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Abstract

Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq has been widely
used to identify regulatory DNA elements and transcription factor binding sites. However,
enzymatic DNA cleavage exhibits intrinsic sequence biases that confound chromatin
accessibility profiling data analysis. Existing computational tools are limited in their ability to
account for such intrinsic biases and not designed for analyzing single-cell data. Here, we
present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a computational
method for systematic estimation of intrinsic cleavage biases from genomic chromatin
accessibility profiling data. We demonstrate that SELMA yields accurate and robust bias
estimation from both bulk and single-cell DNase-seq and ATAC-seq data. SELMA can utilize
internal mitochondrial DNA data to improve bias estimation. We show that transcription factor
binding inference from DNase footprints can be improved by incorporating estimated biases
using SELMA. Furthermore, we show strong effects of intrinsic biases in single-cell ATAC-seq
data, and develop the first single-cell ATAC-seq intrinsic bias correction model to improve cell
clustering. SELMA can enhance the performance of existing bioinformatics tools and improve

the analysis of both bulk and single-cell chromatin accessibility sequencing data.
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Introduction

Cis-regulatory elements in the genome play a critical role in transcription regulation by
interaction with protein molecules such as transcription factors (TFs). These DNA elements are
usually unwrapped from packed nucleosomes and are accessible in the chromatin structure’2.
Genome-wide profiles of chromatin accessibility are a means to measure the global landscapes
of active regulatory elements in different cell types. DNasel hypersensitivity sequencing
(DNase-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-
seq) have become widely used for the genomic profiling of chromatin structure and
accessibility>*. Signal enrichments, or “peaks”, from DNase-seq or ATAC-seq data are
considered to represent accessible chromatin regions and can be used for inferring regulatory
elements or TF binding sites. In addition, DNase-seq and ATAC-seq data also exhibit footprint
patterns, which are fine structures in the accessible chromatin where high-affinity protein-DNA
interactions protect the DNA from DNasel or Tn5-transposase cleavages*°. DNase/ATAC-seq
footprint detection has been implicated as an effective approach for identifying accurate TF
binding sites at base-pair resolution®’. A few computational tools have been developed for
detecting footprints from DNase-seq (RepFootprint®, Wellington®, PIQ'°) or ATAC-seq data
(HINT-ATAC™!, ToBIAS'?). A recent study integrated 243 DNase-seq samples from different
human cell and tissue types and reported approximately 4.5 million DNasel consensus
footprints associated with TF occupancy across the human genome as one of the largest maps

of human regulatory DNA’.

The premise of using DNase-seq and ATAC-seq data to profile chromatin accessibility is that
enzymatic DNA cleavages represented by sequence reads reflect local chromatin openness
only. However, it has been shown that both DNasel and Tn5 transposase exhibit sequence

selection biases in high-throughput sequencing data'"®. Such intrinsic enzymatic biases in
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sequencing data can potentially confound observed cleavage patterns and footprint detection.
The characterization and correction of intrinsic cleavage biases are essential to DNase/ATAC-
seq data analysis. To characterize intrinsic cleavage biases, most studies use a k-mer model, in
which the k-mer DNA sequence centered at a cleavage site of DNasel/Tn5 is used as the
signature of this cleavage''®"". The sequence bias can be estimated by counting the
occurrences of cleavages with each k-mer in one dataset relative to the genome-wide
occurrences of this k-mer. A naive k-mer model assumes that k-mers are independent of each
other, resulting in an exponential increase in the degree of freedom when k increases.
Therefore, a naive k-mer model becomes less feasible in practice with a large k, especially with
samples having insufficient sequencing depth. Although most studies use 6-mers with 4° = 4096

8,10,13,16-18

parameters , it is unclear whether a different model with a larger k-mer size and more

feasible parameter estimation can achieve better performance.

Several studies have used various computational approaches for intrinsic cleavage bias

8.14.16.19 and footprint detection with bias correction®'82° for bulk DNase/ATAC-seq

estimation
data. Recently, single-cell ATAC-seq (scATAC-seq) has enabled chromatin accessibility
profiling in thousands of individual cells at one time?'?*. Due to the high sparsity of single-cell
data and because most chromatin accessibility regions contain only one read in one cell, any
potential bias can be substantial in scATAC-seq data compared to bulk data, creating additional
challenges in computational analysis. Incorporating intrinsic cleavage bias effects for improved

scATAC-seq analysis also requires comprehensive assessment and development of innovative

methods.

Here, we present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a
computational framework for the accurate estimation of intrinsic cleavage biases and improved

analysis of DNase/ATAC-seq data for both bulk and single-cell experiments. We demonstrate
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that SELMA generates more accurate and robust bias estimation from bulk DNase/ATAC-seq
data than the naive k-mer model and that SELMA can utilize mitochondrial DNA (mtDNA) for
bias estimation instead of requiring a separate naked DNA sample. We show an improved TF
occupancy inference on ENCODE consensus footprints by including SELMA-estimated biases
for each footprint. Finally, we show that SELMA-estimated biases can be incorporated with

existing scCATAC-seq computational tools to generate more accurate cell clustering analysis.

Results

SELMA improves cleavage bias estimation in DNase-seq and ATAC-seq data

We developed SELMA for an accurate and robust estimation of intrinsic cleavage biases from
chromatin accessibility sequencing data. In SELMA, we start with a naive k-mer model to
calculate the frequency of observed cleavage sites at each k-mer relative to the total
occurrences of this k-mer (Fig. 1a). We further encode each k-mer as a vector in the Hadamard
Matrix H+s, derived from a simplex encoding model, in which the k-mer sequences are encoded
as the vertices of a regular 0-centered simplex®2®. Intuitively, a k-mer can be represented as k
mononucleotides and k — 1 adjacent dinucleotides. Each mononucleotide is encoded as the 3-
dimensional vector of one of the four tetrahedral vertices of the cube of side 2 centered at the
origin. Each dinucleotide is encoded as the outer product of the 2 vectors representing the
associated nucleotides (Fig. 1b). Including an intercept, this k-mer simplex encoding model has
atotal of 1 + 3 x k +9 x (k — 1) = 12k — 8 parameters, much fewer than the naive k-mer model
(4%). We use a linear model to fit these 12k — 8 parameters from the naive k-mer biases, and

use the fitted values as the SELMA-modeled cleavage biases (Fig. 1c).
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As an intrinsic property of the enzyme (DNasel/Tn5 transposase), the cleavage biases are
expected to be invariant across cell types and independent of chromatin states (Fig. S1a).
Comparing data from two cell types using different 8-mer models as an example, we found that
the biases estimated using SELMA have a higher correlation than those estimated using the
naive k-mer model, for both DNase-seq (Fig. 1d,e) and ATAC-seq (Fig. 1f,g). Using sequence
reads from genomic regions with different chromatin accessibility levels, the naive k-mer model
was not able to generate very consistent bias estimations (Fig. S1b,c), but the k-mer biases
estimated by SELMA using the same data were highly consistent (Fig. S1b-e). The sequence
preferences of DNasel or Tn5 cleavage can be better reflected when the enzymes are applied
to deproteinized naked genomic DNA'®'". We found that the k-mer cleavage biases in naked
DNA DNase/ATAC-seq data estimated with the naive k-mer model can still be improved by
SELMA, obtaining more consistent bias scores between different cell systems (Fig. 1h-k). These
data demonstrated that SELMA can improve the accuracy of estimating k-mer cleavage biases

in DNase-seq and ATAC-seq data.

With fewer parameters, SELMA enabled us to assess the effect of k-mer size on the

performance of bias estimation. Using a “bias expected cleavage” approach®'31619,

we
compared the bias estimation performances measured as the correlation coefficient between
the genome-wide observed cleavages and bias expected cleavages estimated using SELMA
with different k. A higher correlation coefficient indicates a more accurate bias estimation to
calculate the expected cleavages. For both DNase-seq and ATAC-seq data from two different
cell lines, we found that 10-mer outperforms any other k-mer (Fig. 1l-0). We then applied this
analysis to more DNase-seq and ATAC-seq data from a variety of human tissues generated by
ENCODE and found that 10-mer always exhibited the best performance (Fig. S2). The above
empirical evidence suggested that 10-mer is the optimal choice for intrinsic cleavage bias
estimation for both DNasel (DNase-seq) and Tn5 (ATAC-seq) cleavages.
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SELMA improves ATAC-seq bias estimation by considering dimeric Tn5 cleavages

Many studies processed DNase-seq and ATAC-seq data in a similar way, treating individual
DNA cleavage sites directly as indications of accessible chromatin®'. However, the
mechanisms of enzymatic DNA cleavage are different between DNasel and Tn5 transposases.
Unlike DNasel, the Tn5 transposase binds DNA as a dimer and inserts adaptors on the two
strands separated by 9bp*?’ (Fig. 2a). As a result, the presence of each observed Tn5 cleavage
in ATAC-seq data should be the consequence of two insertion events induced by the same Tn5
dimer, and the bias estimation of a Tn5 cleavage site should consider both the observed
cleavage and the coupling cleavage 9bp downstream on the reverse strand. Therefore, SELMA
estimated the bias on an ATAC-seq cleavage site as the geometric mean of the bias scores of
the 10-mers at the 5’ observed cleavage and at the 3’ cleavage 9bp downstream on the reverse
strand (Fig. 2a). To show the dimeric Tn5 cleavage effect, we calculated the cross-correlation
between the genome-wide profiles of the plus strand cleavages and the minus strand
cleavages. As expected, we observed a peak at 9bp of the cross-correlation curve specifically in
the ATAC-seq data but not the DNase-seq data (Fig. 2b,c). Similarly, we observed perfectly
matching aggregate cleavage patterns on TF motif consensus sites between plus strand and

minus strand cleavages shifted by 9bp (Fig. S3a,b).

