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Abstract

Multiple Sequence Alignments (MSAs) of homologous sequences contain information on struc-
tural and functional constraints and their evolutionary histories. Despite their importance for
many downstream tasks, such as structure prediction, MSA generation is often treated as a sep-
arate pre-processing step, without any guidance from the application it will be used for. Here,
we implement a smooth and differentiable version of the Smith-Waterman pairwise alignment al-
gorithm that enables jointly learning an MSA and a downstream machine learning system in an
end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned
Random Field), a new method that jointly learns an alignment and the parameters of a Markov
Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly
improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we
demonstrate that by connecting our differentiable alignment module to AlphaFold and maximizing
predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs.
Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be
viewed as adversarial. This work highlights the potential of differentiable dynamic programming
to improve neural network pipelines that rely on an alignment and the potential dangers of relying

on black-box methods for optimizing predictions of protein sequences.

2 Multiple Sequence Alignments (MSAs) are commonly used in biology to model evolu-
2 tionary relationships and the structural/functional constraints within families of proteins
s and RNA. MSAs are a critical component of the latest contact [0, 28, 41] and protein
2 structure prediction pipelines [5], B0]. Moreover, they are used for predicting the functional
2 effects of mutations [19, 20, 27, 9], phylogenetic inference [I8] and rational protein design
a [21), 37, B3, [61]. Creating alignments, however, is a challenging problem. Standard ap-
3 proaches use heuristics for penalizing substitutions and gaps and do not take into account
1 the effects of contextual interactions [57] or long-range dependencies. For example, these
. local approaches struggle when aligning large numbers of diverse sequences, and additional
s measures (such as the introduction of external guide Hidden Markov Models, HMMs) must
s be introduced to obtain reasonable alignments [55]. Finally, each alignment method has a

s number of hyperparameters which are often chosen on an application-specific basis. This
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38 suggests that computational methods that input an MSA could be improved by jointly
3 learning the MSA and training the method.

w0 Here we introduce Learned Alignment Module (LAM), which is a fully differentiable mod-
s ule for constructing MSAs and hence can be trained in conjunction with another differen-
s tiable downstream task. Building upon the generalized framework for differentiable dynamic
s programming developed in [38], LAM employs a smooth and differentiable version of the
s Smith-Waterman algorithm. Whereas the classic implementation of the Smith-Waterman
s algorithm outputs a pairwise alignment between two sequences that maximizes an alignment
s score [56], the smooth version outputs a distribution over alignments. This smoothness is

7 crucial to: (i) make the algorithm differentiable and therefore applicable in end-to-end neural

N

s network pipelines, and (ii) allow the method to consider multiple hypothesized alignments

N

o simultaneously, which we believe to be a beneficial feature early in training.

so  We demonstrate the utility of LAM with two differentiable pipelines. First, we design an
s1 unsupervised contact prediction method that jointly learns an alignment and the parameters
2 of a Markov Random Field (MRF) for RNA and protein, which we use to infer better
s3 structure-based contact maps. Next, we connect our differentiable alignment method to
s« AlphaFold to jointly infer an alignment that improves its prediction of protein structures

55 [30]. Our main contributions are as follows:

ss 1. Weimplemented a smooth and differentiable version of the Smith-Waterman algorithm

57 for local pairwise alignment in JAX [I0]. Our implementation includes options for an
58 affine gap penalty, a temperature parameter that controls the relaxation from the high-
50 est scoring path (i.e. smoothness), and both global and local alignment settings. Our
60 code is freely available and can be applied in any end-to-end neural network pipeline
61 written in JAX, TensorFlow [I] or via DLPack in PyTorch [50]. Moreover, we give a
62 self-contained description of our implementation and its mathematical underpinnings,
63 providing a template for future implementations in other languages.

e+ 2. We introduced the Learned Alignment Module (LAM), a fully differentiable module

65 for constructing MSAs that is trained in conjunction with a downstream task. For
66 each input sequence, a convolutional architecture produces a matrix of match scores
67 between the sequence and a reference sequence. Unlike a substitution matrix typi-
68 cally input to Smith-Waterman, these scores account for the local k-mer context of
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69 each residue. Next we apply our smooth Smith-Waterman implementation to these

70 similarity matrices to align each sequence to the reference, yielding an MSA (Fig. .

7 3. We designed a method called Smooth Markov Unaligned Random Field (SMURF) that

7 takes as input unaligned sequences and jointly learns an MSA (via LAM) and MRF
73 parameters. These parameters can then be used for contact prediction. We show that
74 SMURF outperforms GREMLIN, when trained with the same objective, for protein
75 and RNA contact prediction on a diverse set of families.

7 4. To demonstrate the utility of a differentiable alignment layer, we modify AlphaFold

7 [30], replacing the input MSA with the output of LAM. For a given set of unaligned,
78 related protein sequences, we backprop through AlphaFold to update the parameters
70 of LAM, maximizing AlphaFold’s predicted confidence. Doing so results in learned
80 MSAs that improve the structure prediction over our initial input MSA for 3 out of
81 4 targets. Despite the improved structure predictions, we find that the MSAs learned
8 by the LAM may be adversarial as indicated by their self-inconsistency. This finding
83 raises questions about how AlphakFold uses the input MSA to make its predictions.

84 Related work

ss  a. Differentiable Dynamic Programming in Natural Language Processing (NLP). Dif-
s ferentiable dynamic programming algorithms are needed in order to model combinatorial
&7 structures in a way that allows backpropagation of gradients [8, B8] [62]. Such algorithms
ss have been used in NLP to build neural models for parsing [16], grammar induction [33],
so speech [I1], and more. Smooth relaxations of argmax and other non-differentiable functions
o can enable differentiation through dynamic programs. More generally, Mensch and Blondel
a leverage semirings to provide a unified framework for constructing differentiable operators
o from a general class of dynamic programming algorithms [38]. This work has been incorpo-
o rated into the Torch-Struct library [52] to enable composition of automatic differentiation
o and neural network primitives, was recently implemented in Julia [58], and is the basis for
s our JAX implementation of smooth Smith-Waterman.

o b. Smooth and differentiable alignment in computational biology Before end-to-end

o learning was common, computational biologists used pair HMMs to express probability

4
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o distributions over pairwise alignments [15, 35, 40]. The forward algorithm applied to a pair
oo HMM can be viewed as a smoothed version of Smith-Waterman. Later, a differentiable
100 kernel-based method for alignment was introduced [54]. More recently, Morton et al. im-
w1 plemented a differentiable version of the Needleman-Wunsch algorithm for global pairwise
102 alignment [43], 46]. Our implementation has several advantages: (i) vectorization makes our
103 code faster (Fig. and Supplementary Note [S1C)), (ii) we implemented local alignment
1 and an affine gap penalty (Supplementary Note [S1D]), and (iii) due to the way gaps are
10s parameterized, the output of [43] can not be interpreted as an expected alignment (Supple-
10s mentary Note [S1B). Independent and concurrent work [36] uses a different formulation of

w7 differentiable Smith-Waterman involving Fenchel-Young loss.

ws  c. Language models, alignments, and MRFs Previous work combining language model
109 losses with alignment of biological sequences place the alignment layer at the end of the
uo pipeline. Bepler et al. first pretrain a bidirectional RNN language model, then freeze this
1 model and train a downstream model using a pseudo-alignment loss [7]. Similarly, Morton
2 et al. use a pretrained language model to parametrize the the alignment scoring function
us [43]. Their loss, however, is purely supervised based on ground-truth structural alignments.
ua Llinares-Lopez et al. use differentiable Smith-Waterman with masked language modeling
us and supervised alignments to learn a scoring function dervived from transformer embeddings
16 [36]. For RNA, a transformer embedding has been trained jointly with a masked language
17 modeling and structural alignment [2]. In contrast to all of these papers, our alignment
us layer is in the middle of the pipeline and is trained end-to-end with a task downstream of

uo alignment.

