neurofeedback training but no longer during follow-up
753 2 months later. Most subjects used the same strategies in both sessions and most of these
754 strategies were closely related to externally- and internally-oriented focused attention during
755 regulation and baseline blocks, respectively. It is worth mentioning that, in the follow-up session,
756 participants were not reminded of their strategies adopted during the initial training. Further,
757 performance during follow-up transfer runs was not dependent on whether participants used the
758 same strategy as right after training or a different one. Thus, learned self-regulation did not seem
759 to depend on remembering and applying the exact mental strategy that was adopted during
760 training.

761 4.3. Outreach

762 First, whenever possible, one should include follow-up neuroimaging assessments of functional
763 and/or anatomical plasticity due to the training, rather than only shortly after intervention or only
764 behavioral or regulation-specific measurements. Although still specific to the MR setting, resting-
765 state assessments may better reflect transfer effects of neurofeedback training because they are
766 independent of self-regulation efforts. Follow-up neuroimaging measurements can help indicate
767 neural reshaping over time after completed interventions [Robineau et al., 2017]. If
768 neurofeedback-induced effects continue to increase over time, measuring them only shortly after
769 a training intervention may lead to undervalued or undetected behavioral effects [Rance et al.,
770 2018]. Importantly, follow-up sessions may help consolidate neuroscientific theories using
771 neurofeedback as a causal intervention [Sulzer et al., 2013b] and define biomarkers as targets
772 for neurotherapy [Yamada et al., 2017]. Second, since it is desired in a clinical setting that a given
773 intervention converts practice into enduring effects, follow-up assessments can justify whether
774 the proposed neurofeedback approach is a meaningful alternative for therapy. Therefore,
775 neurofeedback studies that address symptoms should always rely on follow-up evaluations. Third,
776 we note that, while clear long-lasting effects in terms of neural self-regulation may exist, persistent
777 behavioral changes can eventually be dissociated from brain findings [Sitaram et al., 2017].

778 Therefore, follow-up evaluations of behavioral effects should also be conducted whenever
779 possible. An eventual brain-behavior dissociation may raise questions about the utility of a
780 proposed neurofeedback approach for modulating behavior or mitigating symptoms in an out-of-
781 scanner scenario, the strategic choice of sensitive psychometric instruments, and the
782 characterization of the targeted population. Fourth, we argue that, whenever possible,
783 neurofeedback training and resting-state/psychometric acquisitions should be made on different
784 days, since sleep plays an important role in consolidating learning and producing lasting changes
785 in the brain [Walker and Stickgold, 2004]. Fifth, our study provides evidence that short sessions
786 are sufficient (two training sessions of 45 min on separate days) to produce long-term effects
787 [Rance et al., 2018] in terms of regulation of brain activity and connectivity changes.

788

789 4.4. Limitations

790 The main limitation of this study is that the follow-up assessments did not include a control group.
791 While the original study included at least a control group that performed the psychometric tasks
792 without neurofeedback training, the present analysis does not include a behavioral nor a
793 neurofeedback control group. Therefore, we cannot conclude with certainty that the observed
794 brain changes were caused by neurofeedback training. The brain changes could, in principle, be
795 due to, for example, spontaneous fluctuations over time, habituation to the MR environment, or
796 fatigue. On the other hand, the fact that the post-training self-regulation results were reproducible
797 during follow-up runs two months later and the fact that the brain changes were predominantly
798 specific to the trained brain areas suggest that the brain changes were indeed associated with
799 neurofeedback training.

800 A second major limitation is the modest sample size. Resource constraints like limited MR scanner
801 availability and scanning costs make scanning larger samples difficult, especially because
802 participants in neurofeedback experiments are being scanned repeatedly. With $N = 15$ and each
803 of these subjects having been scanned on 5 different days (resulting in a total of 75 MR
804 acquisitions), this study is well within the standard range for fMRI-based neurofeedback studies
805 [Fede et al., 2020]. To accommodate the moderate sample size statistically, non-parametric tests
806 such as TFCE for statistical mapping in low sample sizes were used.

