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Abstract: 

Microglia contribute to Alzheimer’s Disease (AD) progression and are candidate therapeutic 

targets. Human microglia exhibit an array of transcriptional phenotypes implying that accurate 

manipulation of microglial function will require clarity of their molecular states and context 

dependent regulation. To increase the number of microglia analyzed per subject we employed 

fluorescence activated nuclei sorting prior to single-nucleus RNA-seq on human prefrontal 

cortices. We observed microglia phenotypes previously unrecognized in human brain gene 

expression studies and mapped their transcriptomic relationships by trajectory inference. Three 

clusters were enriched for endolysosomal pathways, one of which showed differential 

expression of AD GWAS genes in addition to genes implicated in nucleic acid detection and 

interferon signaling. Analysis of the “homeostatic” microglia cluster revealed a uniquely AD 

subcluster. Our study demonstrates the value of deeply profiling microglia to explore the 

biological implications of microglia transcriptomic diversity.  
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Introduction: 

As the most common form of aging-related cognitive decline, Alzheimer’s Disease (AD) 

affects millions of individuals worldwide. AD is pathologically characterized by the presence of 

extracellular amyloid-beta plaques, neuronal intracellular neurofibrillary tangles, and 

neuroinflammation. Microglia are the resident innate immune cells of the brain, and contribute to 

the neuroinflammatory processes hypothesized to promote AD pathophysiology1–9. In AD brain, 

microglia release inflammatory factors with non-cell-autonomous effects, lose protective 

homeostatic function, and initiate aberrant phagocytosis of synapses and neurons, all of which 

influence the pathophysiology behind cognitive decline5,9–11. As such, microglia inflammatory 

responses have potential as future therapeutic targets. Yet large gaps remain in our 

understanding of microglia responses in AD brain.    

 In line with their known diversity of function, microglia assume a spectrum of 

phenotypes. These can be differentiated by morphology, physiology and gene or protein 

expression patterns, though most of this understanding has come from model systems6,12–16.  

Less is known about the heterogeneity of microglia states within the adult human brain in health 

and neurodegenerative disease. Single cell and single nuclei RNA sequencing (snRNAseq) 

studies of fresh and frozen human cortical tissue have revealed the diversity of microglia 

phenotypes in the context of AD and other brain pathologies17–24. Distinguishing 

transcriptomically distinct clusters enables the identification of candidate genetic and epigenetic 

factors regulating specific phenotypes which can be leveraged for precision therapeutics 

approaches. However standard snRNAseq methods have been restricted by the small number 

of microglia assayed per individual limiting the potential to map the full range of microglial 

subpopulations. We posited that cellular processes and regulatory factors contributing to 

“responsive” microglia profiles would be uncovered by improved resolution of microglia 

phenotypes in human brain. To enhance characterization of the changes occurring in microglia 
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phenotypes in AD, we employed a microglia enrichment technique for single nuclei RNAseq. 

We generated microglia transcriptional profiles from a cohort of 22 individuals, annotated 

microglia clusters with plausible biological roles and identified differences between AD and 

control individuals within microglial phenotypes. The depth of our dataset also allowed us to 

investigate the diversity of subclusters within the microglia cluster typically annotated as 

“homeostatic”. We found a homeostatic marker enriched population unique to AD which may 

hold clues to early or subtle microglial changes attributable to AD pathology. In addition to 

homeostatic and inflammatory phenotypes described previously, we uncovered microglial 

subpopulations with distinct transcriptomic profiles that provide new avenues for hypotheses 

testing in future studies of AD mechanisms.  

 

Results:  

Fluorescence-activated nuclei sorting for PU.1 expression enriches microglia 

nuclei 20-fold. We enriched the nuclei isolated from post-mortem human brain for microglia 

using fluorescence-activated nuclei sorting (FANS) for expression of the myeloid specific 

transcription factor (PU.1; Figure S1). FANS plots of the PU.1 staining and controls are 

demonstrated in Figure S1A,B). To confirm that PU.1 FANS was effective, we isolated and 

sequenced nuclei with and without PU.1 FANS (N=4). We analyzed similar numbers of total 

nuclei in the unsorted (46,085; Figure S1C) and PU.1 sorted (41,488; Figure S1D) datasets. 

The PU.1 sorted dataset contained 20X more microglia nuclei defined by high expression of C3, 

CD74, C1QB, CX3CR1, and SPI1 (23,310 microglia nuclei) than the unsorted dataset (1,032 

microglia nuclei; Figure S1C,D). The microglia nuclei observed in the PU.1 sorted dataset also 

demonstrate further complexity as evidenced by more microglia clusters (Figure S1D).  

We next applied PU.1 FANS to a cohort of 22 individuals (Figure 1A). After PU.1 FANS, 

samples retain a variety of non-myeloid cell types (Figure 1B) while providing clear resolution of 
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clusters demonstrating distinct microglia gene expression patterns (63% of the nuclei; Figure 

1C). This dataset is the largest microglia per sample dataset generated thus far, including 

compared to other published datasets that have used alternative enrichment techniques. Gene 

expression of cell type marker genes demonstrates that the clusters identified as microglia (1, 2, 

3, 5, 16, and 17) in the dataset have high expression of microglia markers and do not express 

canonical marker genes of other cell types (Figure 1D). Detailed gene expression plots of both 

microglia markers (Figure S2), and astrocyte or peripheral monocyte markers (Figure S3) 

demonstrate high expression of microglia genes in the microglia subset dataset across all 

subclusters and the lack of other cell type and peripheral markers. 

Complexity of microglia states. The initial dataset consisted of 205,226 nuclei, with 

200,948 nuclei (98%) passing QC and doublet removal. Of those, 127,371 were identified as 

microglia (Figure 1D, Figure S2), with an average of 5,790 nuclei per individual. Cluster analysis 

of nuclei with microglia-like expression identified 10 clusters (Figure 2A) characterized by 

differentially expressed genes (DEGs) comparing the cluster to all other nuclei (Figure 2B). 

Using gene set enrichment analysis (GSEA), we determined the enrichment of biological 

pathways in each cluster (Figure 2C). There was little to no overlap in the DEGs defining each 

cluster or the biological pathways identified by GSEA supporting the uniqueness of each cluster.  

