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Abstract:

Microglia contribute to Alzheimer’s Disease (AD) progression and are candidate therapeutic
targets. Human microglia exhibit an array of transcriptional phenotypes implying that accurate
manipulation of microglial function will require clarity of their molecular states and context
dependent regulation. To increase the number of microglia analyzed per subject we employed
fluorescence activated nuclei sorting prior to single-nucleus RNA-seq on human prefrontal
cortices. We observed microglia phenotypes previously unrecognized in human brain gene
expression studies and mapped their transcriptomic relationships by trajectory inference. Three
clusters were enriched for endolysosomal pathways, one of which showed differential
expression of AD GWAS genes in addition to genes implicated in nucleic acid detection and
interferon signaling. Analysis of the “homeostatic” microglia cluster revealed a uniquely AD
subcluster. Our study demonstrates the value of deeply profiling microglia to explore the

biological implications of microglia transcriptomic diversity.
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Introduction:

As the most common form of aging-related cognitive decline, Alzheimer’s Disease (AD)
affects millions of individuals worldwide. AD is pathologically characterized by the presence of
extracellular amyloid-beta plaques, neuronal intracellular neurofibrillary tangles, and
neuroinflammation. Microglia are the resident innate immune cells of the brain, and contribute to
the neuroinflammatory processes hypothesized to promote AD pathophysiology'®. In AD brain,
microglia release inflammatory factors with non-cell-autonomous effects, lose protective
homeostatic function, and initiate aberrant phagocytosis of synapses and neurons, all of which
influence the pathophysiology behind cognitive decline>®~'". As such, microglia inflammatory
responses have potential as future therapeutic targets. Yet large gaps remain in our
understanding of microglia responses in AD brain.

In line with their known diversity of function, microglia assume a spectrum of
phenotypes. These can be differentiated by morphology, physiology and gene or protein
expression patterns, though most of this understanding has come from model systems®'2-16,
Less is known about the heterogeneity of microglia states within the adult human brain in health
and neurodegenerative disease. Single cell and single nuclei RNA sequencing (snRNAseq)
studies of fresh and frozen human cortical tissue have revealed the diversity of microglia
phenotypes in the context of AD and other brain pathologies'’*. Distinguishing
transcriptomically distinct clusters enables the identification of candidate genetic and epigenetic
factors regulating specific phenotypes which can be leveraged for precision therapeutics
approaches. However standard snRNAseq methods have been restricted by the small number
of microglia assayed per individual limiting the potential to map the full range of microglial
subpopulations. We posited that cellular processes and regulatory factors contributing to
“responsive” microglia profiles would be uncovered by improved resolution of microglia

phenotypes in human brain. To enhance characterization of the changes occurring in microglia
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phenotypes in AD, we employed a microglia enrichment technique for single nuclei RNAseq.
We generated microglia transcriptional profiles from a cohort of 22 individuals, annotated
microglia clusters with plausible biological roles and identified differences between AD and
control individuals within microglial phenotypes. The depth of our dataset also allowed us to
investigate the diversity of subclusters within the microglia cluster typically annotated as
“homeostatic”. We found a homeostatic marker enriched population unique to AD which may
hold clues to early or subtle microglial changes attributable to AD pathology. In addition to
homeostatic and inflammatory phenotypes described previously, we uncovered microglial
subpopulations with distinct transcriptomic profiles that provide new avenues for hypotheses

testing in future studies of AD mechanisms.

Results:

Fluorescence-activated nuclei sorting for PU.1 expression enriches microglia
nuclei 20-fold. We enriched the nuclei isolated from post-mortem human brain for microglia
using fluorescence-activated nuclei sorting (FANS) for expression of the myeloid specific
transcription factor (PU.1; Figure S1). FANS plots of the PU.1 staining and controls are
demonstrated in Figure S1A,B). To confirm that PU.1 FANS was effective, we isolated and
sequenced nuclei with and without PU.1 FANS (N=4). We analyzed similar numbers of total
nuclei in the unsorted (46,085; Figure S1C) and PU.1 sorted (41,488; Figure S1D) datasets.
The PU.1 sorted dataset contained 20X more microglia nuclei defined by high expression of C3,
CD74, C1QB, CX3CR1, and SPI1 (23,310 microglia nuclei) than the unsorted dataset (1,032
microglia nuclei; Figure S1C,D). The microglia nuclei observed in the PU.1 sorted dataset also

demonstrate further complexity as evidenced by more microglia clusters (Figure S1D).

We next applied PU.1 FANS to a cohort of 22 individuals (Figure 1A). After PU.1 FANS,

samples retain a variety of non-myeloid cell types (Figure 1B) while providing clear resolution of
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clusters demonstrating distinct microglia gene expression patterns (63% of the nuclei; Figure
1C). This dataset is the largest microglia per sample dataset generated thus far, including
compared to other published datasets that have used alternative enrichment techniques. Gene
expression of cell type marker genes demonstrates that the clusters identified as microglia (1, 2,
3, 5, 16, and 17) in the dataset have high expression of microglia markers and do not express
canonical marker genes of other cell types (Figure 1D). Detailed gene expression plots of both
microglia markers (Figure S2), and astrocyte or peripheral monocyte markers (Figure S3)
demonstrate high expression of microglia genes in the microglia subset dataset across all

subclusters and the lack of other cell type and peripheral markers.

Complexity of microglia states. The initial dataset consisted of 205,226 nuclei, with
200,948 nuclei (98%) passing QC and doublet removal. Of those, 127,371 were identified as
microglia (Figure 1D, Figure S2), with an average of 5,790 nuclei per individual. Cluster analysis
of nuclei with microglia-like expression identified 10 clusters (Figure 2A) characterized by
differentially expressed genes (DEGs) comparing the cluster to all other nuclei (Figure 2B).
Using gene set enrichment analysis (GSEA), we determined the enrichment of biological
pathways in each cluster (Figure 2C). There was little to no overlap in the DEGs defining each

cluster or the biological pathways identified by GSEA supporting the uniqueness of each cluster.

