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Abstract
The response of cortical neurons to sensory stimuli is shaped both by past events (adaptation)
and the expectation of future events (prediction). Here we employed a visual stimulus
paradigm with different levels of predictability to characterise how expectation influences
orientation selectivity in the primary visual cortex (V1) of mice. We recorded neuronal activity
using two-photon calcium imaging (GCaMP6{) while animals viewed sequences of grating
stimuli which either varied randomly in their orientations or rotated predictably with occasional
transitions to an unexpected orientation. For single neurons and the population, there was
significant enhancement in the gain of orientation-selective responses to unexpected gratings.
This gain-enhancement for unexpected stimuli was prominent in both awake and
anaesthetised mice. We implemented a computational model to demonstrate how trial-to-trial
variability in neuronal responses were best characterised when adaptation and expectation

effects were combined.
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Introduction

There is often more information in the sensory environment than the brain has the
capacity to fully process. To cope with this information overload, activity within neuronal
circuits is modulated by processes such as adaptation-? attention34, and prediction8. Neural
adaptation is known to improve the transmission of sensory information in circuits by
accounting for the statistics of past sensory inputs'7-8. Likewise, selective attention can
enhance neural responses to task-relevant features and suppress irrelevant information3°. An
influential theory of neural function argues that predictions about specific future stimuli, based
upon Bayesian inference, might similarly improve the fidelity of stimulus representations®®.
Based on this predictive coding view, the mammalian cortex is conceptualised as a predictive
machine that uses the statistical regularities of incoming sensory inputs to iteratively generate
an internal model of its external environment. Predictive coding provides a simple theoretical
view of perception which is supported by a substantial body of work in human neuroimaging
and behavioural studies'®'!. The classic mismatch negativity effect has become a hallmark of
this literature'213. When encountering an unexpected stimulus, the brain generates a
significantly larger evoked response compared with the response following an expected
stimulus. Decoding of activity from electroencephalography (EEG) recordings in humans has
revealed that expectation affects the representation of visual information in the brain'4-18,

Recent work supports the idea that prediction influences single neuron responses
across a number of sensory modalities'®24. Theoretical models propose that higher level
processing regions generate inhibitory copies of the expected stimulus which are passed down

the cortical hierarchy to the earlier processing regions®, where they are integrated with
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incoming sensory inputs. If a stimulus is expected, the inhibitory copy should minimise the
neuronal response. By contrast, any mismatch between the expected and presented stimulus
should result in a prominent response.

Here, we tested key elements of predictive coding theory at the neuronal level in mouse
primary visual cortex (V1). We used two-photon calcium imaging in awake mice that were
exposed to sequences of oriented gratings at different levels of predictability. We characterised
how prediction affects orientation selectivity in V1 neurons, and how changes in orientation
tuning modulate the amount of information about the sensory input carried by individual
neurons and neuronal populations. We demonstrate that unexpected stimuli significantly
increase the gain of orientation selectivity without any corresponding changes to the width of
the tuning function. Such increased gain to expectation violations yields increased information
about stimulus features within single-cells and at the level of neuronal populations. This
enhanced representation of unexpected stimuli is present in both awake and anaesthetised
mice. Finally, we use a computational model to quantify the contribution of adaptation and
expectation to neuronal responses at the single trial level.

Results

We combined experimental and modelling approaches to determine how prediction
affects neuronal responses in mouse (C57BL) V1 cortical neurons to sequences of oriented
grating stimuli. We asked whether the selectivity of individual neurons changes with
expectations about the orientation of future stimuli by presenting sequences of gratings with
different levels of predictability to awake mice (N = 3 across 23 sessions in total, 1697

neurons) while imaging Layer 2/3 activity in V1 using two-photon excitation microscopy (Figure
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1ABC, Movie 1). The stimulus sequence was adapted from the Allen Brain Institute’s Brain
Observatory paradigm?® used to quantify orientation selectivity. Each sequence consisted of a
series of full-screen gratings (0.034 c/°, 50% contrast) oriented between 0° and 150° in 30°
steps, presented at 4 Hz with no inter-stimulus interval. In the Random condition (Figure 1B
and C), the orientations of successive gratings were uncorrelated.

To establish predictions about stimulus orientation, in the Rotating condition the grating
rotated either clockwise or anti-clockwise for 5 to 9 presentations (in 30° steps), before jumping
to an unexpected random orientation. In this condition, Expected events were those which
constituted the rotating sequence, whereas Unexpected events were those in which the
stimulus jumped randomly to an unpredicted orientation. Critically, for unexpected events the
jump from the predicted orientation was to a random orientation matched to the correlation
statistics for the stimulus sequence embedded in the Random condition. Figure 1B and C
identify the three types of transitions within the visual stimulation protocol: Random transitions
(in blue), Expected transitions (in red) and Unexpected transitions (in green). Figure 1D and E
show eight example neurons imaged within a field of view, each of which exhibited a varying
degree of orientation selectivity under the Random condition. In line with previous work?3,
many imaged neurons showed orientation selectivity for the spatial frequency employed

(462/1697; one-way ANOVA p < 0.05 for orientation selectivity).


https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/

106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.26.466004; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
Monitor B Random Rotating Random Rotating
Te [ 0.
: .. 1s
Craniotomy .: .
imaging window L4 i
9ing Expected ) e
[ ] L]
o [ ]
A Head-bar %o ¢
O st . 8
/ Time $ e
radt '\ Rand °® e,
— Imaging well andom o® .
; } ® e AC
Session 30 . o
@ -— Injection site 202
| Random | | Rotating | | Random | | Rotating | 3 ’.IIIII[ '_IIIII[
- - - - S
15 mins 15mins 15 mins 15 mins T O 185 o %0 180
Orientation
D E

