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ABSTRACT

The chromatin adaptor Menin interacts with oncogenic fusion proteins encoded by
MLL 1-rearrangements (MLL1-r), and small molecules that disrupt these associations
are currently in clinical trials for the treatment of leukemia. By integrating
chromatin-focused and genome-wide CRISPR screens with genetic, pharmacological,
and biochemical approaches in mouse and human systems, we discovered a molecular
switch between the MLL1-Menin and MLL3/4-UTX chromatin modifying complexes that
dictates response to Menin-MLL inhibitors. We show that MLL1-Menin safeguards
leukemia survival by impeding binding of the MLL3/4-UTX complex at a subset of target
gene promoters. Disrupting the interaction between Menin and MLL1 leads to
UTX-dependent transcriptional activation of a tumor suppressor gene-program that is
crucial for a therapeutic response in murine and human leukemia. We establish the
therapeutic relevance of this mechanism by showing that CDK4/6 inhibitors allow
re-activation of this tumor-suppressor program in Menin-inhibitor insensitive leukemia
cells, mitigating treatment resistance. The discovery of a molecular switch between
MLL1-Menin and MLL3/4-UTX complexes on chromatin sheds light on novel functions
of these evolutionary conserved epigenetic mediators and is particularly relevant to
understand and target molecular pathways determining response and resistance in

ongoing phase 1/2 clinical trials.
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INTRODUCTION

Menin is an evolutionarily conserved nuclear factor that associates with chromatin to
recruit (adapt) interacting proteins(1). These include the Trithorax (Trx)-related MLLA
(KMT2A) and MLL2 (KMT2B) histone methyltransferase complexes(2,3), MLL1
oncogenic fusion proteins(4), transcription factors (e.g., c-MYC(5), JUND(6,7),

SMADs(8,9)), and other chromatin-bound proteins (e.g. LEDGF(10) (reviewed in ref.

(11)).

Menin is a core subunit of the MLL1 (ref. (12)) and MLL2 complexes(2), and is
responsible for targeting these to chromatin(3). Menin is required for
MLL1/MLL2-dependent H3K4 trimethylation of HOX genes and their stable long-term
expression during development(2,13). Menin has context-specific functions in human
diseases, acting as a tumor suppressor in neuroendocrine malignancies(14,15) and in
certain skin(16), lung(17), and CNS tumors(18), and as an oncogenic co-factor in other
cancers, including hepatocellular carcinoma(19) and MLL7-rearranged (MLL1-r)
leukemias(4,20). Furthermore, over 1000 germline and somatic MEN1 variants have

been identified, some of which are linked to cancer predisposition(21).

Given the pro-oncogenic role of Menin in acute leukemia and other malignancies, small
molecule inhibitors targeting the Menin-MLL1 and Menin-MLL2 protein-protein
interactions have shown great promise for intercepting and treating different types of
cancers(19,22-27). Notably, three structurally different Menin-MLL inhibitors have

recently entered clinical trials (NCT04065399, NCT04067336, NCT04811560) and at
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least one has been granted fast track designation by the FDA for treatment of
relapsed/refractory acute leukemias(25,27,28). Thus, an understanding of the molecular
mechanisms of action of these drugs would facilitate the development of biomarkers to
predict therapeutic response and resistance, and lead to rational design of more

effective combination treatments.

RESULTS

Functional interplay between MLL1-Menin and MLL3/4-UTX chromatin modifying

complexes

To understand the dependency of MLL1-r leukemias to Menin and identify factors that
dictate response and resistance to Menin-MLL inhibitors, we performed a series of
CRISPR-based genetic screens. First, we screened a chromatin-focused CRISPR
library in Cas9-expressing mouse leukemia cells driven by a human MLL1-AF9
transgene (hereafter referred to as MLL-AF9 cells)(29) (Supplementary Fig. 1A-G,
Supplementary Table 1). Library-transduced cells were cultured in media with DMSO
(vehicle) or a Menin-MLL inhibitor (MI-503) (ref. (22)) for 12 cell population doublings,
followed by screen deconvolution using next-generation sequencing (Fig. 1A). We
calculated a score for each gene included in the library by assessing the changes in
abundance of sgRNAs during the culture period (Fig. 1B). Consistent with previous

work, sgRNAs targeting known MLL1-r leukemia dependencies, including Dot/ (refs.
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(29-32)), Brd4 (ref. (33)), and Myb (ref. (34)) were strongly depleted in both treatments

while control sgRNAs remained largely neutral (Supplementary Table 2).

We observed that sgRNAs targeting the histone H3 lysine 27 (H3K27) demethylase Utx
(Kdmé6a) and the histone H3 lysine 4 (H3K4) mono-methyltransferases MII3 (Kmt2c)
and Mll4 (Kmt2d) were the most significantly enriched in the Menin-MLL inhibitor
context (Fig. 1B, red circles). This result was unexpected given previously described
canonical functions for the mammalian MLL complexes(35). For example, the
MLL1/2-Menin complex (disrupted by MI-503) is known to catalyze chromatin
modifications associated with transcription at promoters, including di- or tri-methylation
of H3K4 (H3K4me2/3) (13,36,37). On the other hand, the MLL3/4-UTX complex has
been shown to regulate enhancer states by serving as the major H3K4

mono-methyltransferase (H3K4me1) (refs. (38—42)).

To assess whether these results were idiosyncratic of the cell line, library, or inhibitor
used, we performed a genome-wide CRISPR screen in an independently derived
MLL-AF9 mouse cell line using VTP-50469, a more potent, selective, and orally
bioavailable Menin-MLL inhibitor (refs. (25,27,28)). sgRNAs targeting Utx , MII3 , and
Mil4 were also among the most significantly enriched candidate genes identified in this
genome-wide screen (Fig. 1C, Supplementary Fig. 2A-C, Supplementary Table 2),
while shared subunits between the two types of MLL complexes scored similarly in both
vehicle and Menin-MLL inhibitor conditions (Fig. 1B-D, Supplementary Fig. 2D). These

results suggest that core subunits of the MLL3/4-UTX complex(43) modulate the
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therapeutic response of leukemia cells to Menin-MLL inhibition, pointing to a previously

unknown functional cross-talk between these chromatin modifying complexes.

To determine the effects of MLL3/4-UTX loss-of-function in leukemia cell proliferation,
we performed in vitro growth competition assays (Supplementary Fig. 3A). We found
that Utx or MII3 inactivation by CRISPR did not have a significant impact on leukemia
cell proliferation, but MiIl4 inactivation decreased leukemia cell growth (44)
(Supplementary Fig. 3B-D). Consistent with our genetic screening results, Utx
disruption using three distinct sgRNAs significantly increased the viability of
MI-503-treated leukemia cells (Fig. 1E, Supplementary Fig. 3E). In addition, MII3- or
Mil4-deficient leukemia cells treated with MI-503 exhibited a proliferative advantage
over wild-type cells under drug treatment (Supplementary Fig. 3F-G). These
orthogonal results establish the MLL3/4-UTX complex as a central modulator of therapy

response to Menin-MLL inhibition in acute leukemia.

