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30 Abstract

31 Background: Understanding the neurodegenerative mechanisms underlying cognitive
32  declinesinthe general population may facilitate early detection of adverse health outcomesin
33 latelife. Thisstudy investigates biological pathways shared between brain morphometry,

34  ageing, and cognitive ability.

35 Methods: We develop Genomic Principal Components Analysis (genomic PCA) to
36 model general dimensions of variance in brain morphometry within brain networks at the

37 level of their underlying genetic architecture. With genomic PCA we extract genetic principal
38  components (PCs) that index global dimensions of genetic variance across phenotypes

39  (unlike ancestral PCs that index genetic similarity between participants). Genomic PCA is

40  applied to genome-wide association data for 83 brain regions which we calculated in 36,778
41  participants of the UK Biobank cohort. Using linkage disequilibrium score regression, we

42  estimate genetic overlap between brain networks and indices of cognitive ability and brain

43  ageing.

44 Results: A genomic principal component (PC) representing brain-wide dimensions of
45  shared genetic architecture accounted for 40% of the genetic variance across 83 individual

46  brain regions. Genomic PCs corresponding to canonical brain networks accounted for 47-

47  65% of the genetic variance in the corresponding brain regions. These genomic PCs were

48  negatively associated with brain age (rg = -0.34). Loadings of individual brain regions on the
49  whole-brain genomic PC corresponded to sensitivity of a corresponding region to age (r = -
50 0.27). Weidentified positive genetic associations between genomic PCs of brain

51 morphometry and general cognitive ability (rg = 0.17-0.21).

52 Conclusion: These results demonstrate substantial shared genetic etiology between

53  connectome-wide dimensions of brain morphometry, ageing, and cognitive ability, which
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54  will help guide investigations into risk factors and potential interventions of ageing-related

55  cognitive decline.

56

57
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58 1. Introduction

59 Progressive ageing-related neurodegenerative processes occurring across micro to

60  macro scales of the human brain are well-documented within otherwise healthy adults, and
61  arelinked to ageing-related declines in multiple domains of cognitive function [1-3].

62  Understanding the biological processes underlying these links is paramount for identifying
63  mechanisms of cognitive ageing that can ultimately be targeted by intervention. The human
64  brainisacomplex network of interconnected regions (the ‘ connectome’) [4, 5], components
65  of which areinterrelated with one another [6, 7], age unevenly over time[8], and may be

66 differentially relevant to adult cognitive ageing [1-3]. Whereas considerable attention has

67  been devoted separately to the genetic architecture of human brain morphometry [9-11] and
68  the genetic architecture of adult cognitive ability [12], relatively less work has been devoted
69 to scaffolding investigations of the genetic architecture of human brain morphometry onto the
70  well-established network organization of the brain (although see [13] for a recent exception),
71 or toinvestigating how genetic links between components of human brain networks relate to
72 ageing and cognition. Such investigations have the potential to provide insightsinto the

73  etiology of neurocognitive ageing.

74 Specifically, our genome-wide study builds on a previous study that investigated

75  dimensions of brain morphometric variation (i.e., principal components underlying brain

76  volumetric measures) across the human connectomein alarge scale cohort (N = 8,185) [3].
77  This phenotypic study implicated well-studied macroscopic brain networks in cognitive

78  ageing, whereby connectome aging varied alongsi de those dimensions of morphometric

79  variation. Brain volumesin the central executive network tended to be most sensitive to age
80 (i.e., cross-sectionally correlated with age) and, albeit its small size, the central executive was

81  highlighted to play a disproportionate role in late-life cognitive ability.
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82 Here, we hypothesise that morphometric network organisation, as described by
83 Madoleet al. [3], corresponds to morphometric variation captured by genome-wide data (pre-

84  registration: https://osf.io/7n4q)). We suggest that a dissimilar organisation of phenotypic and

85  genetic brain architecture would contradict the neurobiological validity of canonical brain

86  networks (asimilar organisation would be consistent with a measurable genetic foundation of
87  brain networks). This hypothesis relies on evidence that patterns of brain morphometry and
88 itsorganisation are highly heritable [10, 11, 14, 15]. Cheverud originally speculated that “1f
89  genetically and environmentally based phenotypic variations are produced by similar

90 disruptions of developmental pathways, genetic and environmental correlations should be

91  similar.” [16]. Strong correspondence between phenotypic and genetic correlations was

92  recently demonstrated for a wide range of morphometric human traits (for example, height

93  and body massindex) in the UK Biobank cohort [17], and we therefore expect that

94  phenotypic brain network structures should mirror the structure of genetic correlations within

95  the same networks.

96 We consider the same ‘canonical’ brain networks as Madole et al. [3], using common,
97  but not indisputable, definitions of the exact regions comprising them [5, 18, 19]. These brain
98  networks have been characterised embracing a whole-brain perspective, considering existing
99 literature describing synchronised (i.e., correlated) regional activity in functional MRI data
100 [3], in addition to converging evidence from other modalities (i.e., structura MRI and lesion-
101 based mapping [7, 20, 21]). Among the most reported networks are the central executive,
102  default mode, salience, and multiple demand networks. Specific network characterisations

103  considered in this study are displayed in Fig. 1 and listed in STable 2.

104 Brain networks are theorised to integrate information across the brain and,
105  collectively, to give rise to cognitive functions. The central executive network is thought to

106  underpin higher-level cognitive functions, including attention and working memory processes
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107 [21, 22]; whereas the default mode network is associated with internally directed and abstract
108  thought [23]. The salience network is thought to detect salient sensory cues [24], helping to
109  integrate executive and default functions [22, 25]. Mental processes that organise multiple
110  cognitive requirements into a series of successive cognitive tasks are thought to be associated

111 with the multiple demand network [26].

112 Here, we use genome-wide associ ation data summarising genetic correlates of grey
113  matter volumes to model morphometric network structures. We focus on brain volumes

114  because they are highly heritable [14], and are measured independent of mental processes
115  during MRI scanning (compared with functional MRI). Grey matter volume was

116  demonstrated to be a strong and robust predictor of general cognitive ability [27, 28], it

117  reflects atrophy; an important indicator of ageing and health outcomes [29], and, as discussed
118  above, regional brain volumes have been shown to capture dimensions of morphometric

119  variation implicated in aging and cognitive ability [3].

120 In order to model macroscopic brain networks using genome-wide association data, in

121 thispre-registered study (https://osf.io/7n4qj), we present our novel statistical genetics

122 method ‘genomic PCA’ (genomic Principal Component Analysis). With genomic PCA we
123 extract genetic principal components (PCs) that index global dimensions of genetic variance
124  across phenotypes (unlike ancestral PCs that index genetic similarity between participants),
125  the human structural connectome. We mirror previous phenotypic analyses to ensure

126  comparability with resultsin Madole et al. [3], that is, we estimate genetic associations

127  between genetic PCs across brain network structures and both cognitive ability and ‘brain
128  age [30]. Characterising genetic links between general dimensions of brain organisation,
129  aging and cognitive ability will help guide investigations into risk factors, biological

130  mechanisms, and potential interventions of ageing-related cognitive decline.
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131 2. Methods

132 The considered UK Biobank sample consisted of 36,778 participants (54% femal es)
133 with available neuroimaging data and had an average age of 63.3 years at neuroimaging visit
134  (range from 40.0 to 81.8 years). Our methodol ogical approach followed four major analysis
135  stepsasdisplayed in Fig. 2. First, we calculated 83 genome-wide association study (GWAYS)
136 summary statistics for 83 regional volumes that served as input data. Polygenic effects were
137  fitted in alinear mixed model using REGENIE [31]. Second, we calculated genetic