Using the similar “observed-expected correlation” approach described above, we found that
SELMA considering dimeric cleavages outperformed models considering only 5’ cleavage in
generating a more accurate bias expected cleavage pattern for ATAC-seq data (Fig. 2d,e). We
confirmed that this observation was specific to ATAC-seq, as similar analyses for DNase-seq
from the same cell lines did not show a similar level of improvement (Fig. S3c,d). We also
compared SELMA with several existing bias estimation approaches'® and found that SELMA'’s

performance was the best for ATAC-seq data from several cell lines as well as different human
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170  tissue types from ENCODE (Fig. 2d,e, Fig. S3e-j). Several new Tn5-based techniques have
171  recently been developed for improved chromatin accessibility profiling, including THS-seg?,
172  Fast-ATAC-seq?®, and Omni-ATAC-seq™®. Data from these technologies showed intrinsic
173  cleavage biases similar to those of conventional ATAC-seq (Fig. S3k-n). We found that SELMA
174  also outperformed other approaches in bias estimation (Fig. 2f-i). Collectively, these data
175  suggested that SELMA can most accurately estimate intrinsic cleavage biases in data from
176  ATAC-seq and other Tn5-based techniques.
177
178  SELMA enables accurate bias estimation by utilizing mitochondrial DNA (mtDNA) reads
179  Accurate estimation of enzymatic cleavage biases independent of chromatin usually requires a
180  control sample of deproteinized naked DNA digested by the same enzyme. Biases estimated
181  from the naked DNA control data can be used to correct the chromatin accessibility profiling
182  data™™'%8 (Fig. 3a). In conventional DNase/ATAC-seq data analyses, sequence reads
183  mapped to mitochondrial DNA (mtDNA) are usually discarded*. Lacking histones responsible for
184  the chromatin structure, mtDNA is similar to deproteinized naked DNA3'*. Therefore, we
185  sought to use the mtDNA reads from DNase/ATAC-seq data for cleavage bias estimation as an
186  alternative to using a naked DNA control sample (Fig. 3b). Likely because of relatively low read
187  counts and lack of sequence diversity (e.g., human mtDNA is only < 20kb long), the naive k-mer
188  model exhibited poor performance on bias estimation from mtDNA reads, using bias scores
189  estimated from naked DNA as a reference (Fig. 3c). In contrast, SELMA generated a more
190  accurate bias estimation from the same mtDNA reads, which was highly consistent with the bias
191  scores estimated from the naked DNA data (Fig. 3d), demonstrating the power of SELMA to use
192  less input to make accurate bias estimations. We applied this approach to a series of ATAC-seq
193  and DNase-seq datasets for different human tissues from ENCODE and found that SELMA was
194  better than the naive k-mer model in yielding a consistently higher correlation coefficient (>0.9)
195  between mtDNA-estimated bias and naked DNA-estimated bias for every ATAC-seq and
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DNase-seq sample tested (Fig. S4a,b). Many optimized ATAC-seq protocols aimed to reduce
mtDNA reads to increase the fraction of chromatin DNA reads for chromatin accessibility signal
yield?**°, We sampled down mtDNA reads to test the performance of SELMA in making robust
bias estimations and found that SELMA could accurately estimate the bias with as few as
50,000 mtDNA reads (Fig. 3e, Fig. S4c), which is approximately 0.2% of the sequencing depth
of a regular ATAC-seq sample and lower than the fraction of mtDNA reads in any existing
ATAC-seq experiment?**®. These data demonstrated that by applying SELMA, mtDNA reads

can be utilized to substitute naked DNA control samples for accurate bias estimation.

Considering SELMA-estimated bias improves TF binding inference on ENCODE DNasel
footprint regions

With an accurate bias estimation model developed, we next sought to examine the potential
effect of intrinsic biases on TF binding footprints in chromatin accessibility profiling data.
Focusing on the 4,465,728 human DNasel consensus footprints across the human genome, we
plotted the DNasel cleavages from different human cell lines and observed similar classic
DNasel cleavage protection (“footprint”) patterns across these footprint regions (Fig. 4a, Fig.
Sb5a). Interestingly, we also observed a recurrent pattern of the SELMA-estimated DNasel
cleavage bias that is well aligned with the DNasel cleavage pattern across these footprint
regions (Fig. 4b, Fig. S5b). In the aggregate view of footprint regions of different lengths, the
DNasel cleavage signals exhibited a clear “cliff-bound valley”-shaped footprint pattern (Fig.
S5c). The DNasel cleavage bias scores exhibited a pattern of two spikes located inside the
footprint coordinates (Fig. S5d). After normalizing various footprint lengths, we plotted the
aggregate DNasel cleavage patterns across all consensus footprint regions and found that the
overall “footprint pattern” clearly included the double spike pattern of cleavage biases (Fig. 4c),
which aligned well with the two spikes in the aggregate bias score pattern (Fig. 4d), indicating a

possible contribution of intrinsic biases to the DNasel footprinting.
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To assess the interference of intrinsic biases with DNasel cleavage patterns at TF binding
footprints, we aligned the 4.5 million consensus footprints with more than 10,000 human TF

3435 and collected two sets of

ChIP-seq datasets from the Cistrome Data Browser database
footprint regions: “TF binding hotspots”, the footprint regions overlapping with TF binding sites
detected from more than 3,000 ChlP-seq datasets, and “TF binding deserts”, the footprint
regions that do not overlap with any TF binding sites from any ChlP-seq dataset or any human
TF motif sequence from the HOCOMOCO database® (Fig. S5e). We compared the aggregate
DNasel cleavage patterns and the bias score patterns in these two sets of consensus footprint
regions and found that the DNasel cleavage pattern in TF binding hotspot regions was
dominated by the classic DNasel footprint pattern with little interference from the bias (Fig. 4e,f),
while in the TF binding desert regions, the entire cleavage “footprint” pattern was apparently
determined by the two spikes from the intrinsic bias (Fig. 4g,h). These results suggested that
although the overall DNasel cleavage pattern is indicative of TF binding, the intrinsic cleavage
bias may interfere with the real footprint pattern, and the effect on those footprint regions with

rare TF binding events can be drastic. These observations were reproducible in DNase-seq

data from different cell and tissue types (Fig. S6a-b).

To quantify the level of intrinsic cleavage biases in a consensus footprint region, we defined a
footprint bias score (FBS), as the relative SELMA-estimated bias score at the two spikes
compared to the average SELMA bias score across the rest of the region, for each footprint.
Consistent with what we observed in the aggregate view, the FBSs for TF binding deserts were
significantly higher while the FBSs for TF binding hotspots were significantly lower than the
background of all consensus footprints (Fig. 4i, p < 10°°, by Wilcoxon test), indicating that FBS
might be an informative feature of the consensus footprint regions and might help separate true

TF binding footprints from false-positive DNasel footprint patterns. Next, we used a model-
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based approach to assess the potential power of SELMA-derived FBS in boosting the
performance of TF binding inference from DNase-seq signal patterns on consensus footprint
regions containing the TF motif sequence. For every TF with a known motif in a cell type with
both ChlP-seq and DNase-seq data available, we employed a multinomial logistic regression
model using different sets of features, each of which may include DNase-seq read count,
DNasel footprint score produced from an existing method, and an optional FBS, to infer the TF
binding occupancy (determined by peak occurrence in ChiP-seq data) in the motif-containing
footprint regions. For each footprint method, we compared the TF binding inference
performance of the original method (read count + footprint score as features), the original
method plus a randomized naive k-mer bias score feature as a control, and the original method
plus the SELMA bias score (FBS), using an integrated rank score strategy. We included our
previous footprint method® and several representative methods that outperform others,
Wellington® and HINT™"*® (with and without bias correction mode) in this comparison. We
surveyed all human cell types that have both DNase-seq and more than 20 TF ChIP-seq
samples available from ENCODE, including in 7 cell lines and a total of 375 ChIP-seq samples
for 156 different TFs (Table S1, Fig. S7a). For each TF ChlP-seq sample in each cell line, we
calculated differential rank score of the inference performance by adding a bias score feature.
As a result, adding a random k-mer bias score did not change the inference performance. In
contrast, the models with SELMA FBS added can significantly increase the rank scores for the
maijority of ChlP-seq samples, regardless of which method was used originally to calculate the
footprint score (277-291, or 74%-78%, varying across different footprint methods, Fig. 4j, Fig.
S7, Table S2). For example, using our previous footprint method'®, 277 ChIP-seq samples
(74%) received a higher inference rank score when considering SELMA FBS, covering 117
(75%) of the 156 TFs (Table S2). Among these, Zinc finger family TFs including CTCF and
REST showed the highest improvement after considering footprint bias (Fig. S8, Table S2),
consistent with previous studies about the positive correlation between footprint strength and
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residence time of the TF on DNA™'®. Meanwhile, the SOX family (e.g., SOX5) and HLH family
(e.g., MYC) TFs rarely showed improved inference performance after considering footprint bias
(Fig. S8, Table S2). These TFs were those having short residence time on DNA and weak
footprints'®, which were expected not to be affected by footprint biases. These results
demonstrated that considering the intrinsic cleavage bias can improve the performance of

existing footprint computational methods for the binding inference for most TFs with footprints.

