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Abstract 30 

Background: Understanding the neurodegenerative mechanisms underlying cognitive 31 

declines in the general population may facilitate early detection of adverse health outcomes in 32 

late life. This study investigates biological pathways shared between brain morphometry, 33 

ageing, and cognitive ability. 34 

Methods: We develop Genomic Principal Components Analysis (genomic PCA) to 35 

model general dimensions of variance in brain morphometry within brain networks at the 36 

level of their underlying genetic architecture. With genomic PCA we extract genetic principal 37 

components (PCs) that index global dimensions of genetic variance across phenotypes 38 

(unlike ancestral PCs that index genetic similarity between participants). Genomic PCA is 39 

applied to genome-wide association data for 83 brain regions which we calculated in 36,778 40 

participants of the UK Biobank cohort. Using linkage disequilibrium score regression, we 41 

estimate genetic overlap between brain networks and indices of cognitive ability and brain 42 

ageing. 43 

Results: A genomic principal component (PC) representing brain-wide dimensions of 44 

shared genetic architecture accounted for 40% of the genetic variance across 83 individual 45 

brain regions. Genomic PCs corresponding to canonical brain networks accounted for 47-46 

65% of the genetic variance in the corresponding brain regions. These genomic PCs were 47 

negatively associated with brain age (rg = -0.34). Loadings of individual brain regions on the 48 

whole-brain genomic PC corresponded to sensitivity of a corresponding region to age (r = -49 

0.27). We identified positive genetic associations between genomic PCs of brain 50 

morphometry and general cognitive ability (rg = 0.17-0.21).  51 

Conclusion: These results demonstrate substantial shared genetic etiology between 52 

connectome-wide dimensions of brain morphometry, ageing, and cognitive ability, which 53 
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will help guide investigations into risk factors and potential interventions of ageing-related 54 

cognitive decline. 55 

 56 

  57 
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1. Introduction  58 

Progressive ageing-related neurodegenerative processes occurring across micro to 59 

macro scales of the human brain are well-documented within otherwise healthy adults, and 60 

are linked to ageing-related declines in multiple domains of cognitive function [1-3]. 61 

Understanding the biological processes underlying these links is paramount for identifying 62 

mechanisms of cognitive ageing that can ultimately be targeted by intervention. The human 63 

brain is a complex network of interconnected regions (the ‘connectome’) [4, 5], components 64 

of which are interrelated with one another [6, 7], age unevenly over time [8], and may be 65 

differentially relevant to adult cognitive ageing [1-3]. Whereas considerable attention has 66 

been devoted separately to the genetic architecture of human brain morphometry [9-11] and 67 

the genetic architecture of adult cognitive ability [12], relatively less work has been devoted 68 

to scaffolding investigations of the genetic architecture of human brain morphometry onto the 69 

well-established network organization of the brain (although see [13] for a recent exception), 70 

or to investigating how genetic links between components of human brain networks relate to 71 

ageing and cognition. Such investigations have the potential to provide insights into the 72 

etiology of neurocognitive ageing.  73 

Specifically, our genome-wide study builds on a previous study that investigated 74 

dimensions of brain morphometric variation (i.e., principal components underlying brain 75 

volumetric measures) across the human connectome in a large scale cohort (N = 8,185) [3]. 76 

This phenotypic study implicated well-studied macroscopic brain networks in cognitive 77 

ageing, whereby connectome aging varied alongside those dimensions of morphometric 78 

variation. Brain volumes in the central executive network tended to be most sensitive to age 79 

(i.e., cross-sectionally correlated with age) and, albeit its small size, the central executive was 80 

highlighted to play a disproportionate role in late-life cognitive ability. 81 
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Here, we hypothesise that morphometric network organisation, as described by 82 

Madole et al. [3], corresponds to morphometric variation captured by genome-wide data (pre-83 

registration: https://osf.io/7n4qj). We suggest that a dissimilar organisation of phenotypic and 84 

genetic brain architecture would contradict the neurobiological validity of canonical brain 85 

networks (a similar organisation would be consistent with a measurable genetic foundation of 86 

brain networks). This hypothesis relies on evidence that patterns of brain morphometry and 87 

its organisation are highly heritable [10, 11, 14, 15]. Cheverud originally speculated that “If 88 

genetically and environmentally based phenotypic variations are produced by similar 89 

disruptions of developmental pathways, genetic and environmental correlations should be 90 

similar.” [16]. Strong correspondence between phenotypic and genetic correlations was 91 

recently demonstrated for a wide range of morphometric human traits (for example, height 92 

and body mass index) in the UK Biobank cohort [17], and we therefore expect that 93 

phenotypic brain network structures should mirror the structure of genetic correlations within 94 

the same networks. 95 

We consider the same ‘canonical’ brain networks as Madole et al. [3], using common, 96 

but not indisputable, definitions of the exact regions comprising them [5, 18, 19]. These brain 97 

networks have been characterised embracing a whole-brain perspective, considering existing 98 

literature describing synchronised (i.e., correlated) regional activity in functional MRI data 99 

[3], in addition to converging evidence from other modalities (i.e., structural MRI and lesion-100 

based mapping [7, 20, 21]). Among the most reported networks are the central executive, 101 

default mode, salience, and multiple demand networks. Specific network characterisations 102 

considered in this study are displayed in Fig. 1 and listed in STable 2.  103 

Brain networks are theorised to integrate information across the brain and, 104 

collectively, to give rise to cognitive functions. The central executive network is thought to 105 

underpin higher-level cognitive functions, including attention and working memory processes 106 
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[21, 22]; whereas the default mode network is associated with internally directed and abstract 107 

thought [23]. The salience network is thought to detect salient sensory cues [24], helping to 108 

integrate executive and default functions [22, 25]. Mental processes that organise multiple 109 

cognitive requirements into a series of successive cognitive tasks are thought to be associated 110 

with the multiple demand network [26].  111 

Here, we use genome-wide association data summarising genetic correlates of grey 112 

matter volumes to model morphometric network structures. We focus on brain volumes 113 

because they are highly heritable [14], and are measured independent of mental processes 114 

during MRI scanning (compared with functional MRI). Grey matter volume was 115 

demonstrated to be a strong and robust predictor of general cognitive ability [27, 28], it 116 

reflects atrophy; an important indicator of ageing and health outcomes [29], and, as discussed 117 

above, regional brain volumes have been shown to capture dimensions of morphometric 118 

variation implicated in aging and cognitive ability [3]. 119 

In order to model macroscopic brain networks using genome-wide association data, in 120 

this pre-registered study (https://osf.io/7n4qj), we present our novel statistical genetics 121 

method ‘genomic PCA’ (genomic Principal Component Analysis). With genomic PCA we 122 

extract genetic principal components (PCs) that index global dimensions of genetic variance 123 

across phenotypes (unlike ancestral PCs that index genetic similarity between participants), 124 

the human structural connectome. We mirror previous phenotypic analyses to ensure 125 

comparability with results in Madole et al. [3], that is, we estimate genetic associations 126 

between genetic PCs across brain network structures and both cognitive ability and ‘brain 127 

age’ [30]. Characterising genetic links between general dimensions of brain organisation, 128 

aging and cognitive ability will help guide investigations into risk factors, biological 129 

mechanisms, and potential interventions of ageing-related cognitive decline.  130 
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2. Methods 131 

The considered UK Biobank sample consisted of 36,778 participants (54% females) 132 

with available neuroimaging data and had an average age of 63.3 years at neuroimaging visit 133 

(range from 40.0 to 81.8 years). Our methodological approach followed four major analysis 134 

steps as displayed in Fig. 2. First, we calculated 83 genome-wide association study (GWAS) 135 

summary statistics for 83 regional volumes that served as input data. Polygenic effects were 136 

fitted in a linear mixed model using REGENIE [31]. Second, we calculated genetic 137 

correlation matrices indicating genetic overlap between regional brain volumes using the 138 

GenomicSEM software [32]. Genetic correlations formed the basis for subsequent analyses; 139 

they are contrasted with phenotypic correlations in Section 3.1. Third, we extracted the first 140 

principal component (PC) from genetic correlation matrices using principal components 141 

analysis (PCA). The genetic PCs were calculated for the whole brain, as well as canonical 142 

brain networks; they represent general dimensions of shared genetic morphometry between 143 

regions included in either the whole brain, or the brain networks (Section 3.2). Based on 144 

Pearson’s correlations and Tucker congruence coefficient, we compared genetic correlation 145 

structures with phenotypic correlation structures between the 83 regional volumes (Section 146 

3.3). We also tested whether the relative ordering of phenotypic and genetic PC loadings 147 

correlated with indices of a regions sensitivity to age (i.e. cross-sectional volume-age 148 

correlations; Section 3.4). Finally, we presented a novel method to summarise shared 149 

morphometric variance within brain networks on a genome-wide level in sets of univariate 150 

summary statistics (i.e., genetic PCs underlying multiple brain volumes; see Supplementary 151 

Methods). These univariate summary statistics can be viewed as a summary-based method of 152 

computing GWAS summary statistics that would be obtained from a GWAS on individuals’ 153 

scores on the underlying genetic PCs. We used those summary statistics to represent general 154 

dimensions of brain organisation across the whole brain and nine canonical networks at the 155 
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level of their underlying genetic architecture. We then quantified genetic correlations 156 

between brain network structures and both general cognitive ability [32] (Section 3.5) and 157 

brain age (Section 3.6). Detailed descriptions of the UK Biobank data used in this study and 158 

the study design can be found in the Supplementary Methods. Our analysis code is displayed 159 

at https://annafurtjes.github.io/Genetic_networks_project/.   160 

  161 
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3. Results 162 

3.1 Genetic correlations between brain-wide volumes recapitulated phenotypic 163 

correlations 164 

On a phenotypic level of analysis, correlations between the 83 brain volumes were 165 

obtained using Pearson’s correlations from volumetric phenotypes that were residualised for 166 

age (mean = 63.3, range = 40.0-81.8 years) and sex (54% females). On a genetic level of 167 

analysis, we calculated GWAS summary statistics to get genome-wide associations (N = 168 

