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Abstract

Multiple Sequence Alignments (MSAs) of homologous sequences contain information on struc-

tural and functional constraints and their evolutionary histories. Despite their importance for

many downstream tasks, such as structure prediction, MSA generation is often treated as a sep-

arate pre-processing step, without any guidance from the application it will be used for. Here,

we implement a smooth and differentiable version of the Smith-Waterman pairwise alignment al-

gorithm that enables jointly learning an MSA and a downstream machine learning system in an

end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned

Random Field), a new method that jointly learns an alignment and the parameters of a Markov

Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly

improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we

demonstrate that by connecting our differentiable alignment module to AlphaFold and maximizing

predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs.

Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be

viewed as adversarial. This work highlights the potential of differentiable dynamic programming

to improve neural network pipelines that rely on an alignment and the potential dangers of relying

on black-box methods for optimizing predictions of protein sequences.

Multiple Sequence Alignments (MSAs) are commonly used in biology to model evolu-26

tionary relationships and the structural/functional constraints within families of proteins27

and RNA. MSAs are a critical component of the latest contact [6, 28, 41] and protein28

structure prediction pipelines [5, 30]. Moreover, they are used for predicting the functional29

effects of mutations [19, 20, 27, 59], phylogenetic inference [18] and rational protein design30

[21, 37, 53, 61]. Creating alignments, however, is a challenging problem. Standard ap-31

proaches use heuristics for penalizing substitutions and gaps and do not take into account32

the effects of contextual interactions [57] or long-range dependencies. For example, these33

local approaches struggle when aligning large numbers of diverse sequences, and additional34

measures (such as the introduction of external guide Hidden Markov Models, HMMs) must35

be introduced to obtain reasonable alignments [55]. Finally, each alignment method has a36

number of hyperparameters which are often chosen on an application-specific basis. This37
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suggests that computational methods that input an MSA could be improved by jointly38

learning the MSA and training the method.39

Here we introduce Learned Alignment Module (LAM), which is a fully differentiable mod-40

ule for constructing MSAs and hence can be trained in conjunction with another differen-41

tiable downstream task. Building upon the generalized framework for differentiable dynamic42

programming developed in [38], LAM employs a smooth and differentiable version of the43

Smith-Waterman algorithm. Whereas the classic implementation of the Smith-Waterman44

algorithm outputs a pairwise alignment between two sequences that maximizes an alignment45

score [56], the smooth version outputs a distribution over alignments. This smoothness is46

crucial to: (i) make the algorithm differentiable and therefore applicable in end-to-end neural47

network pipelines, and (ii) allow the method to consider multiple hypothesized alignments48

simultaneously, which we believe to be a beneficial feature early in training.49

We demonstrate the utility of LAM with two differentiable pipelines. First, we design an50

unsupervised contact prediction method that jointly learns an alignment and the parameters51

of a Markov Random Field (MRF) for RNA and protein, which we use to infer better52

structure-based contact maps. Next, we connect our differentiable alignment method to53

AlphaFold to jointly infer an alignment that improves its prediction of protein structures54

[30]. Our main contributions are as follows:55

1. We implemented a smooth and differentiable version of the Smith-Waterman algorithm56

for local pairwise alignment in JAX [10]. Our implementation includes options for an57

affine gap penalty, a temperature parameter that controls the relaxation from the high-58

est scoring path (i.e. smoothness), and both global and local alignment settings. Our59

code is freely available and can be applied in any end-to-end neural network pipeline60

written in JAX, TensorFlow [1] or via DLPack in PyTorch [50]. Moreover, we give a61

self-contained description of our implementation and its mathematical underpinnings,62

providing a template for future implementations in other languages.63

2. We introduced the Learned Alignment Module (LAM), a fully differentiable module64

for constructing MSAs that is trained in conjunction with a downstream task. For65

each input sequence, a convolutional architecture produces a matrix of match scores66

between the sequence and a reference sequence. Unlike a substitution matrix typi-67

cally input to Smith-Waterman, these scores account for the local k-mer context of68
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each residue. Next we apply our smooth Smith-Waterman implementation to these69

similarity matrices to align each sequence to the reference, yielding an MSA (Fig. 1).70

3. We designed a method called Smooth Markov Unaligned Random Field (SMURF) that71

takes as input unaligned sequences and jointly learns an MSA (via LAM) and MRF72

parameters. These parameters can then be used for contact prediction. We show that73

SMURF outperforms GREMLIN, when trained with the same objective, for protein74

and RNA contact prediction on a diverse set of families.75

4. To demonstrate the utility of a differentiable alignment layer, we modify AlphaFold76

[30], replacing the input MSA with the output of LAM. For a given set of unaligned,77

related protein sequences, we backprop through AlphaFold to update the parameters78

of LAM, maximizing AlphaFold’s predicted confidence. Doing so results in learned79

MSAs that improve the structure prediction over our initial input MSA for 3 out of80

4 targets. Despite the improved structure predictions, we find that the MSAs learned81

by the LAM may be adversarial as indicated by their self-inconsistency. This finding82

raises questions about how AlphaFold uses the input MSA to make its predictions.83

Related work84

a. Differentiable Dynamic Programming in Natural Language Processing (NLP). Dif-85

ferentiable dynamic programming algorithms are needed in order to model combinatorial86

structures in a way that allows backpropagation of gradients [8, 38, 62]. Such algorithms87

have been used in NLP to build neural models for parsing [16], grammar induction [33],88

speech [11], and more. Smooth relaxations of argmax and other non-differentiable functions89

can enable differentiation through dynamic programs. More generally, Mensch and Blondel90

leverage semirings to provide a unified framework for constructing differentiable operators91

from a general class of dynamic programming algorithms [38]. This work has been incorpo-92

rated into the Torch-Struct library [52] to enable composition of automatic differentiation93

and neural network primitives, was recently implemented in Julia [58], and is the basis for94

our JAX implementation of smooth Smith-Waterman.95

b. Smooth and differentiable alignment in computational biology Before end-to-end96

learning was common, computational biologists used pair HMMs to express probability97
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distributions over pairwise alignments [15, 35, 40]. The forward algorithm applied to a pair98

HMM can be viewed as a smoothed version of Smith-Waterman. Later, a differentiable99

kernel-based method for alignment was introduced [54]. More recently, Morton et al. im-100

plemented a differentiable version of the Needleman-Wunsch algorithm for global pairwise101

alignment [43, 46]. Our implementation has several advantages: (i) vectorization makes our102

code faster (Fig. S1 and Supplementary Note S1C), (ii) we implemented local alignment103

and an affine gap penalty (Supplementary Note S1D), and (iii) due to the way gaps are104

parameterized, the output of [43] can not be interpreted as an expected alignment (Supple-105

mentary Note S1B). Independent and concurrent work [36] uses a different formulation of106

differentiable Smith-Waterman involving Fenchel-Young loss.107

c. Language models, alignments, and MRFs Previous work combining language model108

losses with alignment of biological sequences place the alignment layer at the end of the109

pipeline. Bepler et al. first pretrain a bidirectional RNN language model, then freeze this110

model and train a downstream model using a pseudo-alignment loss [7]. Similarly, Morton111

et al. use a pretrained language model to parametrize the the alignment scoring function112

[43]. Their loss, however, is purely supervised based on ground-truth structural alignments.113

Llinares-López et al. use differentiable Smith-Waterman with masked language modeling114

and supervised alignments to learn a scoring function dervived from transformer embeddings115

[36]. For RNA, a transformer embedding has been trained jointly with a masked language116

modeling and structural alignment [2]. In contrast to all of these papers, our alignment117

layer is in the middle of the pipeline and is trained end-to-end with a task downstream of118

alignment.119

Joint modeling of alignments and Potts models has been explored. Kinjo et al. [34]120

include insertions and deletions into a Potts model using techniques from statistical physics.121