To assess whether the intrinsic bias has different levels of interference with the footprint regions
for different TFs, we selected two subsets of sequence motif-containing footprint regions for
each TF as the top 10% with the highest FBS or the bottom 10% with the lowest FBS, and
compared the frequencies of observing actual TF binding (overlapping with a ChlP-seq peak) in
these subsets of footprints. We found that different TFs had various preferences for binding at
low-FBS footprints or high-FBS footprints. Among the 156 TFs included, a significantly larger
amount of TFs can be improved with SELMA FBS than those that cannot be improved by
SELMA (Fig. 4k). These results suggested that intrinsic cleavage biases might affect different
TFs at various levels in divergent directions, and considering intrinsic bias should improve the

footprint-based TF binding inference for most TFs.

SELMA improves the accuracy of cell clustering from single-cell ATAC-seq data
Single-cell ATAC-seq (scATAC-seq) technologies enable the detection of accessible chromatin
regions at single-cell resolution in thousands of cells at a time?"%. Due to the scarcity of
cleavage events in an individual cell, most chromatin accessibility regions in a single cell have
only one aligned fragment, making the potential influence of intrinsic cleavage biases more
substantial in scATAC-seq data than in bulk ATAC-seq data. We collected scATAC-seq
datasets generated using different platforms for different biological samples, human

hematopoietic cells®, human cell lines?', and mouse primitive gut tube®, and found that the
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300 scATAC-seq data contained similar intrinsic cleavage biases to bulk data with highly correlated
301  bias scores estimated by SELMA (Fig. S9a-c). We estimated the average cleavage bias for
302  each individual cell (cell bias score, CBS) and found that the distribution of CBS was different
303  across cell cluster patterns, batches, and annotated cell types (Fig. 5a-i). We further surveyed
304 datasets from the 10x Single Cell Multiome platform for different biological systems including
305 mouse embryonic brain, human peripheral blood mononuclear cells (PBMC), and human lymph
306 node, each of which has scATAC-seq and scRNA-seq performed in the same cell and we used
307 the scRNA-seq derived cell clusters as the “pseudo” ground truth to label the cells. As a result,
308  we still found similar intrinsic cleavage biases in the scATAC-seq part of the data (Sig. S9d-f)
309 and CBS affecting different cell clusters (Fig. 5j-r). These observations indicated that, regardless
310  of experimental platforms and biological systems, the Tn5 intrinsic cleavage biases can

311  contribute to cellular heterogeneity observed from scATAC-seq data and can affect cell

312  clustering analysis.

313

314  We next assessed whether considering intrinsic cleavage biases can improve cell clustering
315 based on scATAC-seq data. We used the actual cell-type labels as the clustering ground truth
316 for the human hematopoietic cell sample and the mixed human cell line sample, and used

317 scRNA-seq data-projected cell labels as a “pseudo” ground truth for the mouse primitive gut
318 tube sample. We used the adjusted Rand index (ARI)*® to quantify the accuracy of an

319  unsupervised clustering result. As scATAC-seq-based cell clustering can be performed on all
320  chromatin accessibility regions (ATAC-seq peaks), we sought to address whether removing
321  peaks with high intrinsic biases can increase the clustering accuracy. We first tested a simple
322  clustering approach that involved principal component analysis (PCA) dimensionality reduction
323  followed by K-means clustering. For all 6 scATAC-seq datasets, cell clustering after removing
324 1%-50% of peaks with the highest PBS largely increased ARI from using all peaks (Fig. S10).
325  This improvement in clustering accuracy by removing high-bias peaks is significant compared to
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the control of randomly removing the same number of peaks (Fig. 6a-f). These data suggested
that scATAC-seq cell clustering could be improved by excluding high-bias peaks that

confounded the analysis.

To correct the intrinsic cleavage bias effect in scCATAC-seq data in a systematic manner, we
developed a general model to weight peaks by the percentile of SELMA PBS (Fig. 6g). The
weight function was determined empirically using a Beta distribution based on the relative
contribution of each PBS percentile of peaks to the true cell type classification (Fig. S11,
Methods). We applied this weight function to adjust the peak-by-cell read count matrix for
intrinsic bias correction and used the bias-corrected data matrix for cell clustering analysis. To
evaluate the performance, we tested several commonly used single-cell data analysis tools,
including APEC*, Seurat*!, scran*?, and snapATAC*, in addition to K-means, for scATAC-seq
cell clustering, and compared the cell clustering accuracy between using the uncorrected raw
data and using the bias-corrected data. Although different tools showed various performances,
across the 6 biological samples we tested, SELMA-corrected data yielded a higher ARI than
uncorrected data for most cases, and always reached the highest ARI for each sample (Fig. 6h-
m, Table. S4). These results demonstrated that SELMA can reduce the effect of intrinsic
cleavage biases in scATAC-seq data and can be applied to existing single cell data analytical

tools to improve the accuracy of cell clustering analysis.

Discussion

The existence of enzymatic cleavage biases in DNase-seq and ATAC-seq experiments has
been widely acknowledged in the field, but to what extent such intrinsic biases affect data

analysis, especially on the single-cell level, has not been systematically assessed. SELMA
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provides a quantitative approach for the accurate and robust estimation of intrinsic cleavage
biases in both bulk and single-cell chromatin accessibility sequencing data and requires fewer
sequence reads than the naive k-mer model. Taking Tn5 dimerization into consideration,
SELMA yields more accurate bias estimation specifically for ATAC-seq data by including k-mer
sequences at two Tn5 cleavages 9bp apart. SELMA can improve functional analysis and
interpretation of chromatin accessibility profiles. On the bulk level, we showed that considering
SELMA-estimated biases can improve TF binding inference from ENCODE DNasel consensus
footprints for most TFs, with better performances compared to existing tools, including some
that already considered “biases”. On single-cell level, we showed widespread existence of
intrinsic cleavage biases in single-cell ATAC-seq data, and demonstrated that SELMA single-
cell bias reduction model can enhance the performance of existing tools and can increase the
accuracy of cell type clustering. Therefore, SELMA can help researchers obtain more biological

insights from chromatin accessibility data.

SELMA is built on top of the widely used k-mer model by combining simplex encoding and a
linear model. Simplex encoding has the unique ability to capture the pairwise symmetry and
orthogonality between mononucleotides and interactions within each dinucleotide. It significantly
reduces the degrees of freedom without losing any variance information compared to the naive
k-mer model. These properties enable SELMA to make robust estimations from fewer sequence
reads or smaller datasets than are required by other approaches, hence enabling de novo bias
estimation from a smaller DNA molecule, such as mtDNA in a DNase/ATAC-seq sample,
without having to generate a separate genomic naked DNA sample. However, SELMA still relies
on sufficient read counts for each k-mer for an accurate estimation. Although the performance of
SELMA may increase with k, this effect is not unlimited. The performance using 12-mer is not as
good as using 10-mer possibly because there are not enough reads in the dataset for many 12-
mers. Nevertheless, SELMA works well for most existing DNase/ATAC-seq datasets tested in
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378  our study. In addition, the feasibility and superior performance of simplex encoding have also
379  been demonstrated for TF motif characterization**. Following similar encoding strategies,

380  SELMA can potentially be applied to any k-mer-based model or to any high-throughput

381  sequencing data for robust sequence bias estimation and pattern recognition.

382

383  The k-mer biases estimated by SELMA are consistent across species and cell types, reflecting
384  the assumption that the cleavage biases are intrinsic features of the enzymatic assays.