807 Finally, the follow-up session was acquired two months after the end of the training. While two
808 months seem sufficiently long to assess lasting effects that go beyond immediate post-training
809 changes, other studies showed that neurofeedback training effects can last much longer [Amano

810 et al., 2016; Ramot et al., 2017; Robineau et al., 2017; Zilverstand et al., 2015b]. Hence, from one
811 follow-up after two months we cannot infer the temporal course and an upper bound for
812 neurofeedback training effects.

813

814 **5. CONCLUSION**

815 The goal of neurofeedback training is to modulate behavior, emotion, cognition, or clinical
816 symptoms long-term through self-regulating brain activity. To evaluate whether this ambition has
817 been achieved, follow-up assessments are key. We found that two months after the end of
818 neurofeedback training participants were still able to exert self-regulation of the differential SAN-
819 DMN activity, and this during transfer runs without feedback. Lasting brain changes also included
820 FC measures of the trained ROIs to other brain regions in runs during which participants engaged
821 in active self-regulation as well as during resting-state runs without concomitant self-regulation.
822 These results provide information on important facets of follow-up assessments: (a) maintenance
823 of the initially learned self-regulation skill (i.e., SAN-DMN regulation), (b) maintenance of brain
824 changes related to self-regulation that go beyond the trained ROIs (i.e., FC changes during
825 transfer runs), and (c) plastic brain changes in the absence of ongoing self-regulation (i.e., resting-
826 state changes). Another important aspect of follow-up assessments is (d) behavioral effects.
827 While others found behavioral effects to increase after neurofeedback training [Rance et al.,
828 2018], the (relatively weak) behavioral effects we observed right after the training did not persist.
829 Such a discrepancy between lasting brain changes but transient behavioral effects poses
830 important questions regarding the brain-behavior associations above and beyond neurofeedback.
831 Overall, this study highlights the importance of follow-up investigations of neural and behavioral
832 changes associated with neurofeedback training, so that this promising approach can develop its
833 full potential as a scientific and clinical tool.

834

835 **Acknowledgements**

836 We thank Prof. Dustin Scheinost for providing technical advice on the intrinsic connectivity
837 distribution, Dr. Alfonso Nieto-Castanon for support with CONN software, Dr. Philipp Stämpfli for
838 technical support with imaging, and Prof. Christian Gaser for advice on the TFCE technique. This
839 work was supported by the Brazilian National Council for Scientific and Technological
840 Development (CNPq), the Brazilian National Council for the Improvement of Higher Education

841 (CAPES), the Swiss National Science Foundation (BSSG10_155915, 100014_178841,
842 32003B_166566, and PP00P1_170506/1), the Foundation for Research in Science and the
843 Humanities at the University of Zurich (STWF-17-012), the Baugarten Stiftung, and the Swiss
844 Government.

845 **Data and Code Availability Statement**

846 All obtained results and scripts used for the data analysis are available on the public GitHub
847 repository: https://github.com/gustavopamplona/Followup_NF_attention.

848 **Funding Statement**

849 This work was supported by the Brazilian National Council for Scientific and Technological
850 Development (CNPq), the Brazilian National Council for the Improvement of Higher Education
851 (CAPES), the Swiss National Science Foundation (BSSG10_155915, 100014_178841,
852 32003B_166566, and PP00P1_170506/1), the Foundation for Research in Science and the
853 Humanities at the University of Zurich (STWF-17-012), the Baugarten Stiftung, and the Swiss
854 Government.

855 **Conflict of Interest Disclosure**

856 All authors declare no conflict of interest.

857 **Ethics Approval Statement**

858 This study was approved by the local ethics committee of the Canton of Zurich in Switzerland. All
859 participants read and signed the informed consent in accordance with the Declaration of Helsinki
860 (2013) before taking part in the study.

