

1 **Short title:** Two oomycete MAMPs induce distinctive plant responses
2
3 **Title of the article:** Two structurally different oomycete lipophilic MAMPs induce
4 distinctive plant immune responses
5
6 **Authors:** Mohammad Shahjahan Monjil^{1,2}, Hiroaki Kato³, Satomi Ota¹, Kentaro
7 Matsuda¹, Natsumi Suzuki¹, Shiho Tenhiro¹, Ayane Tatsumi¹, Sreynich Pring¹, Atsushi
8 Miura¹, Maurizio Camagna¹, Takamasa Suzuki⁴, Aiko Tanaka¹, Ryohei Terauchi³, Ikuo
9 Sato¹, Sotaro Chiba¹, Kazuhito Kawakita¹, Makoto Ojika¹ and Daigo Takemoto^{1*}
10
11 **Affiliation:**
12 ¹ Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-
13 8601, Japan
14 ² Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh-
15 2202, Bangladesh
16 ³ Graduate School of Agriculture, Kyoto University, Muko, Kyoto, 617-0001, Japan.
17 ⁴ College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 478-
18 8501 Japan
19
20 **Corresponding author:** Daigo Takemoto, E-mail:dtakemo@agr.nagoya-u.ac.jp,
21 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya,
22 464-8601 Japan
23
24 The author responsible for distribution of materials integral to the findings presented in
25 this article in accordance with the policy described in the Instructions for Authors
26 (<https://academic.oup.com/plphys/pages/General-Instructions>) is Daigo Takemoto
27 (dtakemo@agr.nagoya-u.ac.jp).
28
29 **One-sentence summary:** Two lipophilic MAMPs, Pi-Cer D and Pi-DAG, containing
30 microbe specific structures induce distinctive plant immune responses
31

32 **Author Contribution:** KK and DT designed the research. MSM, HK, SO, KM, NS, ST,
33 A Tatsumi, SP, AM, TS, A Tanaka, MO and DT performed experiments. MSM, HK, KM,
34 ST, CM, TS, A Tanaka, MO and DT analyzed the data. MC, A Tanaka, RT, IS, SC, KK,
35 MO and DT supervised the experiments. MO and DT wrote the article, and MC, MO
36 and DT revised and edited the article.

37

38 **Abstract**

39 Plants recognize a variety of external signals and induce appropriate mechanisms to
40 increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking
41 pathogens and induction of effective resistance mechanisms are critical functions for
42 plant survival. Some molecular patterns unique to a certain group of microbes, microbe-
43 associated molecular patterns (MAMPs), are sensed by plant cells as non-self molecules
44 via pattern recognition receptors. While MAMPs of bacterial and fungal origin have
45 been identified, reports on oomycete MAMPs are relatively limited. This study aimed to
46 identify MAMPs from an oomycete pathogen *Phytophthora infestans*, the causal agent
47 of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin
48 production in potato as markers, two structurally different groups of elicitors, namely
49 ceramides and diacylglycerols were identified. *P. infestans* ceramides (Pi-Cer A, B and
50 D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing
51 eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in
52 potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction
53 were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type
54 fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but
55 in oomycetes and fungi, indicating that they are microbe molecular patterns recognized
56 by plants. When *Arabidopsis* was treated with Pi-Cer D and EPA, partially overlapping
57 but different sets of genes were induced. Furthermore, expression of some genes is
58 upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating
59 that plants combine the signals from simultaneously recognized MAMPs to adapt the
60 defense response to pathogens.

61

62 **Keywords:** Ceramide, Diacylglycerol, MAMPs, Oomycete, Phytoalexins,
63 *Phytophthora infestans*, Reactive oxygen species.

64

65 **Introduction**

66 During the course of their evolution, plants were always faced with the challenges of
67 environmental microorganisms but have survived by developing physical barriers or
68 inducible resistance strategies against pathogens. The first step of inducible plant
69 defense against potential pathogens is the recognition of molecular patterns of microbes,
70 referred to as MAMPs or PAMPs (microbe- or pathogen-associated molecular patterns).
71 Plant cells recognize molecular patterns unique to a certain group of microbes as non-
72 self molecules via pattern recognition receptors (PRRs) (Ranf, 2017; Ngou et al., 2022).
73 In *Arabidopsis*, for instance, chitin, a major component of the fungal cell wall, is
74 recognized by a PRR complex containing LysM-RLK and co-receptor CERK1, while a
75 conserved sequence of bacterial flagellin (flg22) and an elongation factor EF-Tu (elf18)
76 induce plant defense via PRRs, FLS2 and EFR, respectively, in conjuncture with co-
77 receptor BAK1 (Ranf, 2017). While a variety of MAMPs of bacterial and fungal origin,
78 as well as the mechanisms for their recognition in plants have been studied, reports of
79 MAMPs from oomycete pathogens are relatively limited.

80

81 Oomycete plant pathogens resemble fungal pathogens in various aspects. Besides
82 morphological similarities, such as filamentous hyphae, they are also able to form
83 appressoria and haustoria during infection in host plants. These similarities are however
84 merely the result of convergent evolution, since oomycetes are phylogenetically closely
85 related to diatoms and brown algae (Stramenopiles), and only distantly related to fungi
86 (Opisthokonta). Therefore, the natures of oomycetes and true fungi are rather different.
87 For example, the somatic thallus of oomycetes is diploid, while it is haploid (or
88 dikaryotic) for true fungi, and oomycetes have mitochondria with tubular cristae
89 whereas true fungi have flattened ones. More importantly in terms of interaction with
90 plants, the composition of the cell wall and cell membrane of oomycete and fungi is
91 distinctive. Although varying from species to species, the fungal cell wall mainly

92 contains β -1,3-glucan and chitin (β -1,4-N-acetylglucosamine) (Free, 2013), whereas the
93 oomycete cell wall consists mainly of cellulose (β -1,4-glucan) and β -1,3-glucan
94 (Mélida et al., 2013). The plasma membrane of oomycetes contains fucosterol as the
95 end sterol, but ergosterol is the major end sterol for fungi (Gaulin et al., 2010).
96 Consequently, plants may have distinct mechanisms to recognize oomycete and fungal
97 pathogens to activate appropriate defense reactions.

98

99 Of the various oomycete genera, *Phytophthora*, *Pythium* and *Peronospora*
100 /*Hyaloperonospora* (downy mildew) are particularly noteworthy, as they include many
101 species that are problematic plant pathogens (Kamoun et al., 2015). These plant
102 pathogenic oomycete genera are predicted to have evolved from a common
103 phytopathogenic ancestor species (Thines and Kamoun, 2010). Undoubtedly the most
104 infamous representative of pathogenic oomycetes is *Phytophthora infestans*, the causal
105 agent of potato late blight, which is responsible for the Great Famine of the 1840s in
106 Ireland. This pathogen is an ongoing problem even today, and the total costs for control
107 efforts and yield losses by *P. infestans* are estimated in the range of multi-billion dollars
108 annually (Garelk, 2002; Fry, 2008). Problems caused by *P. infestans* are particularly
109 serious in developing countries where fungicides are used as the primary solution for
110 disease management. Although potato cultivars with introduced resistance (*R*) gene(s)
111 have been employed, due to selection pressure on these effectors in the pathogen
112 population, *R*-gene dependent resistances have been lost in many varieties (Forbes,
113 2012).

114

115 Previously, Bostock et al. (1981) identified polyunsaturated fatty acids (PUFAs) such as
116 eicosapentaenoic acid (EPA) and arachidonic acid (AA) from *P. infestans* as elicitor
117 molecules. EPA can be considered as a MAMP of oomycete pathogens, as EPA is not
118 found in higher plants, but is an essential component of the plasma membrane of
119 oomycete cells (Bostock et al., 2011). In this study, we purified two lipophilic elicitors
120 from *P. infestans*. Using induction of reactive oxygen species (ROS) production or
121 phytoalexin production in potato as markers for the purification of elicitors, we
122 identified two structurally different groups of elicitors, namely ceramides and

123 diacylglycerols. *P. infestans* ceramide (Pi-Cer) elicitors induced ROS production, while
124 diacylglycerol (Pi-DAG) elicitors induced the accumulation of phytoalexins in potato.
125 RNAseq analysis was performed in Arabidopsis treated with Pi-Cer, EPA (a
126 substructure of Pi-DAG), or the mixture of both elicitors, to investigate the difference in
127 the activity of the two elicitors on the induction of defense genes, and the effect of
128 simultaneous recognition of both MAMP elicitors. We have previously reported that a *P.*
129 *infestans* ceramide Pi-Cer D is cleaved by an apoplastic ceramidase NCER2 and the
130 resulting 9-methyl-branched sphingoid base is recognized by a lectin receptor-like
131 kinase RDA2 in Arabidopsis (Kato et al., 2022). Cerebrosides (a group of
132 glycosphingolipids) have been identified as elicitor molecules from rice blast pathogen
133 *Pyricularia oryzae*, which also contain 9-methyl-branched sphingoid base (9Me-Spd) as
134 part of their epitope structure (Koga et al., 1998, Umemura et al., 2000).

135

136 **RESULTS**

137 **Purification of *Phytophthora infestans* elicitors which induce ROS production of** 138 **potato suspension-cultured cells**

139 Previously, we have reported that crude elicitor derived from the mycelia of *P. infestans*
140 extracted by methanol (Pi-MEM) can induce the resistance reactions in potato (Monjil
141 et al., 2015). Treatment with Pi-MEM can induce the ROS production in potato
142 suspension cells and leaves, and production of sesquiterpenoid phytoalexins (rishitin,
143 lubimin and oxylubimin) in potato tubers (Fig. 1). To purify the elicitor molecules from
144 the mycelia of *P. infestans* and determine their structure, Pi-MEM was first fractionated
145 by its solubility in water and butanol. In this study, the lipophilic (butanol soluble)
146 fraction was further separated by column chromatography, and the elicitor fractions
147 were selected using their ROS inducing activity in cultured potato cells (Fig. S1). Only
148 fractions with clear elicitor activity were used for further purification processes. Six
149 fractions with significant ROS-producing activity were further purified (Fig. S1) and the
150 chemical structures of these elicitors were analyzed by NMR and mass spectroscopy
151 (Figs. S2, S3, S5-7 and S9). To compare the structural difference between elicitors and
152 inactive related substances, two fractions with no significant elicitor activity were also

153 structurally analyzed (Figs. S1, S4 and S8). Further structural analyses (Figures S10-
154 S16, and Supplemental document) showed that these eight substances could be divided
155 into two groups, ceramide (Cer) and ceramide-phosphoethanolamine (CerPE). We
156 designated the four ceramide compounds Pi-Cer A-D (*P. infestans* Ceramide) and the
157 remaining four compounds Pi-CerPE A-D respectively. Except for the
158 phosphoethanolamine in Pi-CerPE, compounds that share the same alphabetical suffix
159 are otherwise structurally identical (Fig. 2 and S17A). Pi-Cer A, B and D were able to
160 induce ROS production, whereas Pi-Cer C had only a marginal ROS inducing activity
161 (Figs. 2 and S1). Similarly, Pi-CerPE A, B and D were active elicitors for ROS
162 production (Figs. S1 and S17). For both Pi-Cers and Pi-CerPEs, the D type ones were
163 the most active, followed by B and A in that order (Figs. 2 and S17). An *Arabidopsis*
164 transformant containing a *LUC* transgene under the control of *WRKY33* (AT2G38470)
165 promoter (pWRKY33-LUC) (Kato et al., 2022) was employed for the detection of
166 elicitor activity of Pi-Cers and Pi-CerPEs in *Arabidopsis*. Treatment of Pi-Cers and Pi-
167 CerPEs can induce the transient activation of the promoter with a peak at approx. 90
168 min after elicitor treatment. Same as in the case of ROS production in potato suspension
169 cells (Figs. 2 and S17), Pi-Cer D and Pi-CerPE D showed the highest elicitor activity
170 among other Pi-Cers and Pi-CerPEs, and clearly lower elicitor activity was detected for
171 Pi-Cer C and Pi-Cer PE C in *Arabidopsis* (Fig. S18, as shown by Kato et al. 2022).
172

173 **Pi-Cers are MAMPs of oomycete pathogens**

174 To investigate whether the substances corresponding to Pi-Cers are contained in other
175 phytopathogenic oomycetes, a modified purification process was applied to partially
176 purify the Pi-Cers from *Pythium aphanidermatum*. *Py. aphanidermatum* is an oomycete
177 plant pathogen with a wide host range, causing seedling damping-off, root and stem rots
178 and blights of a wide range of important crops (e.g. tomato, soybean, cucumber and
179 cotton). Although the composition of Pi-Cers was different from that in *P. infestans*, Pi-
180 Cer A, B, C and D were detected in *Py. aphanidermatum*. On the other hand, Pi-Cers
181 were not detected in several tested fungal plant pathogens, such as *Botrytis cinerea*,
182 *Fusarium oxysporum* and *Colletotrichum orbiculare* (Fig. S19). These results suggest
183 that the Pi-Cers are molecules specific to oomycetes.

184

185 **Pi-Cer D and Pi-CerPE D are elicitors of ROS production in dicot and monocot**
186 **plants**

187 Because Pi-Cer D and Pi-CerPE D had the highest elicitor activity among Pi-Cers and
188 Pi-CerPEs, respectively, and were also more abundantly purified than the A and B type
189 substances (Fig. S1), Pi-Cer D and Pi-CerPE D were mainly used in the following
190 experiments. In potato suspension-cultured cells, Pi-MEM induced ROS production
191 peaks approx. 3 h after treatment (Fig. S20). The same pattern was observed after Pi-
192 Cer D and Pi-CerPE D treatment (Fig. S20), suggesting that Pi-Cers and Pi-CerPEs
193 could be the major ROS inducing substances in Pi-MEM. Potato leaves were treated
194 with Pi-Cer D, Pi-CerPE D or Pi-MEM by syringe infiltration and induction of ROS
195 production was detected. ROS production was induced by these elicitors with a peak at
196 approx. 12 h after the treatment. Similarly, ROS production was detected in leaves of *A.*
197 *thaliana* and rice treated with Pi-Cer D or Pi-CerPE D 12 h after the treatment (Fig. 3).
198 Pi-Cer D, but not Pi-Cer C, induced ROS production in *N. benthamiana* (Fig. S21).
199 These results indicated that Pi-Cer D are recognized by both dicot (potato, Arabidopsis,
200 *N. benthamiana*) and monocot (rice) plants as MAMPs.

