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  Abstract 31 

The response of cortical neurons to sensory stimuli is shaped both by past events (adaptation) 32 

and the expectation of future events (prediction). Here we employed a visual stimulus 33 

paradigm with different levels of predictability to characterise how expectation influences 34 

orientation selectivity in the primary visual cortex (V1) of mice. We recorded neuronal activity 35 

using two-photon calcium imaging (GCaMP6f) while animals viewed sequences of grating 36 

stimuli which either varied randomly in their orientations or rotated predictably with occasional 37 

transitions to an unexpected orientation. For single neurons and the population, there was 38 

significant enhancement in the gain of orientation-selective responses to unexpected gratings. 39 

This gain-enhancement for unexpected stimuli was prominent in both awake and 40 

anaesthetised mice. We implemented a computational model to demonstrate how trial-to-trial 41 

variability in neuronal responses were best characterised when adaptation and expectation 42 

effects were combined.   43 
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Introduction 44 

There is often more information in the sensory environment than the brain has the 45 

capacity to fully process. To cope with this information overload, activity within neuronal 46 

circuits is modulated by processes such as adaptation1,2 attention3,4, and prediction5,6. Neural 47 

adaptation is known to improve the transmission of sensory information in circuits by 48 

accounting for the statistics of past sensory inputs1,7,8. Likewise, selective attention can 49 

enhance neural responses to task-relevant features and suppress irrelevant information3,9. An 50 

influential theory of neural function argues that predictions about specific future stimuli,  based 51 

upon Bayesian inference, might similarly improve the fidelity of stimulus representations5,6. 52 

Based on this predictive coding view, the mammalian cortex is conceptualised as a predictive 53 

machine that uses the statistical regularities of incoming sensory inputs to iteratively generate 54 

an internal model of its external environment. Predictive coding provides a simple theoretical 55 

view of perception which is supported by a substantial body of work in human neuroimaging 56 

and behavioural studies10,11. The classic mismatch negativity effect has become a hallmark of 57 

this literature12,13. When encountering an unexpected stimulus, the brain generates a 58 

significantly larger evoked response compared with the response following an expected 59 

stimulus11. Decoding of activity from electroencephalography (EEG) recordings in humans has 60 

revealed that expectation affects the representation of visual information in the brain14–18. 61 

Recent work supports the idea that prediction influences single neuron responses 62 

across a number of sensory modalities19–24. Theoretical models propose that higher level 63 

processing regions generate inhibitory copies of the expected stimulus which are passed down 64 

the cortical hierarchy to the earlier processing regions6, where they are integrated with 65 
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incoming sensory inputs. If a stimulus is expected, the inhibitory copy should minimise the 66 

neuronal response. By contrast, any mismatch between the expected and presented stimulus 67 

should result in a prominent response.  68 

Here, we tested key elements of predictive coding theory at the neuronal level in mouse 69 

primary visual cortex (V1). We used two-photon calcium imaging in awake mice that were 70 

exposed to sequences of oriented gratings at different levels of predictability. We characterised 71 

how prediction affects orientation selectivity in V1 neurons, and how changes in orientation 72 

tuning modulate the amount of information about the sensory input carried by individual 73 

neurons and neuronal populations. We demonstrate that unexpected stimuli significantly 74 

increase the gain of orientation selectivity without any corresponding changes to the width of 75 

the tuning function. Such increased gain to expectation violations yields increased information 76 

about stimulus features within single-cells and at the level of neuronal populations. This 77 

enhanced representation of unexpected stimuli is present in both awake and anaesthetised 78 

mice. Finally, we use a computational model to quantify the contribution of adaptation and 79 

expectation to neuronal responses at the single trial level.  80 

Results 81 

We combined experimental and modelling approaches to determine how prediction 82 

affects neuronal responses in mouse (C57BL) V1 cortical neurons to sequences of oriented 83 

grating stimuli. We asked whether the selectivity of individual neurons changes with 84 

expectations about the orientation of future stimuli by presenting sequences of gratings with 85 

different levels of predictability to awake mice (N = 3 across 23 sessions in total, 1697 86 

neurons) while imaging Layer 2/3 activity in V1 using two-photon excitation microscopy (Figure 87 
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1ABC, Movie 1). The stimulus sequence was adapted from the Allen Brain Institute’s Brain 88 

Observatory paradigm25 used to quantify orientation selectivity. Each sequence consisted of a 89 

series of full-screen gratings (0.034 c/°, 50% contrast) oriented between 0° and 150° in 30° 90 

steps, presented at 4 Hz with no inter-stimulus interval. In the Random condition (Figure 1B 91 

and C), the orientations of successive gratings were uncorrelated.  92 

To establish predictions about stimulus orientation, in the Rotating condition the grating 93 

rotated either clockwise or anti-clockwise for 5 to 9 presentations (in 30° steps), before jumping 94 

to an unexpected random orientation. In this condition, Expected events were those which 95 

constituted the rotating sequence, whereas Unexpected events were those in which the 96 

stimulus jumped randomly to an unpredicted orientation. Critically, for unexpected events the 97 

jump from the predicted orientation was to a random orientation matched to the correlation 98 

statistics for the stimulus sequence embedded in the Random condition. Figure 1B and C 99 

identify the three types of transitions within the visual stimulation protocol: Random transitions 100 

(in blue), Expected transitions (in red) and Unexpected transitions (in green). Figure 1D and E 101 

show eight example neurons imaged within a field of view, each of which exhibited a varying 102 

degree of orientation selectivity under the Random condition. In line with previous work25, 103 

many imaged neurons showed orientation selectivity for the spatial frequency employed 104 

(462/1697; one-way ANOVA p < 0.05 for orientation selectivity). 105 
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 106 

Figure 1. Experimental procedure for testing the effects of prediction on orientation selectivity 107 
in mouse V1 neurons. (A) Apparatus for using two-photon calcium imaging in combination with 108 
visual stimulation. (B) Schematic of the Random and Rotating sequences of oriented gratings. 109 
(C) In the Random condition, the orientation of each stimulus was drawn from a pseudo-110 
randomised distribution (uniform probability from 0 to 150° in 30° steps). In the Rotating 111 
condition, the gratings rotated clockwise (e.g., 0° -> 30° -> 60°) or anti-clockwise (e.g., 0° -> 112 
150° -> 120°) for 5-9 presentations (red dots) before jumping to a random unexpected 113 
orientation (indicated by the green dots). (D)  Mean motion-corrected two-photon image from a 114 
single session, with individual neurons highlighted in red. (E) Time course of activity in the 115 
corresponding neurons highlighted in D in response to different grating orientations from the 116 
Random condition. The tuning functions in the right panels show the average response from 0 117 
- 1000 ms after stimulus presentation. Points are fitted with a circular Gaussian with a baseline 118 
offset. The key parameters of the fits are given as the gain (amplitude) and width (standard 119 
deviation) of the Gaussian for each neuron. Shading and error bars show ±1 standard error 120 
over trials.  121 
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 122 