36,778) for 83 cortical and subcortical grey-matter volumes (Fig. 2.1). SNP-heritability 169 

estimates ranged between 7% (SE = 0.07) for the frontal poles and 42% (SE = 0.04) for the 170 

brain stem (mean = 0.23, SD = 0.07; Fig. 3A).  171 

The GWAS summary statistics enabled the calculation of genetic correlations 172 

between 83 volumes through linkage disequilibrium score regression (LDSC) [33] (
��������

�
 = 173 

3403 between-region correlations; Fig. 2.2). All bilateral regions were almost perfectly 174 

correlated with the corresponding contralateral region. Between-region genetic correlations 175 

ranged from rg = -0.08 (SE = 0.09) between right frontal pole and left pallidum, to rg = 0.87 176 

(SE = 0.08) between left middle temporal and left inferior temporal (Fig. 3B, SFig. 1). 177 

Corresponding standard errors ranged between 0.01 and 0.03 (mean = 0.014; SD = 0.002). 178 

Genetic correlations within canonical networks are provided in SFig.s 2-10.  179 

A positive and large association (r = .84; b = 0.60; SE = 0.007, p < 2 x10-16, R2 = 180 

70%) was obtained between 3403 phenotypic and 3403 genetic correlations (Fig. 3&5A), 181 

indicating that the same regions, that had strongly correlated phenotypic volumes, were also 182 

genetically correlated. Phenotypic correlations were exclusively positive, as were 3,392 of 183 

3,403 genetic correlations; the 11 (0.32%) negative genetic correlations were close to zero 184 

(smallest rg -0.083; Fig.3).  185 
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3.2 PCs of shared genetic variance across the whole-brain and canonical networks  186 

Distributions of phenotypic PC loadings are in Fig. 4A (descriptive statistics for 187 

phenotypic shared morphometry in STable 3). On a genetic level of analysis, we extracted 188 

PCs from genetic correlation matrices. The first genetic whole-brain PC explained 40% of the 189 

genetic variance across 83 regional volumes - slightly larger than the 31% explained by the 190 

first phenotypic whole-brain PC. The second genetic whole-brain PC accounted for 6.7% of 191 

the total genetic variance; that is, 17% of the variance explained by the 1st genetic PC (SFig. 192 

20). We obtained loadings on this first genetic PC for each regional volume, quantifying how 193 

well an individual volume mapped onto the underlying dimension of shared morphometry 194 

across the whole brain. Their distribution ranged between 0.30 and 0.81 (mean = 0.62, SD = 195 

0.13, median = 0.65; Fig. 4, STable 3a).  196 

We used the same approach – extracting the first genetic PC and its genetic PC 197 

loadings – to examine nine predefined genetic brain-subnetworks (Fig. 1). Regions included 198 

in the networks are listed in STable 2. The percentage of genetic variance accounted for by 199 

the first network-specific PCs ranged between 65% for the central executive network and 200 

47% for the temporo-amygdala-orbitofrontal network. While the central executive and the 201 

hippocampal-diencephalic networks had a narrow, unimodal distribution of PC loadings, the 202 

temporo-amygdala-orbitofrontal and cingulo-opercular networks had a wider, and bimodal 203 

distribution. That is, volumes included in the central executive network, for example, were 204 

more homogeneous and indexed more similar genetic variation, compared with the temporo-205 

amygdala-orbitofrontal network (Fig. 4). Overall, percentages of explained variances were 206 

larger for networks including fewer volumes, potentially because larger networks tend to be 207 

more heterogeneous. 208 

To test whether data-derived PCs explained more genetic variance than could be 209 

expected by chance, we present a version of Parallel Analysis which simulates PCs for 210 
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uncorrelated elements with matched genetic sampling variance (see Supplementary 211 

Methods). Parallel Analysis confirmed that genetic PCs of the whole brain and the nine 212 

canonical subnetworks explained substantially more variance than expected by chance (Scree 213 

Plots SFig.s 11-20). Furthermore, we demonstrated that PCs extracted from 800 networks 214 

with randomly included brain volumes explained substantially less averaged variance than 215 

empirical canonical networks. Results from this simulation are presented in STable 5. In 216 

summary, these results illustrate that genetic dimensions of shared morphometry are well 217 

represented by the first underlying PC (i.e., accounts for the majority of genetic variance); 218 

that the dimensions differ between networks, and that they explain similar magnitudes of 219 

variance as their corresponding phenotypes.   220 

3.3 General dimensions of phenotypic and genetic shared morphometry were similarly 221 

organised  222 

To quantify how closely patterns of shared variance between phenotypic and genetic 223 

brain morphometry resemble each other, we calculated a linear regression between sets of 83 224 

phenotypic and 83 genetic PC loadings. PC loadings indicate relative magnitudes of brain 225 

regions’ loadings on either phenotypic or genetic dimensions of shared morphometry, and 226 

serve as an index of how well a volume represents trends across the brain (or the network). 227 

The association between phenotypic PC loadings and genetic PC loadings was large and 228 

significant (b = 0.65, SE = 0.06, p = 5.07 x10-17, R2 = 58%), indicating that an increase in one 229 

unit in the genetic PC loadings is associated with an increase of .65 units in the phenotypic 230 

PC loadings (intercept = 0.15). This approach considers ordering relative to the mean.  231 

The Tucker congruence coefficient was used to index the degree of similarity of 232 

genetic and phenotypic PC loadings, taking into account both their relative ordering and their 233 

absolute magnitudes [34]. The Tucker coefficient revealed very high congruence in the 234 

deviation from zero between phenotypic and genetic PC loadings for the 83 volumes (Tucker 235 
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coefficient = 0.99). These results illustrate a close correspondence and an equivalent 236 

organisation of phenotypic and genetic dimensions of shared morphometry; a finding that 237 

aligns with Cheverud’s Conjecture (Section 4.2).  238 

3.4 Genetic dimensions of shared morphometry were associated with age sensitivity  239 

 Previous work demonstrated an association between phenotypic dimensions of shared 240 

morphometry across the whole brain, represented by phenotypic PC loadings, and indices of 241 

age sensitivity [3]. Age sensitivity is approximated by a correlation of a regional brain 242 

volume with age across the sample, which is typically negative in adult populations. Here, we 243 

replicated this association between phenotypic shared morphometry (i.e., phenotypic PC 244 

loadings) and age sensitivity (r = -0.43, p = 4.4 x10-5; Fig. 5c), and we found a significant, 245 

but smaller association for genetic PC loadings (r = -0.27, p = 0.012; Fig. 5d). This 246 

demonstrates that the more the genetic variation of a brain volume resembles general 247 

morphometric trends across the brain (larger genetic PC loading), the stronger this volume is 248 

negatively correlated with age. Note that these results emerged even though PC loadings were 249 

extracted from brain volumes residualised for age and were nevertheless associated with age 250 

sensitivity. In summary, these results show that phenotypic PC loadings and genetic PC 251 

loadings both display associations with age sensitivity, as indexed by cross-sectional age-252 

volume correlations (Section 4.3). 253 

3.5 General dimensions of shared morphometry were genetically correlated with 254 

general cognitive ability 255 

To quantify genetic correlations between general dimensions of network morphometry and 256 

general cognitive ability, we indexed shared genetic variance across brain networks, by 257 

extracting underlying genome-wide PCs. Genome-wide PCs were calculated by summarising 258 

per-SNP effects from multiple brain volume GWAS summary statistics, weighted by volume- 259 

and network-specific PC loadings (novel method presented in Fig. 2.4). Using GenomicSEM 260 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   14 
 

software [32], we calculated genetic correlations between brain networks and seven cognitive 261 

traits [32] (SFig. 21). The cognitive traits mostly had high loadings on a genetic general 262 

cognitive ability factor (median = 0.81, range = 0.30-0.95); the Reaction Time task had the 263 

lowest loading on the factor (SFig. 22). Strong genetic overlap between brain networks 264 

indicated that they indexed very similar polygenic signal (rg between networks = 0.63-0.97). 265 

All networks were significantly genetically associated with the general cognitive ability 266 

factor; correlation magnitudes across all networks ranged between rg = 0.17-0.21 (Table 1). 267 

According to commonly-used rules of thumb from Hu and Bentler [35](CFI > 0.95, RMSEA 268 

< 0.08), all models showed good model fit (STable 4).  269 

Based on phenotypic findings that have highlighted the importance of the central 270 

executive network to general cognitive function [3], we hypothesised to find a stronger 271 

genetic association between general cognitive ability and the central executive network 272 

relative to other subnetworks (see pre-registered plan https://osf.io/7n4qj). There was no 273 

evidence for significant differences in total correlation magnitudes between the central 274 

executive network and general cognitive ability compared with other brain networks, even 275 

after accounting for network sizes (see Methods; Fig. 23, STable 6). We found no significant 276 

difference in model fit using GenomicSEM [32] comparing one model accounting for 277 

network size, and another model not accounting for it (∆ χ2 p-values ranged between .072 and 278 