Since UTX was the most significantly enriched chromatin factor in our screen and this
protein is shared by both MLL3 and MLL4 complexes(42,45,46), we focused on UTX
disruption to probe the molecular mechanisms linked to resistance to Menin-MLL
inhibition. We first tested whether genetic Utx inactivation could rescue the effects of
Menin-specific ablation in MLL-AF9 leukemia cells. CRISPR-mediated deletion of Men1
led to robust inhibition of proliferation (Supplementary Fig. 4A), but co-deletion of Utx

suppressed this phenotype, such that Men7-deficient MLL-AF9 cells were able to
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proliferate (Fig. 1F, Supplementary Fig. 4B-E). These results establish a previously

unknown epistatic relationship between Men1 and Utx in acute leukemia.

To determine if the genetic interaction between Menin and UTX depends on the
MLL-fusion protein (MLL-FP) present in these mouse leukemia cells, we ablated the
human MLL1-AF9 oncogenic transgene used to generate this model(47). We targeted
the 5’-end of the human MLL1 gene(48,49) with CRISPR (48,49) survival of leukemia
cells depend on the sustained presence of the MLL-AF9 fusion protein(20)
(Supplementary Fig. 5A). We also found that leukemia cells lacking both MLL-AF9 and
Utx exhibited proliferation defects similar to cells only lacking MLL-AF9
(Supplementary Fig. 5B-C). These results are consistent with the established
dependency of leukemia cells to the pleiotropic gene regulatory activities of MLLA1
oncogenic fusions(20) and suggest that the epistatic relationship between Menin and
UTX is independent from these activities. Accordingly, co-deletion of UTX and MENT1 in
a Menin-dependent non MLL7-r human leukemia cell line(50,51) bypassed the
proliferation defects associated with loss of MEN1 alone (Supplementary Fig. 5D-E).
Therefore, Menin-MLL inhibitors act, in part, through an evolutionary conserved
pathway that involves a functional crosstalk between Menin and UTX, and is

downstream or independent of MLL-FPs.

Menin is required for expression of canonical MLL-FP target genes like Meis1, which is
required for leukemia maintenance(25,36,37,52,53). Moreover, Meis1 over-expression

was recently shown to partially rescue the leukemic stem cell transcriptional program
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suppressed by Menin-MLL inhibition(27). To determine if the genetic interaction
between Menin and UTX regulates expression of these MLL-FP targets, we first treated
mouse MLL-AF9 leukemia cells with MI-503 and confirmed that it leads to robust
downregulation of Meis1 (Supplementary Fig. 5F). However, to our surprise, cells
genetically deficient for both Men1 and Utx showed a similar reduction in Meis1 levels
(Supplementary Fig. 5G), yet were able to proliferate (Fig. 1F, Supplementary Fig.
4E). These data support a genetic epistasis model between Menin and UTX in
Menin-dependent mammalian cells, and suggest that factors beyond Meis? can sustain

the proliferative capacity of MLL1-r and non MLL1-r leukemia cells.

MLL1-Menin complex restricts chromatin occupancy of MLL3/4-UTX at target

gene promoters

Given previous work suggesting a primary role for Menin at promoters(6,54) and UTX at
enhancers(42), we performed chromatin immunoprecipitation followed by sequencing
(ChIP-Seq) to examine the genome-wide binding patterns of their respective protein
complexes. Menin showed strong enrichment at promoter regions (here defined as
transcription start sites (TSSs) + 2kb), which was decreased when its canonical
interactions with MLL1/2 and MLL-FPs were disrupted by MI-503 (Fig. 2A).
Genome-wide enrichment of Menin was also decreased, as evidenced by the reduction
in the number of ChIP peaks post MI-503 treatment (Supplementary Fig. 6A). We
observed a small fraction of UTX at TSSs under basal conditions; however, MI-503

treatment led to a ~5-fold enrichment of UTX at promoters (Fig. 2B, Supplementary
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Fig. 6A). We also confirmed that the MI-503-dependent enrichment of UTX on
chromatin was not simply the result of increased Utx expression or UTX protein stability
(Fig. 2C-D). These data show that disruption of the Menin-MLL1 interaction leads to
dynamic recruitment of UTX to promoter regions (Fig. 2B), implying a previously
unrecognized functional role for the MLL3/4-UTX complex in promoter regulation and

gene transcription in leukemia.

Intriguingly, promoter regions that became uniquely occupied by UTX significantly
overlapped with those where Menin was lost, suggesting a dynamic molecular
mechanism between these complexes at a subset of gene promoters (Fig. 2E-F,
Supplementary Fig. 6B). Correlation analysis also suggested that reduction of Menin
binding by MI-503 coincided with increased UTX chromatin occupancy at the same
genomic loci (Supplementary Fig. 6C). Treatment of mouse fibroblasts MEFs (that are
not dependent on Menin) with MI-503 did not force UTX mobilization or binding to
promoters, indicating that this molecular switch was specific to Menin-dependent cells

(Supplementary Fig. 7A-E).

The above results indicate that Menin inhibition displaces Menin-MLL1 transcriptional
regulatory complexes from promoters, enabling UTX to bind and potentially regulate
target gene expression (Fig. 2). In agreement, analysis of the chromatin-binding profiles
of their cognate H3K4 methyltransferases and their enzymatic histone modifications
(Supplementary Fig. 8A-B) revealed that Menin-MLL1 inhibition led to a significant

decrease in MLL1 chromatin enrichment and a concomitant decrease of its enzymatic

10
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product, H3K4me3 (Supplementary Fig. 8C-E). In contrast, Menin-MLL1 inhibition led
to increased enrichment of the MLL3/4 enzymes at promoter regions co-occupied by
UTX and a concomitant increase in H3K4me1 signal at these same loci
(Supplementary Fig. 8C and 8F-G). Of note, these loci are distinct from those known
to be bound and regulated by the MLL-FPs(30) (Supplementary Fig. 9A-C). These
data indicate that disruption of the MLL1-Menin interaction induces targeting of the core
enzymatic subunits of the MLL3/4-UTX complex to non-canonical sites that are normally

bound by the MLL1-Menin complex.