First, we found clusters with annotations similar to microglia phenotypes previously
described in human brain. We identified Cluster 1, the largest cluster, as the cluster enriched
with homeostatic markers including high expression of CX3CR1 and P2RY12">"92' We
abbreviate this homeostatic marker expressing cluster as “HM”. Although different in their gene
expression, HM and Cluster 2 may have similar biological function (Figure 2B). HM was thus
established as the basis for comparison to assess DEGs for other clusters, replicating the
approach employed in previous publications'?%2! (Table S2). Cluster 4 is enriched for

pathways involved in apoptosis, response to interferon-gamma (IFNy), and mitochondrial and
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respiratory functions (Figure 2C) including Alzheimer, Parkinson, and Huntington Disease
KEGG pathways. The most highly differentially expressed gene in this cluster is FTL. Taken
together, the profile of Cluster 4 is suggestive of a degenerative or dystrophic phenotype?'.
Cluster 7 is characterized by expression of genes involved in migration and motility (Figure 2B).
Pathways enriched in Cluster 7 also indicate these cells are motile, with changes to
cytoskeleton and membrane that indicate movement of processes or the cell itself (Figure 2C).
Cluster 8 featured a canonical inflammatory phenotype with expression of classic inflammatory
activation genes including NFxB1, RelB, and IL1p,; Figure 3B)"?*?. GSEA revealed this cluster
was enriched in NFkB signaling, Interferon signaling, Toll-like receptor and RIG-1 mediated
signaling pathways indicating downstream effector inflammatory responses to stimuli (Figure
2C). Cluster 9 is defined by genes and pathways involved in iron homeostasis and cytokine
production (Figure 2B). This profile is consistent with senescent microglia®’. Cluster 10 is
defined by expression of genes involved in cell cycle regulation and DNA repair®®?® (Figure 2B).
The pathways enriched in Cluster 10 confirm the relative increase of genes involved in cell cycle
processes and a decrease of endosome and cytokine processing genes in these microglia
(Figure 2C). As expected for microglia of varying activated and non-activated phenotypes,
genes such as P2RY12 varied in expression across the 10 microglia subclusters, while
microglia genes such as C3 and CD74 had more similar representation across the microglia

subclusters (Figure 2D).

Next, we found three clusters, Clusters 3, 5 and 6, which have not been previously
described in human brain. These clusters were distinguished by their significantly increased
endolysosomal network (ELN) gene expression and enrichment for ELN pathway signatures
relative to HM microglia. We therefore annotate them collectively as ELN in this report. Cluster 3
was defined by genes implicated in aggregate protein internalization (Figure 2B)'>16.19-21.30

phagocytosis, and vesicle mediated transport ?°. Pathways enriched in Cluster 3 include
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endosome and lysosome pathways as well as catabolism and lipid binding, but no inflammatory
processes (Figure 2C). Genes involved in glycolysis have lower expression in Cluster 3
differentiating it from the two other ELN clusters, suggesting these cells have not undergone the
metabolic switch to glycolysis observed in the microglia inflammatory phenotype®'. Cluster 5
and 6 displayed an ELN signature, though also appeared metabolically active with distinct
inflammatory characteristics. Cluster 5 had increased expression of HSP90AA1, HIF1A, and
BAG3 in addition to other heat shock protein (HSP) genes (Figure 2B), suggesting these cells
are responding to external stress. Genes driving glycolysis were also higher in Cluster 5 when
compared to HM, possibly reflecting a switch to glycolysis in these cells®'. The pathways
enriched in this cluster indicate it is active in endocytosis, autophagy, and mitophagy (Figure
3C). Cluster 6 is characterized by metabolic activity genes and stress response pathways
similar to Cluster 5 (Fig 2C), though with an additional component of interferon signaling
suggested by significantly higher levels of IRF3, IRF5, and IRF7. Cluster 6 also showed
increased expression of cytosolic DNA/RNA recognition and antiviral genes including IFIT2,
IFIT3, TRIM22 (34440633) as well as the pattern recognition receptor CARD9, and mediators of
the NLRP3 inflammasome?®>?°*2-3_Of note, unique to Cluster 6, we found that the DNA repair
genes?® ATM, and RNASEH2B were lower in expression. While /L1 was increased in Cluster 6
compared to HM, even higher levels of IL1/ and expression of other inflammatory effector
molecules such as NFkB were found in Cluster 8, the more canonical “inflammatory” cluster.
Pathways enriched in Cluster 6 also support upstream inflammatory responses to danger
associated molecular pattern stimuli such as enrichment in NOD-like receptor signaling. We
also used alternative methodology to identify biological pathways and the links between them,
providing validation for the endolysosomal network functions of clusters 3, 5, and 6 (Figure S4).
Supplemental tables containing the genes driving the presence of each node in the network are

available on Synapse.
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Despite the role of APOE in risk and progression of AD*, to date no studies have
defined microglia states in individuals with a specific APOE genotype. Since the majority (13/22)
of our sample were homozygous for the APOE €3 allele, we generated a subset of our dataset
that consisted entirely of APOE £3/¢3 individuals (7 controls and 6 AD pathology; 75,018
microglia nuclei). After re-normalizing and re-clustering, we identified 9 clusters of microglia
(Figure S5A). These clusters were defined by genes similar to those that defined the clusters in
the Mixed APOE genotype dataset (Figure S5B). We found that in most clusters the DEGs were
very similar (~60% or higher match) to those in the Mixed APOE dataset (Figure S5C). The HM,
neurodegenerative, inflammatory, cell cycle, and endolysosomal clusters were similar to those
of the Mixed APOE cohort (Figure S5C). This suggests that the presence of multiple distinct
ELN microglia clusters is common in the human brain even when controlling for APOE

genotype.