Movie 1. Example sequence of gratings in the Rotating condition. Stimuli rotate in one 123 
direction for 5 to 9 presentations before jumping to a random orientation and rotating in the 124 
opposite direction.  125 
 126 
Prediction affects single neuron activity 127 

We next examined how orientation selectivity of individual neurons was affected by 128 

stimulus predictability (Figure 2). The three example neurons shown in Figure 2A all exhibit 129 

orientation selectivity from ~85-100 ms after stimulus onset. The first neuron (top row of Figure 130 

2A) responded maximally to gratings at 0°, with slight suppression for the more distant 131 

orientations (60°, 90°, 120°). During presentation of the Expected stimulus (red trace), 132 

modulation of neuronal activity began before the onset of the stimulus (0 ms). This pre-133 

stimulus modulation is due to the rotating nature of the sequence: the stimulus presented at -134 

500 ms was orthogonal to that presented at 0 ms. This means that in the 0° condition, the anti-135 

preferred stimulus (90°) was presented at -500 ms, whereas in the 90° condition, the preferred 136 

stimulus (0°) was presented at -500 ms. The rotating nature of the stimuli during the Expected 137 

sequence thus produced an idiosyncratic temporal profile in neuronal response. For this 138 

reason, here we focus on the Random and Unexpected transitions where the stimuli presented 139 

immediately before 0 ms were uncorrelated with the current stimulus.  140 

 141 
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 142 
Figure 2. Expectation affects orientation-selective responses of individual V1 neurons. (A) 143 
Time-courses of three example neurons in response to oriented grating stimuli in the expected, 144 
unexpected and random conditions. Each neuron is illustrated in a separate row, with the 145 
rightmost panel showing orientation tuning curves for that neuron. The tuning is measured as 146 
the averaged response from 250 to 1000 ms after stimulus onset (grey shading). The solid 147 
curve is a fitted Gaussian function with a constant offset. (B) Same as in A, but shows activity 148 
for all orientation-selective neurons (N= 462) aligned to their preferred orientation (0°) to allow 149 
averaging. Right panel: Same as in A but showing the Gaussian tuning function for the 150 
population response. (C) Response to the preferred orientation across the three conditions for 151 
all orientation-selective neurons. For presentation the time-courses are smoothed with a 152 
Gaussian with a 33.3 ms kernel. Every row represents the response of one neuron. In each 153 
panel, neurons are sorted based on their evoked response in the Unexpected condition (most 154 
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excited on the top). (D) Comparison of the response in the Unexpected and Random 155 
conditions at the preferred orientation. Each dot represents one neuron. Purple dots show 156 
neurons significantly modulated by expectation (N=133); grey dots are non-modulated neurons 157 
(N = 329). (E) Time-course of orientation-selectivity (circular mean) for the Random (blue) and 158 
Unexpected (green) conditions. Black horizontal lines indicate timepoints with statistically 159 
significant difference between conditions, determined using non-parametric cluster-corrected 160 
procedures (see Methods). (F) Summary statistics for fitted Gaussian parameters across the 161 
population for the different sequence types. The Gain is the amplitude of the Gaussian and the 162 
Width is the standard deviation. * indicates p < 0.05. Across all panels error bars and shading 163 
represent ± 1 standard error of mean.  164 
 165 

The main effect of predictability is evident from the three example neurons illustrated in 166 

Figure 2A. There was a systematic increase in neuronal responses to the preferred orientation, 167 

and a decrease to the anti-preferred orientation, in the Unexpected (green trace) compared 168 

with the Random condition (blue trace). This response profile is consistent with a positive gain 169 

modulation for unexpected gratings. The overall population response (aligned to the preferred 170 

orientation) showed the same pattern of results (Figure 2B), with an increased response to the 171 

preferred stimulus in the Unexpected versus Random condition. The responses of 133/462 172 

orientation-selective neurons (28.8%) were significantly modulated in the Unexpected 173 

condition relative to the Random condition (t-test, p < 0.05). Of these, all but two (98.5%) 174 

showed a larger response in the Unexpected condition (Figure 2D), and this increase in 175 

selectivity emerged shortly after stimulus presentation (Figure 2E). 176 

We next quantified how orientation selectivity was affected by predictability. To do this, 177 

we fitted circular Gaussian tuning functions to separately determine the gain (amplitude) and 178 

width (standard deviation) parameters of orientation selectivity for each neuron (Figure 2F, see 179 

Equation 1). The gain of the tuning curve was significantly greater in the Unexpected condition 180 

than in the Random condition (t(961) = 34.01, p < 0.0001). By contrast, there was no 181 
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difference in the width between these two conditions, (t(961) = 0.45, p = 0.65). These results 182 

are consistent with our recent work examining how prediction affects orientation selectivity 183 

measured non-invasively in humans14,15. A control condition showed these effects were not 184 

due to the systematic rotations that followed Unexpected gratings (Supplementary Figure 1).  185 

Prediction affects population coding of orientation 186 

In our initial set of analyses, we found that expectation affected orientation selectivity in 187 

individual V1 neurons. We next examined how enhanced orientation selectivity for unexpected 188 

stimuli at the single-neuron level in turn shaped the information contained within the population 189 

response. Previous human neuroimaging studies using multivariate pattern analysis have 190 

shown that expectation affects classification accuracy of the stimulus features14–17,26. To 191 

determine how these findings generalise across species, we applied a similar multivariate 192 

pattern analysis to the neuronal population data. We used all imaged neurons (N = 1697; 23 193 

imaging sessions), including both orientation-selective and non-orientation selective neurons to 194 

decode the presented orientation using inverted/forward encoding modelling (see multivariate 195 

analysis section in Methods for details). Figure 3A and B illustrate the key steps in a forward 196 

(or inverted) encoding approach and how this method can be used to determine the amount of 197 

orientation-selective information contained in the population activity on a trial-to-trial basis. In 198 

line with the human work14–17,26, in a first step the method applies an encoding model using a 199 

subset of trials (training trials) to estimate neuronal selectivity to each orientation (Figure 3A). 200 