138  correlation matrices indicating genetic overlap between regional brain volumes using the
139  GenomicSEM software [32]. Genetic correlations formed the basis for subsequent analyses;
140  they are contrasted with phenotypic correlations in Section 3.1. Third, we extracted the first
141 principal component (PC) from genetic correlation matrices using principal components

142 analysis (PCA). The genetic PCs were calculated for the whole brain, as well as canonical
143 brain networks; they represent general dimensions of shared genetic morphometry between
144  regionsincluded in either the whole brain, or the brain networks (Section 3.2). Based on

145  Pearson’s correlations and Tucker congruence coefficient, we compared genetic correlation
146  structures with phenotypic correlation structures between the 83 regional volumes (Section
147  3.3). We also tested whether the relative ordering of phenotypic and genetic PC loadings
148  correlated with indices of aregions sensitivity to age (i.e. cross-sectional volume-age

149  correlations; Section 3.4). Finally, we presented a novel method to summarise shared

150  morphometric variance within brain networks on a genome-wide level in sets of univariate
151  summary statistics (i.e., genetic PCs underlying multiple brain volumes; see Supplementary
152  Methods). These univariate summary statistics can be viewed as a summary-based method of
153  computing GWAS summary statistics that would be obtained from a GWAS on individuals’
154  scores on the underlying genetic PCs. We used those summary statistics to represent general

155  dimensions of brain organisation across the whole brain and nine canonical networks at the
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level of their underlying genetic architecture. We then quantified genetic correlations
between brain network structures and both general cognitive ability [32] (Section 3.5) and
brain age (Section 3.6). Detailed descriptions of the UK Biobank data used in this study and
the study design can be found in the Supplementary Methods. Our analysis code is displayed

at https://annafurtjes.github.io/Genetic_networks_project/.
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162 3. Results

163 3.1 Genetic correations between brain-wide volumes recapitulated phenotypic

164  correlations

165 On a phenotypic level of analysis, correlations between the 83 brain volumes were
166  obtained using Pearson’s correlations from volumetric phenotypes that were residualised for
167  age (mean = 63.3, range = 40.0-81.8 years) and sex (54% females). On a genetic level of
168  analysis, we calculated GWAS summary statistics to get genome-wide associations (N =
169  36,778) for 83 cortical and subcortical grey-matter volumes (Fig. 2.1). SNP-heritability

170  estimates ranged between 7% (SE = 0.07) for the frontal poles and 42% (SE = 0.04) for the

171 brain stem (mean = 0.23, SD = 0.07; Fig. 3A).

172 The GWAS summary statistics enabled the calculation of genetic correlations

173 between 83 volumes through linkage disequilibrium score regression (LDSC) [33] (@ =

174 3403 between-region correlations; Fig. 2.2). All bilateral regions were almost perfectly

175  correlated with the corresponding contralateral region. Between-region genetic correlations
176  ranged fromrg=-0.08 (SE = 0.09) between right frontal pole and left pallidum, to ry = 0.87
177 (SE =0.08) between left middle temporal and left inferior temporal (Fig. 3B, SFig. 1).

178  Corresponding standard errors ranged between 0.01 and 0.03 (mean = 0.014; SD = 0.002).

179  Genetic correlations within canonical networks are provided in SFig.s 2-10.

180 A positive and large association (r = .84; b = 0.60; SE =0.007, p< 2x10™*®, B =
181  70%) was obtained between 3403 phenotypic and 3403 genetic correlations (Fig. 3&5A),
182  indicating that the same regions, that had strongly correlated phenotypic volumes, were also
183  genetically correlated. Phenotypic correlations were exclusively positive, as were 3,392 of
184 3,403 genetic correlations; the 11 (0.32%) negative genetic correlations were close to zero

185  (smallestrgy-0.083; Fig.3).
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186 3.2 PCsof shared genetic variance acr oss the whole-brain and canonical networ ks

187 Distributions of phenotypic PC loadings are in Fig. 4A (descriptive statistics for

188  phenotypic shared morphometry in STable 3). On a genetic level of analysis, we extracted
189  PCsfrom genetic correlation matrices. The first genetic whole-brain PC explained 40% of the
190  genetic variance across 83 regional volumes - slightly larger than the 31% explained by the
191  first phenotypic whole-brain PC. The second genetic whole-brain PC accounted for 6.7% of
192  thetotal genetic variance; that is, 17% of the variance explained by the 1% genetic PC (SFig.
193  20). We obtained loadings on thisfirst genetic PC for each regional volume, quantifying how
194  waell an individua volume mapped onto the underlying dimension of shared morphometry
195  acrossthe whole brain. Their distribution ranged between 0.30 and 0.81 (mean = 0.62, SD =

196  0.13, median = 0.65; Fig. 4, STable 3a).

197 We used the same approach — extracting the first genetic PC and its genetic PC

198  loadings—to examine nine predefined genetic brain-subnetworks (Fig. 1). Regions included
199 inthe networks are listed in STable 2. The percentage of genetic variance accounted for by
200 thefirst network-specific PCs ranged between 65% for the central executive network and
201 47% for the temporo-amygdal a-orbitofrontal network. While the central executive and the
202  hippocampal-diencephalic networks had a narrow, unimodal distribution of PC loadings, the
203  temporo-amygdala-orbitofrontal and cingulo-opercular networks had a wider, and bimodal
204  distribution. That is, volumesincluded in the central executive network, for example, were
205  more homogeneous and indexed more similar genetic variation, compared with the temporo-
206  amygdala-orbitofrontal network (Fig. 4). Overall, percentages of explained variances were
207  larger for networks including fewer volumes, potentially because larger networks tend to be

208  more heterogeneous.

209 To test whether data-derived PCs explained more genetic variance than could be

210  expected by chance, we present a version of Parallel Analysis which simulates PCs for
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211 uncorrelated elements with matched genetic sampling variance (see Supplementary

212 Methods). Parallel Analysis confirmed that genetic PCs of the whole brain and the nine

213 canonica subnetworks explained substantially more variance than expected by chance (Scree
214  Plots SFig.s 11-20). Furthermore, we demonstrated that PCs extracted from 800 networks
215  with randomly included brain volumes explained substantially |less averaged variance than
216  empirical canonical networks. Results from this simulation are presented in STable 5. In

217  summary, these resultsillustrate that genetic dimensions of shared morphometry are well

218  represented by the first underlying PC (i.e., accounts for the majority of genetic variance);
219  that the dimensions differ between networks, and that they explain similar magnitudes of

220 variance astheir corresponding phenotypes.