Transcription factor regulatory networks are specific to microglia clusters. To
characterize the regulatory networks of the populations in the dataset, we identified the top
transcription factor driven networks (regulons) controlling gene expression in each of the
microglia clusters (Figure 3). Each cluster is defined by a specific set of regulons (Figure 3A)
supporting the hypothesis that the differential gene expression characterizing each cluster is
determined by transcriptional regulation mechanisms. To demonstrate the diversity of regulons
predicted to drive gene expression in different clusters we highlight Cluster 3, Cluster 5, Cluster
6, and Cluster 8 (Figure 3B). Each of these clusters shows a different set of regulons that
appear as one of the top 10 for that cluster repeatedly across permutations of the analysis. For
example, Cluster 5 shares a glycolytic and endolysosomal phenotype with Cluster 6 but does
not share the interferon response factor regulons predicted for Cluster 6. In addition, while we
observe IRF1 and NFKB2 regulons in Cluster 8, the canonical “inflammatory” effector cluster,

we see additional (and different) interferon response factor regulons in Cluster 6. The top
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regulons for other clusters also differ from each other (Figure S6). MafB, a transcription factor
associated with anti-inflammatory gene regulation, was top of list in Cluster 3'. In contrast,
regulons directed by transcription factors typically associated with antiviral responses, IRF7, and
to a lesser extent IRF3, were top of the list in Cluster 6 consistent with the observation that
these cells are also enriched for nucleic acid recognition and endolysosomal pathways (Figure
3B). Cluster 8 shows significant gene regulation by transcription factors IRF1 and NFKB2
(Figure 3B) consistent with the inflammatory profile of this cluster. The top regulons for the
APOE ¢£3/¢3 subset of individuals demonstrate similar unique diversity to those described in the
larger dataset again suggesting homology across APOE genotypes (Figure S7). Together,
these inferred gene networks and their transcription factor regulons demonstrate the unique
diversity of the clusters identified here and provide potential regulatory targets for future studies

to investigate.

Microglia transcriptomic progression takes multiple paths. Experiments in model
systems with defined stimuli have demonstrated the potential of microglia to acquire diverse
phenotypes. However, understanding the progression and phenotypic switches acquired by
human microglia in vivo has been challenging. The rich single cell transcriptome data set
generated from AD and control cases was employed to investigate how microglia transcriptomic
transitions develop by analysis using the Monocle3*’ trajectory inference method (Figure 4). We
asked which cluster may be end state versus transition state as a hypothesis-generating
exercise. The resulting branching trajectories suggest that multiple transition states radiate out
from HM, the homeostatic marker cluster supporting the premise that “homeostatic” microglia
may transition to multiple endpoint phenotypes in humans as predicted by model studies®'*"3.
We found relationships between clusters that were not immediately apparent when exploring
DEGs and GSEA alone. For example, trajectory analysis reveals a branch point where cell

progression continues to either the autophagic stress ELN cluster (Cluster 5) or the
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inflammatory ELN, Cluster 6 (Figure 4). Cluster 5 is adjacent to the senescent cluster (Cluster 9)
consistent with the notion that autophagy and senescence are related biological pathways and
endpoints. Similar to work by Nguyen et al., the motile cluster (Cluster 7) is portrayed as another

endpoint®'.

AD cases have an increased proportion of microglia with an inflammatory ELN
profile. Both homeostatic marker and canonical inflammatory clusters (HM and Cluster 8
respectively) were equally represented by both AD and control brain. In contrast, we found that
Cluster 6 had more AD nuclei than would be expected in our dataset (adjusted p=0.006),
suggesting AD relevant processes may be represented in the profile of this cluster (Figure 5A) .
Multiple AD GWAS have identified risk alleles associated with genes expressed in microglia or
myeloid cells®. Utilizing a list of 46 genes in SNP loci associated with altered AD risk*** and a
list of ELN genes from a GO ELN dataset, we used GSEA to assess enrichment of these gene
sets in the 10 identified microglia clusters. We observed more AD risk genes are differentially
expressed in Cluster 6 (Figure 5B) compared to all other clusters (adjusted p<0.001). Gene
expression of PICALM, SORL1 and PLCG2 are significantly lower in Cluster 6 compared to the
rest of the microglia, while other genes including APP, APOE, and BIN1 were significantly
higher in expression (all adjusted p<0.001; Figure 5B). Cluster 6 also demonstrated significantly
more ELN genes differentially expressed by GSEA than other clusters (data not shown). This
finding suggests that AD is associated with an increased proportion of microglia that
demonstrate an endolysosomal, glycolytic, and inflammatory gene expression profile.
Additionally, these data confirm previously reported findings that the subpopulation of microglia
proportionately altered in AD human brain differs from that identified in mouse models'’>°. We
further sought to address whether a microglia phenotype present in healthy aging was reduced
in AD brain. We determined that Cluster 10, the cluster differentially expressing cell cycle

regulatory genes, is larger in control brain compared to AD brain (Mixed APOE adjusted
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p<0.001; APOE ¢€3/¢3 adjusted p<0.001; Figure 5A). Cluster 10 is the smallest cluster in our
dataset, and therefore deserves replication; however, these data suggest that AD pathology
may involve a detectable reduction in a microglia clusters enriched for cell cycle and DNA repair

genes.

Transcriptomic phenotypes may correspond to microglial morphological
phenotypes. The transcriptomic data predicts heterogeneity in microglia endolysosomal
phenotypes in both aged control and AD brain. Immunostaining for LAMP1, a lysosomal marker,
revealed a spectrum of lysosomal phenotypes with varying lysosomal size and number (Figure
5C). Microglia expressing Cluster 6 markers were identified in AD brain by immunolabeling for
PTGDS (Figure 5D) and P2RX7 (Figure 5E), both highly expressed genes in that subcluster.
Cluster 6 and Cluster 8 microglia both also demonstrate differential expression of genes
involved in the detection of DNA/RNA molecules suggests that microglia may be activated by
exposure to cytosolic nucleic acids. To assess the presence of cytosolic nucleic acids in
microglia, we immunolabeled microglia for double-stranded DNA (dsDNA; Figure 5D). We
observed that a subset of microglia with immunoreactivity for dsDNA also contained enlarged
lysosomes (Figure S8A,B), while other microglia in the same tissue section had normal
lysosome size and no immunoreactivity for dsDNA (Figure S8B). These findings suggest that
microglia heterogeneity reflected by gene expression patterns may represent specific

morphological phenotypes that can be detected in human tissue.

