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Abstract 22 

 23 

Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq has been widely 24 

used to identify regulatory DNA elements and transcription factor binding sites. However, 25 

enzymatic DNA cleavage exhibits intrinsic sequence biases that confound chromatin 26 

accessibility profiling data analysis. Existing computational tools are limited in their ability to 27 

account for such intrinsic biases and not designed for analyzing single-cell data. Here, we 28 

present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a computational 29 

method for systematic estimation of intrinsic cleavage biases from genomic chromatin 30 

accessibility profiling data. We demonstrate that SELMA yields accurate and robust bias 31 

estimation from both bulk and single-cell DNase-seq and ATAC-seq data. SELMA can utilize 32 

internal mitochondrial DNA data to improve bias estimation. We show that transcription factor 33 

binding inference from DNase footprints can be improved by incorporating estimated biases 34 

using SELMA. Furthermore, we show strong effects of intrinsic biases in single-cell ATAC-seq 35 

data, and develop the first single-cell ATAC-seq intrinsic bias correction model to improve cell 36 

clustering. SELMA can enhance the performance of existing bioinformatics tools and improve 37 

the analysis of both bulk and single-cell chromatin accessibility sequencing data. 38 

 39 

40 
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Introduction 41 

 42 

Cis-regulatory elements in the genome play a critical role in transcription regulation by 43 

interaction with protein molecules such as transcription factors (TFs). These DNA elements are 44 

usually unwrapped from packed nucleosomes and are accessible in the chromatin structure1,2. 45 

Genome-wide profiles of chromatin accessibility are a means to measure the global landscapes 46 

of active regulatory elements in different cell types. DNaseI hypersensitivity sequencing 47 

(DNase-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-48 

seq) have become widely used for the genomic profiling of chromatin structure and 49 

accessibility3,4. Signal enrichments, or “peaks”, from DNase-seq or ATAC-seq data are 50 

considered to represent accessible chromatin regions and can be used for inferring regulatory 51 

elements or TF binding sites. In addition, DNase-seq and ATAC-seq data also exhibit footprint 52 

patterns, which are fine structures in the accessible chromatin where high-affinity protein-DNA 53 

interactions protect the DNA from DNaseI or Tn5-transposase cleavages4,5. DNase/ATAC-seq 54 

footprint detection has been implicated as an effective approach for identifying accurate TF 55 

binding sites at base-pair resolution6,7. A few computational tools have been developed for 56 

detecting footprints from DNase-seq (RepFootprint8, Wellington9, PIQ10) or ATAC-seq data 57 

(HINT-ATAC11, ToBIAS12). A recent study integrated 243 DNase-seq samples from different 58 

human cell and tissue types and reported approximately 4.5 million DNaseI consensus 59 

footprints associated with TF occupancy across the human genome as one of the largest maps 60 

of human regulatory DNA7. 61 

 62 

The premise of using DNase-seq and ATAC-seq data to profile chromatin accessibility is that 63 

enzymatic DNA cleavages represented by sequence reads reflect local chromatin openness 64 

only. However, it has been shown that both DNaseI and Tn5 transposase exhibit sequence 65 

selection biases in high-throughput sequencing data13-16. Such intrinsic enzymatic biases in 66 
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sequencing data can potentially confound observed cleavage patterns and footprint detection. 67 

The characterization and correction of intrinsic cleavage biases are essential to DNase/ATAC-68 

seq data analysis. To characterize intrinsic cleavage biases, most studies use a k-mer model, in 69 

which the k-mer DNA sequence centered at a cleavage site of DNaseI/Tn5 is used as the 70 

signature of this cleavage13,16,17. The sequence bias can be estimated by counting the 71 

occurrences of cleavages with each k-mer in one dataset relative to the genome-wide 72 

occurrences of this k-mer. A naïve k-mer model assumes that k-mers are independent of each 73 

other, resulting in an exponential increase in the degree of freedom when k increases. 74 

Therefore, a naïve k-mer model becomes less feasible in practice with a large k, especially with 75 

samples having insufficient sequencing depth. Although most studies use 6-mers with 46 = 4096 76 

parameters8,10,13,16-18, it is unclear whether a different model with a larger k-mer size and more 77 

feasible parameter estimation can achieve better performance. 78 

 79 

Several studies have used various computational approaches for intrinsic cleavage bias 80 

estimation8,14,16,19 and footprint detection with bias correction16,18-20 for bulk DNase/ATAC-seq 81 

data. Recently, single-cell ATAC-seq (scATAC-seq) has enabled chromatin accessibility 82 

profiling in thousands of individual cells at one time21-24. Due to the high sparsity of single-cell 83 

data and because most chromatin accessibility regions contain only one read in one cell, any 84 

potential bias can be substantial in scATAC-seq data compared to bulk data, creating additional 85 

challenges in computational analysis. Incorporating intrinsic cleavage bias effects for improved 86 

scATAC-seq analysis also requires comprehensive assessment and development of innovative 87 

methods. 88 

 89 

Here, we present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a 90 

computational framework for the accurate estimation of intrinsic cleavage biases and improved 91 

analysis of DNase/ATAC-seq data for both bulk and single-cell experiments. We demonstrate 92 
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that SELMA generates more accurate and robust bias estimation from bulk DNase/ATAC-seq 93 

data than the naïve k-mer model and that SELMA can utilize mitochondrial DNA (mtDNA) for 94 

bias estimation instead of requiring a separate naked DNA sample. We show an improved TF 95 

occupancy inference on ENCODE consensus footprints by including SELMA-estimated biases 96 

for each footprint. Finally, we show that SELMA-estimated biases can be incorporated with 97 

existing scATAC-seq computational tools to generate more accurate cell clustering analysis.  98 

 99 

 100 

Results  101 

 102 

SELMA improves cleavage bias estimation in DNase-seq and ATAC-seq data 103 

We developed SELMA for an accurate and robust estimation of intrinsic cleavage biases from 104 

chromatin accessibility sequencing data. In SELMA, we start with a naïve k-mer model to 105 

calculate the frequency of observed cleavage sites at each k-mer relative to the total 106 

occurrences of this k-mer (Fig. 1a). We further encode each k-mer as a vector in the Hadamard 107 

Matrix H16, derived from a simplex encoding model, in which the k-mer sequences are encoded 108 

as the vertices of a regular 0-centered simplex25,26. Intuitively, a k-mer can be represented as ! 109 

mononucleotides and ! − 1 adjacent dinucleotides. Each mononucleotide is encoded as the 3-110 

dimensional vector of one of the four tetrahedral vertices of the cube of side 2 centered at the 111 

origin. Each dinucleotide is encoded as the outer product of the 2 vectors representing the 112 

associated nucleotides (Fig. 1b). Including an intercept, this k-mer simplex encoding model has 113 

a total of 1 + 3 × ! + 9 × (! − 1) = 12! − 8 parameters, much fewer than the naïve k-mer model 114 

(4!). We use a linear model to fit these 12! − 8 parameters from the naïve k-mer biases, and 115 

use the fitted values as the SELMA-modeled cleavage biases (Fig. 1c).  116 

 117 
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As an intrinsic property of the enzyme (DNaseI/Tn5 transposase), the cleavage biases are 118 

expected to be invariant across cell types and independent of chromatin states (Fig. S1a). 119 

Comparing data from two cell types using different 8-mer models as an example, we found that 120 

the biases estimated using SELMA have a higher correlation than those estimated using the 121 

naïve k-mer model, for both DNase-seq (Fig. 1d,e) and ATAC-seq (Fig. 1f,g). Using sequence 122 

reads from genomic regions with different chromatin accessibility levels, the naïve k-mer model 123 

was not able to generate very consistent bias estimations (Fig. S1b,c), but the k-mer biases 124 

estimated by SELMA using the same data were highly consistent (Fig. S1b-e). The sequence 125 

preferences of DNaseI or Tn5 cleavage can be better reflected when the enzymes are applied 126 

to deproteinized naked genomic DNA16,17. We found that the k-mer cleavage biases in naked 127 

DNA DNase/ATAC-seq data estimated with the naïve k-mer model can still be improved by 128 

SELMA, obtaining more consistent bias scores between different cell systems (Fig. 1h-k). These 129 

data demonstrated that SELMA can improve the accuracy of estimating k-mer cleavage biases 130 

in DNase-seq and ATAC-seq data. 131 

 132 

With fewer parameters, SELMA enabled us to assess the effect of k-mer size on the 133 

performance of bias estimation. Using a “bias expected cleavage” approach8,13,16,19, we 134 

compared the bias estimation performances measured as the correlation coefficient between 135 

the genome-wide observed cleavages and bias expected cleavages estimated using SELMA 136 

with different k. A higher correlation coefficient indicates a more accurate bias estimation to 137 

calculate the expected cleavages. For both DNase-seq and ATAC-seq data from two different 138 

cell lines, we found that 10-mer outperforms any other k-mer (Fig. 1l-o). We then applied this 139 

analysis to more DNase-seq and ATAC-seq data from a variety of human tissues generated by 140 

ENCODE and found that 10-mer always exhibited the best performance (Fig. S2). The above 141 

empirical evidence suggested that 10-mer is the optimal choice for intrinsic cleavage bias 142 

estimation for both DNaseI (DNase-seq) and Tn5 (ATAC-seq) cleavages. 143 
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 144 