385  Therefore, one can directly use the SELMA-estimated k-mer biases from DNasel or Tn5-

386  digested naked DNA data as universal intrinsic biases for DNase-seq and ATAC-seq,

387  respectively, and incorporate these precalculated bias scores into the data analysis. However,
388 this bias dataset is not guaranteed to remain accurate in many species that have not been

389  profiled, as there might be unknown biases that have not been characterized. Although we are
390 confident that the SELMA-estimated results should still be largely valid, one can always use the
391  SELMA package for de novo estimation of cleavage biases from one’s own datasets.

392

393  When applying SELMA-estimated FBS to correct biases in DNase footprints, our data were
394  limited to ENCODE DNasel consensus footprints as a proof-of-principle study. While this

395 ENCODE dataset is thus far the largest DNase footprint repertoire, users might be interested in
396  de novo detection of footprints from their customized DNase/ATAC-seq data. As many

397 bioinformatics tools are already available for such tasks using various computational models®,
398  SELMA or SELMA-generated bias information can be incorporated into each of those models
399  for improved performance for more accurate regulatory DNA identification from footprints. On
400  single-cell ATAC-seq analysis, while we show that SELMA single-cell bias correction model can
401  achieve more accurate cell clustering using a few existing tools, performance still varies across
402 these tools due to the different statistical and computational models used in these methods.

403  One potential issue that limits a larger-scale benchmarking is the lack of ground truth for most
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existing scATAC-seq data. Except for the human hematopoietic cell sample and the mixed
human cell line sample that have the known cell type labels as ground truth, we had to use
transcriptome profiling scRNA-seq data as a “pseudo” ground truth or solver standard to
determine the cell type identities, which implies the assumption that chromatin accessibility
profiles should characterize the same cell identity as transcriptomic profiles. Nevertheless, the
overall increase on the cell clustering consistency for different biological systems tested
indicates that SELMA bias correction reduces confounding noises in the data while biologically
meaningful variances are retained*. In summary, SELMA is a universal and systematic bias
reduction model and can be used to enhance the performance of existing methods and to

improve single-cell chromatin accessibility profiling analysis.

Methods

High-throughput sequencing data collection and processing
Data collection. Publicly available ATAC-seq, single-cell ATAC-seq, DNase-esq and ChlP-seq
data used in this study were collected from Gene Expression Omnibus (GEQO) and the ENCODE

consortium. The metadata and accession numbers are listed in Table S1.

Processing of bulk ATAC-seq and DNase-seq data. Raw sequencing reads were aligned to
the GRCh38 (hg38) reference genome with bowtie2 (v2.2.9) (-X 2000 for paired end data)*.
Low-quality reads (MAPQ < 30) were discarded. For paired-end sequencing data, reads with
two ends aligned to different chromosomes (chimeric reads) were also discarded. For paired-
end data, reads with identical 5’ end positions for both ends were regarded as redundant reads
and discarded. The nonredundant reads were separated into chromosomal DNA (chromatin

reads) and mitochondrial DNA (mtDNA reads) based on their genomic location. Peak detection
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430  was performed on the nonredundant chromatin reads using MACS2*" (v2.1.2) (-q 0.01, --extsize
431  50) and +/- 200bp centered on the peak summits was collected as the genome-wide chromatin
432  accessible regions. The accessible regions in each dataset were separated into 5 groups from
433 highest accessibility to lowest accessibility based on the read count on each peak (for Fig. S1).
434  The 5’ end nucleotides of each read were piled up to generate the genome-wide observed

435  cleavage profile.

436

437  Processing of single-cell ATAC-seq data. For the human hematopoietic cell sample, raw
438  sequencing reads were aligned to the GRCh38 (hg38) reference genome with bowtie2 (-X

439  2000). Low quality reads (MAPQ < 30), chimeric reads and duplicate reads for each individual
440  cell were discarded. For the mouse gut tube sample, scATAC-seq data from the 10x Genomics
441  platform were preprocessed with Cell Ranger ATAC with the default parameters to generate
442  fragments for each individual cell. For the 10x Single Cell Multiome datasets, the processed
443  fragment files were downloaded from the 10x genomics website

444 (https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-

445 standard-2-0-0, https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-

446 no-cell-sorting-10-k-1-standard-2-0-0, https://www.10xgenomics.com/resources/datasets/fresh-

447  frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-0). The fragment

448  files were then used as input for the subsequent analysis. Because the Cell Ranger ATAC/ARC
449  pipeline shifted from the Tn5 cleavage sites to +4/-5 bp in generating the fragment file, the

450  coordinates were shifted back to represent the actual cleavage loci. For scATAC-seq datasets,
451  cells with more than 10,000 reads were retained for analysis. For 10x Single Cell Multiome

452  datasets, cells pre-selected by Cell Ranger ARC and with more than 10,000 reads in both

453  scRNA-seq and scATAC-seq parts were retained for analysis.

454
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Processing of ChiP-seq data. ChIP-seq data were collected and processed as described in a
previous study*®. In brief, based on the quality measurements from the Cistrome data browser
(CistromeDB)***°, we included only the ChIP-seq datasets that pass at least four out of the first
five QC measures (i.e., sequence quality, mapping quality, library complexity, ChlP enrichment,
and signal-to-noise ratio). We also excluded the ChIP-seq datasets with fewer than 1000 peaks
identified by MACS2?” with an FDR cutoff of 0.01. For TFs with multiple datasets available in the
same cell type, we kept only one dataset with the best quality based on passing most of the 6
CistromeDB QC measures, including sequence quality, mapping quality, library complexity,
ChIP enrichment, signal-to-noise ratio, and regulatory region enrichment. The ChiP-seq peak
files (detected by MACS2) for the selected samples were downloaded from CistromeDB for the

following analysis.

TF motif analysis. The motifs of human TFs were collected from the HOCOMOCO database®
(v11), and the genome-wide motif sites of TFs were detected by FIMO (v4.12.0) in the MEME
package*®. Motif sites located outside of the genome-wide 36bp unique mappable regions were
excluded from the analysis. In total, 25,027,116 motif sites for 66 TF motifs from the human

genome were included in the analysis.

SELMA model

Naive k-mer bias model for intrinsic cleavage bias estimation. The naive k-mer biases were
calculated as described in a previous study'. In brief, a naive k-mer bias was estimated as the
observed frequency of the cleavages with the k-mer relative to the frequency of that k-mer in the
background. For each mapped sequence read in a DNase-seq or ATAC-seq dataset, the
enzymatic cleavage site was between genomic positions i and i-1 for the plus (+) strand reads
and between i and i+1 for the minus (-) strand reads, where i represents the genomic position

of the 5" nucleotide of the reads. The associated k-mer sequence was thus assigned as
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[i — %,i + % — 1] for the plus strand reads and [i — % +1,i+ %] for the minus strand reads. The

naive k-mer bias score for k-mer j is defined as the number of all observed cleavages with that

k-mer divided by the occurrences of that k-mer in the background:

N
Sj:ﬁ

where N; is the count of cleavages with k-mer j, and M; is the total count of occurrences of k-
mer j in the background (Fig. 1a). In the case of chromatin DNA, this background included 400
bp from each chromatin accessible region centered at the peak summit detected by MACS2.
The background in the naked DNA samples included genome-wide 36bp unique mappable
regions. The background in mtDNA included the mitochondrial DNA sequence. The median was

further subtracted from the bias scores for visualization in the scatter plots (e.g., Fig. 1d-k).

In the naive k-mer model, the bias score for each k-mer is independent and empirically
determined from the data. The number of independent variables in the model is the total number

of k-mers, i.e., 4%,

SELMA model for intrinsic cleavage bias estimation. In SELMA, a simplex encoding model
followed by a linear model was employed on top of the naive k-mer model to better estimate the
intrinsic cleavage biases for each k-mer. To efficiently encode a k-mer sequence considering

25,26’ in

their intrinsic similarities, a simplex encoding model was adopted from previous studies
which the DNA nucleotides were encoded as vectors representing the four tetrahedral vertices

of a regular 0-centered simplex (Fig. 1b).

A=[ 1 -1 -1 ]
cC=[ -1 1 -1 ]
G=[ -1 -1 1 ]
T=[ 1 1 1 ]
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504  In the simplex encoding, the vectors representing the four nucleotides are of equal length,
505  mutually orthogonal, and equidistant from each other. To account for interactions between
506  adjacent nucleotides, a dinucleotide was additionally encoded as the outer product of the two

507  vectors associated with the two nucleotides:

Il
——— — — — — — — — — — — — — —
|
—
|
—
|
—
j—
—
—
|
j—
|
o
|
—
e e e e e e e e e et b e b et ) et

508
509

510  One can show that these vectors for dinucleotide interactions are also of equal length, mutually
511  orthogonal, and equidistant from each other. In fact, in the simplex encoding, mononucleotides
512 and dinucleotides were encoded as rows in a Hadamard matrix of order 4 and a Hadamard
513  matrix of order 16, respectively.