Two other works infer HMM and/or Potts parameters through importance sampling [63] and122

message passing [44], with the goal of designing generative classifiers for protein homology123

search.124
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RESULTS125

Smooth Smith-Waterman126

Pairwise sequence alignment is the task of finding an alignment of two sequences with127

the highest score, where the score is the sum of the “match” scores for each pair of aligned128

residues and “gap” penalties for residues that are unmatched. The Smith-Waterman algo-129

rithm is a dynamic programming algorithm that returns a path with the maximal score. A130

smooth version instead finds a probability distribution over paths in which higher scoring131

paths are more likely. Smoothness and differentiability can be achieved by replacing the132

max with logsumexp and argmax with softmax in the dynamic programming algorithm. We133

implemented a Smooth Smith-Waterman (SSW) formulation in which the probability that134

any pair of residues is aligned can be formulated as a derivative (see Methods). We use JAX135

due to its JIT (‘just in time’) compilation and automatic differentiation features [10].136

Our speed benchmark indicates that our implementation is faster than the smooth137

Needleman-Wunsch implementation in [43] for both a forward pass as well as for the com-138

bined forward and backward passes, see Fig. S1. The latter is relevant when using the139

method in a neural network pipeline requiring backprogation. Moreover, comparison be-140

tween a vectorized and naive version of our code shows that vectorization substantially141

reduces the runtime, see [64] and Supplementary Note S1C.142

Our SSW has four other features: temperature, affine gap, retrict turns, and global align-143

ment. A temperature parameter governs the extent to which the distribution concentrated144

on the highest scoring alignments. In the affine gap mode, the first gap in a streak incurs145

an “open” gap penalty and all subsequent gaps incur an “extend” gap penalty. A restrict146

turns option corrects for the algorithm’s inherent bias towards alignments near the diago-147

nal. We also implemented Needleman-Wunsch to output global alignments rather than local148

alignments. See Supplementary Note S1D for additional details of SSW options.149

Learned Alignment Module (LAM)150

The key to improving a Smith-Waterman alignment is finding the right input matrix of151

alignment scores a = (aij)i≤ℓx,j≤ℓy . Typically, when Smith-Waterman is used for pairwise152

alignment the alignment score between positions i and j, aij, is given by a BLOSUM or153
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PAM score for the pair of residues Xi and Yj [3, 13, 24]. This score reflects how likely it is154

for one amino acid to be substituted for another, but does not acknowledge the context of155

each residue in the sequence. For example, consider serine, an amino acid that is both small156

and hydrophilic. In a water-facing part of a protein, serine is more likely to be substituted157

for other hydrophilic amino acids. In other contexts, serine may only be substituted for158

other small amino acids due to the geometric constraints of the protein fold. Employing a159

scoring function with convolutions allows for local context to be considered.160

Our proposed learned alignment module adaptively learns a context-dependent alignment161

score matrix aij, performs an alignment based on this score matrix, all in conjunction with162

a downstream machine learning task. The value aij expresses the similarity between Xi163

in the context of Xi−w, . . . Xi, . . . Xi+w and Yj in the context of Yj−w, . . . Yj, . . . Yj+w. We164

represent position i in sequence X as a vector vXi obtained by applying a convolutional layer165

of window size 2w + 1 to a one-hot encoding of Xi and its neighbors. The value aij in the166

similarity matrix that we input to Smith-Waterman is the dot product of the corresponding167

vectors, aij = vXi · vYj . To construct an MSA from a reference and B other sequences,168

the LAM constructs a similarity matrix between each sequence and the reference, applies169

differentiable Smith-Waterman to each similarity matrix, and outputs an alignment of each170

sequence to the reference (which can be viewed as an MSA). See Fig. 1. Since process is171

entirely differentiable, we can plug the alignment produced by the LAM into a downstream172

module, compute a loss function, and train the whole pipeline end-to-end.173

Applying the LAM to contact prediction174

GREMLIN is a probabilistic model of protein variation that uses the MSA of a protein175

family to estimate parameters of a MRF (see Methods), which in turn are used to predict176

contact maps [6, 17, 32, 49]. Since GREMLIN relies on an input MSA, one would expect177

that improved alignments would yield better contact prediction results. To test this, we178

designed a pipeline for training a GREMLIN-like model that inputs unaligned sequences179

and jointly learns the MSA and MRF parameters. We call our method Smooth Markov180

Unaligned Random Field or SMURF.181

SMURF takes as input a family of unaligned sequences and learns both (i) the LAM182

convolutions and (ii) the parameters of the MRF that are, in turn, used to predict con-183
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FIG. 1: Learned alignment module (LAM). The residues of B sequences and a “query”

sequence are mapped to vectors using a convolution. For each sequence k, an alignment score

matrix a is computed by taking the dot products of the vectors representing the query sequence

and the vectors representing sequence k. The similarity tensor is formed by concatenating these

matrices, and then our differentiable implementation of smooth Smith-Waterman is applied to

each similarity matrix in the tensor to produce an alignment. The resulting B smooth pairwise

alignments (all aligned to the query sequence) are illustrated as the “Alignment Tensor.”

tacts. SMURF has two phases, each beginning with the LAM. First, BasicAlign learns LAM184

convolutions by minimizing the squared difference between each aligned sequence and the185

corresponding averaged MSA (Fig. S5). These convolutions are then used to initialize the186

LAM for the second training phase, TrainMRF, where a masked language modeling (MLM)187

objective is used to learn MRF parameters and update the convolutions (Fig. S6). We com-188

pare SMURF to GREMLIN trained with masked language modeling (MLM-GREMLIN) [9].189

The architecture of MLM-GREMLIN is the similar to TrainMRF step of SMURF, except190

that a fixed alignment is input instead of a learned alignment computed by LAM.191

We trained and evaluated our model on a diverse set of protein families, as described192

in Methods. To evaluate the accuracy of downstream contact prediction, we computed a193

standard metric used to summarize contact prediction accuracy, i.e. the area under the curve194

(AUC) for a plot of fraction of top t predicted contacts that are correct for t equals 1 up to195

L, where L is the length of the protein. Fig. 2a illustrates that SMURF mildly outperforms196

MLM-GREMLIN with a median AUC improvement of 0.007 across 193 protein families in197

the test set. To test whether SMURF requires a deep alignment with many sequences, we198

ran SMURF on protein families at most 128 sequences. The performance of SMURF and199

MLM-GREMLIN are comparable even for these families with relatively few sequences, with200
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FIG. 2: SMURF outperforms MLM-GREMLIN on (a) protein and (b) non-coding

RNA. (Top) Scatter plots of the AUC of the top L predicted contacts for SMURF versus

MLM-GREMLIN. (Bottom) Histograms of the difference in AUC between SMURF and

MLM-GREMLIN. (Right) Comparison of contact predictions and the positive predictive value

(PPV) for different numbers of top N predicted contacts, with N ranging from 0 to 2L, for

SMURF (red) and MLM-GREMLIN (blue) for Rfam family RF00010 (Ribonuclease P.) and

RF00167 (Purine riboswitch). Gray dots represent PDB-derived contacts, circles represent a true

positive prediction, and x represents a false positive prediction. For contact predictions for

RFAM00010, the black circles highlight a concentration of false positive predictions.

a median AUC improvement of 0.002 (Fig. S8).201

Next we sought to compare qualities of the MSAs learned through SMURF and MSAs202

fed into GREMLIN, which were generated with HHblits [57]. To quantify the consistency of203

the MSAs, we compared the BLOSUM scores [24] of all pairwise alignments extracted from204

our learned MSA to those extracted from the HHblits MSA. By this metric, we found that205

alignments learned by SMURF were more consistent than those from HHblits. Moreover, we206

observed a slightly positive correlation between increased consistency and contact prediction207

improvement (Fig. S7, left). We also found that SMURF alignments tend to have more208

positions aligned to the query (Fig. S7, right). We hypothesize that this is because our209
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MRF does not have a mechanism to intelligently guess the identity of residues that are210

insertions with respect to the query sequence (the guess is uniform, see Methods).211