Then, in a second step, it inverts these weights to reconstruct the stimulus representation from 201 

the population response on a new set of test trials (Figure 3B).  202 
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We first applied this decoding procedure in a time-resolved manner to determine the 203 

temporal dynamics of population-level prediction effects (Figure 3D). This showed the 204 

decoding performance started to rise for the Random and Unexpected conditions shortly after 205 

stimulus presentation. More importantly, greater decoding accuracy emerges for Unexpected 206 

relative to Random stimuli from shortly after stimulus onset (~100 ms). The pre-stimulus 207 

divergence suggests that the increase in selectivity for unexpected stimuli results from 208 

expectations developed before the stimulus appears rather than from a subsequent top-down 209 

influence. Unsurprisingly, in the Expected condition orientation information could be decoded 210 

above chance before the stimulus appeared. This is because orientations occurring before 211 

stimulus presentation (0 ms) were correlated with the orientation of the decoded stimulus 212 

presented at time zero. The decoding profile for Expected stimuli also exhibits an oscillating 213 

profile, which likely reflects a combination of three factors: oscillations in neuronal activity due 214 

to the periodic onsets of stimuli in the presented sequences; the 30˚ changes in orientation 215 

from one stimulus to the next within the rotating sequences; and the dynamics of the calcium 216 

indicator. 217 

 218 
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 219 

Figure 3. Expectation affects stimulus-specific information carried by neuronal population 220 
activity. (A) Schematic of training the multivariate forward orientation encoding. Example 221 
regressors for 7 training trials with different orientations. The basis functions (grey lines) in 222 
response to different orientations which produce the regressor weights. Neuronal response for 223 
4 example neurons for the example trials. Least squared regression is applied between the 224 
regressors and response to determine selectivity. Regression coefficients (beta weights) for 225 
four example neurons for each of the regressors found from a training set of data. (B) Testing 226 
the encoding model. Activity for the four neurons in test trials. Inverting the regressor weights 227 
and multiplying them by the population responses from the four neurons produces the 228 
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predicted orientation response from this pattern of activity. The difference between the 229 
predicted and presented orientation for a given stimulus is the orientation error. (C) Distribution 230 
of orientation error when encoding was performed separately on groups of 50 neurons and 500 231 
neurons at a time (with 24 permutations of different neuronal combinations). The vector 232 
average of these histograms was taken as the decoding accuracy for each condition. The 233 
coloured numbers show the vector sum for the corresponding curves. (D) Time-resolved 234 
classification from forward encoding modelling (N= 500 neurons) with 24 permutations of 235 
different groups of neurons. (E) Decoding accuracy scales with the number of neurons. The 236 
classifier was trained and tested on the average response from 250 to 1000 ms following 237 
stimulus onset, with different numbers of neurons included (24 permutations of different 238 
neurons for each population size). The coloured horizontal lines indicate statistical significance 239 
using sign-flipped cluster permutation tests comparing Random vs. Unexpected (green line) 240 
and Random vs. Expected (red line). In panels B to D, shading/error bars indicate ±1 standard 241 
error of the mean across permutations.  242 
 243 

We next examined the effect of different sized neuronal populations on decoding 244 

accuracy (Figure 3E). To do this, we selected groups of neurons and used a 10-fold cross-245 

validation procedure to train and test the classifier at each time point around stimulus 246 

presentation. This procedure was repeated 24 times with different subsets of neurons 247 

selected. The decoding procedure was performed on the average neuronal responses from 248 

250 to 1000 ms after stimulus onset, and different sized pools of neurons were selected (1 to 249 

1600 neurons, in 100 logarithmically-spaced steps). This analysis again showed that the 250 

presented orientation was decoded significantly better in the Unexpected than the Random 251 

condition. Figure 3E illustrates that this effect emerged with population sizes of relatively few 252 

neurons (<10). The Expected condition also showed greater decoding accuracy relative to the 253 

Random condition, but this effect was smaller than in the Unexpected condition and did not 254 

emerge until a population of ~100 neurons was included in the analysis. 255 

Predictions repel perception away from the expected orientation 256 
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The analyses presented above reveal a higher gain in orientation selectivity among V1 257 

neurons following Unexpected grating stimuli relative to otherwise identical gratings within 258 

Random sequences. According to formal models of predictive coding, the magnitude of a 259 

prediction error should be determined by the degree of surprise, with more surprising stimuli 260 

yielding larger responses5,6. Consistent with these models, we have shown in human 261 

observers that orientation-selective stimulus- evoked responses get larger as the difference 262 

between expected and presented stimuli increases15.  263 

In the current study we were able to quantify the degree of prediction error in the 264 

Rotating condition and use this index to characterise any change in orientation-selective 265 

responses in individual V1 neurons. To do this, we grouped orientation-selective neurons (N = 266 

462) based on their maximum orientation-selective response in the Random condition (Figure 267 

4A and Supplementary Figure 2). We found that orientation selectivity was influenced by the 268 

expected orientation, such that responses were smallest when the expected orientation was 269 

closest to the preferred orientation. For example, as shown in Figure 4A, neurons tuned to 90° 270 

had the lowest orientation tuning when a 90° grating was expected (darkest green line). 271 

Orientation selectivity was reduced to a lesser degree when the surrounding orientations (60° 272 

and 120°) were expected, suggesting that the magnitude of the prediction error affected 273 

neuronal responses in an orientation-selective manner.  274 

To better visualise these effects, we aligned all neurons to their preferred orientation 275 

and replotted the data as a function of the difference between the expected orientation and the 276 

preferred orientation (Figure 4B). To quantify these effects, we fit Gaussian curves to each 277 

neuron’s orientation selectivity for all expected orientations (Figure 4C and 4D). Both the gain 278 
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(Figure 4C, one-way ANOVA, F(5,1835) = 3.31, p = 0.006, η² = 0.006) and the response to the 279 

anti-preferred orientation (Figure 4D, F(5,1835) = 8.38, p < 0.001, η² = 0.022) were 280 

systematically affected by the magnitude of the violated expectation. 281 

282 
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 283 

Figure 4. Increase in neuronal responses to unexpected stimuli is determined by the 284 
magnitude of the prediction error. (A)  Neurons tuned to each displayed orientation are 285 
affected differently when different orientations are expected. Panel A shows an example for 286 
each expected orientation using neurons selective for 90˚ gratings, as defined based on their 287 
responses in the Random condition (from 250 – 1000 ms). Responses of remaining neurons 288 
selective for the other presented orientations are shown in Supplementary Figure 2. For each 289 
unexpected stimulus in the rotating condition, we identified the difference between the 290 
orientation of the expected stimulus and the orientation of the presented unexpected stimulus. 291 
For instance, if 60° was expected but 0° was unexpectedly presented, the expectation violation 292 
would be 60°. (B) All orientation-selective neurons aligned with their preferred orientation, 293 
plotted as separate Gaussians for each difference between the expected orientation and the 294 
presented orientation (expectation violation). (C) Gain of Gaussians fitted to each neuron’s 295 
response, plotted as a function of expectation violation for all orientation-selective neurons. (D) 296 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2021.10.26.466004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

   
 

Baseline of Gaussians fitted to each neuron’s response. (E) Forward encoding modelling 297 
reveals how population representations of orientation are affected by the degree of expectation 298 
violation. The encoding weights are shown separately here for different values of expectation 299 
violation. (F) The y axis shows the difference between the presented and decoded orientation 300 
(∆Perceived orientation). The population response (filled symbols) is biased away from the 301 
expected orientation with the largest bias at ±30°. In all panels, error bars indicate ±1 standard 302 
error of the mean across permutations. * indicates p < 0.05. 303 
 304 