10 Joint modeling of alignments and Potts models has been explored. Kinjo et al. [34]
121 include insertions and deletions into a Potts model using techniques from statistical physics.
122 Two other works infer HMM and/or Potts parameters through importance sampling [63] and
123 message passing [44], with the goal of designing generative classifiers for protein homology

124 search.
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125 RESULTS
126 Smooth Smith-Waterman

127 Pairwise sequence alignment is the task of finding an alignment of two sequences with
128 the highest score, where the score is the sum of the “match” scores for each pair of aligned
120 residues and “gap” penalties for residues that are unmatched. The Smith-Waterman algo-
130 rithm is a dynamic programming algorithm that returns a path with the maximal score. A
131 smooth version instead finds a probability distribution over paths in which higher scoring
12 paths are more likely. Smoothness and differentiability can be achieved by replacing the
133 max with logsumexp and argmax with softmax in the dynamic programming algorithm. We
134 implemented a Smooth Smith-Waterman (SSW) formulation in which the probability that
135 any pair of residues is aligned can be formulated as a derivative (see Methods). We use JAX
136 due to its JIT (‘just in time’) compilation and automatic differentiation features [10].

137 Our speed benchmark indicates that our implementation is faster than the smooth
138 Needleman-Wunsch implementation in [43] for both a forward pass as well as for the com-
139 bined forward and backward passes, see Fig. The latter is relevant when using the
1o method in a neural network pipeline requiring backprogation. Moreover, comparison be-
1 tween a vectorized and naive version of our code shows that vectorization substantially
12 reduces the runtime, see [64] and Supplementary Note .

13 Our SSW has four other features: temperature, affine gap, retrict turns, and global align-
us ment. A temperature parameter governs the extent to which the distribution concentrated

1

'S

s on the highest scoring alignments. In the affine gap mode, the first gap in a streak incurs
us an “open” gap penalty and all subsequent gaps incur an “extend” gap penalty. A restrict

w7 turns option corrects for the algorithm’s inherent bias towards alignments near the diago-

N

us nal. We also implemented Needleman-Wunsch to output global alignments rather than local

s alignments. See Supplementary Note for additional details of SSW options.

1

o

150 Learned Alignment Module (LAM)

151 The key to improving a Smith-Waterman alignment is finding the right input matrix of

1

1

» alignment scores a = (Clij)iggz,jggy. Typically, when Smith-Waterman is used for pairwise

1

o1

s alignment the alignment score between positions ¢ and j, a;j, is given by a BLOSUM or

6
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155 PAM score for the pair of residues X; and Y; [3, 13, 24]. This score reflects how likely it is
155 for one amino acid to be substituted for another, but does not acknowledge the context of
156 each residue in the sequence. For example, consider serine, an amino acid that is both small
157 and hydrophilic. In a water-facing part of a protein, serine is more likely to be substituted
18 for other hydrophilic amino acids. In other contexts, serine may only be substituted for
150 other small amino acids due to the geometric constraints of the protein fold. Employing a
160 scoring function with convolutions allows for local context to be considered.

11 Our proposed learned alignment module adaptively learns a context-dependent alignment
162 Score matrix a,;, performs an alignment based on this score matrix, all in conjunction with
163 ¢ downstream machine learning task. The value a;; expresses the similarity between X;
e+ in the context of X;_,,...X;,... X1, and Y; in the context of Y;_,,,...Y;, ... Y4, We
165 Tepresent position 4 in sequence X as a vector v;* obtained by applying a convolutional layer
166 of window size 2w + 1 to a one-hot encoding of X; and its neighbors. The value a;; in the
167 similarity matrix that we input to Smith-Waterman is the dot product of the corresponding

168 vectors, a;; = vjX - UJY. To construct an MSA from a reference and B other sequences,

i
10 the LAM constructs a similarity matrix between each sequence and the reference, applies
o differentiable Smith-Waterman to each similarity matrix, and outputs an alignment of each
1 sequence to the reference (which can be viewed as an MSA). See Fig. . Since process is
12 entirely differentiable, we can plug the alignment produced by the LAM into a downstream

13 module, compute a loss function, and train the whole pipeline end-to-end.

172 Applying the LAM to contact prediction

s GREMLIN is a probabilistic model of protein variation that uses the MSA of a protein
176 family to estimate parameters of a MRF (see Methods), which in turn are used to predict
177 contact maps [6, 17, B2, [49]. Since GREMLIN relies on an input MSA, one would expect
s that improved alignments would yield better contact prediction results. To test this, we
179 designed a pipeline for training a GREMLIN-like model that inputs unaligned sequences
1o and jointly learns the MSA and MRF parameters. We call our method Smooth Markov
111 Unaligned Random Field or SMURF.

12 SMURF takes as input a family of unaligned sequences and learns both (i) the LAM

183 convolutions and (ii) the parameters of the MRF that are, in turn, used to predict con-

7
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FIG. 1: Learned alignment module (LAM). The residues of B sequences and a “query”
sequence are mapped to vectors using a convolution. For each sequence k, an alignment score
matrix a is computed by taking the dot products of the vectors representing the query sequence
and the vectors representing sequence k. The similarity tensor is formed by concatenating these
matrices, and then our differentiable implementation of smooth Smith-Waterman is applied to
each similarity matrix in the tensor to produce an alignment. The resulting B smooth pairwise

alignments (all aligned to the query sequence) are illustrated as the “Alignment Tensor.”

184 tacts. SMURF has two phases, each beginning with the LAM. First, BasicAlign learns LAM
15 convolutions by minimizing the squared difference between each aligned sequence and the
185 corresponding averaged MSA (Fig. . These convolutions are then used to initialize the
157 LAM for the second training phase, TrainMRF, where a masked language modeling (MLM)
188 Objective is used to learn MRF parameters and update the convolutions (Fig. . We com-
10 pare SMURF to GREMLIN trained with masked language modeling (MLM-GREMLIN) [9).
10 The architecture of MLM-GREMLIN is the similar to TrainMRF step of SMURF, except
1 that a fixed alignment is input instead of a learned alignment computed by LAM.

12 We trained and evaluated our model on a diverse set of protein families, as described
103 in Methods. To evaluate the accuracy of downstream contact prediction, we computed a
104 standard metric used to summarize contact prediction accuracy, i.e. the area under the curve
105 (AUC) for a plot of fraction of top t predicted contacts that are correct for ¢ equals 1 up to
ws L, where L is the length of the protein. Fig. illustrates that SMURF mildly outperforms
17 MLM-GREMLIN with a median AUC improvement of 0.007 across 193 protein families in
108 the test set. To test whether SMURF requires a deep alignment with many sequences, we
19 ran SMURF on protein families at most 128 sequences. The performance of SMURF and
200 MLM-GREMLIN are comparable even for these families with relatively few sequences, with
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FIG. 2: SMURF outperforms MLM-GREMLIN on (a) protein and (b) non-coding
RNA. (Top) Scatter plots of the AUC of the top L predicted contacts for SMURF versus
MLM-GREMLIN. (Bottom) Histograms of the difference in AUC between SMURF and
MLM-GREMLIN. (Right) Comparison of contact predictions and the positive predictive value
(PPV) for different numbers of top N predicted contacts, with N ranging from 0 to 2L, for
SMURF (red) and MLM-GREMLIN (blue) for Rfam family RF00010 (Ribonuclease P.) and
RF00167 (Purine riboswitch). Gray dots represent PDB-derived contacts, circles represent a true
positive prediction, and x represents a false positive prediction. For contact predictions for

RFAMO00010, the black circles highlight a concentration of false positive predictions.

20 a median AUC improvement of 0.002 (Fig. .