Next, we applied SMURF to 17 non-coding RNA families from Rfam [31] that had a212

corresponding structure in PDB (see Methods). Due to the relatively small number of RNAs213

with known 3D structures, we employed SMURF using the hyperparameters optimized for214

proteins; fine-tuning SMURF for RNA could improve performance. Overall, we observe that215

SMURF outperforms MLM-GREMLIN with a median AUC improvement of 0.02 (Fig. 2b).216

In Supplementary Note S2, we further discuss the RNA contact predictions illustrated in217

Fig. 2b and the SMURF predictions for the three most and least improved protein families218

(Figs. S9 and S10). We hypothesize that SMURF generates fewer false positive predictions219

in seemingly random locations because the LAM finds better alignments.220

Finally, we performed an ablation study on SMURF (Fig. S11). We found that replacing221

smooth Smith-Waterman with a differentiable “pseudo-alignment” procedure, similar to [7],222

degraded performance substantially. Skipping BasicAlign also degraded performance, thus223

indicating the importance of the initial convolutions found in BasicAlign.224

Using backprop through AlphaFold to learn alignments with LAM225

As a proof of concept, we selected four CASP14 domains where the structure prediction226

quality from AlphaFold was especially sensitive to how the MSA was constructed. We227

reasoned that the quality was poor due to issues in the MSA and by realigning the sequences228

using AlphaFold’s confidence metrics we may be able to improve on the prediction quality.229

For each of the four selected CASP targets, separate LAM parameters were fit to maximize230

AlphaFold’s predicted confidence metrics (see Methods). We repeated this 180 times for each231

target (varying the learning rates, random seeds, and smoothness of the alignment), and then232

selected the learned MSA corresponding to the most confident AlphaFold (AF) prediction233

as measured by AF’s predicted local Distance Difference Test (pLDDT). For all targets,234

AF reported higher confidence in the prediction from our learned MSA as compared to the235

prediction from an MSA with the same sequences generated by MMSeqs2 as implemented236

in ColabFold [39]. However only 3 of the 4 targets showed an improvement in the structure237

prediction, as measured by the RMSD (root-mean-squared-distance) to native structure (see238

Figs. 3 and 4).239
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Next we compared the learned MSAs that led to better structure predictions to the240

MMSeqs2 MSAs. Strikingly, we found our learned MSAs to be very low-quality. Fig. 3a241

illustrates a conserved motif that is consistently aligned in the MMSeqs2 MSA yet completely242

scattered in our learned MSA. To quantify the consistency of the MSAs, we compared the243

BLOSUM scores [24] of all pairwise alignments extracted from our learned MSAs to those244

extracted from the MMSeqs2 MSA. Indeed, the learned MSAs contain much lower scoring245

pairwise alignments than those of MMSeqs2 MSAs, indicating far less consistency (Figs. 3a246

and 4), which is the opposite trend we observed for MSAs learned by SMURF. Thus, unlike247

optimizing the MRF in SMURF, optimizing the confidence of AF predictions does not yield248

consistent alignments with LAM.249

We explored a simple explanation for how low-quality alignments could yield improved250

structure predictions; perhaps AF uses its axial-like attention to consider only a subset of251

sequences, and the poor alignments by the other sequences isn’t important or could further252

disqualify those sequences from being attended to. To investigate this, we evaluated how253

sensitive the AF predictions are to the inclusion of each individual sequence (Figs. 3b and254

4). Surprisingly, the prediction accuracy can be incredibly sensitive to the removal of a255

single sequence, especially for MMSeqs2 MSAs.256

Next, we considered the effect of removing subsets of more distant sequences. The MM-257

Seqs2 MSAs were constructed with a lenient E-value threshold of 10, which may introduce258

sequences in the MSA that are not true homologs. For targets T1064-D1 and T1070-D1, we259

removed all sequences with an E-value greater than 10−3. The target T1064-D1 has two se-260

quences above this threshold (E-values 1.4 and 0.16) that almost certainly are not homologs261

of the query. (E-value, defined as P-value multiplied by the size of database, indicates the262

how many matches with detected similarity are expected to occur by chance alone.) While263

removing either individually does not substantially change the accuracy of the prediction,264

removing both worsens the prediction with the MMSeqs2 MSA significantly (RMSD 3.46265

to 12.11) and worsens the prediction with our learned MSA mildly (RMSD 1.47 to 2.48).266

In T1070-D1 we realized the opposite outcome; removing the sequences with E-value at267

least 10−3 greatly improved the prediction with the MMSeqs2 MSA (RMSD 9.91 to 4.51)268

and slightly improved the prediction with our learned MSA (RMSD 2.75 to 2.70). Noting269

the influence of the closest homolog (E-value 6.1 × 10−30) on predictions for T1039-D1, we270

defined most distant sequences for this target as those with E-value greater than 10−15,271
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leaving only the closest homolog. Restricting to the query and this single homolog improved272

the MMSeqs2 prediction substantially (RMSD 7.62 to 2.79), bringing it on on par with the273

prediction from our learned MSA on the full set of sequences (RMSD 2.66). The inclusion of274

this single close homolog is vital; the RMSD of the prediction for the query sequence alone275

is 11.56.276

Finally, we repeated our optimization experiment after removing the distant sequences277

(Fig. S13a). We found that the most confident MSAs learned without the distant sequences278

tended to yield predictions with similar RMSD to the predictions from the most confident279

MSAs learned on the full set of sequences. (See orange and purple bars in Fig. S13b).280

We also investigated whether it was easier or harder to obtain “near optimal” structure281

prediction (having an RMSD of 1.25 times the RMSD of the prediction of the learned MSA282

on the full set) with the restricted set of sequences as compared to the full set. For T1064-283

D1 our optimization scheme found “near optimal” structures more often with the set of284

sequences that includes the distant sequences. The opposite was the case for T1039-D1, and285

there was no strong difference for T1070-D1 (Fig. S13b).286

DISCUSSION287

In this work we explored the composition of alignment in a pipeline that can be trained288

end-to-end without usage of any existing alignment software or ground-truth alignments.289

With SMURF, we trained alignments jointly with a well-understood MRF contact prediction290

approach and found mild improvement in accuracy using learned MSAs that were consistent291

and reasonable. When we instead optimized with AlphaFold’s confidence metrics, we found292

low-quality MSAs that yielded improved structure predictions. This suggests that in order293

to learn high-quality alignments in the context of another machine learning task, the task294

must require high-quality alignments, which we discovered is not the case for structure295

prediction with AlphaFold. Perhaps by changing our objective function to also penalize296

self-inconsistent alignments, we could learn more reasonable MSAs while still improving297

AlphaFold predictions. Our work both establishes the feasibility of pipelines which jointly298

learn alignments in conjunction with downstream machine learning systems and highlights299

the possibility of unexpectedly learning odd alignments when it is not well-understood how300

exactly the downstream task uses alignments.301
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While our findings that low-quality, self-inconsistent MSAs can yield improved AlphaFold302

predictions and that AlphaFold predictions may be quite sensitive to the inclusion of par-303

ticular sequences may seem paradoxical, these observations reflect behaviors found across304

deep learning systems. It is well-known that deep neural networks are not robust to adver-305

sarial noise [60]. Experiments that use an image recognition neural network to optimize an306

input image so that the image is confidently classified into a particular category will not307

necessarily yield human recognizable image of the category [42, 47]. Studying adversarial308

examples has been one approach to trying to understand how neural networks form predic-309

tions [23, 25, 42]. Our differentiable alignment module could be used with AlphaFold to310

identify a range of alignments that yield a particular prediction. Studying these alignments311

could provide insight on which aspects of an alignment are used by AlphaFold to make its312

prediction.313

Our smooth Smith-Waterman implementation is designed to be usable and efficient, and314

we hope it will enable experimentation with alignment modules in other applications of315

machine learning to biological sequences. There is ample opportunity for future work to316

systematically compare architectures for the scoring function in smooth Smith-Waterman.317