Promoter-associated H3K4me1 has been shown to facilitate transcriptional repression
in other cellular settings(55), suggesting that deposition of H3K4me1 at gene promoters
could depend on context(56). To determine the functional implications of the Menin-MLL
inhibitor-induced colocalization of UTX, MLL3/4, and H3K4me1 at target gene
promoters, we leveraged the H3 lysine-4-to-methionine (K4M) ‘oncohistone’ mutant as
an orthogonal molecular tool to destabilize and alter the function of the MLL3/4-UTX
complex(57) (Supplementary Fig. 10A). Expression of H3.1K4M in MLL-AF9 leukemia
cells led to a proliferative advantage only in the context of Menin-MLL inhibition
(Supplementary Fig. 10B-D), demonstrating that destabilization of the MLL3/4-UTX
complex (Supplementary Fig. 10E) can phenocopy the intrinsic resistance of Utx-,
MII3-, or Mil4-deficient cells to Menin-MLL inhibition (Fig. 1E, Supplementary Fig.

3E-G). These results further support a model whereby the MLL3/4-UTX complex serves

11
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as a context-specific and central modulator of therapy response to Menin-MLL inhibition

in leukemia cells.

NF-YA confers genomic specificity to a Menin-UTX molecular switch on chromatin

Since Menin lacks a defined DNA binding domain(58), we tested whether a
sequence-specific DNA binding factor may regulate the switch between MLL1-Menin
and MLL3/4-UTX occupancy at specific promoters. Motif analysis on the genomic
regions bound by Menin and UTX in leukemia cells and fibroblasts revealed that NF-Y
sequence motifs were the most significantly enriched (59) in leukemia cells (P = 1e")
(Fig. 3A) and selective to leukemia cells (Supplementary Fig. 11A-B). In agreement,
ChIP-Seq analysis for NF-YA (the DNA binding and transactivation subunit of the NF-Y
complex(59)) showed that it co-occupies sites reciprocally bound by Menin and UTX
(Fig. 3B, Supplementary Fig. 11C). The sites bound by UTX in the context of
Menin-MLL inhibition also had lower NF-YA chromatin enrichment, an effect that was

not due to decreased protein levels (Fig. 3B-C, Supplementary Fig. 11C).

To functionally dissect the relationship between Menin, UTX, and NF-YA, we generated
Nfya“® MLL-AF9 leukemia cells and treated them with MI-503 (Supplementary Fig.
12A). Disruption of Nfya decreased the viability of MI-503-treated leukemia cells relative
to control cells at two different time points, suggesting a synthetic lethal relationship
between Nfya and Men1 (Fig. 3D, Supplementary Fig. 12B). Moreover, treatment of
Nfya® cells with MI-503 led to a significant increase in UTX occupancy at genomic

regions normally bound by Menin and NF-YA at steady-state (Fig. 3E, Supplementary

12
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Fig. 12C). These observations were also consistent with co-essentiality analyses in
human cells(60) showing that a subset of MEN7-dependent cells are also dependent on
members of the NF-Y complex for survival (Supplementary Fig. 12D-G). Collectively,
these results implicate NF-Y in restricting UTX occupancy at promoter regions and
suggest that Menin binding to these sites is in part mediated by the sequence-specific

DNA binding activity of NF-Y.

Transcriptional co-regulation of tumor suppressive pathways by a Menin-UTX

molecular switch

To probe the molecular basis of this switch further, we performed transcriptional profiling
of MLL-AF9 leukemia cells treated with MI-503 and identified pathways that are
reciprocally regulated by Menin and UTX. While the activity of the MLL1-Menin complex
is associated with actively transcribed developmental genes(2,13), MI-503 treatment
resulted in both up- and down-regulation of gene expression, with the majority of

significantly upregulated genes reciprocally bound by Menin and UTX (Fig. 4A-B).

To gain further insights into mechanism, we performed ChlIP-Seq against acetylated
H3K27 and H4K16 (histone modifications associated with gene activation(61)) and
found that the levels of these modifications increased at sites where the MLL3/4-UTX
complex is enriched at upon Menin-MLL inhibition (Supplementary Fig. 13A-B). These
loci also showed increased binding of MOF, a  histone H4K16
acetyltransferase(62—64)(Supplementary Fig. 13C). Thus, Menin-MLL inhibition

produces dynamic changes in gene expression due to loss of MLL1-Menin-dependent
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repressive activity and a concomitant increase in histone modifications associated with

gene activation (including H4K16ac and H3K27ac)(65,66).

To determine if UTX was necessary for gene activation, we generated Utx° MLL-AF9
leukemia cells, treated these with MI-503, and profiled by RNA-Seq (Supplementary
Fig. 14A-B). We found that genes bound by Menin and UTX that are induced by MI-503
failed to get activated in Utx*© cells, suggesting UTX function is necessary for their
transcriptional activation upon Menin displacement from chromatin (we refer to these
genes as ‘Menin-UTX targets’) (Fig. 4C, Supplementary Table 4). Consistent with the
idea that this mechanism is independent of the MLL-FP, we found that MI-503-treated
Utx© cells still exhibited downregulation of canonical MLL-AF9 targets and induction of
myeloid differentiation programs (Supplementary Fig. 15A-C), as has been observed
in Utx"" cells(22,25,27). Moreover, these cells were able to proliferate without
re-expression of Meis1 and Hoxa9 — two critical Menin-MLL-FP targets(25,27,52,53)
(Fig. 1E, Supplementary Fig. 5G, Supplementary Fig. 15D). These data suggest a
new paradigm whereby the effects of Menin-MLL inhibition on MLL-FP target genes are
independent of its effects on Menin-UTX transcriptional targets, and that concomitant
induction of tumor suppressive gene expression programs and repression of canonical

MLL-FP targets is required for the anti-leukemic activity of Menin-MLL1 inhibitors.

To gain insight into cellular and molecular pathways regulated by the Menin-UTX switch,
we performed gene ontology analysis(67,68) of Menin-UTX targets and found significant

evidence for their association with transcriptional programs related to proliferation,

14
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differentiation, and survival (Supplementary Fig. 16A, Supplementary Table 4,). To
further evaluate the relevance of these gene ontology terms, we performed Gene Set
Enrichment Analysis (GSEA)(69) on transcriptional data from MI-503-treated Utx"" and
Utx° cells and observed a significant correlation between the presence of UTX and the
expression of senescence-associated genes following treatment(70) (Fig. 4D,
Supplementary Fig. 16B-G, Supplementary Table 4). This correlation was also
observed when we analyzed a curated list of genes involved in cell cycle arrest and
therapy-induced senescence(71)(Fig. 4E). These transcriptional changes are consistent
with the fact that Menin-MLL inhibition induces a combination of cell cycle arrest,
apoptosis, and differentiation (Supplementary Fig. 1E-G)(22), as well as our
observation that the senescence-associated H4K16ac modification increases with
MI-503 treatment(72) (Supplementary Fig. 13B-C). To gain additional insights into
senescence-associated gene activation mechanisms, we performed ChIP-Seq for RNA
Polymerase Il and observed increased occupancy at the promoters of
senescence-associated genes that are up-regulated by MI-503
treatment(Supplementary Fig. 16H). Thus, the interplay between Menin and UTX in
the context of Menin-MLL inhibition regulates the expression of genes involved in cell

cycle arrest and senescence.