22 Next we sought to compare qualities of the MSAs learned through SMURF and MSAs
203 fed into GREMLIN, which were generated with HHblits [57]. To quantify the consistency of
200 the MSAs, we compared the BLOSUM scores [24] of all pairwise alignments extracted from
205 our learned MSA to those extracted from the HHblits MSA. By this metric, we found that

2|

o

s alignments learned by SMURF were more consistent than those from HHblits. Moreover, we

2|

o

7 observed a slightly positive correlation between increased consistency and contact prediction

s improvement (Fig. , left). We also found that SMURF alignments tend to have more

N
(=3

o positions aligned to the query (Fig. , right). We hypothesize that this is because our

pi

o

9
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20 MRF does not have a mechanism to intelligently guess the identity of residues that are
ou insertions with respect to the query sequence (the guess is uniform, see Methods).

22 Next, we applied SMURF to 17 non-coding RNA families from Rfam [31] that had a
213 corresponding structure in PDB (see Methods). Due to the relatively small number of RNAs
a1e with known 3D structures, we employed SMURF' using the hyperparameters optimized for
215 proteins; fine-tuning SMURF for RNA could improve performance. Overall, we observe that
ne SMURF outperforms MLM-GREMLIN with a median AUC improvement of 0.02 (Fig. [2b).
27 In Supplementary Note [S2, we further discuss the RNA contact predictions illustrated in
218 Flig. and the SMURF predictions for the three most and least improved protein families
20 (Figs. and [S10). We hypothesize that SMURF generates fewer false positive predictions
220 in seemingly random locations because the LAM finds better alignments.

21 Finally, we performed an ablation study on SMURF (Fig. . We found that replacing
222 smooth Smith-Waterman with a differentiable “pseudo-alignment” procedure, similar to [7],
23 degraded performance substantially. Skipping BasicAlign also degraded performance, thus

224 indicating the importance of the initial convolutions found in BasicAlign.

25  Using backprop through AlphaFold to learn alignments with LAM

2 As a proof of concept, we selected four CASP14 domains where the structure prediction
27 quality from AlphaFold was especially sensitive to how the MSA was constructed. We
28 Teasoned that the quality was poor due to issues in the MSA and by realigning the sequences
220 using AlphaFold’s confidence metrics we may be able to improve on the prediction quality.
20 For each of the four selected CASP targets, separate LAM parameters were fit to maximize
an AlphaFold’s predicted confidence metrics (see Methods). We repeated this 180 times for each
2 target (varying the learning rates, random seeds, and smoothness of the alignment), and then
23 selected the learned MSA corresponding to the most confident AlphaFold (AF) prediction
2. as measured by AF’s predicted local Distance Difference Test (pLDDT). For all targets,
25 AF reported higher confidence in the prediction from our learned MSA as compared to the
23 prediction from an MSA with the same sequences generated by MMSeqs2 as implemented
27 in ColabFold [39]. However only 3 of the 4 targets showed an improvement in the structure

23 prediction, as measured by the RMSD (root-mean-squared-distance) to native structure (see

239 FigS. and .

10
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a0 Next we compared the learned MSAs that led to better structure predictions to the
21 MMSeqs2 MSAs. Strikingly, we found our learned MSAs to be very low-quality. Fig.
22 illustrates a conserved motif that is consistently aligned in the MMSeqs2 MSA yet completely
213 scattered in our learned MSA. To quantify the consistency of the MSAs, we compared the
2« BLOSUM scores [24] of all pairwise alignments extracted from our learned MSAs to those
s extracted from the MMSeqs2 MSA. Indeed, the learned MSAs contain much lower scoring
26 pairwise alignments than those of MMSeqs2 MSAs, indicating far less consistency (Figs. [3p
207 and , which is the opposite trend we observed for MSAs learned by SMUREF. Thus, unlike
2 optimizing the MRF in SMURF, optimizing the confidence of AF predictions does not yield

220 consistent alignments with LAM.

0  We explored a simple explanation for how low-quality alignments could yield improved
»s1 structure predictions; perhaps AF uses its axial-like attention to consider only a subset of
252 sequences, and the poor alignments by the other sequences isn’t important or could further
253 disqualify those sequences from being attended to. To investigate this, we evaluated how
254 sensitive the AF predictions are to the inclusion of each individual sequence (Figs. and
255 []).  Surprisingly, the prediction accuracy can be incredibly sensitive to the removal of a

256 single sequence, especially for MMSeqs2 MSAs.

7 Next, we considered the effect of removing subsets of more distant sequences. The MM-
8 Seqs2 MSAs were constructed with a lenient E-value threshold of 10, which may introduce
250 sequences in the MSA that are not true homologs. For targets T1064-D1 and T1070-D1, we
20 removed all sequences with an E-value greater than 1073, The target T1064-D1 has two se-
261 quences above this threshold (E-values 1.4 and 0.16) that almost certainly are not homologs
22 of the query. (E-value, defined as P-value multiplied by the size of database, indicates the
263 how many matches with detected similarity are expected to occur by chance alone.) While
x4 removing either individually does not substantially change the accuracy of the prediction,
265 removing both worsens the prediction with the MMSeqs2 MSA significantly (RMSD 3.46
266 t0 12.11) and worsens the prediction with our learned MSA mildly (RMSD 1.47 to 2.48).
27 In T1070-D1 we realized the opposite outcome; removing the sequences with E-value at
28 least 1072 greatly improved the prediction with the MMSeqs2 MSA (RMSD 9.91 to 4.51)
260 and slightly improved the prediction with our learned MSA (RMSD 2.75 to 2.70). Noting
o0 the influence of the closest homolog (E-value 6.1 x 1073Y) on predictions for T1039-D1, we

on defined most distant sequences for this target as those with E-value greater than 10717,

11
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272 leaving only the closest homolog. Restricting to the query and this single homolog improved
3 the MMSeqs2 prediction substantially (RMSD 7.62 to 2.79), bringing it on on par with the
2 prediction from our learned MSA on the full set of sequences (RMSD 2.66). The inclusion of
o5 this single close homolog is vital; the RMSD of the prediction for the query sequence alone
276 1S 11.56.

o7 Finally, we repeated our optimization experiment after removing the distant sequences
2 (Fig. [SI3R). We found that the most confident MSAs learned without the distant sequences
a9 tended to yield predictions with similar RMSD to the predictions from the most confident
20 MSAs learned on the full set of sequences. (See orange and purple bars in Fig. [S13p).
21 We also investigated whether it was easier or harder to obtain “near optimal” structure
282 prediction (having an RMSD of 1.25 times the RMSD of the prediction of the learned MSA
283 on the full set) with the restricted set of sequences as compared to the full set. For T1064-
e D1 our optimization scheme found “near optimal” structures more often with the set of
285 sequences that includes the distant sequences. The opposite was the case for T1039-D1, and

26 there was no strong difference for T1070-D1 (Fig. [S13p).