Neuron Presented orientation
30 60 90 120 150

1 n-k’i‘ ot ol ol e o

2 lln ot ooy A gy g A G
R e I A R o
4 e ™ o A G
S g I I "N
I e e I I e Sl

7 I'-kﬂ T, WP S N W

Width = 13°

8 r I-*r N T s A i o N\ Can-3

Width = 22°

250 ms

Figure 1. Experimental procedure for testing the effects of prediction on orientation selectivity
in mouse V1 neurons. (A) Apparatus for using two-photon calcium imaging in combination with
visual stimulation. (B) Schematic of the Random and Rotating sequences of oriented gratings.
(C) In the Random condition, the orientation of each stimulus was drawn from a pseudo-
randomised distribution (uniform probability from 0 to 150° in 30° steps). In the Rotating
condition, the gratings rotated clockwise (e.g., 0° -> 30° -> 60°) or anti-clockwise (e.g., 0° ->
150° -> 120°) for 5-9 presentations (red dots) before jumping to a random unexpected
orientation (indicated by the green dots). (D) Mean motion-corrected two-photon image from a
single session, with individual neurons highlighted in red. (E) Time course of activity in the
corresponding neurons highlighted in D in response to different grating orientations from the
Random condition. The tuning functions in the right panels show the average response from 0
- 1000 ms after stimulus presentation. Points are fitted with a circular Gaussian with a baseline
offset. The key parameters of the fits are given as the gain (amplitude) and width (standard
deviation) of the Gaussian for each neuron. Shading and error bars show +1 standard error
over trials.
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d

Movie 1. Example sequence of gratings in the Rotating condition. Stimuli rotate in one
direction for 5 to 9 presentations before jumping to a random orientation and rotating in the
opposite direction.
Prediction affects single neuron activity

We next examined how orientation selectivity of individual neurons was affected by
stimulus predictability (Figure 2). The three example neurons shown in Figure 2A all exhibit
orientation selectivity from ~85-100 ms after stimulus onset. The first neuron (top row of Figure
2A) responded maximally to gratings at 0°, with slight suppression for the more distant
orientations (60°, 90°, 120°). During presentation of the Expected stimulus (red trace),
modulation of neuronal activity began before the onset of the stimulus (0 ms). This pre-
stimulus modulation is due to the rotating nature of the sequence: the stimulus presented at -
500 ms was orthogonal to that presented at 0 ms. This means that in the 0° condition, the anti-
preferred stimulus (90°) was presented at -500 ms, whereas in the 90° condition, the preferred
stimulus (0°) was presented at -500 ms. The rotating nature of the stimuli during the Expected
sequence thus produced an idiosyncratic temporal profile in neuronal response. For this

reason, here we focus on the Random and Unexpected transitions where the stimuli presented

immediately before 0 ms were uncorrelated with the current stimulus.
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Figure 2. Expectation affects orientation-selective responses of individual V1 neurons. (A)
Time-courses of three example neurons in response to oriented grating stimuli in the expected,
unexpected and random conditions. Each neuron is illustrated in a separate row, with the
rightmost panel showing orientation tuning curves for that neuron. The tuning is measured as
the averaged response from 250 to 1000 ms after stimulus onset (grey shading). The solid
curve is a fitted Gaussian function with a constant offset. (B) Same as in A, but shows activity
for all orientation-selective neurons (N= 462) aligned to their preferred orientation (0°) to allow
averaging. Right panel: Same as in A but showing the Gaussian tuning function for the
population response. (C) Response to the preferred orientation across the three conditions for
all orientation-selective neurons. For presentation the time-courses are smoothed with a
Gaussian with a 33.3 ms kernel. Every row represents the response of one neuron. In each
panel, neurons are sorted based on their evoked response in the Unexpected condition (most
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excited on the top). (D) Comparison of the response in the Unexpected and Random
conditions at the preferred orientation. Each dot represents one neuron. Purple dots show
neurons significantly modulated by expectation (N=133); grey dots are non-modulated neurons
(N = 329). (E) Time-course of orientation-selectivity (circular mean) for the Random (blue) and
Unexpected (green) conditions. Black horizontal lines indicate timepoints with statistically
significant difference between conditions, determined using non-parametric cluster-corrected
procedures (see Methods). (F) Summary statistics for fitted Gaussian parameters across the
population for the different sequence types. The Gain is the amplitude of the Gaussian and the
Width is the standard deviation. * indicates p < 0.05. Across all panels error bars and shading
represent + 1 standard error of mean.

The main effect of predictability is evident from the three example neurons illustrated in
Figure 2A. There was a systematic increase in neuronal responses to the preferred orientation,
and a decrease to the anti-preferred orientation, in the Unexpected (green trace) compared
with the Random condition (blue trace). This response profile is consistent with a positive gain
modulation for unexpected gratings. The overall population response (aligned to the preferred
orientation) showed the same pattern of results (Figure 2B), with an increased response to the
preferred stimulus in the Unexpected versus Random condition. The responses of 133/462
orientation-selective neurons (28.8%) were significantly modulated in the Unexpected
condition relative to the Random condition (i-test, p < 0.05). Of these, all but two (98.5%)
showed a larger response in the Unexpected condition (Figure 2D), and this increase in
selectivity emerged shortly after stimulus presentation (Figure 2E).

We next quantified how orientation selectivity was affected by predictability. To do this,
we fitted circular Gaussian tuning functions to separately determine the gain (amplitude) and
width (standard deviation) parameters of orientation selectivity for each neuron (Figure 2F, see

Equation 1). The gain of the tuning curve was significantly greater in the Unexpected condition

than in the Random condition (#(961) = 34.01, p < 0.0001). By contrast, there was no
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10

difference in the width between these two conditions, ({(961) = 0.45, p = 0.65). These results
are consistent with our recent work examining how prediction affects orientation selectivity
measured non-invasively in humans'415. A control condition showed these effects were not
due to the systematic rotations that followed Unexpected gratings (Supplementary Figure 1).
Prediction affects population coding of orientation

In our initial set of analyses, we found that expectation affected orientation selectivity in
individual V1 neurons. We next examined how enhanced orientation selectivity for unexpected
stimuli at the single-neuron level in turn shaped the information contained within the population
response. Previous human neuroimaging studies using multivariate pattern analysis have
shown that expectation affects classification accuracy of the stimulus features-17:26, To
determine how these findings generalise across species, we applied a similar multivariate
pattern analysis to the neuronal population data. We used all imaged neurons (N = 1697; 23
imaging sessions), including both orientation-selective and non-orientation selective neurons to
decode the presented orientation using inverted/forward encoding modelling (see multivariate
analysis section in Methods for details). Figure 3A and B illustrate the key steps in a forward
(or inverted) encoding approach and how this method can be used to determine the amount of
orientation-selective information contained in the population activity on a trial-to-trial basis. In
line with the human work'4-1726 in a first step the method applies an encoding model using a
subset of trials (training trials) to estimate neuronal selectivity to each orientation (Figure 3A).
Then, in a second step, it inverts these weights to reconstruct the stimulus representation from

the population response on a new set of test trials (Figure 3B).
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11