SELMA improves ATAC-seq bias estimation by considering dimeric Tn5 cleavages 145 

Many studies processed DNase-seq and ATAC-seq data in a similar way, treating individual 146 

DNA cleavage sites directly as indications of accessible chromatin8,14. However, the 147 

mechanisms of enzymatic DNA cleavage are different between DNaseI and Tn5 transposases. 148 

Unlike DNaseI, the Tn5 transposase binds DNA as a dimer and inserts adaptors on the two 149 

strands separated by 9bp4,27 (Fig. 2a). As a result, the presence of each observed Tn5 cleavage 150 

in ATAC-seq data should be the consequence of two insertion events induced by the same Tn5 151 

dimer, and the bias estimation of a Tn5 cleavage site should consider both the observed 152 

cleavage and the coupling cleavage 9bp downstream on the reverse strand. Therefore, SELMA 153 

estimated the bias on an ATAC-seq cleavage site as the geometric mean of the bias scores of 154 

the 10-mers at the 5’ observed cleavage and at the 3’ cleavage 9bp downstream on the reverse 155 

strand (Fig. 2a). To show the dimeric Tn5 cleavage effect, we calculated the cross-correlation 156 

between the genome-wide profiles of the plus strand cleavages and the minus strand 157 

cleavages. As expected, we observed a peak at 9bp of the cross-correlation curve specifically in 158 

the ATAC-seq data but not the DNase-seq data (Fig. 2b,c). Similarly, we observed perfectly 159 

matching aggregate cleavage patterns on TF motif consensus sites between plus strand and 160 

minus strand cleavages shifted by 9bp (Fig. S3a,b).  161 

 162 

Using the similar “observed-expected correlation” approach described above, we found that 163 

SELMA considering dimeric cleavages outperformed models considering only 5’ cleavage in 164 

generating a more accurate bias expected cleavage pattern for ATAC-seq data (Fig. 2d,e). We 165 

confirmed that this observation was specific to ATAC-seq, as similar analyses for DNase-seq 166 

from the same cell lines did not show a similar level of improvement (Fig. S3c,d). We also 167 

compared SELMA with several existing bias estimation approaches18 and found that SELMA’s 168 

performance was the best for ATAC-seq data from several cell lines as well as different human 169 
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tissue types from ENCODE (Fig. 2d,e, Fig. S3e-j). Several new Tn5-based techniques have 170 

recently been developed for improved chromatin accessibility profiling, including THS-seq28, 171 

Fast-ATAC-seq29, and Omni-ATAC-seq30. Data from these technologies showed intrinsic 172 

cleavage biases similar to those of conventional ATAC-seq (Fig. S3k-n). We found that SELMA 173 

also outperformed other approaches in bias estimation (Fig. 2f-i). Collectively, these data 174 

suggested that SELMA can most accurately estimate intrinsic cleavage biases in data from 175 

ATAC-seq and other Tn5-based techniques. 176 

 177 

SELMA enables accurate bias estimation by utilizing mitochondrial DNA (mtDNA) reads 178 

Accurate estimation of enzymatic cleavage biases independent of chromatin usually requires a 179 

control sample of deproteinized naked DNA digested by the same enzyme. Biases estimated 180 

from the naked DNA control data can be used to correct the chromatin accessibility profiling 181 

data13,14,16-18 (Fig. 3a). In conventional DNase/ATAC-seq data analyses, sequence reads 182 

mapped to mitochondrial DNA (mtDNA) are usually discarded4. Lacking histones responsible for 183 

the chromatin structure, mtDNA is similar to deproteinized naked DNA31-33. Therefore, we 184 

sought to use the mtDNA reads from DNase/ATAC-seq data for cleavage bias estimation as an 185 

alternative to using a naked DNA control sample (Fig. 3b). Likely because of relatively low read 186 

counts and lack of sequence diversity (e.g., human mtDNA is only < 20kb long), the naïve k-mer 187 

model exhibited poor performance on bias estimation from mtDNA reads, using bias scores 188 

estimated from naked DNA as a reference (Fig. 3c). In contrast, SELMA generated a more 189 

accurate bias estimation from the same mtDNA reads, which was highly consistent with the bias 190 

scores estimated from the naked DNA data (Fig. 3d), demonstrating the power of SELMA to use 191 

less input to make accurate bias estimations. We applied this approach to a series of ATAC-seq 192 

and DNase-seq datasets for different human tissues from ENCODE and found that SELMA was 193 

better than the naïve k-mer model in yielding a consistently higher correlation coefficient (>0.9) 194 

between mtDNA-estimated bias and naked DNA-estimated bias for every ATAC-seq and 195 
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DNase-seq sample tested (Fig. S4a,b). Many optimized ATAC-seq protocols aimed to reduce 196 

mtDNA reads to increase the fraction of chromatin DNA reads for chromatin accessibility signal 197 

yield29,30. We sampled down mtDNA reads to test the performance of SELMA in making robust 198 

bias estimations and found that SELMA could accurately estimate the bias with as few as 199 

50,000 mtDNA reads (Fig. 3e, Fig. S4c), which is approximately 0.2% of the sequencing depth 200 

of a regular ATAC-seq sample and lower than the fraction of mtDNA reads in any existing 201 

ATAC-seq experiment29,30. These data demonstrated that by applying SELMA, mtDNA reads 202 

can be utilized to substitute naked DNA control samples for accurate bias estimation. 203 

 204 

Considering SELMA-estimated bias improves TF binding inference on ENCODE DNaseI 205 

footprint regions 206 

With an accurate bias estimation model developed, we next sought to examine the potential 207 

effect of intrinsic biases on TF binding footprints in chromatin accessibility profiling data. 208 

Focusing on the 4,465,728 human DNaseI consensus footprints across the human genome, we 209 

plotted the DNaseI cleavages from different human cell lines and observed similar classic 210 

DNaseI cleavage protection (“footprint”) patterns across these footprint regions (Fig. 4a, Fig. 211 

S5a). Interestingly, we also observed a recurrent pattern of the SELMA-estimated DNaseI 212 

cleavage bias that is well aligned with the DNaseI cleavage pattern across these footprint 213 

regions (Fig. 4b, Fig. S5b). In the aggregate view of footprint regions of different lengths, the 214 

DNaseI cleavage signals exhibited a clear “cliff-bound valley”-shaped footprint pattern (Fig. 215 

S5c). The DNaseI cleavage bias scores exhibited a pattern of two spikes located inside the 216 

footprint coordinates (Fig. S5d). After normalizing various footprint lengths, we plotted the 217 

aggregate DNaseI cleavage patterns across all consensus footprint regions and found that the 218 

overall “footprint pattern” clearly included the double spike pattern of cleavage biases (Fig. 4c), 219 

which aligned well with the two spikes in the aggregate bias score pattern (Fig. 4d), indicating a 220 

possible contribution of intrinsic biases to the DNaseI footprinting.  221 
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 222 

To assess the interference of intrinsic biases with DNaseI cleavage patterns at TF binding 223 

footprints, we aligned the 4.5 million consensus footprints with more than 10,000 human TF 224 

ChIP-seq datasets from the Cistrome Data Browser database34,35 and collected two sets of 225 

footprint regions: “TF binding hotspots”, the footprint regions overlapping with TF binding sites 226 

detected from more than 3,000 ChIP-seq datasets, and “TF binding deserts”, the footprint 227 

regions that do not overlap with any TF binding sites from any ChIP-seq dataset or any human 228 

TF motif sequence from the HOCOMOCO database36 (Fig. S5e). We compared the aggregate 229 

DNaseI cleavage patterns and the bias score patterns in these two sets of consensus footprint 230 

regions and found that the DNaseI cleavage pattern in TF binding hotspot regions was 231 

dominated by the classic DNaseI footprint pattern with little interference from the bias (Fig. 4e,f), 232 

while in the TF binding desert regions, the entire cleavage “footprint” pattern was apparently 233 

determined by the two spikes from the intrinsic bias (Fig. 4g,h). These results suggested that 234 

although the overall DNaseI cleavage pattern is indicative of TF binding, the intrinsic cleavage 235 

bias may interfere with the real footprint pattern, and the effect on those footprint regions with 236 

rare TF binding events can be drastic. These observations were reproducible in DNase-seq 237 

data from different cell and tissue types (Fig. S6a-b). 238 

 239 

To quantify the level of intrinsic cleavage biases in a consensus footprint region, we defined a 240 

footprint bias score (FBS), as the relative SELMA-estimated bias score at the two spikes 241 

compared to the average SELMA bias score across the rest of the region, for each footprint. 242 

Consistent with what we observed in the aggregate view, the FBSs for TF binding deserts were 243 

significantly higher while the FBSs for TF binding hotspots were significantly lower than the 244 

background of all consensus footprints (Fig. 4i, p < 10-5, by Wilcoxon test), indicating that FBS 245 

might be an informative feature of the consensus footprint regions and might help separate true 246 

TF binding footprints from false-positive DNaseI footprint patterns. Next, we used a model-247 
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based approach to assess the potential power of SELMA-derived FBS in boosting the 248 

performance of TF binding inference from DNase-seq signal patterns on consensus footprint 249 

regions containing the TF motif sequence. For every TF with a known motif in a cell type with 250 

both ChIP-seq and DNase-seq data available, we employed a multinomial logistic regression 251 

model using different sets of features, each of which may include DNase-seq read count, 252 