We followed up these results by examining how population-level encoding of the 305 

presented orientation was affected by the magnitude of the prediction error (or expectation 306 

violation). To do this, we divided the forward encoding results (Figure 3) into separate bins 307 

based on the difference between the expected and presented orientation (Figure 4E). We 308 

found that the decoded orientation of the presented stimulus was biased away from the 309 

expected orientation, with the largest effect observed for a difference of 30°. This “repulsion” 310 

effect is reminiscent of the well-known adaptation aftereffect for oriented stimuli27,28, in which 311 

the largest effect typically arises when the adapting and test stimuli are separated by around 312 

30°. In the present experiment, however, the observed repulsion effect was driven by the 313 

expected orientation rather than the orientation of the preceding stimulus.  314 

Computational modelling of the relative contributions of adaptation and prediction on 315 

visual coding efficiency  316 

Formal models of predictive coding assume that high-level cortical areas pass 317 

predictions, which are inverse copies of the expected stimulus, to lower-level areas5,6. 318 

According to this framework, only a small neuronal response is required for representation if a 319 

stimulus matches the expectation29. Such an account is reminiscent of the effect of adaptation 320 

on neuronal representation, whereby an immediately preceding stimulus reduces the neuronal 321 

response to a current stimulus without decreasing the overall amount of stimulus 322 
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information1,8. Indeed, a number of studies have investigated whether adaptation might be due 323 

to prediction errors14,30,31. Both adaptation and prediction rely on the statistics of sensory 324 

inputs. Adaptation exploits the recent history of stimulus presentations to alter current sensory 325 

representations, whereas prediction is thought to use statistical regularities to extract future 326 

patterns.  327 

We created a simple computational model of orientation processing to better 328 

understand how expectation interacts with adaptation to influence the neural coding of 329 

orientation. The model is based on several tuned orientation-selective neurons (or information 330 

channels) maximally sensitive to different orientations. The neurons respond proportionally 331 

based on their sensitivity to the presented orientation (Figure 5). We incorporated two sources 332 

of inhibition: adaptation (in response to a previously-presented stimulus) and expectation (in 333 

response to a predicted future stimulus). Similar to previous work27,28,32,33, adaptation causes 334 

gain modulation in neuronal orientation selectivity based on the response to the preceding 335 

stimulus (Figure 5A,B). Prediction, on the other hand, affects neuronal responses by producing 336 

an inverse copy of the expected orientation. To account for commonly observed long-lasting 337 

effects of gain modulation on orientation sensitivity34,35, the model allows sensitivity to recover 338 

gradually over a number of trials. The amount of gain modulation can be varied to increase or 339 

decrease the influence of either adaptation or prediction.   340 
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 341 

Figure 5. Computational model for explaining variance in neuronal response by incorporating 342 
gain modulation from prediction and adaptation effects. The model consists of a bank of six 343 
neurons maximally selective for different orientations. The model’s sensitivity is affected by 344 
previous orientations in the sequence (Adaptation) as well as future predicted orientations 345 
(Expectation). These factors determine the response to the presented orientation on each trial. 346 
(A) an example sequence of trials in the rotating condition. The orientations of the preceding 347 
(mustard) and expected (pink) trials determine the adaptation and the expectation gains. (B) 348 
The adaptation gain (mustard line) is determined by the orientation of the previous stimuli. The 349 
expectation gain (pink line) is determined by the inverse copy of the response to the expected 350 
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orientation. (C) Collectively, the two gains modulate the sensitivity of the channels on the next 351 
trial. These weights for the different orientations are applied to the model’s sensitivity channels 352 
(black lines), which give the response (orange line) to the presented orientation (vertical 353 
dashed line; in this case 0°). (D) Dots indicate the responses of the channels, and the curves 354 
are fitted Gaussian functions. Fitted Gaussian values to the model’s responses for the different 355 
stimulus conditions showing gain (E) and width (F) of the response. (G) An example test of 356 
which model parameters best match the neuronal response in mouse V1 neurons. Regressors 357 
for two different expectation gains (0.25 and 0.75) lead to slightly different weights for 10 358 
example trials. Warmer colours indicate higher values. These are regressed against the 359 
response (dF/F%) of each neuron. This yields beta values for each orientation channel 360 
(regressors) for the two different expectation gains. (I) Ridge regression results when the 361 
model was used to predict response to the stimulus in the Expected sequence, with different 362 
levels of modulation from adaptation and prediction. The regressor (orientation) with the 363 
highest beta weight was chosen for each neuron (N= 226;  modulated by prediction). Error 364 
bars indicate ±1 standard error of the mean. * indicates p < 0.05.  365 
 366 

We presented sequences of orientations to the model from both the Random and 367 

Rotating conditions to determine whether it can explain the observed changes in orientation 368 

selectivity at the single-trial level. Because there are two sources of gain (adaptation and 369 

expectation), we assume an equilibrium of gain modulation is available to the system to allow it 370 

to maintain population homeostasis36. To this end, in the initial model we implemented 0.5 a.u. 371 

of gain available, which was varied in the two stimulus conditions. In the Random condition, 372 

the adaptation gain was set to 0.5 arbitrary units (a.u.) and the expectation gain was set to 0 373 

a.u because the stimulus sequence was completely unpredictable. In the Rotating condition, 374 

by contrast, the gain for both expectation and adaptation were set to 0.25 a.u. We re-aligned 375 

neurons (Figure 5D) to their preferred orientation and determined their response to stimuli 376 

under different conditions by fitting the same Gaussian to the results (Figure 5E and F). 377 

Consistent with the neuronal data (Figure 2), in the model the gain of orientation selectivity 378 

increased in the Unexpected condition (M = 0.64, SD = 0.05) relative to the Expected (M = 379 

0.59, SD = 0.03) and Random (M = 0.55, SD = 0.02) conditions. The Unexpected trials 380 
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resulted in greater orientation selectivity than the Expected trials because sensitivity to the 381 

stimulus was reduced for a different orientation (the predicted grating orientation) than the one 382 

that was presented (Figure 5E). As with the experimental data, the width of tuning was similar 383 

for the Unexpected (M = 29.8, SD = 0.62) and Random (M = 30.06, SD = 0.59) conditions, 384 

whereas the Expected condition was slightly wider (M = 32.18, SD = 0.79, Figure 5F). The 385 

model produced a qualitative fit consistent with the effects of expectation on V1 orientation 386 

selectivity. The modulation of stimulus selectivity is consistent with previous work which found 387 

that uncommon stimuli result in increased stimulus-specific adaptation in auditory cortex37, and 388 

that the V1 population response adapts to high-level stimulus statistics in a homeostatic 389 

manner36.  390 

We next determined whether the model provided a quantitative fit to the recorded 391 

neuronal activity. To do this, we used the model to generate predictions about neuronal 392 

responses, which we regressed against the actual data for each neuron. Specifically, for each 393 

experimental session for the awake mice, we presented the model with the same orientation 394 

sequence viewed by the mouse, which in turn generated a predicted response for each 395 

simulated neuron on every trial. We used ridge regression to determine beta weights for each 396 

of the six regressors (orientations) for the three different gain settings for each neuron. 397 