First, we found clusters with annotations similar to microglia phenotypes previously 

described in human brain. We identified Cluster 1, the largest cluster, as the cluster enriched 

with homeostatic markers including high expression of CX3CR1 and P2RY1215,19–21. We 

abbreviate this homeostatic marker expressing cluster as “HM”. Although different in their gene 

expression, HM and Cluster 2 may have similar biological function (Figure 2B). HM was thus 

established as the basis for comparison to assess DEGs for other clusters, replicating the 

approach employed in previous  publications17,20,21 (Table S2). Cluster 4 is enriched for 

pathways involved in apoptosis, response to interferon-gamma (IFNγ), and mitochondrial and 
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respiratory functions (Figure 2C) including Alzheimer, Parkinson, and Huntington Disease 

KEGG pathways. The most highly differentially expressed gene in this cluster is FTL. Taken 

together, the profile of Cluster 4 is suggestive of a degenerative or dystrophic phenotype21. 

Cluster 7 is characterized by expression of genes involved in migration and motility (Figure 2B). 

Pathways enriched in Cluster 7 also indicate these cells are motile, with changes to 

cytoskeleton and membrane that indicate movement of processes or the cell itself (Figure 2C). 

Cluster 8 featured a canonical inflammatory phenotype with expression of classic inflammatory 

activation genes including NFkB1, RelB, and IL1b,; Figure 3B)1,25,26. GSEA revealed this cluster 

was enriched in NFκB signaling, Interferon signaling, Toll-like receptor and RIG-1 mediated 

signaling pathways indicating downstream effector inflammatory responses to stimuli (Figure 

2C). Cluster 9 is defined by genes and pathways involved in iron homeostasis and cytokine 

production (Figure 2B). This profile is consistent with senescent microglia27. Cluster 10 is 

defined by expression of genes involved in cell cycle regulation and DNA repair28,29 (Figure 2B). 

The pathways enriched in Cluster 10 confirm the relative increase of genes involved in cell cycle 

processes and a decrease of endosome and cytokine processing genes in these microglia 

(Figure 2C). As expected for microglia of varying activated and non-activated phenotypes, 

genes such as P2RY12 varied in expression across the 10 microglia subclusters, while 

microglia genes such as C3 and CD74 had more similar representation across the microglia 

subclusters (Figure 2D). 

Next, we found three clusters, Clusters 3, 5 and 6, which have not been previously 

described in human brain. These clusters were distinguished by their significantly increased 

endolysosomal network (ELN) gene expression and enrichment for ELN pathway signatures 

relative to HM microglia. We therefore annotate them collectively as ELN in this report. Cluster 3 

was defined by genes implicated in aggregate protein internalization (Figure 2B)15,16,19–21,30 

phagocytosis, and vesicle mediated transport 26. Pathways enriched in Cluster 3 include 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2021.10.25.465802doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465802
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

endosome and lysosome pathways as well as catabolism and lipid binding, but no inflammatory 

processes (Figure 2C). Genes involved in glycolysis have lower expression in Cluster 3 

differentiating it from the two other ELN clusters, suggesting these cells have not undergone the 

metabolic switch to glycolysis observed in the microglia inflammatory phenotype31. Cluster 5 

and 6 displayed an ELN signature, though also appeared metabolically active with distinct 

inflammatory characteristics. Cluster 5 had increased expression of HSP90AA1, HIF1A, and 

BAG3 in addition to other heat shock protein (HSP) genes (Figure 2B), suggesting these cells 

are responding to external stress. Genes driving glycolysis were also higher in Cluster 5 when 

compared to HM, possibly reflecting a switch to glycolysis in these cells31. The pathways 

enriched in this cluster indicate it is active in endocytosis, autophagy, and mitophagy (Figure 

3C). Cluster 6 is characterized by metabolic activity genes and stress response pathways 

similar to Cluster 5 (Fig 2C), though with an additional component of interferon signaling 

suggested by significantly higher levels of IRF3, IRF5, and IRF7. Cluster 6 also showed 

increased expression of cytosolic DNA/RNA recognition and antiviral genes including IFIT2, 

IFIT3,TRIM22 (34440633)  as well as the pattern recognition receptor CARD9, and mediators of 

the NLRP3 inflammasome25,26,32–35. Of note, unique to Cluster 6, we found that the DNA repair 

genes28 ATM, and RNASEH2B were lower in expression. While IL1b was increased in Cluster 6 

compared to HM, even higher levels of IL1b and expression of other inflammatory effector 

molecules such as NFkB were found in Cluster 8, the more canonical “inflammatory” cluster. 

Pathways enriched in Cluster 6 also support upstream inflammatory responses to danger 

associated molecular pattern stimuli such as enrichment in NOD-like receptor signaling. We 

also used alternative methodology to identify biological pathways and the links between them, 

providing validation for the endolysosomal network functions of clusters 3, 5, and 6 (Figure S4). 

Supplemental tables containing the genes driving the presence of each node in the network are 

available on Synapse.   
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Despite the role of APOE in risk and progression of AD36, to date no studies have 

defined microglia states in individuals with a specific APOE genotype. Since the majority (13/22) 

of our sample were homozygous for the APOE e3 allele, we generated a subset of our dataset 

that consisted entirely of APOE e3/e3 individuals (7 controls and 6 AD pathology; 75,018 

microglia nuclei). After re-normalizing and re-clustering, we identified 9 clusters of microglia 

(Figure S5A). These clusters were defined by genes similar to those that defined the clusters in 

the Mixed APOE genotype dataset (Figure S5B). We found that in most clusters the DEGs were 

very similar (~60% or higher match) to those in the Mixed APOE dataset (Figure S5C). The HM, 

neurodegenerative, inflammatory, cell cycle, and endolysosomal clusters were similar to those 

of the Mixed APOE cohort (Figure S5C). This suggests that the presence of multiple distinct 

ELN microglia clusters is common in the human brain even when controlling for APOE 

genotype.  