The cellular senescence program is highly complex and characterized in part by
induction of permanent cell cycle arrest and a senescence-associated secretory
phenotype (SASP)(73). To determine if Menin-MLL inhibition induces the SASP, we

measured cytokine and chemokine levels in conditioned media from MLL-AF9 leukemia
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cells treated with MI-503. Secretion of prototypical SASP cytokines like IL-6, IFNB-1,
IL-3, and IL-15 was induced upon Menin-MLL inhibition in a Utx-dependent manner,
supporting a direct role for the Menin-UTX switch in regulating cellular senescence(Fig.
4F-G, Supplementary Fig. 17A-C). Thus, Menin-MLL inhibition engages a tumor
suppressive network that includes therapy-induced cellular senescence and is regulated

by the MLL3/4-UTX complex.

The enzymatic activity of UTX is dispensable for tumor suppressive functions in

response to Menin-MLL inhibition

The UTX protein contains several functional domains, including a JmjC demethylase
domain that catalyzes the removal of the H3K27me3 histone mark(74-77). To
determine the regions of UTX that are necessary for treatment-associated
UTX-dependent phenotypes, we performed structure-function-rescue experiments in
Utx*°-null leukemia cells using lentiviral constructs encoding dual N-terminal HA- and
C-terminal Flag-tagged truncations of UTX (Fig. 5A, Supplementary Fig. 18A-C).
Full-length UTX, or a UTX truncation harboring the first 500 amino acids (UTX"*%) and
lacking the JmjC demethylase domain(74—-77), were sufficient to re-sensitize cells to
MI-503 treatment while truncations proximal to the C-terminus were unable to do so
(Fig. 5B). Consistent with these cellular phenotypes, full-length UTX and UTX"® were
sufficient to rescue UTX-dependent transcriptional phenotypes associated with
Menin-MLL inhibition (Fig. 5C), including induction of Menin-UTX target genes (Fig. 5D,

Supplementary Fig. 19A). These results demonstrate that an N-terminal truncation of
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UTX, lacking the JmjC demethylase domain and a recently reported intrinsically
disordered region(78), is both necessary and sufficient to drive treatment-associated

tumor suppressive responses.

To further confirm that UTX employs non-catalytic mechanisms to regulate gene
expression in the context of Menin-MLL inhibition, we performed ChlP-Seq for
H3K27me3, a modification catalyzed by PRC2 (ref. (79)) and removed by UTX (refs.
(74-77)). We found that the genomic redistribution of UTX induced upon treatment with
MI-503 (Fig. 2B and 2E) did not affect global levels or distribution of H3K27me3
(Supplementary Fig. 20A-B), suggesting that this histone modification might not play a
critical role in these phenotypes. To functionally test this possibility, we generated
isogenic Ezh2K°,Utx"T and Ezh2X°;Utx*° MLL-AF9 leukemia cells and confirmed the
absence of H3K27me3 by immunoblotting (Supplementary Fig. 20C). Consistent with
our model, Ezh2*°;Utx"" leukemia cells remained exquisitely sensitive to MI-503 while
Ezh2X°;Utx"° cells were resistant to Menin-MLL inhibition (Supplementary Fig. 20D).
These results demonstrate that the catalytic function of UTX is dispensable for

UTX-dependent phenotypes and therapeutic responses to Menin-MLL inhibitors.

Combinatorial targeting of Menin and CDK4/6 overcomes resistance associated

with MLL3/4-UTX dysfunction

Senescence can be regulated at both transcriptional and post-transcriptional levels, and
chromatin regulation has been functionally implicated in modulating these

programs(72,80,81). Thus,, we examined whether the Menin-UTX molecular switch
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directly regulates the expression of cell cycle arrest- and senescence-associated genes
by direct binding to their promoters(82,83). Consistent with this model, we found that
Menin is bound to the promoters of the cyclin-dependent kinase (CDK) inhibitors
Cdkn2c/Ink4c and Cdkn2d/Ink4d at basal conditions(84), and that enrichment is
decreased upon Menin-MLL inhibition, coinciding with their increased expression (Fig.
6A, Supplementary Fig. 21A). Conversely, we found that UTX binds to these
promoters only in the context of Menin-MLL inhibition, leading to UTX-dependent
upregulation of both CDK inhibitors (Fig. 6A-B). Thus, the Menin-UTX molecular switch

regulates the expression of these CDK inhibitors by direct chromatin regulation.

Since the proteins encoded by these two genes are natural inhibitors of the CDK4 and
CDKG6 kinases(84), we tested whether pharmacological inhibition of CDK4/6 could
bypass the intrinsic resistance of Utx“° cells to MI-503 while retaining the therapeutic
effects of Menin-MLL inhibition on MLL-FP targets (Fig. 6C). Treatment of MLL-AF9
leukemia cells with MI-503 and the FDA-approved CDK4/6 inhibitor Palbociclib(85);
Sherr et al. 2016(85) showed that Utx*° cells were more resistant to either MI-503 or
Palbociclib alone relative to Utx"" cells, likely due to higher basal levels of Cdk6
transcripts (Fig. 6D, Supplementary Fig. 21D) (82,86). However, combined inhibition of
Menin-MLL and CDK4/6 resulted in a synergistic effect (CD=0.4) (ref. (87)) on inhibiting
cell proliferation to levels similar to those achieved by MI-503 treatment of Utx"" cells
(Fig. 5D). These results demonstrate that targeting pathways regulated by Menin and
UTX can produce combinatorial therapeutic effects and suggest that the anti-leukemic

effects of MI-503(22) are primarily through reactivation of tumor suppressor pathways
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and not solely through dampening transcription of MLL-FP targets like Meis1 (refs.
(22,25,27,52)) (Supplementary Fig. 5G and 15D). Thus, the combination of Palbociclib
with Menin-MLL inhibitors may represent a novel and more effective therapeutic

strategy for Menin-dependent cancers(23,24,26,88).