221 3.3 General dimensions of phenotypic and genetic shared mor phometry weresimilarly
222 organised

223 To quantify how closely patterns of shared variance between phenotypic and genetic
224 brain morphometry resemble each other, we calculated a linear regression between sets of 83
225  phenotypic and 83 genetic PC loadings. PC loadings indicate relative magnitudes of brain
226 regions' loadings on either phenotypic or genetic dimensions of shared morphometry, and
227  serveasan index of how well a volume represents trends across the brain (or the network).
228  The association between phenotypic PC loadings and genetic PC loadings was large and

229  significant (b = 0.65, SE = 0.06, p = 5.07 x10™’, R? = 58%), indicating that an increase in one
230 unitinthe genetic PC loadings is associated with an increase of .65 units in the phenotypic

231  PCloadings (intercept = 0.15). This approach considers ordering relative to the mean.

232 The Tucker congruence coefficient was used to index the degree of similarity of
233  genetic and phenotypic PC loadings, taking into account both their relative ordering and their
234  absolute magnitudes [34]. The Tucker coefficient revealed very high congruence in the

235  deviation from zero between phenotypic and genetic PC loadings for the 83 volumes (Tucker
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236 coefficient = 0.99). These resultsillustrate a close correspondence and an equivalent
237  organisation of phenotypic and genetic dimensions of shared morphometry; afinding that

238 aignswith Cheverud's Conjecture (Section 4.2).

239 3.4 Genetic dimensions of shared mor phometry wer e associated with age sensitivity

240 Previous work demonstrated an association between phenotypic dimensions of shared
241  morphometry across the whole brain, represented by phenotypic PC loadings, and indices of
242  agesensitivity [3]. Age sensitivity is approximated by a correlation of a regional brain

243 volume with age across the sample, which is typically negative in adult populations. Here, we
244  replicated this association between phenotypic shared morphometry (i.e., phenotypic PC

245  loadings) and age sensitivity (r = -0.43, p = 4.4 x10”®; Fig. 5¢), and we found asignificant,
246  but smaller association for genetic PC loadings (r =-0.27, p = 0.012; Fig. 5d). This

247  demonstrates that the more the genetic variation of a brain volume resembles general

248  morphometric trends across the brain (larger genetic PC loading), the stronger this volumeis
249  negatively correlated with age. Note that these results emerged even though PC loadings were
250  extracted from brain volumes residualised for age and were neverthel ess associated with age
251  sendgitivity. In summary, these results show that phenotypic PC loadings and genetic PC

252 loadings both display associations with age sensitivity, asindexed by cross-sectional age-

253  volume correlations (Section 4.3).

254 3.5 General dimensions of shared mor phometry were genetically correated with

255  general cognitive ability

256  To quantify genetic correlations between general dimensions of network morphometry and
257  genera cognitive ability, we indexed shared genetic variance across brain networks, by

258  extracting underlying genome-wide PCs. Genome-wide PCs were calculated by summarising
259  per-SNP effects from multiple brain volume GWAS summary statistics, weighted by volume-

260  and network-specific PC loadings (novel method presented in Fig. 2.4). Using GenomicSEM
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261  software[32], we calculated genetic correlations between brain networks and seven cognitive
262 traits[32] (SFig. 21). The cognitive traits mostly had high loadings on a genetic general

263 cognitive ability factor (median = 0.81, range = 0.30-0.95); the Reaction Time task had the
264  lowest loading on the factor (SFig. 22). Strong genetic overlap between brain networks

265  indicated that they indexed very similar polygenic signal (rq between networks = 0.63-0.97).
266 All networks were significantly genetically associated with the general cognitive ability

267  factor; correlation magnitudes across all networks ranged between rg = 0.17-0.21 (Table 1).
268  According to commonly-used rules of thumb from Hu and Bentler [35](CFl > 0.95, RMSEA

269 < 0.08), al models showed good mode fit (STable 4).

270 Based on phenotypic findings that have highlighted the importance of the central
271  executive network to general cognitive function [3], we hypothesised to find a stronger
272 genetic association between general cognitive ability and the central executive network

273 relativeto other subnetworks (see pre-registered plan https.//osf.io/7n4q)). There was no

274  evidence for significant differencesin total correlation magnitudes between the central

275  executive network and general cognitive ability compared with other brain networks, even
276  dfter accounting for network sizes (see Methods; Fig. 23, STable 6). We found no significant
277  differencein model fit using GenomicSEM [32] comparing one model accounting for

278  network size, and another model not accounting for it (A y?p-values ranged between .072 and

279  1.00; STable 5).

280 We also investigated whether genetic associations were driven by specific cognitive
281 traits. We obtained non-significant Qy.it heterogeneity indices [36] for all brain networks,
282  demonstrating that the general cognitive ability factor accounted well for the patterns of
283  association between specific cognitive abilities and the brain networks (SFig. 24). The fact
284  that the general cognitive ability factor accounted well for specific abilities, and that the

285  gpecific abilities were mostly significantly associated with the networks, confirms that the
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286  genetic associations between specific cognitive abilities and brain networks are likely general

287  and act through afactor of general cognitive ability (Section 4.4).

288 3.6 General dimensions of shared mor phometry wer e genetically correated with brain
289 age

290 Finally, we calculated a genetic correlation between shared morphometry across the
291  whole brain and brain age. Brain age is based on individual-level predictions of how much
292  older (or younger) an individual’s brain appears from structural MRI measures, relative to
293  their chronological age [37] (see Supplementary Methods). We found a moderate negative
294  genetic association (rq = -0.34; SE = 0.06) between general dimensions of shared

295  morphometry across the whole-brain and brain age, suggesting that consistently larger

296  volumes across the whole brain indicate younger brain age (Section 4.3).
297

298
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299 4. Discussion

300 This genetically-informed study provides fundamental insights into the complex

301  biology shared between brain organisation, ageing, and cognitive ability. Using genomic

302 PCA, we demonstrated that general morphometric dimensions underlying brain network

303  structures genetically overlapped with general cognitive ability, brain age, and sensitivity of a
304  corresponding region to age, albeit being distinctly measured demographic, psychological

305  and neuroimaging concepts. Our findings highlight measurable biological pathways giving
306  riseto genetic variation in brain morphometry which may influence pathways underlying

307  cognitive ability and vulnerability towards ageing. Discovery of shared genetic etiology and
308 itsassociated neurodegenerative mechanisms should inform efforts of detecting and

309  mitigating cognitive declinein ageing societies [3, 38, 39].

310 4.1 Characteristics of genetic brain network organisation

311 We demonstrated that genetic dimensions of shared morphometry underlying brain
312 networks (i.e,, first genetic PC) accounted for substantial systematic variance shared between
313  brain volumes (e.g., 40% of genetic variance across the whole brain). These magjor genetic
314  dimensions even explained more variance than their phenotypic analogue (31% of phenotypic
315 variance across the whole brain). All genetic networks explained substantially more variance
316 than was expected by chance. These findings provide a new line of evidence characterising
317  and underpinning the existence of a genetic foundation for canonical brain networks that have

318 featured prominently in neuroscientific studies [e.g., 7].

319 4.2 Analogous organisation of phenotypic and genetic dimensions of shared

320 morphometry

321 We discovered a high degree of similarity between phenotypic and genetic features of
322 brain network organisation (e.9., I genetic vs. phenotypic carrelations = 0.84; Tucker congruence = 0.99;

323 I'phenotypicvs. genetic PC loadings = 0.76). According to Cheverud’s Conjecture [16], thisindicates that
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324  brain organisation, indexed through both phenotypic and genetic variance, seemsto be

325 underpinned by similar, overlapping developmental pathways.