1.00; STable 5).   279 

We also investigated whether genetic associations were driven by specific cognitive 280 

traits. We obtained non-significant Qtrait heterogeneity indices [36] for all brain networks, 281 

demonstrating that the general cognitive ability factor accounted well for the patterns of 282 

association between specific cognitive abilities and the brain networks (SFig. 24). The fact 283 

that the general cognitive ability factor accounted well for specific abilities, and that the 284 

specific abilities were mostly significantly associated with the networks, confirms that the 285 
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genetic associations between specific cognitive abilities and brain networks are likely general 286 

and act through a factor of general cognitive ability (Section 4.4). 287 

3.6 General dimensions of shared morphometry were genetically correlated with brain 288 

age  289 

Finally, we calculated a genetic correlation between shared morphometry across the 290 

whole brain and brain age. Brain age is based on individual-level predictions of how much 291 

older (or younger) an individual’s brain appears from structural MRI measures, relative to 292 

their chronological age [37] (see Supplementary Methods). We found a moderate negative 293 

genetic association (rg = -0.34; SE = 0.06) between general dimensions of shared 294 

morphometry across the whole-brain and brain age, suggesting that consistently larger 295 

volumes across the whole brain indicate younger brain age (Section 4.3). 296 

 297 

  298 
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4. Discussion  299 

This genetically-informed study provides fundamental insights into the complex 300 

biology shared between brain organisation, ageing, and cognitive ability. Using genomic 301 

PCA, we demonstrated that general morphometric dimensions underlying brain network 302 

structures genetically overlapped with general cognitive ability, brain age, and sensitivity of a 303 

corresponding region to age, albeit being distinctly measured demographic, psychological 304 

and neuroimaging concepts. Our findings highlight measurable biological pathways giving 305 

rise to genetic variation in brain morphometry which may influence pathways underlying 306 

cognitive ability and vulnerability towards ageing. Discovery of shared genetic etiology and 307 

its associated neurodegenerative mechanisms should inform efforts of detecting and 308 

mitigating cognitive decline in ageing societies [3, 38, 39]. 309 

4.1 Characteristics of genetic brain network organisation 310 

We demonstrated that genetic dimensions of shared morphometry underlying brain 311 

networks (i.e., first genetic PC) accounted for substantial systematic variance shared between 312 

brain volumes (e.g., 40% of genetic variance across the whole brain). These major genetic 313 

dimensions even explained more variance than their phenotypic analogue (31% of phenotypic 314 

variance across the whole brain). All genetic networks explained substantially more variance 315 

than was expected by chance. These findings provide a new line of evidence characterising 316 

and underpinning the existence of a genetic foundation for canonical brain networks that have 317 

featured prominently in neuroscientific studies [e.g., 7]. 318 

4.2 Analogous organisation of phenotypic and genetic dimensions of shared 319 

morphometry 320 

We discovered a high degree of similarity between phenotypic and genetic features of 321 

brain network organisation (e.g., rgenetic vs. phenotypic correlations = 0.84; Tucker congruence = 0.99; 322 

rphenotypic vs. genetic PC loadings = 0.76). According to Cheverud’s Conjecture [16], this indicates that 323 
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brain organisation, indexed through both phenotypic and genetic variance, seems to be 324 

underpinned by similar, overlapping developmental pathways. 325 

4.3 Genetic PCs as indices of brain regions’ age sensitivity and brain age 326 

As previously demonstrated, phenotypic PC loadings onto an underlying brain-wide 327 

dimension of shared morphometry resembled patterning of sensitivity of a corresponding 328 

region towards age (i.e., cross-sectional age-volume correlations) [3]. Here, we replicated this 329 

negative association, and showed that it also exists, albeit to a lesser degree, between age-330 

volume correlations and genetic instead of phenotypic PC loadings. This suggests that 331 

dimensions along which brain regions share morphometric variance (i.e., generally larger 332 

volumes across an individuals’ brain) are structured similarly to patterns by which brain 333 

regions display increased vulnerability to ageing. This finding needs to be triangulated by 334 

either future longitudinal studies, or cross-sectional studies modelling within-person atrophy 335 

by incorporating information on prior brain size (e.g., intracranial volume). 336 

One potential explanation for this association is that brain regions that are genetically 337 

predisposed to be large volumes, that share higher levels of morphometric variance with the 338 

rest of the brain, and that are more central to heavily-demanding cognitive processes, might 339 

come under more strenuous developmental and environmental pressure, perhaps through 340 

increased metabolic burden, compared with other, less central regions. Thus, the embedding 341 

of a brain volume within the whole brain’s organisation, and the genetic foundation of its 342 

positioning in the brain, could govern the functional stresses and other influences to which 343 

certain areas are exposed. This might alter disproportionately the speed at which some 344 

regions atrophy with advancing age.  345 

That dimensions of shared morphometry resemble patterns of age sensitivity is of 346 

interest because it emerged from shared variance among brain phenotypes that had been 347 
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residualised for age. Consequently, we suggest that patterns of brain structural ageing, a 348 

construct labelled brain age [29], might not capture how quickly an individual’s regional 349 

volumes decline compared to their peers, but rather, general healthy morphometry across the 350 

brain. Previous research showed that a younger-appearing brain, relative to the individual’s 351 

chronological age, predicted better physical fitness, better fluid intelligence, and longevity 352 

[29]. Healthy brain morphometry could vary between people for many non-age-related 353 

reasons, including genetic predisposition. Individuals that are genetically predisposed 354 

towards consistently larger brain volumes might have generally healthier, better-integrated 355 

brains, which could be more resilient towards harmful environmental factors.  356 

In line with this theory, we found that younger brain age was genetically associated 357 

with a major dimension of brain-wide shared morphometry as indexed by a genetic PC (rg = -358 

0.34; SE = 0.06). Thus, consistently larger volumes across the brain indicate a younger 359 

structural brain organisation, and this is the first study to quantify the degree to which these 360 

two concepts overlap . It motivates further investigation into the possibility that they are 361 

underpinned by the same general shared biological pathways.  362 

4.4 Genetic PCs as indices of cognitive performance 363 

This study demonstrated that cognitive ability is positively associated with genetic 364 

morphometric variance shared across the whole brain, and across smaller canonical networks. 365 

This was investigated by modelling a genetic factor of general cognitive ability using 366 

GenomicSEM [32]. We calculated the genetic correlation between general cognitive ability 367 

and genetic PCs across the whole brain, and nine canonical subnetworks. The whole brain 368 

and all nine networks were significantly genetically correlated with general cognitive ability 369 

at magnitudes between 0.17 and 0.21. This was the same level of genetic association with 370 

general cognitive ability that was previously found for broad measures of total brain volume 371 

[40]. There was no evidence to suggest that those magnitudes statistically differed between 372 
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the networks; probably because the polygenic signal indexed by the genetic PCs were highly 373 

similar between brain networks (mean rg between networks 0.83, SD = 0.09).  374 

This indicates that the genetic association between brain morphometry and cognitive 375 

ability was not driven by specific network configurations. Instead, genetic PCs indexed 376 

genetic variance relevant to larger brain volumes and a brain organisation that is 377 

advantageous for better cognitive performance. This was regardless of how many brain 378 

regions and from which regions the measure of shared genetic morphometry was extracted. 379 

This lack of differentiation between networks, in how strongly they correlate with cognitive 380 

ability, is in line with the suggestion that the total number of neurons in the mammalian 381 

cortex, which should at least partly correspond to its volume, is a major predictor of higher 382 

cognitive ability [41]. These findings suggest that highly shared brain morphometry between 383 

regions, and its genetic analogue, predict a generally bigger, and cognitively better-384 

functioning brain. 385 

Unexpectedly, genetic correlations between networks and cognitive ability did not 386 

suggest any prominent role of the central executive network (a previous phenotypic study [3] 387 

demonstrated that the central executive network was disproportionately predictive of 388 

cognitive abilities relative to its few included volumes). On a genetic level of analysis, we 389 

also expected a stronger correlation with cognitive ability for the central executive network 390 

compared with the other networks. The lack of differentiation between networks, taken 391 

together with previous phenotypic evidence for a disproportionately large association 392 

between the cognitive ability and the central executive, suggests nongenetic mechanisms to 393 

play important roles, perhaps developmental and environmental influences, through which 394 

the central executive network matures, and specialises for cognitive performance.  395 
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4.5 Limitations 396 

Analyses in this study come with limitations. Genetic correlations are representative 397 

for genetic associations across the entire genome, but do not give direct insight into specific 398 

genomic regions of sharing. As genetic correlations were calculated using LDSC, the 399 

limitations that apply to LDSC methodology are relevant to our study (discussion in 400 

Supplementary Note). We conclude based on heritability estimates, indexing signal-to-noise 401 

ratios in GWAS, that there was sufficient polygenic signal to warrant LDSC analysis 402 

(heritability ranged 7-42%). LDSC intercepts were perfectly associated with phenotypic 403 

correlations (R2 = 0.99), indicating that the analyses successfully separated confounding 404 

signal (including environmental factors) from the estimates of genetic correlations. 405 

This study was conducted in the UK Biobank sample, which is not fully 406 

representative of the general population: its participants are more wealthy, healthy and 407 

educated than average [42]. Cohort effects may affect the degree to which differential cortical 408 

regional susceptibility to ageing can be inferred from cross-sectional data. It remains to be 409 

tested whether our results can be extrapolated to socio-economically poorer subpopulations, 410 

or outside European ancestry. Results were also dependent on the choice of brain parcellation 411 

to divide the cortex into separate regions. 412 

4.6 Conclusion 413 

This genetically-informed study delivered evidence for shared etiology between 414 

factors that may contribute to neurodegenerative mechanisms underlying ageing-related 415 

cognitive decline. Using genome-wide data, we quantified a substantial overlap of genetic 416 

variation between distinct measures of ageing, cognitive ability, and brain morphometry, all 417 

of which are variables of interest due to their potential social and economic consequences for 418 

ageing societies. These fundamental insights will help guide investigations into risk factors, 419 

biological mechanisms, and potential interventions of ageing-related cognitive decline.  420 
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More specifically, we demonstrated that younger brain age genetically captured 421 

interindividual variation substantially related to brain network structures (i.e., consistently 422 

enlarged volumes). Because the network structures were modelled based on variance 423 

independent of age, this suggests that younger brain age could primarily be an index of brain 424 

health. Contrary to previous phenotypic findings, our genetic analyses did not provide 425 

evidence for a disproportionate role of the central executive network in cognitive 426 

performance. This motivates future investigations into environmental influences on the 427 

specialisation of brain networks. Altogether, our new genomic PCA methodology and the 428 

resulting insights of this study provide a basis for future investigations that aim to interrogate 429 

the genetic and environmental bases of ageing and cognitive decline. 430 

  431 
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Supplementary Methods  432 