In vivo response to Menin-MLL inhibitors is accompanied by induction of

MLL3/4-UTX-dependent tumor suppressive programs

Small molecule inhibitors of the Menin-MLL interaction have shown significant promise
in preclinical models of acute lymphoid and myeloid leukemia(25,89) and are currently
in Phase Il clinical trials for treatment of patients with acute leukemia (SNDX-5613
(NCT04067336), KO-539 (NCT04065399), and JNJ-75276617 (NCT04811560)).
Notably, SNDX-5613 was recently granted fast track designation by the FDA for
treatment of relapsed/refractory acute leukemias. To examine whether the Menin-UTX
molecular switch described above is operative in leukemia patients treated with
Menin-MLL inhibitors, we performed longitudinal RNA-Seq analysis of primary AML
cells derived from two patients with NPM1c-mutated (Patient 1) and MLL-rearranged
(Patient 2) leukemia treated with SNDX-5613 (AUGMENT-101 clinical trial;
NCT04065399) (Fig. 7A, Supplementary Fig. 22A). Consistent with our hypothesis,
SNDX-5613 led to concomitant suppression of canonical MLL-FP target genes (e.g.,
MEIS1) and induction of CDK inhibitors (e.g., CDKN2C) (Fig. 7B-E, Supplementary

Fig. 22B-C).
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As an orthogonal approach, we analyzed the in vivo response and resistance of
MLL-rearranged acute leukemia patient-derived xenografts (PDXs) to VTP-50469 (a
close analog of SNDX-5613)(25) (Fig. 7F, Supplementary Fig. 23A). Consistent with
our model, mice transplanted with an MLL3 wild type PDX showed a potent therapeutic
response to VTP-50469 and transcriptional induction of Menin-UTX targets (Fig. 7G-H,
Supplementary Fig. 24A). Conversely, an MLL3 mutant PDX exhibited primary
resistance to VTP-50469 and failed to induce this gene expression program (Fig. 71-J,
Supplementary Fig. 23B and 24A), linking the induction of Menin-UTX-targets to
preclinical drug response. Thus, gene expression programs regulated by MLL1-Menin
and MLL3/4-UTX complexes are operative in AML patients and PDX models treated
with orally bioavailable Menin-MLL inhibitors that are currently under clinical

investigation.

To test whether CDK4/6 inhibition can overcome the blunted induction of endogenous
CDK inhibitors in the context of Menin inhibitor resistance, we treated mice harboring
the MLL3-mutant AML PDX with VTP-50469 and Palbociclib (Fig. 7K). While single
treatment with Menin or CDK4/6 inhibitors led to a minor decrease in leukemia burden
in the bone marrow of recipient mice after 10 days of treatment, combination treatment
with VTP-50469 and Palbociclib induced significant leukemia regression (Fig. 7K-L).
Moreover, RNA-Seq from human leukemia cells isolated from these animals showed
induction of cell cycle arrest and senescence-associated gene expression signatures in
mice treated with both VTP-50469 and Palbociclib (Fig. 7M, Supplementary Fig.

24B-D). Altogether, this data provides pre-clinical evidence for the feasibility and
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efficacy of combined Menin- and CDK4/6-inhibition to overcome the blunted induction of
senescence-associated programs in patient-derived leukemias resistant to

Menin-inhibitor monotherapy.

DISCUSSION

The chromatin adaptor protein Menin exhibits context-specific functions in different
tissues, acting as a tumor suppressor gene in neuroendocrine(14,15), lung(17,90),
skin(16), and CNS malignancies(18), and as an oncogenic cofactor in
hepatocellular(19)and hematologic cancers(4,20). Given that Menin can interact with
similar cofactors in disparate settings and the biological and molecular basis for these
ostensibly paradoxical findings has remained unclear. For example, Menin functionally
cooperates with MLL proteins to activate transcription of the Cdkn1b/p27¥" and
CdknZ2d/Ink4d CDK inhibitors as a tumor suppressive mechanism in neuroendocrine
tumors and lung cancer(3,17,91,92), yet the same protein-protein interaction is critical

for leukemia maintenance(4,10).

Our study sheds light on these paradoxical observations by revealing a functional
interaction between the mammalian histone methyltransferase complexes MLL1-Menin
and MLL3/4-UTX and, in doing so, challenges the paradigm that these complexes are
restricted to certain genomic compartments (Fig. 8). In leukemia cells harboring MLL
fusions, Menin-MLL and NF-Y complexes coordinately co-repress the expression of a

tumor suppressive network that involves the Cdkn2c/Ink4c and Cdkn2d/Ink4d tumor
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suppressor genes in leukemia by direct binding to gene promoters. Disruption of
Menin-MLL or NF-Y complexes using genetic or pharmacological approaches triggers a
molecular switch that leads to recruitment of the MLL3/4-UTX complex to the promoters
of tumor suppressive genes, among others, leading to a UTX-dependent increase in the
levels of gene activation-associated histone modifications and a concomitant increase in
gene expression(72,78,80). Importantly, these phenotypes are independent of UTX
catalytic activity as the first 500 amino acids of UTX (lacking the histone demethylase
domain) are sufficient to induce full length UTX-dependent cellular and transcriptional
phenotypes. This finding is particularly interesting given a recent study suggesting that
UTX requires a much bigger protein fragment to drive tumor suppressive activity and
transcriptional regulation via phase separation mechanisms(78). Instead, our study
demonstrates that UTX does not require a core intrinsically disordered region to drive
tumor suppressive responses in the context of Menin-MLL inhibition. These results
establish a new paradigm by which UTX employs non-catalytic mechanisms to regulate

gene expression and cellular phenotypes that impact response to epigenetic therapies.

Our findings have important therapeutic implications by establishing a molecular
mechanism that regulates response and resistance of leukemia cells to Menin-MLL
inhibitors, which could guide clinical treatment. We show that combinatorial targeting of
this molecular axis using Menin-MLL and CDK4/6 inhibitors has a strong synergistic
effect on inhibiting leukemia cell proliferation in vitro and in vivo, including in a
non-responsive leukemia PDX model. Importantly, we show this mechanism is at play in

human AML subjects in the context of the AUGMENT-101 clinical trial (NCT04065399).
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As Palbociclib and other CDK4/6 inhibitors are already FDA-approved(93)(85), our
findings suggest that this combination treatment could be a viable therapeutic option to
both boost the effectiveness of Menin inhibitors as monotherapies while potentially
overcoming the intrinsic resistance to Menin-MLL inhibition conferred by loss-of-function

of the MLL3/4-UTX complex.
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MATERIALS AND METHODS

Plasmids and sgRNA cloning

To generate stable Cas9-expressing cell lines, we used lentiCas9-Blast (Addgene,
52962). Human wild-type or mutant (K4M) histone H3.1 were cloned into
pCDH-EF1-MCS-IRES-RFP (System Biosciences, CD531A-2). To express sgRNAs, we
generated the PpUSEPR (U6-sgRNA-EFS-Puro-P2A-TurboRFP) and pUSEPB
(U6-sgRNA-EFS-Puro-P2A-TagBFP) lentiviral vectors by Gibson assembly of the
following DNA fragments: (i) PCR-amplified U6-sgRNA (improved scaffold)(94)

cassette, (ii)) PCR-amplified EF1s promoter, (iii) PCR-amplified Puro-P2A-TurboRFP (or
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-TagBFP) gene fragment (IDT), and (iv) BsrGl/Pmel-digested pLL3-based lentiviral
backbone(95). For sgRNA cloning, pUSEPR and pUSEPB vectors were linearized with
BsmBI (NEB) and ligated with BsmBIl-compatible annealed and phosphorylated oligos
encoding sgRNAs using high concentration T4 DNA ligase (NEB). All sgRNA

sequences used are listed in Supplementary Table 1.