The use of convolutions led to relatively simple training dynamics, but other inductive biases318

induced by recurrent networks, attention mechanisms, or hand-crafted architectures could319

capture other signal important for alignment scoring. We also hope that the use of these320

more powerful scoring functions enables applications in remote homology search, structure321

prediction, or studies of protein evolution.322

Besides MSAs, there are numerous other discrete structures essential to analysis of bio-323

logical sequences. These include Probabilistic Context Free Grammars used to model RNA324

Secondary Structure [45] and Phylogenetic Trees used to model evolution. Designing dif-325

ferentiable layers that model meaningful combinatorial latent structure in evolution and326

biophysics is an exciting avenue for further work in machine learning and biology.327
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T1039-D1

Compare structure
predictions

Compare 
alignments

Most confident predictions 
in each trajectory

AF prediction from the 
MMSeqs2 MSA

AF prediction from the 
Learned MSA

Alignment consistencyView of MMSeqs2 MSA

View of Learned MSA

(a)

(b)

MSA Remove
 sequences 
and run AF

Individual sequences
removed

Most distant 
sequences removed

Most distant 
sequences

KLTEYYTNF---KYKILP---G---GKLNKGKLK-DLQSTV---TSLLEKTRKE-N-N---PK--YKSD-SD
ELTQLHADS---NFIKLVKRAG---DYSVKEKYANDPTPYIFLAKGLFGVYRKQLK-D---PM--IQDP---
ELTQIYADK---DYLKLV---KKADVYLVKPEYAEDPTPNIFSAKGFYGVYLDE-S-HEKIGL--GDRQ-AA
ELASLYAQKPKPNYEKLVLRAS---DYTVKPKYSSDPTPYLFLAKGLYGLVKEG-NSD---PK--FEDA---
ELAALYAQKPKPNFVKLVEKAS---EYVVKPKYSNDPTPNLFLAKGYLGIIKSQ-NPD---PR--FESA---
---------------------S---EYSVKPEYANDPTPHLFLAKGYLGLVKTT-NTD---PR--FESA---

KLTEYYTNFKYKIL-P--GG-K--LNKGKLKDL-QSTV-T------SL------LEKTRK-EN----NP-KYKS-DS--D
TQLHADSNFIKLVKRA--GD-Y--SVKEKYAND-P-TP-Y------IF------LAKGLF-GVYRKQ-L-KDPM-IQ--D
-----------DEL-T--QI----YADKDYLKLVKKAD-V------Y-------LVKPEY-AED---PTPNIFS-AK--G
DPTPYLFLAKGLYG-L--VKEG--NSDPKFEDA-IEESIA------SL------QSAVELDLN----GVLNDVEHQN--F
KASEYVVKPKYSND-P--TP-NLFLAKGYLGII-KSQN-PDPRFES-A------MEECVS-SF----NA-AREL-DK--N
--SEYSVKPEYAND-PTPHL-F--LAKGYLGLV-KTTN-T------DPRFESAL-EECIS-SF----NT-AREL-DKNG-

KLTEYYTNFKYKIL-P--GG-K--LNKG
TQLHADSNFIKLVKRA--GD-Y--SVKE
-----------DEL-T--QI----YADK
DPTPYLFLAKGLYG-L--VKEG--NSDP
KASEYVVKPKYSND-P--TP-NLFLAKG
--SEYSVKPEYAND-PTPHL-F--LAKG

rainbow = true structure, grey = predicted structure

FIG. 3: Learned MSA results in improved structure prediction, but a worse

alignment for T1039-D1. (a) The scatter plot shows the pLDDT and RMSD for the most

confident point in each trajectory. The marker color indicates the learning rate (10−2, 10−3,

10−4, lighest to darkest) and the shape indicates whether cooling was used (circle = no cooling,

square = cooling). The dotted lines show the pLDDT and RMSD of the prediction using the

MSA from MMseqs2. We selected the circled point maximizing the confidence (pLDDT) as our

“Learned MSA.” The native structure is rainbow colored, and the predictions are overlaid in grey.

The view of our Learned MSA illustrates the inconsistent alignment of a conserved motif (green)

that is aligned accurately in the MMSeqs2 MSA. The scatter plot shows that the pairwise

alignment scores for pairs extracted from the Learned MSA are much lower than the scores for

pairs extracted from the MMSeqs2 MSA. (b) Change in RMSD when individual sequences are

removed from the MSA (left) or a group of distant sequences is removed (right).
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FIG. 4: Learned MSA and structure predictions for three additional targets. The plots

are analogous to those in Fig. 3. An improved structure was found for T1064-D1 and T1070-D1,

but not T1043-D1. The MSAs learned for each target were less consistent than their MMSeqs2

counterparts.
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METHODS328

Our code and a detailed description of the data we used is available at: https://github.329

com/spetti/SMURF.330

Smooth and differentiable Smith-Waterman331

Pairwise sequence alignment can be formulated as the task of finding the highest scoring332

path through a directed graph in which edges correspond to an alignment of two particular333

residues or to a gap. The edge weights are match scores for the corresponding residues or the334

gap penalty, and the score of the path is the sum of the edge weights. The Smith-Waterman335

algorithm is a dynamic programming algorithm that returns a path with the maximal score.336

A smooth version instead finds a probability distribution over paths in which higher scoring337

paths are more likely. We describe a Smooth Smith-Waterman formulation in which the338

probability that any pair of residues is aligned can be formulated as a derivative.339
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FIG. 5: The alignment graph for sequences X = x1x2x3 and Y = y1y2. Edge labels

describe the corresponding aligned pair, and colors indicate the weights. All red edges start at

the source s, and all orange edges end at the sink t. The bold path corresponds to the alignment

of X and Y written on the right.

Fig. 5 illustrates an alignment graph. For sequences x1, x2, . . . xℓx and y1, y2, . . . , yℓy , the340

vertex set contains grid vertices vij for 0 ≤ i ≤ ℓx and 0 ≤ j ≤ ℓy, a source s, and a sink t.341

The directed edges are defined so that each path from s to t corresponds to a local alignment342

of the sequences. The table below describes the definitions, meanings, and weights of the343

edges.344
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Edge Meaning Weight

vi−1,j−1 → vi,j xi and yj are aligned xi,yj alignment score aij

vi,j−1 → vi,j yj is aligned with the gap character gap penalty g

vi−1,j → vi,j xi is aligned with the gap character gap penalty g

s → vi,j xk for k ≤ i and yk for k ≤ j are excluded 0

vi,j → t xk for k > i and yk for k > j are excluded 0

345

The Smith-Waterman algorithm iteratively computes the highest score of a path ending

at each vertex and returns the highest scoring path ending at t. Let w(u → v) denote the

weight of the edge u → v, and let N−(v) = {u |u → v is an edge} denote the incoming

neighbors of v. Let f(v) be the value of the highest scoring path from s to v. Taking

f(s) = 0, we compute

f(v) = max
u∈N−(v)

{f(u) + w(u → v)}.

For grid vertices this simplifies to

f(vi,j) = max{f(vi−1,j−1) + aij, f(vi,j−1) + g, f(vi−1,j) + g, 0}.

A path with the highest score is computed by starting at the sink t and tracing backward346

along the edges that achieve the maxima. (For further explanation see Chapter 2 of [15] or347

[56]).348

Following the general differentiable dynamic programming framework introduced in [38],349

we implement a smoothed version of Smith-Waterman. We compute a smoothed version of350

the function f , which we denote fS, by replacing the max with logsumexp. We again take351

fS(s) = 0, and define352

fS(v) = log

 ∑
u∈N−(v)

exp
(
fS(u) + w(u → v)

) . (1)

We use these smoothed scores and the edge weights to define a probability distribution over353

paths in G, or equivalently local alignments.354

Definition 1. Given an alignment graph G = (E, V ), define a random walk starting at

vertex t that traverses edges of G in reverse direction according to transitions probabilities

T (v → u) =
exp

(
fS(u) + w(u → v)

)∑
u′∈N−(v) exp (f

S(u′) + w(u′ → v))
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and ends at the absorbing vertex s. Let µG be the probability distribution over local alignments355

in which the probability of an alignment A is equal to the probability that the random walk356

follows the reverse of the path in G corresponding to A.357

Under the distribution µG, the probability that residues xi and yj are aligned can be358

formulated as a derivative. Mensch and Blondel describe this relationship in generality for359

differentiable dynamic programming on directed acyclic graphs [38]. We state their result as360

it pertains to our context and provide a proof in our notation in Supplementary Section S1A.361

Proposition 1 (Proposition 3 of [38]). Let G be an alignment graph and µG be the corre-

sponding probability distribution over alignments. Then

PµG
( xi and yj aligned ) =

∂fS(t)

∂w(vi−1,j−1 → vi,j)
=

∂fS(t)

∂aij
.