326 4.3 Genetic PCsasindices of brain regions’ age sensitivity and brain age

327 As previously demonstrated, phenotypic PC loadings onto an underlying brain-wide
328 dimension of shared morphometry resembled patterning of sensitivity of a corresponding

329 regiontowards age (i.e., cross-sectional age-volume correlations) [3]. Here, we replicated this
330 negative association, and showed that it also exists, albeit to alesser degree, between age-

331 volume correlations and genetic instead of phenotypic PC loadings. This suggests that

332  dimensions along which brain regions share morphometric variance (i.e., generally larger

333  volumesacross an individuals' brain) are structured similarly to patterns by which brain

334  regionsdisplay increased vulnerability to ageing. This finding needs to be triangulated by

335 either future longitudinal studies, or cross-sectiona studies modelling within-person atrophy

336 by incorporating information on prior brain size (e.g., intracranial volume).

337 One potential explanation for this association is that brain regions that are genetically
338  predisposed to be large volumes, that share higher levels of morphometric variance with the
339  rest of the brain, and that are more central to heavily-demanding cognitive processes, might
340 come under more strenuous developmental and environmental pressure, perhaps through

341  increased metabolic burden, compared with other, less central regions. Thus, the embedding
342 of abrain volume within the whole brain’s organisation, and the genetic foundation of its
343  positioning in the brain, could govern the functional stresses and other influences to which
344  certain areas are exposed. This might alter disproportionately the speed at which some

345  regions atrophy with advancing age.

346 That dimensions of shared morphometry resemble patterns of age sensitivity is of

347  interest because it emerged from shared variance among brain phenotypes that had been
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residualised for age. Consequently, we suggest that patterns of brain structural ageing, a
construct labelled brain age [29], might not capture how quickly an individual’ s regional
volumes decline compared to their peers, but rather, general healthy morphometry across the
brain. Previous research showed that a younger-appearing brain, relative to the individual’ s
chronological age, predicted better physical fitness, better fluid intelligence, and longevity
[29]. Healthy brain morphometry could vary between people for many non-age-related
reasons, including genetic predispaosition. Individuals that are genetically predisposed
towards consistently larger brain volumes might have generally healthier, better-integrated

brains, which could be more resilient towards harmful environmental factors.

In line with this theory, we found that younger brain age was genetically associated
with amajor dimension of brain-wide shared morphometry asindexed by a genetic PC (rq = -
0.34; SE = 0.06). Thus, consistently larger volumes across the brain indicate a younger
structural brain organisation, and thisis the first study to quantify the degree to which these
two concepts overlap . It motivates further investigation into the possibility that they are

underpinned by the same general shared biological pathways.

4.4 Genetic PCs asindices of cognitive performance

This study demonstrated that cognitive ability is positively associated with genetic
morphometric variance shared across the whole brain, and across smaller canonical networks.
This was investigated by modelling a genetic factor of general cognitive ability using
GenomicSEM [32]. We calculated the genetic correlation between general cognitive ability
and genetic PCs across the whole brain, and nine canonical subnetworks. The whole brain
and all nine networks were significantly genetically correlated with general cognitive ability
at magnitudes between 0.17 and 0.21. This was the same level of genetic association with
general cognitive ability that was previously found for broad measures of total brain volume

[40]. There was no evidence to suggest that those magnitudes statistically differed between
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373 the networks; probably because the polygenic signal indexed by the genetic PCs were highly

374  similar between brain networks (mean rq between networks 0.83, SD = 0.09).

375 This indicates that the genetic association between brain morphometry and cognitive
376  ability was not driven by specific network configurations. Instead, genetic PCs indexed

377  genetic variance relevant to larger brain volumes and a brain organisation that is

378  advantageous for better cognitive performance. This was regardless of how many brain

379  regions and from which regions the measure of shared genetic morphometry was extracted.
380 Thislack of differentiation between networks, in how strongly they correlate with cognitive
381  ahility, isin line with the suggestion that the total number of neurons in the mammalian

382  cortex, which should at least partly correspond to its volume, is a major predictor of higher
383  cognitive ability [41]. These findings suggest that highly shared brain morphometry between
384  regions, and its genetic analogue, predict a generally bigger, and cognitively better-

385  functioning brain.

386 Unexpectedly, genetic correlations between networks and cognitive ability did not
387  suggest any prominent role of the central executive network (a previous phenotypic study [3]
388  demonstrated that the central executive network was disproportionately predictive of

389  cognitive ahilities relative to its few included volumes). On agenetic level of anaysis, we
390  also expected a stronger correlation with cognitive ability for the central executive network
391  compared with the other networks. The lack of differentiation between networks, taken

392  together with previous phenotypic evidence for a disproportionately large association

393  between the cognitive ability and the central executive, suggests nongenetic mechanisms to
394  play important roles, perhaps developmental and environmental influences, through which

395 the central executive network matures, and specialises for cognitive performance.
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396 4.5Limitations

397 Analyses in this study come with limitations. Genetic correlations are representative
398  for genetic associations across the entire genome, but do not give direct insight into specific
399  genomic regions of sharing. As genetic correlations were calculated using LDSC, the

400 limitations that apply to LDSC methodology are relevant to our study (discussion in

401  Supplementary Note). We conclude based on heritability estimates, indexing signal-to-noise
402  ratiosin GWAS, that there was sufficient polygenic signal to warrant LDSC analysis

403  (heritability ranged 7-42%). LDSC intercepts were perfectly associated with phenotypic

404  correlations (R? = 0.99), indicating that the analyses successfully separated confounding

405  signal (including environmental factors) from the estimates of genetic correlations.

406 This study was conducted in the UK Biobank sample, which is not fully

407  representative of the general population: its participants are more wealthy, healthy and

408  educated than average [42]. Cohort effects may affect the degree to which differential cortical
409  regiona susceptibility to ageing can be inferred from cross-sectional data. It remainsto be
410 tested whether our results can be extrapolated to socio-economically poorer subpopulations,
411  or outside European ancestry. Results were also dependent on the choice of brain parcellation

412  to divide the cortex into separate regions.

413 4.6 Conclusion

414 This genetically-informed study delivered evidence for shared etiology between

415  factors that may contribute to neurodegenerative mechanisms underlying ageing-related

416  cognitive decline. Using genome-wide data, we quantified a substantial overlap of genetic
417  variation between distinct measures of ageing, cognitive ability, and brain morphometry, all
418  of which are variables of interest due to their potential social and economic consequences for
419  ageing societies. These fundamental insights will help guide investigationsinto risk factors,

420  biological mechanisms, and potential interventions of ageing-related cognitive decline.
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421 More specifically, we demonstrated that younger brain age genetically captured

422  interindividual variation substantially related to brain network structures (i.e., consistently
423 enlarged volumes). Because the network structures were modelled based on variance

424  independent of age, this suggests that younger brain age could primarily be an index of brain
425  health. Contrary to previous phenotypic findings, our genetic analyses did not provide

426  evidence for adisproportionate role of the central executive network in cognitive

427  performance. This motivates future investigations into environmental influences on the

428  specialisation of brain networks. Altogether, our new genomic PCA methodology and the
429  resulting insights of this study provide a basis for future investigations that aim to interrogate

430  the genetic and environmental bases of ageing and cognitive decline.

431
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432 Supplementary Methods

433  Study Design

434 UK Biobank data

435 Magnetic resonance imaging (MRI) data was collected by the UK Biobank study with
436  identical hardware and software in Manchester, Newcastle, and Reading. Brain volumetric
437  phenotypes were pre-processed by an imaging-pipeline developed and executed on behalf of
438 UK Biobank [43]. More information on T1 processing can be found in the UK Biobank

439  online documentation [44]. Briefly, cortical surfaces were modelled using FreeSurfer, and
440  volumes were extracted based on Desikan-Killiany surface templates [45]; subcortical areas
441  were derived using FreeSurfer aeseg tools [46]. VVolumetric measures (mm?) have been

442  generated in each participant’s native space. We used 83 available imaging-derived

443  phenotypes (IDPs) of cortical and subcortical grey-matter volumesin regions of interest

444  spanning the whole brain (UK Biobank category 192 & 190; STable 1). We assume the IDPs

445  to be normally-distributed.