201

202 **Treatment of Pi-Cer D and Pi-CerPE D enhances the resistance of potato against *P.***
203 ***infestans***

204 The effect of pre-treatment with ceramide elicitors on the resistance of potato against *P.*
205 *infestans* was investigated (Fig. 4). Potato leaves were treated with 10 µg/ml Pi-Cer D,
206 Pi-CerPE D or 100 µg/ml Pi-MEM, and inoculated with a zoospore suspension of *P.*
207 *infestans* at 24 h after the elicitor treatment. Within 3 days after the inoculation, leaves
208 of the control plant showed water-soaked disease symptoms, and the lesions on most
209 leaves extended over the entire leaves within 7 days. In contrast, fewer and smaller
210 spots were developed in leaves treated with Pi-Cer D, Pi-CerPE D or Pi-MEM.
211 Evaluation of disease symptoms up to 7 days after the inoculation indicated that
212 pretreatment with Pi-Cer D and Pi-CerPE D can enhance the resistance of potato leaves
213 against *P. infestans* (Fig. 4). Inoculated leaves were stained with aniline blue to
214 visualize the penetration of *P. infestans* as fluorescent spots of deposited callose beneath

215 the penetration sites at 24 h after the inoculation. Compared with control leaves, fewer
216 fluorescence spots were detected in leaves pretreated with Pi-Cer D, Pi-CerPE D or Pi-
217 MEM elicitors (Fig. 4D), which indicates that Pi-Cer D and Pi-CerPE D can enhance
218 the pre-penetration resistance of potato leaves against *P. infestans*.

219

220 **Isolation of Pi-DAGs as elicitors for the induction of phytoalexin production in**
221 **potato tuber**

222 In potato tubers, accumulation of phytoalexins (risitin, lubimin and oxylubimin) was
223 induced by the treatment with the Pi-MEM (Fig. 1). However, treatment of Pi-Cers or
224 Pi-CerPEs did not induce the production of phytoalexins in potato tubers (Fig. S22),
225 which suggested that Pi-MEM includes other elicitors that can induce phytoalexin
226 production. The initial step of our purification protocol consisted of fractioning the
227 butanol-soluble compounds via silica gel flash column chromatography, yielding eight
228 fractions. Of these eight fractions, the third (RM-I-130-3) and sixth (RM-I-130-6)
229 fraction had shown ROS inducing activity and were used for the isolation of Pi-Cers
230 and Pi-CerPEs (Figs. S1 and 22). The same eight fractions were now used to evaluate
231 their ability to induce phytoalexin production in potato tubers. Substantial elicitor
232 activity was only observed in the first fraction (RM-I-130-1) and it was therefore further
233 purified (Fig. S23). Among the five fractions obtained from the following flash column
234 chromatography, the third (ST-I-8-3) and fourth (ST-I-8-4) fraction showed elicitor
235 activity that resulted in phytoalexin production. These fractions were later found to
236 contain mainly 1,3-DAG (diacylglycerol) and 1,2-DAG, respectively. Both ST-I-8-3 and
237 -4 were further separated by HPLC using an ODS column and at least 5 out of 9
238 resultant fractions showed elicitor activity (Fig. S23). These results indicated that
239 several 1,3- and 1,2-DAGs derived from *P. infestans* are elicitors that can induce the
240 phytoalexin production of potato tubers. Two fractions (ST-I-14-4 and ST-I-23-4) with
241 relatively higher elicitor activity, yield and purity were selected for further structural
242 analyses. Two additional fractions (ST-I-14-8 and ST-I-23-8) which showed almost no
243 elicitor activity were also subjected for structural analyses in order to narrow down the
244 molecular patterns that may be critical for the elicitor activity. Further structural
245 analyses (Figs. S24-27) revealed that the active substances from ST-I-14-4 and ST-I-23-

246 4 were 1,2- and 1,3-DAGs which both contained an eicosapentaenoic acid (EPA) and
247 linoleic acid as fatty acid chains each, and were designated as Pi-DAG A and B,
248 respectively (Figs. 5 and S23). The inactive substances (ST-I-14-8 and ST-I-23-8) were
249 found to be 1,2- and 1,3-DAGs containing palmitic acid and linoleic acid as fatty acid
250 chains, and were designated as Pi-DAGs C and D, respectively. A variety of Pi-DAGs
251 such as Pi-DAG A-D, are also contained in *Py. aphanidermatum*, suggesting that Pi-
252 DAGs are a group of molecules commonly found in oomycete plant pathogens (Fig.
253 S28).

254

255 Based on the structural difference of active and inactive Pi-DAGs (Fig. 5A and B), EPA
256 was predicted to be the essential structure for the elicitor activity of Pi-DAGs A and B.
257 Consistently, EPA from *P. infestans* has previously been identified as an elicitor
258 molecule (Bostock et al., 1981). We confirmed that EPA, but not Pi-Cer D, can induce
259 the production of sesquiterpenoid phytoalexins (risitin and its precursors, lubimin and
260 oxylubimin) in potato tubers (Fig. 5C and D). On the contrary, Pi-Cer D, but not EPA,
261 induced ROS production in potato leaves (Fig. S29), thus indicating that the structurally
262 different oomycete MAMPs, EPA and Pi-Cer D, induce distinctive plant immune
263 responses.

264

265 **Treatment of EPA enhances the resistance of potato tuber against *P. infestans***

266 The effect of treatment with EPA on the resistance of potato tubers against *P. infestans*
267 was evaluated (Fig. 6). Potato tuber discs were treated with 100 µg/ml EPA, and
268 inoculated with a zoospore suspension of *P. infestans* immediately or at 24 h after the
269 EPA treatment. Within 4 days after the inoculation, the growth of *P. infestans* hyphae
270 could be detected on inoculated tubers, and fewer hyphae were developed on tubers
271 treated with EPA (Fig. 6). Conidiophores produced on potato tubers were significantly
272 reduced by EPA treatment, and the effect of EPA treatment on enhanced resistance was
273 even more pronounced when EPA was pretreated 24 h before the inoculation.

274

275 **Identification of the essential structure of unsaturated fatty acid to be recognized 276 as MAMPs in potato**

277 EPA is an omega-3 polyunsaturated fatty acid with 20 carbon chain length and 5 double
278 bonds (20:5, Δ5,8,11,14,17, ω-3) (Fig. 7A). The primary unsaturated fatty acids
279 contained in plants are linoleic acid (18:2, Δ9,12, ω-6) and α-linolenic acid (18:3,
280 Δ9,12,15, ω-3) (Cahoon and Li-Beisson, 2020), thus it is presumed that plants recognize
281 the characteristic structure of unsaturated fatty acids not contained in plants as MAMPs.
282 To identify the essential molecular pattern of unsaturated fatty acid to be recognized as
283 a MAMP, structurally related unsaturated fatty acids were tested for their elicitor
284 activity on potato. Two days after the treatment of various fatty acids at 100 μg/ml on
285 potato tuber, accumulated rishitin was extracted and quantified by GC/MS. As predicted,
286 three unsaturated fatty acids derived from plants, linoleic acid (LA), α-linolenic acid
287 (ALA) and γ-linolenic acid (18:3, Δ6,9,12, ω-6, GLA) had no elicitor activity.
288 Treatment of arachidonic acid (20:4, Δ5,8,11,14, ω-6, ALA), which was previously
289 reported as an elicitor (Bostock et al., 1981), induced rishitin production, but other
290 structurally related unsaturated fatty acid, namely eicosadienoic acid (20:2, Δ11,14, ω-6,
291 EDA), eicosatrienoic acid (20:3, Δ8,11,14, ω-6, ETA), mead acid (20:3, Δ5,8,11, ω-9,
292 MA) and docosahexaenoic acid (22:6, Δ4,7,10,13,16,19, ω-3, DHA) did not show
293 elicitor activity on potato, even though DHA includes conjugated double bonds or MA
294 shares an identical structure to AA and EPA at the end of the carboxylic acid group (Fig.
295 7). Thus, 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA) is presumed to be the
296 essential structure recognized by potato as a MAMP.

297

298 **Distinctive sets of genes were upregulated in *Arabidopsis* treated with EPA, Pi-Cer
299 D and their mixture**

300 To analyze the differences in plant responses resulting from the recognition of EPA and
301 Pi-Cer D, an *Arabidopsis* pWRKY33-LUC transformant was treated with 100 μg/ml
302 EPA and Pi-Cer D. While Pi-Cer D can induce the transient activation of the *WRKY33*
303 promoter, only marginal induction of the *WRKY33* promoter was detected by the
304 treatment with EPA (Fig. 8A). Similarly, callose deposition, a form of penetration
305 resistance (Ellinger et al., 2013), was induced by either Pi-Cer D or EPA treatment on
306 leaves of *Arabidopsis* seedlings, but Pi-Cer D induced significantly greater number of

307 depositions (Fig. S30). RNAseq analysis was performed for *Arabidopsis* seedlings 12 h
308 after the treatment with 100 μ g/ml EPA, Pi-Cer D or a mixture of EPA and Pi-Cer D.
309 When the number of upregulated genes was compared under the same criteria (Log2
310 fold change ≥ 2 , $p \leq 0.05$), Pi-Cer D had only 211 upregulated genes, compared to 1,422
311 genes for EPA treatment. Unexpectedly, simultaneous treatment with Pi-Cer D and EPA
312 did not result in an expression pattern that would be expected by the mere combination
313 of either treatment. Instead, a significantly smaller number of genes (439 genes) was
314 upregulated by the mixture of EPA and Pi-Cer D compared with the single treatment of
315 EPA, and 76.8% of genes upregulated by the mixture of EPA and Pi-Cer D (337 genes)
316 were specifically induced by the co-treatment of both elicitors (Fig. 8B). Similarly,
317 clustering analysis of significantly up- or down-regulated genes further revealed that
318 treatment with EPA or Pi-Cer D leads to distinct gene expression patterns. While some
319 genes respond similarly to either treatment, other genes are induced exclusively by only
320 EPA or Pi-Cer D treatments (Fig. 8C). Expression of some genes was significantly
321 upregulated only by simultaneous treatment with both elicitors (Fig. S31A), whereas
322 other genes induced by EPA were attenuated by the co-treatment with Pi-Cer D (or vice
323 versa) (Fig. S31B and C), resulting in an expression pattern different from either single
324 treatment.

325
326 To interpret the overall influence of treatment with EPA, Pi-Cer D or their mixture,
327 upregulated genes were assigned to gene ontology (GO) terms using the analysis tool
328 PANTHER (Thomas et al., 2022) for GO enrichment analysis (Supplemental Fig. S32).
329 Biological processes (BP) enhanced by Pi-Cer D treatment include categories related to
330 plant defense against microorganisms such as “Defense response to fungus
331 (GO:0050832)”, “Defense response to bacterium (GO:0042742)”. EPA treatment also
332 enhanced “Defense response to fungus (GO:0050832)”, but also induced distinctive
333 categories such as “Oligopeptide transport (GO:0006857)”, “Detoxification
334 (GO:0098754)” and “Inorganic ion homeostasis (GO:0098771)”. It should be noted that
335 although the number of genes induced by EPA treatment (1422 genes) used for GO
336 analysis was approx. 7-fold compared to that of Pi-Cer D (211 genes), the number of
337 enriched GO terms hit was less than 2.2-fold (15 terms for Pi-Cer D and 33 terms for

338 EPA, Supplemental Fig. S32), indicating that the genes induced by solo treatment of
339 EPA are not focused on a specific pathway or response. More importantly, GO analysis
340 using 432 genes induced by simultaneous treatment with EPA and Pi-Cer D detected the
341 relatively larger enrichment of much more GO terms (145 terms), including GOs
342 involved in disease resistance, such as “Camalexin biosynthetic process (GO:0010120)”
343 (also see Fig. 8D), “Response to chitin (GO:0010200)”, “Innate immune response
344 (GO:0045087)”, “Defense response to fungus (GO:0050832)”, “Defense response to
345 bacterium (GO:0042742)” and so on. This result could indicate that the simultaneous
346 recognition of multiple MAMPs by plants better defines the appropriate choices of the
347 stress responses in the plant cells.

348

349 **DISCUSSION**

350 As the major autotroph on land, terrestrial plants are suitable predation targets for many
351 organisms, including bacteria, fungi, oomycetes, insects, animals, or even some
352 parasitic plants, which consume the organic compounds produced by plants. Therefore,
353 since their ancestral phyla, defense against various types of foreign enemies has been of
354 utmost importance. While plants form surface physical barriers and superficially
355 accumulate antimicrobial substances on their surfaces as the first line of defense in
356 general, they also need to activate greater resistance when attacked by microorganisms,
357 and recognition of so-called MAMPs is the key event to activate the next line of plant
358 disease resistance.

359

360 Characteristic surface structures of microorganisms are recognized by plant cells as
361 MAMPs. The major components of fungal cell walls (such as chitin and β -glucan) and
362 the secretory proteins (NEP and elicitors), as well as the bacterial flagellin and
363 lipopolysaccharides are typical examples of MAMPs localized at the surface (Jones and
364 Takemoto, 2004; Ngou et al., 2022). Flagellin, lipopolysaccharides, chitin and β -glucan
365 are recognized as MAMPs for induction of innate immunity in animal cells by distinct
366 mechanisms from plants and are the results of convergent evolution (Takeuchi et al.,
367 1999; Hayashi et al., 2001, He et al., 2021). Whereas some MAMPs derived from
368 internal molecules, such as bacterial elongation factor EF-Tu or extracellular DNA and

369 RNA, are released after disruption of the microbial cells, and then recognized by the
370 plant cells (Kunze et al., 2004; Bhat and Ryu, 2016). When plant cell walls are damaged
371 by pathogen attack, fragments of oligosaccharides (such as cello-oligosaccharides and
372 xylo-oligosaccharides) are recognized by cell surface receptors as DAMPs (Martín-
373 Dacal et al., 2023; Pring et al., 2023).