27 DISCUSSION

s In this work we explored the composition of alignment in a pipeline that can be trained
280 end-to-end without usage of any existing alignment software or ground-truth alignments.
200 With SMURF, we trained alignments jointly with a well-understood MRF contact prediction
201 approach and found mild improvement in accuracy using learned MSAs that were consistent
202 and reasonable. When we instead optimized with AlphaFold’s confidence metrics, we found
203 low-quality MSAs that yielded improved structure predictions. This suggests that in order
204 t0 learn high-quality alignments in the context of another machine learning task, the task
205 Must require high-quality alignments, which we discovered is not the case for structure
206 prediction with AlphaFold. Perhaps by changing our objective function to also penalize
207 self-inconsistent alignments, we could learn more reasonable MSAs while still improving
208 AlphaFold predictions. Our work both establishes the feasibility of pipelines which jointly
200 learn alignments in conjunction with downstream machine learning systems and highlights
s00 the possibility of unexpectedly learning odd alignments when it is not well-understood how

s exactly the downstream task uses alignments.
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32 While our findings that low-quality, self-inconsistent MSAs can yield improved AlphaFold
303 predictions and that AlphaFold predictions may be quite sensitive to the inclusion of par-
s ticular sequences may seem paradoxical, these observations reflect behaviors found across
305 deep learning systems. It is well-known that deep neural networks are not robust to adver-
206 sarial noise [60]. Experiments that use an image recognition neural network to optimize an
57 input image so that the image is confidently classified into a particular category will not
208 necessarily yield human recognizable image of the category [42] [47]. Studying adversarial
300 examples has been one approach to trying to understand how neural networks form predic-
z0 tions [23, 25, 42]. Our differentiable alignment module could be used with AlphaFold to
sun identify a range of alignments that yield a particular prediction. Studying these alignments
s1i2 could provide insight on which aspects of an alignment are used by AlphakFold to make its
a13 prediction.

s Our smooth Smith-Waterman implementation is designed to be usable and efficient, and
sis we hope it will enable experimentation with alignment modules in other applications of
s1s machine learning to biological sequences. There is ample opportunity for future work to
s1i7 systematically compare architectures for the scoring function in smooth Smith-Waterman.
s1s The use of convolutions led to relatively simple training dynamics, but other inductive biases
s19 induced by recurrent networks, attention mechanisms, or hand-crafted architectures could
»0 capture other signal important for alignment scoring. We also hope that the use of these
;1 more powerful scoring functions enables applications in remote homology search, structure
s22 prediction, or studies of protein evolution.

23 Besides MSAs, there are numerous other discrete structures essential to analysis of bio-
324 logical sequences. These include Probabilistic Context Free Grammars used to model RNA
»s Secondary Structure [45] and Phylogenetic Trees used to model evolution. Designing dif-
w6 ferentiable layers that model meaningful combinatorial latent structure in evolution and

327 biophysics is an exciting avenue for further work in machine learning and biology.
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FIG. 3: Learned MSA results in improved structure prediction, but a worse
alignment for T1039-D1. (a) The scatter plot shows the pLDDT and RMSD for the most
confident point in each trajectory. The marker color indicates the learning rate (1072, 1073,

1074, lighest to darkest) and the shape indicates whether cooling was used (circle = no cooling,
square = cooling). The dotted lines show the pLDDT and RMSD of the prediction using the
MSA from MMseqs2. We selected the circled point maximizing the confidence (pLDDT) as our
“Learned MSA.” The native structure is rainbow colored, and the predictions are overlaid in grey.
The view of our Learned MSA illustrates the inconsistent alignment of a conserved motif (green)
that is aligned accurately in the MMSeqs2 MSA. The scatter plot shows that the pairwise
alignment scores for pairs extracted from the Learned MSA are much lower than the scores for
pairs extracted from the MMSeqs2 MSA. (b) Change in RMSD when individual sequences are

removed from the MSA (left) or a group of distant sequences is removed (right).
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28 METHODS

29, Our code and a detailed description of the data we used is available at: https://github.
330 com/spetti/SMURF.

331 Smooth and differentiable Smith-Waterman

s Pairwise sequence alignment can be formulated as the task of finding the highest scoring
333 path through a directed graph in which edges correspond to an alignment of two particular
s34 residues or to a gap. The edge weights are match scores for the corresponding residues or the
135 gap penalty, and the score of the path is the sum of the edge weights. The Smith-Waterman
336 algorithm is a dynamic programming algorithm that returns a path with the maximal score.
337 A smooth version instead finds a probability distribution over paths in which higher scoring
13 paths are more likely. We describe a Smooth Smith-Waterman formulation in which the

330 probability that any pair of residues is aligned can be formulated as a derivative.

S ‘\
o

weights X, alignment
\A % of bold path

% % X, X, X,
M g o——>0o Yi_ Y,

XS

0 2

M 0
o

FIG. 5: The alignment graph for sequences X = z12223 and Y = y1y2. Edge labels
describe the corresponding aligned pair, and colors indicate the weights. All red edges start at
the source s, and all orange edges end at the sink . The bold path corresponds to the alignment

of X and Y written on the right.

s Fig. plillustrates an alignment graph. For sequences x1, ¥, ... 7y, and y1, %o, ..., ¥e,, the
a1 vertex set contains grid vertices v;; for 0 <7 </, and 0 < j </, a source s, and a sink ¢.
s2 The directed edges are defined so that each path from s to ¢ corresponds to a local alignment
sz of the sequences. The table below describes the definitions, meanings, and weights of the

saa edges.
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Edge Meaning Weight
Vim1j—1 — Vi x; and y; are aligned x;,y; alignment score a;;
Vij—1 = Vi y; is aligned with the gap character _ gap penalty g
- Vi1 = Vi x; is aligned with the gap character _ gap penalty g
5= V; xp, for k <1 and y;, for k < j are excluded 0
vij —t xy for k >4 and gy, for £ > j are excluded 0

The Smith-Waterman algorithm iteratively computes the highest score of a path ending
at each vertex and returns the highest scoring path ending at ¢. Let w(u — v) denote the
weight of the edge u — v, and let N~ (v) = {u|u — v is an edge} denote the incoming
neighbors of v. Let f(v) be the value of the highest scoring path from s to v. Taking
f(s) =0, we compute

f(v) = max ){f(u) + w(u — v)}.

ueN~ (v

For grid vertices this simplifies to

f(vij) = max{f(vi—1,j-1) + aij, f(vij—1) + g, f(vi_1;) + g,0}.

s A path with the highest score is computed by starting at the sink ¢ and tracing backward
7 along the edges that achieve the maxima. (For further explanation see Chapter 2 of [I5] or
23 [56]).

10 Following the general differentiable dynamic programming framework introduced in [38],
50 we implement a smoothed version of Smith-Waterman. We compute a smoothed version of
s the function f, which we denote f°, by replacing the max with logsumexp. We again take

s f9(s) = 0, and define

f5(w) = log Z exp (f°(u) + w(u —v)) | . (1)

ueN~(v)
353 We use these smoothed scores and the edge weights to define a probability distribution over

4 paths in G, or equivalently local alignments.

Definition 1. Given an alignment graph G = (E,V), define a random walk starting at
vertex t that traverses edges of G in reverse direction according to transitions probabilities

exp (f5(u) + w(u — v))
D wen-(w) &P (f () + w(u' = v))

T(w—u) =
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5 and ends at the absorbing vertex s. Let g be the probability distribution over local alignments
ss6 10 which the probability of an alignment A is equal to the probability that the random walk

57 follows the reverse of the path in G corresponding to A.

s Under the distribution g, the probability that residues z; and y; are aligned can be
50 formulated as a derivative. Mensch and Blondel describe this relationship in generality for
360 differentiable dynamic programming on directed acyclic graphs [38]. We state their result as

361 1t pertains to our context and provide a proof in our notation in Supplementary Section [ST Al

Proposition 1 (Proposition 3 of [38]). Let G be an alignment graph and ug be the corre-

sponding probability distribution over alignments. Then

: afs(t afs(t
P..( x; and y; aligned ) = o (1 )_>U y _ aa?)'
=) 2, ij

2 GREMLIN

GREMLIN is a probabilistic model of protein variation that uses the MSA of a protein

family to estimate parameters of a MRF of the form

1

¢
P(X =x)= Eexp (E (z;v,w)),where FE(z;v,w) = Z vi(x;) + sz‘j(%,x]‘) (2)

33 and £ is the number of columns in the MSA, v; represents the amino acid propensities
se+ for position ¢, w;; is the pairwise interaction matrix for positions ¢ and j, and Z is the
365 partition function (the value E(-;v,w) summed over all sequences x). Typically the model
36 1S trained by maximizing the pseudo-likelihood of observing all sequences in the alignment
ser [0, (17, B2, 49]. Here we follow the approach of [9, 51] and use Masked Language Modeling
s (MLM) to find the parameters w and v. The pairwise terms w;; can be used to predict
60 contacts by reducing each matrix w;; into a single value that indicates the extent to which

0 positions ¢ and j are coupled.