We first applied this decoding procedure in a time-resolved manner to determine the
temporal dynamics of population-level prediction effects (Figure 3D). This showed the
decoding performance started to rise for the Random and Unexpected conditions shortly after
stimulus presentation. More importantly, greater decoding accuracy emerges for Unexpected
relative to Random stimuli from shortly after stimulus onset (~100 ms). The pre-stimulus
divergence suggests that the increase in selectivity for unexpected stimuli results from
expectations developed before the stimulus appears rather than from a subsequent top-down
influence. Unsurprisingly, in the Expected condition orientation information could be decoded
above chance before the stimulus appeared. This is because orientations occurring before
stimulus presentation (0 ms) were correlated with the orientation of the decoded stimulus
presented at time zero. The decoding profile for Expected stimuli also exhibits an oscillating
profile, which likely reflects a combination of three factors: oscillations in neuronal activity due
to the periodic onsets of stimuli in the presented sequences; the 30° changes in orientation
from one stimulus to the next within the rotating sequences; and the dynamics of the calcium

indicator.
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Figure 3. Expectation affects stimulus-specific information carried by neuronal population
activity. (A) Schematic of training the multivariate forward orientation encoding. Example
regressors for 7 training trials with different orientations. The basis functions (grey lines) in
response to different orientations which produce the regressor weights. Neuronal response for
4 example neurons for the example trials. Least squared regression is applied between the
regressors and response to determine selectivity. Regression coefficients (beta weights) for
four example neurons for each of the regressors found from a training set of data. (B) Testing
the encoding model. Activity for the four neurons in test trials. Inverting the regressor weights
and multiplying them by the population responses from the four neurons produces the


https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244

245

246

247

248

249

250

251

252

253

254

255

256

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.26.466004; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

13

predicted orientation response from this pattern of activity. The difference between the
predicted and presented orientation for a given stimulus is the orientation error. (C) Distribution
of orientation error when encoding was performed separately on groups of 50 neurons and 500
neurons at a time (with 24 permutations of different neuronal combinations). The vector
average of these histograms was taken as the decoding accuracy for each condition. The
coloured numbers show the vector sum for the corresponding curves. (D) Time-resolved
classification from forward encoding modelling (N= 500 neurons) with 24 permutations of
different groups of neurons. (E) Decoding accuracy scales with the number of neurons. The
classifier was trained and tested on the average response from 250 to 1000 ms following
stimulus onset, with different numbers of neurons included (24 permutations of different
neurons for each population size). The coloured horizontal lines indicate statistical significance
using sign-flipped cluster permutation tests comparing Random vs. Unexpected (green line)
and Random vs. Expected (red line). In panels B to D, shading/error bars indicate +1 standard
error of the mean across permutations.

We next examined the effect of different sized neuronal populations on decoding
accuracy (Figure 3E). To do this, we selected groups of neurons and used a 10-fold cross-
validation procedure to train and test the classifier at each time point around stimulus
presentation. This procedure was repeated 24 times with different subsets of neurons
selected. The decoding procedure was performed on the average neuronal responses from
250 to 1000 ms after stimulus onset, and different sized pools of neurons were selected (1 to
1600 neurons, in 100 logarithmically-spaced steps). This analysis again showed that the
presented orientation was decoded significantly better in the Unexpected than the Random
condition. Figure 3E illustrates that this effect emerged with population sizes of relatively few
neurons (<10). The Expected condition also showed greater decoding accuracy relative to the
Random condition, but this effect was smaller than in the Unexpected condition and did not

emerge until a population of ~100 neurons was included in the analysis.

Predictions repel perception away from the expected orientation
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The analyses presented above reveal a higher gain in orientation selectivity among V1
neurons following Unexpected grating stimuli relative to otherwise identical gratings within
Random sequences. According to formal models of predictive coding, the magnitude of a
prediction error should be determined by the degree of surprise, with more surprising stimuli
yielding larger responses®®. Consistent with these models, we have shown in human
observers that orientation-selective stimulus- evoked responses get larger as the difference
between expected and presented stimuli increases’®.

In the current study we were able to quantify the degree of prediction error in the
Rotating condition and use this index to characterise any change in orientation-selective
responses in individual V1 neurons. To do this, we grouped orientation-selective neurons (N =
462) based on their maximum orientation-selective response in the Random condition (Figure
4A and Supplementary Figure 2). We found that orientation selectivity was influenced by the
expected orientation, such that responses were smallest when the expected orientation was
closest to the preferred orientation. For example, as shown in Figure 4A, neurons tuned to 90°
had the lowest orientation tuning when a 90° grating was expected (darkest green line).
Orientation selectivity was reduced to a lesser degree when the surrounding orientations (60°
and 120°) were expected, suggesting that the magnitude of the prediction error affected
neuronal responses in an orientation-selective manner.

To better visualise these effects, we aligned all neurons to their preferred orientation
and replotted the data as a function of the difference between the expected orientation and the
preferred orientation (Figure 4B). To quantify these effects, we fit Gaussian curves to each

neuron’s orientation selectivity for all expected orientations (Figure 4C and 4D). Both the gain
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(Figure 4C, one-way ANOVA, F(5,1835) = 3.31, p=0.006, n?= 0.006) and the response to the
anti-preferred orientation (Figure 4D, F(5,1835) = 8.38, p < 0.001, n2=0.022) were

systematically affected by the magnitude of the violated expectation.
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Figure 4. Increase in neuronal responses to unexpected stimuli is determined by the
magnitude of the prediction error. (A) Neurons tuned to each displayed orientation are
affected differently when different orientations are expected. Panel A shows an example for
each expected orientation using neurons selective for 90° gratings, as defined based on their
responses in the Random condition (from 250 — 1000 ms). Responses of remaining neurons
selective for the other presented orientations are shown in Supplementary Figure 2. For each
unexpected stimulus in the rotating condition, we identified the difference between the
orientation of the expected stimulus and the orientation of the presented unexpected stimulus.
For instance, if 60° was expected but 0° was unexpectedly presented, the expectation violation
would be 60°. (B) All orientation-selective neurons aligned with their preferred orientation,
plotted as separate Gaussians for each difference between the expected orientation and the
presented orientation (expectation violation). (C) Gain of Gaussians fitted to each neuron’s
response, plotted as a function of expectation violation for all orientation-selective neurons. (D)
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Baseline of Gaussians fitted to each neuron’s response. (E) Forward encoding modelling
reveals how population representations of orientation are affected by the degree of expectation
violation. The encoding weights are shown separately here for different values of expectation
violation. (F) The y axis shows the difference between the presented and decoded orientation
(APerceived orientation). The population response (filled symbols) is biased away from the
expected orientation with the largest bias at +30°. In all panels, error bars indicate +1 standard
error of the mean across permutations. * indicates p < 0.05.