374

375 In this study, lipophilic MAMPs derived from microbial cell membrane, Pi-Cers and Pi-
376 DAGs, were purified from a representative phytopathogenic oomycete, *P. infestans*, for
377 their activity in inducing ROS production and phytoalexin accumulation in potato.
378 These substances were also contained in polyxenous oomycete pathogen *Pythium*
379 *aphanidermatum* (Figs. S19, S28) and other oomycetes (Moreau et al., 1998, Fernandes
380 et al., 2019). Pi-Cers and Pi-DAGs (or EPA) activated resistance responses in potato,
381 Arabidopsis and other plant species, indicating that they are oomycete MAMPs
382 recognized by plants (Fig. 9, Bostock et al., 2011).

383

384 **Two characteristic structures of microbial plasma membrane lipids are recognized
385 by plant cells**

386 Ceramides and diacylglycerols are principal structural elements of cell membranes.
387 Ceramides are composed of a sphingoid base and a fatty acid joined via an amide bond.
388 The most evident structural difference between active Pi-Cers and inactive Pi-Cer C is
389 the 8,10-diene and methyl-branching at C-9 in the sphingoid base (Fig. 2). The same
390 structure was found in ceramide-phosphoethanolamines Pi-CerPE A, B and D purified
391 from other fractions (Figs. S1, S17). In a previous report, we indicated that 9-methyl
392 branching and the 4,8-double bond structure of the sphingoid base (9Me-Spd) represent
393 the epitope structure for its elicitor activity in Arabidopsis (Kato et al., 2022). Although
394 Pi-Cers are not detected in fungal pathogens (Fig. S19), cerebrosides have been
395 identified as elicitor molecules from rice blast pathogen *Pyricularia oryzae* (Koga et al.,
396 1998, Fig. 9). Cerebroside elicitors isolated from *P. oryzae* and other fungal pathogens
397 also contain epitope structure 9Me-Spd (Umemura et al., 2000). Given that 9Me-Spd is
398 commonly found in (evolutionarily distant) oomycete and fungal species but essentially
399 not found in plants (Moreau et al., 1998; Sperling and Heinz, 2003, Jiang et al., 2021),

400 this structure appears to be a molecular pattern that can be leveraged by the plant to
401 recognize potentially pathogenic microorganisms. Knockout of a gene for sphingolipid
402 C-9 methyltransferase *FgMT2* of *Fusarium graminearum* (which caused an approx.
403 70% reduction of C-9 methylation in glucosylceramides) showed reduced growth and
404 pathogenicity on wheat and Arabidopsis (Ramamoorthy et al., 2009). In *Cryptococcus*
405 *neoformans*, Sphingolipid C9 methyltransferase SMT1 was shown to be involved in
406 maintaining membrane lipid bilayer rigidity and pathogenicity in mice (Singh et al.,
407 2012). These reports indicate that 9Me-Spd is an essential structure for the fungal
408 membrane, which fungi may not be able to modify with ease. By mutagenesis of the
409 Arabidopsis pWRKY33-LUC marker line and screening of mutants insensitive to Pi-
410 Cer D, Kato et al. (2022) identified that a lectin receptor kinase RDA2 is the receptor of
411 9Me-Spd in Arabidopsis. Moreover, cleavage of Pi-Cer D by an apoplastic ceramidase
412 NCER2 is essential for perception of 9-methyl sphingoid base by RDA2 in Arabidopsis,
413 indicating that the excision of microbial components by the plant is an important
414 process for the activation of pattern-triggered immunity (PTI) of plants (Fig. 9).

415

416 Diacylglycerols consist of two fatty acid chains linked to a glycerol molecule through
417 covalent ester bonds. Pi-DAGs A and B, which have elicitor activity and induce potato
418 phytoalexin production, are 1,2- and 1,3-diacylglycerols, respectively, and share the
419 same fatty acids they consisted of were the same. Comparison of Pi-DAGs A and B with
420 Pi-DAGs C and D, which had no elicitor activity (Fig. 5), suggested that a structure
421 containing five unsaturated fatty acids is the site recognized by the plant. In most plants,
422 the predominant unsaturated fatty acids are oleic acid (18:1, ω -9), linoleic acid (18:2, ω -
423 6), and α -linolenic acid (18:3, ω -3) (Harwood, 1988), as well as γ -linolenate (18:3, ω -6),
424 which is found in a few seed oils (Nykiforuk et al., 2012). Natural unsaturated fatty
425 acids in plants contain one to three conjugated double bonds, and these unsaturated fatty
426 acids showed no elicitor activity on potato tuber (Fig. 7). In contrast, EPA, which is a
427 pentaene fatty acid (20:5, ω -3) contained in bacteria, fungi and oomycete (Adarme-
428 Vega et al., 2012), was previously reported as an elicitor of phytoalexin production in
429 potato by Bostock et al. 1981. In this study, we identified the essential and sufficient
430 structure of microbe-derived unsaturated fatty acids that act as MAMP. Although

431 Bostock et al. (1981) also reported that docosahexaenoic acid (DHA, 22:6, ω -3) had
432 elicitor activity, experiments conducted in this study with three different lots of DHA
433 showed that treatment with DHA has no elicitor activity for the induction of phytoalexin
434 production in potato (Fig. 7), suggesting that four or more conjugated double bonds
435 alone are not sufficient to be recognized as a MAMP by plants. Given that arachidonic
436 acid (20:4, ω -6), but not mead acid (20:3, ω -9), showed elicitor activity on potato,
437 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA) is presumed to be the essential
438 structure recognized by plants as a MAMP. Collectively, plants activate PTI by
439 recognizing characteristic microbial characteristic structures in the cell membrane.
440 Since plants secrete enzymes that partially degrade MAMPs such as Pi-Cers, chitin, and
441 β -glucans, such secreted enzyme (e.g. phospholipase or esterase) might also be involved
442 in the degradation of Pi-DAGs via the exposure of the 5,8,11,14-TEFA structure (Fig. 9).
443

444 **Simultaneous recognition of two lipophilic MAMPs induces distinctive plant**
445 **immune responses**

446 Over the course of infection by plant pathogens, plants are exposed to a series of
447 MAMPs, at different times of the infection process. While patterns on the microbial cell
448 wall and cell membrane are expected to be recognized first, intracellular components
449 and DAMPs (e.g. oligosaccharides derived from plant cell walls, Pring et al., 2023)
450 should be released at later stages of the infection. It is presumed that plants are able to
451 utilize these temporal cues to activate a response better suited to the disease progression.
452 Since we demonstrated that co-exposure to two MAMPs can result in a different
453 defense response, plants may leverage this mechanism to infer information of the
454 disease progression and fine-tune their response.
455

456 Two MAMPs derived from the oomycete membrane were isolated in this study, each
457 activating different resistance responses in potato, namely ROS generation and
458 phytoalexin accumulation respectively, indicating that distinct plant signaling is
459 activated by these two MAMPs. In Arabidopsis, Pi-Cer D treatment activates the
460 promoter of *AtWRKY33*, a central activator of disease resistance (Zheng et al., 2006),
461 while EPA hardly activates *AtWRKY33*. Consistently, distinctive sets of genes are

462 induced by the treatment with these two elicitors, though GO terms for up-regulated
463 genes after the treatment with Pi-Cer D or EPA are both includes terms categorized
464 under plant disease resistance. Importantly, simultaneous treatment with these two
465 MAMPs was shown to activate GO categories related to disease resistance that were not
466 triggered by the single treatment (Fig. S32). These results seem to indicate that plants
467 may combine the signals from simultaneously recognized MAMPs to specifically adapt
468 the defense response to a particular type of pathogen. Insight into how these elicitor
469 signals are processed, as well as how the response pathways of both elicitors affect one
470 another, will require further analysis. If additional MAMPs and DAMPs activating
471 different signaling systems were to be determined, we might be able to devise effective
472 combinations that effectively activate resistance. Such MAMP/DAMP recipes might be
473 tailored to act as efficient and stable resistance inducers for use in agricultural
474 production (Pring et al., 2023).

475

476 MATERIALS AND METHODS

477 Biological materials, growth conditions and inoculation

478 Potato suspension-cultured cells were prepared from calluses induced from potato tuber
479 discs (cv. Sayaka carrying the *R1* and *R3* genes) in callus-inducing medium [1 ml/l B5-
480 vitamin (100 g/l Myo-inositol, 2.5 g/l glycine, 500 mg/l thiamine-HCl, 500 mg/l
481 pyridoxine-HCl, 5 g/l nicotinic acid, 50 mg/l biotin, 50 mg/l folic acid), 2 mg/l 1-
482 naphthaleneacetic acid (NAA), 0.5 mg/l kinetin, 3% sucrose, 0.2% phytigel and
483 Murashige-Skoog basal medium], under dark condition. Suspension-cultured potato
484 cells were grown by agitation at 130 rpm, 23°C in 95 ml of Murashige-Skoog medium
485 supplemented with 30 mg/ml sucrose, 1 mg/l thiamine, 100 mg/l myo-inositol, 200 mg/l
486 KH₂PO₄, and 0.2 mg/l 2,4-dichlorophenoxyacetic acid. Cells were sub-cultured every
487 week and used for experiments 4-5 days after the subculturing. Potato, rice and
488 Arabidopsis (Col-0) plants were grown at 23-25°C under a 16 h photoperiod and an 8 h
489 dark period in an environmentally controlled growth room. Tubers of potato (cv.
490 Rishiri) carrying the *R1* gene were stored at 4°C until use. *P. infestans* isolate 08YD1
491 and PI1234-1 (Shibata et al., 2010, 2011) was maintained on rye-media at 10°C.
492 Inoculation of potato leaves with a zoospore suspension of *P. infestans* was performed

493 as described previously (Shibata et al., 2016). Inoculation of potato tubers with *P.*
494 *infestans* was performed as follows. Potato tuber discs (cv. Irish cobbler, 1 cm diameter,
495 3 mm thick) were treated with 50 μ l of 0.1 % DMSO (Cont.) or 100 μ g/ml EPA and
496 inoculated with a spore suspension (2×10^5 zoospores/ml) of *P. infestans* immediately
497 or 1 day after EPA treatment. Potato tubers at 4 days after inoculation were washed in 1
498 ml water and numbers of conidiophores in 2 μ l aliquots were counted. *Pythium*
499 *aphanidermatum* strain Pyaph isolated from cucumber, *Botrytis cinerea* strain AI18
500 isolated from strawberry leaves (Kuroyanagi et al., 2022), *Fusarium oxysporum* f. sp.
501 *melonis* strain Mel02010 (Namiki et al., 1998) and *Colletotrichum orbiculare* strain
502 104-T (Ishida and Akai 1969) were grown on potato dextrose agar (PDA) at 25°C and
503 maintained at -80°C in 20% glycerol. *N. benthamiana* line SNPB-A5 (Shibata et al.,
504 2016) was grown in a growth room at 23°C with 16 h of light per day.

505

506 **Preparation of methanol extract of *Phytophthora infestans* mycelia (Pi-MEM)**

507 The *Phytophthora infestans* isolates PI1234-1 were grown on rye-seed extract agar
508 medium in test tubes at 18°C in dark condition for 2 weeks. Parts of the growing
509 mycelia were placed in 100 ml flasks containing 20 ml of rye liquid nutrient medium of
510 rye seed-extract (60 g rye seed), 20 g of sucrose and 2 g of yeast extract per 1 liter and
511 incubated in the dark for 2 weeks at 18°C to allow the growth of the mycelia. The
512 mycelial mats grown in the liquid medium were washed thoroughly with water. To
513 remove excess water, water was filtered through filter paper (Toyoroshi No. 2) under
514 reduced pressure and the tissue then frozen at -20°C. The collected mycelia of *P.*
515 *infestans* were ground in liquid nitrogen by mortar and pestle. The ground mycelia were
516 transferred to a 50 ml tube containing methanol (10 ml/g mycelia). The mycelia
517 suspension was finely grounded using a polytron type homogenizer (HG30, Hitachi
518 Koki, Japan) for 2 min. After centrifugation at 4°C, $3000 \times g$ for 30 min, the supernatant
519 was collected and dried using an evaporator and used as Pi-MEM elicitor. Further
520 procedures for the purification of Pi-Cers and Pi-DAGs from Pi-MEM and their
521 structural analyses with spectral data are described in the supplemental document.
522 Mycelia of *Pythium aphanidermatum*, *B. cinerea*, *F. oxysporum* f. sp. *melonis* and *C.*

523 *orbiculare* were grown in 50 ml of potato dextrose broth (PDB) in 100 ml flasks at 25°C
524 with gentle shaking.

525

526 **Measurement of ROS production in potato suspension-cultured cells**

527 The relative intensity of ROS generation in potato suspension-cultured cells was
528 measured by counting photons from L-012-mediated chemiluminescence. The potato
529 suspension-cultured cells (50 mg/ml) were washed with the assay buffer (175 mM
530 mannitol, 50 mM MES-KOH, 0.5 mM CaCl₂ and 0.5 mM K₂SO₄, pH 5.7) twice for
531 removal of the liquid culture medium. For the detection of ROS produced in cultured
532 cells, the cells were resuspended in assay buffer, equilibrated for 1 h at 100 rpm at 23°C.
533 Cells were then treated with elicitors and incubated under the same condition for 3 h.
534 After the incubation, chemiluminescence was measured using 20 mM L-012 (Wako
535 Pure Chemical, Osaka, Japan) in a multimode microplate reader Mithras LB940
536 (Berthold Technologies, Bad Wildbad, Germany).