446  Phenotypic quality control

447 Excluding participants who withdrew consent, we considered 41,776 participants with
448  non-missing T1-weighted IDPs that had been processed in conjunction with T2-weighted

449  FLAIR (UK Biobank field ID 26500) where available. Using both T1 and T2 measures

450  ensures more precise cortical segmentation [47]. Extreme outliers outside of 4 standard

451  deviations from the mean were excluded, which resulted in between 41,686 to 41,769

452  available participants depending on the IDP. 381 participants were excluded as they self-

453  reported non-European ethnicity. Across the 83 brain volumes variables and the covariates,
454 this phenotypic quality control resulted in 39,947 complete cases, for whom the following

455  genetic quality control steps were performed.

456
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457  Genetic quality control

458 Out of the 39,947 UK Biobank participants, genetic data were available for 38,957
459  participants. Genetic data was quality controlled on by UK Biobank and were downloaded
460  from thefull release [48]. We applied additional quality control as previously described in
461  Coleman et al. [49] using PLINK?2 [50]. 38,038 participants were of European ancestry

462  according to 4-means clustering on the first two genetic principal components available

463  through UK Biobank [51]. Of those participants, we removed 72 due to quality assurance
464  provided by UK Biobank and 204 participants due to high rates of missingness (2%

465  missingness). To obtain asample of unrelated individuals, 956 participants were removed
466  using the greedyRelated algorithm (KING r < 0.044 [52]). The algorithm is“greedy” because
467 it maximises sample size; for example, it removes the child in a parent-child-trio. Finally, 28
468  participants were removed because genetic sex did not align with self-reported sex, resulting
469 inatotal of 36,778 participants (STable 10). Genetic sex was identified based on measures of
470  X-chromosome homozygosity (Fx ; removal of participants with Fx[_ <(10.9 for phenotypic
471 males, Fxl1>_ 0.5 for phenotypic females). The final sample (N = 36,778) included 19,888
472  females (54 %) and had an average age of 63.3 years at the neuroimaging visit (range from

473  40.0to 81.8 years).

474 Out of 805,426 available directly genotyped variants, 104,771 were removed for high
475  rates of missing genotype data (> 98%). 103,137 variants were removed due to a minimum
476  alelefrequency of 0.01, and 9,935 variants were removed as they failed the Hardy-Weinberg
477  exact test (p-value = 10°%). After excluding 16,326 variants on the sex chromosomes and

478  those with chromosome labels larger than 22, we obtained a final sample of 571,257 directly
479  genotyped SNPs. Imputed genotype data was obtained by UK Biobank with reference to the
480  Haplotype Reference Consortium [53], and we filtered them for a minor alele frequency of

481  above 0.01 and an IMPUTE INFO metric of above 0.4.
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482  Measures of cognitive performance

483 UK Biobank collected cognitive performance data using assessment on a touchscreen
484  computer. The following seven tests were implemented: Matrix Pattern Completion task for
485  nonverbal reasoning, Memory — Pairs Matching Test for memory, Reaction Time for

486  perceptual motor speed, Symbol Digit Substitution Task for information processing speed,
487  Trail Making Test — B and Tower Rearranging Task for executive functioning, and Verbal
488  Numerical Reasoning Test for verba and numeric problem solving, or fluid intelligence.

489  Despite the non-standard and unsupervised delivery of assessment, these cognitive tests

490  demonstrate strong concurrent validity compared with standard reference tests (r = .83) and

491  good test-retest reliability (Pearson r range for different cognitive tests = 0.4-0.78) [54].

492 In this study, we considered GWAS summary statistics of performance in these seven
493  cognitivetests by de la Fuente, Davies [12] that were calculated with between 11,263 and
494 331,679 participants for each test. We consider the HapMap 3 reference SNPs with the MHC

495  regions removed.

496

497  Statistical analysis

498 GWAS summary statistics calculation. GWAS summary statistics for the 83

499  regional brain volumes (continuous variables) were calculated using REGENIE [31], which
500 fits polygenic effectsin alinear mixed model using Ridge regression. The REGENIE pipeline
501 issplitinto two steps: First, blocks of directly genotyped SNPs are used to fit a cross-

502 validated whole-genome regression model using Ridge regression, to determine the amount
503  of phenotypic variance explained by genetic effects. Second, the association between the

504  phenotype and imputed genetic variants is calculated conditional upon Ridge regression
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505  predictions from the first step. Proximal contamination is circumvented by using a leave-one-

506 chromosome-out scheme.

507 Covariates included in the GWASS analyses were age at neuroimaging visit, sex,

508  genotyping batch, and 40 genetic principal components as provided by UK Biobank. We also
509 derived the variables time of year, head position, and acquisition site, but excluded them

510 from our set of GWAS covariates because they were not associated with the brain volumes at
511 the pre-registered arbitrary cut-off of r < .10 (STable 9), and therefore explained less than 1%
512  of the phenotype variance. Note that, in contrast to other existing brain-volume GWAS in UK
513  Biobank [e.g., 55], our analyses were conducted without controlling for brain size (or any

514  other global brain measure such as total grey-matter volume or intracranial volume). Genetic
515 correlations calculated relative to such global measures are known to attenuate genetic

516  correlations among volumes, as well as with other traits such as cognitive abilities [15]. In the
517  context of this study, we aim to model general dimensions of variance shared between brain
518  volumes which will closely covary with brain size. Attenuated genetic correlations would

519  hide mgor dimensions of variance across genetic brain networks, because much of the

520 variance shared between volumes overlaps with variance indexed by brain size and would
521  therefore not tag general dimensions of shared genetic variance between brain volumes. This
522  varianceis of interest because general intelligence yields global rather than a region-specific
523  associations with grey matter volume [28]. Equally, aging affects the whole brain rather than

524  individual regions [56].

525 Genetic and phenotypic correlation matrices between brain volumes. To derive
526  dimensions of shared morphometry across brain volumes, we calculated both a phenotypic

527  and agenetic correlation matrix from 83 grey-matter volume variables. Phenotypic regional
528  brain volumes were residualised for age at neuroimaging visit and sex, and then used to

529  estimate a phenotypic correlation matrix through Pearson’s correlations with complete
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530 pairwise observations. The genetic correlation matrix was inferred through LDSC, a

531 technique quantifying shared polygenic effects between traits using GWAS summary

532  Statistics. Cross-trait LDSC regresses the product of effect sizesin two GWAS onto linkage
533  disequilibrium scores, indicating how correlated a genetic variant is with its neighbouring
534  variants [33]. The slope indexes the genetic correlation, while the intercept captures signal
535 uncorrelated with LD, such as population stratification, environmental confounding, and

536  sample overlap.

537 To quantify the relationship between phenotypic and genetic correlations, we

538  estimated the correlation between 3403 phenotypic and genetic between-region correlations

539 (@ = 3403 correlations between 83 volumes). Additionally, we calculated genetic

540  correlation matrices for smaller canonical networks including fewer brain volumes than the
541  whole brain. For example, the central executive network included eight regional volumes
542  (STable 2 lists volumesincluded in the nine canonical networks). We reported SNP-

543  heritability estimates for each brain volume inferred through LDSC.