DNaseI footprint score produced from an existing method, and an optional FBS, to infer the TF 253 

binding occupancy (determined by peak occurrence in ChIP-seq data) in the motif-containing 254 

footprint regions. For each footprint method, we compared the TF binding inference 255 

performance of the original method (read count + footprint score as features), the original 256 

method plus a randomized naïve k-mer bias score feature as a control, and the original method 257 

plus the SELMA bias score (FBS), using an integrated rank score strategy. We included our 258 

previous footprint method13 and several representative methods that outperform others, 259 

Wellington9 and HINT11,19 (with and without bias correction mode) in this comparison. We 260 

surveyed all human cell types that have both DNase-seq and more than 20 TF ChIP-seq 261 

samples available from ENCODE, including in 7 cell lines and a total of 375 ChIP-seq samples 262 

for 156 different TFs (Table S1, Fig. S7a). For each TF ChIP-seq sample in each cell line, we 263 

calculated differential rank score of the inference performance by adding a bias score feature.  264 

As a result, adding a random k-mer bias score did not change the inference performance. In 265 

contrast, the models with SELMA FBS added can significantly increase the rank scores for the 266 

majority of ChIP-seq samples, regardless of which method was used originally to calculate the 267 

footprint score (277-291, or 74%-78%, varying across different footprint methods, Fig. 4j, Fig. 268 

S7, Table S2). For example, using our previous footprint method13, 277 ChIP-seq samples 269 

(74%) received a higher inference rank score when considering SELMA FBS, covering 117 270 

(75%) of the 156 TFs (Table S2). Among these, Zinc finger family TFs including CTCF and 271 

REST showed the highest improvement after considering footprint bias (Fig. S8, Table S2), 272 

consistent with previous studies about the positive correlation between footprint strength and 273 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2021.10.22.465530doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465530
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

residence time of the TF on DNA13,16. Meanwhile, the SOX family (e.g., SOX5) and HLH family 274 

(e.g., MYC) TFs rarely showed improved inference performance after considering footprint bias 275 

(Fig. S8, Table S2). These TFs were those having short residence time on DNA and weak 276 

footprints15, which were expected not to be affected by footprint biases. These results 277 

demonstrated that considering the intrinsic cleavage bias can improve the performance of 278 

existing footprint computational methods for the binding inference for most TFs with footprints. 279 

 280 

To assess whether the intrinsic bias has different levels of interference with the footprint regions 281 

for different TFs, we selected two subsets of sequence motif-containing footprint regions for 282 

each TF as the top 10% with the highest FBS or the bottom 10% with the lowest FBS, and 283 

compared the frequencies of observing actual TF binding (overlapping with a ChIP-seq peak) in 284 

these subsets of footprints. We found that different TFs had various preferences for binding at 285 

low-FBS footprints or high-FBS footprints. Among the 156 TFs included, a significantly larger 286 

amount of TFs can be improved with SELMA FBS than those that cannot be improved by 287 

SELMA (Fig. 4k). These results suggested that intrinsic cleavage biases might affect different 288 

TFs at various levels in divergent directions, and considering intrinsic bias should improve the 289 

footprint-based TF binding inference for most TFs. 290 

 291 

SELMA improves the accuracy of cell clustering from single-cell ATAC-seq data 292 

Single-cell ATAC-seq (scATAC-seq) technologies enable the detection of accessible chromatin 293 

regions at single-cell resolution in thousands of cells at a time21-23. Due to the scarcity of 294 

cleavage events in an individual cell, most chromatin accessibility regions in a single cell have 295 

only one aligned fragment, making the potential influence of intrinsic cleavage biases more 296 

substantial in scATAC-seq data than in bulk ATAC-seq data. We collected scATAC-seq 297 

datasets generated using different platforms for different biological samples, human 298 

hematopoietic cells37, human cell lines21, and mouse primitive gut tube38, and found that the 299 
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scATAC-seq data contained similar intrinsic cleavage biases to bulk data with highly correlated 300 

bias scores estimated by SELMA (Fig. S9a-c). We estimated the average cleavage bias for 301 

each individual cell (cell bias score, CBS) and found that the distribution of CBS was different 302 

across cell cluster patterns, batches, and annotated cell types (Fig. 5a-i). We further surveyed 303 

datasets from the 10x Single Cell Multiome platform for different biological systems including 304 

mouse embryonic brain, human peripheral blood mononuclear cells (PBMC), and human lymph 305 

node, each of which has scATAC-seq and scRNA-seq performed in the same cell and we used 306 

the scRNA-seq derived cell clusters as the “pseudo” ground truth to label the cells. As a result, 307 

we still found similar intrinsic cleavage biases in the scATAC-seq part of the data (Sig. S9d-f) 308 

and CBS affecting different cell clusters (Fig. 5j-r). These observations indicated that, regardless 309 

of experimental platforms and biological systems, the Tn5 intrinsic cleavage biases can 310 

contribute to cellular heterogeneity observed from scATAC-seq data and can affect cell 311 

clustering analysis.  312 

 313 

We next assessed whether considering intrinsic cleavage biases can improve cell clustering 314 

based on scATAC-seq data. We used the actual cell-type labels as the clustering ground truth 315 

for the human hematopoietic cell sample and the mixed human cell line sample, and used 316 

scRNA-seq data-projected cell labels as a “pseudo” ground truth for the mouse primitive gut 317 

tube sample. We used the adjusted Rand index (ARI)39 to quantify the accuracy of an 318 

unsupervised clustering result. As scATAC-seq-based cell clustering can be performed on all 319 

chromatin accessibility regions (ATAC-seq peaks), we sought to address whether removing 320 

peaks with high intrinsic biases can increase the clustering accuracy. We first tested a simple 321 

clustering approach that involved principal component analysis (PCA) dimensionality reduction 322 

followed by K-means clustering. For all 6 scATAC-seq datasets, cell clustering after removing 323 

1%-50% of peaks with the highest PBS largely increased ARI from using all peaks (Fig. S10). 324 

This improvement in clustering accuracy by removing high-bias peaks is significant compared to 325 
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the control of randomly removing the same number of peaks (Fig. 6a-f). These data suggested 326 

that scATAC-seq cell clustering could be improved by excluding high-bias peaks that 327 

confounded the analysis. 328 

 329 

To correct the intrinsic cleavage bias effect in scATAC-seq data in a systematic manner, we 330 

developed a general model to weight peaks by the percentile of SELMA PBS (Fig. 6g). The 331 

weight function was determined empirically using a Beta distribution based on the relative 332 

contribution of each PBS percentile of peaks to the true cell type classification (Fig. S11, 333 

Methods). We applied this weight function to adjust the peak-by-cell read count matrix for 334 

intrinsic bias correction and used the bias-corrected data matrix for cell clustering analysis. To 335 

evaluate the performance, we tested several commonly used single-cell data analysis tools, 336 

including APEC40, Seurat41, scran42, and snapATAC43, in addition to K-means, for scATAC-seq 337 

cell clustering, and compared the cell clustering accuracy between using the uncorrected raw 338 

data and using the bias-corrected data. Although different tools showed various performances, 339 

across the 6 biological samples we tested, SELMA-corrected data yielded a higher ARI than 340 

uncorrected data for most cases, and always reached the highest ARI for each sample (Fig. 6h-341 

m, Table. S4). These results demonstrated that SELMA can reduce the effect of intrinsic 342 

cleavage biases in scATAC-seq data and can be applied to existing single cell data analytical 343 

tools to improve the accuracy of cell clustering analysis. 344 

 345 

 346 

Discussion 347 

 348 

The existence of enzymatic cleavage biases in DNase-seq and ATAC-seq experiments has 349 

been widely acknowledged in the field, but to what extent such intrinsic biases affect data 350 

analysis, especially on the single-cell level, has not been systematically assessed. SELMA 351 
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provides a quantitative approach for the accurate and robust estimation of intrinsic cleavage 352 

biases in both bulk and single-cell chromatin accessibility sequencing data and requires fewer 353 

sequence reads than the naïve k-mer model. Taking Tn5 dimerization into consideration, 354 

SELMA yields more accurate bias estimation specifically for ATAC-seq data by including k-mer 355 

sequences at two Tn5 cleavages 9bp apart. SELMA can improve functional analysis and 356 

interpretation of chromatin accessibility profiles. On the bulk level, we showed that considering 357 

SELMA-estimated biases can improve TF binding inference from ENCODE DNaseI consensus 358 

footprints for most TFs, with better performances compared to existing tools, including some 359 

that already considered “biases”. On single-cell level, we showed widespread existence of 360 

intrinsic cleavage biases in single-cell ATAC-seq data, and demonstrated that SELMA single-361 

cell bias reduction model can enhance the performance of existing tools and can increase the 362 

accuracy of cell type clustering. Therefore, SELMA can help researchers obtain more biological 363 

insights from chromatin accessibility data.  364 

 365 

SELMA is built on top of the widely used k-mer model by combining simplex encoding and a 366 

linear model. Simplex encoding has the unique ability to capture the pairwise symmetry and 367 

orthogonality between mononucleotides and interactions within each dinucleotide. It significantly 368 

reduces the degrees of freedom without losing any variance information compared to the naïve 369 

k-mer model. These properties enable SELMA to make robust estimations from fewer sequence 370 

reads or smaller datasets than are required by other approaches, hence enabling de novo bias 371 

estimation from a smaller DNA molecule, such as mtDNA in a DNase/ATAC-seq sample, 372 

without having to generate a separate genomic naked DNA sample. However, SELMA still relies 373 

on sufficient read counts for each k-mer for an accurate estimation. Although the performance of 374 