We followed up these results by examining how population-level encoding of the
presented orientation was affected by the magnitude of the prediction error (or expectation
violation). To do this, we divided the forward encoding results (Figure 3) into separate bins
based on the difference between the expected and presented orientation (Figure 4E). We
found that the decoded orientation of the presented stimulus was biased away from the
expected orientation, with the largest effect observed for a difference of 30°. This “repulsion”
effect is reminiscent of the well-known adaptation aftereffect for oriented stimuli?”-28, in which
the largest effect typically arises when the adapting and test stimuli are separated by around
30°. In the present experiment, however, the observed repulsion effect was driven by the
expected orientation rather than the orientation of the preceding stimulus.

Computational modelling of the relative contributions of adaptation and prediction on
visual coding efficiency

Formal models of predictive coding assume that high-level cortical areas pass
predictions, which are inverse copies of the expected stimulus, to lower-level areas®®.
According to this framework, only a small neuronal response is required for representation if a
stimulus matches the expectation®. Such an account is reminiscent of the effect of adaptation
on neuronal representation, whereby an immediately preceding stimulus reduces the neuronal

response to a current stimulus without decreasing the overall amount of stimulus
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information8. Indeed, a number of studies have investigated whether adaptation might be due
to prediction errors'430.31, Both adaptation and prediction rely on the statistics of sensory
inputs. Adaptation exploits the recent history of stimulus presentations to alter current sensory
representations, whereas prediction is thought to use statistical regularities to extract future
patterns.

We created a simple computational model of orientation processing to better
understand how expectation interacts with adaptation to influence the neural coding of
orientation. The model is based on several tuned orientation-selective neurons (or information
channels) maximally sensitive to different orientations. The neurons respond proportionally
based on their sensitivity to the presented orientation (Figure 5). We incorporated two sources
of inhibition: adaptation (in response to a previously-presented stimulus) and expectation (in
response to a predicted future stimulus). Similar to previous work?7.28.32.33 ' gdaptation causes
gain modulation in neuronal orientation selectivity based on the response to the preceding
stimulus (Figure 5A,B). Prediction, on the other hand, affects neuronal responses by producing
an inverse copy of the expected orientation. To account for commonly observed long-lasting
effects of gain modulation on orientation sensitivity3+3°, the model allows sensitivity to recover
gradually over a number of trials. The amount of gain modulation can be varied to increase or

decrease the influence of either adaptation or prediction.
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Figure 5. Computational model for explaining variance in neuronal response by incorporating
gain modulation from prediction and adaptation effects. The model consists of a bank of six
neurons maximally selective for different orientations. The model’s sensitivity is affected by
previous orientations in the sequence (Adaptation) as well as future predicted orientations
(Expectation). These factors determine the response to the presented orientation on each trial.
(A) an example sequence of trials in the rotating condition. The orientations of the preceding
(mustard) and expected (pink) trials determine the adaptation and the expectation gains. (B)
The adaptation gain (mustard line) is determined by the orientation of the previous stimuli. The
expectation gain (pink line) is determined by the inverse copy of the response to the expected
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orientation. (C) Collectively, the two gains modulate the sensitivity of the channels on the next
trial. These weights for the different orientations are applied to the model’s sensitivity channels
(black lines), which give the response (orange line) to the presented orientation (vertical
dashed line; in this case 0°). (D) Dots indicate the responses of the channels, and the curves
are fitted Gaussian functions. Fitted Gaussian values to the model’s responses for the different
stimulus conditions showing gain (E) and width (F) of the response. (G) An example test of
which model parameters best match the neuronal response in mouse V1 neurons. Regressors
for two different expectation gains (0.25 and 0.75) lead to slightly different weights for 10
example trials. Warmer colours indicate higher values. These are regressed against the
response (dF/F%) of each neuron. This yields beta values for each orientation channel
(regressors) for the two different expectation gains. (I) Ridge regression results when the
model was used to predict response to the stimulus in the Expected sequence, with different
levels of modulation from adaptation and prediction. The regressor (orientation) with the
highest beta weight was chosen for each neuron (N= 226; modulated by prediction). Error
bars indicate +1 standard error of the mean. * indicates p < 0.05.

We presented sequences of orientations to the model from both the Random and
Rotating conditions to determine whether it can explain the observed changes in orientation
selectivity at the single-trial level. Because there are two sources of gain (adaptation and
expectation), we assume an equilibrium of gain modulation is available to the system to allow it
to maintain population homeostasis®®. To this end, in the initial model we implemented 0.5 a.u.
of gain available, which was varied in the two stimulus conditions. In the Random condition,
the adaptation gain was set to 0.5 arbitrary units (a.u.) and the expectation gain was set to 0
a.u because the stimulus sequence was completely unpredictable. In the Rotating condition,
by contrast, the gain for both expectation and adaptation were set to 0.25 a.u. We re-aligned
neurons (Figure 5D) to their preferred orientation and determined their response to stimuli
under different conditions by fitting the same Gaussian to the results (Figure 5E and F).
Consistent with the neuronal data (Figure 2), in the model the gain of orientation selectivity

increased in the Unexpected condition (M = 0.64, SD = 0.05) relative to the Expected (M =

0.59, SD = 0.03) and Random (M = 0.55, SD = 0.02) conditions. The Unexpected trials
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resulted in greater orientation selectivity than the Expected trials because sensitivity to the
stimulus was reduced for a different orientation (the predicted grating orientation) than the one
that was presented (Figure 5E). As with the experimental data, the width of tuning was similar
for the Unexpected (M = 29.8, SD = 0.62) and Random (M = 30.06, SD = 0.59) conditions,
whereas the Expected condition was slightly wider (M = 32.18, SD = 0.79, Figure 5F). The
model produced a qualitative fit consistent with the effects of expectation on V1 orientation
selectivity. The modulation of stimulus selectivity is consistent with previous work which found
that uncommon stimuli result in increased stimulus-specific adaptation in auditory cortex3’, and
that the V1 population response adapts to high-level stimulus statistics in a homeostatic
manner36,

We next determined whether the model provided a quantitative fit to the recorded
neuronal activity. To do this, we used the model to generate predictions about neuronal
responses, which we regressed against the actual data for each neuron. Specifically, for each
experimental session for the awake mice, we presented the model with the same orientation
sequence viewed by the mouse, which in turn generated a predicted response for each
simulated neuron on every trial. We used ridge regression to determine beta weights for each
of the six regressors (orientations) for the three different gain settings for each neuron.