371 Data selection for SMURF

sz For our analysis of SMURF on proteins, we used the MSAs and contact maps collected
w3 in [4]. For training and initial tests, we used a reduced redundancy subset of 383 families

s constructed in [12]. Each family has least 1K effective sequences, and there is no pair of
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ws families with an E-value greater that le-10, as computed by an HMM-HMM alignment [26].
we A random 190 families were used as the training set to identify quality hyperparameters
sr7 of the model. The remaining 193 families served as the test set and are represented in
s Figure 2h, with the exceptions of two outlier families 4X9JA (SMURF AUC = 0.0748,
50 MLM-GREMLIN AUC = 0.0523) and 2YN5A (SMURF AUC = 0.135, MLM-GREMLIN
30 AUC = 0.145). Figure [S§ includes data from 99 families from [26] that have at most 128

a1 sequences. A list of the families used in each setting is available in our GitHub repository.

2 For each non-coding RNA, we aligned the RNA sequence in the PDB along with the
383 corresponding Rfam sequences to an appropriate Rfam covariance model using Infernal [45].
s« We then analyzed these sequences using the same procedure outlined for proteins. We
s evaluated the efficacy of the predicted contact maps using the PDB-derived contact map,
;s where two nucleotides are classified as in contact if the minimum atomic distance is below

;7 8 angstrom. A list of the families used is available in our GitHub repository.

388 Details of SMURF

9 SMURF has two phases: BasicAlign and TrainMRF. Both begin with the learned align-

300 ment module (Figure , but they have different architectures and loss functions afterwards.

301 BasicAlign.

Similarity matrices produced by randomly initialized convolutions will produce chaotic
alignments that are difficult for the downstream MRF to learn from. The purpose of Ba-
sicAlign is to learn initial convolutions whose induced similarity matrices yield alignments
with relatively homogeneous columns (see Figure . The input to BasicAlign is a random
subset of sequences S = {S™M, ... S} in the protein family. A pairwise alignment between
each sequence and the first sequence S is produced via the learned alignment module (as
described in Figure . This set of alignments can be viewed as an MSA where each column
of the MSA corresponds to a position in the first sequence. Averaging the MSA yields the

distribution of residues in each column. Let M;, be the fraction of sequences in & with
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residue  aligned to position i of SM),

B A

1
My =53 > hi{s) =}, (3)

k=1 j=1
where £, is the length of S® and pf; is the probability that position i of S®) is aligned to
position j of S® under the smooth Smith-Waterman alignment. (Note that Y. My is less
than one when there are sequences with a gap aligned to position i of S™).) The BasicAlign
loss is computed by taking the squared difference between each aligned one-hot encoded

sequence and the averaged MSA,

LEM =333 (Mo — w1 {5 = :v}>2- (4)

z k=1 j=1
302 TrainMRF.

3 In TrainMRF, masked language modeling is used to learn the MRF parameters and
200 further adjust the alignment module convolutions (see Figure . The input to TrainMRF
w5 is a set of sequences drawn at random from the MSA, S = {SW, ... S} A random 15%
06 Of the residues of the input sequences are masked, and the masked sequences are aligned
307 to the query via the learned alignment module (as described in Figure [1)). The parameters
308 for the alignment module are initialized from BasicAlign, and the query is initialized as the
300 one-hot encoded reference sequence for the family.

wo  The MRF has two sets of parameters: symmetric matrices w;; € RA4 for 1 < 4,5 < lp
s With w;; = wj; that correspond to pairwise interactions of the positions in the reference
w02 sequence and position-specific bias vectors b, € R4 for 1 < i < ¢i. Here ¢ denotes
w03 the length of the reference sequence, and A is the alphabet size (A = 20 for amino acids
wi and A = 4 for nucleotides). Unlike traditional parameterizations of a MRF, we do not
a5 include gaps in our alphabet. Since our task is reconstructing masked positions in unaligned
w06 sequences, we have no need to predict gap characters.

After the sequences are aligned to the query, the infill distribution for each masked
position is determined by the MRF parameters as follows. For a masked position j in
sequence k, we define S'J(k) € R4 as the predicted probability distribution over residues at
position j of sequence S®). Let p¥ be the probability that position ¢ of S*) is aligned to

position i of the query under the smooth Smith-Waterman alignment, and let m* be the
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indicator that position ¢ in sequence S®) was masked. To compute S j(-k), we first compute a
score for each residue x that is equal to the expected value (under the smooth alignment)
of the terms of the function E(-;b,w) specific to position j or involving position j and
an unmasked position. Then we compute the infill distribution by taking the softmax.

Formally,
S (h w0 (3Y)
Zp” biy + Z Zp” — mi)w, (m S, > and S5}, = o
r=1,ri t=1 2.y &P <Sjy )
()

w07 The infill distribution is an approximation of how likely each residue is to be present at

a8 position 7 in sequence k if position j were aligned to some position in the query sequence
w0 SU). The approximation considers the values of the linear terms b and the pairwise terms
a0 w corresponding only to unmasked positions. (In the case that position j in sequence k is
a1 almost certainly an insertion relative to the query sequence SM. i.e. > pfj is small, our
a2 computation will likely provide a poor guess for the residue; in the extreme case where
sy pfj = 0 the infill distribution is uniform over the alphabet. Our model does not have
ae & mechanism to learn the identities of residues that are insertions relative to the query
a5 sequence. Ultimately, this is not a concern since we do not use information about insertions
a6 to predict the contacts of the query sequence.)

We train the network using a cross entropy loss and L2 regularization on w and b with

A=.01

L(S,p,b,w) = ZZZmJ jz log )+)\(€R_1 (ZZwUmy +Zzb

k=1 j=1 =z j X,y

(6)
After each iteration, the query is updated to reflect the inferred MSA. Let R be the
one-hot encoding of the reference sequence. We define C**! as a rolling weighted average of

the MSAs learned through iteration i and Q° as the query for iteration i,
C'=R, CT'=nC"+(1-nM', and Q' =~C"+(1-7)R (7)

a7 where M is the averaged MSA computed as described in Equation from the sequences
ais in iteration ¢, n = 0.90, and v = 0.3. This process is illustrated by the light blue arrows in
no Figure[S6l Preliminary results on the training set had suggested that updating the query in
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20 this manner improved results for some families. However, the ablation study on the test set

a1 does not suggest improvement (Fig. ; further investigation is needed to determine the
a2 benefits changing the query between iterations.

Once training is complete, we use w to assign a contact prediction score between each

pair of positions. The score ¢;; measures the pairwise interaction between positions ¢ and j,

and ¢;; is score after applying APC correction [14],

1/2
Cij = (Z wij(z, y)2> and G =c¢yj— T (8)
z,y Zkl Cke

23 SMURF hyperparameter selection

2 Throughout our hyperparameter search, we kept the following parameters constant: frac-
a5 tion of residues masked at 15%, number of convolution filters at 512, convolution window
w6 size at 18, regularization A\ in Equation @ at 0.01. Our hyperparameter search consisted
a7 of three stages. We initialized the gap penalty as —3 and allowed the network to learn a

»8 family-specific gap penalty.

w20 1. First we ran a grid search with on all 190 families in the training set with learn-

430 ing rates {.05,0.10,0.15}, batch sizes {64, 128,256}, and iterations {2000 BasicAlign
431 /1000 TrainMRF, 3000 BasicAlign /3000 TrainMRF }. For comparison, we ran MLM-
432 GREMLIN with the same range of learning rates and batch sizes and 3000 itera-
433 tions. We found that batch size 64 and learning rate 0.05 performed best for MLM-

434 GREMLIN.

a5 2. Then we restricted to a smaller set of families to perform a more extensive hyperpa-