SELMA may increase with k, this effect is not unlimited. The performance using 12-mer is not as 375 

good as using 10-mer possibly because there are not enough reads in the dataset for many 12-376 

mers. Nevertheless, SELMA works well for most existing DNase/ATAC-seq datasets tested in 377 
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our study. In addition, the feasibility and superior performance of simplex encoding have also 378 

been demonstrated for TF motif characterization44. Following similar encoding strategies, 379 

SELMA can potentially be applied to any k-mer-based model or to any high-throughput 380 

sequencing data for robust sequence bias estimation and pattern recognition. 381 

 382 

The k-mer biases estimated by SELMA are consistent across species and cell types, reflecting 383 

the assumption that the cleavage biases are intrinsic features of the enzymatic assays. 384 

Therefore, one can directly use the SELMA-estimated k-mer biases from DNaseI or Tn5-385 

digested naked DNA data as universal intrinsic biases for DNase-seq and ATAC-seq, 386 

respectively, and incorporate these precalculated bias scores into the data analysis. However, 387 

this bias dataset is not guaranteed to remain accurate in many species that have not been 388 

profiled, as there might be unknown biases that have not been characterized. Although we are 389 

confident that the SELMA-estimated results should still be largely valid, one can always use the 390 

SELMA package for de novo estimation of cleavage biases from one’s own datasets. 391 

 392 

When applying SELMA-estimated FBS to correct biases in DNase footprints, our data were 393 

limited to ENCODE DNaseI consensus footprints as a proof-of-principle study. While this 394 

ENCODE dataset is thus far the largest DNase footprint repertoire, users might be interested in 395 

de novo detection of footprints from their customized DNase/ATAC-seq data. As many 396 

bioinformatics tools are already available for such tasks using various computational models20, 397 

SELMA or SELMA-generated bias information can be incorporated into each of those models 398 

for improved performance for more accurate regulatory DNA identification from footprints. On 399 

single-cell ATAC-seq analysis, while we show that SELMA single-cell bias correction model can 400 

achieve more accurate cell clustering using a few existing tools, performance still varies across 401 

these tools due to the different statistical and computational models used in these methods. 402 

One potential issue that limits a larger-scale benchmarking is the lack of ground truth for most 403 
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existing scATAC-seq data. Except for the human hematopoietic cell sample and the mixed 404 

human cell line sample that have the known cell type labels as ground truth, we had to use 405 

transcriptome profiling scRNA-seq data as a “pseudo” ground truth or solver standard to 406 

determine the cell type identities, which implies the assumption that chromatin accessibility 407 

profiles should characterize the same cell identity as transcriptomic profiles. Nevertheless, the 408 

overall increase on the cell clustering consistency for different biological systems tested 409 

indicates that SELMA bias correction reduces confounding noises in the data while biologically 410 

meaningful variances are retained45. In summary, SELMA is a universal and systematic bias 411 

reduction model and can be used to enhance the performance of existing methods and to 412 

improve single-cell chromatin accessibility profiling analysis. 413 

 414 

 415 

Methods 416 

 417 

High-throughput sequencing data collection and processing 418 

Data collection. Publicly available ATAC-seq, single-cell ATAC-seq, DNase-esq and ChIP-seq 419 

data used in this study were collected from Gene Expression Omnibus (GEO) and the ENCODE 420 

consortium. The metadata and accession numbers are listed in Table S1. 421 

 422 

Processing of bulk ATAC-seq and DNase-seq data. Raw sequencing reads were aligned to 423 

the GRCh38 (hg38) reference genome with bowtie2 (v2.2.9) (-X 2000 for paired end data)46. 424 

Low-quality reads (MAPQ < 30) were discarded. For paired-end sequencing data, reads with 425 

two ends aligned to different chromosomes (chimeric reads) were also discarded. For paired-426 

end data, reads with identical 5’ end positions for both ends were regarded as redundant reads 427 

and discarded. The nonredundant reads were separated into chromosomal DNA (chromatin 428 

reads) and mitochondrial DNA (mtDNA reads) based on their genomic location. Peak detection 429 
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was performed on the nonredundant chromatin reads using MACS247 (v2.1.2) (-q 0.01, --extsize 430 

50) and +/- 200bp centered on the peak summits was collected as the genome-wide chromatin 431 

accessible regions. The accessible regions in each dataset were separated into 5 groups from 432 

highest accessibility to lowest accessibility based on the read count on each peak (for Fig. S1). 433 

The 5’ end nucleotides of each read were piled up to generate the genome-wide observed 434 

cleavage profile.  435 

 436 

Processing of single-cell ATAC-seq data. For the human hematopoietic cell sample, raw 437 

sequencing reads were aligned to the GRCh38 (hg38) reference genome with bowtie2 (-X 438 

2000). Low quality reads (MAPQ < 30), chimeric reads and duplicate reads for each individual 439 

cell were discarded. For the mouse gut tube sample, scATAC-seq data from the 10x Genomics 440 

platform were preprocessed with Cell Ranger ATAC with the default parameters to generate 441 

fragments for each individual cell. For the 10x Single Cell Multiome datasets, the processed 442 

fragment files were downloaded from the 10x genomics website 443 

(https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-444 

standard-2-0-0, https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-445 

no-cell-sorting-10-k-1-standard-2-0-0, https://www.10xgenomics.com/resources/datasets/fresh-446 

frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-0). The fragment 447 

files were then used as input for the subsequent analysis. Because the Cell Ranger ATAC/ARC 448 

pipeline shifted from the Tn5 cleavage sites to +4/-5 bp in generating the fragment file, the 449 

coordinates were shifted back to represent the actual cleavage loci. For scATAC-seq datasets, 450 

cells with more than 10,000 reads were retained for analysis. For 10x Single Cell Multiome 451 

datasets, cells pre-selected by Cell Ranger ARC and with more than 10,000 reads in both 452 

scRNA-seq and scATAC-seq parts were retained for analysis.  453 

 454 
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Processing of ChIP-seq data. ChIP-seq data were collected and processed as described in a 455 

previous study48. In brief, based on the quality measurements from the Cistrome data browser 456 

(CistromeDB)34,35, we included only the ChIP-seq datasets that pass at least four out of the first 457 

five QC measures (i.e., sequence quality, mapping quality, library complexity, ChIP enrichment, 458 

and signal-to-noise ratio). We also excluded the ChIP-seq datasets with fewer than 1000 peaks 459 

identified by MACS227 with an FDR cutoff of 0.01. For TFs with multiple datasets available in the 460 

same cell type, we kept only one dataset with the best quality based on passing most of the 6 461 

CistromeDB QC measures, including sequence quality, mapping quality, library complexity, 462 

ChIP enrichment, signal-to-noise ratio, and regulatory region enrichment. The ChIP-seq peak 463 

files (detected by MACS2) for the selected samples were downloaded from CistromeDB for the 464 

following analysis.  465 

 466 

TF motif analysis. The motifs of human TFs were collected from the HOCOMOCO database36 467 

(v11), and the genome-wide motif sites of TFs were detected by FIMO (v4.12.0) in the MEME 468 

package49. Motif sites located outside of the genome-wide 36bp unique mappable regions were 469 

excluded from the analysis. In total, 25,027,116 motif sites for 66 TF motifs from the human 470 

genome were included in the analysis. 471 

 472 

SELMA model 473 

Naïve k-mer bias model for intrinsic cleavage bias estimation. The naïve k-mer biases were 474 

calculated as described in a previous study13. In brief, a naïve k-mer bias was estimated as the 475 

observed frequency of the cleavages with the k-mer relative to the frequency of that k-mer in the 476 

background. For each mapped sequence read in a DNase-seq or ATAC-seq dataset, the 477 

enzymatic cleavage site was between genomic positions i and i-1 for the plus (+) strand reads 478 

and between i and i+1 for the minus (–) strand reads, where i represents the genomic position 479 

of the 5’ nucleotide of the reads. The associated k-mer sequence was thus assigned as 480 
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./ − !
" , / +

!
" − 11 for the plus strand reads and ./ − !