We found that a greater proportion of the variance in the trial-to-trial activity of neurons
could be explained when the model incorporated inhibition from expectation (Figure 51). We
presented the orientation sequences from the Rotating condition to the model with three

different gain responses for expectation. With no gain, only the presented stimulus determined
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the response of the model. As gain was increased from 0.25 and 0.75 a.u., greater inhibition
from expectation increased the model’s fit with the data (Figure 5I).

For the adaptation model, there was no significant increase in its ability to explain
neuronal activity with increasing gain (one-way ANOVA, F(4,900) = 0.52, p = 0.72). By
contrast, the explanatory power of the expectation-only model greatly increased with
increasing levels of gain (one-way ANOVA, F(4,900) = 6.18, p < 0.001). Furthermore, the
model that incorporated a moderate amount of adaptation (0.25) with varying degrees of
expectation gain best predicted the neuronal response. A 3 (Model type; Adaptation,
Expectation, Combined model) x 5 (Gain level; 0,0.2,0.4,0.6,0.8,1.0) repeated-measures
ANOVA confirmed this observation, revealing that both the type of model (F(2,450) = 4.22, p =
0.02), and the gain level (F(4,900) = 11.55, p < 0.001) significantly affected the proportion of
variance explained. These factors significantly interacted (F(8,1800) = 2.03, p = 0.04), showing
that the difference in explanatory power between the models increased with increasing gain.
Follow-up tests showed that the expectation model did not explain significantly more variance
than the adaptation model (p = 0.13, across all gain levels), but the combined model did (p =

0.004).
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Predictive coding under anaesthesia

Finally, we asked whether global anaesthesia altered the influence of prediction on
orientation selectivity observed in awake animals. Previous work in humans on expectation
violations has reported larger neural responses to unexpected than to expected stimuli during
sleeps839 in different attention states'®4°, and when individuals were in a coma*!, vegetative
state*>=# or under anaesthesia*®. These findings suggest that the influence of prediction errors
on patterns of brain activity varies across different global brain states and levels of
consciousness. To address this issue at the level of individual V1 neurons, we conducted a
further experiment in which the stimulus sequences (Random versus Rotating) were displayed
to mice under urethane anaesthesia (N=3 animals). For each mouse, we ran the full stimulus
protocol with 2-4 different areas in V1 (11 in total, 576 neurons). We found 96/576 (16.6%)
neurons were orientation selective. As shown in Figure 6AB, the gain of orientation selectivity
was again significantly enhanced in the Unexpected relative to the Random condition (Figure
6C, 1(95) = 5.64, p <0.0001). As in awake animals, there was a small but non-significant
decrease in the width of the tuning curve in the Unexpected condition relative to the Random

condition (Figure 6D, t(95) = 0.39, p = 0.70).
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Figure 6. Expectations affect the gain of orientation-selective V1 neurons under anaesthesia.
(A) Time courses for all orientation-selective neurons (N = 96) aligned to their preferred
orientation to allow averaging. Shading indicates +1 standard error of the mean across
neurons. (B) Population orientation tuning for the three expectation conditions, averaged
across an epoch from 250 to 1,000 ms after stimulus presentation. Solid lines are fitted
Gaussian functions with a constant offset. (C) Summary statistics for the gain of the fitted
Gaussians in B. (D) Width of the fitted Gaussians in B. (E) Comparison of the “surprise” effect
(Unexpected events minus Random events) between awake and anaesthetised animals. (F)
Time course of responses to the preferred orientation of each neuron, shown separately for the
three conditions. Neurons have been sorted by their responses in the Unexpected condition.
Across panels A-E shading and error bars indicate +1 standard error of the mean across
neurons.
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Finally, for each neuron we calculated the “surprise” effect by subtracting the gain of the
Gaussian tuning curve for the Unexpected condition from that of the Random condition (Figure
6E). A value larger than 0 indicates that the neuron’s orientation selectivity was enhanced in
the Unexpected condition. There was no significant difference in the magnitude of the surprise
effect in awake animals compared with those that had been anaesthetised ({(556)=1.38, p =
0.17), suggesting that the influence of prediction errors on orientation-selective responses in
V1 neurons is equivalent for awake and anaesthetised animals.

Discussion

Here we provided an experimental test of how neuronal representations of visual
information are affected by prediction in the primary visual cortex (V1). Awake mice viewed
streams of oriented grating stimuli in either a Random condition, in which there was no
correlation between the orientations of successive stimuli (Random stimuli), or in a Rotating
condition, in which grating orientations were mostly predictable from previous events within the
sequence (Expected stimuli), but in which an occasional random orientation appeared
unexpectedly (Unexpected stimuli). Expectations reliably modulated the gain of orientation
selectivity in V1 activity, both at the level of single neurons and across the population of
recorded neurons. We found that neurons tuned to an expected orientation showed a large
decrease in their response compared with those not tuned to the expected orientation. The
expectation violation response was also reliably present under anaesthesia, suggesting that
the relevant visual circuits utilise predictive patterns in the sensory input even when the animal
is unconscious. Finally, we provided a computational implementation of a predictive coding

model in V1 to better understand the interaction between adaptation and prediction. By varying
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the parameters of the model, we found that the best explanation for the observed neuronal
activity relied on both inhibition from adaptation in response to immediately preceding stimulus
events, and expectations about future stimulus features.