GREMLIN362

GREMLIN is a probabilistic model of protein variation that uses the MSA of a protein

family to estimate parameters of a MRF of the form

P(X = x) =
1

Z
exp (E (x; v, w)) ,where E (x; v, w) =

ℓ∑
i=1

[
vi(xi) +

ℓ∑
j=1

wij(xi, xj)

]
(2)

and ℓ is the number of columns in the MSA, vi represents the amino acid propensities363

for position i, wij is the pairwise interaction matrix for positions i and j, and Z is the364

partition function (the value E( · ; v, w) summed over all sequences x). Typically the model365

is trained by maximizing the pseudo-likelihood of observing all sequences in the alignment366

[6, 17, 32, 49]. Here we follow the approach of [9, 51] and use Masked Language Modeling367

(MLM) to find the parameters w and v. The pairwise terms wij can be used to predict368

contacts by reducing each matrix wij into a single value that indicates the extent to which369

positions i and j are coupled.370

Data selection for SMURF371

For our analysis of SMURF on proteins, we used the MSAs and contact maps collected372

in [4]. For training and initial tests, we used a reduced redundancy subset of 383 families373

constructed in [12]. Each family has least 1K effective sequences, and there is no pair of374
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families with an E-value greater that 1e-10, as computed by an HMM-HMM alignment [26].375

A random 190 families were used as the training set to identify quality hyperparameters376

of the model. The remaining 193 families served as the test set and are represented in377

Figure 2a, with the exceptions of two outlier families 4X9JA (SMURF AUC = 0.0748,378

MLM-GREMLIN AUC = 0.0523) and 2YN5A (SMURF AUC = 0.135, MLM-GREMLIN379

AUC = 0.145). Figure S8 includes data from 99 families from [26] that have at most 128380

sequences. A list of the families used in each setting is available in our GitHub repository.381

For each non-coding RNA, we aligned the RNA sequence in the PDB along with the382

corresponding Rfam sequences to an appropriate Rfam covariance model using Infernal [45].383

We then analyzed these sequences using the same procedure outlined for proteins. We384

evaluated the efficacy of the predicted contact maps using the PDB-derived contact map,385

where two nucleotides are classified as in contact if the minimum atomic distance is below386

8 angstrom. A list of the families used is available in our GitHub repository.387

Details of SMURF388

SMURF has two phases: BasicAlign and TrainMRF. Both begin with the learned align-389

ment module (Figure 1), but they have different architectures and loss functions afterwards.390

BasicAlign.391

Similarity matrices produced by randomly initialized convolutions will produce chaotic

alignments that are difficult for the downstream MRF to learn from. The purpose of Ba-

sicAlign is to learn initial convolutions whose induced similarity matrices yield alignments

with relatively homogeneous columns (see Figure S5). The input to BasicAlign is a random

subset of sequences S = {S(1), . . . S(B)} in the protein family. A pairwise alignment between

each sequence and the first sequence S(1) is produced via the learned alignment module (as

described in Figure 1). This set of alignments can be viewed as an MSA where each column

of the MSA corresponds to a position in the first sequence. Averaging the MSA yields the

distribution of residues in each column. Let Mix be the fraction of sequences in S with
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residue x aligned to position i of S(1),

Mix =
1

B

B∑
k=1

ℓk∑
j=1

pkij1{S
(k)
j = x}, (3)

where ℓk is the length of S(k) and pkij is the probability that position i of S(1) is aligned to

position j of S(k) under the smooth Smith-Waterman alignment. (Note that
∑

xMix is less

than one when there are sequences with a gap aligned to position i of S(1).) The BasicAlign

loss is computed by taking the squared difference between each aligned one-hot encoded

sequence and the averaged MSA,

L(S,M) =

ℓ1∑
i=1

∑
x

B∑
k=1

ℓk∑
j=1

(
Mix − pkij1{S

(k)
j = x}

)2
. (4)

TrainMRF.392

In TrainMRF, masked language modeling is used to learn the MRF parameters and393

further adjust the alignment module convolutions (see Figure S6). The input to TrainMRF394

is a set of sequences drawn at random from the MSA, S = {S(1), . . . S(B)}. A random 15%395

of the residues of the input sequences are masked, and the masked sequences are aligned396

to the query via the learned alignment module (as described in Figure 1). The parameters397

for the alignment module are initialized from BasicAlign, and the query is initialized as the398

one-hot encoded reference sequence for the family.399

The MRF has two sets of parameters: symmetric matrices wij ∈ RA×A for 1 ≤ i, j ≤ ℓR400

with wij = wji that correspond to pairwise interactions of the positions in the reference401

sequence and position-specific bias vectors bi ∈ RA for 1 ≤ i ≤ ℓR. Here ℓR denotes402

the length of the reference sequence, and A is the alphabet size (A = 20 for amino acids403

and A = 4 for nucleotides). Unlike traditional parameterizations of a MRF, we do not404

include gaps in our alphabet. Since our task is reconstructing masked positions in unaligned405

sequences, we have no need to predict gap characters.406

After the sequences are aligned to the query, the infill distribution for each masked

position is determined by the MRF parameters as follows. For a masked position j in

sequence k, we define Ŝ
(k)
j ∈ RA as the predicted probability distribution over residues at

position j of sequence S(k). Let pkit be the probability that position t of S(k) is aligned to

position i of the query under the smooth Smith-Waterman alignment, and let mk
t be the
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indicator that position t in sequence S(k) was masked. To compute Ŝ
(k)
j , we first compute a

score for each residue x that is equal to the expected value (under the smooth alignment)

of the terms of the function E( · ; b, w) specific to position j or involving position j and

an unmasked position. Then we compute the infill distribution by taking the softmax.

Formally,

S̄
(k)
jx =

ℓR∑
i=1

pkij

(
bix +

ℓR∑
r=1,r ̸=i

ℓk∑
t=1

pkrt(1−mk
t )wir

(
x, S

(k)
t

))
and Ŝ

(k)
jx =

exp
(
S̄
(k)
jx

)
∑

y exp
(
S̄
(k)
jy

) .
(5)

The infill distribution is an approximation of how likely each residue is to be present at407

position j in sequence k if position j were aligned to some position in the query sequence408

S(1). The approximation considers the values of the linear terms b and the pairwise terms409

w corresponding only to unmasked positions. (In the case that position j in sequence k is410

almost certainly an insertion relative to the query sequence S(1), i.e.
∑

i p
k
ij is small, our411

computation will likely provide a poor guess for the residue; in the extreme case where412 ∑
i p

k
ij = 0 the infill distribution is uniform over the alphabet. Our model does not have413

a mechanism to learn the identities of residues that are insertions relative to the query414

sequence. Ultimately, this is not a concern since we do not use information about insertions415

to predict the contacts of the query sequence.)416

We train the network using a cross entropy loss and L2 regularization on w and b with

λ = .01

L(S, p, b, w) = −
B∑

k=1

ℓR∑
j=1

∑
x

mk
jS

(k)
jx log Ŝ

(k)
jx +

λ(ℓR − 1)(A− 1)

2

(∑
i,j

∑
x,y

wij(x, y)
2 +

ℓr∑
i=1

∑
x

b2ix

)
.