" + 1, / +
!
"1 for the minus strand reads. The 481 

naïve k-mer bias score for k-mer j is defined as the number of all observed cleavages with that 482 

k-mer divided by the occurrences of that k-mer in the background: 483 

2# =
3#
4#
	 484 

where 3# is the count of cleavages with k-mer j, and 4# is the total count of occurrences of k-485 

mer j in the background (Fig. 1a). In the case of chromatin DNA, this background included 400 486 

bp from each chromatin accessible region centered at the peak summit detected by MACS2. 487 

The background in the naked DNA samples included genome-wide 36bp unique mappable 488 

regions. The background in mtDNA included the mitochondrial DNA sequence. The median was 489 

further subtracted from the bias scores for visualization in the scatter plots (e.g., Fig. 1d-k). 490 

 491 

In the naïve k-mer model, the bias score for each k-mer is independent and empirically 492 

determined from the data. The number of independent variables in the model is the total number 493 

of k-mers, i.e., 4k. 494 

 495 

SELMA model for intrinsic cleavage bias estimation. In SELMA, a simplex encoding model 496 

followed by a linear model was employed on top of the naïve k-mer model to better estimate the 497 

intrinsic cleavage biases for each k-mer. To efficiently encode a k-mer sequence considering 498 

their intrinsic similarities, a simplex encoding model was adopted from previous studies25,26, in 499 

which the DNA nucleotides were encoded as vectors representing the four tetrahedral vertices 500 

of a regular 0-centered simplex (Fig. 1b). 501 

 502 

 503 
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In the simplex encoding, the vectors representing the four nucleotides are of equal length, 504 

mutually orthogonal, and equidistant from each other. To account for interactions between 505 

adjacent nucleotides, a dinucleotide was additionally encoded as the outer product of the two 506 

vectors associated with the two nucleotides: 507 

 508 

 509 

One can show that these vectors for dinucleotide interactions are also of equal length, mutually 510 

orthogonal, and equidistant from each other. In fact, in the simplex encoding, mononucleotides 511 

and dinucleotides were encoded as rows in a Hadamard matrix of order 4 and a Hadamard 512 

matrix of order 16, respectively. 513 

 514 

Considering both mononucleotides and dinucleotide interactions, a k-mer can then be encoded 515 

as ! mononucleotides and ! − 1 dinucleotides, plus an intercept term. Therefore, the 516 

dimensionality of a k-mer simplex encoding is 517 

5(!) = 1 + 3! + 9(! − 1) = 12! − 8	518 
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In SELMA, the intrinsic k-mer biases were then estimated in a linear model with these 12! − 8 519 

parameters using the observed naïve k-mer bias scores (Fig. 1c). In detail, we had the formula:  520 

7~9 :$;$
%"!&'

$(%
																																																																													(1) 521 

where each observation 7 is the naïve k-mer bias score; ;$ ∈ {1,−1}, is the independent 522 

variable in the simplex encoding vectors; and :$ is the parameter to be estimated. After linear 523 

regression, the model-fitted value 7? was defined as the SELMA bias score for each k-mer. 524 

 525 

Genome-wide cross-correlation analysis.  For the analysis presented in Fig. 2b,c, reads from 526 

plus (+) and minus (-) strands on chromatin accessible regions (peaks) were collected 527 

separately to generate plus strand observed cleavage profile and minus strand observed 528 

cleavage profile, respectively. The Pearson correlation coefficient between the plus strand 529 

signal and the k-bp shifted minus strand signal is:  530 

@! =
∑ (B$ − BC)(4$! −4!CCCC)$

D∑ (B$ − BC)"∑ (4$! −4!CCCC)"$$
																																																								(2) 531 

where B$ is the log-scaled plus strand cleavage count at genomic position i (log2(cleavage+1)), 532 

4$! is the log-scaled minus strand cleavage count at genomic position i with a k-bp shift, B is 533 

the mean of all the B$, and 4!CCCC is the mean of 4$! for all i. All genomic positions on the genome-534 

wide DNase/ATAC-seq peaks were included in the analysis. k is chosen from 1 to 20 (x-axis in 535 

Fig. 2b,c).  536 

 537 

Comparison of different bias estimation methods. We use :$) and :$& to denote the “5’ only” 538 

intrinsic sequence bias score at genomic position / on the plus strand and minus strand, 539 

respectively. We use :′$) and :′$& to denote the bias score from other bias estimation methods in 540 

this section. Different bias estimation methods used in Fig. 2 and its associated sections are 541 

listed below:  542 
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● For the “5’ only” method, :$) was calculated based on the k-mer ratio associated with the 543 

k-mer spanning positions [/ − !/2, / + !/2 − 1]	on the plus strand, and :$& was 544 

calculated in a similar way based on the nucleotides spanning genomic positions [/ −545 

!/2 + 1, / + !/2] on the minus strand (reverse complement of the DNA sequence on the 546 

corresponding plus strand). This method was applied to both DNase-seq and ATAC-seq, 547 

while the other methods were applied only to ATAC-seq as they were specifically 548 

designed for ATAC-seq.  549 

● For SELMA (Fig. 2a), the bias score was calculated as the geometric mean of the “5’ 550 

only” bias score at the given position and the “5’ only” bias score at 9bp downstream of 551 

the other strand, i.e., :′$) = D:$) × :$)*& , and :′$& = D:$& × :$&*)  552 

● For the model in Martins et al14, the bias score at genomic position / was calculated in a 553 

similar way to the “5’ only” method but using a gapped 11-mer model. The model could 554 

be represented as IIIIII333I3IJII33I3333I3I, in which position / was 555 

represented by J; positions that were ignored were represented by I and informative 556 

positions were represented by 3.  557 

● For the model in Baek et al18, the bias score at genomic position / was calculated in a 558 

similar way to the “5’ only” method but the cleavages were shifted +4/-5 bp for +/- strand 559 

cleavages. In practice, following the description in the “bagfoot” package, the bias score 560 

at position / was calculated as  :′$) = :$)+) , and :′$& = :$&+) .  561 

● For the model in Calviello et al8, the bias score at genomic position / was calculated in a 562 

similar way to the “5’ only” method but using the 6-mer bias table provided in the study.  563 

 564 

Calculation of observed and bias-expected cleavage. The 1bp at 5’ end positions for DNase-565 

seq or ATAC-seq reads were piled up to generate the genome-wide observed cleavage profile. 566 

To generate the bias-expected cleavage profile, for a 50-bp window centered on nucleotide /, 567 
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we placed the same number of observed cleavages following the sequence bias contribution in 568 

this window. Let 3,-" represent the bias expected cleavage at position / on strand K ∈ {+,−}, 3$. 569 

represent the observed cleavage at position / on strand K, and :$. denote the intrinsic cleavage 570 

bias (estimated with any of the above methods) at position / on strand K. Then we have  571 

3/.L = 3$.7$.																																																																																				(3) 572 

7$. =
20!"

∑ 20#
"$)"1

#($&"+
																																																																										(4) 573 

We used the Pearson correlation coefficient to compare the observed cleavage profile and the 574 

bias-predicted cleavage profile (Fig. 2). We only considered positions within the accessible 575 

regions to ensure that all positions had sufficient reads in the 50-bp window for accurate 576 

estimation.   577 

 578 

DNaseI footprint analysis 579 

Data processing. The genome-wide DNaseI consensus footprint regions were downloaded 580 

from Reference7 581 

(https://resources.altius.org/~jvierstra/projects/footprinting.2020/consensus.index/). The 582 

observed DNaseI cleavage profile from a DNase-seq dataset and DNaseI SELMA bias scores 583 

across +/- 50bp centered on the footprint region were plotted as heatmaps (Fig. 4a,b). The 584 

footprint regions were ordered by the footprint lengths, and each 1000 footprint regions with 585 

similar lengths were compressed as one row in the heatmap for better visualization. The +/- 586 

strand signals were plotted separately. We aligned the footprint regions based on the two 587 

observed bias spikes in each footprint region (located 7bp to the right of the left boundary and 588 

7bp to the left of the right boundary of the footprint, labeled as -0 and +0 in Fig. 4c-h). The 589 

center regions between the bias spikes were scaled to 4 bins to align footprint regions with 590 

different lengths.  591 
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 592 

Footprint bias score. The footprint bias score (FBS, in Fig. 4i-k) was defined as the difference 593 

between “spike bias” and “center bias”. The “spike bias” was calculated as the average of the 594 

two SELMA bias scores at the spike positions, while the “center bias” was calculated as the 595 

median SELMA bias score at the rest of the positions in the footprint region. Let MN2#, O#, and P# 596 

denote the footprint bias score, spike bias and center bias of footprint Q, respectively. The FBS, 597 

spike bias, and center bias are given by:  598 

MN2# = O# − P#  																																																																														(5) 599 

O# = :/∈3
.∈{),&}CCCCCCCCCC  																																																																												(6) 600 

P# = :/∈7
.∈{),&}T   																																																																												(7) 601 

where :$. represents the SELMA bias score at genomic position / on the strand K ∈ {+,−}, 602 

overbar represents the average, tilde represents the median, and N and J represent spike 603 

positions (within the flanking 1bp of the bias spikes) and the remaining positions of the footprint 604 

Q, respectively. To calculate the randomly shuffled FBS (random k-mer bias), the FBS was 605 

calculated in the same way, but the bias score :$. for each position was randomly selected from 606 

the SELMA bias score table.  607 

 608 

Calculation of footprint score with different methods. The following methods were used to 609 

calculate footprint scores for comparison: 610 

● Raw footprint: The raw footprint score was calculated following a previous study13, using 611 

the formula V	 = 	−Wlog 8$)%8%)%
+ log 8$)%8&)%

[ , where \7, \9 and \: denote the DNase 612 

cleavage count in the motif region, and the flanking regions to the right and left of the 613 

motif, respectively. The flanks are both the same length as the motif. 614 
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● Wellington footprint: We used Wellington9 (v0.2.0) with default parameters to detect 615 

genome-wide footprints and selected significant footprint regions with p-values < 1e-10. 616 