514

515  Considering both mononucleotides and dinucleotide interactions, a k-mer can then be encoded
516 as k mononucleotides and k — 1 dinucleotides, plus an intercept term. Therefore, the

517  dimensionality of a k-mer simplex encoding is

518 p(k)=14+3k+9(k—1) =12k -8
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In SELMA, the intrinsic k-mer biases were then estimated in a linear model with these 12k — 8

parameters using the observed naive k-mer bias scores (Fig. 1c). In detail, we had the formula:

12k-8
y~ 2 a;x; (D
i=1

where each observation y is the naive k-mer bias score; x; € {1, —1}, is the independent
variable in the simplex encoding vectors; and q; is the parameter to be estimated. After linear

regression, the model-fitted value y was defined as the SELMA bias score for each k-mer.

Genome-wide cross-correlation analysis. For the analysis presented in Fig. 2b,c, reads from
plus (+) and minus (-) strands on chromatin accessible regions (peaks) were collected
separately to generate plus strand observed cleavage profile and minus strand observed
cleavage profile, respectively. The Pearson correlation coefficient between the plus strand

signal and the k-bp shifted minus strand signal is:

_ (P, — P)(My, — My)
VXi(P; = P)2 %(My, — My)?

P (2)

where P; is the log-scaled plus strand cleavage count at genomic position i (log2(cleavage+1)),
M;; is the log-scaled minus strand cleavage count at genomic position j with a k-bp shift, P is

the mean of all the P;, and M, is the mean of M, for all i. All genomic positions on the genome-
wide DNase/ATAC-seq peaks were included in the analysis. k is chosen from 1 to 20 (x-axis in

Fig. 2b,c).

Comparison of different bias estimation methods. We use a; and a; to denote the “5’ only”
intrinsic sequence bias score at genomic position i on the plus strand and minus strand,
respectively. We use a’} and a'; to denote the bias score from other bias estimation methods in
this section. Different bias estimation methods used in Fig. 2 and its associated sections are

listed below:
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543 e For the “5' only” method, a} was calculated based on the k-mer ratio associated with the
544 k-mer spanning positions [i — k/2, i + k/2 — 1] on the plus strand, and a; was

545 calculated in a similar way based on the nucleotides spanning genomic positions [i —
546 k/2 + 1, i + k/2] on the minus strand (reverse complement of the DNA sequence on the
547 corresponding plus strand). This method was applied to both DNase-seq and ATAC-seq,
548 while the other methods were applied only to ATAC-seq as they were specifically

549 designed for ATAC-seq.

550 e For SELMA (Fig. 2a), the bias score was calculated as the geometric mean of the “5’
551 only” bias score at the given position and the “5’ only” bias score at 9bp downstream of
552 the other strand, i.e., a7 =/af X a;, o, and a’; = Ja; xaf,

553 e For the model in Martins et al', the bias score at genomic position i was calculated in a
554 similar way to the “5’ only” method but using a gapped 11-mer model. The model could
555 be represented as XXXXXXNNNXNXCXXNNXNNNNXNX, in which position i was

556 represented by C; positions that were ignored were represented by X and informative
557 positions were represented by N.

558 e For the model in Baek et al'®, the bias score at genomic position i was calculated in a
559 similar way to the “5’ only” method but the cleavages were shifted +4/-5 bp for +/- strand
560 cleavages. In practice, following the description in the “bagfoot” package, the bias score
561 at position i was calculated as a'f = af,5, and a'; = a/_;.

562 e For the model in Calviello et al®, the bias score at genomic position i was calculated in a
563 similar way to the “5’ only” method but using the 6-mer bias table provided in the study.
564

565  Calculation of observed and bias-expected cleavage. The 1bp at 5’ end positions for DNase-
566  seq or ATAC-seq reads were piled up to generate the genome-wide observed cleavage profile.

567  To generate the bias-expected cleavage profile, for a 50-bp window centered on nucleotide i,
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568  we placed the same number of observed cleavages following the sequence bias contribution in
569  this window. Let I’V\f represent the bias expected cleavage at position i on strand s € {+, -}, N/
570  represent the observed cleavage at position i on strand s, and a; denote the intrinsic cleavage

571  bias (estimated with any of the above methods) at position i on strand s. Then we have

572 NF = N{yf 3)
20
S _
573 V= o o g~ (4)
j=i—-25

574  We used the Pearson correlation coefficient to compare the observed cleavage profile and the
575  bias-predicted cleavage profile (Fig. 2). We only considered positions within the accessible
576  regions to ensure that all positions had sufficient reads in the 50-bp window for accurate

577  estimation.

578

579  DNasel footprint analysis

580 Data processing. The genome-wide DNasel consensus footprint regions were downloaded
581  from Reference’

582  (https://resources.altius.org/~jvierstra/projects/footprinting.2020/consensus.index/). The

583  observed DNasel cleavage profile from a DNase-seq dataset and DNasel SELMA bias scores
584  across +/- 50bp centered on the footprint region were plotted as heatmaps (Fig. 4a,b). The
585  footprint regions were ordered by the footprint lengths, and each 1000 footprint regions with
586  similar lengths were compressed as one row in the heatmap for better visualization. The +/-
587  strand signals were plotted separately. We aligned the footprint regions based on the two

588  observed bias spikes in each footprint region (located 7bp to the right of the left boundary and
589  7bp to the left of the right boundary of the footprint, labeled as -0 and +0 in Fig. 4c-h). The
590 center regions between the bias spikes were scaled to 4 bins to align footprint regions with

591  different lengths.
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592

593  Footprint bias score. The footprint bias score (FBS, in Fig. 4i-k) was defined as the difference
594  between “spike bias” and “center bias”. The “spike bias” was calculated as the average of the
595 two SELMA bias scores at the spike positions, while the “center bias” was calculated as the
596  median SELMA bias score at the rest of the positions in the footprint region. Let FBS;, b;, and ¢;
597  denote the footprint bias score, spike bias and center bias of footprint j, respectively. The FBS,

598  spike bias, and center bias are given by:

_ S€{+-}

600 b = a*<} (6)
__se{+,-}

601 Cj = Q. (7)

602  where a; represents the SELMA bias score at genomic position i on the strand s € {+, -},

603  overbar represents the average, tilde represents the median, and B and C represent spike

604  positions (within the flanking 1bp of the bias spikes) and the remaining positions of the footprint
605 j, respectively. To calculate the randomly shuffled FBS (random k-mer bias), the FBS was

606 calculated in the same way, but the bias score a; for each position was randomly selected from
607  the SELMA bias score table.

608

609 Calculation of footprint score with different methods. The following methods were used to

610 calculate footprint scores for comparison:

611 e Raw footprint: The raw footprint score was calculated following a previous study'®, using
612 the formula f = — (1ogzz:1 + 1ogzzi) , where n., ng and n, denote the DNase

613 cleavage count in the motif region, and the flanking regions to the right and left of the
614 motif, respectively. The flanks are both the same length as the motif.
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615 e Wellington footprint: We used Wellington® (v0.2.0) with default parameters to detect
616 genome-wide footprints and selected significant footprint regions with p-values < 1e-10.
617 The output footprint score was assigned to the TF motif overlapping with the footprint
618 region.

619 e HINT footprint: We used HINT'"® (v0.12.3) with default parameters to detect genome-
620 wide footprints. For bias correction mode, we used an additional parameter: --bias-

621 correction. The footprint score of each footprint region was assigned to the overlapping
622 TF motifs.

623

624  Inference of TF binding with different features. For each TF in Fig. 4j, the TF motifs

625  overlapping with consensus footprint regions were collected as target regions. DNase-seq read
626  count in the footprint region (“reads”), footprint score from an existing method, and bias score
627  were used as features in a multinomial logistic regression model to infer TF occupancy at

628  footprint-overlapping motif regions. For each available method, model training with cross-

629  validation and predictions were performed using different combination of features: “original
630  method” refers to reads + footprint score. An additional feature of either SELMA FBS or a

631 random k-mer bias was added for different models. We used a performance measure

632 integration approach' to evaluate different models’ prediction power. For each model, we

633  calculated the area under the ROC curve (AUROC) at 100%, 10%, and 1% false positive rate
634  (FPR). We also calculated the area under the precision-recall curve (AUPRC) at 100%, 10%,
635 and 1% recall. We then combined these six performance measures as a rank score S, defined

636 as

637 5—12 log—
T6ly BN+1

638 wherei =1,...,6 denotes the 6 performance measures, r; is the rank of a model for

639  performance measure i, and N is the total number of models.
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To calculate the random k-mer bias, we randomly permuted the SELMA k-mer bias table and

generated the k-mer bias table for a “simulated enzyme”. We used this “simulated” bias table to
calculate the FBS for each footprint region and performed TF inference modeling similar to what
we did for the DNasel SELMA FBS. This permutation was performed 100 times to generate 100

performance rank scores for random k-mer bias used as controls.