Transcription factor regulatory networks are specific to microglia clusters. To 

characterize the regulatory networks of the populations in the dataset, we identified the top 

transcription factor driven networks (regulons) controlling gene expression in each of the 

microglia clusters (Figure 3). Each cluster is defined by a specific set of regulons (Figure 3A) 

supporting the hypothesis that the differential gene expression characterizing each cluster is 

determined by transcriptional regulation mechanisms. To demonstrate the diversity of regulons 

predicted to drive gene expression in different clusters we highlight Cluster 3, Cluster 5, Cluster 

6, and Cluster 8 (Figure 3B). Each of these clusters shows a different set of regulons that 

appear as one of the top 10 for that cluster repeatedly across permutations of the analysis. For 

example, Cluster 5 shares a glycolytic and endolysosomal phenotype with Cluster 6 but does 

not share the interferon response factor regulons predicted for Cluster 6. In addition, while we 

observe IRF1 and NFKB2 regulons in Cluster 8, the canonical “inflammatory” effector cluster, 

we see additional (and different) interferon response factor regulons in Cluster 6. The top 
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regulons for other clusters also differ from each other (Figure S6). MafB, a transcription factor 

associated with anti-inflammatory gene regulation, was top of list in Cluster 313. In contrast, 

regulons directed by transcription factors typically associated with antiviral responses, IRF7, and 

to a lesser extent IRF3, were top of the list in Cluster 6 consistent with the observation that 

these cells are also enriched for nucleic acid recognition and endolysosomal pathways (Figure 

3B). Cluster 8 shows significant gene regulation by transcription factors IRF1 and NFKB2 

(Figure 3B) consistent with the inflammatory profile of this cluster. The top regulons for the 

APOE e3/e3 subset of individuals demonstrate similar unique diversity to those described in the 

larger dataset again suggesting homology across APOE genotypes (Figure S7). Together, 

these inferred gene networks and their transcription factor regulons demonstrate the unique 

diversity of the clusters identified here and provide potential regulatory targets for future studies 

to investigate.  

Microglia transcriptomic progression takes multiple paths. Experiments in model 

systems with defined stimuli have demonstrated the potential of microglia to acquire diverse 

phenotypes. However, understanding the progression and phenotypic switches acquired by 

human microglia in vivo has been challenging. The rich single cell transcriptome data set 

generated from AD and control cases was employed to investigate how microglia transcriptomic 

transitions develop by analysis using the Monocle337 trajectory inference method (Figure 4). We 

asked which cluster may be end state versus transition state as a hypothesis-generating 

exercise. The resulting branching trajectories suggest that multiple transition states radiate out 

from HM, the homeostatic marker cluster supporting the premise that “homeostatic” microglia 

may transition to multiple endpoint phenotypes in humans as predicted by model studies6,12,13. 

We found relationships between clusters that were not immediately apparent when exploring 

DEGs and GSEA alone. For example, trajectory analysis reveals a branch point where cell 

progression continues to either the autophagic stress ELN cluster (Cluster 5) or the 
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inflammatory ELN, Cluster 6 (Figure 4). Cluster 5 is adjacent to the senescent cluster (Cluster 9) 

consistent with the notion that autophagy and senescence are related biological pathways and 

endpoints. Similar to work by Nguyen et al., the motile cluster (Cluster 7) is portrayed as another 

endpoint21.   

AD cases have an increased proportion of microglia with an inflammatory ELN 

profile. Both homeostatic marker and canonical inflammatory clusters (HM and Cluster 8 

respectively) were equally represented by both AD and control brain. In contrast, we found that 

Cluster 6 had more AD nuclei than would be expected in our dataset (adjusted p=0.006), 

suggesting AD relevant processes may be represented in the profile of this cluster (Figure 5A) . 

Multiple AD GWAS have identified risk alleles associated with genes expressed in microglia or 

myeloid cells8. Utilizing a list of 46 genes in SNP loci associated with altered AD risk36,38 and a 

list of ELN genes from a GO ELN dataset, we used GSEA to assess enrichment of these gene 

sets in the 10 identified microglia clusters. We observed more AD risk genes are differentially 

expressed in Cluster 6 (Figure 5B) compared to all other clusters (adjusted p<0.001). Gene 

expression of PICALM, SORL1 and PLCG2 are significantly lower in Cluster 6 compared to the 

rest of the microglia, while other genes including APP, APOE, and BIN1 were significantly 

higher in expression (all adjusted p<0.001; Figure 5B). Cluster 6 also demonstrated significantly 

more ELN genes differentially expressed by GSEA than other clusters (data not shown). This 

finding suggests that AD is associated with an increased proportion of microglia that 

demonstrate an endolysosomal, glycolytic, and inflammatory gene expression profile. 

Additionally, these data confirm previously reported findings that the subpopulation of microglia 

proportionately altered in AD human brain differs from that identified in mouse models17,39.  We 

further sought to address whether a microglia phenotype present in healthy aging was reduced 

in AD brain. We determined that Cluster 10, the cluster differentially expressing cell cycle 

regulatory genes, is larger in control brain compared to AD brain (Mixed APOE adjusted 
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p<0.001; APOE ε3/ε3 adjusted p<0.001; Figure 5A). Cluster 10 is the smallest cluster in our 

dataset, and therefore deserves replication; however, these data suggest that AD pathology 

may involve a detectable reduction in a microglia clusters enriched for cell cycle and DNA repair 

genes. 

Transcriptomic phenotypes may correspond to microglial morphological 

phenotypes. The transcriptomic data predicts heterogeneity in microglia endolysosomal 

phenotypes in both aged control and AD brain. Immunostaining for LAMP1, a lysosomal marker, 

revealed a spectrum of lysosomal phenotypes with varying lysosomal size and number (Figure 

5C). Microglia expressing Cluster 6 markers were identified in AD brain by immunolabeling for 

PTGDS (Figure 5D) and P2RX7 (Figure 5E), both highly expressed genes in that subcluster. 