Our model of expectation-violation responses is phenomenological, in the sense that it
describes our results in a way that is grounded in neuronal and synaptic mechanisms. This
model contrasts with more formal accounts based upon hierarchal predictive coding.
Generally, neuronal responses to violations of expectations are formulated as precision-
weighted prediction errors*>-%2. In other words, neuronal responses reflect the difference
between sensory afferents and top-down predictions that are modulated or weighted by
precision. Precision, in this context, is a prediction of predictability, as opposed to prediction of
the sensory input. In the context of precision-weighted prediction errors, we can associate
adaptation gain with the effects of predictability (i.e., precision weighting) and excitation gain
with the prediction error per se; namely, the disinhibition of stimulus-bound responses by
absent top-down predictions. This fits with predictive coding accounts of the mismatch
negativity, where the equivalent effects are sometimes discussed in terms of stimulus-specific
adaptation and a sensory memory component — which in turn correspond to predictions of
precision and stimuli, respectively'#15,

While the notion that predictions about the future affect perception was first proposed by
Helmholtz%4, direct evidence in support of this idea at the level of individual sensory neurons
has been lacking. A number of more recent theoretical models®® have proposed a ‘predictive
coding’ framework with the common idea that the brain inhibits sensory representations of

expected stimuli to increase coding efficiency. Although there is good evidence that predictions
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affect the magnitude of neural responses measured with non-invasive, whole-brain
neuroimaging methods'%-55, few studies have addressed whether individual neuronal
responses are affected, even though this is a critical component of predictive coding models.
The current results obtained from mouse V1 neurons fit well with our previous findings in
humans, which suggest that orientation selectivity changes with expectation’4-16.26,
Specifically, and in line with the current work, forward encoding modelling of EEG activity
revealed an increase in the gain, but not the width, of orientation tuning to unexpected stimuli
in human observers'4.

Our results add to the understanding of how expectations affect the representation of
sensory information. Previous work'9:2223 has suggested that locomotion-induced increases in
activity in primary visual cortex in mice relates to predictive coding®6-%7 (but see®’ for a different
interpretation of these findings). Under the predictive coding framework, the increased activity
caused by locomotion creates an expectation that the stimulus should move and change size.
A prediction error is generated if the stimulus remains static, as is typical when measuring
orientation selectivity, or moves in an inconsistent direction. There is significantly less
locomotion-induced increase in response if the stimulus is made to move as the animal
moves?3. Our results are consistent with these findings, but also identify an enhanced gain
mechanism reflected by a larger response to the neuron’s preferred orientation.

In the human literature, expectation appears to affect sensory responses through
different neural oscillatory frequency bands®85°. Recordings in macaques suggest visual
information is fed forward through high-frequency gamma (60-80 Hz) oscillations, while

feedback occurs through slow theta-band (14-18 Hz) activity®°. As the present recordings were
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conducted using two-photon imaging with a relatively slow sampling rate, we are at present
unable to determine the possible role of different oscillation frequencies in the observed
expectation effects. Future work in which activity is recorded from multiple sites concurrently
using electrophysiology could help characterise the distinct contributions of top-down and
bottom-up neural signals to this expectation-induced gain modulation.
Methods

Mouse information

A total of 6 wild type mice (C57BL) were used for this study. All methods were
performed in accordance with the protocol approved by the Animal Experimentation and Ethics
Committee of the Australian National University (AEEC 2015/74; 2019/11). Mice were housed
in a ventilated and air filtered climate-controlled environment with a 12-hour light—dark (8 am
lights on, 8 pm lights off) cycle. Mice had access to food and water ad libitum. No statistical
methods were used to calculate the sample size, but these were consistent with other studies
in the field.

Expression of Ca?* indicator GCaMP6f

Mice were briefly anaesthetised with isoflurane (~2% by volume in Oz) in a chamber and
moved to a thermal blanket (37°C, Physitemp Instruments) before the head was secured in a
stereotaxic frame (Stoelting, IL). Thereafter, the anaesthetic gas (isoflurane, ~2% by volume in
O2) was passively applied through the nose mask at a flow rate of 0.6-0.8 L/min. The level of
anaesthesia was monitored by the respiratory rate, and hind paw and corneal reflexes. The
eyes were covered with a thin layer of Viscotears liquid gel (Alcon, UK). The scalp was opened

with ~5 mm rostrocaudal incision at the midline using scissors and the periosteum was gently
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removed. A circular craniotomy was made over the right visual cortex (3 mm diameter; centred
2 mm lateral and 4.5 mm posterior to Bregma) with the dura left intact. A glass pipette (15-25
um diameter at tip) containing GCaMP6f (AAV1.Syn.GCaMP6f.WPRE.SV40, Penn Vector
Core, The University of Pennsylvania, USA) was inserted into the cortex at a depth of 230-250
um below the dura using a micromanipulator (MPC-200, Sutter Instruments, Novato, CA,
USA). GCaMP6f was injected at 4-6 sites (with four 32-nL injections per site separated by 2-5
mins; rate 92 nLs"). V1 was localised anatomically using coordinates established using
functional methods60. Injections were centred 2mm lateral and 4.5mm posterior to Bregma.
Injections were controlled using a Nanoject Il injector (Drumont scientific, PA). After virus
injection, the craniotomy was covered with a 3mm diameter cover-glass (0.1 mm thickness,
Warner Instruments, CT). This was glued to the bone surrounding the craniotomy. Custom
made head bars were fixed to the skull over Bregma using a thin layer of cyanoacrylate
adhesive and dental acrylic. A small well was built surrounding the craniotomy window using
dental acrylic to accommodate distilled water required for the immersion lens of the 2-photon

microscope.

Ca?* imaging was performed using a two-photon microscope (Thorlabs Inc., Newton,
NJ, USA) controlled by Thorlmage OCT software. The visual cortex was illuminated with a
Ti:Sapphire fs-pulsed laser (Chameleon, Coherent Inc., Santa Clara, CA, USA) tuned at 920
nm. The laser was focused onto L2/3 cortex through a 16x water-immersion objective lens
(0.8NA, Nikon), and Ca?* transients were obtained from neuronal populations at a resolution of

512 x 512 pixels (sampling rate, ~30 Hz). To abolish the effect of visual stimuli on the calcium
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signals, we filled the gap between the objective and the well with removable adhesive (Blu-
Tack).