544 Principal component analysis (PCA) of genetic and phenotypic correlation

545  matrices. PCA was applied to the phenotypic and genetic correlation matrices indicating

546  genetic overlap between brain volumes described above to obtain their respective first

547  principal component (PC). The first PC represents an underlying dimension of common

548  structural sharing across regional volumes, which we refer to as general dimensions of shared
549  morphometry throughout this manuscript. PC loadings were calculated for all volumesin the
550  whole brain, as well as volumes in smaller canonical networks to quantify contributions of
551  regional volumesto this either brain-wide, or network-specific dimension of shared

552  morphometry.
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553 Paralld analysis. We tested whether genetic PCs explained more variance than

554  expected by chance, that is, whether they explained more than 95% of their corresponding
555  PCs generated under asimulated null correlation matrix. We developed a version of parallel
556  analysisto generate null distributions of eigenvalues by simulating null correlation matrices
557  sampled from adiagonal population correlation matrix, where the multivariate sampling

558  distribution is specified to take the form of the sampling distribution of the standardised

559  empirical genetic correlation matrix (the Vsrp matrix, as estimated using GenomicSEM [32]).
560  Thissampling correlation matrix serves as an index of the precision of the elementsin the
561 empirical genetic covariance matrix (i.e., heritabilities and co-heritabilities across traits) and
562  the sampling dependencies among these when generating the random null models. We

563  gpecified 1,000 replications to simulate the null correlation matrices and use a 95% threshold

564  for distinguishing true eigenvalues from noise.

565 Simulation of networkswith randomly included brain volumes. We performed an
566  additional sensitivity analysis simulating networks with randomly included brain volumes, to
567  determine whether shared structural variance relied on network membership, or arose through
568  phenotypic properties common to all regional brain volumes. To compare explained

569  variances between canonical networks and random networks, we quantified the expected

570  explained variance in random networks by randomly sampling regions 800 times each, for
571 different numbers of included volumes (because networks including fewer volumes generally
572  tendto explain alarger percentage of variance, as larger networks are more heterogeneous).
573  Thatis, smulations were run for 8, 10, 12, 16, 30, and 36 included regions, to obtain a

574  distribution for each networks size to compare the corresponding network’ s explained

575  varianceto. We reported the mean explained variance by PCs for networks with randomly
576  included volumes and a 95% confidence interval. Comparisons between explained variances

577  for random and empirical networks were done for the same number of included volumes.
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578 Correlation between phenotypic and genetic PC loadings. To compare whether
579  genetic correlations structures of regional brain morphometry resembled the phenotypic

580  correlation structure of the same regions, we calculated an un-standardised linear regression
581  with avector of 83 phenotypic whole-brain PC |loadings as the dependent variable, and a
582  vector containing 83 genetic whole-brain PC loadings as the independent variable. We

583  calculated the Tucker congruence coefficient to quantify the relative similarity between the
584  two setsof PC loadings independent of their absolute magnitude. The coefficient is

585 insensitiveto scalar multiplication [57].

586 Correlation between genetic PC loadings with age sensitivity. Pearson’s

587  correlations between 83 phenotypic grey-matter volumes and age at neuroimaging visit were
588  calculated to quantify cross-sectional age-volume-correlations for each of the 83 brain

589  volumes. These age-volume correlations are referred to as age sensitivity throughout the rest
590 of the manuscript. We estimated the correlation between a vector containing indices of age
591  senditivity and (1) avector of genetic whole-brain PC loadings, and for comparison (2) a

592  vector of phenotypic whole-brain PC loadings.

593 Genome-wide shared genetic variance of morphometry acr ossthe whole brain
594  and canonical networks. To statistically represent genome-wide shared morphometric

595  variance across brain volumes (i.e., genetic PCs), we developed a novel method summarising
596  genome-wide by-variant effects contained in the grey-matter volume GWAS summary

597  statistics, which were weighted by their respective (region-specific) PC loadings obtained
598  through PCA. We derived GWAS summary statistics for a genetic principa component of
599  multiple GWAS phenotypes derived from samples of unknown degrees of overlap by

600  adapting existing software for genome-wide multivariate meta-analysis by Baselmans et al.
601  [58] and using GenomicSEM [32]. Fig. 2 illustrates this approach in afour-step procedure.

602  Theinput data for our approach are GWAS summary statistics for 83 cortical and subcortical
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603  brain volumes (step 1). We have made them publicly available online. Using the

604  GenomicSEM software [32], we obtained a genetic correlation matrix indicating genetic
605  overlap between these 83 brain volumes (step 2). We extracted PC |loadings on the underlying
606  general dimension of shared genetic variance for each of the 83 regions (step 3). Finally, we
607  modified the existing genome-wide multivariate meta-analysis software package [58], in
608  order to create summary statistics for an underlying genetic PC. Genome-wide SNP effects
609  were calculated as an average of all SNP effects contributed by the 83 GWAS phenotypes,
610  weighted by their respective PC loading, with standard errors computed using a method that
611  corrects for sample overlap, as estimated by LDSC (step 4). We used this approach to

612  calculate univariate summary statistics to represent general dimensions of shared

613  morphometry between regional volumes across the whole brain (83 GWAS phenotypes), as

614  well as nine smaller canonical networks.

615 We had tested and validated this novel approach in an independent set of GWAS

616 summary statistics of four risky behaviours [59]. In addition to the risky behaviour GWAS,
617  another set of summary statistics is available for a phenotypic PC underlying these risky

618  behaviour phenotypes that the authors had calculated phenotypically before running GWAS
619  anayses. We compared these phenotypic PC GWAS summary statistics by Linnér, Biroli

620  [59] with summary statistics for a genetic PC underlying the four risky behaviours GWAS
621 that we calculated using our novel method outlined above (Fig. 2). We found that they

622  correlated at a magnitude of rg = 0.99 (SE = 0.037) confirming that our method captures the
623  samesignal as can be obtained from phenotypic PCs, by simply relying on publicly available
624 GWASdata. For details of the analysis and code refer to:

625  https://annafurtjes.github.io/genomicPCA/ .

626 Genetic correation between general dimensions of shared morphometry acr oss

627 thewhole-brain and brain age. Using LDSC [33], we calculated a genetic correlation
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628  between genetic morphometric sharing across the whole brain and brain age. The summary
629  dtatisticsindexing dimensions of shared morphometry across brain volumes were created

630  using the novel method presented above (Fig. 2). We downloaded the brain age GWAS

631 summary statistics online [37]. Brain age is a phenotype based on individual-level predictions
632  of how much older (or younger) an individual’s brain appears, relative to their chronological
633  age. It isestimated using parameters characterising the relationship between age and

634  structural neuroimaging measures (volume, thickness, and surface area) that were tuned using
635  machinelearning in an independent sample. The final brain age phenotype indexed in the

636 GWASwas calculated as the difference between participants chronological age and their age

637  aspredicted based on structural brain characteristics.