Cluster 6 and Cluster 8 microglia both also demonstrate differential expression of genes 

involved in the detection of DNA/RNA molecules suggests that microglia may be activated by 

exposure to cytosolic nucleic acids. To assess the presence of cytosolic nucleic acids in 

microglia, we immunolabeled microglia for double-stranded DNA (dsDNA; Figure 5D). We 

observed that a subset of microglia with immunoreactivity for dsDNA also contained enlarged 

lysosomes (Figure S8A,B), while other microglia in the same tissue section had normal 

lysosome size and no immunoreactivity for dsDNA (Figure S8B). These findings suggest that 

microglia heterogeneity reflected by gene expression patterns may represent specific 

morphological phenotypes that can be detected in human tissue.  

An AD specific state exists within the homeostatic marker cluster.  As described 

above, in the HM cluster, AD and aged control microglia were proportionally similar. We 

reasoned that given the known inflammaging changes associated with human brain molecular 

profiles, it could be challenging to detect AD specific signatures when studying polarized 

subpopulations in AD and aged brain tissue. We turned our attention to the complexity within 

HM. As has been previously reported, we observed that HM is the largest population17,20,21. 
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Nevertheless, this population has not been further characterized to understand the impact of AD 

on gene expression within homeostatic microglia. Our dataset provides depth of coverage and 

over 50,000 microglia enriched for homeostatic markers, enabling detection of subclusters 

within the HM microglia population. Sub-clustering HM microglia revealed seven populations 

with differential gene expression (Figure 6A). We found that in contrast to the larger microglia 

dataset, there was indeed a subcluster nearly unique to AD cases. This AD specific microglia 

sub-type, designated Subcluster 1.5 (Figure 6B); was almost exclusively composed of AD 

microglia, suggesting that it may be uniquely driven by AD pathology (adjusted p < 0.001). In 

contrast, Subcluster 1.4 was overrepresented by control nuclei (Figure 6B; adjusted p < 0.05). 

Gene expression demonstrated very high gene expression of P2RY12 in all HM subclusters 

including highest expression in Subcluster 1.5 consistent with their location in the HM cluster 

(Figure 6C). Other gene expression markers of HM Subcluster 1.5 were more specific, including 

WIPF3, PDE4B, and KCNIP that were identified as differentially expressed genes (Figure 6C). 

To begin to characterize the putative biological processes represented in these subclusters, we 

performed GSEA as above. Further, Subcluster 1.5 had a unique profile of enrichment for genes 

involved in cellular motility and calcium signaling (Figure 6D). Using immunohistochemistry, we 

validated the presence of double-positive high P2RY12 and PDE4B protein expression in 

microglia in human AD brain (Figure 6E). We additionally verified these results in our cohort of 

all APOE e3/e3 individuals. We confirmed that again, homeostatic marker microglia could be 

divided into multiple populations (Figure S9A) with distinct gene expression and that one such 

cluster was enriched in AD cases (Figure S9B). Together, these data suggest that there exists 

within the homeostatic marker population a microglia state that is increased in AD brain.   

 

Discussion: 
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This study identified ten unique microglia clusters from aged human brain. These 

included previously described homeostatic, senescent, and inflammatory microglia phenotypes, 

as well as novel clusters of transcriptional specification. We describe the diversity of microglia 

clusters with endolysosomal gene signatures one of which is enriched with nucleic acid 

recognition and interferon regulation genes. Inferred gene networks demonstrated that 

individual clusters were predicted to be driven by distinct transcription factors lending further 

support to the putative functional diversity of clusters. Using trajectory inference analysis we 

observe transitions in microglia phenotypes and predicted relationships that can be tested in 

vitro such as the association of an autophagy enriched cluster with the senescent cluster. 

Microglia identified as expressing homeostatic markers were themselves transcriptomically 

diverse. The most differentially present cluster between AD and controls was a homeostatic 

marker subcluster characterized by calcium activation, response to injury and motility pathways.      

Microglia clearance of pathologic proteins including amyloid-beta and tau are 

established features of AD pathophysiology. The endolysosomal network is critical to 

maintaining cellular homeostasis and has long been implicated in AD pathogenesis though less 

is known about the function and dysfunction of ELN components in AD microglia40. This study 

resolved microglia enriched for endolysosomal pathways into three clusters transcriptionally 

distinguished by predicted biological function. Together, three ELN clusters, Clusters 3, 5 and 6, 

represent a diversity of endocytosis, vesicle trafficking, endolysosomal and autophagosome 

pathways defined within the dataset. Impaired microglial endolysosomal function is often 

discussed in the context of insufficient amyloid clearance40,41 though may have additional 

consequences contributing to AD. The endolysosomal system in myeloid cells also plays a 

critical role in identifying and processing foreign microbes including initiation of TLR and 

interferon signaling25,42. Cluster 6 was characterized by lysosomal and vesicular function 

pathway enrichment and concomitantly increased expression of interferon regulatory factor and 
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inflammasome activation genes32,34,43.  Interferon signaling has been implicated in the response 

to amyloid fibrils contributing to synapse loss44. While there is not a single “DAM” phenotype in 

human AD, as has been well described in murine neurodegnerative models, there is a type 1 

interferon reponse cluster distinct from a dystrophic or canonical inflammatory 

phenotype14,15,30,45. We hypothesize that IRF expression here may reflect exposure to danger 

associated molecular pattern molecules including nucleic acids which was supported by the 

presence of microglia with immunoreactivity to cytosolic dsDNA and amoeboid morphology. 

These findings are in line with murine and in vitro studies which show that amyloid fibrils 

containing nucleic acids can induce a type I interferon response and subsequent synapse 

loss44. Song et al. report a key role for the ELN in nucleic acid degradation and the interferon 

response to DNA damage after release of nuclear DNA into the cytosol46 43. These in vitro 

studies underscore the role of the ELN in the resolution of cytosolic nucleic acid responses. 

Numerous studies report differential expression of AD risk genes, many of which are involved in 

the endolysosomal system36, in brain tissue from both mouse and human AD tissue compared 

to control16,17,20,21,30,47,48.  In this study we identified a microglia phenotype, Cluster 6, in which 

AD risk genes were most strongly differentially regulated and may be contributing to that 

observed differential expression. By focusing on specific microglial clusters, and thus biological 

contexts in which risk genes are regulated, we may inform efforts to understand how AD risk 

genes lead to AD. This is the first report describing a specific cluster of microglia with ELN 

profile that is both larger in AD brain and enriched for expression of genes associated with both 

AD risk and interferon activation.   