An AD specific state exists within the homeostatic marker cluster. As described
above, in the HM cluster, AD and aged control microglia were proportionally similar. We
reasoned that given the known inflammaging changes associated with human brain molecular
profiles, it could be challenging to detect AD specific signatures when studying polarized
subpopulations in AD and aged brain tissue. We turned our attention to the complexity within

HM. As has been previously reported, we observed that HM is the largest population'”2%2",
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Nevertheless, this population has not been further characterized to understand the impact of AD
on gene expression within homeostatic microglia. Our dataset provides depth of coverage and
over 50,000 microglia enriched for homeostatic markers, enabling detection of subclusters
within the HM microglia population. Sub-clustering HM microglia revealed seven populations
with differential gene expression (Figure 6A). We found that in contrast to the larger microglia
dataset, there was indeed a subcluster nearly unique to AD cases. This AD specific microglia
sub-type, designated Subcluster 1.5 (Figure 6B); was almost exclusively composed of AD
microglia, suggesting that it may be uniquely driven by AD pathology (adjusted p < 0.001). In
contrast, Subcluster 1.4 was overrepresented by control nuclei (Figure 6B; adjusted p < 0.05).
Gene expression demonstrated very high gene expression of P2RY12 in all HM subclusters
including highest expression in Subcluster 1.5 consistent with their location in the HM cluster
(Figure 6C). Other gene expression markers of HM Subcluster 1.5 were more specific, including
WIPF3, PDE4B, and KCNIP that were identified as differentially expressed genes (Figure 6C).
To begin to characterize the putative biological processes represented in these subclusters, we
performed GSEA as above. Further, Subcluster 1.5 had a unique profile of enrichment for genes
involved in cellular motility and calcium signaling (Figure 6D). Using immunohistochemistry, we
validated the presence of double-positive high P2RY12 and PDE4B protein expression in
microglia in human AD brain (Figure 6E). We additionally verified these results in our cohort of
all APOE £3/¢3 individuals. We confirmed that again, homeostatic marker microglia could be
divided into multiple populations (Figure S9A) with distinct gene expression and that one such
cluster was enriched in AD cases (Figure S9B). Together, these data suggest that there exists

within the homeostatic marker population a microglia state that is increased in AD brain.

Discussion:
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This study identified ten unique microglia clusters from aged human brain. These
included previously described homeostatic, senescent, and inflammatory microglia phenotypes,
as well as novel clusters of transcriptional specification. We describe the diversity of microglia
clusters with endolysosomal gene signatures one of which is enriched with nucleic acid
recognition and interferon regulation genes. Inferred gene networks demonstrated that
individual clusters were predicted to be driven by distinct transcription factors lending further
support to the putative functional diversity of clusters. Using trajectory inference analysis we
observe transitions in microglia phenotypes and predicted relationships that can be tested in
vitro such as the association of an autophagy enriched cluster with the senescent cluster.
Microglia identified as expressing homeostatic markers were themselves transcriptomically
diverse. The most differentially present cluster between AD and controls was a homeostatic

marker subcluster characterized by calcium activation, response to injury and motility pathways.

Microglia clearance of pathologic proteins including amyloid-beta and tau are
established features of AD pathophysiology. The endolysosomal network is critical to
maintaining cellular homeostasis and has long been implicated in AD pathogenesis though less
is known about the function and dysfunction of ELN components in AD microglia®. This study
resolved microglia enriched for endolysosomal pathways into three clusters transcriptionally
distinguished by predicted biological function. Together, three ELN clusters, Clusters 3, 5 and 6,
represent a diversity of endocytosis, vesicle trafficking, endolysosomal and autophagosome
pathways defined within the dataset. Impaired microglial endolysosomal function is often
discussed in the context of insufficient amyloid clearance*®*' though may have additional
consequences contributing to AD. The endolysosomal system in myeloid cells also plays a
critical role in identifying and processing foreign microbes including initiation of TLR and
interferon signaling®“2. Cluster 6 was characterized by lysosomal and vesicular function

pathway enrichment and concomitantly increased expression of interferon regulatory factor and
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inflammasome activation genes®*%*3

. Interferon signaling has been implicated in the response
to amyloid fibrils contributing to synapse loss**. While there is not a single “DAM” phenotype in
human AD, as has been well described in murine neurodegnerative models, there is a type 1
interferon reponse cluster distinct from a dystrophic or canonical inflammatory
phenotype'°3%4% We hypothesize that IRF expression here may reflect exposure to danger
associated molecular pattern molecules including nucleic acids which was supported by the
presence of microglia with immunoreactivity to cytosolic dsDNA and amoeboid morphology.
These findings are in line with murine and in vitro studies which show that amyloid fibrils
containing nucleic acids can induce a type | interferon response and subsequent synapse
loss*. Song et al. report a key role for the ELN in nucleic acid degradation and the interferon
response to DNA damage after release of nuclear DNA into the cytosol*® **. These in vitro
studies underscore the role of the ELN in the resolution of cytosolic nucleic acid responses.
Numerous studies report differential expression of AD risk genes, many of which are involved in
the endolysosomal system®, in brain tissue from both mouse and human AD tissue compared

to Contro|16,1 7,20,21,30,47,48

. In this study we identified a microglia phenotype, Cluster 6, in which
AD risk genes were most strongly differentially regulated and may be contributing to that
observed differential expression. By focusing on specific microglial clusters, and thus biological
contexts in which risk genes are regulated, we may inform efforts to understand how AD risk
genes lead to AD. This is the first report describing a specific cluster of microglia with ELN

profile that is both larger in AD brain and enriched for expression of genes associated with both

AD risk and interferon activation.