Study Design 433 

UK Biobank data  434 

Magnetic resonance imaging (MRI) data was collected by the UK Biobank study with 435 

identical hardware and software in Manchester, Newcastle, and Reading. Brain volumetric 436 

phenotypes were pre-processed by an imaging-pipeline developed and executed on behalf of 437 

UK Biobank [43]. More information on T1 processing can be found in the UK Biobank 438 

online documentation [44]. Briefly, cortical surfaces were modelled using FreeSurfer, and 439 

volumes were extracted based on Desikan-Killiany surface templates [45]; subcortical areas 440 

were derived using FreeSurfer aeseg tools [46]. Volumetric measures (mm3) have been 441 

generated in each participant’s native space. We used 83 available imaging-derived 442 

phenotypes (IDPs) of cortical and subcortical grey-matter volumes in regions of interest 443 

spanning the whole brain (UK Biobank category 192 & 190; STable 1). We assume the IDPs 444 

to be normally-distributed. 445 

Phenotypic quality control 446 

Excluding participants who withdrew consent, we considered 41,776 participants with 447 

non-missing T1-weighted IDPs that had been processed in conjunction with T2-weighted 448 

FLAIR (UK Biobank field ID 26500) where available. Using both T1 and T2 measures 449 

ensures more precise cortical segmentation [47]. Extreme outliers outside of 4 standard 450 

deviations from the mean were excluded, which resulted in between 41,686 to 41,769 451 

available participants depending on the IDP. 381 participants were excluded as they self-452 

reported non-European ethnicity. Across the 83 brain volumes variables and the covariates, 453 

this phenotypic quality control resulted in 39,947 complete cases, for whom the following 454 

genetic quality control steps were performed.  455 

 456 
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Genetic quality control 457 

Out of the 39,947 UK Biobank participants, genetic data were available for 38,957 458 

participants. Genetic data was quality controlled on by UK Biobank and were downloaded 459 

from the full release [48]. We applied additional quality control as previously described in 460 

Coleman et al. [49] using PLINK2 [50]. 38,038 participants were of European ancestry 461 

according to 4-means clustering on the first two genetic principal components available 462 

through UK Biobank [51]. Of those participants, we removed 72 due to quality assurance 463 

provided by UK Biobank and 204 participants due to high rates of missingness (2% 464 

missingness). To obtain a sample of unrelated individuals, 956 participants were removed 465 

using the greedyRelated algorithm (KING r < 0.044 [52]). The algorithm is “greedy” because 466 

it maximises sample size; for example, it removes the child in a parent-child-trio. Finally, 28 467 

participants were removed because genetic sex did not align with self-reported sex, resulting 468 

in a total of 36,778 participants (STable 10). Genetic sex was identified based on measures of 469 

X-chromosome homozygosity (FX ; removal of participants with FX�<�0.9 for phenotypic 470 

males, FX�>�0.5 for phenotypic females). The final sample (N = 36,778) included 19,888 471 

females (54 %) and had an average age of 63.3 years at the neuroimaging visit (range from 472 

40.0 to 81.8 years). 473 

Out of 805,426 available directly genotyped variants, 104,771 were removed for high 474 

rates of missing genotype data (> 98%). 103,137 variants were removed due to a minimum 475 

allele frequency of 0.01, and 9,935 variants were removed as they failed the Hardy-Weinberg 476 

exact test (p-value = 10-8). After excluding 16,326 variants on the sex chromosomes and 477 

those with chromosome labels larger than 22, we obtained a final sample of 571,257 directly 478 

genotyped SNPs. Imputed genotype data was obtained by UK Biobank with reference to the 479 

Haplotype Reference Consortium [53], and we filtered them for a minor allele frequency of 480 

above 0.01 and an IMPUTE INFO metric of above 0.4. 481 
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Measures of cognitive performance  482 

UK Biobank collected cognitive performance data using assessment on a touchscreen 483 

computer. The following seven tests were implemented: Matrix Pattern Completion task for 484 

nonverbal reasoning, Memory – Pairs Matching Test for memory, Reaction Time for 485 

perceptual motor speed, Symbol Digit Substitution Task for information processing speed, 486 

Trail Making Test – B and Tower Rearranging Task for executive functioning, and Verbal 487 

Numerical Reasoning Test for verbal and numeric problem solving, or fluid intelligence. 488 

Despite the non-standard and unsupervised delivery of assessment, these cognitive tests 489 

demonstrate strong concurrent validity compared with standard reference tests (r = .83) and 490 

good test-retest reliability (Pearson r range for different cognitive tests = 0.4–0.78) [54]. 491 

In this study, we considered GWAS summary statistics of performance in these seven 492 

cognitive tests by de la Fuente, Davies [12] that were calculated with between 11,263 and 493 

331,679 participants for each test. We consider the HapMap 3 reference SNPs with the MHC 494 

regions removed.  495 

 496 

Statistical analysis 497 

GWAS summary statistics calculation. GWAS summary statistics for the 83 498 

regional brain volumes (continuous variables) were calculated using REGENIE [31], which 499 

fits polygenic effects in a linear mixed model using Ridge regression. The REGENIE pipeline 500 

is split into two steps: First, blocks of directly genotyped SNPs are used to fit a cross-501 

validated whole-genome regression model using Ridge regression, to determine the amount 502 

of phenotypic variance explained by genetic effects. Second, the association between the 503 

phenotype and imputed genetic variants is calculated conditional upon Ridge regression 504 
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predictions from the first step. Proximal contamination is circumvented by using a leave-one-505 

chromosome-out scheme.  506 

Covariates included in the GWAS analyses were age at neuroimaging visit, sex, 507 

genotyping batch, and 40 genetic principal components as provided by UK Biobank. We also 508 

derived the variables time of year, head position, and acquisition site, but excluded them 509 

from our set of GWAS covariates because they were not associated with the brain volumes at 510 

the pre-registered arbitrary cut-off of r ≤ .10 (STable 9), and therefore explained less than 1% 511 

of the phenotype variance. Note that, in contrast to other existing brain-volume GWAS in UK 512 

Biobank [e.g., 55], our analyses were conducted without controlling for brain size (or any 513 

other global brain measure such as total grey-matter volume or intracranial volume). Genetic 514 

correlations calculated relative to such global measures are known to attenuate genetic 515 

correlations among volumes, as well as with other traits such as cognitive abilities [15]. In the 516 

context of this study, we aim to model general dimensions of variance shared between brain 517 

volumes which will closely covary with brain size. Attenuated genetic correlations would 518 

hide major dimensions of variance across genetic brain networks, because much of the 519 

variance shared between volumes overlaps with variance indexed by brain size and would 520 

therefore not tag general dimensions of shared genetic variance between brain volumes. This 521 

variance is of interest because general intelligence yields global rather than a region-specific 522 

associations with grey matter volume [28]. Equally, aging affects the whole brain rather than 523 

individual regions [56].  524 

Genetic and phenotypic correlation matrices between brain volumes. To derive 525 

dimensions of shared morphometry across brain volumes, we calculated both a phenotypic 526 

and a genetic correlation matrix from 83 grey-matter volume variables. Phenotypic regional 527 

brain volumes were residualised for age at neuroimaging visit and sex, and then used to 528 

estimate a phenotypic correlation matrix through Pearson’s correlations with complete 529 
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pairwise observations. The genetic correlation matrix was inferred through LDSC, a 530 

technique quantifying shared polygenic effects between traits using GWAS summary 531 

statistics. Cross-trait LDSC regresses the product of effect sizes in two GWAS onto linkage 532 

disequilibrium scores, indicating how correlated a genetic variant is with its neighbouring 533 

variants [33]. The slope indexes the genetic correlation, while the intercept captures signal 534 

uncorrelated with LD, such as population stratification, environmental confounding, and 535 

sample overlap.  536 

To quantify the relationship between phenotypic and genetic correlations, we 537 

estimated the correlation between 3403 phenotypic and genetic between-region correlations 538 

(
��������

�
 = 3403 correlations between 83 volumes). Additionally, we calculated genetic 539 

correlation matrices for smaller canonical networks including fewer brain volumes than the 540 

whole brain. For example, the central executive network included eight regional volumes 541 

(STable 2 lists volumes included in the nine canonical networks). We reported SNP-542 

heritability estimates for each brain volume inferred through LDSC. 543 

Principal component analysis (PCA) of genetic and phenotypic correlation 544 

matrices. PCA was applied to the phenotypic and genetic correlation matrices indicating 545 

genetic overlap between brain volumes described above to obtain their respective first 546 

principal component (PC). The first PC represents an underlying dimension of common 547 

structural sharing across regional volumes, which we refer to as general dimensions of shared 548 

morphometry throughout this manuscript. PC loadings were calculated for all volumes in the 549 

whole brain, as well as volumes in smaller canonical networks to quantify contributions of 550 

regional volumes to this either brain-wide, or network-specific dimension of shared 551 

morphometry.  552 
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Parallel analysis. We tested whether genetic PCs explained more variance than 553 

expected by chance, that is, whether they explained more than 95% of their corresponding 554 

PCs generated under a simulated null correlation matrix. We developed a version of parallel 555 

analysis to generate null distributions of eigenvalues by simulating null correlation matrices 556 

sampled from a diagonal population correlation matrix, where the multivariate sampling 557 

distribution is specified to take the form of the sampling distribution of the standardised 558 

empirical genetic correlation matrix (the VSTD matrix, as estimated using GenomicSEM [32]). 559 