Cell culture

Mouse MLL-AF9 leukemia cells were kindly shared by David Chen (Chun-Wei Chen)
and were originally generated by transformation of female mouse bone marrow
Lin-Sca1+cKit+ (LSK) cells with an MSCV-IRES-GFP (pMIG) retrovirus expressing the
human MLL-AF9 fusion protein and transplanted into sub-lethally irradiated recipient
mice as described previously(29,47). Leukemic blasts were harvested from moribund
mice and cultured in vitro in IMDM (Gibco) supplemented with 15% FBS (Gibco), mouse
IL-6 (10ng/uL, PeproTech), mouse IL-3 (10ng/uL, PeproTech), mouse SCF (20ng/uL,
PeproTech), penicillin (100U/mL, Gibco), streptomycin (100ug/uL, Gibco), L-glutamine
(2mM, Gibco), and plasmocin (5ug/mL, InvivoGen). Human leukemia cell lines MV4;11
and OCI-AML3 were kindly shared by Zhaohui Feng and were cultured in RPMI 1640
(Corning) supplemented with 10% FBS (Gibco), penicillin (100U/mL, Gibco),
streptomycin (100ug/uL, Gibco), L-glutamine (2mM, Gibco), and plasmocin (5ug/mL,
InvivoGen). Mouse NIH-3T3 cells were maintained in DMEM (Corning) supplemented
with 10% FCS (ATCC), penicillin (100U/mL, Gibco), streptomycin (100ug/uL, Gibco),

and plasmocin (5ug/mL, InvivoGen). Human HEK293 cells were maintained in DMEM
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(Corning) supplemented with 10% FBS (Gibco), penicillin (100U/mL, Gibco),
streptomycin (100ug/uL, Gibco), and plasmocin (5ug/mL, InvivoGen). Cas9-expressing
cells were generated by lentiviral transduction of lentiCas9-Blast followed by Blasticidin
(InvivoGen) selection and validation of Cas9 expression and activity. All cells were

confirmed to be free of Mycoplasma contamination and cultured at 37°C and 5% CO,.

Virus production

Lentiviruses were produced by co-transfection of HEK293T (ATCC) cells with
pUSEPR-EpiV2.0 sgRNA library, individual sgRNA plasmids, or lentiCas9-Blast, and
packaging vectors psPax2 (Addgene, 12260) and pMD2.G (Addgene, 12259) using
Lipofectamine 2000 (Invitrogen). Viral supernatants were collected at 48 and 72 hours

post transfection and stored at -80°C.

Transduction of cell lines

Leukemia cells were seeded at a density of 2.5 x 10° cells/well of a non TC-treated
12-well plate in complete medium containing polybrene (10ug/mL, EMD Millipore), and
then transduced with lentivirus by centrifugation at 2,500rpm for 90 minutes at 37°C.
After a 24-hour incubation, cells were transferred to a new plate containing fresh culture

medium. Antibiotic selection or cell sorting was done 48 hours post transduction.

Drug treatments

For MI-503 (Active Biochem) treatments, leukemia cells were seeded at a density of 4 x

10° cells/mL, treated with limiting dilutions of the inhibitor as indicated or 0.25% DMSO
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(vehicle). Cells were re-plated every 4 days to the initial density and re-treated. Viability
was assessed at various time points by using the CellTiter-Glo Luminescent Cell
Viability assay (Promega) following the manufacturer’s guidelines. Ratio of
luminescence signal from metabolically active cells in MI-503 versus DMSO were
plotted to calculate IC50 values (Prism 8, GraphPad). For MI-503 (Active Biochem) and
Palbociclib HCI (Selleckchem) combination treatments, 25,000 leukemia cells in 250uL
of drug-containing medium were seeded in a 48-well plate and viability was assessed
every 4 days by using the CellTiter-Glo Luminescent Cell Viability assay (Promega). For
RNA-Seq and ChIP-Seq experiments, cells were cultured at 4 x 10° cells/mL, treated
with MI-503 (concentrations as indicated in Fig.legends) or 0.25% DMSO for 4 days.
Cells were collected, washed with PBS, pelleted, and flash-frozen before RNA or
chromatin isolation. For in vivo VTP-50649 treatment, mice were randomly assigned to
either normal or 0.1% VTP-50469 rodent special diet®®. Mice were bled weekly to
monitor leukemia burden and euthanized when showing clinical signs of disease

(experimental endpoint).

Flow cytometric analyses

Immunophenotyping of leukemia cells treated with MI-503 (or vehicle), was done by
collecting cells post treatment and staining using the indicated conjugated primary
antibodies. Stained samples were analyzed on an LSRFortessa (BD Biosciences) flow
cytometer. Data analysis was performed using FlowJo (BD Biosciences) software.

Intracellular antigens detection was done by using the Foxp3/Transcription Factor
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Staining Buffer Set (eBioscience) following the manufacturer’s guidelines. Conjugated
primary antibodies used were: Pacific Blue anti-CD11b (Biolegend, 101224), Alexa

Fluor 647 anti-Cas9 (CST, 48796).

Xenograft models of AML

All animal experiments were performed with the approval of Dana-Farber Cancer
Institute’s Institutional Animal Care and Use Committee (IACUC). NOD.Cg-Prkdc®
112rg"™"S4s/JicTac (NOG) mice were obtained from Taconic Biosciences (Rensselaer, NY,
USA). Non-irradiated 8-12 weeks old adult mice were transplanted with previously
established patient-derived xenografts (PDXs)(25)via tail vein injection (250,000
cells/mouse). Engraftment of human cells (hCD45") was analyzed and monitored
longitudinally by weekly bleeding to quantify hCD45" cells in the peripheral blood by flow
cytometry with human CD45-PE and anti-mouse CD45-APC-Cy7 antibodies (Biolegend,
San Diego, CA, USA). Mice were monitored closely to detect disease onset and
treatment started when hCD45" cells were detectable in the peripheral blood. Mice were
randomly assigned to either normal or 0.1% VTP-50469 rodent special diet(25). Mice
were bled weekly to monitor leukemia burden as described above and euthanized when
showing clinical signs of disease (experimental endpoint). Leukemia cells from a subset

of these animals were harvested after seven days of treatment to perform RNA-Seq.