861

862 **REFERENCES**

863 Amano K, Shibata K, Kawato M, Sasaki Y, Watanabe T (2016): Learning to associate orientation with color in early
864 visual areas by associative decoded fMRI neurofeedback. *Curr Biol* 26:1861–1866.

865 Anderson, K, Deane K, Lindley D, Loucks B, Veach E (2012): The effects of time of day and practice on cognitive
866 abilities : The PEBL Tower of London, Trail-making, and Switcher tasks. *Pebl Tech Rep*:1–5.
867 <http://sites.google.com/site/pebltechnicalreports/home/2012/pebl-technical-report-2012-04>.

868 Andrews-Hanna JR, Smallwood J, Spreng RN (2014): The default network and self-generated thought: Component
869 processes, dynamic control, and clinical relevance. *Ann N Y Acad Sci* 1316:29–52.

870 Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH (2012): The role of default network deactivation
871 in cognition and disease. *Trends Cogn Sci* 16:584–592.

872 Behzadi Y, Restom K, Liau J, Liu TT (2007): A component based noise correction method (CompCor) for BOLD and
873 perfusion based fMRI. *Neuroimage* 37:90–101.

874 Benedek M, Jauk E, Beaty RE, Fink A, Koschutnig K, Neubauer AC (2016): Brain mechanisms associated with
875 internally directed attention and self-generated thought. *Sci Rep* 6:22959. <https://doi.org/10.1038/srep22959>.

876 Berteau-Pavy D, Raber J, Piper BJ (2011): Contributions of age, but not sex, to mental rotation performance in a
877 community sample. *PEBL Technical Report Series*.

878 Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De Boissezon X, Greenwood RJ, Sharp DJ (2011):
879 Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. *J Neurosci*
880 31:13442–13451.

881 Brett M, Anton J-L, Valabregue R, Poline J-B (2002): Region of interest analysis using an SPM toolbox. In: . 8th
882 international conference on functional mapping of the human brain. Sendai. Vol. 16, p 497.

883 Broadbent DE, Cooper PF, FitzGerald P, Parkes KR (1982): The Cognitive Failures Questionnaire (CFQ) and its
884 correlates. *Br J Clin Psychol* 21:1–16. <https://doi.org/10.1111/j.2044-8260.1982.tb01421.x>.

885 Bu J, Young KD, Hong W, Ma R, Song H, Wang Y, Zhang W, Hampson M, Hendl T, Zhang X (2019): Effect of
886 deactivation of activity patterns related to smoking cue reactivity on nicotine addiction. *Brain* 142:1827–1841.

887 Cohen J, Cohen P (1983): Applied multiple regression/correlation analysis for the behavioral sciences. Taylor &
888 Francis Group. <https://books.google.ch/books?id=v2pGI8RDAPMC>.

889 Conners KK, Epstein JN, Angold A, Klaric J (2003): Continuous performance test performance in a normative
890 epidemiological sample. *J Abnorm Child Psychol* 31:555–562.

891 Corbetta M, Shulman GL (2002): Control of goal-directed and stimulus-driven attention in the brain. *Nat Rev Neurosci*
892 3:201–215.

893 Cortese A, Amano K, Koizumi A, Lau H, Kawato M (2017): Decoded fMRI neurofeedback can induce bidirectional
894 confidence changes within single participants. *Neuroimage* 149:323–337.
895 <https://www.sciencedirect.com/science/article/pii/S1053811917300915>.

896 Dinges DF, Powell JW (1985): Microcomputer analyses of performance on a portable, simple visual RT task during
897 sustained operations. *Behav Res Methods, Instruments, Comput* 17:652–655.
898 <https://doi.org/10.3758/BF03200977>.

899 Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008): A dual-networks architecture of top-down
900 control. *Trends Cogn Sci* 12:99–105.

901 Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002): Testing the efficiency and independence of attentional
902 networks. *J Cogn Neurosci* 14:340–347.