537

538 **Measurement of ROS production in plant leaves**

539 The relative intensity of ROS production was determined by counting photons from L-
540 012-mediated chemiluminescence. To detect the ROS production in potato, *N.*
541 *benthamiana*, Arabidopsis and rice leaves, 0.5 mM L-012 in 10 mM MOPS-KOH (pH
542 7.4) was allowed to infiltrate to the intercellular space of leaves. For potato, *N.*
543 *benthamiana* and Arabidopsis, a syringe without a needle was used for leaf infiltration,
544 whereas vacuum infiltration was used for rice. Chemiluminescence was monitored
545 using a photon image processor equipped with a sensitive CCD camera in the dark
546 chamber at 20°C (Aquacosmos 2.5; Hamamatsu Photonics, Shizuoka, Japan) and
547 quantified using the U7501 program (Hamamatsu Photonics). For the data shown in
548 Supplemental Fig. S21 and S29, chemiluminescence was monitored using Lumino
549 Graph II EM (ATTO, Tokyo, Japan).

550

551 **Detection of potato phytoalexins by thin-layer chromatography (TLC)**

552 Potato phytoalexins, exuded from potato tissue, were extracted with ethyl acetate as
553 described previously (Noritake et al., 1996). The extract was separated on TLC plates

554 (TLC aluminum sheet of silica gel 60, Merck, Whitehouse Station, NJ, USA), which
555 were developed with cyclohexane:ethyl acetate (1:1, v/v) and visualized by spraying
556 with sulfuric acid containing 0.5% vanillin followed by heating at 120°C.

557

558 **Detection of potato phytoalexins by liquid chromatography/mass spectrometry
559 (LC/MS) and as chromatography/mass spectrometer (GC/MS)**

560 Potato tuber discs (2 cm in diameter and approx. 4 mm thick) were prepared and
561 incubated in a humidified chamber in dark at 23°C for 24 h before treatment with
562 elicitors. The upper side of incubated potato tubers was then treated with 100 µl of
563 elicitor solution and further incubated at 23°C in the dark for 48 h before the extraction
564 of phytoalexins. Four tuber disks/sample were immersed in 5 ml of ethyl acetate and
565 shaken for 1 h, then the organic solvent was collected and evaporated. The residual
566 material was redissolved in 100 µl of 50% (v/v) acetonitrile and 2 µl was injected for
567 the analysis with LC/MS (6520 Accurate-Mass Q-TOF connected to Agilent 1100
568 Series HPLC, Agilent Technologies, Santa Clara, CA, USA) with a Cadenza CD-C18
569 column (i. d. 3 x 50 mm, Imtakt, Kyoto, Japan) as previously described (Imano et al.,
570 2022). Detection and quantification of rishitin produced in potato tuber by GC/MS
571 using an Agilent Technologies 7890A GC System with a DuraBond Ultra Inert column
572 (length 30 m; diameter 0.25 mm; film 0.25 µm, Agilent Technologies, Santa Clara, CA,
573 USA) as previously described (Camanga et al., 2020).

574

575 **Measuring the activation of *AtWRKY33* promoter**

576 Seeds of *Arabidopsis* containing *Luciferase* marker gene under the control of
577 *AtWRKY33* (AT2G38470) promoter (Kato et al., 2022) were surface sterilized with 3%
578 hydrogen peroxide and 50 % ethanol for 1 min with gentle shaking, washed with
579 sterilized water, and then individual sterilized seeds were placed in separate wells of a
580 96 microwell plate containing 150 µl of Murashige and Skoog (MS) liquid medium (1/2
581 MS salts, 0.05% [w/v] MES, 0.5% [w/v] Sucrose, adjusted to pH 5.8 with NaOH) with
582 50 µM D-Luciferin potassium salt (Biosynth Carbosynth, Compton, UK), covered with
583 a clear plastic cover. Plates containing *Arabidopsis* seeds were then incubated in a

584 growth chamber for approx. 12 days at 23°C with 24 h light. After the treatment of
585 elicitors, chemiluminescence intensity derived from expressed luciferase was measured
586 using Mithras LB940 (Berthold) for 12 h.

587

588 **RNA-seq and gene ontology enrichment analysis**

589 Total RNA was extracted from 6 seedlings/sample of 10-days old *Arabidopsis* 24 h after
590 the treatment with elicitors using the RNeasy Plant Mini Kit (QIAGEN, Hilden,
591 Germany). Libraries were constructed using KAPA mRNA Capture Kit (Roche, Basel,
592 Switzerland) and MGIEasy RNA Directional Library Prep Set (MGI, Shenzhen, China),
593 and sequenced on DNBSEQ-G400RS (MGI) with 150 bp paired-end protocol. The
594 RNA-seq reads were filtered using trim-galore v.0.6.6 (Martin, 2011,
595 bioinformatics.babraham.ac.uk) and mapped to the *Arabidopsis* genome (TAIR 10.1;
596 RefSeq: GCF_000001735.4) using HISAT2 v.2.2.1 (Kim et al., 2019) and assembled via
597 StringTie v.2.1.7 (Kovaka et al., 2019). Significant differential expression was
598 determined using DESeq2 v.1.32.0 (Love et al., 2014). All software used during RNA-
599 seq analysis was run with default settings. The expression profile was calculated from
600 the log2-fold expressions using the clustermap function from seaborn v. 0.11.1
601 (Waskom, 2021). Gene ontology (GO) enrichment analysis was performed using the
602 PANTHER statistical overrepresentation test (<http://pantherdb.org>; Version 17.0,
603 Thomas et al., 2022) with default settings (Fisher's exact test, False discovery rate
604 (FDR) < 0.05). The heatmap was plotted using SRplot
605 (<https://www.bioinformatics.com.cn/en>). RNA-seq data reported in this work are
606 available in GenBank under the accession numbers DRA017453.

607

608 **ACKNOWLEDGMENTS**

609 We thank Ms. Kayo Shirai (Hokkaido Central Agricultural Experiment Station, Japan)
610 and Dr. Seishi Akino (Hokkaido University, Japan) for providing *P. infestans* isolate, Dr.
611 Kenji Asano, Dr. Kotaro Akai and Mr. Seiji Tamiya (National Agricultural Research
612 Center for Hokkaido Region, Japan) and Mr. Yasuki Tahara (Nagoya University, Japan)
613 for providing tubers of potato cultivars, and Mr. Masamu Yamashita and Mr. Kosuke
614 Tsuda (Nagoya University) for their contribution to the project. We also thank Dr.

615 Masaharu Kubota (National Agriculture and Food Research Organization, Japan) for
616 providing *Pythium aphanidermatum* strain, Prof. Takashi Tsuge (Chubu University,
617 Japan) for providing *Fusarium oxysporum* strain and Prof. Yoshitaka Takano (Kyoto
618 University, Japan) for providing *Colletotrichum orbiculare* strain. This work was
619 supported by a Grant-in-Aid for Scientific Research (B) (17H03771, 20H02985,
620 23H02212) to DT and (17H03963) to KK from the Japan Society for the Promotion of
621 Science (JSPS), and by Japan Science and Technology Agency (JST), PRESTO
622 (JPMJPR22D2) to HK.

623

624 **SUPPLEMENTAL DATA**

625 **Supplemental Figure S1.** Purification procedure of *Phytophthora infestans* ceramide
626 (Pi-Cer) and ceramide phosphoethanolamine (Pi-CerPE) elicitors.

627 **Supplemental Figure S2.** NMR spectra of Pi-Cer A (CDCl₃, 400 MHz for ¹H, 100
628 MHz for ¹³C).

629 **Supplemental Figure S3.** NMR spectra of Pi-Cer B (CDCl₃, 600 MHz for ¹H, 150
630 MHz for ¹³C).

631 **Supplemental Figure S4.** NMR spectra of Pi-Cer C (CDCl₃, 400 MHz for ¹H, 100
632 MHz for ¹³C).

633 **Supplemental Figure S5.** NMR spectra of Pi-Cer D (CDCl₃, 600 MHz for ¹H, 150
634 MHz for ¹³C).

635 **Supplemental Figure S6.** NMR spectra of Pi-CerPE A (CDCl₃-CD₃OD 4:1, 400 MHz
636 for ¹H, 100 MHz for ¹³C).

637 **Supplemental Figure S7.** NMR spectra of Pi-CerPE B (CDCl₃-CD₃OD 4:1, 600 MHz
638 for ¹H, 150 MHz for ¹³C).

639 **Supplemental Figure S8.** NMR spectra of Pi-CerPE D (CDCl₃-CD₃OD 4:1, 600 MHz
640 for ¹H, 150 MHz for ¹³C).

641 **Supplemental Figure S9.** NMR spectra of Pi-CerPE D (CDCl₃-CD₃OD 4:1, 600 MHz
642 for ¹H, 150 MHz for ¹³C).

643 **Supplemental Figure S10.** MS/MS fragmentation of Pi-Cer A (precursor ion: [M +
644 Na]⁺).

645 **Supplemental Figure S11.** Two-dimensional NMR correlations of Pi-Cer B (thick
646 bonds: DQF-COSY, curved arrows: HMBC, l + m = 15).

647 **Supplemental Figure S12.** MS/MS fragmentation of Pi-Cer B (precursor ion: [M +
648 Na]⁺).

649 **Supplemental Figure S13.** Two-dimensional NMR correlations of Pi-Cer B (thick
650 bonds: DQF-COSY, curved arrows: HMBC, $l + m + n = 19$).

651 **Supplemental Figure S14.** DQF-COSY (thick bonds), HMBC (curved arrows), and
652 NOESY (dashed curves) correlations of Pi-Cer D.

653 **Supplemental Figure S15.** Linked-scan FAB MS/MS (negative ion mode) of the fatty
654 acid derived from Pi-Cer D by acid hydrolysis.

655 **Supplemental Figure S16.** DQF-COSY (thick bonds) and HMBC (curved arrows)
656 correlations of Pi-CerPE D.

657 **Supplemental Figure S17.** Ceramide phosphoethanolamine (Pi-CerPE) elicitors
658 purified from methanol extract of *P. infestans* mycelia (Pi-MEM), which can induce the
659 production of reactive oxygen species (ROS) in potato suspension-cultured cells.

660 **Supplemental Figure S18.** Activation of *A. thaliana* WRKY33 promoter by Pi-Cer and
661 Pi-CerPE elicitors.

662 **Supplemental Figure S19.** Pi-Cer contents in mycelia of oomycete and fungal plant
663 pathogens.

664 **Supplemental Figure S20.** Induction of reactive oxygen species (ROS) production by
665 Pi-Cer D and Pi-CerPE D treatment in potato suspension-culture cells.

666 **Supplemental Figure S21.** Pi-Cer D, but not Pi-Cer C, can induce the production of
667 reactive oxygen species (ROS) in *Nicotiana benthamiana*.

668 **Supplemental Figure S22.** Production of phytoalexins in potato tuber is not induced by
669 Pi-Cers and Pi-CerPEs.

670 **Supplemental Figure S23.** Purification procedure of *Phytophthora infestans*
671 diacylglycerol (Pi-DAG) elicitors.

672 **Supplemental Figure S24.** ESI-TOF MS of Pi-DAG A. NMR spectra of Pi-DAG A
673 (CDCl_3 , 400 MHz for ^1H and 100 MHz for ^{13}C). Two-dimensional NMR of Pi-DAG A
674 (CDCl_3 , 400 MHz). Determination of fatty acids of Pi-DAG A by MS/MS.

675 **Supplemental Figure S25.** ^1H NMR spectrum of Pi-DAG B (CDCl_3 , 400 MHz).
676 Determination of fatty acids in Pi-DAG B by negative ion FAB MS

677 **Supplemental Figure S26.** NMR spectra of Pi-DAG C (CDCl_3 , 400 MHz for ^1H , 100
678 MHz for ^{13}C). Determination of fatty acids in Pi-DAG C by positive ion ESI MS/MS.
679 Confirmation of fatty acid linkage in Pi-DAG C.

680 **Supplemental Figure S27.** NMR spectra of Pi-DAG D (MeOD , 400 MHz for ^1H , 100
681 MHz for ^{13}C). Determination of fatty acids in Pi-DAG D by hydrolysis followed by
682 negative ion FAB MS and MS/MS analysis of two fatty acid products.

683 **Supplemental Figure S28.** Pi-DAG contents in mycelia of oomycete plant pathogens.

684 **Supplemental Figure S29.** Eicosapentaenoic acid (EPA) does not induce the
685 production of reactive oxygen species (ROS) in potato leaves.

686 **Supplemental Figure S30.** Callose deposition of Arabidopsis seedlings treated with
687 EPA or Pi-Cer D.

688 **Supplemental Figure S31.** Expression profiles of Arabidopsis genes upregulated by co-
689 treatment of EPA and Pi-Cer D, EPA or Pi-Cer D.

690 **Supplemental Figure S32.** Gene ontology (GO) enrichment analysis of up-regulated
691 genes in Arabidopsis treated with eicosapentaenoic acid (EPA), Pi-Cer D or their
692 mixture for 12 h.

693 **FIGURE LEGENDS**

694 **Figure 1** Elicitor activity of methanol extract of *Phytophthora infestans* mycelia (Pi-
695 MEM) in potato. (A) Potato suspension cultured cells were treated with 0.3% DMSO
696 (Cont.) or 30 µg/ml Pi-MEM and production of reactive oxygen species (ROS) was
697 detected as L-012-mediated chemiluminescence 3 h after the treatment. Data are means
698 ± SE (n = 3). Scores shown are chemiluminescence intensities relative to that of Pi-
699 MEM-treated cells (B) Potato leaves were treated with 1 % DMSO (Cont.) or 100
700 µg/ml Pi-MEM and production of ROS was detected as L-012-mediated
701 chemiluminescence. Data are means ± SE (n = 3). Scores shown are chemiluminescence
702 intensities relative to that of Pi-MEM-treated leaves at 9 h. Data marked with asterisks
703 are significantly different from control as assessed by two-tailed Student's *t* tests: **P <
704 0.01. (C) Left, putative biosynthetic pathway of potato phytoalexins, lubimin,
705 oxylubimin and rishitin. HPS, *Hyoscyamus muticus* premnaspirodiene synthase; HPO *H.*
706 *muticus* premnaspirodiene oxygenase; SPH, sesquiterpenoid phytoalexins hydroxylase
707 (Camagna et al., 2020). Potato tubers were treated with 3 % DMSO (Cont.) or 1 mg/ml
708 Pi-MEM and phytoalexins were extracted 48 h after treatment. Produced phytoalexins
709 were detected by thin-layer chromatography (middle) or LC/MS (right). Data shown are
710 the representative results of at least 3 separate experiments.