We leveraged the depth of our dataset to apply trajectory methods and infer the potential 

relationships between microglial transcriptional phenotypes. Dystrophic (Cluster 4) and 

senescent (Cluster 9) clusters emerge as “end-states” which, while requiring validation in larger 

datasets, demonstrates that computational analysis such as trajectory inference can map 
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microglial phenotypes consistent with predictions from previous empirical data6,12,13. 

Nevertheless, the nature of trajectory analysis means that these data should be viewed as 

hypothesis-generating. After observing three microglia clusters with ELN phenotypes, the 

question arose as to whether they represent three clusters along one lineage. Instead, we found 

that the autophagic stress and inflammatory ELN clusters (Cluster 5 and Cluster 6 respectively) 

represented a branch point from homeostatic clusters. Cluster 3 instead appeared to be a 

transition between homeostatic and alternate transcriptomic endpoints, the motile or dystrophic 

clusters. These findings are similar to Nguyen et al. who also demonstrate a dystrophic cluster 

as an endpoint preceded by an intermediate state21. Our analysis nominates genetic regulators 

of each cluster and together these data can be used to guide further studies to test the plasticity 

or reversibility of microglia phenotypes. We have described the transcriptomic heterogeneity as 

clusters of subpopulations, though in the living brain, microglial plasticity may manifest as a 

continuum rather than discrete populations49. Furthermore, unlike other cell types that are 

terminally differentiated, it is plausible that microglia may transition in and out of transcriptomic 

states, underscoring the “snapshot” nature of tissue omics.  

It has been more challenging to consistently identify an AD specific microglia cluster in 

the aged human AD brain than in transgenic animal AD models. This is likely in part due to the 

overlap in microglial responses to exposure to AD pathology, aging, environmental stressors as 

well as the diversity of human patients themselves. However, when we analyzed clusters that 

had not already been driven to a reactive phenotype we then detected an AD specific 

subpopulation, Subcluster 1.5, in the dataset. The most highly differentially regulated gene in 

Cluster 1.5 is PDE4b, a phosphodiesterase implicated in cognitive function50 and myeloid cell 

inflammatory activation51–53. PDE4b regulates levels of cAMP which in turn has been shown to 

modulate microglia surveillance behavior54. The enrichment of motility and calcium signaling 

pathways by GSEA may indicate responses to neuronal activity and extension of microglial 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2021.10.25.465802doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465802
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

processes active in the AD brain49. Furthermore, the elevated levels of P2RY12 would be 

consistent with a phenotype of early response to responding to damage signals and extending 

processes to injured neurons55–57. Our data underscores the heterogeneity of microglia 

expressing canonical “homeostatic” markers or included in a “homeostatic” cluster.  Differentially 

expressed genes and pathways enriched in the AD specific Subcluster 1.5 may offer clues into 

the early or subtle microglial phenotype changes in response to pathologic protein, prior to 

acquiring a more immunologically activated phenotype.  

As expected, given its frequency and strong association with AD, we observe more 

copies of the APOE ε4 allele in AD cases than controls within our sample reflecting the 

availability of tissues from our brain bank. APOE e4 is a key component to AD pathogenesis in 

many patients. Therefore, the degree of similarity between microglia subpopulations when 

comparing the mixed APOE group and the APOE ε3/ε3 cohort was notable. However, the 

limited sample size remains a caveat to drawing strong conclusions. 

Like all snRNAseq studies, there are limitations to our study. While PU.1 sorting 

provides a way to increase microglia nuclei for greater depth of resolution at an individual level, 

it potentially selects for a specific population of microglia. DEGs identified utilizing clusters 

defined by the same data are not necessarily properly controlled58, however our large dataset 

will allow others to utilize our clusters to mitigate this in the future. Although gene expression is 

a useful molecular tool for cellular subtyping, it does not always directly describe protein 

expression, localization, or activity59. Future studies assaying for a panel of proteins based upon 

the transcriptomic signatures reported here will be valuable for both validation as well as the 

spatial correlation with pathological features. Assessment of microglial phenotypes across brain 

regions can provide further context to our understanding of phenotypic heterogeneity. Another 

significant limitation is the use of autopsy brain tissue. It is possible that events just prior to 

death or post-mortem changes contribute to the expression changes measured here. To 
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mitigate the variability of tissue quality, we have only selected tissues with a pH greater than 6.0 

and PMI less than ten hours. Nevertheless, this novel work demonstrates the improved 

resolution that can be achieved in autopsy brain tissue revealing phenotypes recognized in vitro 

and in other inflammatory models, but previously unidentified in human AD brain.  

In this study we identified and assessed microglia states from isolated human post-

mortem brain microglial nuclei. Genes suggestive of an “aging signature” are expressed in all 

clusters in this study18 consistent with our older age cohort. Inflammaging60 may not only 

confound interpretations of gene expression profiles attributable to AD, but may also contribute 

to the disease mechanisms hypothesized to drive AD. Additional studies exploring differences 

between younger controls and early-onset AD may also help to explore the aging, 

inflammaging, and AD specific signatures. These data identify candidate genes and pathways 

driving microglia responses to AD across a spectrum of microglial activation phenotypes 

associated with specific transcription factor regulons. Our identification of multiple internalization 

and trafficking clusters with varying metabolic and inflammatory phenotypes provides a platform 

for further studies to replicate and investigate. Finding a homeostatic marker expressing 

subcluster that is unique to AD, while requiring replication, also suggests that AD changes and 

thus molecular pathways driving AD can be identified in cells that have not yet been fully 

explored. The cluster-specific alterations in composition, gene expression, and gene regulation 

in AD brain provide additional information to support tailored targeting of microglial physiological 

responses that will be critical moving forward in neurodegenerative disease therapeutics. 

 

Methods: 

Human Brain Tissue: Dorsolateral prefrontal cortex (dlPFC) tissue from human brains 

was obtained from the Neuropathology Core of the Alzheimer’s Disease Research Center 

(ADRC) at the University Washington (UW) following informed consent approved by the UW 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2021.10.25.465802doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465802
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Institutional Review Board (IRB). Patients (n=12) were confirmed post-mortem to have AD 

pathology (ADNC score of 2-3; Table 1). Control individuals (n=10) had low or no 

neuropathology post-mortem (ADNC score 0-1; Table 1).  