The output footprint score was assigned to the TF motif overlapping with the footprint 617 

region. 618 

● HINT footprint: We used HINT11,19 (v0.12.3) with default parameters to detect genome-619 

wide footprints. For bias correction mode, we used an additional parameter: --bias-620 

correction. The footprint score of each footprint region was assigned to the overlapping 621 

TF motifs. 622 

 623 

Inference of TF binding with different features. For each TF in Fig. 4j, the TF motifs 624 

overlapping with consensus footprint regions were collected as target regions. DNase-seq read 625 

count in the footprint region (“reads”), footprint score from an existing method, and bias score 626 

were used as features in a multinomial logistic regression model to infer TF occupancy at 627 

footprint-overlapping motif regions. For each available method, model training with cross-628 

validation and predictions were performed using different combination of features: “original 629 

method” refers to reads + footprint score. An additional feature of either SELMA FBS or a 630 

random k-mer bias was added for different models. We used a performance measure 631 

integration approach11 to evaluate different models’ prediction power. For each model, we 632 

calculated the area under the ROC curve (AUROC) at 100%, 10%, and 1% false positive rate 633 

(FPR). We also calculated the area under the precision-recall curve (AUPRC) at 100%, 10%, 634 

and 1% recall. We then combined these six performance measures as a rank score S, defined 635 

as 636 

2 =
1
69 −log

]$
3 + 1$

 637 

where / = 1,… ,6 denotes the 6 performance measures, ]$ is the rank of a model for 638 

performance measure /, and 3 is the total number of models. 639 
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 640 

To calculate the random k-mer bias, we randomly permuted the SELMA k-mer bias table and 641 

generated the k-mer bias table for a “simulated enzyme”. We used this “simulated” bias table to 642 

calculate the FBS for each footprint region and performed TF inference modeling similar to what 643 

we did for the DNaseI SELMA FBS. This permutation was performed 100 times to generate 100 644 

performance rank scores for random k-mer bias used as controls.  645 

 646 

Motif prediction power of TF binding sites. In Fig. 4j-k, we collected the genome-wide motif 647 

sites overlapping with consensus footprint regions and the ChIP-seq peaks for each TF with 648 

HOCOMOCO36 motif and ChIP-seq data available in human cell lines. We collected data from 649 

all human cell lines with both DNase-seq and more than 20 TF ChIP-seq samples available 650 

from ENCODE, resulting in 7 cell lines, 375 TF ChIP-seq samples, and 156 TFs (Table S1). In 651 

total, we surveyed genome-wide motif sites for 156 TFs, and 61,531,309 motif sites in total. In 652 

Fig. 4k, for each TF, we selected two subgroups of its motif sites based on the FBS of their 653 

overlapped footprint regions: the top 10% of motif sites with the highest FBS, defined as “sites 654 

with high-bias footprint”; and the bottom 10% of motif sites with the lowest FBS, defined as 655 

“sites with low-bias footprint”. We calculated the proportion of motif sites overlapping with TF 656 

ChIP-seq peaks for each of the two subgroups and plotted on a scatter plot (Fig. 4k). To test 657 

whether low-bias footprints tend to have more TF binding than high-bias footprints for most TFs, 658 

we conducted a t-test comparing the distribution of TF binding log likelihood ratios of low-bias 659 

over high-bias footprints to the standard normal distribution, and the test p-value is labeled in 660 

Fig. 4k. 661 

 662 

Single-cell ATAC-seq clustering analysis 663 

Gold standard of single-cell clustering. For single-cell ATAC-seq data in the human 664 

hematopoietic cells and human cell line samples, the cell-type information for each individual 665 
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cell was used as the ground truth, or the gold standard. For single-cell ATAC-seq data in the 666 

mouse gut tube sample, the cell-type information was assigned based on label transfer40 from 667 

the single-cell RNA-seq dataset in the same system48 (GSE136689), as the “pseudo” ground 668 

truth, or the silver standard. In detail, we integrated scRNA-seq and scATAC-seq data using the 669 

ArchR package50 (v1.0.1). Individual cells with a high RNA integration score (unconstrained 670 

predicted score < 0.56) were collected as high-quality cells for the analysis. The cutoff of the 671 

RNA integration score (0.56) was determined by maximizing the interclass variance in the RNA 672 

integration score using Otsu’s method51. Cell types represented by fewer than 10 cells were 673 

discarded. For the 10x Single Cell Multiome datasets, scRNA-seq parts from each sample were 674 

separated and clustered using Seurat (v4.0)41 with default parameters. The scRNA-seq 675 

clustering results were used as the “pseudo” ground truth for scATAC-seq cell clusters.  676 

 677 

Average bias for individual cells. The average bias for each individual cell (median SELMA 678 

cell bias score, median CBS, used in Fig. 5) was calculated as the median of the bias for all the 679 

fragments in the individual cell. The bias for each paired-end fragment was calculated as the 680 

mean of the SELMA bias scores for the 5’ end and the 3’ end.  681 

 682 

Peak detection and peak bias score calculation. We first combined all the single-cell ATAC-683 

seq reads in the dataset and performed MACS247 peak calling with a q-value cutoff of 0.1 to 684 

include all the potential accessible regions in the human hematopoietic cell and human cell line 685 

systems (100,456 peaks detected for human hematopoietic cells and 83,318 peaks for human 686 

cell lines). For the 10X scATAC-seq data in mouse gut tube, the q-value cutoff of 0.01 was used 687 

for peak calling (146,098 peaks detected). Potential accessible regions with fewer than 10 688 

covered reads or more than 4,000 covered reads were discarded in the subsequent analysis. To 689 

consider the effect of intrinsic cleavage bias in scATAC-seq data, we summarized the bias for 690 
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each potential accessible region by calculating the peak bias score (PBS), defined as the 691 

median SELMA bias score of all reads (from all individual cells) located in the peak region. 692 

 693 

Cell clustering with scATAC-seq data. In the scATAC-seq clustering analysis, as a naïve 694 

method, we performed PCA dimensionality reduction on the accessible regions by individual 695 

cells matrix of normalized read count and kept 60 PCs, followed by k-means clustering. The 696 

number of clusters (k) in k-means clustering was determined as the actual number of cell types 697 

in the dataset. To evaluate the performance of cell clustering, we compared the clustering 698 

results with the gold standard using adjusted rand index (ARI)39. We further repeated the k-699 

means clustering with 100 different random seeds to ensure the stability of the clustering results 700 

and the average ARI of the 100 runs was used to estimate the clustering accuracy. We also 701 

applied several published methods, including APEC40, Seurat41, scran42, and snapATAC43 with 702 

default parameters, to the same dataset. We selected the top 60 dimensions for those methods 703 

at the dimensional reduction step (PCA, Seurat, scran and snapATAC) to keep more variance 704 

potentially introduced by intrinsic biases. We used the ArchR package to practice the Seurat 705 

and scran clustering methods. To explore the effect of intrinsic cleavage bias on scATAC-seq 706 

analysis, we selected different percentages (from 50% to 99%, with a 1% increment) of peaks 707 

with the lowest PBS (i.e., removing 50%-1% of peaks with the highest PBS) as input to perform 708 

cell clustering (Fig. 6a-f). We also randomly selected the same percentage of peaks as a control 709 

to estimate the relative rank of the clustering performance from using all peaks and using 710 

retained peaks. In detail, for each percentage from 50% to 99%, we randomly sampled peaks 711 

100 times and defined the relative rank as the number of ARIs from random samples that were 712 

less than the ARI from the same percentage of retained peaks or all peaks. The relative ranks 713 

for different percentages from 50% to 99% are summarized and plotted as boxplots in Fig. 6a-f.  714 

 715 
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SELMA single-cell peak bias correction model for scATAC-seq cell clustering. The goal of 716 

this model is to give a different weight to all scATAC-seq peaks based on the PBS, so that 717 

peaks heavily affected by intrinsic biases have a lower weight while peaks less affected by 718 

intrinsic biases have a higher weight when they are used to perform cell clustering analysis. To 719 

estimate the relative contribution of each peak in a scATAC-seq dataset to the clustering result, 720 

we conducted an analysis of variance (ANOVA) for each identified peak, using the scATAC-seq 721 

read count/signal across different cells as the variable and the known cell-type labels as the 722 

target group labels. The F score from the ANOVA output was used to quantify the contribution 723 

of each peak to the clustering. Within each percentile of peaks based on their PBS ranks, the 724 

median F score of the peaks with ANOVA p-value < 0.05 was used to represent the relative 725 

level of contribution for this percentile of peaks (Fig. S11a-f). Based on the contribution patterns 726 

of the scATAC-seq samples tested, a standard beta distribution was used to model the 727 

percentile weight function: 728 

 729 

where x = 0, 0.01, 0.02, ..., 0.99 is the percentile of the peak ranked by PBS; α, β > 1 are the 730 

shape parameters; B(α, β) is the beta function: 731 

 732 

where Γ() is the gamma function. The beta distribution was chosen because its probability 733 

density function has the following properties: 1) constraints: W(0) = 0 and W(1) = 0; 2) 734 

normalization:  ; 3) asymmetry with mode at . Based on the 735 

relative contribution pattern in Fig. S11a-f, the parameters were empirically determined as α = 2, 736 

β = 3. Therefore, the weight function becomes 737 

 738 

W (x) =
xα−1(1− x)β−1

B(α, β)