This sampling correlation matrix serves as an index of the precision of the elements in the 560 

empirical genetic covariance matrix (i.e., heritabilities and co-heritabilities across traits) and 561 

the sampling dependencies among these when generating the random null models. We 562 

specified 1,000 replications to simulate the null correlation matrices and use a 95% threshold 563 

for distinguishing true eigenvalues from noise. 564 

Simulation of networks with randomly included brain volumes. We performed an 565 

additional sensitivity analysis simulating networks with randomly included brain volumes, to 566 

determine whether shared structural variance relied on network membership, or arose through 567 

phenotypic properties common to all regional brain volumes. To compare explained 568 

variances between canonical networks and random networks, we quantified the expected 569 

explained variance in random networks by randomly sampling regions 800 times each, for 570 

different numbers of included volumes (because networks including fewer volumes generally 571 

tend to explain a larger percentage of variance, as larger networks are more heterogeneous). 572 

That is, simulations were run for 8, 10, 12, 16, 30, and 36 included regions, to obtain a 573 

distribution for each networks size to compare the corresponding network’s explained 574 

variance to. We reported the mean explained variance by PCs for networks with randomly 575 

included volumes and a 95% confidence interval. Comparisons between explained variances 576 

for random and empirical networks were done for the same number of included volumes.  577 
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Correlation between phenotypic and genetic PC loadings. To compare whether 578 

genetic correlations structures of regional brain morphometry resembled the phenotypic 579 

correlation structure of the same regions, we calculated an un-standardised linear regression 580 

with a vector of 83 phenotypic whole-brain PC loadings as the dependent variable, and a 581 

vector containing 83 genetic whole-brain PC loadings as the independent variable. We 582 

calculated the Tucker congruence coefficient to quantify the relative similarity between the 583 

two sets of PC loadings independent of their absolute magnitude. The coefficient is 584 

insensitive to scalar multiplication [57].  585 

Correlation between genetic PC loadings with age sensitivity. Pearson’s 586 

correlations between 83 phenotypic grey-matter volumes and age at neuroimaging visit were 587 

calculated to quantify cross-sectional age-volume-correlations for each of the 83 brain 588 

volumes. These age-volume correlations are referred to as age sensitivity throughout the rest 589 

of the manuscript. We estimated the correlation between a vector containing indices of age 590 

sensitivity and (1) a vector of genetic whole-brain PC loadings, and for comparison (2) a 591 

vector of phenotypic whole-brain PC loadings.  592 

Genome-wide shared genetic variance of morphometry across the whole brain 593 

and canonical networks. To statistically represent genome-wide shared morphometric 594 

variance across brain volumes (i.e., genetic PCs), we developed a novel method summarising 595 

genome-wide by-variant effects contained in the grey-matter volume GWAS summary 596 

statistics, which were weighted by their respective (region-specific) PC loadings obtained 597 

through PCA. We derived GWAS summary statistics for a genetic principal component of 598 

multiple GWAS phenotypes derived from samples of unknown degrees of overlap by 599 

adapting existing software for genome-wide multivariate meta-analysis by Baselmans et al. 600 

[58] and using GenomicSEM [32]. Fig. 2 illustrates this approach in a four-step procedure. 601 

The input data for our approach are GWAS summary statistics for 83 cortical and subcortical 602 
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brain volumes (step 1). We have made them publicly available online. Using the 603 

GenomicSEM software [32], we obtained a genetic correlation matrix indicating genetic 604 

overlap between these 83 brain volumes (step 2). We extracted PC loadings on the underlying 605 

general dimension of shared genetic variance for each of the 83 regions (step 3). Finally, we 606 

modified the existing genome-wide multivariate meta-analysis software package [58], in 607 

order to create summary statistics for an underlying genetic PC. Genome-wide SNP effects 608 

were calculated as an average of all SNP effects contributed by the 83 GWAS phenotypes, 609 

weighted by their respective PC loading, with standard errors computed using a method that 610 

corrects for sample overlap, as estimated by LDSC (step 4). We used this approach to 611 

calculate univariate summary statistics to represent general dimensions of shared 612 

morphometry between regional volumes across the whole brain (83 GWAS phenotypes), as 613 

well as nine smaller canonical networks.  614 

We had tested and validated this novel approach in an independent set of GWAS 615 

summary statistics of four risky behaviours [59]. In addition to the risky behaviour GWAS, 616 

another set of summary statistics is available for a phenotypic PC underlying these risky 617 

behaviour phenotypes that the authors had calculated phenotypically before running GWAS 618 

analyses. We compared these phenotypic PC GWAS summary statistics by Linnér, Biroli 619 

[59] with summary statistics for a genetic PC underlying the four risky behaviours GWAS 620 

that we calculated using our novel method outlined above (Fig. 2). We found that they 621 

correlated at a magnitude of rg = 0.99 (SE = 0.037) confirming that our method captures the 622 

same signal as can be obtained from phenotypic PCs, by simply relying on publicly available 623 

GWAS data. For details of the analysis and code refer to: 624 

https://annafurtjes.github.io/genomicPCA/ . 625 

Genetic correlation between general dimensions of shared morphometry across 626 

the whole-brain and brain age. Using LDSC [33], we calculated a genetic correlation 627 
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between genetic morphometric sharing across the whole brain and brain age. The summary 628 

statistics indexing dimensions of shared morphometry across brain volumes were created 629 

using the novel method presented above (Fig. 2). We downloaded the brain age GWAS 630 

summary statistics online [37]. Brain age is a phenotype based on individual-level predictions 631 

of how much older (or younger) an individual’s brain appears, relative to their chronological 632 

age. It is estimated using parameters characterising the relationship between age and 633 

structural neuroimaging measures (volume, thickness, and surface area) that were tuned using 634 

machine learning in an independent sample. The final brain age phenotype indexed in the 635 

GWAS was calculated as the difference between participants chronological age and their age 636 

as predicted based on structural brain characteristics. 637 

Genetic correlations between brain networks and a factor of general cognitive 638 

ability. We assessed genetic correlations between brain networks and general cognitive 639 

ability using GenomicSEM [32]. Using univariate network-specific summary statistics (as 640 

describe above; Fig. 2) and a genetic general cognitive ability factor modelled from seven 641 

cognitive ability GWAS summary statistics , the GenomicSEM software [32] was used to 642 

model general cognitive ability and perform multivariate LDSC using diagonally weighted 643 

least squares. To quantify model fit, we reported default fit indices calculated by the 644 

GenomicSEM package: χ2 values, the Akaike Information Criterion (AIC), the Comparative 645 

Fit Index (CFI) and the Standardised Root Mean Square Residuals (SRMR). The multiple 646 

testing burden was addressed by correcting p-values from the genetic correlations for 647 

multiple testing with a false-positive discovery rate of 5% [60].  648 

We preregistered that we would test for significant differences in correlation 649 

magnitudes between the networks that yielded a significant association with general cognitive 650 

abilities. Because we hypothesised a particularly strong association for the central executive 651 

network, we planned to perform this comparison between the central executive and all other 652 
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networks, to reduce the multiple testing burden. We fitted two GenomicSEM models in 653 

which correlation magnitudes between general cognitive ability and both the central 654 

executive and another network were either freely estimated, or they were forced to be the 655 

same. A significant decrease in model fit between the freely estimated model and the 656 

constrained model (df = 1) would indicate that there likely are differences in correlation 657 

magnitudes between the networks in how strongly they correlate with general cognitive 658 

ability (SFig. 23).  659 

Additionally, we assessed whether the central executive network was 660 

disproportionately genetically correlated with general cognitive ability considering its small 661 

size (i.e., few included volumes). Similar to the approach described above, we fitted two 662 

models: One, in which we freely estimate the correlation between the central executive and 663 

general cognitive ability, and the correlation between another network and general cognitive 664 

ability. We then divided the correlation magnitude by the number of regions included in the 665 

network (i.e., magnitude was divided by 8 for the central executive network, it was divided 666 

by 16 for the default mode, by 36 for the P-FIT etc.). The second model had the same set up, 667 

but we forced the adjusted correlations for the two networks to be equal (e.g., rcentral executive / 8 668 

== rdefault / 16). We assessed whether there was a significant difference in χ2 model fit 669 

between these two models. As above, a significant decrease in model fit between the freely 670 

estimated model and the constrained model (df  = 1) would indicate that there likely are 671 

differences in relative correlation magnitudes (i.e., magnitudes adjusted for network sizes). 672 

Based on previous findings, we expected the relative magnitude for the central executive 673 

network to be significantly larger than the relative magnitude for any other network.   674 

To probe whether any specific cognitive ability might have driven the genetic 675 

associations between brain networks and general cognitive ability, we reported genetic 676 

correlations between the significant networks and three specific cognitive abilities: (1) Matrix 677 
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Pattern Completion task to represent nonverbal reasoning, (2) Memory – Pairs Matching Test 678 

to represent memory, and (3) Symbol Digit Substitution Task to represent information 679 

processing speed. Reducing the analyses to only three consistent and representative cognitive 680 

measures reduced the burden of multiple testing.  681 

We calculated Qtrait heterogeneity indices [36] to evaluate whether the general 682 

cognitive ability factor that we fit in the models above accounts well for the specific 683 

cognitive abilities. To this end, we compared the fit of two models for each network as 684 

displayed in SFig. 24. One model allows for independent associations between the seven 685 

cognitive traits, and both general cognitive ability and the brain network. The second model 686 

forces the association between the seven cognitive traits and the brain network to go through 687 

the general cognitive ability factor. We obtained χ2 fit statistics for both models and tested 688 

their difference for statistical significance (∆ χ2 ≠ 0; df = 6). Non-significant results (p > 689 

0.05/10) would suggest that genetic associations between cognitive abilities and brain 690 

networks are likely general and act through a factor of general cognitive ability. 691 

Data and code availability. Access to phenotypic and genetic UK Biobank data was 692 

granted through the approved application 18177. We have made the 83 GWAS summary 693 

statistics of regional volumes available at the GWAS catalogue 694 

(https://www.ebi.ac.uk/gwas/). GWAS summary statistics for the seven cognitive traits by de 695 

la Fuente, Davies [12] were downloaded at https://datashare.ed.ac.uk/handle/10283/3756. 696 