Brain samples were flash-frozen and stored at -80ºC. Criteria for inclusion included post-

mortem interval (PMI) ≤ 10hrs, low comorbid pathology (Lewy Bodies and hippocampal 

sclerosis), and a brain pH at autopsy ≥ six.  

Isolation of Nuclei for Unsorted snRNA-seq: Nuclei from brain samples were isolated 

using protocols adapted from 10X Genomics Demonstrated Protocols and De Groot et al.61. 

Briefly, four 2mm punches of dlPFC gray matter were collected using a biopsy punch (Fisher 

Scientific, Waltham, MA) into a 1.5mL microcentrifuge tube on dry ice. All buffer recipes and 

reagents can be found in Table S4. Nuclei isolation used nuclei lysis buffer (NLB). The nuclei in 

nuclei suspension solution (NSS) was layered onto 900µL of Percoll/Myelin Gradient Buffer 

(PMGB)61. The gradient was centrifuged at 950xg for 20min at 4°C with slow acceleration and 

no brake. Myelin and supernatant were aspirated and the nuclei pellet was resuspended in 

Resuspension Buffer (RB) at a concentration of 1000 nuclei/μL and proceeded immediately to 

single-nuclei RNA sequencing (snRNA-seq). 

Isolation of Nuclei for Fluorescence-activated Nuclei Sorting (FANS): Briefly, 200-250mg 

of dlPFC was collected into a 1.5ml microcentrifuge tube on dry ice. Brain tissue was 

homogenized as above. The homogenate was incubated at 4ºC under gentle agitation for 

10min, pelleted at 500xg for 7min at 4ºC and resuspended in 900µL PMGB supplemented with 

protease and phosphatase inhibitors. The suspension was gently overlaid with 300µL NSS 

supplemented with protease and phosphatase inhibitors. The gradient was centrifuged at 950xg 

for 20min at 4ºC with slow acceleration and no brake. The myelin and supernatant were 

aspirated and the nuclei pellet proceeded immediately to FANS.  
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Fluorescence Activated Nuclei Sorting (FANS): Nuclei were washed with cold FANS 

media (10% fetal bovine serum (FBS), 10mM HEPES, 100μM ATA, 10% 10X HBSS, 0.5% 

Protector RNase Inhibitor, protease and phosphatase inhibitors, and 1% saponin in nuclease-

free water) and resuspended in FANS media at a concentration of 2-2.5x106 nuclei/mL. Nuclei 

were incubated with 1% Human Fc Block (clone Fc1.3216, BD Biosciences, San Jose, CA) on 

ice for 10min. Nuclei were labeled with either anti-PU.1-PE (clone 9G7, 1:50, Cell Signaling 

Technology, Danvers, MA) or IgG-PE isotype control (clone DA1E, 1:50, Cell Signaling 

Technology) for 4hours on ice followed by three washes with cold FANS media and 

resuspended in FANS media supplemented with 10μg/mL DAPI (Sigma-Aldrich). Nuclei were 

sorted using a FACSAria III (BD Biosciences) until 30,000 PU.1-positive nuclei were collected. 

Sorted nuclei were centrifuged at 1,000xg for 10min at 4ºC. The nuclei pellet was resuspended 

in RB at a concentration of 1000 nuclei/μL and proceeded immediately to snRNA-seq. 

Single Nuclei RNA-Sequencing (snRNA-seq): Single nuclei libraries were generated 

using the Chromium Next GEM Single Cell 3ʹ GEM, Library and Gel Bead Kit v3 (10x Genomics, 

Pleasanton, CA) according to the manufacturer’s protocol and a target capture of 10,000 nuclei. 

Gene expression libraries were sequenced on the NovaSeq 6000 platform (Illumina, San Diego, 

CA).  

Alignment and Quality Control: Gene counts were obtained by aligning reads to the hg38 

genome (GRCh38-1.2.0) using CellRanger 3.0.2 software (10x Genomics). Reads mapping to 

precursor mRNA were included to account for unspliced nuclear transcripts. The majority of our 

analysis was performed in R62. Droplets from 22 PU.1 sorted samples were combined using 

Seurat v3.363. Unsorted and PU.1 sorted droplets isolated from the same 4 subjects were 

combined using Seurat and analyzed in the same manner. Droplets containing less than 350 

UMIs, less than 350 genes, or greater than 1% mitochondrial genes were excluded from 

analysis. Ambient RNA was removed from the remaining droplets using SoupX64. Droplets 
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containing multiple nuclei were scored using Scrublet65, and removed. 200,948 nuclei with an 

average of 1,787 genes per nucleus remained in the dataset for further analysis.  

Normalization and Cell Clustering: Normalization and clustering of the nuclei were 

performed using Seurat v3.363. Data were normalized for read depth and mitochondrial gene 

content was regressed out using Seurat’s SCTransform66. Individual sample variability was 

removed using Seurat’s Anchoring and Integration functions63. The top 5000 variable genes 

were kept. 15 principal components (PCs) were used to create a shared nearest neighbors 

graph with k=20. The modularity function was optimized using a resolution of 0.2 to determine 

clusters using the Louvain algorithm with multilevel refinement to determine broad cell-types. 

Each cluster met a minimum threshold of 30 defining DEGs and was comprised of nuclei from 

>10% of the cohort (more than two individuals). 

Clusters were annotated for cell-type using manual evaluation for a set of known genetic 

markers67. A new Seurat object was made containing only the microglia nuclei (N = 127,371). 