(6)

After each iteration, the query is updated to reflect the inferred MSA. Let R be the

one-hot encoding of the reference sequence. We define Ci+1 as a rolling weighted average of

the MSAs learned through iteration i and Qi as the query for iteration i,

C1 = R, Ci+1 = ηCi + (1− η)M i, and Qi = γCi + (1− γ)R (7)

where M i is the averaged MSA computed as described in Equation (3) from the sequences417

in iteration i, η = 0.90, and γ = 0.3. This process is illustrated by the light blue arrows in418

Figure S6. Preliminary results on the training set had suggested that updating the query in419
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this manner improved results for some families. However, the ablation study on the test set420

does not suggest improvement (Fig. S11); further investigation is needed to determine the421

benefits changing the query between iterations.422

Once training is complete, we use w to assign a contact prediction score between each

pair of positions. The score cij measures the pairwise interaction between positions i and j,

and c̄ij is score after applying APC correction [14],

cij =

(∑
x,y

wij(x, y)
2

)1/2

and c̄ij = cij −
∑

k cik
∑

k ckj∑
k,ℓ ckℓ

. (8)

SMURF hyperparameter selection423

Throughout our hyperparameter search, we kept the following parameters constant: frac-424

tion of residues masked at 15%, number of convolution filters at 512, convolution window425

size at 18, regularization λ in Equation (6) at 0.01. Our hyperparameter search consisted426

of three stages. We initialized the gap penalty as −3 and allowed the network to learn a427

family-specific gap penalty.428

1. First we ran a grid search with on all 190 families in the training set with learn-429

ing rates {.05, 0.10, 0.15}, batch sizes {64, 128, 256}, and iterations {2000 BasicAlign430

/1000 TrainMRF, 3000 BasicAlign /3000 TrainMRF }. For comparison, we ran MLM-431

GREMLIN with the same range of learning rates and batch sizes and 3000 itera-432

tions. We found that batch size 64 and learning rate 0.05 performed best for MLM-433

GREMLIN.434

2. Then we restricted to a smaller set of families to perform a more extensive hyperpa-435

rameter search; we included the seven families where MLM-GREMLIN’s AUC was less436

than 0.45 (3AKBA, 3AWUA, 5BY4A, 4C6SA, 3OHEA, 3ERBA, 4F01A) and six fam-437

ilies where SMURF consistently performed substantially worse than MLM-GREMLIN438

(1NNHA, 3AGYA, 4LXQA, 1COJA, 2D4XA, 4ONWA). We considered the following439

hyperparameter options: learning rates {.05, 0.10}, batch sizes {64, 128, 256}, iter-440

ations {2000 BasicAlign /1000 TrainMRF, 2000 BasicAlign /2000 TrainMRF, 3000441

BasicAlign /1000 TrainMRF }, MSA memory fraction η ∈ {0.90, 0.95}, and MSA442

query fraction γ ∈ {0.3, 0.5, 0.7}.443
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3. Based on the results of the above hyperparameter search on the select families, we444

performed a final hyperparameter search on the entire training set. We noticed that445

performance was better for larger batch sizes, but it was not always possible to run the446

large batch sizes on our 32 GB GPU for families with longer sequences. For our final447

hyperparameter search, we used the largest batch size of {64, 128, 256} that would fit448

in memory for each family. We set η = 0.90, γ = 0.3, and selected 3000 BasicAlign449

/1000 TrainMRF iterations because these parameters lead to relatively strong results450

across the restricted set of families. Learning rate 0.10 outperformed learning rate451

0.05 on the restricted set, but learning rate 0.05 generally outperformed learning rate452

0.10 in the initial grid search on the full training set. We ran a final test with the453

aforementioned parameters and the two learning rates on the entire training set, and454

found that learning rate 0.05 was optimal overall.455

We also ran 4000 iterations of MLM-GREMLIN with predetermined optimal parame-456

ters: learning rate 0.05 and batch size 64. We found very similar performance between457

3000 and 4000 iterations of MLM-GREMLIN. We chose to compare SMURF to 4000458

iterations of MLM-GREMLIN so that both methods were trained for 4000 iterations.459

Data selection for AlphaFold experiment460

For our case study, the initial multiple sequence alignments (MSA) were obtained from461

MMseqs2 webserver as implemented in ColabFold [39]. After trimming the MSAs to their462

official domain definition, they were further filtered to reduce redundancy to 90 percent463

and to remove sequences that do not cover at least 75 percent of the domain length, using464

HHfilter [57]. Continuous domains under 200 in length, with at least 20 sequences, RMSD465

(root-mean-squared-distance) greater than 3 angstroms and the predicted LDDT (confidence466

metric) below 75, were selected for the experiment. We include one discontinuous targets467

T1064-D1 (SARS-CoV-2 ORF8 accessory protein) with only 16 sequences as an extra case468

study, as this was a particularly difficult CASP target that required manual MSA inter-469

vention, guided by pLDDT, to predict well [29]. The filtered MSAs were unaligned (gaps470

removed, deletions relative to query added back in) and padded to the max length.471
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AlphaFold experiment details472

We found that the AF predictions were particularly sensitive the the random mask used473

during evaluation (see Fig. S12). For this reason we omitted the mask during evaluation of474

the MMSeqs2 MSA and throughout our optimization procedure. For simplicity, we consid-475

ered only one of the five AF models and did not give AF access to the length of insertions476

relative to the query during our optimization procedure. Our objective function sought to477

maximize the pLDDT and minimize the alignment error as returned by AF’s “model 3 ptm”.478

The AF predictions from the MMSeqs2 MSAs tended to have the overarching structure cor-479

rect, but were incorrect on certain parts of the sequence. Our goal was for our optimization480

to correct the incorrect parts of the structure. For this reason we used the more stringent481

metric of RMSD (rather than the GDT measure of global structure) to evaluate the accuracy482

of our alignments.483

When the number of sequences is low, we find the optimization to be especially sensitive484

to parameter initialization. To increase robustness, for each target 180 independent opti-485

mization trajectories with 100 iterations each were carried out using ADAM. Each trajectory486

is defined by a random seed, a learning rate (10−2, 10−3, 10−4) and whether a cooling scheme487

was used in Smith-Waterman (temperature 1.0 or temperature decreased linearly from 1.5488

to 0.75 across the 100 iterations).489
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FIG. S1: Runtime comparisons. We compare the runtimes of the Needleman-Wunsch

implementation in [43] our JAX implementations of smooth Smith-Waterman (green), smooth

Needleman-Wunsch (orange) and a naive non-vectorized Needleman-Wunsch (blue). Top plots

report time for a forward pass, and the bottom plots report time for a forward and backward pass.
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S1. SUPPLEMENTARY NOTE: SMOOTH SMITH-WATERMAN DETAILS AND684

FEATURES685

A. Proof of the probabilistic interpretation of the gradient686

For completeness, we now repeat the proof of Proposition 1 given in [38] for the special687

case of Smooth Smith-Waterman. Proposition 1 gives a probabilistic interpretation of the688

gradient fS(t) with respect to the edge weights aij. We first give a probabilistic interpretation689

of the gradient fS(t) with respect to the vertex scores fS(vij).690

Proposition 2. Let G be an alignment graph. With respect to the random walk described

in Definition 1,

P( v is visited ) =
∂fS(t)

∂fS(v)
.

Proof. Let N+(v) = {u | v → u is an edge in G} denote the outgoing neighborhood of v. Let

u1, . . . un denote the vertices of G in a reverse topological order. We prove the statement by

induction with respect to this order. Note u1 = t, and P( t is visited ) = ∂fS(t)
∂fS(t)

= 1. Assume

that for all 1 ≤ i ≤ j, P( ui is visited ) = ∂fS(t)
∂fS(ui)

. Observe

∂fS(t)

∂fS(uj+1)
=

∑
u′∈N+(uj+1)

∂fS(t)

∂fS(u′)

∂fS(u′)

∂fS(uj+1)

=
∑

u′∈N+(uj+1)

P( u′ is visited )
∂

∂fS(uj+1)
log

 ∑
u′′∈N−(u′)

exp
(
fS(u′′) + w(u′′ → u′)

)
=

∑
u′∈N+(uj+1)

P( u′ is visited )
exp

(
fS(uj+1) + w(uj+1 → u′)

)∑
u′′∈N−(u′) exp (f

S(u′′) + w(u′′ → u′))

=
∑

u′∈N+(uj+1)

P( u′ is visited )T (u′ → uj+1)

= P( uj+1 is visited ),

where in the second equality we apply the inductive hypothesis.691

Proof of Proposition 1. It suffices to show that for each directed edge u → v in G

∂fS(t)

∂w(u → v)
= P( edge u → v is traversed )
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where the traversal occurs from v to u in the random walk. Observe

∂fS(t)

∂w(u → v)
=

∂fS(t)

∂fS(v)

∂fS(v)

∂w(u → v)

= P( v is visited )
∂

∂w(u → v)
log

 ∑
u′∈N−(v)

exp
(
fS(u′) + w(u′ → v)

)
= P( v is visited )

exp
(
fS(u) + w(u → v)

)∑
u′∈N−(v) exp (f

S(u′) + w(u′ → v))

= P( v is visited )T (v → u)

= P( edge u → v is traversed ).