Motif prediction power of TF binding sites. In Fig. 4j-k, we collected the genome-wide motif
sites overlapping with consensus footprint regions and the ChlP-seq peaks for each TF with
HOCOMOCO?*® motif and ChIP-seq data available in human cell lines. We collected data from
all human cell lines with both DNase-seq and more than 20 TF ChlP-seq samples available
from ENCODE, resulting in 7 cell lines, 375 TF ChlP-seq samples, and 156 TFs (Table S1). In
total, we surveyed genome-wide motif sites for 156 TFs, and 61,531,309 motif sites in total. In
Fig. 4k, for each TF, we selected two subgroups of its motif sites based on the FBS of their
overlapped footprint regions: the top 10% of motif sites with the highest FBS, defined as “sites
with high-bias footprint”; and the bottom 10% of motif sites with the lowest FBS, defined as
“sites with low-bias footprint”. We calculated the proportion of motif sites overlapping with TF
ChIP-seq peaks for each of the two subgroups and plotted on a scatter plot (Fig. 4k). To test
whether low-bias footprints tend to have more TF binding than high-bias footprints for most TFs,
we conducted a t-test comparing the distribution of TF binding log likelihood ratios of low-bias
over high-bias footprints to the standard normal distribution, and the test p-value is labeled in

Fig. 4k.

Single-cell ATAC-seq clustering analysis
Gold standard of single-cell clustering. For single-cell ATAC-seq data in the human

hematopoietic cells and human cell line samples, the cell-type information for each individual
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cell was used as the ground truth, or the gold standard. For single-cell ATAC-seq data in the
mouse gut tube sample, the cell-type information was assigned based on label transfer*® from
the single-cell RNA-seq dataset in the same system*® (GSE136689), as the “pseudo” ground
truth, or the silver standard. In detail, we integrated scRNA-seq and scATAC-seq data using the
ArchR package® (v1.0.1). Individual cells with a high RNA integration score (unconstrained
predicted score < 0.56) were collected as high-quality cells for the analysis. The cutoff of the
RNA integration score (0.56) was determined by maximizing the interclass variance in the RNA
integration score using Otsu’s method®'. Cell types represented by fewer than 10 cells were
discarded. For the 10x Single Cell Multiome datasets, scRNA-seq parts from each sample were
separated and clustered using Seurat (v4.0)*' with default parameters. The scRNA-seq

clustering results were used as the “pseudo” ground truth for scATAC-seq cell clusters.

Average bias for individual cells. The average bias for each individual cell (median SELMA
cell bias score, median CBS, used in Fig. 5) was calculated as the median of the bias for all the
fragments in the individual cell. The bias for each paired-end fragment was calculated as the

mean of the SELMA bias scores for the 5’ end and the 3’ end.

Peak detection and peak bias score calculation. We first combined all the single-cell ATAC-
seq reads in the dataset and performed MACS2*" peak calling with a g-value cutoff of 0.1 to
include all the potential accessible regions in the human hematopoietic cell and human cell line
systems (100,456 peaks detected for human hematopoietic cells and 83,318 peaks for human
cell lines). For the 10X scATAC-seq data in mouse gut tube, the g-value cutoff of 0.01 was used
for peak calling (146,098 peaks detected). Potential accessible regions with fewer than 10
covered reads or more than 4,000 covered reads were discarded in the subsequent analysis. To

consider the effect of intrinsic cleavage bias in scCATAC-seq data, we summarized the bias for
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each potential accessible region by calculating the peak bias score (PBS), defined as the

median SELMA bias score of all reads (from all individual cells) located in the peak region.

Cell clustering with scATAC-seq data. In the scCATAC-seq clustering analysis, as a naive
method, we performed PCA dimensionality reduction on the accessible regions by individual
cells matrix of normalized read count and kept 60 PCs, followed by k-means clustering. The
number of clusters (k) in k-means clustering was determined as the actual number of cell types
in the dataset. To evaluate the performance of cell clustering, we compared the clustering
results with the gold standard using adjusted rand index (ARI)**. We further repeated the k-
means clustering with 100 different random seeds to ensure the stability of the clustering results
and the average ARI of the 100 runs was used to estimate the clustering accuracy. We also
applied several published methods, including APEC*, Seurat*', scran*?, and snapATAC*® with
default parameters, to the same dataset. We selected the top 60 dimensions for those methods
at the dimensional reduction step (PCA, Seurat, scran and snapATAC) to keep more variance
potentially introduced by intrinsic biases. We used the ArchR package to practice the Seurat
and scran clustering methods. To explore the effect of intrinsic cleavage bias on scATAC-seq
analysis, we selected different percentages (from 50% to 99%, with a 1% increment) of peaks
with the lowest PBS (i.e., removing 50%-1% of peaks with the highest PBS) as input to perform
cell clustering (Fig. 6a-f). We also randomly selected the same percentage of peaks as a control
to estimate the relative rank of the clustering performance from using all peaks and using
retained peaks. In detail, for each percentage from 50% to 99%, we randomly sampled peaks
100 times and defined the relative rank as the number of ARIs from random samples that were
less than the ARI from the same percentage of retained peaks or all peaks. The relative ranks

for different percentages from 50% to 99% are summarized and plotted as boxplots in Fig. 6a-f.
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SELMA single-cell peak bias correction model for scATAC-seq cell clustering. The goal of
this model is to give a different weight to all SCATAC-seq peaks based on the PBS, so that
peaks heavily affected by intrinsic biases have a lower weight while peaks less affected by
intrinsic biases have a higher weight when they are used to perform cell clustering analysis. To
estimate the relative contribution of each peak in a scATAC-seq dataset to the clustering result,
we conducted an analysis of variance (ANOVA) for each identified peak, using the scATAC-seq
read count/signal across different cells as the variable and the known cell-type labels as the
target group labels. The F score from the ANOVA output was used to quantify the contribution
of each peak to the clustering. Within each percentile of peaks based on their PBS ranks, the
median F score of the peaks with ANOVA p-value < 0.05 was used to represent the relative
level of contribution for this percentile of peaks (Fig. S11a-f). Based on the contribution patterns
of the scATAC-seq samples tested, a standard beta distribution was used to model the
percentile weight function:

o (1 — J;)*Bfl
B(a, B)

where x =0, 0.01, 0.02, ..., 0.99 is the percentile of the peak ranked by PBS; a, 8 > 1 are the

W(zx) =

shape parameters; B(a, B) is the beta function:

where I'() is the gamma function. The beta distribution was chosen because its probability
density function has the following properties: 1) constraints: W(0) = 0 and W(1) = 0; 2)

a—1

1
/ W(z)dz = 1 R
normalization: /o ; 3) asymmetry with mode at a+ 3 —2 Based on the
relative contribution pattern in Fig. S11a-f, the parameters were empirically determined as a = 2,
B = 3. Therefore, the weight function becomes

W(x) = 122(1 — x)*
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739  After the read count in each peak in each cell was weighted using this weight function, the

740  whole read count matrix was scaled back to keep the total read count in the matrix unchanged
741  from the raw data matrix. The adjusted read count matrix then underwent the clustering

742 analysis. For the single-cell analysis tools that require raw scATAC-seq reads as input, including
743 Scran and Seurat in the ArchR package and snapATAC, the adjusted number of reads for each
744  peak in each cell was synthesized from each peak region and assigned to the cell.

745

746  Code and data availability

747  The SELMA package is available at https://github.com/zang-lab/SELMA. User instructions and

748  example data files can be found in the README document. Essential annotation data, analysis
749  results, and scripts are also available in the repository. The mouse gut tube scATAC-seq

750  dataset has been deposited in the Gene Expression Omnibus (GEO) with accession number
751  GSE168373. The 10x Single Cell Multiome datasets are downloaded from 10X Genomics

752 website(https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-

753 5-k-1-standard-2-0-0, https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-

754 donor-no-cell-sorting-10-k-1-standard-2-0-0,

755 https://www.10xgenomics.com/resources/datasets/fresh-frozen-lymph-node-with-b-cell-

756  lymphoma-14-k-sorted-nuclei-1-standard-2-0-0). Publicly available data used in this study can

757  be found in the GEO and the ENCODE project. Accession numbers for all the GEO and