711 **Figure 2.** *Phytophthora infestans* ceramide elicitors (Pi-Cer) can induce the production
712 of reactive oxygen species (ROS) in potato suspension cultured cells. (A) Potato
713 suspension cultured cells were treated with 0.3% DMSO (Cont.), 30 µg/ml methanol
714 extract of *P. infestans* mycelia (Pi-MEM), 3 µg/ml Pi-Cer A, B, C or D and production
715 of ROS was detected as L-012 mediated chemiluminescence 3 h after the treatment.
716 Data are means ± SE (n = 3). Scores are chemiluminescence intensities relative to that
717 of Pi-MEM-treated cells at 3 h. Data shown are the representative results of at least 3
718 separate experiments. (B) Structures of Pi-Cer A, B, C and D. See Supplemental Figure
719 S1 for the procedures of purification of elicitors and Supplemental Figures S2-5, S10-15
720 and supplemental document for details of their structural analysis.

722

723

724 **Figure 3.** Pi-Cer D and Pi-CerPE D can induce the production of reactive oxygen
725 species (ROS) in leaves of different plant species. Scores shown are chemiluminescence
726 intensities relative to that of Pi-MEM-treated leaves.

727 (A) (Left) Potato leaves were treated with 1% DMSO (Cont.), 100 μ g/ml methanol
728 extract of *P. infestans* mycelia (Pi-MEM), 10 μ g/ml Pi-Cer D or Pi-CerPE D by syringe
729 infiltration, and production of ROS was detected as L-012 mediated chemiluminescence
730 3-15 h after the treatment. Data are means \pm SE (n = 3).
731 (B) (Left) Arabidopsis thaliana leaves were treated with 1% DMSO (Cont.), 100 μ g/ml
732 methanol extract of *P. infestans* (Pi-MEM), 10 μ g/ml Pi-Cer D or Pi-CerPE D by
733 syringe infiltration, and production of ROS was detected as L-012 mediated
734 chemiluminescence 12 h after the treatment. Data are means \pm SE (n = 3).
735 (C) (Left) Rice leaves were treated with 1% DMSO (Cont.), 100 μ g/ml methanol extract
736 of *P. infestans* (Pi-MEM), 10 μ g/ml Pi-Cer D or Pi-CerPE D by vacuum infiltration, and
737 production of ROS was detected as L-012 mediated chemiluminescence 12 h after the
738 treatment. Data are means \pm SE (n = 3). Data marked with asterisks are significantly
739 different from control as assessed by two-tailed Student's *t* tests: ***P* < 0.01.
740

741 **Figure 4.** Pretreatment with Pi-Cer D and Pi-CerPE D enhances the resistance of potato
742 leaves against *P. infestans*. Potato leaves were treated with 0.5 % DMSO (Cont.), 100
743 μ g/ml Pi-MEM, 10 μ g/ml Pi-Cer D or Pi-CerPE D and incubated for 24 h, and
744 inoculated with a spore suspension of *P. infestans*. (A) Disease symptoms of *P. infestans*
745 on potato leaves treated with DMSO, Pi-MEM, Pi-Cer D or Pi-CerPE D. Photographs
746 were taken 6 days post inoculation. (B) Leaves representative of the disease severities
747 used for classification. (C) Plots showing percentages of potato leaves with disease
748 symptom severities using the classification depicted in (B). Leaves were pretreated with
749 DMSO or elicitors, and disease severity of a subsequent *P. infestans* inoculation was
750 observed from 1 - 7 days post inoculation (dpi). (n = 8). Data marked with asterisks are
751 significantly different from control as assessed by one-tailed Mann-Whitney U-tests:
752 **P* < 0.05. (D) Left, Penetration sites of *P. infestans* in elicitor treated leaf-discs were
753 detected as callose depositions by aniline blue staining 24 h after inoculation. Bars = 50
754 μ m. Right, Number of fluorescent spots were counted in elicitor-treated leaf discs
755 inoculated with *P. infestans* 24 h after inoculation. Data are means \pm SE (n = 3). Data
756 marked with asterisks are significantly different from control as assessed by two-tailed
757 Student's *t* tests: **P* < 0.01.
758

759 **Figure 5.** *Phytophthora infestans* diacylglycerol (Pi-DAG) induce the production of
760 phytoalexins in potato tubers. (A) Structures of Pi-DAG A and B. Structures equivalent
761 to eicosapentaenoic acid (EPA) are shown in red, dotted boxes. (B) Structures of Pi-
762 DAG C and D which have significantly weaker elicitor activity compared with Pi-DAG
763 A and B. See Supplemental Figure S22 for the procedures of purification of Pi-DAGs
764 and Supplemental Figures S23-26 for their structural analysis. (C) Potato tubers were
765 treated with 0.3% DMSO (Cont.), 30 μ g/ml methanol extract of *P. infestans* mycelium
766 (Pi-MEM), or 100 μ g/ml Pi-DAGs, and production of phytoalexins was detected by
767 thin-layer chromatography. L, Lubimin; R, Rishitin; O, Oxylubimin. (D) EPA, but not
768 Pi-Cer D, can induce the production of phytoalexins in potato tubers. Potato tubers were
769 treated with 0.3% DMSO (Cont.), 100 μ g/ml EPA or 100 μ g/ml Pi-Cer D and produced
770 phytoalexins were detected by LC/MS. Data shown are the representative results of at
771 least 3 separate experiments.
772

773 **Figure 6.** Treatment with EPA enhances the resistance of potato tubers against *P.*
774 *infestans*.

775 Potato tuber discs (cv. Irish cobbler, 1 cm diameter) were treated with 50 μ l of 0.1 %
776 DMSO (Cont.) or 100 μ g/ml EPA and inoculated with a spore suspension of *P. infestans*
777 (A) immediately or (B) 1 day after treatment. (left) Growth of *P. infestans* on potato
778 tubers. Photographs were taken at 4 days post inoculation (dpi). (right) No. of
779 conidiophores produced on potato tubers were counted at 4 dpi (n = 16). Data marked
780 with asterisks are significantly different from control as assessed by two-tailed Student's
781 *t* tests: ** P < 0.01. Data shown are the representative results of 2 separate experiments.
782

783 **Figure 7.** Comparison of elicitor activity of polyunsaturated fatty acids for induction of
784 rishitin production in potato tubers. (A) Structures of polyunsaturated fatty acids used in
785 this study. Fatty acids in green letters indicate those derived from plant. (B) Potato
786 tubers were treated with indicated polyunsaturated fatty acids (100 μ g/ml) and rishitin
787 was extracted 2 days after the treatment. Produced rishitin was quantified by GC/MS (n
788 = 6 for AA and EPA, n = 3 for LA, ALA, GLA, EDA, ETA, MA. n = 12 for DHA,
789 biological replicates from 3 separate experiments).

790 **Figure. 8** Distinctive sets of *Arabidopsis* genes were upregulated by the treatment with
791 EPA and Pi-Cer D. (A) *Arabidopsis* transformant pWRKY33-LUC containing LUC
792 transgene under the control of AtWRKY33 (AT2G38470.1) promoter was treated with
793 100 μ g/ml EPA, Pi-Cer D or a mixture of 100 μ g/ml EPA and Pi-Cer D.
794 Chemiluminescence was monitored for 12 h after the treatment. (B) Venn diagram
795 representing the up-regulated differentially expressed genes (DEGs) in *Arabidopsis*
796 treated with 100 μ g/ml EPA, 100 μ g/ml Pi-Cer D, or a mixture of 100 μ g/ml EPA and
797 100 μ g/ml Pi-Cer D for 12 h, which are selected based on TPM \geq 1, log2 fold change \geq
798 2 and $P \leq 0.05$. (n = 3). (C) Heatmap analysis of differentially expressed genes for the
799 elicitors treatments. The color bar represents the fold change value (log2) with $P \leq 0.05$.
800 (D) Expression profile of *Arabidopsis* genes for camalexin biosynthesis after treatment
801 with 100 μ g/ml EPA, Pi-Cer D or a mixture of 100 μ g/ml EPA and Pi-Cer D.
802

803 **Figure 9.** A model of Pattern-triggered immunity (PTI) activation by simultaneous
804 recognition of multiple MAMPs (Microbe-associated molecular patterns) and DAMPs
805 (Damage-associated molecular patterns). Plants secrete enzymes into the apoplast to
806 release MAMPs from the pathogen. 9Me-Spd, 9-methyl-4,8-sphingadienine; 5,8,11,14-
807 TEFA, 5,8,11,14-tetraene-type fatty acid; COS, Cellooligosaccharide; XOS,
808 Xylooligosaccharide; CW, Cell wall; PM, Plasma membrane; CP, Cytoplasm.
809

810

811 REFERENCES

812

813 **Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM** (2012)
814 Microalgal biofactories: a promising approach towards sustainable omega-3 fatty
815 acid production. *Microb Cell Fact.* **11:** 96.

816 **Bhat A, Ryu CM.** (2016) Plant perceptions of extracellular DNA and RNA. *Mol Plant*
817 **9:** 956–958

818 **Bostock RM, Kuć JA, Laine RA** (1981) Eicosapentaenoic and arachidonic acids from
819 *Phytophthora infestans* elicit fungitoxic sesquiterpenes in the potato. *Science* **212**:
820 67–69

821 **Bostock RM, Savchenko T, Lazarus C, Dehesh K** (2011) Eicosapolyenoic acids:
822 novel MAMPs with reciprocal effect on oomycete-plant defense signaling networks.
823 *Plant Signal Behav* **6**: 531–533

824 **Cahoon EB, Li-Beisson Y** (2020) Plant unusual fatty acids: learning from the less
825 common. *Curr Opin Plant Biol* **55**: 66–73

826 **Camagna M, Ojika M, Takemoto D** (2020) Detoxification of the solanaceous
827 phytoalexins risitin, lubimin, oxylubimin and solavetivone via a cytochrome P450
828 oxygenase. *Plant Signal Behav* **15**: 1707348

829 **Ellinger D, Naumann M, Falter C, Zwirkowics C, Jamrow T, Manisseri C,
830 Somerville SC, Voigt CA** (2013) Elevated early callose deposition results in
831 complete penetration resistance to powdery mildew in *Arabidopsis*. *Plant Physiol*
832 **161**:1433–1444

833 **Fernandes BS, Dias O, Costa G, Kaupert Neto AA, Resende TFC, Oliveira JVC,
834 Riaño-Pachón DM, Zaiat M, Pradella JGC, Rocha I** (2019) Genome-wide
835 sequencing and metabolic annotation of *Pythium irregularare* CBS 494.86:
836 understanding Eicosapentaenoic acid production. *BMC Biotechnol* **19**: 41.

837 **Forbes GA** (2012) Using host resistance to manage potato late blight with particular
838 reference to developing countries. *Potato Res* **55**: 205–216

839 **Free SJ** (2013) Fungal cell wall organization and biosynthesis. *Adv Genet* **81**: 33–82

840 **Fry W** (2008) *Phytophthora infestans*: the plant (and *R* gene) destroyer. *Mol Plant
841 Pathol* **9**: 385–402

842 **Garelík G** (2002) Agriculture. Taking the bite out of potato blight. *Science* **298**:1702–
843 1704

844 **Gaulin E, Bottin A, Dumas B** (2010) Sterol biosynthesis in oomycete pathogens. *Plant
845 Signal Behav* **5**: 258–260

846 **Harwood JL** (1988) Fatty acid metabolism. *Annu Rev Plant Physiol Plant Mol Biol* **39**:
847 101–138

848 **Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S,
849 Underhill DM, Aderem A.** (2001) The innate immune response to bacterial flagellin
850 is mediated by Toll-like receptor 5. *Nature* **410**: 1099–1103

851 **He X, Howard BA, Liu Y, Neumann AK, Li L, Menon N, Roach T, Kale SD,
852 Samuels DC, Li H, Kite T, Kita H, Hu TY, Luo M, Jones CN, Okaa UJ,
853 Squillace DL, Klein BS, Lawrence CB** (2021) LYSMD3: A mammalian pattern
854 recognition receptor for chitin. *Cell Rep* **36**: 109392

855 **Imano S, Fushimi M, Camagna M, Tsuyama-Koike A, Mori H, Ashida A, Tanaka A,
856 Sato I, Chiba S, Kawakita K, Ojika M, Takemoto D** (2022) AP2/ERF
857 transcription factor NbERF-IX-33 is involved in the regulation of phytoalexin
858 production for the resistance of *Nicotiana benthamiana* to *Phytophthora infestans*.
859 *Front Plant Sci* **12**: 821574

860 **Ishida N, Akai S** (1969) Relation of temperature to germination of conidia and
861 appressorium formation in *Colletotrichum lagenarium*. *Mycologia* **61**: 382–386

862 **Jiang C, Ge J, He B, Zeng B** (2021) Glycosphingolipids in filamentous fungi:
863 Biological roles and potential applications in cosmetics and health foods. *Front*
864 *Microbiol* **12**: 690211

865 **Jones DA, Takemoto D.** (2004) Plant innate immunity - direct and indirect recognition
866 of general and specific pathogen-associated molecules. *Curr Opin Immunol* **16**: 48–
867 62

868 **Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L,**
869 **Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR,**
870 **Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS,**
871 **Tomé DF, Tör M, Van Den Ackerveken G, McDowell J, Daayf F, Fry WE,**
872 **Lindqvist-Kreuze H, Meijer HJ, Petre B, Ristaino J, Yoshida K, Birch PR,**
873 **Govers F** (2015) The top 10 oomycete pathogens in molecular plant pathology. *Mol*
874 *Plant Pathol* **16**: 413–434

875 **Kato H, Nemoto K, Shimizu M, Abe A, Asai S, Ishihama N, Matsuoka S, Daimon T,**
876 **Ojika M, Kawakita K, Onai K, Shirasu K, Yoshida M, Ishiura M, Takemoto D,**
877 **Takano Y, Terauchi R.** (2022). Recognition of pathogen-derived sphingolipids in
878 *Arabidopsis*. *Science* **376**: 857–860