692

B. Difference in Needleman-Wunsch implementation of Morton et. al.693

The authors of [43] implement a differentiable version of the Needleman-Wunsch global694

alignment algorithm [46]. Their implementation differs from ours in how gaps are parame-695

terized. Consequently, their output indicates where gaps or matches are likely, whereas our696

output expresses matches in an expected alignment.697

The authors of [43] define

vi,j = µi,j +max
Ω

(vi−1,j−1, gi,j + vi−1,j, gi,j + vi,j−1) ,

where gi,j is the gap penalty for an insertion or deletion at i or j, µi,j is the alignment score

for Xi and Yj, and maxΩ(x) = log (
∑

i exp (xi)) (see Appendix A of [43]). The values vi,j are

analogous to our definition fS on grid vertices (Equation (1)) with match scores µi,j = ai,j,

fS(vi,j) = max
Ω

(
fS(vi−1,j−1) + µi,j, f

S(vi,j−1) + g, fS(vi−1,j) + g
)
.

In the alignment graph for their formulation, gap edges have weight µi,j + gi,j. In our698

alignment graph, gap edges have weight g; the match score µi,j does not play a role, and699

our gap penalty is not position dependent.700

Their code outputs the derivatives
∂vN,M

∂µi,j
. The derivative

∂vN,M

∂µi,j
is high whenever the701

dominant alignment path uses an edge whose weight includes µi,j; this includes the edges702

that corresponds to gaps. In contrast, in our formulation ai,j = µi,j appears on the match703
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edge only, and so ∂fS(t)
∂ai,j

is high only when the dominant alignment path uses the edge704

corresponding to a match. Proposition 1 establishes that ∂fS(t)
∂ai,j

equal to the probability that705

Xi and Yj are aligned, so our output is an expected alignment. Figure S2 establishes that706

this is not the case for the output of the Needleman-Wunsch implementation of [43].707

gap

Scores

A B C W Z D E F

A

B

C

D

E

F

A B C W Z D E F

A

B

C

D

E

F

+ 10

- 10

0

Sequence X

S
e

q
u

e
n

ce
 Y

Sequence X

S
e

q
u

e
n

ce
 Y

0.670.33 1.0

Similarity matrix Output

FIG. S2: The output of the Needleman-Wunsch implementation of [43] is not an

expected alignment. It is not the case that Y4 = D is aligned with X4 = W with probability

0.33, X5 = Z with probability 0.67, and X6 = D with probability 1.0 because in any alignment,

Y4 can be aligned to at most one residue of sequence X.

C. Vectorization in our SSW implementation708

Following the approach of Wozniak [64], we implement a version of smooth Smith-709

Waterman where the values on the anti-diagonal are computed simultaneously. The vec-710

torization speeds up our code substantially. In order to compute the final score fS(t), we711

iteratively compute the scores of the grid vertices fS(vi,j), which take as input the values712

fS(vi−1,j), f
S(vi,j−1), and fS(vi−1,j−1). In a simple implementation, a for loop over i and j713

is used to compute the values fS(vi,j) (Figure S3a). To leverage vectorization, we instead714

compute the values fS(vi,j) along each diagonal in tandem, i.e. all (i, j) such that i+ j = d.715

To implement this, we rotate the matrix that stores the values fS(vi,j) by 90 degrees so that716

each diagonal now corresponds to a row (see Figure S3b). In the rotated matrix, the values717

in a row d are a function of the values in rows d− 1 and d− 2, and therefore we can apply718

vectorization to quickly fill the matrix.719
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FIG. S3: Vectorized implementation. (a) In a simple implementation, the value fS(vi,j) are

computed individually in a for loop over i and j. (b) In an anti-diagonal implementation, the

values along each diagonal in the matrix are computed in tandem. We implement this with

vectorization by rotating the matrix and computing the values in each row in tandem. The blue

denotes meaningless positions in the rotated matrix that we set to −∞. This figure is inspired by

Michael Brudno (University of Toronto).

D. SSW options720

Our smooth Smith-Waterman implementation has the following four additional options.721

a. Temperature parameter. The temperature parameter T controls the extent to which

the probability distribution over alignments is concentrated on the most likely alignments;

higher temperatures yield less concentrated alignments. We compute the smoothed score

for the vertex v as

fS(v) = T · log

 ∑
u∈N−(v)

exp

(
fS(u) + w(u → v)

T

) ,

which matches Equation (1) at the default T = 1.722

b. Affine gap penalty. The “affine gap” scoring scheme introduced to Smith-Waterman723

by [22] applies an “open” gap penalty to the first gap in a stretch of consecutive gaps and724

an “extend” gap penalty to each subsequent gap. The open gap penalty is usually larger725

than the extend penalty, thus penalizing length L gaps less severely than L separate single726

residue gaps.727

To implement an affine gap penalty, we use a modified alignment graph with three sets728
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of grid vertices that keep track of whether the previous pair in the alignment was a gap or729

a match. Edges corresponding to the first gap in a stretch are weighted with the “open”730

gap penalty[48]. Figure S4a illustrates the incoming edges of the three grid vertices for731

(i, j). Paths corresponding to alignments with xi and yj matched pass through vDij , paths732

corresponding to alignments with a gap at xi pass through vLij, and paths corresponding to733

alignments with a gap at yj pass through vTij. Storing three sets of grid vertices requires734

three times the memory used by the version with a linear gap penalty. For this reason we735

implemented SMURF with a linear gap penalty.736

c. Restrict turns. Smooth Smith-Waterman is inherently biased towards alignments737

with an unmatched stretch of X followed directly by an unmatched stretch of Y over align-738

ments with an equally long unmatched stretch in one sequence. Consider the example739

illustrated in Figure S4b where the highest scoring match states are depicted by bold black,740

light blue, and dark green lines. Suppose the match scores of the light blue and the dark741

green are identical. With a standard Smith-Waterman scoring scheme (no affine gap), the742

alignment containing the black and light blue segments has the same score as each alignment743

containing the black and dark green segments. However, there are more alignments that pass744

through the dark green segment. There are ten ways to align ABC and VW with no matches745

(the red, purple, orange, brown, and light green paths illustrate five such ways), but only746

one way to align VWXY Z with gaps (navy blue). Smooth Smith-Waterman will assign the747

same probability to each of these paths. However, since ten of the eleven paths go through748

the dark green segment, the expected alignment output by smooth Smith-Waterman will749

favor the dark green segment. This bias becomes more pronounced the longer the segments;750

there are
(
L
A

)
alignments of a sequence of length L and a sequence of length L−A with no751

matches.752

To remove this bias, we implemented “restrict turns” option that forbids unmatched753

stretches in the X sequence from following an unmatched stretch in the Y sequence. To754

do so, we again use an alignment graph with three sets of grid vertices to keep track of the755

previous pair in the alignment. Removing the edge with the asterisk in Figure S4a, forbids756

transitions from an unmatched stretch in the Y sequence to an unmatched stretch in the X757

sequence. When implemented with this restrict turns option, smooth Smith-Waterman will758

find exactly one path through the dark green and black segments in Figure S4: the path759

highlighted in red. Due to the increased memory requirement of the restrict turn option, we760
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did not utilize the option in SMURF.761

d. Global Alignment. We also implement the Needleman-Wunsch algorithm, which762

outputs global alignments rather than local alignments.763
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FIG. S4: Algorithm modification for the affine gap penalty and restrict turns options.