We leveraged the depth of our dataset to apply trajectory methods and infer the potential
relationships between microglial transcriptional phenotypes. Dystrophic (Cluster 4) and
senescent (Cluster 9) clusters emerge as “end-states” which, while requiring validation in larger

datasets, demonstrates that computational analysis such as trajectory inference can map
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microglial phenotypes consistent with predictions from previous empirical data®'>"3.

Nevertheless, the nature of trajectory analysis means that these data should be viewed as
hypothesis-generating. After observing three microglia clusters with ELN phenotypes, the
question arose as to whether they represent three clusters along one lineage. Instead, we found
that the autophagic stress and inflammatory ELN clusters (Cluster 5 and Cluster 6 respectively)
represented a branch point from homeostatic clusters. Cluster 3 instead appeared to be a
transition between homeostatic and alternate transcriptomic endpoints, the motile or dystrophic
clusters. These findings are similar to Nguyen et al. who also demonstrate a dystrophic cluster
as an endpoint preceded by an intermediate state®'. Our analysis nominates genetic regulators
of each cluster and together these data can be used to guide further studies to test the plasticity
or reversibility of microglia phenotypes. We have described the transcriptomic heterogeneity as
clusters of subpopulations, though in the living brain, microglial plasticity may manifest as a
continuum rather than discrete populations*®. Furthermore, unlike other cell types that are
terminally differentiated, it is plausible that microglia may transition in and out of transcriptomic

states, underscoring the “snapshot” nature of tissue omics.

It has been more challenging to consistently identify an AD specific microglia cluster in
the aged human AD brain than in transgenic animal AD models. This is likely in part due to the
overlap in microglial responses to exposure to AD pathology, aging, environmental stressors as
well as the diversity of human patients themselves. However, when we analyzed clusters that
had not already been driven to a reactive phenotype we then detected an AD specific
subpopulation, Subcluster 1.5, in the dataset. The most highly differentially regulated gene in
Cluster 1.5 is PDE4b, a phosphodiesterase implicated in cognitive function®® and myeloid cell
inflammatory activation®'>3. PDE4b regulates levels of cAMP which in turn has been shown to
modulate microglia surveillance behavior®. The enrichment of motility and calcium signaling

pathways by GSEA may indicate responses to neuronal activity and extension of microglial
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processes active in the AD brain*®. Furthermore, the elevated levels of P2RY12 would be
consistent with a phenotype of early response to responding to damage signals and extending
processes to injured neurons®>~’. Our data underscores the heterogeneity of microglia
expressing canonical “homeostatic” markers or included in a “homeostatic” cluster. Differentially
expressed genes and pathways enriched in the AD specific Subcluster 1.5 may offer clues into
the early or subtle microglial phenotype changes in response to pathologic protein, prior to

acquiring a more immunologically activated phenotype.

As expected, given its frequency and strong association with AD, we observe more
copies of the APOE €4 allele in AD cases than controls within our sample reflecting the
availability of tissues from our brain bank. APOE &4 is a key component to AD pathogenesis in
many patients. Therefore, the degree of similarity between microglia subpopulations when
comparing the mixed APOE group and the APOE ¢3/¢3 cohort was notable. However, the

limited sample size remains a caveat to drawing strong conclusions.

Like all snRNAseq studies, there are limitations to our study. While PU.1 sorting
provides a way to increase microglia nuclei for greater depth of resolution at an individual level,
it potentially selects for a specific population of microglia. DEGs identified utilizing clusters
defined by the same data are not necessarily properly controlled®®, however our large dataset
will allow others to utilize our clusters to mitigate this in the future. Although gene expression is
a useful molecular tool for cellular subtyping, it does not always directly describe protein
expression, localization, or activity®®. Future studies assaying for a panel of proteins based upon
the transcriptomic signatures reported here will be valuable for both validation as well as the
spatial correlation with pathological features. Assessment of microglial phenotypes across brain
regions can provide further context to our understanding of phenotypic heterogeneity. Another
significant limitation is the use of autopsy brain tissue. It is possible that events just prior to

death or post-mortem changes contribute to the expression changes measured here. To
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mitigate the variability of tissue quality, we have only selected tissues with a pH greater than 6.0
and PMI less than ten hours. Nevertheless, this novel work demonstrates the improved
resolution that can be achieved in autopsy brain tissue revealing phenotypes recognized in vitro

and in other inflammatory models, but previously unidentified in human AD brain.

In this study we identified and assessed microglia states from isolated human post-
mortem brain microglial nuclei. Genes suggestive of an “aging signature” are expressed in all
clusters in this study'® consistent with our older age cohort. Inflammaging® may not only
confound interpretations of gene expression profiles attributable to AD, but may also contribute
to the disease mechanisms hypothesized to drive AD. Additional studies exploring differences
between younger controls and early-onset AD may also help to explore the aging,
inflammaging, and AD specific signatures. These data identify candidate genes and pathways
driving microglia responses to AD across a spectrum of microglial activation phenotypes
associated with specific transcription factor regulons. Our identification of multiple internalization
and trafficking clusters with varying metabolic and inflammatory phenotypes provides a platform
for further studies to replicate and investigate. Finding a homeostatic marker expressing
subcluster that is unique to AD, while requiring replication, also suggests that AD changes and
thus molecular pathways driving AD can be identified in cells that have not yet been fully
explored. The cluster-specific alterations in composition, gene expression, and gene regulation
in AD brain provide additional information to support tailored targeting of microglial physiological

responses that will be critical moving forward in neurodegenerative disease therapeutics.

Methods:

Human Brain Tissue: Dorsolateral prefrontal cortex (dIPFC) tissue from human brains

was obtained from the Neuropathology Core of the Alzheimer’s Disease Research Center

(ADRC) at the University Washington (UW) following informed consent approved by the UW
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Institutional Review Board (IRB). Patients (n=12) were confirmed post-mortem to have AD
pathology (ADNC score of 2-3; Table 1). Control individuals (n=10) had low or no

neuropathology post-mortem (ADNC score 0-1; Table 1).