903 Fede SJ, Dean SF, Manuweera T, Momenan R (2020): A guide to literature informed decisions in the design of real

904 time fMRI neurofeedback studies: A systematic review. *Frontiers in human neuroscience*.

905 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005): The human brain is intrinsically
906 organized into dynamic, anticorrelated functional networks. *Proc Natl Acad Sci* 102:9673–9678.

907 Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001): Medial prefrontal cortex and self-referential mental
908 activity: Relation to a default mode of brain function. *Proc Natl Acad Sci* 98:4259–4264.

909 Harmeleg T, Preminger S, Wertman E, Malach R (2013): The day-after effect: long term, Hebbian-like restructuring
910 of resting-state fMRI patterns induced by a single epoch of cortical activation. *J Neurosci* 33:9488–9497.
911 <https://www.jneurosci.org/content/33/22/9488>.

912 Harris IM, Egan GF, Sonkkila C, Tochon-Danguy HJ, Paxinos G, Watson JDG (2000): Selective right parietal lobe
913 activation during mental rotation: A parametric PET study. *Brain* 123:65–73.

914 Helton WS (2004): Validation of a short stress state questionnaire. *Proc Hum Factors Ergon Soc Annu Meet*
915 48:1238–1242.

916 Helton WS, Hollander TD, Warm JS, Tripp LD, Parsons K, Matthews G, Dember WN, Parasuraman R, Hancock PA
917 (2007): The abbreviated vigilance task and cerebral hemodynamics. *J Clin Exp Neuropsychol* 29:545–552.

918 Henson RN (2015): Analysis of variance (ANOVA). In: . *Brain Mapping: an encyclopedic reference*. Elsevier. pp 477–
919 481.

920 Hinds O, Thompson TW, Ghosh S, Yoo JJ, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JDE (2013): Roles of
921 default-mode network and supplementary motor area in human vigilance performance: evidence from real-time
922 fMRI. *J Neurophysiol* 109:1250–1258.

923 Hinds O, Ghosh S, Thompson TW, Yoo JJ, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JDE (2011): Computing
924 moment-to-moment BOLD activation for real-time neurofeedback. *Neuroimage* 54:361–368.

925 Karten A, Pantazatos SP, Khalil D, Zhang X, Hirsch J (2013): Dynamic coupling between the lateral occipital-cortex,
926 default-mode, and frontoparietal networks during bistable perception. *Brain Connect* 3:286–293.
927 <https://pubmed.ncbi.nlm.nih.gov/23510237>.

928 Koush Y, Ashburner J, Prilepin E, Sladky R, Zeidman P, Bibikov S, Scharnowski F, Nikonorov A, De Ville D Van
929 (2017): OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based
930 on activity, connectivity and multivariate pattern analysis. *Neuroimage* 156:489–503.

931 Koush Y, Zvyagintsev M, Dyck M, Mathiak KA, Mathiak K (2012): Signal quality and Bayesian signal processing in
932 neurofeedback based on real-time fMRI. *Neuroimage* 59:478–489.

933 Langner R, Eickhoff SB (2013): Sustaining attention to simple tasks: A meta-analytic review of the neural
934 mechanisms of vigilant attention. *Psychol Bull* 139:870–900.

935 Lawrence NS, Ross TJ, Hoffmann R, Garavan H, Stein EA (2003): Multiple neuronal networks mediate sustained
936 attention. *J Cogn Neurosci* 15:1028–1038.

937 Linhartová P, Látlalová A, Kóša B, Kašpárek T, Schmahl C, Paret C (2019): fMRI neurofeedback in emotion

938 regulation: A literature review. *Neuroimage* 193:75–92.

939 Loh S, Lamond N, Dorrian J, Roach G, Dawson D (2004): The validity of psychomotor vigilance tasks of less than 10-
940 minute duration. *Behav Res Methods, Instruments, Comput* 36:339–346.