We found that a greater proportion of the variance in the trial-to-trial activity of neurons 398 

could be explained when the model incorporated inhibition from expectation (Figure 5I). We 399 

presented the orientation sequences from the Rotating condition to the model with three 400 

different gain responses for expectation. With no gain, only the presented stimulus determined 401 
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the response of the model. As gain was increased from 0.25 and 0.75 a.u., greater inhibition 402 

from expectation increased the model’s fit with the data (Figure 5I).  403 

For the adaptation model, there was no significant increase in its ability to explain 404 

neuronal activity with increasing gain (one-way ANOVA, F(4,900) = 0.52, p = 0.72). By 405 

contrast, the explanatory power of the expectation-only model greatly increased with 406 

increasing levels of gain (one-way ANOVA, F(4,900) = 6.18, p < 0.001). Furthermore, the 407 

model that incorporated a moderate amount of adaptation (0.25) with varying degrees of 408 

expectation gain best predicted the neuronal response. A 3 (Model type; Adaptation, 409 

Expectation, Combined model) × 5 (Gain level; 0,0.2,0.4,0.6,0.8,1.0) repeated-measures 410 

ANOVA confirmed this observation, revealing that both the type of model (F(2,450) = 4.22, p = 411 

0.02), and the gain level (F(4,900) = 11.55, p < 0.001) significantly affected the proportion of 412 

variance explained. These factors significantly interacted (F(8,1800) = 2.03, p = 0.04), showing 413 

that the difference in explanatory power between the models increased with increasing gain. 414 

Follow-up tests showed that the expectation model did not explain significantly more variance 415 

than the adaptation model (p = 0.13, across all gain levels), but the combined model did (p = 416 

0.004).  417 
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Predictive coding under anaesthesia 418 

Finally, we asked whether global anaesthesia altered the influence of prediction on 419 

orientation selectivity observed in awake animals. Previous work in humans on expectation 420 

violations has reported larger neural responses to unexpected than to expected stimuli during 421 

sleep38,39, in different attention states15,40, and when individuals were in a coma41, vegetative 422 

state42–44 or under anaesthesia45. These findings suggest that the influence of prediction errors 423 

on patterns of brain activity varies across different global brain states and levels of 424 

consciousness. To address this issue at the level of individual V1 neurons, we conducted a 425 

further experiment in which the stimulus sequences (Random versus Rotating) were displayed 426 

to mice under urethane anaesthesia (N=3 animals). For each mouse, we ran the full stimulus 427 

protocol with 2-4 different areas in V1 (11 in total, 576 neurons). We found 96/576 (16.6%) 428 

neurons were orientation selective. As shown in Figure 6AB, the gain of orientation selectivity 429 

was again significantly enhanced in the Unexpected relative to the Random condition (Figure 430 

6C, t(95) = 5.64, p < 0.0001). As in awake animals, there was a small but non-significant 431 

decrease in the width of the tuning curve in the Unexpected condition relative to the Random 432 

condition (Figure 6D, t(95) = 0.39, p = 0.70).   433 

  434 
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 435 
Figure 6. Expectations affect the gain of orientation-selective V1 neurons under anaesthesia.  436 
(A) Time courses for all orientation-selective neurons (N = 96) aligned to their preferred 437 
orientation to allow averaging. Shading indicates ±1 standard error of the mean across 438 
neurons. (B) Population orientation tuning for the three expectation conditions, averaged 439 
across an epoch from 250 to 1,000 ms after stimulus presentation. Solid lines are fitted 440 
Gaussian functions with a constant offset. (C) Summary statistics for the gain of the fitted 441 
Gaussians in B. (D) Width of the fitted Gaussians in B. (E) Comparison of the “surprise” effect 442 
(Unexpected events minus Random events) between awake and anaesthetised animals. (F) 443 
Time course of responses to the preferred orientation of each neuron, shown separately for the 444 
three conditions. Neurons have been sorted by their responses in the Unexpected condition. 445 
Across panels A-E shading and error bars indicate ±1 standard error of the mean across 446 
neurons. 447 
 448 
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Finally, for each neuron we calculated the “surprise” effect by subtracting the gain of the 449 

Gaussian tuning curve for the Unexpected condition from that of the Random condition (Figure 450 

6E). A value larger than 0 indicates that the neuron’s orientation selectivity was enhanced in 451 

the Unexpected condition. There was no significant difference in the magnitude of the surprise 452 

effect in awake animals compared with those that had been anaesthetised (t(556)=1.38, p = 453 

0.17), suggesting that the influence of prediction errors on orientation-selective responses in 454 

V1 neurons is equivalent for awake and anaesthetised animals.  455 

Discussion 456 

Here we provided an experimental test of how neuronal representations of visual 457 

information are affected by prediction in the primary visual cortex (V1). Awake mice viewed 458 

streams of oriented grating stimuli in either a Random condition, in which there was no 459 

correlation between the orientations of successive stimuli (Random stimuli), or in a Rotating 460 

condition, in which grating orientations were mostly predictable from previous events within the 461 

sequence (Expected stimuli), but in which an occasional random orientation appeared 462 

unexpectedly (Unexpected stimuli). Expectations reliably modulated the gain of orientation 463 

selectivity in V1 activity, both at the level of single neurons and across the population of 464 

recorded neurons. We found that neurons tuned to an expected orientation showed a large 465 

decrease in their response compared with those not tuned to the expected orientation.  The 466 

expectation violation response was also reliably present under anaesthesia, suggesting that 467 

the relevant visual circuits utilise predictive patterns in the sensory input even when the animal 468 

is unconscious. Finally, we provided a computational implementation of a predictive coding 469 

model in V1 to better understand the interaction between adaptation and prediction. By varying 470 
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the parameters of the model, we found that the best explanation for the observed neuronal 471 

activity relied on both inhibition from adaptation in response to immediately preceding stimulus 472 

events, and expectations about future stimulus features.  473 

Our model of expectation-violation responses is phenomenological, in the sense that it 474 

describes our results in a way that is grounded in neuronal and synaptic mechanisms. This 475 

model contrasts with more formal accounts based upon hierarchal predictive coding. 476 

Generally, neuronal responses to violations of expectations are formulated as precision-477 

weighted prediction errors45–52. In other words, neuronal responses reflect the difference 478 

between sensory afferents and top-down predictions that are modulated or weighted by 479 

precision. Precision, in this context, is a prediction of predictability, as opposed to prediction of 480 

the sensory input. In the context of precision-weighted prediction errors, we can associate 481 

adaptation gain with the effects of predictability (i.e., precision weighting) and excitation gain 482 

with the prediction error per se; namely, the disinhibition of stimulus-bound responses by 483 

absent top-down predictions. This fits with predictive coding accounts of the mismatch 484 

negativity, where the equivalent effects are sometimes discussed in terms of stimulus-specific 485 

adaptation and a sensory memory component — which in turn correspond to predictions of 486 

precision and stimuli, respectively14,15.  487 

While the notion that predictions about the future affect perception was first proposed by 488 