436 rameter search; we included the seven families where MLM-GREMLIN’s AUC was less
. than 0.45 (3BAKBA, 3AWUA, 5BY4A, 4C6SA, 30HEA, 3ERBA, 4F01A) and six farn-
438 ilies where SMURF consistently performed substantially worse than MLM-GREMLIN
430 (INNHA, 3AGYA, 4LXQA, 1COJA, 2D4XA, 4ONWA). We considered the following
440 hyperparameter options: learning rates {.05,0.10}, batch sizes {64,128,256}, iter-
a1 ations {2000 BasicAlign /1000 TrainMRF, 2000 BasicAlign /2000 TrainMRF, 3000
492 BasicAlign /1000 TrainMRF }, MSA memory fraction n € {0.90,0.95}, and MSA
aa3 query fraction v € {0.3,0.5,0.7}.
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wms 3. Based on the results of the above hyperparameter search on the select families, we

ass performed a final hyperparameter search on the entire training set. We noticed that
a6 performance was better for larger batch sizes, but it was not always possible to run the
aa7 large batch sizes on our 32 GB GPU for families with longer sequences. For our final
448 hyperparameter search, we used the largest batch size of {64, 128,256} that would fit
449 in memory for each family. We set n = 0.90, v = 0.3, and selected 3000 BasicAlign
450 /1000 TrainMRF iterations because these parameters lead to relatively strong results
451 across the restricted set of families. Learning rate 0.10 outperformed learning rate
452 0.05 on the restricted set, but learning rate 0.05 generally outperformed learning rate
453 0.10 in the initial grid search on the full training set. We ran a final test with the
454 aforementioned parameters and the two learning rates on the entire training set, and
455 found that learning rate 0.05 was optimal overall.

456 We also ran 4000 iterations of MLM-GREMLIN with predetermined optimal parame-
a57 ters: learning rate 0.05 and batch size 64. We found very similar performance between
458 3000 and 4000 iterations of MLM-GREMLIN. We chose to compare SMURF to 4000
459 iterations of MLM-GREMLIN so that both methods were trained for 4000 iterations.

w60  Data selection for AlphaFold experiment

w1 For our case study, the initial multiple sequence alignments (MSA) were obtained from
sz MMseqs2 webserver as implemented in ColabFold [39]. After trimming the MSAs to their
a3 official domain definition, they were further filtered to reduce redundancy to 90 percent
a4 and to remove sequences that do not cover at least 75 percent of the domain length, using
w5 HHfilter [57]. Continuous domains under 200 in length, with at least 20 sequences, RMSD
w6 (root-mean-squared-distance) greater than 3 angstroms and the predicted LDDT (confidence
ss7 metric) below 75, were selected for the experiment. We include one discontinuous targets
w8 T1064-D1 (SARS-CoV-2 ORF8 accessory protein) with only 16 sequences as an extra case
w0 study, as this was a particularly difficult CASP target that required manual MSA inter-
w0 vention, guided by pLDDT, to predict well [29]. The filtered MSAs were unaligned (gaps

w removed, deletions relative to query added back in) and padded to the max length.
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472 AlphaFold experiment details

az We found that the AF predictions were particularly sensitive the the random mask used
wa during evaluation (see Fig. . For this reason we omitted the mask during evaluation of
a5 the MMSeqs2 MSA and throughout our optimization procedure. For simplicity, we consid-
ars ered only one of the five AF models and did not give AF access to the length of insertions
a7 relative to the query during our optimization procedure. Our objective function sought to
ars maximize the pLDDT and minimize the alignment error as returned by AF’s “model 3_ptm”.
a0 The AF predictions from the MMSeqs2 MSAs tended to have the overarching structure cor-
a0 rect, but were incorrect on certain parts of the sequence. Our goal was for our optimization
a1 to correct the incorrect parts of the structure. For this reason we used the more stringent
ss2 metric of RMSD (rather than the GDT measure of global structure) to evaluate the accuracy

sg3 of our alignments.

ssa When the number of sequences is low, we find the optimization to be especially sensitive
a5 to parameter initialization. To increase robustness, for each target 180 independent opti-
a6 mization trajectories with 100 iterations each were carried out using ADAM. Each trajectory
w7 is defined by a random seed, a learning rate (1072,1073,10~*) and whether a cooling scheme
s was used in Smith-Waterman (temperature 1.0 or temperature decreased linearly from 1.5

480 t0 0.75 across the 100 iterations).

wo  We thank Sean Eddy for pointing out the need for a restrict turns feature and for useful
s comments on a draft. We thank Jake VanderPlas for supplying JAX code that efficiently
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FIG. S1: Runtime comparisons. We compare the runtimes of the Needleman-Wunsch
implementation in [43] our JAX implementations of smooth Smith-Waterman (green), smooth
Needleman-Wunsch (orange) and a naive non-vectorized Needleman-Wunsch (blue). Top plots

report time for a forward pass, and the bottom plots report time for a forward and backward pass.
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e S1. SUPPLEMENTARY NOTE: SMOOTH SMITH-WATERMAN DETAILS AND
ess FEATURES

6 A. Proof of the probabilistic interpretation of the gradient

7 For completeness, we now repeat the proof of Proposition [1] given in [3§] for the special
ess case of Smooth Smith-Waterman. Proposition (1| gives a probabilistic interpretation of the
ss0 gradient f°(t) with respect to the edge weights a;;. We first give a probabilistic interpretation

e Of the gradient f°(¢) with respect to the vertex scores f°(v;;).

Proposition 2. Let G be an alignment graph. With respect to the random walk described
in Definition

0f°(t)
P( v is visited ) = .
( TR0
Proof. Let N*(v) = {u|v — u is an edge in G} denote the outgoing neighborhood of v. Let
uy, . . . u, denote the vertices of GG in a reverse topological order. We prove the statement by
induction with respect to this order. Note u; = ¢, and P( ¢ is visited ) = g;zgg = 1. Assume

that for all 1 < i < j, P( w; is visited ) = aaffss(gj). Observe

of>(t) 3 0f>(t) of%(u')

0f(uje1) e 0T (W) OF 5 (i)
— Z P( « is visited ) —=—— log Z exp (f°(u") +w(u’ — u'))
9f%(uj41)
weNT(ujtp1) u"eN—(u)
exp (5 (ujr1) +w(ujy — o/
— Z P( « is visited ) i <f (1) S //( I+ — )> -
e S ey 0 ) 4wl = )
= Z P( ' is visited )T (u' — uji1)
ueNt u]‘+1)
= IP( w4 is visited ),
so1 where in the second equality we apply the inductive hypothesis. O

Proof of Proposition [ Tt suffices to show that for each directed edge u — v in G

of(t)

m = P( edge u — v is traversed )
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where the traversal occurs from v to « in the random walk. Observe

015 _ 055() _or°()
ow(u —wv)  If5(v) dw(u — v)

0

= ]P( v 18 ViSited )m
wlu v

log Z exp (f2(u) +w(u' — v))
uw'eN—(v)
exp (f%(u) + w(u — v))

Dwen-(w) &P (f5 () + w(u — v))

= P( v is visited )T (v — u)

= P( v is visited )

= P( edge u — v is traversed ).

692 D

603 B. Difference in Needleman-Wunsch implementation of Morton et. al.

s« The authors of [43] implement a differentiable version of the Needleman-Wunsch global
e0s alignment algorithm [46]. Their implementation differs from ours in how gaps are parame-
sos terized. Consequently, their output indicates where gaps or matches are likely, whereas our
so7 output expresses matches in an expected alignment.

The authors of [43] define
Vij = Mij + max (Vic1j-1,Gij + Vic14, 9ij + Vij—1)

where g, ; is the gap penalty for an insertion or deletion at ¢ or 7, p; ; is the alignment score
for X; and Y}, and maxq(z) = log (>, exp (z;)) (see Appendix A of [43]). The values v; ; are

analogous to our definition f* on grid vertices (Equation ) with match scores p; ; = a; ;,

fS(Ui,j) = max (fs(viq,jq) + Wi, fs(’Ui,jq) + 9, fS(Uzel,j) + 9) .

o0z In the alignment graph for their formulation, gap edges have weight y;; + g;;. In our
so0 alignment graph, gap edges have weight g; the match score ; ; does not play a role, and

700 our gap penalty is not position dependent.