941 Marins T, Rodrigues EC, Bortolini T, Melo B, Moll J, Tovar-Moll F (2019): Structural and functional connectivity
942 changes in response to short-term neurofeedback training with motor imagery. *Neuroimage* 194:283–290.

943 Martz ME, Hart T, Heitzeg MM, Peltier SJ (2020): Neuromodulation of brain activation associated with addiction: A
944 review of real-time fMRI neurofeedback studies. *NeuroImage Clin* 27:102350.
945 <https://www.sciencedirect.com/science/article/pii/S221315822030187X>.

946 Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007): Wandering minds: The default
947 network and stimulus-independent thought. *Science* (80-) 315:393–395.

948 McLaren DG, Ries ML, Xu G, Johnson SC (2012): A generalized form of context-dependent psychophysiological
949 interactions (gPPI): a comparison to standard approaches. *Neuroimage* 61:1277–1286.
950 <https://pubmed.ncbi.nlm.nih.gov/22484411>.

951 Megumi F, Yamashita A, Kawato M, Imamizu H (2015): Functional MRI neurofeedback training on connectivity
952 between two regions induces long-lasting changes in intrinsic functional network. *Front Hum Neurosci* 9.

953 Mehler DMA, Sokunbi MO, Habes I, Barawi K, Subramanian L, Range M, Evans J, Hood K, Lührs M, Keedwell P,
954 Goebel R, Linden DEJ (2018): Targeting the affective brain—a randomized controlled trial of real-time fMRI
955 neurofeedback in patients with depression. *Neuropsychopharmacology* 43:2578–2585.
956 <https://doi.org/10.1038/s41386-018-0126-5>.

957 Mueller ST, Piper BJ (2014): The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. *J
958 Neurosci Methods* 222:250–259.

959 O'Reilly JX, Woolrich MW, Behrens TEJ, Smith SM, Johansen-Berg H (2012): Tools of the trade:
960 Psychophysiological interactions and functional connectivity. *Soc Cogn Affect Neurosci* 7:604–609.

961 Ogg RJ, Zou P, Allen DN, Hutchins SB, Dutkiewicz RM, Mulhern RK (2008): Neural correlates of a clinical continuous
962 performance test. *Magn Reson Imaging* 26:504–512.

963 Pamplona GSP, Heldner J, Langner R, Koush Y, Michels L, Ionta S, Scharnowski F, Salmon CEG (2020a): Network-
964 based fMRI-neurofeedback training of sustained attention. *Neuroimage* 221:117194.
965 <https://www.sciencedirect.com/science/article/pii/S1053811920306807>.

966 Pamplona GSP, Vieira BH, Scharnowski F, Salmon CEG (2020b): Personode: A toolbox for ICA map classification
967 and individualized ROI definition. *Neuroinformatics* 18:339–349.

968 Papoutsi M, Weiskopf N, Langbehn D, Reilmann R, Rees G, Tabrizi SJ (2018): Stimulating neural plasticity with real-
969 time fMRI neurofeedback in Huntington's disease: A proof of concept study. *Hum Brain Mapp* 39:1339–1353.
970 <https://doi.org/10.1002/hbm.23921>.

971 Piper BJ, Mueller ST, Talebzadeh S, Ki MJ (2016): Evaluation of the validity of the Psychology Experiment Building

972 Language tests of vigilance, auditory memory, and decision making. *PeerJ* 2016:e1772.

973 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001): A default mode of brain
974 function. *Proc Natl Acad Sci* 98:676–682.

975 Ramot M, Kimmich S, Gonzalez-Castillo J, Roopchansingh V, Popal H, White E, Gotts SJ, Martin A (2017): Direct
976 modulation of aberrant brain network connectivity through real-time NeuroFeedback. Ed. Nicholas Turk-
977 Browne. *Elife* 6:e28974. <https://doi.org/10.7554/eLife.28974>.

978 Rance M, Walsh C, Sukhodolsky DG, Pittman B, Qiu M, Kichuk SA, Wasyluk S, Koller WN, Bloch M, Gruner P,
979 Scheinost D, Pittenger C, Hampson M (2018): Time course of clinical change following neurofeedback.
980 *Neuroimage* 181:807–813.