Normalization, individual variability removal, integration, and shared nearest neighbors graph 

creation were repeated as above on the microglia nuclei. 20 PCs were chosen to account for a 

significant amount of the variance. Clusters were determined using the Leiden algorithm68 with 

method=igraph and weights=true. Clusters were highly conserved across analysis by 

Louvain, Louvain with multilevel refinement, and Leiden algorithms. HM subclustering for both 

the 22 sample dataset, and the APOE !3/!3 allele dataset occurred after normalization, 

individual variability removal and integration as before and was performed using 10 PCs and the 

Louvain with multilevel refinement algorithm. Distribution of nuclei within each cluster was 

calculated using the ‘chisq.test’ function in R62 to compare the actual percentage of nuclei 

from either the AD or control group within the cluster to the expected proportion of nuclei that 
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would be contributed based on dataset composition. P-values from the chi-squared tests were 

adjusted using FDR and considered significant if adjusted p<0.05.  

snRNA-seq Differential Gene Expression and Gene Set Enrichment Analyses: 

Differential gene expression analysis of the clusters was performed with the MAST algorithm. 

Genes tested had expression in at least 25% of the nuclei in the cluster. Differentially expressed 

genes (DEGs) had an FDR adjusted p-value<0.05 and a log fold change>1.25. Cluster 1 was 

annotated as inactivated, often referred to as “homeostatic” in single nuclei studies of microglia. 

Differential gene expression analysis was repeated as above comparing each other cluster to 

Cluster 1. Gene set enrichment analysis (GSEA) was performed in ClusterProfiler69 modified to 

use a set seed for reproducibility, using the GO, KEGG and Biocarta pathway sets, version 7.2. 

Enriched pathways had an FDR adjusted p-value<0.05. We considered pathways to be 

representative if significant results included similar genes and biological functions in at least two 

of the three major databases (GO, KEGG, Reactome). 

Gene Ontology Biological Process Clustering:  A complimentary approach to gene set 

enrichment analysis (GSEA) is to perform biological process ontology clustering to identify a 

more extensive set of terms associated with the gene list. To further characterize the ELN 

clusters (3, 5, and 6) we implemented this approach to get a more refined examination of the 

biologically linked process driven by each cluster. We employed several different approaches to 

perform this analysis, ultimately choosing the Cytoscape network clustering application 

ClueGO70,71, which was employed extensively in recent years for this purpose72–75. The 

advantage of this network approach is that GO term enrichment is selected based upon 

networks derived from kappa-score between terms based on similarity of genetic contribution to 

the particular term. This creates a network of genetically linked processes that goes beyond a 

singular GO term hit, providing greater confidence that a basic biological process is being 

impacted based on the differential expression of a particular set of genes. Clusters 3, 5 and 6 
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were each independently submitted for analysis, using a kappa-threshold of 0.4 to optimize the 

biological process connections. Each term drawn into the network was initially filtered for 

multiple testing corrections threshold of p<0.05, and hierarchically weighted for terms with a 

Benjamini-Hochberg correction value of p<0.01. As this procedure is performed for validation 

and visualization, we trimmed networks of lesser ranked terms to permit ease of visualization. 

Trajectory and Lineage Analysis: Trajectory analysis was performed using Monocle337 

on multiple permutations of our downsampled dataset. The data were downsampled to 1000, 

2000, 3000, or 5000 nuclei per cluster, transferred to a cell dataset (cds) object and Monocle3 

“learn_graph” was run. PCA and UMAP embeddings were extracted from the Seurat object. 

We applied the algorithm both with and without a defined starting point. The 5000 nuclei per 

cluster downsampled data began to break down the ability of Monocle to form a consistent 

trajectory, where the 1000, 2000, and 3000 multiple permutations consistently formed 

something similar to the representative image in Figure 5 (3000 nuclei per cluster). 

Gene Regulatory Network Inference: Regulons were inferred using the SCENIC 

workflow in python (pySCENIC)76,77. We randomly selected 2000, 3000, or 5000 nuclei in each 

cluster or if they have less than this number all the nuclei in the cluster to reduce the 

computational time and have proportional representation of all the clusters. We made 5 subsets 

of each combination and repeated the analysis twice for each subset to assess the consistency 

of the regulons in the analysis. First, we used normalized counts with highly variable genes to 

generate the co-expressing regulatory network modules using the machine learning algorithm 

GRNBoost2 with function “grn” and default settings78. Second, the modules were filtered using 

the “-ctx” function, which uses cis-regulatory motif analysis {RcisTarget} to keep only modules 

enriched for putative target genes of the transcription factor. Regulons are identified by 

combining multiple modules for a single transcription factor. Third, the AUCell function was used 

to calculate the regulon activity for each nucleus. Regulon specificity scores were calculated for 
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each regulon in every cluster. Ranking specificity scores identified the top 10 regulons for a 

specific cluster for a given subset of the dataset, and the consistency of the findings across 

subsets. 

Immunostaining of Human Tissue: Dissected tissue from the dorsolateral prefrontal 

cortex of the 22 cases in the cohort were fixed with paraformaldehyde and paraffin embedded. 

Samples were sectioned at 15um and deparaffinized prior to immunostaining. Slides were 

boiled in citrate buffer (Sigma CAT#C9999) for 20 minutes then transferred into blocking buffer 

(10% donkey serum, 0.1% Trition X-100, and 0.05% Tween-20 in TBS) for one hour at room 

temperature. Slides were incubated in primary antibodies (Anti-LAMP1 1:100 Invitrogen 

CAT#14-1079-80; anti-Iba-1 1:250 Abcam CAT#ab5076; anti-dsDNA 1:250 Millipore 

CAT#MAB1293; anti-PTDGS/PGD2 R&D Systems CAT#MAB10099 1:100; anti-P2RX7 Santa 

Cruz CAT#sc-514962 1:100; anti-P2RY12 Alomone CAT#APR-012 1:50; anti-PDE4B LSBio 

CAT#LS-C173292-100 1:50) overnight at 4ºC. Slides were rinsed three times in TBS-T for five 

minutes prior to secondary antibody (Thermofisher Alexa Fluor 488 Donkey anti-Goat CAT# 

A11055; Thermofisher Alexa Fluor 555 Donkey anti-Mouse CAT#A31570; Alexa Fluor 555 

Donkey anti-Rabbit 555 CAT#A31572; Alexa Fluor 647 Donkey anti-Mouse CAT#A31571; or 

Alexa Fluor 647 Donkey anti-Rabbit CAT#A32795) incubation for one hour at room temperature. 