638 Genetic correlations between brain networks and a factor of general cognitive
639  ability. We assessed genetic correlations between brain networks and general cognitive

640  ability using GenomicSEM [32]. Using univariate network-specific summary statistics (as
641  describe above; Fig. 2) and a genetic general cognitive ability factor modelled from seven
642  cognitive ability GWAS summary statistics, the GenomicSEM software [32] was used to
643  model general cognitive ability and perform multivariate LDSC using diagonally weighted
644 least squares. To quantify model fit, we reported default fit indices calculated by the

645  GenomicSEM package: y2 values, the Akaike Information Criterion (AIC), the Comparative
646  Fit Index (CFl) and the Standardised Root Mean Square Residuals (SRMR). The multiple
647  testing burden was addressed by correcting p-values from the genetic correlations for

648  multiple testing with afalse-positive discovery rate of 5% [60].

649 We preregistered that we would test for significant differencesin correlation
650  magnitudes between the networks that yielded a significant association with general cognitive
651  abilities. Because we hypothesised a particularly strong association for the central executive

652  network, we planned to perform this comparison between the central executive and all other
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653  networks, to reduce the multiple testing burden. We fitted two GenomicSEM modelsin
654  which correlation magnitudes between general cognitive ability and both the central

655  executive and another network were either freely estimated, or they were forced to be the
656  same. A significant decrease in model fit between the freely estimated model and the

657  constrained model (df = 1) would indicate that there likely are differencesin correlation
658  magnitudes between the networks in how strongly they correlate with general cognitive

659  ability (SFig. 23).

660 Additionally, we assessed whether the central executive network was

661  disproportionately genetically correlated with general cognitive ability considering its small
662 size(i.e, few included volumes). Similar to the approach described above, we fitted two

663 models: One, in which we freely estimate the correlation between the central executive and
664  genera cognitive ability, and the correlation between another network and general cognitive
665  ability. We then divided the correlation magnitude by the number of regionsincluded in the
666  network (i.e., magnitude was divided by 8 for the central executive network, it was divided
667 by 16 for the default mode, by 36 for the P-FIT etc.). The second model had the same set up,
668  but we forced the adjusted correlations for the two networks to be equal (€.9., rcentral executive / 8
669 == rueraur/ 16). We assessed whether there was a significant differencein y° model fit

670  between these two models. As above, a significant decrease in model fit between the freely
671  estimated model and the constrained model (df = 1) would indicate that there likely are

672  differencesin relative correlation magnitudes (i.e., magnitudes adjusted for network sizes).
673  Based on previous findings, we expected the relative magnitude for the central executive

674  network to be significantly larger than the relative magnitude for any other network.

675 To probe whether any specific cognitive ability might have driven the genetic
676  associations between brain networks and general cognitive ability, we reported genetic

677  correlations between the significant networks and three specific cognitive abilities: (1) Matrix
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678  Pattern Completion task to represent nonverbal reasoning, (2) Memory — Pairs Matching Test
679  torepresent memory, and (3) Symbol Digit Substitution Task to represent information
680  processing speed. Reducing the analyses to only three consistent and representative cognitive

681  measures reduced the burden of multiple testing.

682 We calculated Qyr4it heterogeneity indices [36] to evaluate whether the general

683  cognitive ability factor that we fit in the models above accounts well for the specific

684  cognitive abilities. To this end, we compared the fit of two models for each network as

685 displayed in SFig. 24. One model allows for independent associ ations between the seven
686  cognitive traits, and both general cognitive ability and the brain network. The second model
687  forcesthe association between the seven cognitive traits and the brain network to go through
688  the general cognitive ability factor. We obtained y* fit statistics for both models and tested
689  their difference for statistical significance (A x* # O; df = 6). Non-significant results (p >

690  0.05/10) would suggest that genetic associ ations between cognitive abilities and brain

691  networks are likely general and act through afactor of general cognitive ability.

692 Data and code availability. Access to phenotypic and genetic UK Biobank data was
693  granted through the approved application 18177. We have made the 83 GWAS summary

694  statistics of regional volumes available at the GWAS catalogue

695  (https://www.ebi.ac.uk/gwas). GWAS summary statistics for the seven cognitive traits by de

696 laFuente, Davies[12] were downloaded at https://datashare.ed.ac.uk/handle/10283/3756.

697  The pre-registration for this analysis can be found online (https://osf.io/7n4qj). Full analysis

698  codeincluding results for this study are available at

699  https://annafurtjes.github.io/Genetic networks project/index.html.

700
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755  Fig. 1. Nine canonical brain subnetworks. The networks were visualized with the BrainNet
756  Viewer (http://www.nitrc.org/projects/bnv/) [61]. Regions of interest were visualised using
757  scripts by Dr. Colin Buchanan (University of Edinburgh). Included brain regions and their

758  abbreviations are listed in STable 2.

759
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1. Input data: 1. Genetic correlation matrix:
83 GWAS summary statistics for cortical and inferred through linkage disequilibrium score regression for 83
subcortical brain volumes brain volumes in GenomicSEM [32]

bbb bl iy

3. Principal Component Analysis: 4. Summary statistics representing underlying genctic PC:
extract principal component (PC) loadings on the first Genome-wide SNP effects caleulated as an average of all SNP effects
PC of genetic correlation matrix with eigen() R function contributed by multiple volumes, weighted by respective PC
loadings. Computed using modified software package by Baselmans
al Companent ¢t al. [58]
/RN

. G GWAMA software pack w Basclmans', our modificd GWAMA
/ i | \ unction’, and PCA" available O
760

761  Fig. 2. Four-step procedure to obtain statistical representation of genetic brain network

762  structure from GWAS summary statistics. (1) GWAS summary statistics for 83 grey-matter
763  volumesin UK Biobank from European ancestry were used asinput data (N = 36,778). They
764  were calculated as described in Methods and are publicly available. (2) Linkage

765  disequilibrium score regression (LDSC) was used to infer genetic correlations between 83
766  brain volumes using GenomicSEM [32]. (3) Genetic correlations are analysed using PCA to
767  derive PC loadings on the first PC, representing an underlying dimension of shared

768  morphometry. (4) We developed a method to derive univariate summary statistics for a

769  genetic PC of multiple GWAS phenotypes (derived from samples of unknown degrees of
770 overlap). A genetic PC underlying several brain volumesis interpreted throughout the

771 manuscript to index general dimensions of regionally shared morphometry. Genome-wide
772 SNP effects are calculated as an average of all SNP effects contributed by multiple

773 phenotypes, weighted by their respective PC loadings. Standard errors are computed using a
774  method that corrects for sample overlap, as estimated by LDSC. We have validated this novel

775  approach in an independent set of GWAS summary statistics [59]. All software we used is
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776  available on https://github.com/. * The software by Baselmans, Jansen [58], containing the

777 GWAMA function is available at https://github.com/basel mans/multivariate GWAMA/. 2

778  Our modified version of the GWAMA functionis at

779  https://github.com/AnnaFurtjes/Genetic networks project/blob/main/my GWAMA 260320

780  20.R and ® a step-by-step demonstration of genomic PCA is at

781  https://annafurtjes.qgithub.io/genomicPCA/.
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784  Fig. 3. (A) Distribution of SNP-heritability estimates for 83 regional grey-matter volumes
785  inferred through univariate LDSC. (B) Distribution of genetic correlations among 83 regional
786  grey-matter volumes inferred through between-region LDSC. This figure only depicts

787  between-region correlations but not the very high genetic inter-region correlations between
788  regions and their homologous counterpart in the opposite hemisphere (excluding brain stem).