981 Robineau F, Meskaldji DE, Koush Y, Rieger SW, Mermoud C, Morgenthaler S, Van De Ville D, Vuilleumier P,
982 Scharnowski F (2017): Maintenance of voluntary self-regulation learned through real-time fMRI neurofeedback.
983 *Front Hum Neurosci* 11:131.

984 Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and interpretations.
985 *Neuroimage* 52:1059–1069.

986 Sampaio-Baptista C, Neyedli HF, Sanders Z-B, Diosi K, Havard D, Huang Y, Andersson JLR, Lühr M, Goebel R,
987 Johansen-Berg H (2021): fMRI neurofeedback in the motor system elicits bidirectional changes in activity and
988 in white matter structure in the adult human brain. *Cell Rep* 37:109890.
989 <https://www.sciencedirect.com/science/article/pii/S2211124721013607>.

990 Sarter M, Givens B, Bruno JP (2001): The cognitive neuroscience of sustained attention: where top-down meets
991 bottom-up. *Brain Res Brain Res Rev* 35:146–160.

992 Scharnowski F, Hutton C, Josephs O, Weiskopf N, Rees G (2012): Improving Visual Perception through
993 Neurofeedback. *J Neurosci* 32:17830–17841.

994 Scheinost D, Benjamin J, Lacadie CM, Vohr B, Schneider KC, Ment LR, Papademetris X, Constable RT (2012): The
995 intrinsic connectivity distribution: A novel contrast measure reflecting voxel level functional connectivity.
996 *Neuroimage* 62:1510–1519. <http://dx.doi.org/10.1016/j.neuroimage.2012.05.073>.

997 Scheinost D, Stoica T, Saksa J, Papademetris X, Constable RT, Pittenger C, Hampson M (2013): Orbitofrontal cortex
998 neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. *Transl
999 Psychiatry* 3:e250.

1000 Shepard RN, Metzler J (1971): Mental rotation of three-dimensional objects. *Science* (80-) 171:701–703.
1001 <http://www.jstor.org/stable/1731476>.

1002 Shibata K, Watanabe T, Sasaki Y, Kawato M (2011): Perceptual Learning Incepted by Decoded fMRI Neurofeedback
1003 Without Stimulus Presentation. *Science* (80-) 334:1413–1415.
1004 <https://science.sciencemag.org/content/334/6061/1413>.

1005 Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E,
1006 Birbaumer N, Sulzer J (2017): Closed-loop brain training: The science of neurofeedback. *Nat Rev Neurosci*

1007 18:86–100.

1008 Smith SM, Nichols TE (2009): Threshold-free cluster enhancement: Addressing problems of smoothing, threshold
1009 dependence and localisation in cluster inference. *Neuroimage* 44:83–98.
1010 <https://www.sciencedirect.com/science/article/pii/S1053811908002978>.

1011 Sokunbi MO (2017): Feedback of real-time fMRI signals: From concepts and principles to therapeutic interventions.
1012 *Magn Reson Imaging* 35:117–124.

1013 Spreng R (2012): The fallacy of a “task-negative” network. *Front Psychol* 3:145.

1014 Spunt B (2016): spunt/bspmview: BSPMVIEW v.20161108. <https://zenodo.org/record/168074>.

1015 Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, DeCharms RC,
1016 Gassert R, Goebel R, Herwig U, LaConte S, Linden D, Luft A, Seifritz E, Sitaram R (2013a): Real-time fMRI
1017 neurofeedback: Progress and challenges. *Neuroimage* 76:386–399.

1018 Sulzer J, Sitaram R, Blefari ML, Kollias S, Birbaumer N, Stephan KE, Luft A, Gassert R (2013b): Neurofeedback-
1019 mediated self-regulation of the dopaminergic midbrain. *Neuroimage* 83:817–825.
1020 <http://dx.doi.org/10.1016/j.neuroimage.2013.05.115>.