Longitudinal analysis of AML patient treated with SNDX-5613

Peripheral blood of patients was taken under informed consent according to the

Declaration of Helsinki during routine blood draws at screening and different timepoints
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during the first cycle of treatment with SDNX-5613 within the AUGMENT-101 clinical
trial (NCT04065399). Peripheral blood mononuclear cells (PBMCs) were subsequently
isolated using Ficoll (BD Bioscience, Franklin Lakes, NJ, USA) gradient centrifugation,
viably frozen, and banked at the Dana-Farber Cancer Institute, Boston, MA (approved
institutional protocol, IRB: #01-206). For longitudinal analysis, samples were thawed,
washed twice in PBS, and stained with anti-human CD45 (PE) and anti-human CD117
(APC) (Biolegend, San Diego, CA, USA). CD45-low/CD117+ leukemia cells were FACS
sorted (MA900 sorter, Sony Biotechnology, San Jose, CA, USA) and subsequently

processed for RNA-Seq (see methods section on RNA-Seq).

Immunoblotting

Whole cell lysates were separated by SDS-PAGE, transferred to a PVDF membrane
(EMD Millipore), blocked in 5% non-fat milk in TBS plus 0.5% Tween-20
(Sigma-Aldrich), probed with primary antibodies, and detected with HRP-conjugated
anti-rabbit or anti-mouse secondary antibodies (GE Healthcare). Primary antibodies
used included: anti-Cas9 (CST, 14697), anti-UTX (CST, 33510), anti-Menin (Bethyl,
A300-105A), anti-NF-YA (Santa Cruz Biotechnology, sc-17753), anti-Actin (abcam,
ab8224), anti-HSP90 (BD Biosciences, 610418), anti-HA (Biolegend, 901501),

anti-H3K4me1 (abcam, ab8895), anti-H3K4me3 (CST, 9751), anti-H3 (abcam, ab1791).

Locus-specific DNA sequencing

To determine the mutational status of the Men1 and Utx loci in cells targeted by

CRISPR-Cas9, we performed next generation sequencing of PCR-amplified target
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regions. Genomic DNA (gDNA) was isolated using the DNeasy Blood & Tissue Kit
(Qiagen) following the manufacturer's guidelines. Amplification of target regions was
performed from 500ng of gDNA using Q5 High-Fidelity 2X Master Mix (NEB) and
primers listed in Supplementary Table 1. PCR products were purified using the QlAquick
PCR Purification Kit (Qiagen) and sequenced on lllumina instruments at GENEWIZ

(Amplicon-EZ service).

RNA isolation, qRT-PCR analyses, and RNA sequencing

Total RNA was isolated from cells using the RNeasy kit (Qiagen, Hilden, Germany).
RNA was reverse transcribed with High-Capacity cDNA Reverse Transcription kits
(Applied Biosystems) following the manufacturer’s instructions. Quantitative PCRs
(qRT-PCRs) were performed using the TagMan Gene Expression Master Mix (Applied
Biosystems) with the StepOne Real-Time System (Applied Biosystems). TagMan gene
expression assays were used. ActB was used as the endogenous control for
normalization and relative gene expression was calculated by using the comparative CT
method. The mouse gene probes used were: ActB (Mm02619580 g1), Hoxa9
(MmO00439364_m1), Meis1 (Mm00487664_m1), Utx (Kdm6a) (MmO00801998_m1),
Men1 (Mm00484957_m1). Quality of extracted RNA for sequencing was assessed by
RIN using a Bioanalyzer (Agilent) and quantified by TapeStation (Agilent). Poly(A)
mMRNA enrichment and library preparation was performed using the NEBNext Poly(A)
mRNA Magnetic Isolation Module and NEBNext Ultra Il RNA Library Prep kit (NEB).

Sequencing was done using the lllumina NextSeq500 to obtain >20 million 75bp
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single-end or 37bp paired-end reads per sample or at Genewiz (HiSeq, 150bp, paired

end) (lllumina, South Plainfield, NJ, USA).

Cloning of sgRNA library targeting mouse chromatin requlators

sgRNA sequences (six per gene) targeting 616 mouse chromatin regulators (for a total
of 3,696 sgRNAs) (Supplementary Table 1) were designed using the Broad Institute
sgRNA Designer too(96). We also included 36 non-targeting control sgRNAs obtained
from the GeCKOv2 Mouse CRISPR library(97)(for a total of 3,732 sgRNAs). This library
was divided into 6 pools (each composed of 616 targeting and 6 non-targeting
sgRNAs), synthesized by Agilent Technologies, and cloned into the pUSEPR lentiviral
vector(98) using a modified version of the protocol published by Doench et al.(96) to
ensure a library representation of >10,000X. Briefly, each sub-pool was selectively
amplified using barcoded forward and reverse primers that append cloning adapters at
the 5- and 3’-ends of the sgRNA insert (Supplementary Table 1), purified using the
QlAquick PCR Purification Kit (Qiagen), and ligated into BsmBl-digested and
dephosphorylated pUSEPR vector using high-concentration T4 DNA ligase (NEB). A
minimum of 1.2ug of ligated pUSEPR plasmid DNA per sub-pool was electroporated
into Endura electrocompetent cells (Lucigen), recovered for one hour at 37°C, plated
across four 15cm LB-Carbenicillin plates (Teknova), and incubated at 37°C for 16 hours.
The total number of bacterial colonies per sub-pool was quantified using serial dilution
plates to ensure a library representation of >10,000X (>6.2 million colonies per

sub-pool). The next morning, bacterial colonies were scraped and briefly expanded for 4
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hours at 37°C in 500mL of LB-Carbenicillin. Plasmid DNA was isolated using the

Plasmid Plus Maxi Kit (Qiagen).

To assess sgRNA distribution in each of the sub-pools, as well as the master pool
(composed of equimolar amounts of plasmid DNA from each individual sub-pool), we
amplified the sgRNA target region using primers that append lllumina sequencing
adapters on the 5’- and 3’-ends of the amplicon, as well as a random nucleotide stagger
and unique demultiplexing barcode on the 5-end (Supplementary Table 1). Library
amplicons were size-selected on a 2.5% agarose gel, purified using the QIAquick Gel
Extraction Kit (Qiagen), and sequenced on an lllumina NextSeq instrument (75nt single

end reads).