Slides were then stained with DAPI (1:1000 Millipore CAT#D8417) for five minutes followed by 

three, five minute, TBS-T washes. True Black (Fisher Scientific CAT#NC1125051) diluted 1:20 

in 70% ethanol was added to the slides for 50 seconds, followed by two additional five minute 

washes in TBS prior to being mounted with Fluoromount-G (Southern Biotech CAT#0100-01). 

Slides were imaged using either an Olympus Fluoview-1000 confocal microscope, or a spinning 

disk confocal microscope (Nikon A1R with Yokogawa W1 spinning disk head) with 40X and 

100X oil objectives, and the maximum projection of z-stack images were generated. Images 

were despeckled using Fiji. 
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Code availability: The scripts used to generate our analyses are available at 

(https://github.com/keprater/jayadevlab_pu.1_project). The container needed to run the scripts 

with the same Seurat and other package versions as are used in the code is available for 

download here: 

https://hub.docker.com/layers/jayadevlab/keprater/jayadevlab/6.3/images/sha256-

d9b8f6fb69261fbdd45b09b2603c262497d00f09e7310951024a42761b8a6670?context=explore.  

Data availability: The data are available from Synapse. 
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Figures and Tables: 

 

Table 1. Post-mortem brain sample demographics. 

 

Ctrl = Control, AD = Alzheimer’s Disease pathology, Avg. Age = average years of age at death, 
PMI = post-mortem interval in hours, ADNC = Alzheimer’s Disease Neuropathic Change, 
APOE Genotypes: APOE alleles 2/3 (E2/3), APOE alleles 3/3 (E3/3), APOE alleles 3/4 
(E3/4), APOE alleles 4/4 (E4/4) 

 

Group Males Females Avg. Age Avg. PMI ADNC E2/3 E3/3 E3/4 E4/4
Ctrl 4 6 85.9 5.53 0-1 2 7 1
AD 3 9 86.5 4.67 2-3 6 5 1

Total 7 15 86.23 5.42 2 13 6 1
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Figure 1. PU.1 enrichment yields a large dataset of microglia nuclei. A) Experimental 

design of 22 post-mortem human prefrontal cortices. (Created in part with BioRender.com) 

B) UMAP of the 22 subject dataset demonstrates that while other cell types including 
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neurons, astrocytes, oligodendrocytes (Oligs) and their progenitors (OPC) as well as 

endothelial cells are present, six clusters including the three largest are composed of 

microglia nuclei. C) Representative cell type marker genes (x-axis) with the percent of nuclei 

that express a gene (size of dot) in each cluster (distributed along Y axis) and the average 

expression level (color intensity) are shown for microglia (CX3CR1, C1QB, CD74, and C3), 

astrocytes (GFAP), neurons (MAP2), OPCs (COL20A1), oligodendrocytes (ST18), and 

endothelial cells (ITIH5) for each cluster. D) Gene expression of a wider set of cell type 

marker genes demonstrate that clusters 1, 2, 3, 7, 16, and 17 are composed of microglia. 
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Figure 2. Microglia states have diverse gene expression and biological pathway 

correlates. A) UMAP. B) Top 25 genes from each cluster. C) GSEA analysis suggests 

distinct biological pathways. D) Canonical microglia marker gene expression in the microglia 

dataset versus cell types sorted during PU.1 enrichment. (NES = Normalized Enrichment 

Score) 
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Figure 3. Transcription factor regulatory networks are specific to microglia phenotypes. 

A) Heatmap of area under the curve (AUC) of the transcription factor (TF) regulon activity in 

clusters. B) Percentage of instances where transcription factor regulons occured in the top 

ten regulon specificity scores per cluster (out of 27 permutations).   
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Figure 4. Microglia transcriptomic progression may take multiple paths. Monocle trajectory 

inference applied to the microglia dataset demonstrates that multiple phenotypic options 

radiate outward from Cluster 1. Each branch has several potential endpoints suggesting 

microglia may not progress along a single staged linear trajectory, but instead proceed 

through one of several transition states to reach various transcriptomic end phenotypes. 
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Figure 5. Cluster 6 demonstrates enrichment of AD risk genes and suggests the 

presence of dysregulated lysosomal and cytosolic DNA regulation in microglia in AD. 

A) Cluster 6 is significantly increased in AD brain, whereas Cluster 10 is increased in control 

samples. B) Heatmap of AD associated risk gene expression across microglia clusters show 

stronger differential expression in Cluster 6. C) Representative images from an AD case 

demonstrate microglia (green, Iba-1) with heterogeneity in morphology and Lamp-1 signal. 
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Examples of a ramified (top arrow) and greater lysosome (magenta, Lamp-1) signal and an 

“activated” or less-ramified phenotype (bottom arrow). D) Representative microglia (Iba-1 

green) with high PTGDS (red) expression a Cluster 6 differentially expressed gene in an AD 

case. E) Representative microglia (Iba-1 green) with high P2RX7 (magenta) expression a 

Cluster 6 differentially expressed gene in an AD case.  F) Representative microglia with 

inreased lysosomal signal (Lamp-1 signal, white) and cytosolic dsDNA (red) in an AD case. 

**corrected p<0.01 
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Figure 6. Within microglia expressing homeostatic markers there is a subcluster uniquely 

enriched in AD brain samples. A) Subclustering of Cluster 1 homeostatic microglia 

revealed 7 subpopulations defined by differential gene expression. B) Subcluster 1.5 is 

greatly expanded in AD brain samples (p<0.001), while Cluster 1.4 is increased in control 

brain samples (p<0.05). C) Gene expression of P2RY12 demonstrates high expression 

across the HM subclusters, with highest expression in Subcluster 1.5. Genes differentially 

expressed in Subcluster 1.5 such as WIPF3, PDE4B, and KCNIP also demonstrate high 

expression. D) Pathway enrichment in Subcluster 1.5 demonstrates unique enrichment for 

motility, ion channel activity, and neuron-related processes. D) Immunohistochemistry 
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validates the presence of double-positive high P2RY12 and PDE4B expressing microglia in 

AD brain. NES = Normalized Enrichment Score *corrected p<0.05 **corrected p<0.01 
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