The obtained images were processed using the Suite2p toolbox

(https://github.com/cortex-lab/Suite2P) for motion correction and segmentation. The
surrounding neuropil signal was subtracted for each neuron’s calcium traces. These corrected
traces were high-pass filtered before the median response for each neuron was subtracted to
determine dF/F.
Visual stimulus

The stimuli were displayed on a 22-inch LED monitor (resolution 1920 x 1080 pixels,
refresh rate 60 Hz) using the PsychToolbox presentation software for MATLAB®263, The
mouse was placed next to the monitor, which subtended 76.8° x 43.2° (one pixel = 2.4’ x 2.4’)
orientated 30° from their midline. The visual stimulus sequence was based on the Allen Brain
Institute Brain Observatory paradigm used to measure orientation selectivity in mice. The
stimuli were full-screen gratings (0.034 c/°, 50% contrast) displayed for 250 ms with no inter-
stimulus blank interval giving a 4 Hz presentation rate. The spatial frequency was chosen to be
close to optimal sensitivity of neurons in V125, The orientations of the gratings were equally
spaced between 0 to 150° in 30° steps so we could characterise each neuron’s orientation
selective profile.

The predictability of the orientations of the gratings was varied in the two stimulus
conditions. In the Random condition, the orientations of the gratings were drawn from a
pseudo-random distribution with no relationship between the current orientation and the

previous orientation. In the Rotating condition, the orientations of the gratings rotated (in 30°
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steps) either clockwise or anti-clockwise for 5 to 9 presentations, before jumping to an
unexpected random orientation, where it began rotating in the opposite direction. The Random
and Rotating conditions were presented in blocks of trials which were pseudorandomised in
time within each imaging session.

In 3 mice, we ran a total of 23 imaging sessions and collected data from 1697 neurons.
Neurons from all sessions and mice were pooled for analysis. One session (1.5 — 2 hours) was
recorded in a day from each mouse. These sessions occurred between 1 and 4 times per
week. In each session, two runs of Rotating and Random sequences were presented, and
each of these contained 1800 trials, alternating between Rotating and Random. The order of
sequences was counter-balanced across mice. For some sessions for 2 of the mice, we also
presented a Rotating control condition to determine whether the systematic rotational
movement after the unexpected jump affected orientation selectivity. In this condition, after the
unexpected orientation the stimulus made another jump to a random orientation before starting
to rotate in the opposite direction as the previous rotation. The number of events was
increased from 7200 (3600 x 2) in each condition to 8400 to have the same number of
unexpected trials as the original Rotating condition, while all other details remained identical
with the Rotating condition. We ran 13 sessions in these 2 mice for all three conditions to
compare the effect of the control. For all conditions, there was a balanced number of
presentations of all the orientations.

Data analysis
To determine the effect of predictability, we averaged the calcium response (dF/F%)

from 250 to 1000 ms after stimulus presentation to derive tuning curves for each condition. To
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quantify how expectation affected the gain and selectivity of orientation-selective neurons we
fitted circular Gaussian distributions with a constant offset (Equation 1) using non-linear least
square regression.

— b —x* 2
G(x) = Aexp ik A A D ¢20]2 180)

+C (1)
Where A is the gain (amplitude) of the Gaussian, ¢ is the preferred orientation of the neuron
(in degrees), o is the width (in degrees) and C a constant offset to allow for baseline shifts in
the activity of the neuron. We searched for best fitting solutions with parameter j, with a search
space from -4 to +4 in integer steps.

To provide another test of how prediction affects orientation selectivity of individual
neurons, we found the circular mean®* of the averaged orientation tuning curve across all
presentations within the condition (Figure 2E). This was done for each time point (1/sample
rate) between -500 and 2000 ms around stimulus presentation.

Multivariate encoding analysis

We used a multivariate encoding approach (forward encoding modelling) to determine
how the population activity carried information about the orientation of the presented grating on
a trial-to-trial basis. This is adapted from human neuroimaging approaches, which examine
orientation/feature selectivity from multivariate non-invasively recorded neural activity!4.15:65-68
but is similar to encoding approaches used to describe neuronal response to sensory
stimuli®®7°. Compared to the encoding-only, forward encoding takes the individual neuron
activity to reconstruct the stimulus representation from the population activity. The technique

goes beyond more commonly used multivariate pattern analysis procedures by producing
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tuning curves showing the full representation (in both gain, width, and bias) relative to the
accuracy-only score.

The data were pooled across all experimental sessions with both orientation and non-
orientation selective neurons used. In the first instance, we examined how the number of
neurons affected decoding on a fixed time interval (250 to 1000 ms) and in the second
instance, we found the time-resolved selectivity by applying the decoding procedure at each
time point around the presentation of the stimulus (-500 to 2000 ms). A 20-fold cross-validation
procedure was used in both instances for test and training data. The procedure evenly splits
each test block to have the most even distribution of stimuli in each fold.

We used the presented orientations to construct a regression matrix with 8 regression
coefficients. This regression matrix was convolved with a tuned set of nine basis functions (half
cosine functions raised to the eighth power) centred from 0° to 160° in 20° steps. This helps
pool similar orientations and reduces overfitting’. This tuned regression matrix was used to

measure orientation information across trials. This was done by solving the linear Equation 2:

B1= WCi (2)

Where B1 (Neurons x N training trials) is the data for the training set, C1 (8 channels x N
training trials) is the tuned channel response across the training trials, and W is the weight
matrix for the sensors to be estimated (Neurons x 8 channels). We separately estimated the
weights associated with each channel individually. W was estimated using least square

regression to solve Equation 3:

W = (C1 C1T)"* C1T B+ )
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We removed the correlations between neurons, as these add noise to the linear equation. To
do this, we first estimated the noise correlation between neurons (which stops finding the true
solution to the equation) and removed this component through regularisation by dividing the
weights by the shrinkage matrix®71. The channel response in the test set C2 (8 channels x N
test trials) was estimated using the weights in (4) and applied to activity in B2 (Neurons x N test

trials), as per Equation 4:

C2=(WWT) WT B2 (4)

To avoid overfitting, we used 10-fold cross validation, where X-1 epochs were used to
train the model, and this was then tested on the remaining (X) epoch. This process was
repeated until all epochs had served as both test and training trials. We also repeated this
procedure for each point in the epoch to determine time-resolved feature-selectivity. To re-
align the trials with the exact presented orientation, we reconstructed the item representation
by multiplying the channel weights (8 channels x time x trial) against the basis set (180
orientations x 8 channels). This resulted in an Orientations (-89° to 90°) x Trial x Time
reconstruction.