758  ENCODE data used in the study are listed in Table S1.
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Figure 1. SELMA framework for cleavage bias estimation. (a) Schematic of a naive k-mer model for cleavage bias
estimation. (b) Simplex encoding model. The coordinates of the 4 tetrahedral vertices of the cube encode the 4
nucleotides. Each dinucleotide is encoded as the outer product of the 2 mononucleotides. p represents the number of
parameters in a k-mer simplex encoding model. (c) SELMA uses k-mer simplex encoding followed by a linear regression
for k-mer cleavage bias estimation. (d-k) Comparison between the naive k-mer model (d,f,h,j) and SELMA (e,g,l,k) on k-
mer cleavage bias scores estimated from DNase-seq data (d,e,h,i) and ATAC-seq data (f,g,j,k). Each dot in a scatter plot
represents an 8-mer, with its estimated bias score from different datasets represented in the x- and y-axes. Chromatin
DNA (d-g) and naked DNA (h-k) from different human cell lines (d-i) or different species (j,k) were compared as labeled.
R represents the Pearson correlation coefficient. (I-0) Intrinsic cleavage bias estimation accuracy measured by correlation
between genome-wide observed (OBS) and bias-expected (EXP) cleavages with different k-mers. A higher Pearson
correlation coefficient (R) indicates a better prediction of the observed cleavage profile using the estimated biases.
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Figure 2. SELMA consideration of dimeric Tn5 cleavages for ATAC-seq. (a) Schematic of SELMA consideration of
dimeric Tn5 cleavages. (b,c) Cross-correlation between 5’ cleavages and 3’ cleavages across genome-wide accessible
chromatin regions in the human GM12878 cell line from ATAC-seq (b) and DNase-seq (c) experiments. The x-axis
represents the shift distance (in bp) between 5’ and 3’ cleavages. (d-i) Comparison of ATAC-seq intrinsic cleavage bias
estimation accuracy measured by Pearson correlation coefficients (R) between genome-wide observed (OBS) and bias-
expected (EXP) cleavages for human GM12878 (d) and K562 (e) cell lines, as well as several modified Tn5-based assays
(f-i). Different bars represent different estimation approaches: gray for considering the 10-mer at the observed cut only (5'
only); orange for SELMA; and blue for several published approaches. Modified Tn5-based assays include (f) THS-seq
with standard Tn5; (g) THS-seq with mutated Tn5; (h) fast-ATAC-seq; and (i) omni-ATAC-seq.
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Figure 3. SELMA bias estimation using mtDNA reads. (a) Conventional approach to intrinsic cleavage bias estimation,
in which a naked DNA sample is required for bias estimation, and mtDNA reads from the chromatin DNA ATAC-seq
experiment are discarded. (b) SELMA approach of intrinsic cleavage bias estimation using mtDNA reads. Chromatin
reads and mtDNA reads from the same ATAC-seq dataset were separated for Tn5 cleavage profiling and bias estimation
with SELMA, respectively. (c-d) Scatter plots demonstrating the robustness of 10-mer bias scores estimated from mtDNA
(mtDNA reads from chromatin ATAC-seq data, x-axis) and genomic DNA (reads from naked DNA ATAC-seq data, y-axis),
comparing the naive k-mer model (c) and SELMA (d). SELMA shows a more robust estimation using mtDNA reads with
higher correlation than the naive k-mer model. (e) Comparison of the correlation coefficients between biases estimated
from mtDNA reads and from naked DNA with different mtDNA read counts.
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Figure 4. TF binding inference on DNasel footprint regions is affected by intrinsic cleavage biases and improved
by SELMA. (a,b) Heatmaps of DNasel cleavage patterns in the GM12878 cell line (a) and SELMA-estimated bias scores
(b) around ENCODE DNasel consensus footprint regions. 5’ and 3’ patterns were plotted separately. Footprint regions
were consistently ranked by footprint length, and signals for every 1000 regions with similar lengths were averaged as one
row in the heatmap. (c-h) Aggregate plots of DNasel cleavage patterns (c,e,g) and SELMA-estimated bias scores (d,f,h)
at all ENCODE DNasel consensus footprint regions (c,d), footprint regions overlapping with TF binding hotspots (e,f), and
footprint regions overlapping with TF binding deserts (g,h). DNasel cleavages are from GM12878 for (c & e) and merged
from GM12878, K562 and ENCODE tissues (g). Dashed lines represent estimated bias spikes in the footprint regions. (i)
SELMA-estimated footprint bias scores (FBS) for different groups of footprint regions. P-values were calculated by the
Wilcoxon signed-rank test. The centerline, bounds of box, top line and bottom line represent the median, 25" to 75
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percentile range, 25" percentile - 1.5*interquartile range (IQR) and 75" percentile + 1.5*IQR, respectively. (j) Difference of
performance rank scores for transcription factor binding inference from DNasel footprint using various methods for the
human GM12878 cell line. Boxplots with different colors represent different approaches as indicated in the legends.
Different sets of boxplots represent footprint scores calculated by different published methods as labeled. P-values were
calculated by the one-sided Wilcoxon signed-rank test. (k) Scatter plot showing the heterogeneous effect of intrinsic
cleavage biases on different TF motifs. Each data point represents motif sites for one TF in one cell type. Fractions of the
TF-bound motif sites overlapping with high-FBS footprint regions and with low-FBS footprint regions are plotted on the x-
and y-axes, respectively. More motifs located above the diagonal line indicate that more TFs are more likely to bind at
low-FBS sites than at high-FBS sites. The p-value was calculated by one-tailed t-test comparing the distribution of log
likelihood ratios (y-axis/x-axis) to the standard normal distribution.
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Figure 5. Intrinsic cleavage biases affect single-cell ATAC-seq data analysis. Visualization of intrinsic cleavage bias
effect in different cell clusters derived from scATAC-seq data for different biological samples and different experimental
platforms: human hematopoietic cells (a-c), human cell lines (d-f), mouse primitive gut tube (g-i), and 10x Single Cell
Multiome data for mouse embryonic brain (j-1), human peripheral blood mononuclear cells (PBMC) (m-0), and human
lymph node (p-r). (a,d,g,j,m,p) UMAP visualization where cells are colored by cell type labels/clusters. (b,e,h,k,n,q)
Same UMAP visualization but cells are colored by cell bias score (CBS). (c,f,i,l,0,r) CBS distributions of cells from
different cell types/batches/clusters. Boxes are colored by cell clusters using the same color palette as the first column.
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Figure 6. SELMA bias correction model improves single-cell ATAC-seq cell clustering. (a-f) Comparisons of cell
clustering accuracy before and after considering the peak bias score (PBS) on scATAC-seq data for human hematopoietic
cells (@), human cell lines (b), mouse primitive gut tube (c), and 10x Single Cell Multiome data for mouse embryonic brain
(d), human PBMC (e), and human lymph node (f). K-means clustering was performed after PCA dimensionality reduction.
Blue, using all ATAC-seq peaks; orange, after removing 1%-50% of peaks with the highest peak bias score (PBS). For
each percentage of peaks retained from 50% to 99% with a 1% increment, 100 randomly sampled subsets of peaks were
used as the background for determining the relative ranks of all peaks or retained peaks. The relative ranks of the
adjusted Rand index (ARI), defined as the rank relative to the 100 randomly sampled sub-datasets, for the 50 cases from
50% to 99%, were plotted. (g) Schematic of SELMA single-cell peak bias correction model. Peaks are weighted and
adjusted based on PBS percentile using an empirically determined weight function. (h-m) Comparisons of the accuracy
(measured by ARI) of single cell clustering generated using different existing tools on scATAC-seq data with (orange) or
without (blue) SELMA single-cell peak bias correction. Each panel represents the result for an scATAC-seq sample from a
different biological system or experimental platform: human hematopoietic cells (h), human cell lines (i), mouse gut tube
(J), mouse embryonic brain (k), human PBMC (I) and human lymph node (m). Each dot in each panel represents the ARI
for a different method labeled on the x-axis. Blue, clustering with uncorrected raw data; orange, clustering with SELMA-
corrected data.
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Supplementary Figure S1. Improvement of bias estimation of the SELMA model. (a) Comparison of intrinsic
cleavage bias estimated in different data types. Each dot in a scatter plot represents an 8-mer, with its estimated
bias score from K562 and GM12878 cell lines represented in x and y axes, respectively. Different plots
represent bias estimated using data from different experiments (ATAC-seq, DNase-seq, Faire-seq, and ChlIP-
seq). R represents the Pearson correlation coefficient. (b) Comparison of Tn5 intrinsic cleavage bias estimated
from different groups of fragments. The top panel was for the 8-mer bias estimated from the naive k-mer model,
and the bottom panel was from the SELMA. The fragments were separated based on the region’s chromatin
accessibility, illustrated in the schematic on the right, and labeled at the axes. Fragments located in the top 20%
chromatin accessible regions with the highest accessibility were assigned as group1 (G1). Then fragments
located in the top 20%~40%, 40%~60%, 60%~80%, and bottom 20% accessible regions were assigned as G2,
G3, G4, and G5, respectively. (c) Similar to (b) but for DNase-seq bias score. (d, e) Barplots compared the
Pearson correlation coefficients (R) calculated in (b, c), respectively. The blue bars were for the naive k-mer
model, and the red bars were for the SELMA model.
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Supplementary Figure S2. Intrinsic cleavage bias estimation accuracy with different k-mer. Intrinsic cleavage
bias estimation accuracy is measured by the correlation between genome-wide observed (OBS) and bias-
expected (EXP) cleavages with different k-mers for ENCODE DNase-seq data (a) and ENCODE ATAC-seq
data (b), respectively. Different rows represent data from different tissues. The Pearson correlation coefficients
(R) in the same cell type (each row) were z-normalized and plotted as heat to compare the relative performance
of different SELMA k-mer models. The higher the normalized score, the better performance the model had.
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Supplementary Figure S3. SELMA consideration of dimeric Tn5 cleavages for ATAC-seq. (a) The average
profile of the ATAC-seq cleavage pattern around the CTCF motif center. +/- strand reads were separated and
plotted in red and blue lines, respectively. The left panel is for unmodified observed Tn5 cleavage. In the right
panel, the - strand cleavage pattern was shifted 9bp towards upstream. (b) similar to (a) but for the NRF1 motif.
A perfect match of + and — strand profiles can be observed for the 9bp shift. (c-d) Comparison of DNase-seq
intrinsic cleavage bias estimation accuracy measured by Pearson correlation coefficient (R) between genome-
wide observed and bias-expected cleavages for human GM12878 (c) and K562 (d) cell lines. Different bars
represent different estimation approaches: grey for considering the 10-mer at the observed cut only (5' only);
orange for SELMA. The published approaches (blue bars in Fig. 2d-e) were not shown for DNase-seq since
they were specifically designed for ATAC-seq. (e-j) Pearson correlation coefficient between genome-wide
observed and bias-expected cleavages for ENCODE ATAC-seq data from different tissues. (k-n) Comparison
between bias scores estimated from ATAC-seq and modified Tn5 based techniques THS-seq with standard Tn5
(k); THS-seq with mutated Tn5 (i); fast-ATAC-seq (m); and omni-ATAC-seq (n).