879 **Kim D, Paggi JM, Park C, Bennett C, Salzberg SL** (2019) Graph-based genome
880 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**:
881 907–915

882 **Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M,**
883 **Ogasawara N** (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive
884 cell death and phytoalexin accumulation in rice plants. *J Biol Chem* **273**: 31985–
885 31991

886 **Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M** (2019)
887 Transcriptome assembly from long-read RNA-seq alignments with StringTie2.
888 *Genome Biol* **20**: 278

889 **Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G** (2004) The N terminus
890 of bacterial elongation factor Tu elicits innate immunity in *Arabidopsis* plants. *Plant*
891 *Cell* **16**: 3496–3507

892 **Kuroyanagi T, Bulasag AS, Fukushima K, Ashida A, Suzuki T, Tanaka A,**
893 **Camagna M, Sato I, Chiba S, Ojika M, Takemoto D** (2022) *Botrytis cinerea*
894 identifies host plants via the recognition of antifungal capsidiol to induce expression
895 of a specific detoxification gene. *PNAS Nexus* **1**: pgac274

896 **Love MI, Huber W, Anders S** (2014) Moderated estimation of fold change and
897 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**: 550

898 **Martin M** (2011) Cutadapt removes adapter sequences from high-throughput
899 sequencing reads. *EMBnet J* **17**: 10–12

900 **Martín-Dacal M, Fernández-Calvo P, Jiménez-Sandoval P, López G, Garrido-**
901 **Arandía M, Rebaque D, Del Hierro I, Berlanga DJ, Torres MÁ, Kumar V,**
902 **Mélida H, Pacios LF, Santiago J, Molina A** (2023) *Arabidopsis* immune responses
903 triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a
904 group of leucine-rich repeat malectin receptor kinases. *Plant J.* **113**: 833–850

905 **Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulone V** (2013) Analyses of
906 extracellular carbohydrates in oomycetes unveil the existence of three different cell
907 wall types. *Eukaryot Cell* **12**: 194–203

908 **Monjil MS, Nozawa T, Shibata Y, Takemoto D, Ojika M, Kawakita K** (2015)
909 Methanol extract of mycelia from *Phytophthora infestans*-induced resistance in
910 potato. *C R Biol* **338**: 185–196

911 **Moreau RA, Young DH, Danis PO, Powell MJ, Quinn CJ, Beshah K, Slawecki RA,**
912 **Dilliplane RL** (1998) Identification of ceramide-phosphorylethanolamine in
913 oomycete plant pathogens: *Pythium ultimum*, *Phytophthora infestans*, and
914 *Phytophthora capsici*. *Lipids* **33**: 307–317

915 **Namiki F, Shiomi T, Nishi K, Kayamura T, Tsuge T** (1998) Pathogenic and genetic
916 variation in the Japanese strains of *Fusarium oxysporum* f. sp. *melonis*.
917 *Phytopathology* **88**: 804–810

918 **Ngou BPM, Ding P and Jones JDG** (2022) Thirty years of resistance: Zig-zag through
919 the plant immune system. *Plant Cell* **34**: 1447–1478

920 **Noritake T, Kawakita K, Doke N** (1996) Nitric oxide induces phytoalexin
921 accumulation in potato tuber tissues. *Plant Cell Physiol* **37**: 113–116

922 **Nykiforuk CL, Shewmaker C, Harry I, Yurchenko OP, Zhang M, Reed C, Oinam**
923 **GS, Zaplachinski S, Fidantsef A, Boothe JG, Moloney MM** (2012) High level
924 accumulation of gamma linolenic acid (C18:3Δ6,9,12 cis) in transgenic safflower
925 (*Carthamus tinctorius*) seeds. *Transgenic Res* **21**: 367–381

926 **Pring S, Kato H, Imano S, Camagna M, Tanaka A, Kimoto H, Chen P, Shrotri A,**
927 **Kobayashi H, Fukuoka A, Saito M, Suzuki T, Terauchi R, Sato I, Chiba S,**
928 **Takemoto D** (2023) Induction of plant disease resistance by mixed oligosaccharide
929 elicitors prepared from plant cell wall and crustacean shells. *Physiol Plant.* **175**:
930 e14052

931 **Ramamoorthy V, Cahoon EB, Thokala M, Kaur J, Li J, Shah DM.** (2009)
932 Sphingolipid C-9 methyltransferases are important for growth and virulence but not
933 for sensitivity to antifungal plant defensins in *Fusarium graminearum*. *Eukaryot Cell*
934 **8**: 217–229

935 **Ranf S** (2017) Sensing of molecular patterns through cell surface immune receptors.
936 *Curr Opin Plant Biol* **38**: 68–77

937 **Shibata Y, Kawakita K, Takemoto D** (2010) Age-related resistance of *Nicotiana*
938 **benthamiana** against hemibiotrophic pathogen *Phytophthora infestans* requires both
939 ethylene- and salicylic acid-mediated signaling pathways. *Mol Plant-Microbe*
940 Interact **23**: 1130–1142

941 **Shibata Y, Kawakita K, Takemoto D** (2011) SGT1 and HSP90 are essential for age-
942 related non-host resistance of *Nicotiana benthamiana* against the oomycete pathogen
943 *Phytophthora infestans*. *Physiol Mol Plant Pathol* **75**:120–128

944 **Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones DA, Kawakita K, Takemoto D**
945 (2016) The full-size ABCG transporters Nb-ABCG1 and Nb-ABCG2 function in
946 pre- and postinvasion defense against *Phytophthora infestans* in *Nicotiana*
947 **benthamiana**. *Plant Cell* **28**: 1163–1181

948 **Singh A, Wang H, Silva LC, Na C, Prieto M, Futerman AH, Luberto C, Del Poeta**
949 **M** (2012) Methylation of glycosylated sphingolipid modulates membrane lipid
950 topography and pathogenicity of *Cryptococcus neoformans*. *Cell Microbiol* **14**: 500–
951 516

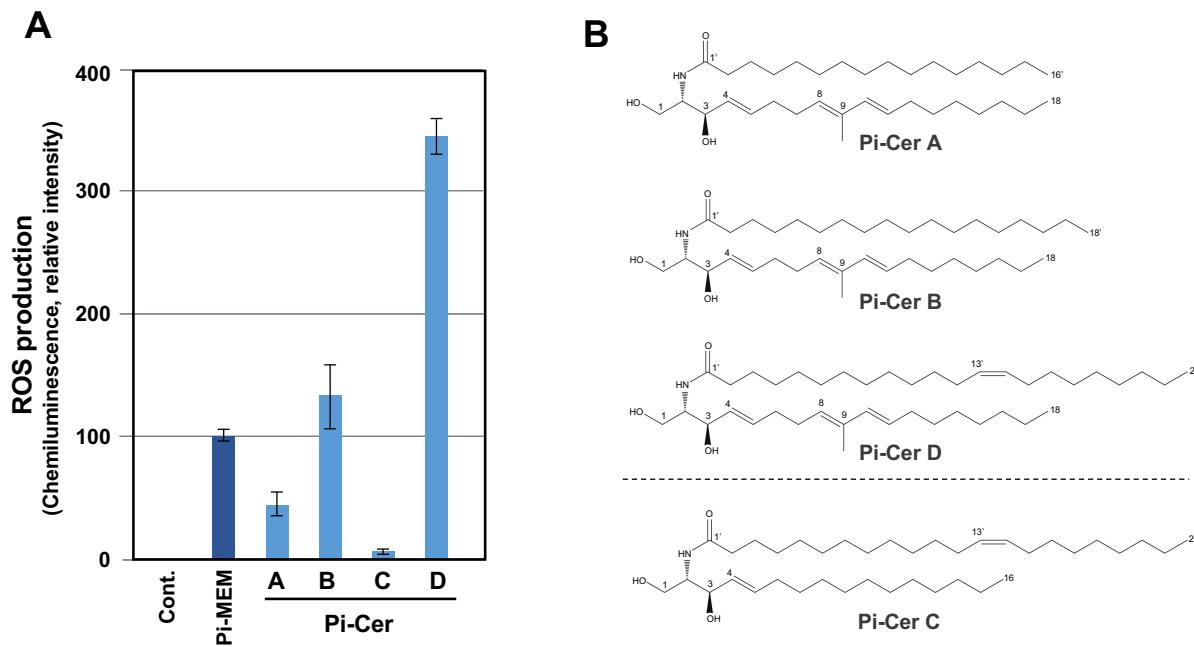
952 **Sperling P, Heinz E** (2003) Plant sphingolipids: structural diversity, biosynthesis, first
953 genes and functions. *Biochim Biophys Acta* **1632**: 1–15

954 **Pring S, Kato H, Imano S, Camagna M, Tanaka A, Kimoto H, Chen P, Shrotri A,**
955 **Kobayashi H, Fukuoka A, Saito M, Suzuki T, Terauchi R, Sato I, Chiba S,**
956 **Takemoto D.** (2023) Induction of plant disease resistance by mixed oligosaccharide
957 elicitors prepared from plant cell wall and crustacean shells. *Physiol Plant* **175**:
958 e14052.

959 **Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira**
960 **S.** (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and
961 gram-positive bacterial cell wall components. *Immunity* **11**: 443–451

962 **Thines M, Kamoun S** (2010) Oomycete-plant coevolution: recent advances and future
963 prospects. *Curr Opin Plant Biol* **13**: 427–433

964 **Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H.** (2022)
965 PANTHER: Making genome-scale phylogenetics accessible to all. *Protein Sci* **31**: 8–
966 22


967 **Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J** (2000)
968 Cerebroside elicitors found in diverse phytopathogens activate defense responses in
969 rice plants. *Plant Cell Physiol* **41**: 676–83

970 **Waskom ML** (2021) Seaborn: statistical data visualization. *J. Open Res. Softw* **6**: 3021

971 **Zheng Z, Qamar SA, Chen Z, Mengiste T** (2006) Arabidopsis WRKY33 transcription
972 factor is required for resistance to necrotrophic fungal pathogens. *Plant J* **48**: 592–
973 605

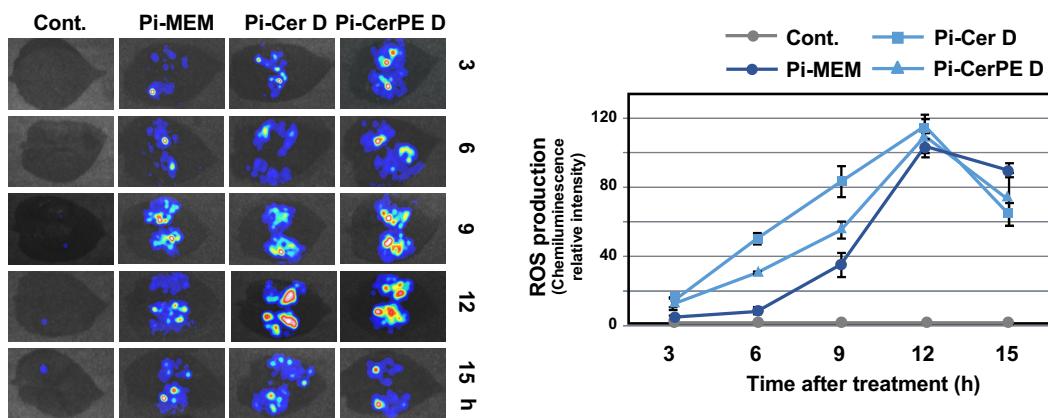


Figure 1. Elicitor activity of methanol extract of *Phytophthora infestans* mycelia (Pi-MEM) in potato. (A) Potato suspension cultured cells were treated with 0.3% DMSO (Cont.) or 30 μ g/ml Pi-MEM and production of reactive oxygen species (ROS) was detected as L-012-mediated chemiluminescence 3 h after the treatment. Data are means \pm SE ($n = 3$). Scores shown are chemiluminescence intensities relative to that of Pi-MEM-treated cells. (B) Potato leaves were treated with 1 % DMSO (Cont.) or 100 μ g/ml Pi-MEM and production of ROS was detected as L-012-mediated chemiluminescence. Data are means \pm SE ($n = 3$). Scores shown are chemiluminescence intensities relative to that of Pi-MEM-treated leave at 9 h. Data marked with asterisks are significantly different from control as assessed by two-tailed Student's t tests: ** $P < 0.01$. (C) Left, putative biosynthetic pathway of potato phytoalexins, lubimin, oxylubimin and rishitin. HPS, *Hyoscyamus muticus* prennaspirodiene synthase; HPO *H. muticus* prennaspirodiene oxygenase; SPH, sesquiterpenoid phytoalexins hydroxylase (Camagna et al., 2020). Potato tubers were treated with 3 % DMSO (Cont.) or 1 mg/ml Pi-MEM and phytoalexins were extracted 48 h after treatment. Produced phytoalexins were detected by LC/MS. Data shown are the representative results of at least 3 separate experiments.

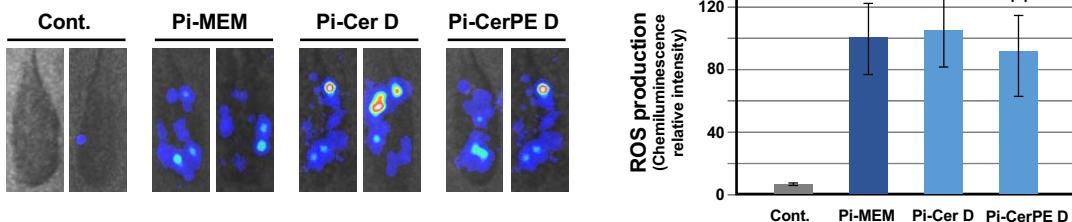


Figure 2. *Phytophthora infestans* ceramide elicitors (Pi-Cer) can induce the production of reactive oxygen species (ROS) in potato suspension cultured cells. **(A)** Potato suspension cultured cells were treated with 0.3% DMSO (Cont.), 30 μ g/ml methanol extract of *P. infestans* mycelia (Pi-MEM), 3 μ g/ml Pi-Cer A, B, C or D and production of ROS was detected as L-012 mediated chemiluminescence 3 h after the treatment. Data are means \pm SE ($n = 3$). Scores are chemiluminescence intensities relative to that of Pi-MEM-treated cells. Data shown are the representative results of at least 3 separate experiments. **(B)** Structures of Pi-Cer A, B, C and D. See Supplemental Figure S1 for the procedures of purification of elicitors and Supplemental Figures S2-5, S10-15 and supplemental document for details of their structural analysis.