1021 Taschereau-Dumouchel V, Cushing C, Lau H (2022): Real-Time Functional MRI in the Treatment of Mental Health
1022 Disorders. *Annu Rev Clin Psychol*.

1023 Thompson GJ, Magnuson ME, Merritt MD, Schwab H, Pan WJ, McKinley A, Tripp LD, Schumacher EH, Keilholz SD
1024 (2013): Short-time windows of correlation between large-scale functional brain networks predict vigilance
1025 intraindividually and interindividually. *Hum Brain Mapp* 34:3280–3298.

1026 Walker MP, Stickgold R (2004): Sleep-dependent learning and memory consolidation. *Neuron* 44:121–133.
1027 <https://www.sciencedirect.com/science/article/pii/S0896627304005409>.

1028 Wang T, Mantini D, Gillebert CR (2018): The potential of real-time fMRI neurofeedback for stroke rehabilitation: A
1029 systematic review. *Cortex* 107:148–165. <https://doi.org/10.1016/j.cortex.2017.09.006>.

1030 Weigelt S, Muckli L, Kohler A (2008): Functional Magnetic Resonance Adaptation in Visual Neuroscience. *Rev
1031 Neurosci* 19:363–380.

1032 Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006): The neural bases of momentary lapses in attention.
1033 *Nat Neurosci* 9:971–978.

1034 West SG, Aiken LS, Krull JL (1996): Experimental personality designs: Analyzing categorical by continuous variable
1035 interactions. *J Pers* 64:1–48. <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6494.1996.tb00813.x>.

1036 Whitfield-Gabrieli S, Nieto-Castanon A (2012): Conn: A functional connectivity toolbox for correlated and
1037 anticorrelated brain networks. *Brain Connect* 2:125–141.

1038 Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996): A unified statistical approach for
1039 determining significant signals in images of cerebral activation. *Hum Brain Mapp* 4:58–73.

1040 Yamada T, Hashimoto R-I, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y, Kato N, Takahashi H, Kawato M (2017):
1041 Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric
1042 disorders: A challenge for developing theranostic biomarkers. *Int J Neuropsychopharmacol* 20:769–781.

1043 Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L,
1044 Polimeni JR, Fischl B, Liu H, Buckner RL (2011): The organization of the human cerebral cortex estimated by
1045 intrinsic functional connectivity. *J Neurophysiol* 106:1125–1165. <https://doi.org/10.1152/jn.00338.2011>.

1046 Yuan H, Young KD, Phillips R, Zotev V, Misaki M, Bodurka J (2014): Resting-state functional connectivity modulation
1047 and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in
1048 depression. *Brain Connect* 4:690–701.

1049 Zaehringer J, Ende G, Santangelo P, Kleindienst N, Ruf M, Bertsch K, Bohus M, Schmahl C, Paret C (2019):
1050 Improved emotion regulation after neurofeedback: A single-arm trial in patients with borderline personality
1051 disorder. *NeuroImage Clin* 24:102032. <https://www.sciencedirect.com/science/article/pii/S2213158219303821>.

1052 Zhang G, Zhang H, Li X, Zhao X, Yao L, Long Z (2013): Functional alteration of the DMN by learned regulation of the
1053 PCC using real-time fMRI. *IEEE Trans Neural Syst Rehabil Eng* 21:595–606.

1054 Zilverstand A, Sorger B, Sarkheil P, Goebel R (2015a): fMRI neurofeedback facilitates anxiety regulation in females
1055 with spider phobia. *Front Behav Neurosci* 9:1–12.

1056 Zilverstand A, Sorger B, Sarkheil P, Goebel R (2015b): fMRI neurofeedback facilitates anxiety regulation in females
1057 with spider phobia. *Front Behav Neurosci* 9:148. <https://www.frontiersin.org/article/10.3389/fnbeh.2015.00148>.

1058