N, M

OvN, M
i O, j

Opi,j

701 Their code outputs the derivatives The derivative is high whenever the
72 dominant alignment path uses an edge whose weight includes p; ;; this includes the edges

703 that corresponds to gaps. In contrast, in our formulation a; ; = p; ; appears on the match
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704 edge only, and so %ﬁ) is high only when the dominant alignment path uses the edge

705 corresponding to a match. Proposition [1| establishes that % equal to the probability that
V)

76 X; and Y are aligned, so our output is an expected alignment. Figure [S2| establishes that

707 this is not the case for the output of the Needleman-Wunsch implementation of [43].

Similarity matrix Output
Scores
>
E +10 o
g # 3
() _ ()
3 B o 3
() ()
[%2] v
gap 0
A B C W z D E F A l% 6 W i E) é F
Sequence X Sequence X

FIG. S2: The output of the Needleman-Wunsch implementation of [43] is not an
expected alignment. It is not the case that Yy, = D is aligned with X, = W with probability
0.33, X5 = Z with probability 0.67, and Xg = D with probability 1.0 because in any alignment,

Y, can be aligned to at most one residue of sequence X.

708 C. Vectorization in our SSW implementation

w0 Following the approach of Wozniak [64], we implement a version of smooth Smith-
70 Waterman where the values on the anti-diagonal are computed simultaneously. The vec-
m torization speeds up our code substantially. In order to compute the final score f(t), we
n2 iteratively compute the scores of the grid vertices f°(v;;), which take as input the values
n3 f9(vi1y), f9(vij—1), and f¥(v;_1;-1). In a simple implementation, a for loop over i and j
na is used to compute the values f9(v; ;) (Figure ) To leverage vectorization, we instead
ns compute the values f9(v; ;) along each diagonal in tandem, i.e. all (4, j) such that i +j = d.
76 To implement this, we rotate the matrix that stores the values f(v; ;) by 90 degrees so that
n7 each diagonal now corresponds to a row (see Figure ) In the rotated matrix, the values
718 in a row d are a function of the values in rows d — 1 and d — 2, and therefore we can apply

719 vectorization to quickly fill the matrix.
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(a) Simple implementation (b) Vectorized striped implementation
O 1 2 3 4 5 O 1 2 3 4 5
0
0 0 1
1 1 2
2 2 ;
3 3 rotate 5
4 4 # g
5 5 8
9
6 6 10
11
7 7 1

FIG. S3: Vectorized implementation. (a) In a simple implementation, the value f° (v;,) are
computed individually in a for loop over ¢ and j. (b) In an anti-diagonal implementation, the
values along each diagonal in the matrix are computed in tandem. We implement this with
vectorization by rotating the matrix and computing the values in each row in tandem. The blue
denotes meaningless positions in the rotated matrix that we set to —oo. This figure is inspired by

Michael Brudno (University of Toronto).

D. SSW options

Our smooth Smith-Waterman implementation has the following four additional options.
a. Temperature parameter. The temperature parameter 7' controls the extent to which
the probability distribution over alignments is concentrated on the most likely alignments;
higher temperatures yield less concentrated alignments. We compute the smoothed score

for the vertex v as

e =T0s| Y exp(fs(u)er(u—w)) |

T
ueEN~(v)

which matches Equation at the default T = 1.
b. Affine gap penalty. The “affine gap” scoring scheme introduced to Smith-Waterman

24 by [22] applies an “open” gap penalty to the first gap in a stretch of consecutive gaps and

725

an “extend” gap penalty to each subsequent gap. The open gap penalty is usually larger

726 than the extend penalty, thus penalizing length L gaps less severely than L separate single

727 residue gaps.

728

To implement an affine gap penalty, we use a modified alignment graph with three sets
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729 Of grid vertices that keep track of whether the previous pair in the alignment was a gap or
720 & match. Edges corresponding to the first gap in a stretch are weighted with the “open”

71 gap penalty[48]. Figure illustrates the incoming edges of the three grid vertices for

D
ij

732 (1, 7). Paths corresponding to alignments with z; and y; matched pass through v;’, paths

733 corresponding to alignments with a gap at x; pass through vZLj, and paths corresponding to
734 alignments with a gap at y; pass through vg . Storing three sets of grid vertices requires
735 three times the memory used by the version with a linear gap penalty. For this reason we

736 implemented SMURF with a linear gap penalty.

730 ¢.  Restrict turns. Smooth Smith-Waterman is inherently biased towards alignments
738 with an unmatched stretch of X followed directly by an unmatched stretch of Y over align-
730 ments with an equally long unmatched stretch in one sequence. Consider the example
0 illustrated in Figure where the highest scoring match states are depicted by bold black,
a1 light blue, and dark green lines. Suppose the match scores of the light blue and the dark
742 green are identical. With a standard Smith-Waterman scoring scheme (no affine gap), the
723 alignment containing the black and light blue segments has the same score as each alignment
724 containing the black and dark green segments. However, there are more alignments that pass
75 through the dark green segment. There are ten ways to align ABC and VW with no matches
26 (the red, purple, orange, brown, and light green paths illustrate five such ways), but only
747 one way to align VW XY Z with gaps (navy blue). Smooth Smith-Waterman will assign the
728 same probability to each of these paths. However, since ten of the eleven paths go through
79 the dark green segment, the expected alignment output by smooth Smith-Waterman will

750 favor the dark green segment. This bias becomes more pronounced the longer the segments;

L

1 there are ( “

) alignments of a sequence of length L and a sequence of length L — A with no

752 matches.

73 To remove this bias, we implemented “restrict turns” option that forbids unmatched
754 stretches in the X sequence from following an unmatched stretch in the Y sequence. To
755 do S0, we again use an alignment graph with three sets of grid vertices to keep track of the
75 previous pair in the alignment. Removing the edge with the asterisk in Figure [S4h, forbids
757 transitions from an unmatched stretch in the Y sequence to an unmatched stretch in the X
758 sequence. When implemented with this restrict turns option, smooth Smith-Waterman will
70 find exactly one path through the dark green and black segments in Figure [S4; the path

70 highlighted in red. Due to the increased memory requirement of the restrict turn option, we
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761 did not utilize the option in SMURF.
w2 d. Global Alignment. We also implement the Needleman-Wunsch algorithm, which

763 outputs global alignments rather than local alignments.

(@) (b)
vl VT ABC ABC
v, weights -
AB_C_
N g, Vv VW
W
Ny open gap _A_BC
X VW
N extend gap Y
7 _AB_C
0 V_W_
ABC
M 0 o
z lVWXYZ

FIG. S4: Algorithm modification for the affine gap penalty and restrict turns options.
(a) The modification of the alignment graph from Figure [5| needed for the affine gap penalty.

Incoming edges of the vertices UiLj,Ug ,

and U;‘g are illustrated. The colors of the edges indicate
their weights. The grey labels describe the corresponding aligned pair for each group of edges.
The red edge is incoming from the source vertex s. There is an outgoing edge from vg to the sink
t for all 4,5 > 1 (not pictured). The edge marked with an asterisk is removed under the “restrict
turns” option. (b) Without the restrict turns option, there ten paths containing both black
segments and dark green segment. The red, purple, orange, brown, and light green illustrate five
of these paths. There is only one path that contains both black segments and light blue segment,
as depicted in navy blue. The sub-alignments corresponding to the colored segments are written

on the right. With the restrict turns option the purple, orange, brown, and green paths are not

valid.
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FIG. S5: BasicAlign. An alignment is computed with the learned alignment module (Figure ,

and the corresponding MSA is averaged. Squared loss (Equation ) is computed between the

averaged MSA and the one-hot encoding of the aligned input sequences.