A Potato

B Arabidopsis

C Rice

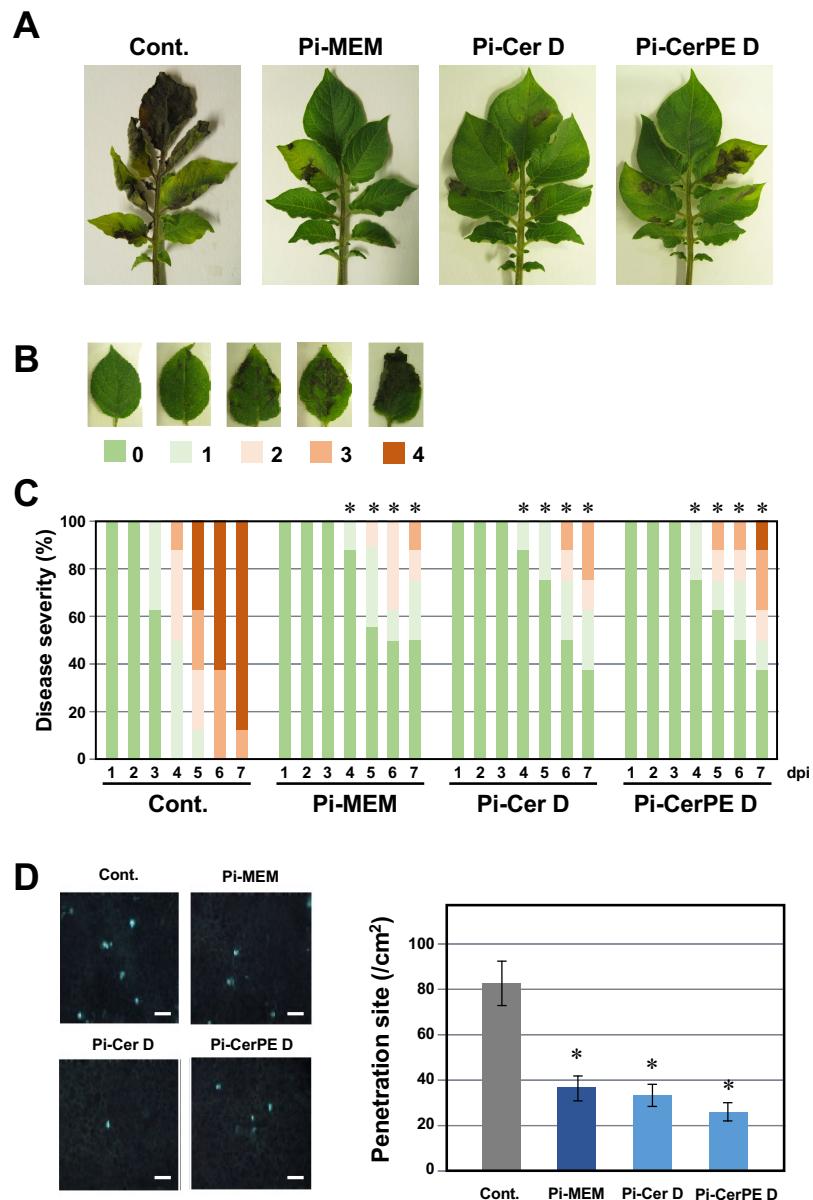
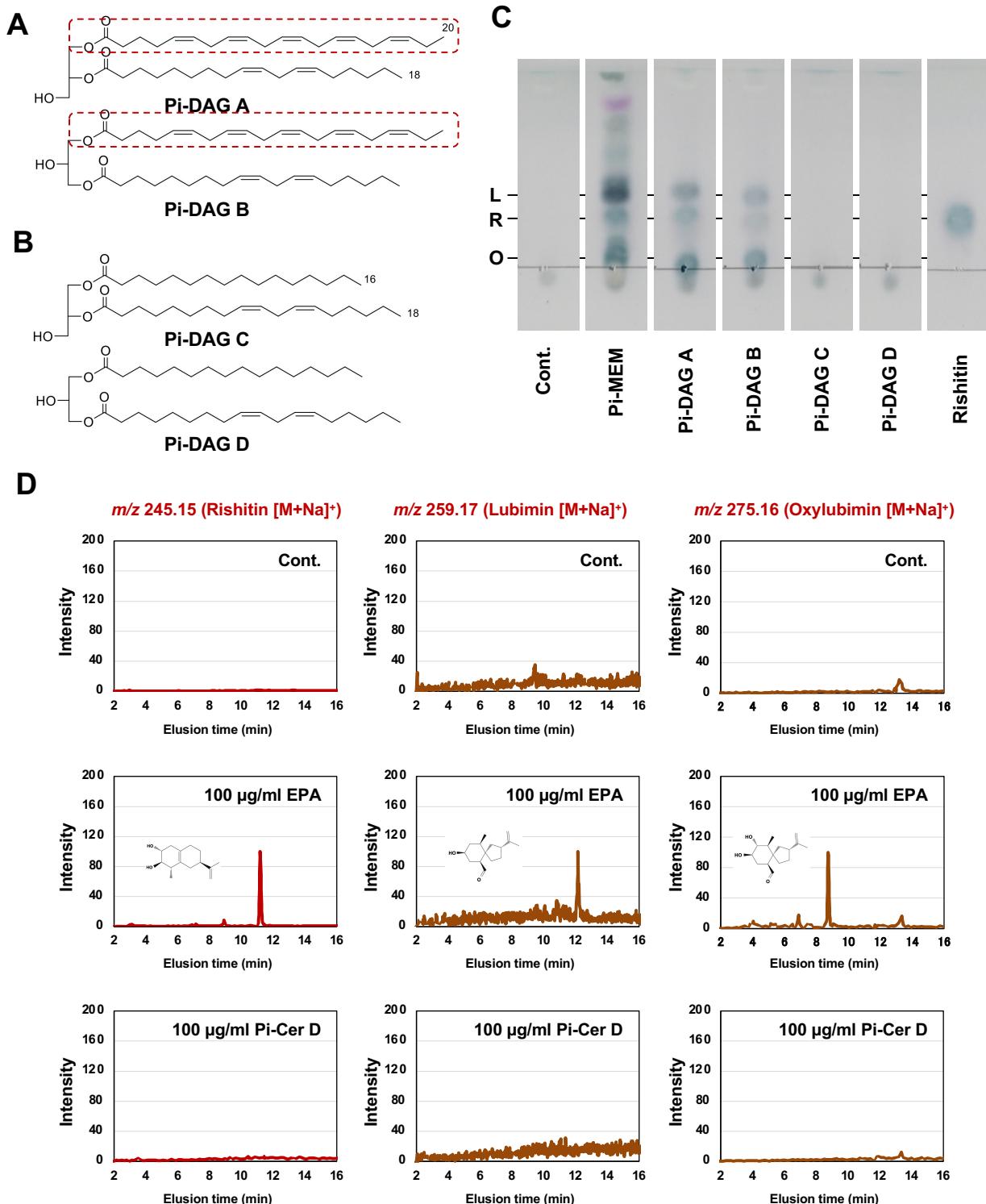


Figure 3. Pi-Cer D and Pi-CerPE D can induce the production of reactive oxygen species (ROS) in leaves of different plant species. Scores shown are chemiluminescence intensities relative to that of Pi-MEM-treated leaves.

(A) (Left) Potato leaves were treated with 1% DMSO (Cont.), 100 µg/ml methanol extract of *P. infestans* mycelia (Pi-MEM), 10 µg/ml Pi-Cer D or Pi-CerPE D by syringe infiltration, and production of ROS was detected as L-012 mediated chemiluminescence 3–15 h after the treatment. Data are means \pm SE (n = 3).


(B) (Left) *Arabidopsis thaliana* leaves were treated with 1% DMSO (Cont.), 100 µg/ml methanol extract of *P. infestans* (Pi-MEM), 10 µg/ml Pi-Cer D or Pi-CerPE D by syringe infiltration, and production of ROS was detected as L-012 mediated chemiluminescence 12 h after the treatment. Data are means \pm SE (n = 3).

(C) (Left) Rice leaves were treated with 1% DMSO (Cont.), 100 µg/ml methanol extract of *P. infestans* (Pi-MEM), 10 µg/ml Pi-Cer D or Pi-CerPE D by vacuum infiltration, and production of ROS was detected as L-012 mediated chemiluminescence 12 h after the treatment. Data are means \pm SE (n = 3). Data marked with asterisks are significantly different from control as assessed by two-tailed Student's *t* tests: **P < 0.01.

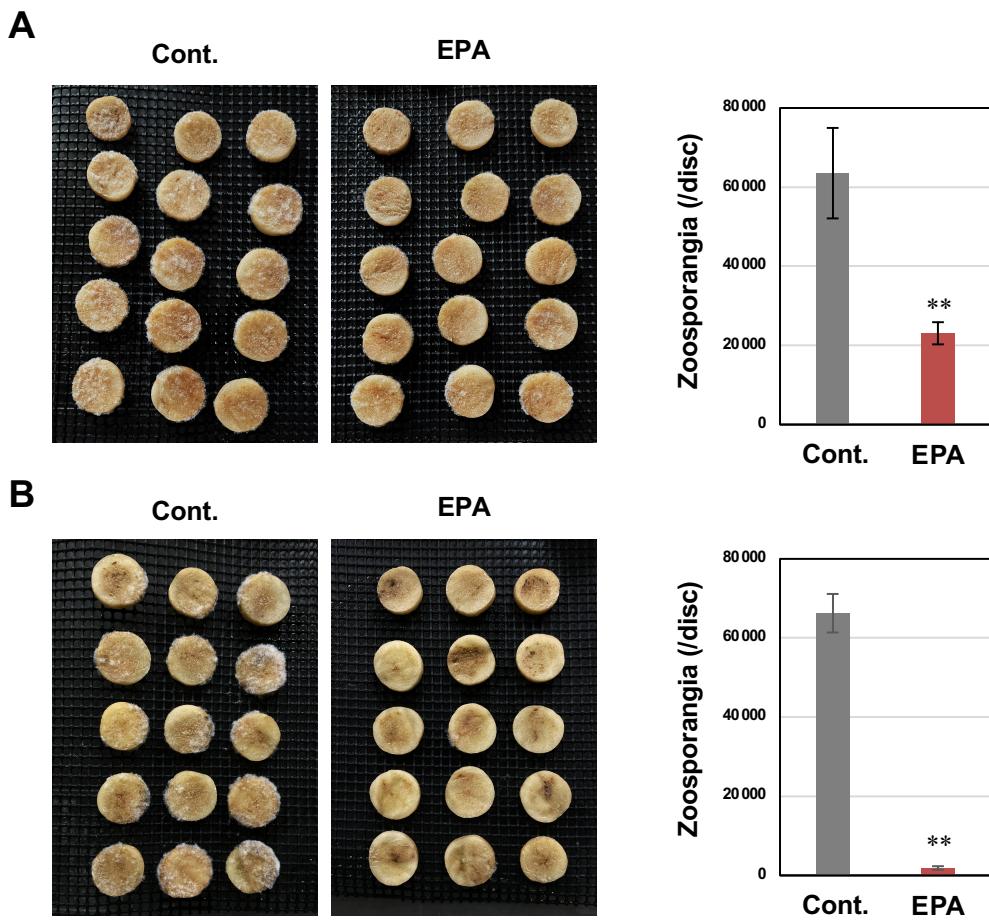


Figure 4. Pretreatment with Pi-Cer D and Pi-CerPE D enhances the resistance of potato leaves against *P. infestans*.

Potato leaves were treated with 0.5 % DMSO (control), 100 μ g/ml Pi-MEM, 10 μ g/ml Pi-Cer D or Pi-CerPE D and incubated for 24 h, and inoculated with a spore suspension of *P. infestans*. **(A)** Disease symptoms of *P. infestans* on potato leaves treated with DMSO, Pi-MEM, Pi-Cer D or Pi-CerPE D. Photographs were taken 6 days post inoculation. **(B)** Leaves representative of the disease severities used for classification. **(C)** Plots showing percentages of potato leaves with disease symptom severities using the classification depicted in (B). Leaves were pretreated with DMSO or elicitors, and disease severity of a subsequent *P. infestans* inoculation was observed from 1 - 7 days post inoculation (dpi). (n = 8). Data marked with asterisks are significantly different from control as assessed by one-tailed Mann-Whitney U-tests: *P < 0.05. **(D)** Left, Penetration sites of *P. infestans* in elicitor treated leaf-discs were detected as callose depositions by aniline blue staining 24 h after inoculation. Bars = 50 μ m. Right, Number of fluorescent spots were counted in elicitor-treated leaf discs inoculated with *P. infestans* 24 h after inoculation. Data are means \pm SE (n = 3). Data marked with asterisks are significantly different from control as assessed by two-tailed Student's t tests: *P < 0.01.