The pre-registration for this analysis can be found online (https://osf.io/7n4qj). Full analysis 697 

code including results for this study are available at 698 

https://annafurtjes.github.io/Genetic_networks_project/index.html. 699 

  700 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   33 
 

Acknowledgements 701 

AEF is funded by the Social, Genetic and Developmental Psychiatry Centre, King’s College 702 

London and the National Institute of Health (NIH) grant R01AG054628. SJR is funded by 703 

the Jacobs Foundation. JHC is funded by a UK Research & Innovation(UKRI) Innovation 704 

Fellowship (MR/R024790/1; MR/R024790/2). JF is funded by the National Institutes of 705 

Health (NIH) grant R01AG054628. JF and EMTD are members of the Population Research 706 

Center (PRC) and Center on Aging and Population Sciences (CAPS) at The University of 707 

Texas at Austin, which are supported by NIH grants P2CHD042849 and P30AG066614. JD, 708 

JWM, and EMTD were supported by NIH R01AG054628. IJD is with the Lothian Birth 709 

Cohorts group, which is funded by Age UK (Disconnected Mind grant), the Medical 710 

Research Council (grant no. MR/R024065/1) and the University of Edinburgh’s School of 711 

Philosophy, Psychology and Language Sciences. The contribution by RA represents 712 

independent research part-funded by the National Institute for Health Research (NIHR) 713 

Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation 714 

Trust and King’s College London. The views expressed are those of the author(s) and not 715 

necessarily those of the NHS, the NIHR or the Department of Health and Social Care. The 716 

contribution by JRIC represents independent research part-funded by the National Institute 717 

for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and 718 

Maudsley NHS Foundation Trust and King’s College London. The views expressed are those 719 

of the authors and not necessarily those of the NHS, the NIHR or the Department of Health 720 

and Social Care. SRC is supported by a Sir Henry Dale Fellowship jointly funded by the 721 

Wellcome Trust and the Royal Society (Grant Number 221890/Z/20/Z). This research was 722 

funded in part by the Wellcome Trust [221890/Z/20/Z]. For the purpose of open access, the 723 

author has applied a CC BY public copyright licence to any Author Accepted Manuscript 724 

version arising from this submission.  725 

The authors gratefully acknowledge the UK Biobank resource 726 

(https://www.ukbiobank.ac.uk/) and its research team, who have made this work possible 727 

(project number 18177). The authors acknowledge use of the research computing facility at 728 

King’s College London, Rosalind (https://rosalind.kcl.ac.uk), which is delivered in 729 

partnership with the National Institute for Health Research (NIHR) Biomedical Research 730 

Centres at South London & Maudsley and Guy’s & St. Thomas’ NHS Foundation Trusts, and 731 

part-funded by capital equipment grants from the Maudsley Charity (award 980) and Guy’s 732 

& St. Thomas’ Charity (TR130505).  733 

 734 

Author contributions 735 

Conceptualisation and methodology: SJR, EMTD, JHC, AEF, SRC 736 

Supervision: SJR, EMTD, JHC 737 

Network characterisation: SRC 738 

Idea to investigate genetic brain age – shared morphometry correlation: JWM 739 

Script used to perform genetic parallel analysis: JF 740 

Data access: CML 741 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   34 
 

Genetic quality control: AEF, JRIC 742 

GWAS calculation: AEF, RA 743 

Data analysis: AEF  744 

Writing: AEF 745 

Visualisations: AEF  746 

Reviewed draft: all authors 747 

Disclosures  748 

Ian Deary is a participant in UK Biobank. All other authors have no conflicts of interest to 749 

declare. 750 

 751 

  752 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   35 
 

Figures 753 

 754 

Fig. 1. Nine canonical brain subnetworks. The networks were visualized with the BrainNet 755 

Viewer (http://www.nitrc.org/projects/bnv/) [61]. Regions of interest were visualised using 756 

scripts by Dr. Colin Buchanan (University of Edinburgh). Included brain regions and their 757 

abbreviations are listed in STable 2. 758 

 759 
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 760 

Fig. 2. Four-step procedure to obtain statistical representation of genetic brain network 761 

structure from GWAS summary statistics. (1) GWAS summary statistics for 83 grey-matter 762 

volumes in UK Biobank from European ancestry were used as input data (N = 36,778). They 763 

were calculated as described in Methods and are publicly available. (2) Linkage 764 

disequilibrium score regression (LDSC) was used to infer genetic correlations between 83 765 

brain volumes using GenomicSEM [32]. (3) Genetic correlations are analysed using PCA to 766 

derive PC loadings on the first PC, representing an underlying dimension of shared 767 

morphometry. (4) We developed a method to derive univariate summary statistics for a 768 

genetic PC of multiple GWAS phenotypes (derived from samples of unknown degrees of 769 

overlap). A genetic PC underlying several brain volumes is interpreted throughout the 770 

manuscript to index general dimensions of regionally shared morphometry. Genome-wide 771 

SNP effects are calculated as an average of all SNP effects contributed by multiple 772 

phenotypes, weighted by their respective PC loadings. Standard errors are computed using a 773 

method that corrects for sample overlap, as estimated by LDSC. We have validated this novel 774 

approach in an independent set of GWAS summary statistics [59]. All software we used is 775 
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available on https://github.com/. 1 The software by  Baselmans, Jansen [58], containing the 776 

GWAMA function is available at https://github.com/baselmans/multivariate_GWAMA/. 2 777 

Our modified version of the GWAMA function is at 778 

https://github.com/AnnaFurtjes/Genetic_networks_project/blob/main/my_GWAMA_260320779 

20.R and 3 a step-by-step demonstration of genomic PCA is at 780 

https://annafurtjes.github.io/genomicPCA/. 781 

 782 

 783 

Fig. 3. (A) Distribution of SNP-heritability estimates for 83 regional grey-matter volumes 784 

inferred through univariate LDSC. (B) Distribution of genetic correlations among 83 regional 785 

grey-matter volumes inferred through between-region LDSC. This figure only depicts 786 

between-region correlations but not the very high genetic inter-region correlations between 787 

regions and their homologous counterpart in the opposite hemisphere (excluding brain stem). 788 

(C) Distribution of phenotypic correlations among 83 regional grey-matter volumes inferred 789 
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through Pearson’s correlations. The raincloud plots were created based on code adapted from 790 

Allen et al. [62]. 791 

 792 

 793 

Fig. 4. (A) Density distributions of principal component (PC) loadings on the first PC 794 

underlying phenotypic and (B) genetic networks. Vertical lines indicate quantiles. (C) 795 

Variance explained by phenotypic and genetic first PC in each network. 796 

 797 
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 798 

Fig. 5. (A) Association between phenotypic and genetic between-region correlations of 83 799 

regional grey-matter volumes. The dashed red line is the line of identity, with a slope of 1 and 800 

an intercept of 0. The dashed grey line indicates rg = 0. (B) Correlation between phenotypic 801 

and genetic PC loadings on the first PC underlying 83 regional volumes. The dashed red line 802 

is the line of identity. (C) Correlation between phenotypic PC loadings and age sensitivity as 803 

indexed by phenotypic cross-sectional age-volume correlations. (D) Correlation between 804 

genetic PC loadings and age sensitivity as indexed by phenotypic cross-sectional age-volume 805 

correlations. 806 

 807 

Tables 808 

Table 1. Genetic correlations between general cognitive ability and nine canonical brain 809 

networks 810 

Network Included rg 95% CI p-value FDR q-value 
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volumes 
Whole brain 83 0.21 0.13-0.29 1.00 x10-7 3.00 x10-7 

Central executive 8 0.20 0.12-0.27 1.00 x10-7 3.00 x10-7 
Cingulo-opercular 10 0.20 0.13-0.27 1.00 x10-7 3.00 x10-7 

Default Mode 16 0.19 0.12-0.26 2.00 x10-7 3.00 x10-7 
Hippocampal-
Diencephalic 

12 0.17 0.09-0.24 2.66 x10-5 2.66 x10-5 

Multiple Demand 12 0.19 0.12-0.27 7.00 x10-7 9.00 x10-7 
P-FIT 36 0.20 0.12-0.27 2.00 x10-7 3.00 x10-7 

Salience 10 0.19 0.12-0.26 3.00 x10-7 4.00 x10-7 
Sensorimotor 12 0.19 0.11-0.27 1.20 x10-7 1.30 x10-6 

Temporo-amygdala-
orbitofrontal 

30 0.20 0.12-0.27 2.00 x10-7 4.00 x10-7 

rg = genetic correlation between brain network and a factor of general cognitive ability modelled from seven 811 

cognitive traits, SE = standard error, 95% CI = 95% confidence interval, p-value = original p-value as indicated 812 

by the GenomicSEM model, false discovery rate (FDR) q-value = p-value corrected using 5% false discovery 813 

rate.  814 

 815 

  816 
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Supplemental Information titles and legends 817 

Supplementary Table 1. 83 cortical and subcortical grey-matter regions of interest 818 

Supplementary Table 2. Network characterisation 819 

Supplementary Table 3. Explained variance and descriptive statistics of PC loadings within 820 

phenotypic canonical networks 821 

Supplementary Table 4. Model fit for genetic correlations between genetic general cognitive 822 

ability and each canonical network 823 

Supplementary Table 5. Fit indices for the comparison between freely-varying or constrained 824 

correlations with general cognitive ability between central executive and other 825 

networks 826 

Supplementary Table 6. Fit indices for the adjusted comparison between freely-varying or 827 

constrained correlations with general cognitive ability between central executive and 828 

other networks 829 

Supplementary Table 7. Genetic correlations between three cognitive abilities and brain 830 

networks 831 

Supplementary Table 8. Canonical networks explain more variance than networks with 832 

randomly included volumes 833 

Supplementary Table 9. Associations between brain volumes and potential covariates 834 