Added to query

Averaged
Masked SEQ 1 Masked SEQB MSA
H:D] H:m True SEQ 1 True SEQ B

LEARNED _ .'
=)  ALGNMENT  memlp
MODULE

QUERY

A 4
al 21
S S
Alignment Tensor ‘ ¥
Predicted SEQ 1 Predicted SEQ B
Predicted
ﬁ ﬁ . oo Contact Map
FEEI= m—)
ALl
ga |0 (EE(EE

Markov Random Field

FIG. S6: TrainMRF. Random positions in the input sequences are masked, then aligned with
the LAM (Figure . A prediction for the masked positions is computed from the MRF
parameters according to Equation . The network is trained with cross entropy loss given by
Equation @ The light blue arrows illustrate the update to the query that occurs between
iterations of training; the query is a weighted average of the one-hot query sequence and a
running average of the MSAs computed in previous iterations, see Equation @ The grey arrow
depicts the extraction of the contact map from the MRF matrix w at the end of training, as

described in Equation .
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FIG. S7: SMURF-learned alignments are more consistent and have more residues
aligned to the query in comparison to HHBIlits alignments. Left: The BLOSUM pairwise
alignment scores are on average higher for SMURF MSAs as compared to HHBlits MSAs. There
is a postive correlation between an increase in pairwise alignment score and the improvement of
SMURF over GREMLIN contact accuracy prediction. BLOSUM scores were computed only over

positions that correspond to a residue in query sequence and used an affine gap penalty with

open penalty —11 and extend penalty —1. Right: SMURF MSAs tend to have more positions
aligned to the query as compared to HHBlits MSAs. This quantity does not appear correlated

with the relative performance of SMURF over GREMLIN. Both plots were generated from a

random sample of 50 sequences from each alignment (out of 1024 sequences).
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FIG. S8: SMURF performance on 99 protein families from [4] with at most 128
sequences. Left: Scatter plot of the AUC of the top L predicted contacts for SMURF versus
MLM-GREMLIN. Right: Histogram of the difference in AUC between SMURF and
MLM-GREMLIN.
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4 S2. SUPPLEMENTARY NOTE: FURTHER ANALYSIS OF EXAMPLE SMURF
s PREDICTIONS

6 A. RINA contact prediction.

7 By comparing the positive predictive value (PPV) for different numbers of predicted con-
78 tacts, we see that SMURF consistently yields a higher PPV for RFAM family RF00167
0 (Figure ) For RF00010, it starts off higher but then drops off faster, leading to a lower
70 overall AUC. Upon a visual inspection of the contact predictions, MLM-GREMLIN evi-
1 dently generates more false positive predictions in seemingly random locations. On the
72 other hand, SMURF largely resolves this issue, even for RF00010, presumably as a result
73 of a better alignment. Interestingly, SMURF’s lower AUC for RF00010 can be attributed
774 t0 a concentration of false positive predictions near the 5 and 3’ ends. It remains unclear
75 whether these represent a coevolution-based structural element that was not present in the
76 specific RNA sequence deposited in PDB or whether these arise from artifacts of the learned

777 alignment.

772 B. Protein contact prediction and alignments.

7o Next, we investigated the contact predictions and alignments produced by SMURF. Fig-
70 ure [S9 and Figure illustrate the contact predictions, corresponding positive predictive
1 value (PPV) plots, and alignments for the three families that improved the most and least
782 (respectively) under SMURF as compared to MLM-GREMLIN. The poor performance of
73 SMURF on 3LF9A can be attributed to the misalignment of the first ~ 25 residues of many
7e sequences (including the one illustrated) to positions ~ 75 to 100 of the reference rather
7s than to the first 25 positions of the reference. This is likely because the gap penalty for
786 leaving positions ~ 25 to 75 unaligned outweighs the benefit of aligning to beginning of
77 the reference. Since our code computes a local alignment, there is no penalty for leaving
78 positions at the beginning of the reference unaligned. Perhaps using our implementation of
780 Smith-Waterman with an affine gap penalty would lead the network to learn a less severe
790 penalty for long gaps and arrive at correct alignment. For the most improved families, we see
701 that SMURF tends to predict fewer false positive predictions in seemingly random positions,

792 as observed for RNA.
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FIG. S9: Contact predictions and alignments for the three most improved protein
families. Left: Comparison of contact predictions between SMURF (red) and MLM-GREMLIN
(blue). Gray dots represent PDB-derived contacts, circles represent a true positive prediction,
and x represents a false positive prediction. Middle: The positive predictive value (PPV) for
different numbers of top N predicted contacts, with N ranging from 0 to 2L. Right: Comparison
of the alignment of a random sequence in the family to the reference sequence. Red indicates
aligned pairs that appear in the SMURF alignment, but do not appear in the given alignment.
Blue indicate aligned pairs that appear in the given alignment, but do not appear the alignment

found by SMURF.
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FIG. S10: Contact predictions and alignments for the three worst performing protein
families (as compared to MLM-GREMLIN). Left: Comparison of contact predictions
between SMURF (red) and MLM-GREMLIN (blue). Gray dots represent PDB-derived contacts,
circles represent a true positive prediction, and x represents a false positive prediction. Middle:
The positive predictive value (PPV) for different numbers of top N predicted contacts, with N
ranging from 0 to 2L. Right: Comparison of the alignment of a random sequence in the family to
the reference sequence. Red indicates aligned pairs that appear in the SMURF alignment, but do
not appear in the given alignment. Blue indicate aligned pairs that appear in the given

alignment, but do not appear the alignment found by SMURF.

43


https://doi.org/10.1101/2021.10.23.465204
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.23.465204; this version posted April 18, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.8 0.8 ’f??ﬁ 08 0.8
o uff =
= o 7]
Sose 306 i 506 £0.6
= ¢ 2 < 5
] R S 5
o e ol = =
[G] s S 3 . 0.4
204 204 204 + g
] c o ¥ 1 =1
= =] P4 / g
© £0.2
0.2 0.2 0.2
A g E 0.0
0.0 0.0 0.0
0.00 025 050 0.75 00 02 04 06 08 00 02 04 06 08 0.00 025 050 0.75

SMURF

SMURF

SMURF

SMURF

FIG. S11: Ablation results. Contact AUC for SMURF versus ablated methods. Each point
represents one family in the test set. In “Constant Query,” we did not update the the query with
the averaged MSA between iterations (as depicted by light blue arrows in Fig. . In “No
BasicAlign,” the convolutions were not initialized with BasicAlign, and instead TrainMRF was

7

run for 4000 iterations. In “pseudo-alignment,” we replaced Smith-Waterman with a
pseudo-alignment obtained by taking the softmax of the similarity matrix row-wise and

column-wise, multiplying the resultant matrices, and taking the square root (similar to [7]).
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FIG. S12: Sensitivity of AlphaFold predictions to random masking. By default, a
random mask is used when AlphaFold makes a structure prediction [30]. The distribution of
RMSD of AlphakFold predictions for MMSeqs2 MSAs with different random seeds used for the

masks. The black line shows the RMSD of the prediction without the mask.
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FIG. S13: AlphaFold + LAM optimization on families with distant sequences

removed. (a) Analogous plot to Fig. |3 for LAM + AF experiment with the distant sequences

removed. The dotted blue and red lines show the pLDDT and RMSD of the prediction using the

MSA from MMseqs2 with the distant sequences removed. The purple line indicates the definition

of “near-optimal” and is 1.25 times the RMSD of the prediction for the “Learned MSA” found in

Fig. [3| or |4 We selected the circled point maximizing the confidence (pLDDT) as our “MSA

Learned on restricted set.” (b) A comparison of the RMSD for various tested MSAs, by domain.

(c) Fraction of MSAs learned that yielded predictions with “near optimal” structure.
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