Brain samples were flash-frozen and stored at -80°C. Criteria for inclusion included post-
mortem interval (PMI) < 10hrs, low comorbid pathology (Lewy Bodies and hippocampal

sclerosis), and a brain pH at autopsy = six.

Isolation of Nuclei for Unsorted snRNA-seq: Nuclei from brain samples were isolated

using protocols adapted from 10X Genomics Demonstrated Protocols and De Groot et al.?’.
Briefly, four 2mm punches of dIPFC gray matter were collected using a biopsy punch (Fisher
Scientific, Waltham, MA) into a 1.5mL microcentrifuge tube on dry ice. All buffer recipes and
reagents can be found in Table S4. Nuclei isolation used nuclei lysis buffer (NLB). The nuclei in
nuclei suspension solution (NSS) was layered onto 900uL of Percoll/Myelin Gradient Buffer
(PMGB)®". The gradient was centrifuged at 950xg for 20min at 4°C with slow acceleration and
no brake. Myelin and supernatant were aspirated and the nuclei pellet was resuspended in
Resuspension Buffer (RB) at a concentration of 1000 nuclei/uL and proceeded immediately to

single-nuclei RNA sequencing (snRNA-seq).

Isolation of Nuclei for Fluorescence-activated Nuclei Sorting (FANS): Briefly, 200-250mg

of dIPFC was collected into a 1.5ml microcentrifuge tube on dry ice. Brain tissue was
homogenized as above. The homogenate was incubated at 4°C under gentle agitation for
10min, pelleted at 500xg for 7min at 4°C and resuspended in 900uL PMGB supplemented with
protease and phosphatase inhibitors. The suspension was gently overlaid with 300uL NSS
supplemented with protease and phosphatase inhibitors. The gradient was centrifuged at 950xg
for 20min at 4°C with slow acceleration and no brake. The myelin and supernatant were

aspirated and the nuclei pellet proceeded immediately to FANS.
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Fluorescence Activated Nuclei Sorting (FANS): Nuclei were washed with cold FANS

media (10% fetal bovine serum (FBS), 10mM HEPES, 100uM ATA, 10% 10X HBSS, 0.5%
Protector RNase Inhibitor, protease and phosphatase inhibitors, and 1% saponin in nuclease-
free water) and resuspended in FANS media at a concentration of 2-2.5x10° nuclei/mL. Nuclei
were incubated with 1% Human Fc Block (clone Fc1.3216, BD Biosciences, San Jose, CA) on
ice for 10min. Nuclei were labeled with either anti-PU.1-PE (clone 9G7, 1:50, Cell Signaling
Technology, Danvers, MA) or IgG-PE isotype control (clone DA1E, 1:50, Cell Signaling
Technology) for 4hours on ice followed by three washes with cold FANS media and
resuspended in FANS media supplemented with 10ug/mL DAPI (Sigma-Aldrich). Nuclei were
sorted using a FACSAria Il (BD Biosciences) until 30,000 PU.1-positive nuclei were collected.
Sorted nuclei were centrifuged at 1,000xg for 10min at 4°C. The nuclei pellet was resuspended

in RB at a concentration of 1000 nuclei/uL and proceeded immediately to snRNA-seq.

Single Nuclei RNA-Sequencing (snRNA-seq): Single nuclei libraries were generated

using the Chromium Next GEM Single Cell 3' GEM, Library and Gel Bead Kit v3 (10x Genomics,
Pleasanton, CA) according to the manufacturer’s protocol and a target capture of 10,000 nuclei.
Gene expression libraries were sequenced on the NovaSeq 6000 platform (lllumina, San Diego,

CA).

Alignment and Quality Control: Gene counts were obtained by aligning reads to the hg38

genome (GRCh38-1.2.0) using CellRanger 3.0.2 software (10x Genomics). Reads mapping to
precursor mMRNA were included to account for unspliced nuclear transcripts. The majority of our
analysis was performed in R®. Droplets from 22 PU.1 sorted samples were combined using
Seurat v3.3%. Unsorted and PU.1 sorted droplets isolated from the same 4 subjects were
combined using Seurat and analyzed in the same manner. Droplets containing less than 350
UMIs, less than 350 genes, or greater than 1% mitochondrial genes were excluded from

analysis. Ambient RNA was removed from the remaining droplets using SoupX®*. Droplets
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containing multiple nuclei were scored using Scrublet®®, and removed. 200,948 nuclei with an

average of 1,787 genes per nucleus remained in the dataset for further analysis.

Normalization and Cell Clustering: Normalization and clustering of the nuclei were

performed using Seurat v3.3%. Data were normalized for read depth and mitochondrial gene
content was regressed out using Seurat’s SCTransform®. Individual sample variability was
removed using Seurat’s Anchoring and Integration functions®®. The top 5000 variable genes
were kept. 15 principal components (PCs) were used to create a shared nearest neighbors
graph with k=20. The modularity function was optimized using a resolution of 0.2 to determine
clusters using the Louvain algorithm with multilevel refinement to determine broad cell-types.
Each cluster met a minimum threshold of 30 defining DEGs and was comprised of nuclei from

>10% of the cohort (more than two individuals).