Helmholtz54, direct evidence in support of this idea at the level of individual sensory neurons 489 

has been lacking. A number of more recent theoretical models5,6 have proposed a ‘predictive 490 

coding’ framework with the common idea that the brain inhibits sensory representations of 491 

expected stimuli to increase coding efficiency. Although there is good evidence that predictions 492 
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affect the magnitude of neural responses measured with non-invasive, whole-brain 493 

neuroimaging methods10,55, few studies have addressed whether individual neuronal 494 

responses are affected, even though this is a critical component of predictive coding models. 495 

The current results obtained from mouse V1 neurons fit well with our previous findings in 496 

humans, which suggest that orientation selectivity changes with expectation14–16,26. 497 

Specifically, and in line with the current work, forward encoding modelling of EEG activity 498 

revealed an increase in the gain, but not the width, of orientation tuning to unexpected stimuli 499 

in human observers14.  500 

Our results add to the understanding of how expectations affect the representation of 501 

sensory information. Previous work19,22,23 has suggested that locomotion-induced increases in 502 

activity in primary visual cortex in mice relates to predictive coding56,57 (but see57 for a different 503 

interpretation of these findings). Under the predictive coding framework, the increased activity 504 

caused by locomotion creates an expectation that the stimulus should move and change size. 505 

A prediction error is generated if the stimulus remains static, as is typical when measuring 506 

orientation selectivity, or moves in an inconsistent direction. There is significantly less 507 

locomotion-induced increase in response if the stimulus is made to move as the animal 508 

moves23. Our results are consistent with these findings, but also identify an enhanced gain 509 

mechanism reflected by a larger response to the neuron’s preferred orientation.  510 

In the human literature, expectation appears to affect sensory responses through 511 

different neural oscillatory frequency bands58,59. Recordings in macaques suggest visual 512 

information is fed forward through high-frequency gamma (60-80 Hz) oscillations, while 513 

feedback occurs through slow theta-band (14-18 Hz) activity60. As the present recordings were 514 
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conducted using two-photon imaging with a relatively slow sampling rate, we are at present 515 

unable to determine the possible role of different oscillation frequencies in the observed 516 

expectation effects. Future work in which activity is recorded from multiple sites concurrently 517 

using electrophysiology could help characterise the distinct contributions of top-down and 518 

bottom-up neural signals to this expectation-induced gain modulation.  519 

Methods 520 

Mouse information 521 

A total of 6 wild type mice (C57BL) were used for this study. All methods were 522 

performed in accordance with the protocol approved by the Animal Experimentation and Ethics 523 

Committee of the Australian National University (AEEC 2015/74; 2019/11). Mice were housed 524 

in a ventilated and air filtered climate-controlled environment with a 12-hour light–dark (8 am 525 

lights on, 8 pm lights off) cycle. Mice had access to food and water ad libitum. No statistical 526 

methods were used to calculate the sample size, but these were consistent with other studies 527 

in the field.  528 

Expression of Ca2+ indicator GCaMP6f 529 

Mice were briefly anaesthetised with isoflurane (~2% by volume in O2) in a chamber and 530 

moved to a thermal blanket (37°C, Physitemp Instruments) before the head was secured in a 531 

stereotaxic frame (Stoelting, IL). Thereafter, the anaesthetic gas (isoflurane, ~2% by volume in 532 

O2) was passively applied through the nose mask at a flow rate of 0.6-0.8 L/min.  The level of 533 

anaesthesia was monitored by the respiratory rate, and hind paw and corneal reflexes. The 534 

eyes were covered with a thin layer of Viscotears liquid gel (Alcon, UK). The scalp was opened 535 

with ~5 mm rostrocaudal incision at the midline using scissors and the periosteum was gently 536 
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removed. A circular craniotomy was made over the right visual cortex (3 mm diameter; centred 537 

2 mm lateral and 4.5 mm posterior to Bregma) with the dura left intact. A glass pipette (15-25 538 

µm diameter at tip) containing GCaMP6f (AAV1.Syn.GCaMP6f.WPRE.SV40, Penn Vector 539 

Core, The University of Pennsylvania, USA) was inserted into the cortex at a depth of 230-250 540 

µm below the dura using a micromanipulator (MPC-200, Sutter Instruments, Novato, CA, 541 

USA). GCaMP6f was injected at 4-6 sites (with four 32-nL injections per site separated by 2-5 542 

mins; rate 92 nLs-1). V1 was localised anatomically using coordinates established using 543 

functional methods60. Injections were centred 2mm lateral and 4.5mm posterior to Bregma. 544 

Injections were controlled using a Nanoject II injector (Drumont scientific, PA). After virus 545 

injection, the craniotomy was covered with a 3mm diameter cover-glass (0.1 mm thickness, 546 

Warner Instruments, CT). This was glued to the bone surrounding the craniotomy. Custom 547 

made head bars were fixed to the skull over Bregma using a thin layer of cyanoacrylate 548 

adhesive and dental acrylic. A small well was built surrounding the craniotomy window using 549 

dental acrylic to accommodate distilled water required for the immersion lens of the 2-photon 550 

microscope. 551 

Ca2+ imaging was performed using a two-photon microscope (Thorlabs Inc., Newton, 552 

NJ, USA) controlled by ThorImage OCT software. The visual cortex was illuminated with a 553 

Ti:Sapphire fs-pulsed laser (Chameleon, Coherent Inc., Santa Clara, CA, USA) tuned at 920 554 

nm. The laser was focused onto L2/3 cortex through a 16x water-immersion objective lens 555 

(0.8NA, Nikon), and Ca2+ transients were obtained from neuronal populations at a resolution of 556 

512 × 512 pixels (sampling rate, ~30 Hz). To abolish the effect of visual stimuli on the calcium 557 
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signals, we filled the gap between the objective and the well with removable adhesive (Blu-558 

Tack). 559 

The obtained images were processed using the Suite2p toolbox 560 

(https://github.com/cortex-lab/Suite2P) for motion correction and segmentation. The 561 

surrounding neuropil signal was subtracted for each neuron’s calcium traces. These corrected 562 

traces were high-pass filtered before the median response for each neuron was subtracted to 563 

determine dF/F.  564 

Visual stimulus 565 

The stimuli were displayed on a 22-inch LED monitor (resolution 1920 x 1080 pixels, 566 

refresh rate 60 Hz) using the PsychToolbox presentation software for MATLAB62,63. The 567 

mouse was placed next to the monitor, which subtended 76.8° x 43.2° (one pixel = 2.4’ x 2.4’) 568 

orientated 30° from their midline. The visual stimulus sequence was based on the Allen Brain 569 