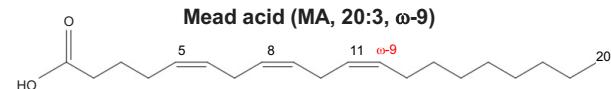
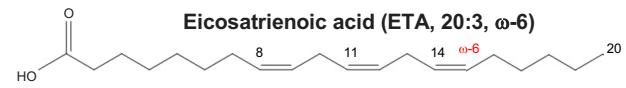
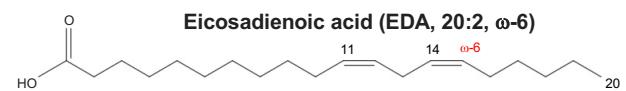
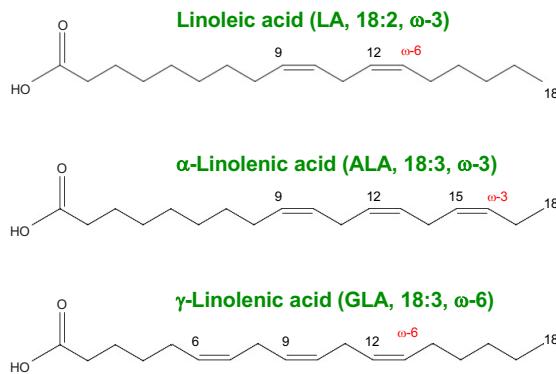
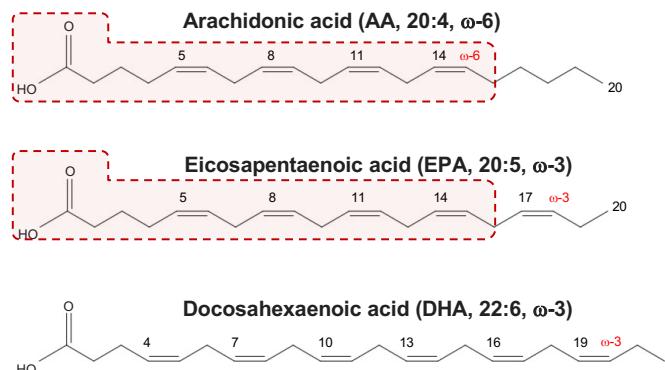
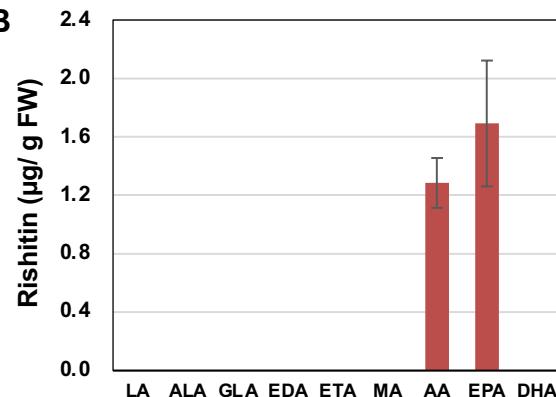







Figure 5. *Phytophthora infestans* diacylglycerol (Pi-DAG) induce the production of phytoalexins in potato tubers. **(A)** Structures of Pi-DAG A and B. Structures equivalent to eicosapentaenoic acid (EPA) are shown in red, dotted boxes. **(B)** Structures of Pi-DAG C and D which have significantly weaker elicitor activity compared with Pi-DAG A and B. See Supplemental Figure S22 for the procedures of purification of Pi-DAGs and Supplemental Figures S23-26 for their structural analysis. **(C)** Potato tubers were treated with 0.3% DMSO (Cont.), 30 µg/ml methanol extract of *P. infestans* mycelium (Pi-MEM), or 100 µg/ml Pi-DAGs, and production of phytoalexins was detected by thin-layer chromatography. L, Lubimin; R, Rishitin; O, Oxylubimin. **(D)** EPA, but not Pi-Cer D, can induce the production of phytoalexins in potato tubers. Potato tubers were treated with 0.3% DMSO (Cont.), 100 µg/ml EPA or 100 µg/ml Pi-Cer D and produced phytoalexins were detected by LC/MS. Data shown are the representative results of at least 3 separate experiments.

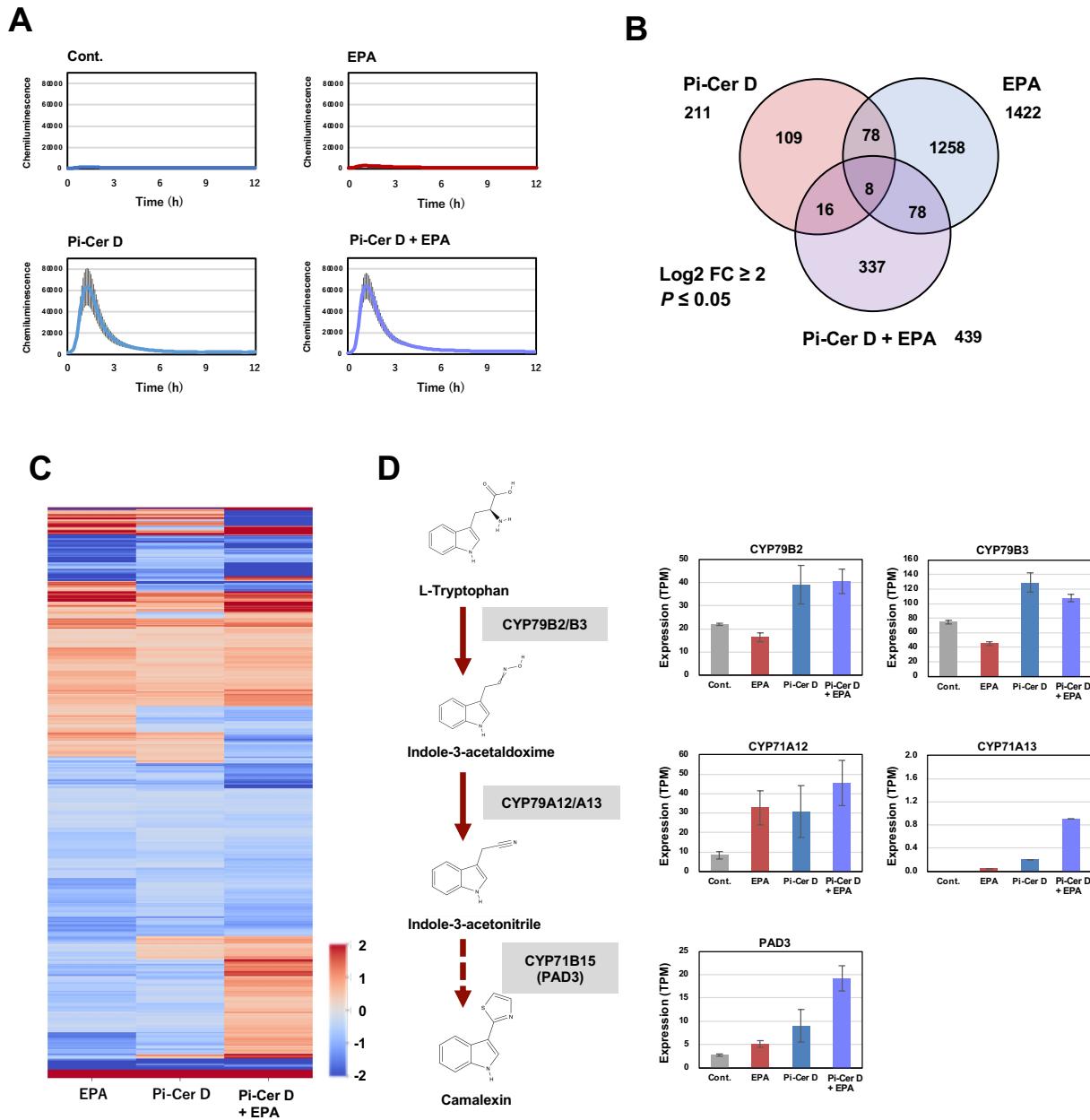
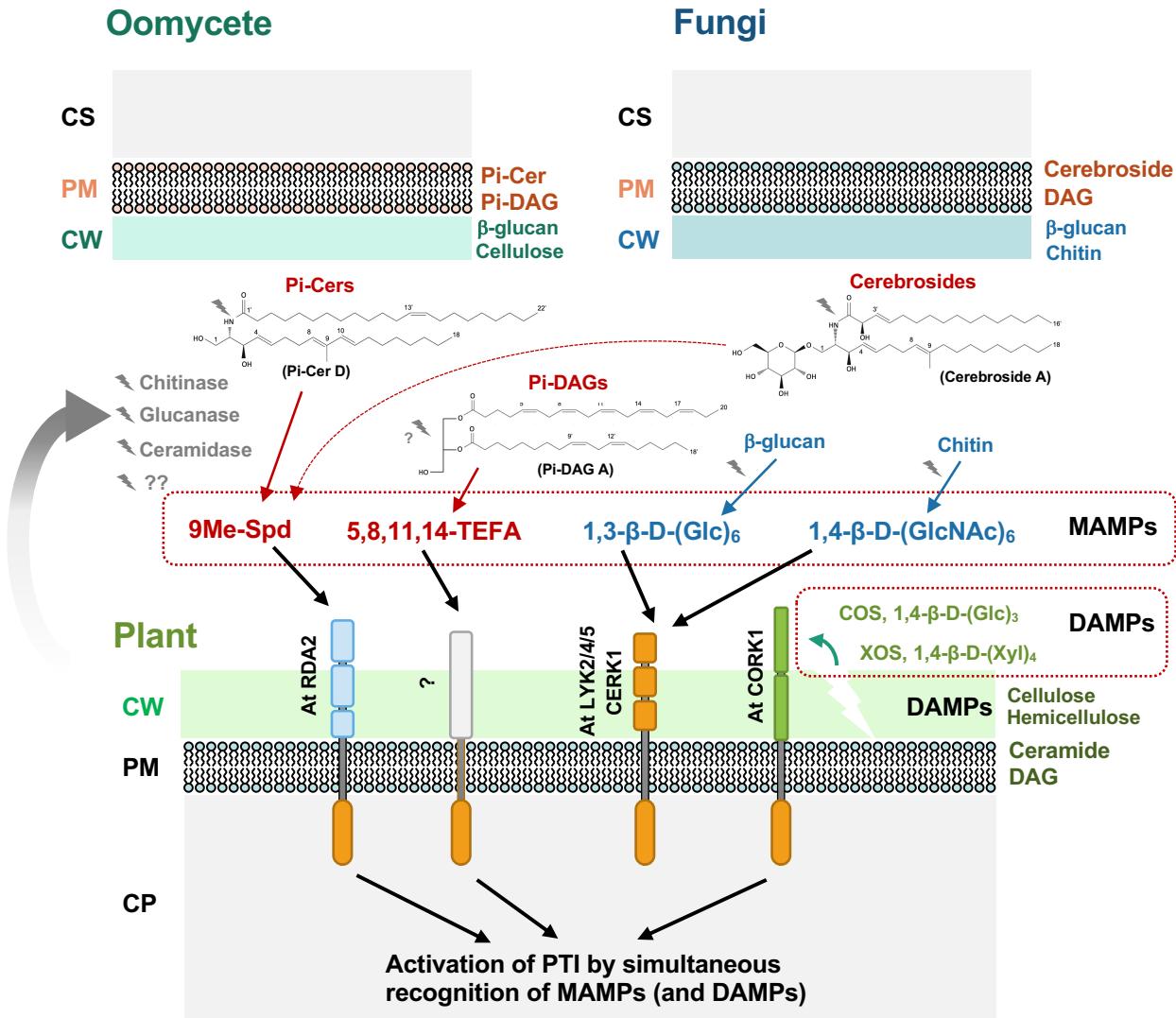


Figure 6. Treatment with EPA enhances the resistance of potato tubers against *P. infestans*.


Potato tuber discs (cv. Irish cobbler, 1 cm diameter) were treated with 50 µl of 0.1 % DMSO (Cont.) or 100 µg/ml EPA and inoculated with a spore suspension of *P. infestans* (A) immediately or (B) 1 day after treatment. (left) Growth of *P. infestans* on potato tubers. Photographs were taken at 4 days post inoculation (dpi). (right) No. of conidiophores produced on potato tubers were counted at 4 dpi (n = 16). Data marked with asterisks are significantly different from control as assessed by two-tailed Student's *t* tests: **P < 0.01. Data shown are the representative results of 2 separate experiments.

A**B**

Figure 7. Comparison of elicitor activity of polyunsaturated fatty acids for induction of rishitin production in potato tubers. **(A)** Structures of polyunsaturated fatty acids used in this study. Fatty acids in green letters indicate those derived from plant. **(B)** Potato tubers were treated with indicated polyunsaturated fatty acids (100 μ g/ml) and rishitin was extracted 2 days after the treatment. Produced rishitin was quantified by GC/MS (n = 6 for AA and EPA, n = 3 for LA, ALA, GLA, EDA, ETA, MA, n=12 for DHA, biological replicates from 3 separate experiments).

Figure. 8 Distinctive sets of *Arabidopsis* genes were upregulated by the treatment with EPA and Pi-Cer D. (A) *Arabidopsis* transformant pWRKY33-LUC containing *LUC* transgene under the control of *AtWRKY33* (AT2G38470.1) promoter was treated with 100 μ g/ml EPA, Pi-Cer D or a mixture of 100 μ g/ml EPA and Pi-Cer D. Chemiluminescence was monitored for 12 h after the treatment. (B) Venn diagram representing the upregulated differentially expressed genes (DEGs) in *Arabidopsis* treated with 100 μ g/ml EPA, 100 μ g/ml Pi-Cer D, or a mixture of 100 μ g/ml EPA and 100 μ g/ml Pi-Cer D for 12 h, which are selected based on TPM ≥ 1 , log2 fold change ≥ 2 and $P \leq 0.05$. (n = 3) (C) Heatmap analysis of differentially expressed genes after the elicitors treatment. The color bar represents the fold change value (log2) with $p \leq 0.05$. (D) Expression profile of *Arabidopsis* genes for camalexin biosynthesis after treatment with 100 μ g/ml EPA, Pi-Cer D or a mixture of 100 μ g/ml EPA and Pi-Cer D.

Figure 9. A model of Pattern-triggered immunity (PTI) activation by simultaneous recognition of multiple MAMPs (Microbe-associated molecular patterns) and DAMPs (Damage-associated molecular patterns). Plant cells secrete enzymes into the apoplast to release MAMPs from the pathogen. 9Me-Spd, 9-methyl-4,8-sphingadienine; 5,8,11,14-TEFA, 5,8,11,14-tetraene-type fatty acid; COS, Cello-oligosaccharide; XOS, Xylo-oligosaccharide; CW, Cell wall; PM, Plasma membrane; CP, Cytoplasm.