Supplementary Table 10. Genetic quality control exclusion criteria resulting in a total GWAS 835 

sample of 36,778 out of 39,947 participants 836 

Supplementary Fig. 1. Genetic correlation matrix inferred through LDSC across the whole 837 

brain (83 volumes). 838 
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Supplementary Fig. 2. Genetic correlations inferred through LDSC among the central 839 

executive network (8 volumes). 840 

Supplementary Fig. 3. Genetic correlations inferred through LDSC among the cingulo-841 

opercular network (10 volumes). 842 

Supplementary Fig. 4. Genetic correlations inferred through LDSC among the default mode 843 

network (16 volumes). 844 

Supplementary Fig. 5. Genetic correlations inferred through LDSC among the hippocampal-845 

diencephalic network (12 volumes). 846 

Supplementary Fig. 6. Genetic correlations inferred through LDSC among the multiple 847 

demand network (12 volumes). 848 

Supplementary Fig. 7. Genetic correlations inferred through LDSC among the P-FIT network 849 

(36 volumes). 850 

Supplementary Fig. 8. Genetic correlations inferred through LDSC among the salience 851 

network (10 volumes). 852 

Supplementary Fig. 9. Genetic correlations inferred through LDSC among the sensorimotor 853 

network (12 volumes). 854 

Supplementary Fig. 10. Genetic correlations inferred through LDSC among the temporo-855 

amygdala-orbitofrontal network (30 volumes). 856 

Supplementary Fig. 11. Parallel analysis in the central executive network 857 

Supplementary Fig. 12. Parallel analysis in the cingulo-operular network 858 

Supplementary Fig. 13. Parallel analysis in the default mode network 859 

Supplementary Fig. 14. Parallel analysis in the hippocampal-diencephalic network 860 
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Supplementary Fig. 15. Parallel analysis in the multiple demand network 861 

Supplementary Fig. 16. Parallel analysis in the P-FIT network 862 

Supplementary Fig. 17. Parallel analysis in the salience network 863 

Supplementary Fig. 18. Parallel analysis in the sensorimotor network 864 

Supplementary Fig. 19. Parallel analysis in the temporo-amygdala-orbitofrontal network 865 

Supplementary Fig. 20. Parallel analysis in the whole brain with 83 nodes 866 

Supplementary Fig. 21. Genetic correlations between seven cognitive traits and brain 867 

networks. Descriptively, performance in the Tower Rearranging Task has the largest 868 

association with brain networks in comparison with other cognitive tasks. 869 

Abbreviations: Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs 870 

Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; 871 

Trails-B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal 872 

Numerical Reasoning Test; central exec = central executive; cingulo = cingulo-873 

opercular; hippocampal = hippocampal-diencephalic; multiple = multiple demand; p fit 874 

= parieto-frontal integration theory; sensori = sensorimotor; temporo = temporo-875 

amygdala-orbitofrontal 876 

Supplementary Fig. 22. Genetic correlation between the central executive network and factor g 877 

modelled for correlation structure of seven cognitive traits. The seven cognitive traits and the 878 

network are inferred through LDSC, and the factor through factor analysis. Matrix = Matrix 879 

Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; 880 

Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = 881 

Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test. Model fit: χ2 = 124.04, 882 

df = 20, p-value = 2.1 x10-20, AIC = 174.04, CFI = 0.97, SRMR = 0.079 883 
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Supplementary Fig. 23. Illustration of the genomic structural equation models used to test 884 

whether correlation magnitudes with genetic general cognitive ability differ between 885 

the central executive network and other significantly associated networks. The model 886 

on the right freely estimates correlation parameters between two networks and genetic 887 

g while allowing for correlations between the networks. In the left model, we force 888 

the correlation magnitudes to be the same, and assess whether model fit deteriorates 889 

significantly, to conclude whether correlation magnitudes between networks are likely 890 

different from each other.  891 

Supplementary Fig. 24. Structural equation models to calculate Qtrait heterogeneity indices 892 

 893 

 894 

  895 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   45 
 

References 896 

1. Fjell AM, Walhovd KB. (2010). Structural Brain Changes in Aging: Courses, Causes and Cognitive 897 

Consequences. Reviews in the Neurosciences, 21(3), 187-222. 898 

doi:10.1515/REVNEURO.2010.21.3.187 899 

2. Cox SR, Ritchie SJ, Tucker-Drob EM, Liewald DC, Hagenaars SP, Davies G, et al. (2016). Ageing and 900 

brain white matter structure in 3,513 UK Biobank participants. Nature Communications, 901 

7(1), 13629. doi:10.1038/ncomms13629 902 

3. Madole JW, Ritchie SJ, Cox SR, Buchanan CR, Hernández MV, Maniega SM, et al. (2021). Aging-903 

Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life 904 

Cognitive Declines. Biological Psychiatry, 89(8), 795-806. doi:10.1016/j.biopsych.2020.06.010 905 

4. Sporns O. (2011). The human connectome: a complex network. Annals of the New York Academy 906 

of Sciences, 1224(1), 109-25. doi:10.1111/j.1749-6632.2010.05888.x 907 

5. Power Jonathan D, Cohen Alexander L, Nelson Steven M, Wig Gagan S, Barnes Kelly A, Church 908 

Jessica A, et al. (2011). Functional Network Organization of the Human Brain. Neuron, 72(4), 909 

665-78. doi:10.1016/j.neuron.2011.09.006 910 

6. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. (2011). The 911 

organization of the human cerebral cortex estimated by intrinsic functional connectivity. 912 

Journal of Neurophysiology, 106(3), 1125-65. doi:10.1152/jn.00338.2011 913 

7. Bressler SL, Menon V. (2010). Large-scale brain networks in cognition: emerging methods and 914 

principles. Trends in Cognitive Sciences, 14(6), 277-90. doi:10.1016/j.tics.2010.04.004 915 

8. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. (2010). Trajectories of brain aging 916 

in middle-aged and older adults: Regional and individual differences. NeuroImage, 51(2), 917 

501-11. doi:https://doi.org/10.1016/j.neuroimage.2010.03.020 918 

9. Zhao B, Luo T, Li T, Li Y, Zhang J, Shan Y, et al. (2019). Genome-wide association analysis of 19,629 919 

individuals identifies variants influencing regional brain volumes and refines their genetic co-920 

architecture with cognitive and mental health traits. Nature Genetics, 51(11), 1637-44. 921 

doi:10.1038/s41588-019-0516-6 922 

10. Anderson KM, Ge T, Kong R, Patrick LM, Spreng RN, Sabuncu MR, et al. (2021). Heritability of 923 

individualized cortical network topography. Proceedings of the National Academy of 924 

Sciences, 118(9), e2016271118. doi:10.1073/pnas.2016271118 925 

11. Meer Dvd, Kaufmann T, Shadrin AA, Makowski C, Frei O, Roelfs D, et al. (2021). The genetic 926 

architecture of human cortical folding. Science Advances, 7(51), eabj9446. 927 

doi:doi:10.1126/sciadv.abj9446 928 

12. de la Fuente J, Davies G, Grotzinger AD, Tucker-Drob EM, Deary IJ. (2021). A general dimension of 929 

genetic sharing across diverse cognitive traits inferred from molecular data. Nature Human 930 

Behaviour, 5(1), 49-58. doi:10.1038/s41562-020-00936-2 931 

13. Arnatkevičiūtė A, Fulcher BD, Oldham S, Tiego J, Paquola C, Gerring Z, et al. (2021). Genetic 932 

influences on hub connectivity of the human connectome. Nature Communications, 12(1), 933 

4237. doi:10.1038/s41467-021-24306-2 934 

14. Zhao B, Ibrahim JG, Li Y, Li T, Wang Y, Shan Y, et al. (2019). Heritability of Regional Brain Volumes 935 

in Large-Scale Neuroimaging and Genetic Studies. Cerebral Cortex, 29(7), 2904-14. 936 

doi:10.1093/cercor/bhy157 937 

15. de Vlaming R, Slob EAW, Jansen PR, Dagher A, Koellinger PD, Groenen PJF, et al. (2021). 938 

Multivariate analysis reveals shared genetic architecture of brain morphology and human 939 

behavior. bioRxiv, 2021.04.19.440478. doi:10.1101/2021.04.19.440478 940 

16. Cheverud JM. (1988). A Comparison of Genetic and Phenotypic Correlations. Evolution, 42(5), 941 

958-68. doi:10.2307/2408911 942 

17. Sodini SM, Kemper KE, Wray NR, Trzaskowski M. (2018). Comparison of Genotypic and 943 

Phenotypic Correlations: Cheverud’s Conjecture in Humans. Genetics, 209(3), 941-8. 944 

doi:10.1534/genetics.117.300630 945 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   46 
 

18. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. (2009). Correspondence of the 946 

brain's functional architecture during activation and rest. Proceedings of the National 947 

Academy of Sciences, 106(31), 13040-5. doi:10.1073/pnas.0905267106 948 

19. Uddin LQ, Yeo BTT, Spreng RN. (2019). Towards a Universal Taxonomy of Macro-scale Functional 949 

Human Brain Networks. Brain Topography, 32(6), 926-42. doi:10.1007/s10548-019-00744-6 950 

20. Jung RE, Haier RJ. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: 951 

Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135-54. 952 

doi:10.1017/S0140525X07001185 953 

21. Menon V, Uddin LQ. (2010). Saliency, switching, attention and control: a network model of insula 954 

function. Brain Structure and Function, 214(5), 655-67. doi:10.1007/s00429-010-0262-0 955 

22. Sridharan D, Levitin DJ, Menon V. (2008). A critical role for the right fronto-insular cortex in 956 

switching between central-executive and default-mode networks. Proceedings of the 957 