(a) The modification of the alignment graph from Figure 5 needed for the affine gap penalty.

Incoming edges of the vertices vLij ,v
D
ij , and vTij are illustrated. The colors of the edges indicate

their weights. The grey labels describe the corresponding aligned pair for each group of edges.

The red edge is incoming from the source vertex s. There is an outgoing edge from vDij to the sink

t for all i, j ≥ 1 (not pictured). The edge marked with an asterisk is removed under the “restrict

turns” option. (b) Without the restrict turns option, there ten paths containing both black

segments and dark green segment. The red, purple, orange, brown, and light green illustrate five

of these paths. There is only one path that contains both black segments and light blue segment,

as depicted in navy blue. The sub-alignments corresponding to the colored segments are written

on the right. With the restrict turns option the purple, orange, brown, and green paths are not

valid.
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FIG. S5: BasicAlign. An alignment is computed with the learned alignment module (Figure 1),

and the corresponding MSA is averaged. Squared loss (Equation (4)) is computed between the

averaged MSA and the one-hot encoding of the aligned input sequences.
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FIG. S6: TrainMRF. Random positions in the input sequences are masked, then aligned with

the LAM (Figure 1). A prediction for the masked positions is computed from the MRF

parameters according to Equation (5). The network is trained with cross entropy loss given by

Equation (6). The light blue arrows illustrate the update to the query that occurs between

iterations of training; the query is a weighted average of the one-hot query sequence and a

running average of the MSAs computed in previous iterations, see Equation (7). The grey arrow

depicts the extraction of the contact map from the MRF matrix w at the end of training, as

described in Equation (8).
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FIG. S7: SMURF-learned alignments are more consistent and have more residues

aligned to the query in comparison to HHBlits alignments. Left: The BLOSUM pairwise

alignment scores are on average higher for SMURF MSAs as compared to HHBlits MSAs. There

is a postive correlation between an increase in pairwise alignment score and the improvement of

SMURF over GREMLIN contact accuracy prediction. BLOSUM scores were computed only over

positions that correspond to a residue in query sequence and used an affine gap penalty with

open penalty −11 and extend penalty −1. Right: SMURF MSAs tend to have more positions

aligned to the query as compared to HHBlits MSAs. This quantity does not appear correlated

with the relative performance of SMURF over GREMLIN. Both plots were generated from a

random sample of 50 sequences from each alignment (out of 1024 sequences).
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FIG. S8: SMURF performance on 99 protein families from [4] with at most 128

sequences. Left: Scatter plot of the AUC of the top L predicted contacts for SMURF versus

MLM-GREMLIN. Right: Histogram of the difference in AUC between SMURF and

MLM-GREMLIN.
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S2. SUPPLEMENTARY NOTE: FURTHER ANALYSIS OF EXAMPLE SMURF764

PREDICTIONS765

A. RNA contact prediction.766

By comparing the positive predictive value (PPV) for different numbers of predicted con-767

tacts, we see that SMURF consistently yields a higher PPV for RFAM family RF00167768

(Figure 2b). For RF00010, it starts off higher but then drops off faster, leading to a lower769

overall AUC. Upon a visual inspection of the contact predictions, MLM-GREMLIN evi-770

dently generates more false positive predictions in seemingly random locations. On the771

other hand, SMURF largely resolves this issue, even for RF00010, presumably as a result772

of a better alignment. Interestingly, SMURF’s lower AUC for RF00010 can be attributed773

to a concentration of false positive predictions near the 5’ and 3’ ends. It remains unclear774

whether these represent a coevolution-based structural element that was not present in the775

specific RNA sequence deposited in PDB or whether these arise from artifacts of the learned776

alignment.777

B. Protein contact prediction and alignments.778

Next, we investigated the contact predictions and alignments produced by SMURF. Fig-779

ure S9 and Figure S10 illustrate the contact predictions, corresponding positive predictive780

value (PPV) plots, and alignments for the three families that improved the most and least781

(respectively) under SMURF as compared to MLM-GREMLIN. The poor performance of782

SMURF on 3LF9A can be attributed to the misalignment of the first ≈ 25 residues of many783

sequences (including the one illustrated) to positions ≈ 75 to 100 of the reference rather784

than to the first 25 positions of the reference. This is likely because the gap penalty for785

leaving positions ≈ 25 to 75 unaligned outweighs the benefit of aligning to beginning of786

the reference. Since our code computes a local alignment, there is no penalty for leaving787

positions at the beginning of the reference unaligned. Perhaps using our implementation of788

Smith-Waterman with an affine gap penalty would lead the network to learn a less severe789

penalty for long gaps and arrive at correct alignment. For the most improved families, we see790

that SMURF tends to predict fewer false positive predictions in seemingly random positions,791

as observed for RNA.792
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FIG. S9: Contact predictions and alignments for the three most improved protein

families. Left: Comparison of contact predictions between SMURF (red) and MLM-GREMLIN

(blue). Gray dots represent PDB-derived contacts, circles represent a true positive prediction,

and x represents a false positive prediction. Middle: The positive predictive value (PPV) for

different numbers of top N predicted contacts, with N ranging from 0 to 2L. Right: Comparison

of the alignment of a random sequence in the family to the reference sequence. Red indicates

aligned pairs that appear in the SMURF alignment, but do not appear in the given alignment.

Blue indicate aligned pairs that appear in the given alignment, but do not appear the alignment

found by SMURF.
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FIG. S10: Contact predictions and alignments for the three worst performing protein

families (as compared to MLM-GREMLIN). Left: Comparison of contact predictions

between SMURF (red) and MLM-GREMLIN (blue). Gray dots represent PDB-derived contacts,

circles represent a true positive prediction, and x represents a false positive prediction. Middle:

The positive predictive value (PPV) for different numbers of top N predicted contacts, with N

ranging from 0 to 2L. Right: Comparison of the alignment of a random sequence in the family to

the reference sequence. Red indicates aligned pairs that appear in the SMURF alignment, but do

not appear in the given alignment. Blue indicate aligned pairs that appear in the given

alignment, but do not appear the alignment found by SMURF.
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FIG. S11: Ablation results. Contact AUC for SMURF versus ablated methods. Each point

represents one family in the test set. In “Constant Query,” we did not update the the query with

the averaged MSA between iterations (as depicted by light blue arrows in Fig. S6). In “No

BasicAlign,” the convolutions were not initialized with BasicAlign, and instead TrainMRF was

run for 4000 iterations. In “pseudo-alignment,” we replaced Smith-Waterman with a

pseudo-alignment obtained by taking the softmax of the similarity matrix row-wise and

column-wise, multiplying the resultant matrices, and taking the square root (similar to [7]).

FIG. S12: Sensitivity of AlphaFold predictions to random masking. By default, a

random mask is used when AlphaFold makes a structure prediction [30]. The distribution of

RMSD of AlphaFold predictions for MMSeqs2 MSAs with different random seeds used for the

masks. The black line shows the RMSD of the prediction without the mask.
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(a)

(b) (c)

FIG. S13: AlphaFold + LAM optimization on families with distant sequences

removed. (a) Analogous plot to Fig. 3 for LAM + AF experiment with the distant sequences

removed. The dotted blue and red lines show the pLDDT and RMSD of the prediction using the

MSA from MMseqs2 with the distant sequences removed. The purple line indicates the definition

of “near-optimal” and is 1.25 times the RMSD of the prediction for the “Learned MSA” found in

Fig. 3 or 4. We selected the circled point maximizing the confidence (pLDDT) as our “MSA

Learned on restricted set.” (b) A comparison of the RMSD for various tested MSAs, by domain.

(c) Fraction of MSAs learned that yielded predictions with “near optimal” structure.
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