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

1

0

W (x)dx = 1 x =
α− 1

α + β − 2

W (x) = 12x(1− x)2
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After the read count in each peak in each cell was weighted using this weight function, the 739 

whole read count matrix was scaled back to keep the total read count in the matrix unchanged 740 

from the raw data matrix. The adjusted read count matrix then underwent the clustering 741 

analysis. For the single-cell analysis tools that require raw scATAC-seq reads as input, including 742 

Scran and Seurat in the ArchR package and snapATAC, the adjusted number of reads for each 743 

peak in each cell was synthesized from each peak region and assigned to the cell. 744 

 745 

Code and data availability 746 

The SELMA package is available at https://github.com/zang-lab/SELMA. User instructions and 747 

example data files can be found in the README document. Essential annotation data, analysis 748 

results, and scripts are also available in the repository. The mouse gut tube scATAC-seq 749 

dataset has been deposited in the Gene Expression Omnibus (GEO) with accession number 750 

GSE168373. The 10x Single Cell Multiome datasets are downloaded from 10X Genomics 751 

website(https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-752 

5-k-1-standard-2-0-0, https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-753 

donor-no-cell-sorting-10-k-1-standard-2-0-0, 754 

https://www.10xgenomics.com/resources/datasets/fresh-frozen-lymph-node-with-b-cell-755 

lymphoma-14-k-sorted-nuclei-1-standard-2-0-0). Publicly available data used in this study can 756 

be found in the GEO and the ENCODE project. Accession numbers for all the GEO and 757 

ENCODE data used in the study are listed in Table S1.  758 
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Figure 1 

 
Figure 1. SELMA framework for cleavage bias estimation. (a) Schematic of a naïve k-mer model for cleavage bias 
estimation. (b) Simplex encoding model. The coordinates of the 4 tetrahedral vertices of the cube encode the 4 
nucleotides. Each dinucleotide is encoded as the outer product of the 2 mononucleotides. p represents the number of 
parameters in a k-mer simplex encoding model. (c) SELMA uses k-mer simplex encoding followed by a linear regression 
for k-mer cleavage bias estimation. (d-k) Comparison between the naïve k-mer model (d,f,h,j) and SELMA (e,g,I,k) on k-
mer cleavage bias scores estimated from DNase-seq data (d,e,h,i) and ATAC-seq data (f,g,j,k). Each dot in a scatter plot 
represents an 8-mer, with its estimated bias score from different datasets represented in the x- and y-axes. Chromatin 
DNA (d-g) and naked DNA (h-k) from different human cell lines (d-i) or different species (j,k) were compared as labeled. 
R represents the Pearson correlation coefficient. (l-o) Intrinsic cleavage bias estimation accuracy measured by correlation 
between genome-wide observed (OBS) and bias-expected (EXP) cleavages with different k-mers. A higher Pearson 
correlation coefficient (R) indicates a better prediction of the observed cleavage profile using the estimated biases.  
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Figure 2 

 
 
Figure 2. SELMA consideration of dimeric Tn5 cleavages for ATAC-seq. (a) Schematic of SELMA consideration of 
dimeric Tn5 cleavages. (b,c) Cross-correlation between 5’ cleavages and 3’ cleavages across genome-wide accessible 
chromatin regions in the human GM12878 cell line from ATAC-seq (b) and DNase-seq (c) experiments. The x-axis 
represents the shift distance (in bp) between 5’ and 3’ cleavages. (d-i) Comparison of ATAC-seq intrinsic cleavage bias 
estimation accuracy measured by Pearson correlation coefficients (R) between genome-wide observed (OBS) and bias-
expected (EXP) cleavages for human GM12878 (d) and K562 (e) cell lines, as well as several modified Tn5-based assays 
(f-i). Different bars represent different estimation approaches: gray for considering the 10-mer at the observed cut only (5' 
only); orange for SELMA; and blue for several published approaches. Modified Tn5-based assays include (f) THS-seq 
with standard Tn5; (g) THS-seq with mutated Tn5; (h) fast-ATAC-seq; and (i) omni-ATAC-seq.
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Figure 3 

 
 
Figure 3. SELMA bias estimation using mtDNA reads. (a) Conventional approach to intrinsic cleavage bias estimation, 
in which a naked DNA sample is required for bias estimation, and mtDNA reads from the chromatin DNA ATAC-seq 
experiment are discarded. (b) SELMA approach of intrinsic cleavage bias estimation using mtDNA reads. Chromatin 
reads and mtDNA reads from the same ATAC-seq dataset were separated for Tn5 cleavage profiling and bias estimation 
with SELMA, respectively. (c-d) Scatter plots demonstrating the robustness of 10-mer bias scores estimated from mtDNA 
(mtDNA reads from chromatin ATAC-seq data, x-axis) and genomic DNA (reads from naked DNA ATAC-seq data, y-axis), 
comparing the naïve k-mer model (c) and SELMA (d). SELMA shows a more robust estimation using mtDNA reads with 
higher correlation than the naïve k-mer model. (e) Comparison of the correlation coefficients between biases estimated 
from mtDNA reads and from naked DNA with different mtDNA read counts. 
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Figure 4 

 
 
Figure 4. TF binding inference on DNaseI footprint regions is affected by intrinsic cleavage biases and improved 
by SELMA. (a,b) Heatmaps of DNaseI cleavage patterns in the GM12878 cell line (a) and SELMA-estimated bias scores 
(b) around ENCODE DNaseI consensus footprint regions. 5’ and 3’ patterns were plotted separately. Footprint regions 
were consistently ranked by footprint length, and signals for every 1000 regions with similar lengths were averaged as one 
row in the heatmap. (c-h) Aggregate plots of DNaseI cleavage patterns (c,e,g) and SELMA-estimated bias scores (d,f,h) 
at all ENCODE DNaseI consensus footprint regions (c,d), footprint regions overlapping with TF binding hotspots (e,f), and 
footprint regions overlapping with TF binding deserts (g,h). DNaseI cleavages are from GM12878 for (c & e) and merged 
from GM12878, K562 and ENCODE tissues (g). Dashed lines represent estimated bias spikes in the footprint regions. (i) 
SELMA-estimated footprint bias scores (FBS) for different groups of footprint regions. P-values were calculated by the 
Wilcoxon signed-rank test. The centerline, bounds of box, top line and bottom line represent the median, 25th to 75th 
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percentile range, 25th percentile - 1.5*interquartile range (IQR) and 75th percentile + 1.5*IQR, respectively. (j) Difference of 
performance rank scores for transcription factor binding inference from DNaseI footprint using various methods for the 
human GM12878 cell line. Boxplots with different colors represent different approaches as indicated in the legends. 
Different sets of boxplots represent footprint scores calculated by different published methods as labeled. P-values were 
calculated by the one-sided Wilcoxon signed-rank test. (k) Scatter plot showing the heterogeneous effect of intrinsic 
cleavage biases on different TF motifs. Each data point represents motif sites for one TF in one cell type. Fractions of the 
TF-bound motif sites overlapping with high-FBS footprint regions and with low-FBS footprint regions are plotted on the x- 
and y-axes, respectively. More motifs located above the diagonal line indicate that more TFs are more likely to bind at 
low-FBS sites than at high-FBS sites. The p-value was calculated by one-tailed t-test comparing the distribution of log 
likelihood ratios (y-axis/x-axis) to the standard normal distribution. 
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Figure 5 
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Figure 5. Intrinsic cleavage biases affect single-cell ATAC-seq data analysis. Visualization of intrinsic cleavage bias 
effect in different cell clusters derived from scATAC-seq data for different biological samples and different experimental 
platforms: human hematopoietic cells (a-c), human cell lines (d-f), mouse primitive gut tube (g-i), and 10x Single Cell 
Multiome data for mouse embryonic brain (j-l), human peripheral blood mononuclear cells (PBMC) (m-o), and human 
lymph node (p-r).  (a,d,g,j,m,p) UMAP visualization where cells are colored by cell type labels/clusters. (b,e,h,k,n,q) 
Same UMAP visualization but cells are colored by cell bias score (CBS). (c,f,i,l,o,r) CBS distributions of cells from 
different cell types/batches/clusters. Boxes are colored by cell clusters using the same color palette as the first column. 
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Figure 6 
 

 
 
Figure 6. SELMA bias correction model improves single-cell ATAC-seq cell clustering. (a-f) Comparisons of cell 
clustering accuracy before and after considering the peak bias score (PBS) on scATAC-seq data for human hematopoietic 
cells (a), human cell lines (b), mouse primitive gut tube (c), and 10x Single Cell Multiome data for mouse embryonic brain 
(d), human PBMC (e), and human lymph node (f). K-means clustering was performed after PCA dimensionality reduction. 
Blue, using all ATAC-seq peaks; orange, after removing 1%-50% of peaks with the highest peak bias score (PBS). For 
each percentage of peaks retained from 50% to 99% with a 1% increment, 100 randomly sampled subsets of peaks were 
used as the background for determining the relative ranks of all peaks or retained peaks. The relative ranks of the 
adjusted Rand index (ARI), defined as the rank relative to the 100 randomly sampled sub-datasets, for the 50 cases from 
50% to 99%, were plotted. (g) Schematic of SELMA single-cell peak bias correction model. Peaks are weighted and 
adjusted based on PBS percentile using an empirically determined weight function. (h-m) Comparisons of the accuracy 
(measured by ARI) of single cell clustering generated using different existing tools on scATAC-seq data with (orange) or 
without (blue) SELMA single-cell peak bias correction. Each panel represents the result for an scATAC-seq sample from a 
different biological system or experimental platform: human hematopoietic cells (h), human cell lines (i), mouse gut tube 
(j), mouse embryonic brain (k), human PBMC (l) and human lymph node (m). Each dot in each panel represents the ARI 
for a different method labeled on the x-axis. Blue, clustering with uncorrected raw data; orange, clustering with SELMA-
corrected data. 
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 1 