Clusters were annotated for cell-type using manual evaluation for a set of known genetic
markers®’. A new Seurat object was made containing only the microglia nuclei (N = 127,371).
Normalization, individual variability removal, integration, and shared nearest neighbors graph
creation were repeated as above on the microglia nuclei. 20 PCs were chosen to account for a
significant amount of the variance. Clusters were determined using the Leiden algorithm®® with
method=igraph and weights=true. Clusters were highly conserved across analysis by

Louvain, Louvain with multilevel refinement, and Leiden algorithms. HM subclustering for both
the 22 sample dataset, and the APOE €3/¢3 allele dataset occurred after normalization,
individual variability removal and integration as before and was performed using 10 PCs and the
Louvain with multilevel refinement algorithm. Distribution of nuclei within each cluster was

calculated using the ‘chisq.test’ function in R% to compare the actual percentage of nuclei

from either the AD or control group within the cluster to the expected proportion of nuclei that
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would be contributed based on dataset composition. P-values from the chi-squared tests were

adjusted using FDR and considered significant if adjusted p<0.05.

snRNA-seq Differential Gene Expression and Gene Set Enrichment Analyses:

Differential gene expression analysis of the clusters was performed with the MAST algorithm.
Genes tested had expression in at least 25% of the nuclei in the cluster. Differentially expressed
genes (DEGs) had an FDR adjusted p-value<0.05 and a log fold change>1.25. Cluster 1 was
annotated as inactivated, often referred to as “homeostatic” in single nuclei studies of microglia.
Differential gene expression analysis was repeated as above comparing each other cluster to
Cluster 1. Gene set enrichment analysis (GSEA) was performed in ClusterProfiler®® modified to
use a set seed for reproducibility, using the GO, KEGG and Biocarta pathway sets, version 7.2.
Enriched pathways had an FDR adjusted p-value<0.05. We considered pathways to be
representative if significant results included similar genes and biological functions in at least two

of the three major databases (GO, KEGG, Reactome).

Gene Ontology Biological Process Clustering: A complimentary approach to gene set

enrichment analysis (GSEA) is to perform biological process ontology clustering to identify a
more extensive set of terms associated with the gene list. To further characterize the ELN
clusters (3, 5, and 6) we implemented this approach to get a more refined examination of the
biologically linked process driven by each cluster. We employed several different approaches to
perform this analysis, ultimately choosing the Cytoscape network clustering application
ClueGO™"" which was employed extensively in recent years for this purpose’?”°. The
advantage of this network approach is that GO term enrichment is selected based upon
networks derived from kappa-score between terms based on similarity of genetic contribution to
the particular term. This creates a network of genetically linked processes that goes beyond a
singular GO term hit, providing greater confidence that a basic biological process is being

impacted based on the differential expression of a particular set of genes. Clusters 3, 5 and 6
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were each independently submitted for analysis, using a kappa-threshold of 0.4 to optimize the
biological process connections. Each term drawn into the network was initially filtered for
multiple testing corrections threshold of p<0.05, and hierarchically weighted for terms with a
Benjamini-Hochberg correction value of p<0.01. As this procedure is performed for validation

and visualization, we trimmed networks of lesser ranked terms to permit ease of visualization.

Trajectory and Lineage Analysis: Trajectory analysis was performed using Monocle3*

on multiple permutations of our downsampled dataset. The data were downsampled to 1000,
2000, 3000, or 5000 nuclei per cluster, transferred to a cell dataset (cds) object and Monocle3
“learn graph” was run. PCA and UMAP embeddings were extracted from the Seurat object.
We applied the algorithm both with and without a defined starting point. The 5000 nuclei per
cluster downsampled data began to break down the ability of Monocle to form a consistent
trajectory, where the 1000, 2000, and 3000 multiple permutations consistently formed

something similar to the representative image in Figure 5 (3000 nuclei per cluster).

Gene Regulatory Network Inference: Regulons were inferred using the SCENIC

workflow in python (pySCENIC)"®"’. We randomly selected 2000, 3000, or 5000 nuclei in each
cluster or if they have less than this number all the nuclei in the cluster to reduce the
computational time and have proportional representation of all the clusters. We made 5 subsets
of each combination and repeated the analysis twice for each subset to assess the consistency
of the regulons in the analysis. First, we used normalized counts with highly variable genes to
generate the co-expressing regulatory network modules using the machine learning algorithm
GRNBoost2 with function “grn” and default settings’®. Second, the modules were filtered using
the “~ctx” function, which uses cis-regulatory motif analysis {RcisTarget} to keep only modules
enriched for putative target genes of the transcription factor. Regulons are identified by
combining multiple modules for a single transcription factor. Third, the AUCell function was used

to calculate the regulon activity for each nucleus. Regulon specificity scores were calculated for
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each regulon in every cluster. Ranking specificity scores identified the top 10 regulons for a
specific cluster for a given subset of the dataset, and the consistency of the findings across

subsets.

Immunostaining of Human Tissue: Dissected tissue from the dorsolateral prefrontal

cortex of the 22 cases in the cohort were fixed with paraformaldehyde and paraffin embedded.
Samples were sectioned at 15um and deparaffinized prior to immunostaining. Slides were
boiled in citrate buffer (Sigma CAT#C9999) for 20 minutes then transferred into blocking buffer
(10% donkey serum, 0.1% Trition X-100, and 0.05% Tween-20 in TBS) for one hour at room
temperature. Slides were incubated in primary antibodies (Anti-LAMP1 1:100 Invitrogen
CAT#14-1079-80; anti-lba-1 1:250 Abcam CAT#ab5076; anti-dsDNA 1:250 Millipore
CAT#MAB1293; anti-PTDGS/PGD2 R&D Systems CAT#MAB10099 1:100; anti-P2RX7 Santa
Cruz CAT#sc-514962 1:100; anti-P2RY12 Alomone CAT#APR-012 1:50; anti-PDE4B LSBio
CAT#LS-C173292-100 1:50) overnight at 4°C. Slides were rinsed three times in TBS-T for five
minutes prior to secondary antibody (Thermofisher Alexa Fluor 488 Donkey anti-Goat CAT#
A11055; Thermofisher Alexa Fluor 555 Donkey anti-Mouse CAT#A31570; Alexa Fluor 555
Donkey anti-Rabbit 555 CAT#A31572; Alexa Fluor 647 Donkey anti-Mouse CAT#A31571; or
Alexa Fluor 647 Donkey anti-Rabbit CAT#A32795) incubation for one hour at room temperature.
Slides were then stained with DAPI (1:1000 Millipore CAT#D8417) for five minutes followed by
three, five minute, TBS-T washes. True Black (Fisher Scientific CAT#NC1125051) diluted 1:20
in 70% ethanol was added to the slides for 50 seconds, followed by two additional five minute
washes in TBS prior to being mounted with Fluoromount-G (Southern Biotech CAT#0100-01).
Slides were imaged using either an Olympus Fluoview-1000 confocal microscope, or a spinning
disk confocal microscope (Nikon A1R with Yokogawa W1 spinning disk head) with 40X and
100X oil objectives, and the maximum projection of z-stack images were generated. Images

were despeckled using Fiji.
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Code availability: The scripts used to generate our analyses are available at