National Academy of Sciences, 105(34), 12569-74. doi:10.1073/pnas.0800005105 958 

23. Buckner RL, DiNicola LM. (2019). The brain’s default network: updated anatomy, physiology and 959 

evolving insights. Nature Reviews Neuroscience, 20(10), 593-608. doi:10.1038/s41583-019-960 

0212-7 961 

24. Downar J, Crawley AP, Mikulis DJ, Davis KD. (2002). A Cortical Network Sensitive to Stimulus 962 

Salience in a Neutral Behavioral Context Across Multiple Sensory Modalities. Journal of 963 

Neurophysiology, 87(1), 615-20. doi:10.1152/jn.00636.2001 964 

25. Li R, Zhang S, Yin S, Ren W, He R, Li J. (2018). The fronto-insular cortex causally mediates the 965 

default-mode and central-executive networks to contribute to individual cognitive 966 

performance in healthy elderly. Human Brain Mapping, 39(11), 4302-11. 967 

doi:10.1002/hbm.24247 968 

26. Duncan J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for 969 

intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-9. 970 

doi:10.1016/j.tics.2010.01.004 971 

27. Cox SR, Ritchie SJ, Fawns-Ritchie C, Tucker-Drob EM, Deary IJ. (2019). Structural brain imaging 972 

correlates of general intelligence in UK Biobank. Intelligence, 76, 101376. 973 

doi:10.1016/j.intell.2019.101376 974 

28. Hilger K, Winter NR, Leenings R, Sassenhagen J, Hahn T, Basten U, et al. (2020). Predicting 975 

intelligence from brain gray matter volume. Brain Structure and Function, 225(7), 2111-29. 976 

doi:10.1007/s00429-020-02113-7 977 

29. Cole JH, Ritchie SJ, Bastin ME, Valdés Hernández MC, Muñoz Maniega S, Royle N, et al. (2018). 978 

Brain age predicts mortality. Molecular Psychiatry, 23(5), 1385-92. doi:10.1038/mp.2017.62 979 

30. Cole JH, Franke K. (2017). Predicting Age Using Neuroimaging: Innovative Brain Ageing 980 

Biomarkers. Trends in Neurosciences, 40(12), 681-90. doi:10.1016/j.tins.2017.10.001 981 

31. Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. (2021). 982 

Computationally efficient whole-genome regression for quantitative and binary traits. 983 

Nature Genetics. doi:10.1038/s41588-021-00870-7 984 

32. Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, et al. (2019). Genomic 985 

structural equation modelling provides insights into the multivariate genetic architecture of 986 

complex traits. Nature Human Behaviour, 3(5), 513-25. doi:10.1038/s41562-019-0566-x 987 

33. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. (2015). An atlas of 988 

genetic correlations across human diseases and traits. Nature Genetics, 47(11), 1236. 989 

doi:10.1038/ng.3406 990 

34. Lorenzo-Seva U, Berge JMFt. (2006). Tucker's Congruence Coefficient as a Meaningful Index of 991 

Factor Similarity. Methodology, 2(2), 57-64. doi:10.1027/1614-2241.2.2.57 992 

35. Hu L-t, Bentler PM. (1998). Fit indices in covariance structure modeling: Sensitivity to 993 

underparameterized model misspecification. Psychological Methods, 3(4), 424. 994 

doi:10.1037/1082-989X.3.4.424 995 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   47 
 

36. Grotzinger AD, Mallard TT, Akingbuwa WA, Ip HF, Adams MJ, Lewis CM, et al. (2020). Genetic 996 

Architecture of 11 Major Psychiatric Disorders at Biobehavioral, Functional Genomic, and 997 

Molecular Genetic Levels of Analysis. medRxiv, 2020.09.22.20196089. 998 

doi:10.1101/2020.09.22.20196089 999 

37. Kaufmann T, van der Meer D, Doan NT, Schwarz E, Lund MJ, Agartz I, et al. (2019). Common brain 1000 

disorders are associated with heritable patterns of apparent aging of the brain. Nature 1001 

Neuroscience, 22(10), 1617-23. doi:10.1038/s41593-019-0471-7 1002 

38. Comas-Herrera A, Wittenberg R, Pickard L, Knapp M. (2007). Cognitive impairment in older 1003 

people: future demand for long-term care services and the associated costs. International 1004 

Journal of Geriatric Psychiatry, 22(10), 1037-45. doi:https://doi.org/10.1002/gps.1830 1005 

39. Tucker-Drob EM. (2019). Cognitive Aging and Dementia: A Life-Span Perspective. Annual Review 1006 

of Developmental Psychology, 1(1), 177-96. doi:10.1146/annurev-devpsych-121318-085204 1007 

40. Jansen PR, Nagel M, Watanabe K, Wei Y, Savage JE, de Leeuw CA, et al. (2020). Genome-wide 1008 

meta-analysis of brain volume identifies genomic loci and genes shared with intelligence. 1009 

Nature Communications, 11(1), 5606. doi:10.1038/s41467-020-19378-5 1010 

41. Herculano-Houzel S. (2017). Numbers of neurons as biological correlates of cognitive capability. 1011 

Current Opinion in Behavioral Sciences, 16, 1-7. doi:10.1016/j.cobeha.2017.02.004 1012 

42. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. (2017). Comparison of 1013 

Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those 1014 

of the General Population. American Journal of Epidemiology, 186(9), 1026-34. 1015 

doi:10.1093/aje/kwx246 1016 

43. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. (2018). 1017 

Image processing and Quality Control for the first 10,000 brain imaging datasets from UK 1018 

Biobank. NeuroImage, 166, 400-24. doi:10.1016/j.neuroimage.2017.10.034 1019 

44. Smith S, Alfaro-Almagro F, Miller K. UK Biobank Brain Imaging Documentation. 2020 [Available 1020 

from: https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. 1021 

45. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. (2006). An automated 1022 

labeling system for subdividing the human cerebral cortex on MRI scans into gyral based 1023 

regions of interest. NeuroImage, 31(3), 968-80. doi:10.1016/j.neuroimage.2006.01.021 1024 

46. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. (2002). Whole Brain 1025 

Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. 1026 

Neuron, 33(3), 341-55. doi:10.1016/S0896-6273(02)00569-X 1027 

47. Lindroth H, Nair VA, Stanfield C, Casey C, Mohanty R, Wayer D, et al. (2019). Examining the 1028 

identification of age-related atrophy between T1 and T1Q+QT2-FLAIR cortical thickness 1029 

measurements. Scientific Reports, 9(1), 11288. doi:10.1038/s41598-019-47294-2 1030 

48. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. (2018). The UK Biobank 1031 

resource with deep phenotyping and genomic data. Nature, 562(7726), 203-9. 1032 

doi:10.1038/s41586-018-0579-z 1033 

49. Coleman JRI, Peyrot WJ, Purves KL, Davis KAS, Rayner C, Choi SW, et al. (2020). Genome-wide 1034 

gene-environment analyses of major depressive disorder and reported lifetime traumatic 1035 

experiences in UK Biobank. Molecular Psychiatry, 25(7), 1430-46. doi:10.1038/s41380-019-1036 

0546-6 1037 

50. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. (2015). Second-generation PLINK: 1038 

rising to the challenge of larger and richer datasets. GigaScience, 4(1). doi:10.1186/s13742-1039 

015-0047-8 1040 

51. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. (2017). Genome-wide 1041 

association analysis identifies novel blood pressure loci and offers biological insights into 1042 

cardiovascular risk. Nature Genetics, 49(3), 403-15. doi:10.1038/ng.3768 1043 

52. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. (2010). Robust relationship 1044 

inference in genome-wide association studies. Bioinformatics, 26(22), 2867-73. 1045 

doi:10.1093/bioinformatics/btq559 1046 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   48 
 

53. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. (2016). A reference 1047 

panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48(10), 1279-83. 1048 

doi:10.1038/ng.3643 1049 

54. Fawns-Ritchie C, Deary IJ. (2020). Reliability and validity of the UK Biobank cognitive tests. PLOS 1050 

ONE, 15(4), e0231627. doi:10.1371/journal.pone.0231627 1051 

55. Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F, Sharp K, et al. (2020). Enhanced 1052 

Brain Imaging Genetics in UK Biobank. bioRxiv, 2020.07.27.223545. 1053 

doi:10.1101/2020.07.27.223545 1054 

56. Cole JH, Marioni RE, Harris SE, Deary IJ. (2019). Brain age and other bodily ‘ages’: implications for 1055 

neuropsychiatry. Molecular Psychiatry, 24(2), 266-81. doi:10.1038/s41380-018-0098-1 1056 

57. Tucker LR. A method for synthesis of factor analysis studies. Educational Testing Service 1057 

Princeton Nj; 1951. 1058 

58. Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A, van de Weijer MP, et al. (2019). 1059 

Multivariate genome-wide analyses of the well-being spectrum. Nature Genetics, 51(3), 445-1060 

51. doi:10.1038/s41588-018-0320-8 1061 

59. Linnér RK, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. (2019). Genome-wide 1062 

association analyses of risk tolerance and risky behaviors in over 1 million individuals identify 1063 

hundreds of loci and shared genetic influences. Nature Genetics, 51(2), 245-57. 1064 

doi:10.1038/s41588-018-0309-3 1065 

60. Benjamini Y, Hochberg Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful 1066 

Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 1067 

(Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x 1068 

61. Xia M, Wang J, He Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain 1069 

Connectomics. PLOS ONE, 8(7), e68910. doi:10.1371/journal.pone.0068910 1070 

62. Allen M, Poggiali D, Whitaker K, Marshall T, Kievit R. (2019). Raincloud plots: a multi-platform 1071 

tool for robust data visualization [version 1; peer review: 2 approved]. Wellcome Open 1072 

Research, 4(63). doi:10.12688/wellcomeopenres.15191.1 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

  1079 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/


GENETIC BRAIN NETWORKS   49 
 

 1080 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2021.10.22.465437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/