To quantify the orientation selective response, we found the vector sum of the
orientation for each trial (Figure 3) to determine the decoded orientation. The difference
between the decoded and presented orientation was the orientation error. For each condition
(and time point where applicable) we found the distribution of orientation errors and calculated
the histogram of responses.

In the temporal classification analysis, groups of 500 neurons were used in each

instance for both training and test data with the cross-validation procedure applied to each time
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point around stimulus presentation. We permuted new groups of 500 neurons 24 times. Next,
we averaged the evoked activity from 250 to 1000 ms after stimulus presentation. To
determine how decoding was affected by population size, the same classification was then
used as in the previous analysis but with different numbers of neurons (2 to 1600 neurons in
100 logarithmically-spaced steps). Again, we selected different groups of neurons 24 times so
as not to skew the results by the neurons that were selected.
Statistics

Non-parametric signed permutation tests”!.”2 were used to determine time resolved
differences between conditions. The sign of the data was randomly flipped (N = 5,000), with
equal probability, to create a null distribution. Cluster-based permutation testing was used to
correct for multiple comparisons over the timeseries, with a cluster-form threshold of p<0.05
and significance threshold of p<0.05.
Computational model

The analytic model is based on previous work accounting for feature (i.e. orientation,
spatial, color) adaptation based on neuronal response and human psychophysical
data?7.28:33.73.74 The model consists of a bank of 6 orientation-selective information channels
with preferred orientations evenly spaced between 0 and 150° (in 30° steps). Each channel’s

sensitivity profile is given by a Gaussian function (Equation 5).

x— 2
G(x) = Aexp — % (5)
Where A is the gain (amplitude) (set to 1 a.u.), ¢ is the channel’s preferred orientation, o is the

width of the channel (set to be 40° consistent with the neuronal data). The number of channels,

along with the width means the model is equally sensitive to all orientations. The population
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response to any presented orientated stimulus is given by the sensitivity profiles of the
channels (See Supplementary Figure 3). In an unadapted state (Supplementary Figure 3A),
the model will show a maximal response around the presented orientation with the vector
average of the population response will be the presented orientation.

To account for adaptation, the gain of the information channels is reduced in inverse
proportion to their response by the previous stimulus (Supplementary Figure 3B). For instance,
if a 90° stimulus is the adapting stimulus, the sensitivity of the channels around 90° will be
maximally reduced while orthogonal channels will be unaffected. The magnitude of this
reduction (adaptation ratio) can be varied to allow for greater or less adaptation and was
included as a free parameter in the analysis. The adaptation aspect of the model is consistent
with previous models used to psychophysical data®’.28:33.73.74  The new model accurately
predicts serial dependency effects (where the current orientation is biased away from the
previous orientation) seen in the neuronal data343575,

Prediction gain modulation works in a similar manner as adaptation except that the
stimulus sensitivity, rather than channel sensitivity, is modulated. Furthermore, the gain
modulation occurs before the stimulus and is for the orientation that is expected rather than
presented. The modulation of stimulus sensitivity is consistent with a previous study which
found that uncommon stimuli result in stimulus-specific adaptation in the auditory cortex3”.
Stimulus-specific adaptation has been used in modelling neuronal adaptation®6. To model
stimulus-selective gain modulation, the tuned Gaussian function was found using Equation 1
and inverted before being applied to the channels. The amount of gain modulation by

expectation was a free parameter (expectation gain).
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To account for long-lasting effects of gain modulation, the channel’s sensitivity was
normalised by the maximum sensitivity of response on each trial. This causes the model to
have adaptation and expectation effects based on the presented orientation of at least four
stimuli back. How many n-back stimulus affect the current trials sensitivity is determined by the
modulation factor. We used this type of long-lasting gain to account for well-known effects
such as serial dependency-like which can occur with adaptation and prediction343%, We
regressed the adaptation-only model against the neuronal data and found a factor of 3.0 best
fit the data which was set for other modelling experiments.

To determine the effects of the different stimulus conditions (Random, Expected and
Unexpected) on the model’s channels, we presented sequences of orientations to the model
and split the responses into conditions. To allow for easier comparison, we aligned the six
orientation channels to their preferred orientation and collapsed the results across conditions.
The same effects were evident before collapsing across the channels.

Lastly, we examined how the actual neuronal responses could be predicted by the
model’s predictions with different values of the free parameters. To do this, we used to model
to predict responses to the orientations presented to the mice during the session for all
stimulus conditions. For each neuron, we used the model’s responses to the stimuli as
regressors to predict the neuron’s response (averaged from 250 to 1000 ms) for each stimulus
condition. We iterated this procedure with different values for adaptation and expectation gain
to determine what values best predicted the data.

Data availability


https://doi.org/10.1101/2021.10.26.466004
http://creativecommons.org/licenses/by-nc-nd/4.0/

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.26.466004; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

38

The data are available at: https://osf.io/t2vb3. The code is available at:

https://github.com/MatthewFTang/PredictionOrientationSelectivityMouseV1
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Supplementary Figure 1. Control condition to determine whether the rotation sequence
caused the increased gain in the Unexpected trials. ( (B). Fitted gain values for each neuron
for the three conditions. This subset of neurons showed the same effect in the original two
conditions, with an increase in gain in the Unexpected compared to Random condition (t(129 =
7.74, p < 0.001). This effect was maintained when comparing the Random to the Unexpected
control condition (t(129) = 7.81 p < 0.001). There was no significant difference between
Unexpected and Unexpected control conditions (t(129 = 1.81, p = 0.07 ).
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931  Supplementary Figure 2. Expectations affect neurons differently depending on their preferred
932  orientation. Each panel shows neurons tuned to different orientations, as defined by their

933  stimulus-evoked responses in the Random condition. The different colour-coded curves show
934  different expected orientations. Neurons show the largest decrease in response when their
935  preferred orientation is similar to the expected orientation. Across all panels error bars indicate
936  +1 standard error of mean.
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Supplementary Figure 3. A simple schematic example of the model. (A) The model in an
unadapted state, showing its response to a 110° stimulus (blueline). The green line shows the
model’s response to the stimulus in each channel. (B) Applying adaptation gain at 110°
reduces the model’s sensitivity to nearby, but not distant, stimuli. The model’s response (red
line) is reduced in magnitude relative to panel A when the same test stimuli are applied.
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