Institute Brain Observatory paradigm used to measure orientation selectivity in mice. The 570 

stimuli were full-screen gratings (0.034 c/°, 50% contrast) displayed for 250 ms with no inter-571 

stimulus blank interval giving a 4 Hz presentation rate. The spatial frequency was chosen to be 572 

close to optimal sensitivity of neurons in V125. The orientations of the gratings were equally 573 

spaced between 0 to 150° in 30° steps so we could characterise each neuron’s orientation 574 

selective profile. 575 

  The predictability of the orientations of the gratings was varied in the two stimulus 576 

conditions. In the Random condition, the orientations of the gratings were drawn from a 577 

pseudo-random distribution with no relationship between the current orientation and the 578 

previous orientation. In the Rotating condition, the orientations of the gratings rotated (in 30° 579 
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steps) either clockwise or anti-clockwise for 5 to 9 presentations, before jumping to an 580 

unexpected random orientation, where it began rotating in the opposite direction. The Random 581 

and Rotating conditions were presented in blocks of trials which were pseudorandomised in 582 

time within each imaging session.  583 

In 3 mice, we ran a total of 23 imaging sessions and collected data from 1697 neurons. 584 

Neurons from all sessions and mice were pooled for analysis. One session (1.5 – 2 hours) was 585 

recorded in a day from each mouse. These sessions occurred between 1 and 4 times per 586 

week.  In each session, two runs of Rotating and Random sequences were presented, and 587 

each of these contained 1800 trials, alternating between Rotating and Random. The order of 588 

sequences was counter-balanced across mice. For some sessions for 2 of the mice, we also 589 

presented a Rotating control condition to determine whether the systematic rotational 590 

movement after the unexpected jump affected orientation selectivity. In this condition, after the 591 

unexpected orientation the stimulus made another jump to a random orientation before starting 592 

to rotate in the opposite direction as the previous rotation. The number of events was 593 

increased from 7200 (3600 x 2) in each condition to 8400 to have the same number of 594 

unexpected trials as the original Rotating condition, while all other details remained identical 595 

with the Rotating condition. We ran 13 sessions in these 2 mice for all three conditions to 596 

compare the effect of the control. For all conditions, there was a balanced number of 597 

presentations of all the orientations.  598 

Data analysis 599 

To determine the effect of predictability, we averaged the calcium response (dF/F%) 600 

from 250 to 1000 ms after stimulus presentation to derive tuning curves for each condition. To 601 
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quantify how expectation affected the gain and selectivity of orientation-selective neurons we 602 

fitted circular Gaussian distributions with a constant offset (Equation 1) using non-linear least 603 

square regression.  604 

𝐺(𝑥) = 	𝐴𝑒𝑥𝑝 − ("#	%	#	&	∗()*)!

,-!
+ 𝐶                                           (1) 605 

Where A is the gain (amplitude) of the Gaussian, 𝜙 is the preferred orientation of the neuron 606 

(in degrees), 𝝈 is the width (in degrees) and C a constant offset to allow for baseline shifts in 607 

the activity of the neuron. We searched for best fitting solutions with parameter j, with a search 608 

space from -4 to +4 in integer steps.  609 

To provide another test of how prediction affects orientation selectivity of individual 610 

neurons, we found the circular mean64 of the averaged orientation tuning curve across all 611 

presentations within the condition (Figure 2E). This was done for each time point (1/sample 612 

rate) between -500 and 2000 ms around stimulus presentation. 613 

Multivariate encoding analysis 614 

We used a multivariate encoding approach (forward encoding modelling) to determine 615 

how the population activity carried information about the orientation of the presented grating on 616 

a trial-to-trial basis. This is adapted from human neuroimaging approaches, which examine 617 

orientation/feature selectivity from multivariate non-invasively recorded neural activity14,15,65–68, 618 

but is similar to encoding approaches used to describe neuronal response to sensory 619 

stimuli69,70. Compared to the encoding-only, forward encoding takes the individual neuron 620 

activity to reconstruct the stimulus representation from the population activity. The technique 621 

goes beyond more commonly used multivariate pattern analysis procedures by producing 622 
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tuning curves showing the full representation (in both gain, width, and bias) relative to the 623 

accuracy-only score.  624 

The data were pooled across all experimental sessions with both orientation and non-625 

orientation selective neurons used. In the first instance, we examined how the number of 626 

neurons affected decoding on a fixed time interval (250 to 1000 ms) and in the second 627 

instance, we found the time-resolved selectivity by applying the decoding procedure at each 628 

time point around the presentation of the stimulus (-500 to 2000 ms). A 20-fold cross-validation 629 

procedure was used in both instances for test and training data. The procedure evenly splits 630 

each test block to have the most even distribution of stimuli in each fold.   631 

We used the presented orientations to construct a regression matrix with 8 regression 632 

coefficients. This regression matrix was convolved with a tuned set of nine basis functions (half 633 

cosine functions raised to the eighth power) centred from 0° to 160° in 20° steps. This helps 634 

pool similar orientations and reduces overfitting70. This tuned regression matrix was used to 635 

measure orientation information across trials. This was done by solving the linear Equation 2: 636 

B1= WC1                                                                                       (2) 637 

Where B1 (Neurons x N training trials) is the data for the training set, C1 (8 channels x N 638 

training trials) is the tuned channel response across the training trials, and W is the weight 639 

matrix for the sensors to be estimated (Neurons x 8 channels). We separately estimated the 640 

weights associated with each channel individually. W was estimated using least square 641 

regression to solve Equation 3: 642 

W = (C1 C1T)-1 C1T B1                                                                         (3) 643 
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We removed the correlations between neurons, as these add noise to the linear equation. To 644 

do this, we first estimated the noise correlation between neurons (which stops finding the true 645 

solution to the equation) and removed this component through regularisation by dividing the 646 

weights by the shrinkage matrix68,71. The channel response in the test set C2 (8 channels x N 647 

test trials) was estimated using the weights in (4) and applied to activity in B2 (Neurons x N test 648 

trials), as per Equation 4: 649 

C2 = (W WT) WT B2                                                (4) 650 

To avoid overfitting, we used 10-fold cross validation, where X-1 epochs were used to 651 

train the model, and this was then tested on the remaining (X) epoch. This process was 652 

repeated until all epochs had served as both test and training trials. We also repeated this 653 

procedure for each point in the epoch to determine time-resolved feature-selectivity. To re-654 

align the trials with the exact presented orientation, we reconstructed the item representation 655 

by multiplying the channel weights (8 channels x time x trial) against the basis set (180 656 

orientations × 8 channels). This resulted in an Orientations (-89° to 90°) × Trial × Time 657 

reconstruction. 658 

To quantify the orientation selective response, we found the vector sum of the 659 

orientation for each trial (Figure 3) to determine the decoded orientation. The difference 660 

between the decoded and presented orientation was the orientation error.  For each condition 661 