789  (C) Distribution of phenotypic correlations among 83 regional grey-matter volumes inferred
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790  through Pearson’s correlations. The raincloud plots were created based on code adapted from

791  Allenetd.[62].
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794  Fig. 4. (A) Density distributions of principal component (PC) loadings on the first PC
795  underlying phenotypic and (B) genetic networks. Vertical linesindicate quantiles. (C)

796  Variance explained by phenotypic and genetic first PC in each network.

797
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799  Fig. 5. (A) Association between phenotypic and genetic between-region correlations of 83
800  regional grey-matter volumes. The dashed red lineisthe line of identity, with aslope of 1 and
801  anintercept of 0. The dashed grey line indicates rq = 0. (B) Correlation between phenotypic
802  and genetic PC loadings on the first PC underlying 83 regional volumes. The dashed red line
803 isthelineof identity. (C) Correlation between phenotypic PC loadings and age sensitivity as
804  indexed by phenotypic cross-sectional age-volume correlations. (D) Correlation between

805  genetic PC loadings and age sensitivity as indexed by phenotypic cross-sectional age-volume

806  correlations.

807

808 Tables
809 Table 1. Genetic correlations between general cognitive ability and nine canonical brain

810 networks

Network Included ry,  95% ClI p-value ~ FDR g-value
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volumes

Whole brain 83 021 0.13-0.29 1.00x10” 3.00x10°”

Central executive 8 020 0.12-0.27 1.00 x10” 3.00 X107

Cingul o-opercular 10 020 0.13-0.27 1.00x10°’ 3.00x107

Default Mode 16 0.19 0.12-0.26 2.00x107 3.00x107

Hippocampal - 12 0.17  0.09-0.24 2.66 x10° 2.66 x10°
Diencephalic

Multiple Demand 12 019 0.12-0.27 7.00 x10” 9.00 x10”

P-FIT 36 020 0.12-0.27 2.00x10°’ 3.00 X107

Salience 10 019 0.12-0.26 3.00x10° 4.00 x10”

Sensorimotor 12 019 0.11-027 1.20x10” 1.30x10°

Temporo-amygdal a- 30 020 0.12-0.27 2.00x107 4.00x107
orbitofrontal

811 Iy = genetic correlation between brain network and a factor of general cognitive ability modelled from seven
812  cognitive traits, SE = standard error, 95% Cl = 95% confidence interval, p-value = original p-value as indicated
813 by the GenomicSEM model, false discovery rate (FDR) g-value = p-value corrected using 5% false discovery
814 rate.

815

816


https://doi.org/10.1101/2021.10.22.465437
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465437; this version posted June 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

GENETIC BRAIN NETWORKS 41

817  Supplemental I nformation titles and legends

818  Supplementary Table 1. 83 cortical and subcortical grey-matter regions of interest

819  Supplementary Table 2. Network characterisation

820  Supplementary Table 3. Explained variance and descriptive statistics of PC loadings within

821 phenotypic canonical networks

822  Supplementary Table 4. Model fit for genetic correlations between genetic general cognitive

823 ability and each canonical network

824  Supplementary Table 5. Fit indices for the comparison between freely-varying or constrained
825 correlations with general cognitive ability between central executive and other

826 networks

827  Supplementary Table 6. Fit indices for the adjusted comparison between freely-varying or
828 constrained correlations with general cognitive ability between central executive and

829 other networks

830  Supplementary Table 7. Genetic correlations between three cognitive abilities and brain

831 networks

832  Supplementary Table 8. Canonical networks explain more variance than networks with

833 randomly included volumes

834  Supplementary Table 9. Associations between brain volumes and potential covariates

835  Supplementary Table 10. Genetic quality control exclusion criteriaresulting in atotal GWAS

836 sample of 36,778 out of 39,947 participants

837  Supplementary Fig. 1. Genetic correlation matrix inferred through LDSC across the whole

838 brain (83 volumes).
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839  Supplementary Fig. 2. Genetic correlations inferred through LDSC among the central

840 executive network (8 volumes).

841  Supplementary Fig. 3. Genetic correlations inferred through LDSC among the cingulo-

842 opercular network (10 volumes).

843  Supplementary Fig. 4. Genetic correlations inferred through LDSC among the default mode

844 network (16 volumes).

845  Supplementary Fig. 5. Genetic correlations inferred through LDSC among the hippocampal -

846 diencephalic network (12 volumes).

847  Supplementary Fig. 6. Genetic correlations inferred through LDSC among the multiple

848 demand network (12 volumes).

849  Supplementary Fig. 7. Genetic correlations inferred through LDSC among the P-FIT network

850 (36 volumes).

851  Supplementary Fig. 8. Genetic correlations inferred through LDSC among the salience

852 network (10 volumes).

853  Supplementary Fig. 9. Genetic correlations inferred through LDSC among the sensorimotor

854 network (12 volumes).

855  Supplementary Fig. 10. Genetic correlations inferred through LDSC among the temporo-

856 amygdala-orbitofrontal network (30 volumes).

857  Supplementary Fig. 11. Parallel analysisin the central executive network

858  Supplementary Fig. 12. Paralel analysisin the cingulo-operular network

859  Supplementary Fig. 13. Parallel analysisin the default mode network

860  Supplementary Fig. 14. Parallel analysis in the hippocampal -diencephalic network
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861  Supplementary Fig. 15. Paralel analysisin the multiple demand network

862  Supplementary Fig. 16. Paralel analysisin the P-FIT network

863  Supplementary Fig. 17. Paralel analysis in the salience network

864  Supplementary Fig. 18. Parallel analysisin the sensorimotor network

865  Supplementary Fig. 19. Paralel analysis in the temporo-amygdala-orbitofrontal network

866  Supplementary Fig. 20. Parallel analysisin the whole brain with 83 nodes

867  Supplementary Fig. 21. Genetic correlations between seven cognitive traits and brain

868 networks. Descriptively, performance in the Tower Rearranging Task has the largest
869 association with brain networks in comparison with other cognitive tasks.

870 Abbreviations: Matrix = Matrix Pattern Completion task; Memory = Memory — Pairs
871 Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task;
872 Trails-B = Trail Making Test — B; Tower = Tower Rearranging Task; VNR = Verbal
873 Numerical Reasoning Test; central exec = central executive; cingulo = cingulo-

874 opercular; hippocampal = hippocampal -diencephalic; multiple = multiple demand; p fit
875 = parieto-frontal integration theory; sensori = sensorimotor; temporo = temporo-

876 amygdala-orbitofrontal

877  Supplementary Fig. 22. Genetic correlation between the central executive network and factor g

878 modelled for correlation structure of seven cognitive traits. The seven cognitive traits and the
879 network are inferred through LDSC, and the factor through factor analysis. Matrix = Matrix
880 Pattern Completion task; Memory = Memory — Pairs Matching Test; RT = Reaction Time;
881 Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test — B; Tower =
882 Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test. Model fit: y*= 124.04,

883 df = 20, p-value = 2.1 x10%°, AIC = 174.04, CFI = 0.97, SRMR = 0.079
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884  Supplementary Fig. 23. lllustration of the genomic structural equation models used to test

885 whether correlation magnitudes with genetic general cognitive ability differ between
886 the central executive network and other significantly associated networks. The model
887 on the right freely estimates correlation parameters between two networks and genetic
888 g while allowing for correlations between the networks. In the left model, we force
889 the correlation magnitudes to be the same, and assess whether model fit deteriorates
890 significantly, to conclude whether correlation magnitudes between networks are likely
891 different from each other.

892  Supplementary Fig. 24. Structural equation models to calculate Qy4it heterogeneity indices

893

894

895
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