(https://github.com/keprater/jayadeviab_pu.1_project). The container needed to run the scripts
with the same Seurat and other package versions as are used in the code is available for
download here:
https://hub.docker.com/layers/jayadevlab/keprater/jayadevlab/6.3/images/sha256-

d9b8f6fb69261fbdd45b09b2603c262497d00f09e7310951024a42761b8a66707?context=explore.

Data availability: The data are available from Synapse.
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Figures and Tables:

Table 1. Post-mortem brain sample demographics.

Group Males Females Avg.Age Avg.PMI ADNC E2/3 E3/3 E3/4 E4/4
Ctrl 4 6 85.9 5.53 0-1 2 7 1

AD 3 9 86.5 4.67 2-3 6 5 1
Total 7 15 86.23 5.42 2 13 6 1

Ctrl = Control, AD = Alzheimer’s Disease pathology, Avg. Age = average years of age at death,
PMI = post-mortem interval in hours, ADNC = Alzheimer’s Disease Neuropathic Change,
APOE Genotypes: APOE alleles 2/3 (E2/3), APOE alleles 3/3 (E3/3), APOE alleles 3/4
(E3/4), APOE alleles 4/4 (E4/4)
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Figure 1. PU.1 enrichment yields a large dataset of microglia nuclei. A) Experimental

design of 22 post-mortem human prefrontal cortices. (Created in part with BioRender.com)

B) UMAP of the 22 subject dataset demonstrates that while other cell types including
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neurons, astrocytes, oligodendrocytes (Oligs) and their progenitors (OPC) as well as
endothelial cells are present, six clusters including the three largest are composed of
microglia nuclei. C) Representative cell type marker genes (x-axis) with the percent of nuclei
that express a gene (size of dot) in each cluster (distributed along Y axis) and the average
expression level (color intensity) are shown for microglia (CX3CR1, C1QB, CD74, and C3),
astrocytes (GFAP), neurons (MAPZ2), OPCs (COL20A1), oligodendrocytes (ST18), and
endothelial cells (ITIH5) for each cluster. D) Gene expression of a wider set of cell type

marker genes demonstrate that clusters 1, 2, 3, 7, 16, and 17 are composed of microglia.
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Figure 2. Microglia states have diverse gene expression and biological pathway
correlates. A) UMAP. B) Top 25 genes from each cluster. C) GSEA analysis suggests
distinct biological pathways. D) Canonical microglia marker gene expression in the microglia
dataset versus cell types sorted during PU.1 enrichment. (NES = Normalized Enrichment

Score)
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Figure 3. Transcription factor regulatory networks are specific to microglia phenotypes.
A) Heatmap of area under the curve (AUC) of the transcription factor (TF) regulon activity in
clusters. B) Percentage of instances where transcription factor regulons occured in the top

ten regulon specificity scores per cluster (out of 27 permutations).
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Figure 4. Microglia transcriptomic progression may take multiple paths. Monocle trajectory
inference applied to the microglia dataset demonstrates that multiple phenotypic options
radiate outward from Cluster 1. Each branch has several potential endpoints suggesting
microglia may not progress along a single staged linear trajectory, but instead proceed

through one of several transition states to reach various transcriptomic end phenotypes.
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Figure 5. Cluster 6 demonstrates enrichment of AD risk genes and suggests the
presence of dysregulated lysosomal and cytosolic DNA regulation in microglia in AD.
A) Cluster 6 is significantly increased in AD brain, whereas Cluster 10 is increased in control
samples. B) Heatmap of AD associated risk gene expression across microglia clusters show
stronger differential expression in Cluster 6. C) Representative images from an AD case

demonstrate microglia (green, Iba-1) with heterogeneity in morphology and Lamp-1 signal.
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Examples of a ramified (top arrow) and greater lysosome (magenta, Lamp-1) signal and an
“activated” or less-ramified phenotype (bottom arrow). D) Representative microglia (Iba-1
green) with high PTGDS (red) expression a Cluster 6 differentially expressed gene in an AD
case. E) Representative microglia (Iba-1 green) with high P2RX7 (magenta) expression a
Cluster 6 differentially expressed gene in an AD case. F) Representative microglia with
inreased lysosomal signal (Lamp-1 signal, white) and cytosolic dsDNA (red) in an AD case.

**corrected p<0.01
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Figure 6. Within microglia expressing homeostatic markers there is a subcluster uniquely

enriched in AD brain samples. A) Subclustering of Cluster 1 homeostatic microglia

revealed 7 subpopulations defined by differential gene expression. B) Subcluster 1.5 is

greatly expanded in AD brain samples (p<0.001), while Cluster 1.4 is increased in control

brain samples (p<0.05). C) Gene expression of P2RY12 demonstrates high expression

across the HM subclusters, with highest expression in Subcluster 1.5. Genes differentially

expressed in Subcluster 1.5 such as WIPF3, PDE4B, and KCNIP also demonstrate high

expression. D) Pathway enrichment in Subcluster 1.5 demonstrates unique enrichment for

motility, ion channel activity, and neuron-related processes. D) Immunohistochemistry
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validates the presence of double-positive high P2RY12 and PDE4B expressing microglia in

AD brain. NES = Normalized Enrichment Score *corrected p<0.05 **corrected p<0.01
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