3


https://doi.org/10.1101/2021.10.22.465530
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465530; this version posted May 30, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Supplementary Figure S4

a ATAC-seq in ENCODE cell types
@<1.0
- Z
sa 08
235
EL 06
®
8:
CQOA
2«
o Z 0.2
o9
S5 E
O mevgbmg_ggﬁacucacc_:_g-ca.mc
T8 538 82s28c32582288%358 532
YSX¥ pog Se3EFSacoe=20aEL0Ez0
s TE>2=S=s9o UL s 9O BT N QL ST & @
o ca g 6o % 8 O @ & ® © %) o5 a2 2
owec =uw 35 E € > 5 5 8 E 5= =0
ts32 S8 €3 ¢ 2395 gk F =
<®0 33 5T E £fFEE® = e
20 S <8O < © ©
° 3582 £ & :
3 T += =
20N § E
£30 2 B naive K-mer
< -
'-'J§ Il SELMA
b w DNase-seq from ENCODE cell types
—_— 1.0
X<
- Z
£5 08
‘C T
£ 806
L ©
8c
& 04
c >
S« ||
®Z 02
9
8% e arergcreso52585562 2225
8528 8252ae88552088858 53
SX 028 S23ZPE OO0 LCE O ELDLZO
= TE>=S= 390 UL oL O T NS TF T Y
o Cac8 8o %o 8 0 @ ® Q¢ 2] o5 5 2
O Wwec w35 E >‘GE'°E S22 0
szSe8EJd e d&d582p2 gr "3
“883g2§55 *25°
5 $s58% E @ =
53 & 2
g2 § £
w o 12
o
0
L
1k reads 5k reads 10k reads 50k reads
¢ ® TRe0.81 6 Tre0.82 TRe0s84 T R=092
417 41 417 41
2 2 21 21
0 0 1 0 01
g -2 -2 - -2+ -2
oI 4] -4 -4 -4
e e B I c— R
_EE -0.50.0 05 -0.5 0.0 05 -0.5 0.0 0.5 -2 -10 1 2
g < 6 100k reads 6 500k reads 6 1M reads 6 5M reads
o C = = = =
§ E 41 R=0.91 4 - R=0.93 4- R=0.92 4 R=0.92
gg 2 1 21 21 21
© 0 1 0 1 (s 0
o -2 -2 -2 -2
-4 1 -4 - -4 1 -4
-+ 1 64%r—vr+r--+—1 b7 b+
-2-10 1 2 3 -4 -2 0 2 -4 -2 0 2 4 -6-4-20 2 4

Bias score estimated from GM12878 mtDNA with different sequencing depth

Supplementary Figure S4. SELMA bias estimation using mtDNA reads. (a) Bar plots demonstrating the
Pearson correlation coefficients (y-axis) between 10-mer bias scores estimated from mtDNA (mtDNA reads from
chromatin ATAC-seq data generated from ENCODE project in different cell types) and genomic DNA (reads
from naked DNA ATAC-seq data), comparing the naive k-mer model (blue bars) and SELMA (red bars). (b)
Similar to (a) but for ENCODE DNase-seq data in the same cell types. (c¢) Scatter plots demonstrating the
consistence of 10-mer bias scores estimated from mtDNA (with different fragments count, x-axis) and genomic
DNA (reads from naked DNA ATAC-seq data, y-axis). The Pearson correlation coefficients were labeled in the
top left corner and used in Fig. 3e.
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Supplementary Figure S5. TF binding inference on DNasel footprint regions is affected by intrinsic cleavage
biases and improved by SELMA. (a-b) Heatmaps of DNasel cleavage patterns in the K562 cell line. (c)
Aggregate plots of DNase-seq cleavage patterns at ENCODE DNasel footprint regions with different length
categories (15, 20, 25, 30, and 35bp). The dotted lines represented the boundary of the footprint regions. (d)
similar to (c) but for SELMA-estimated bias scores. (e) TF binding hotspots and TF binding deserts were defined
based on the number of human TF ChIP-seq samples that have peaks overlapping with the footprint regions.
The footprint regions overlapping with peaks from >= 3000 ChIP-seq samples were defined as TF binding
hotspots, while the footprint regions that do not overlap with any peak from any TF ChIP-seq sample nor any
motif sites were defined as TF binding deserts.
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Supplementary Figure S6. Aggregate plots of DNasel cleavage patterns of all ENCODE DNasel consensus
footprint regions (a) and footprint regions overlapping with TF binding hotspots (b). Different columns represent

ENCODE DNasel-seq data from K562 cell lines and tissues.
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Supplementary Figure S7. Performance rank scores for transcription factor binding prediction from DNasel
footprint using various methods for the human cell lines. (a) Number of transcription factors (TFs) covered vs.
Number of cell lines included in the analysis. Cell lines are ranked by the number of ChIP-seq samples
available. (b-h) Difference of performance rank scores for transcription factor binding inference from DNasel
footprint using various methods for DNasel-seq data from different cell lines K562 (b), GM12878 (c), HepG2 (d),
A549 (e), H1 (f), HeLaS3 (g), and MCF7 (h). Boxplots with different colors represent different approaches as
indicated in the legends. Different sets of boxplots represent footprint scores calculated by different published
methods as labeled. P-values were calculated by the one-sided Wilcoxon signed-rank test. The detailed list of
rank scores can be found in Supplementary Table 2.
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rank of TFs from data used in Fig. 4j and Supplementary Fig. S7. Different panels were for TF ChIP-seq data in
different cell lines: K562 (a), GM12878 (b), HepG2 (c), A549 (d), H1 (e), HeLaS3 (f), and MCF7 (g). The full list

Supplementary Figure S8. Rank score changes for all TFs in each cell line. Barplots showed the delta relative
can be found in Supplementary Table 2.
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Supplementary Figure S9. Scatter plots comparing the SELMA bias estimated from bulk naked DNA ATAC-
seq data (y-axis) and from different scATAC-seq datasets (x-axis) for human hematopoietic cells (a), human cell
lines (b), mouse primitive gut tube (c), and 10x Single Cell Multiome data for mouse embryonic brain (d), human
PBMC (e), and human lymph node (f). The bias scores for (a-c) were calculated using mtDNA reads. The bias
scores for (d-f) were calculated using chromatin reads because the mtDNA reads were automatically excluded
in the fragment data files preprocessed by the 10x Cell Ranger ARC pipeline. R represents the Pearson
correlation coefficient.
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Supplementary Figure $10. Improvement of cell clustering accuracy after excluding scATAC-seq peaks with
high PBS. Y-axis represents the percentage changes of the adjusted rand index (ARI) between K-means
clustering results and the ground truth cell labels. X-axis represents the percent of peaks retained for clustering
(50%~99%) after the peaks with highest PBS were removed. Different panels represent data from different
biological systems: human hematopoietic cells (a), human cell lines (b), mouse gut tubes (c), mouse embryonic
brain (d), human PBMC (e), and human lymph node (f).
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Supplementary Figure S11. SELMA single-cell bias correction model development. (a-f) ANOVA results for
predicting cell type labels with the scATAC-seq signal. An F score was calculated for each peak to measure the
importance of the peak to cell type classification. Peaks were then ranked by PBS score, and the median F
score of the peaks in each PBS percentile plotted. Different panels represent data from different biological
systems: human hematopoietic cells (a), human cell lines (b), mouse gut tubes (c), mouse embryonic brain (d),
human PBMC (e), and human lymph node (f). (g) PBS percentile weight function used in the SELMA single cell

bias correction model.
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