(and time point where applicable) we found the distribution of orientation errors and calculated 662 

the histogram of responses.  663 

In the temporal classification analysis, groups of 500 neurons were used in each 664 

instance for both training and test data with the cross-validation procedure applied to each time 665 
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point around stimulus presentation. We permuted new groups of 500 neurons 24 times. Next, 666 

we averaged the evoked activity from 250 to 1000 ms after stimulus presentation. To 667 

determine how decoding was affected by population size, the same classification was then 668 

used as in the previous analysis but with different numbers of neurons (2 to 1600 neurons in 669 

100 logarithmically-spaced steps). Again, we selected different groups of neurons 24 times so 670 

as not to skew the results by the neurons that were selected.  671 

Statistics 672 

Non-parametric signed permutation tests71,72 were used to determine time resolved 673 

differences between conditions. The sign of the data was randomly flipped (N  = 5,000), with 674 

equal probability, to create a null distribution. Cluster-based permutation testing was used to 675 

correct for multiple comparisons over the timeseries, with a cluster-form threshold of p < 0.05 676 

and significance threshold of p < 0.05. 677 

Computational model 678 

The analytic model is based on previous work accounting for feature (i.e. orientation, 679 

spatial, color) adaptation based on neuronal response and human psychophysical 680 

data27,28,33,73,74. The model consists of a bank of 6 orientation-selective information channels 681 

with preferred orientations evenly spaced between 0 and 150° (in 30° steps). Each channel’s 682 

sensitivity profile is given by a Gaussian function (Equation 5). 683 

𝐺(𝑥) 	= 	𝐴𝑒𝑥𝑝 − ("#	%)!

,-!
                                                    (5) 684 

Where A is the gain (amplitude) (set to 1 a.u.), 	𝜙	is the channel’s preferred orientation, 𝜎	is the 685 

width of the channel (set to be 40° consistent with the neuronal data). The number of channels, 686 

along with the width means the model is equally sensitive to all orientations. The population 687 
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response to any presented orientated stimulus is given by the sensitivity profiles of the 688 

channels (See Supplementary Figure 3). In an unadapted state (Supplementary Figure 3A), 689 

the model will show a maximal response around the presented orientation with the vector 690 

average of the population response will be the presented orientation. 691 

To account for adaptation, the gain of the information channels is reduced in inverse 692 

proportion to their response by the previous stimulus (Supplementary Figure 3B). For instance, 693 

if a 90° stimulus is the adapting stimulus, the sensitivity of the channels around 90° will be 694 

maximally reduced while orthogonal channels will be unaffected. The magnitude of this 695 

reduction (adaptation ratio) can be varied to allow for greater or less adaptation and was 696 

included as a free parameter in the analysis. The adaptation aspect of the model is consistent 697 

with previous models used to psychophysical data27,28,33,73,74. The new model accurately 698 

predicts serial dependency effects (where the current orientation is biased away from the 699 

previous orientation) seen in the neuronal data34,35,75.  700 

Prediction gain modulation works in a similar manner as adaptation except that the 701 

stimulus sensitivity, rather than channel sensitivity, is modulated. Furthermore, the gain 702 

modulation occurs before the stimulus and is for the orientation that is expected rather than 703 

presented. The modulation of stimulus sensitivity is consistent with a previous study which 704 

found that uncommon stimuli result in stimulus-specific adaptation in the auditory cortex37. 705 

Stimulus-specific adaptation has been used in modelling neuronal adaptation36. To model 706 

stimulus-selective gain modulation, the tuned Gaussian function was found using Equation 1 707 

and inverted before being applied to the channels. The amount of gain modulation by 708 

expectation was a free parameter (expectation gain).  709 
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To account for long-lasting effects of gain modulation, the channel’s sensitivity was 710 

normalised by the maximum sensitivity of response on each trial. This causes the model to 711 

have adaptation and expectation effects based on the presented orientation of at least four 712 

stimuli back. How many n-back stimulus affect the current trials sensitivity is determined by the 713 

modulation factor. We used this type of long-lasting gain to account for well-known effects 714 

such as serial dependency-like which can occur with adaptation and prediction34,35. We 715 

regressed the adaptation-only model against the neuronal data and found a factor of 3.0 best 716 

fit the data which was set for other modelling experiments.   717 

To determine the effects of the different stimulus conditions (Random, Expected and 718 

Unexpected) on the model’s channels, we presented sequences of orientations to the model 719 

and split the responses into conditions. To allow for easier comparison, we aligned the six 720 

orientation channels to their preferred orientation and collapsed the results across conditions. 721 

The same effects were evident before collapsing across the channels.  722 

Lastly, we examined how the actual neuronal responses could be predicted by the 723 

model’s predictions with different values of the free parameters. To do this, we used to model 724 

to predict responses to the orientations presented to the mice during the session for all 725 

stimulus conditions. For each neuron, we used the model’s responses to the stimuli as 726 

regressors to predict the neuron’s response (averaged from 250 to 1000 ms) for each stimulus 727 

condition. We iterated this procedure with different values for adaptation and expectation gain 728 

to determine what values best predicted the data.  729 

Data availability  730 
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The data are available at: https://osf.io/t2vb3. The code is available at: 731 

https://github.com/MatthewFTang/PredictionOrientationSelectivityMouseV1 732 
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 918 

Supplementary figures 919 

 920 

 921 

Supplementary Figure 1. Control condition to determine whether the rotation sequence 922 
caused the increased gain in the Unexpected trials. ( (B). Fitted gain values for each neuron 923 
for the three conditions. This subset of neurons showed the same effect in the original two 924 
conditions, with an increase in gain in the Unexpected compared to Random condition (t(129 = 925 
7.74, p < 0.001). This effect was maintained when comparing the Random to the Unexpected 926 
control condition (t(129) = 7.81 p < 0.001). There was no significant difference between 927 
Unexpected and Unexpected control conditions (t(129 = 1.81, p = 0.07 ).   928 
 929 
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 930 

Supplementary Figure 2. Expectations affect neurons differently depending on their preferred 931 
orientation. Each panel shows neurons tuned to different orientations, as defined by their 932 
stimulus-evoked responses in the Random condition. The different colour-coded curves show 933 
different expected orientations. Neurons show the largest decrease in response when their 934 
preferred orientation is similar to the expected orientation. Across all panels error bars indicate 935 
±1 standard error of mean.  936 
 937 
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 939 
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 941 
Supplementary Figure 3. A simple schematic example of the model. (A) The model in an 942 
unadapted state, showing its response to a 110° stimulus (blueline). The green line shows the 943 
model’s response to the stimulus in each channel. (B)  Applying adaptation gain at 110° 944 
reduces the model’s sensitivity to nearby, but not distant, stimuli. The model’s response (red 945 
line) is reduced in magnitude relative to panel A when the same test stimuli are applied.  946 
 947 
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