Supplementary Figure S1 

 
Supplementary Figure S1. Improvement of bias estimation of the SELMA model. (a) Comparison of intrinsic 
cleavage bias estimated in different data types. Each dot in a scatter plot represents an 8-mer, with its estimated 
bias score from K562 and GM12878 cell lines represented in x and y axes, respectively. Different plots 
represent bias estimated using data from different experiments (ATAC-seq, DNase-seq, Faire-seq, and ChIP-
seq). R represents the Pearson correlation coefficient. (b) Comparison of Tn5 intrinsic cleavage bias estimated 
from different groups of fragments. The top panel was for the 8-mer bias estimated from the naïve k-mer model, 
and the bottom panel was from the SELMA. The fragments were separated based on the region’s chromatin 
accessibility, illustrated in the schematic on the right, and labeled at the axes. Fragments located in the top 20% 
chromatin accessible regions with the highest accessibility were assigned as group1 (G1). Then fragments 
located in the top 20%~40%, 40%~60%, 60%~80%, and bottom 20% accessible regions were assigned as G2, 
G3, G4, and G5, respectively. (c) Similar to (b) but for DNase-seq bias score. (d, e) Barplots compared the 
Pearson correlation coefficients (R) calculated in (b, c), respectively. The blue bars were for the naïve k-mer 
model, and the red bars were for the SELMA model. 
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Supplementary Figure S2 
 

 
 
Supplementary Figure S2. Intrinsic cleavage bias estimation accuracy with different k-mer. Intrinsic cleavage 
bias estimation accuracy is measured by the correlation between genome-wide observed (OBS) and bias-
expected (EXP) cleavages with different k-mers for ENCODE DNase-seq data (a) and ENCODE ATAC-seq 
data (b), respectively. Different rows represent data from different tissues. The Pearson correlation coefficients 
(R) in the same cell type (each row) were z-normalized and plotted as heat to compare the relative performance 
of different SELMA k-mer models. The higher the normalized score, the better performance the model had. 
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Supplementary Figure S3 

 
Supplementary Figure S3. SELMA consideration of dimeric Tn5 cleavages for ATAC-seq. (a) The average 
profile of the ATAC-seq cleavage pattern around the CTCF motif center. +/- strand reads were separated and 
plotted in red and blue lines, respectively. The left panel is for unmodified observed Tn5 cleavage. In the right 
panel, the - strand cleavage pattern was shifted 9bp towards upstream. (b) similar to (a) but for the NRF1 motif. 
A perfect match of + and – strand profiles can be observed for the 9bp shift. (c-d) Comparison of DNase-seq 
intrinsic cleavage bias estimation accuracy measured by Pearson correlation coefficient (R) between genome-
wide observed and bias-expected cleavages for human GM12878 (c) and K562 (d) cell lines. Different bars 
represent different estimation approaches: grey for considering the 10-mer at the observed cut only (5' only); 
orange for SELMA. The published approaches (blue bars in Fig. 2d-e) were not shown for DNase-seq since 
they were specifically designed for ATAC-seq. (e-j) Pearson correlation coefficient between genome-wide 
observed and bias-expected cleavages for ENCODE ATAC-seq data from different tissues. (k-n) Comparison 
between bias scores estimated from ATAC-seq and modified Tn5 based techniques THS-seq with standard Tn5 
(k); THS-seq with mutated Tn5 (i); fast-ATAC-seq (m); and omni-ATAC-seq (n). 
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Supplementary Figure S4 

 
Supplementary Figure S4. SELMA bias estimation using mtDNA reads. (a) Bar plots demonstrating the 
Pearson correlation coefficients (y-axis) between 10-mer bias scores estimated from mtDNA (mtDNA reads from 
chromatin ATAC-seq data generated from ENCODE project in different cell types) and genomic DNA (reads 
from naked DNA ATAC-seq data), comparing the naïve k-mer model (blue bars) and SELMA (red bars). (b) 
Similar to (a) but for ENCODE DNase-seq data in the same cell types. (c) Scatter plots demonstrating the 
consistence of 10-mer bias scores estimated from mtDNA (with different fragments count, x-axis) and genomic 
DNA (reads from naked DNA ATAC-seq data, y-axis). The Pearson correlation coefficients were labeled in the 
top left corner and used in Fig. 3e.  
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 5 

Supplementary Figure S5 

 
Supplementary Figure S5. TF binding inference on DNaseI footprint regions is affected by intrinsic cleavage 
biases and improved by SELMA. (a-b) Heatmaps of DNaseI cleavage patterns in the K562 cell line. (c) 
Aggregate plots of DNase-seq cleavage patterns at ENCODE DNaseI footprint regions with different length 
categories (15, 20, 25, 30, and 35bp). The dotted lines represented the boundary of the footprint regions. (d) 
similar to (c) but for SELMA-estimated bias scores. (e) TF binding hotspots and TF binding deserts were defined 
based on the number of human TF ChIP-seq samples that have peaks overlapping with the footprint regions. 
The footprint regions overlapping with peaks from >= 3000 ChIP-seq samples were defined as TF binding 
hotspots, while the footprint regions that do not overlap with any peak from any TF ChIP-seq sample nor any 
motif sites were defined as TF binding deserts.  
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 6 

Supplementary Figure S6 
 

 
 
Supplementary Figure S6. Aggregate plots of DNaseI cleavage patterns of all ENCODE DNaseI consensus 
footprint regions (a) and footprint regions overlapping with TF binding hotspots (b). Different columns represent 
ENCODE DNaseI-seq data from K562 cell lines and tissues.  
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Supplementary Figure S7 
 

 
 
Supplementary Figure S7. Performance rank scores for transcription factor binding prediction from DNaseI 
footprint using various methods for the human cell lines. (a) Number of transcription factors (TFs) covered vs. 
Number of cell lines included in the analysis. Cell lines are ranked by the number of ChIP-seq samples 
available. (b-h) Difference of performance rank scores for transcription factor binding inference from DNaseI 
footprint using various methods for DNaseI-seq data from different cell lines K562 (b), GM12878 (c), HepG2 (d), 
A549 (e), H1 (f), HeLaS3 (g), and MCF7 (h). Boxplots with different colors represent different approaches as 
indicated in the legends. Different sets of boxplots represent footprint scores calculated by different published 
methods as labeled. P-values were calculated by the one-sided Wilcoxon signed-rank test. The detailed list of 
rank scores can be found in Supplementary Table 2.  
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Supplementary Figure S8 
 

 
Supplementary Figure S8. Rank score changes for all TFs in each cell line. Barplots showed the delta relative 
rank of TFs from data used in Fig. 4j and Supplementary Fig. S7. Different panels were for TF ChIP-seq data in 
different cell lines: K562 (a), GM12878 (b), HepG2 (c), A549 (d), H1 (e), HeLaS3 (f), and MCF7 (g). The full list 
can be found in Supplementary Table 2. 
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Supplementary Figure S9 
 

 
 
Supplementary Figure S9. Scatter plots comparing the SELMA bias estimated from bulk naked DNA ATAC-
seq data (y-axis) and from different scATAC-seq datasets (x-axis) for human hematopoietic cells (a), human cell 
lines (b), mouse primitive gut tube (c), and 10x Single Cell Multiome data for mouse embryonic brain (d), human 
PBMC (e), and human lymph node (f). The bias scores for (a-c) were calculated using mtDNA reads. The bias 
scores for (d-f) were calculated using chromatin reads because the mtDNA reads were automatically excluded 
in the fragment data files preprocessed by the 10x Cell Ranger ARC pipeline. R represents the Pearson 
correlation coefficient.  
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Supplementary Figure S10 
 

 
 
Supplementary Figure S10. Improvement of cell clustering accuracy after excluding scATAC-seq peaks with 
high PBS. Y-axis represents the percentage changes of the adjusted rand index (ARI) between K-means 
clustering results and the ground truth cell labels. X-axis represents the percent of peaks retained for clustering 
(50%~99%) after the peaks with highest PBS were removed. Different panels represent data from different 
biological systems: human hematopoietic cells (a), human cell lines (b), mouse gut tubes (c), mouse embryonic 
brain (d), human PBMC (e), and human lymph node (f). 
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Supplementary Figure S11 
 

 
 
Supplementary Figure S11. SELMA single-cell bias correction model development. (a-f) ANOVA results for 
predicting cell type labels with the scATAC-seq signal. An F score was calculated for each peak to measure the 
importance of the peak to cell type classification. Peaks were then ranked by PBS score, and the median F 
score of the peaks in each PBS percentile plotted. Different panels represent data from different biological 
systems: human hematopoietic cells (a), human cell lines (b), mouse gut tubes (c), mouse embryonic brain (d), 
human PBMC (e), and human lymph node (f). (g) PBS percentile weight function used in the SELMA single cell 
bias correction model. 
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