Chromatin-focused CRISPR-Cas9 genetic screening

To ensure that most cells harbor a single sgRNA integration event, we determined the
volume of viral supernatant that would achieve an MOI of ~0.3 upon spinfection of a
population of Cas9-expressing leukemia cells. Briefly, cells were plated at a
concentration of 2.5x10° per well in 12-well plates along with increasing volumes of
master pool viral supernatant (0, 25, 100, 200, 500, 1000, and 2000uL) and polybrene
(10pg/mL, EMD Millipore). Cells were then centrifuged at 1,500rpm for 2 hours at 37°C
and incubated at 37°C overnight. Viral infection efficiency was determined by the
percentage of tRFP+ cells assessed by flow cytometry on an LSRFortessa (BD

Biosciences) instrument 72 hours post infection.
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Each step of the screen - from infection to sequencing - was optimized to achieve a
minimum representation of 1000X. To ensure a representation of 1000X at the
transduction step, we spinfected a total of 20 million cells across seven 12-well plates in
triplicate (for a total of twenty one 12-well plates) using the volume of viral supernatant
that would achieve a 30% infection rate (6 million transduced cells per technical

replicate).

24 hours after infection, cells were pooled into 2 x T225 flasks (Corning) per infection
replicate and selected with 2.5ug/mL puromycin (Gibco) for 4 days. Subsequently, 6
million puromycin-selected cells were pelleted and stored at -20°C (T,/Input population)
while the rest were plated into either DMSO- or MI-503-containing media (at an 1C50
concentration) and cultured until the population reached 12 cumulative population
doublings (T¢/Final). At least 6 million cells were harvested and pelleted for this final
time point. Genomic DNA from MLL-AF9 cells was isolated using the DNeasy Blood &

Tissue Kit (Qiagen) following the manufacturer's guidelines.

As previously published(99), we assumed that each cell contains approximately 6.6pg
of genomic DNA (gDNA). Therefore, deconvolution of the screen at 1000X required
sampling ~4 million x 6.6pg of gDNA, or ~26.4ug. We employed a modified 2-step PCR
version of the protocol published by Doench et al.(96). Briefly, we perform an initial
‘enrichment” PCR, whereby the integrated sgRNA cassettes are amplified from gDNA,
followed by a second PCR to append lllumina sequencing adapters on the 5- and

3’-ends of the amplicon, as well as a random nucleotide stagger and unique
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demultiplexing barcode on the 5 end. Each “PCR1” reaction contains 25uL of Q5
High-Fidelity 2X Master Mix (NEB), 2.5uL of Nuc PCR#1 Fwd Primer (10uM), 2.5uL of
Nuc PCR#1 Rev Primer (10uM), and 5ug of gDNA in 20uL of water (for a total volume
of 50uL per reaction). The number of PCR1 reactions is scaled accordingly; therefore,
we performed six PCR1 reactions per technical replicate, per time point (TO or TF), and
per condition (DMSO or MI-503). PCR1 amplicons were purified using the QIAquick
PCR Purification Kit (Qiagen) and used as template for “PCR2” reactions. Each PCR2
reaction contains 25uL of Q5 High-Fidelity 2X Master Mix (NEB), 2.5uL of a unique Nuc
PCR#2 Fwd Primer (10uM), 2.5uL of Nuc PCR#2 Rev Primer (10pM), and 300ng of
PCR1 product in 20uL of water (for a total volume of 50uL per reaction). We performed
two PCR2 reactions per PCR1 product. Library amplicons were size-selected on a 2.5%
agarose gel, purified using the QlIAquick Gel Extraction Kit (Qiagen), and sequenced on
an lllumina NextSeq500 instrument (75nt single end reads). All primer sequences are
available in Supplementary Table 1. PCR Program for PCR1 and PCR2: 1) 98°C x 30s;
2) 98°C x 10s; 3) 65°C x 30s; 4) 72°C x 30s; 5) Go to step 2 x 24 cycles; 6) 72°C x 2

min; 7) 4°C forever.

Genome-wide CRISPR-Cas9 genetic screening

Paired mouse genome-scale CRISPR-Cas9 screening libraries (M1/M2) were provided
by Shengging Gu and Xiaole Shirley Liu (Addgene Pooled Library #1000000173). The
M1 and M2 libraries cover protein coding genes of the genome with a total of 10 guide

RNAs per gene. Lentivirus was produced using each separate library pool and used to
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transduce each 5x10%® MLL-AF9 cells at low MOI. 48 hours after library transduction,
cells were selected with blasticidin (5ug/ml). After 5 days of antibiotic selection, a
baseline (TO) sample was collected, and cells were cultured in duplicate before harvest
of terminal samples after 12 days (TF). Subsequently, genomic DNA was isolated using
phenol-chloroform extraction and sgRNA libraries were deconvoluted using

next-generation sequencing essentially as described above.

Analysis of CRISPR-Cas9 genetic screen data

FASTQ files were processed and trimmed to retrieve sgRNA target sequences followed
by alignment to the reference sgRNA library file. Sequencing read counts were
summarized at gene level per sample and used as input to run differential analysis
using DESeqg2 package. The log2 fold change values were used as ‘Gene Score’ for the
final visualization. Genome-wide screening data was analyzed using MAGeCK MLE
essentially as described in the original publication(100). See Supplementary Table 2

for all raw screening data.

Growth competition assays

Cas9-expressing cells were virally transduced with the designated constructs
(PUSEPR-sgRNA, pUSEPB-sgRNA, pCDH-cDNA) in 12-well plates at 30-40% infection
rate (three infection replicates). Cells were monitored by flow cytometry over time using
an LSRFortessa (BD Biosciences) flow cytometer and relative growth of
sgRNA-containing cells was assesed. Flow cytometry data was analyzed with FlowJo

software (BD Biosciences). The percentage of single positive (SP) (tRFP+ or BFP+) or
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double positive (DP) (tRFP+/BFP+) cells was normalized to their respective “T0”
time-point values (assessed on day 2 or 3 post transduction, as indicated in the
Fig.legend). Normalized values were log2-transformed, and the differential fithess of

cells was calculated as follow:

Differential Fitness = log2(Normalized DP) - log2(Normalized SP)

Chromatin immunoprecipitation (ChlP)

Cross-linking ChIP in mouse leukemia and NIH-3T3 cells was performed with 10-20x10’
cells per immunoprecipitation. After drug (or vehicle) treatment, cells were collected,
washed once with ice-cold PBS, and flash-frozen. Cells were resuspended in ice-cold
PBS and cross-linked using 1% paraformaldehyde (PFA) (Electron Microscopy
Sciences) for 5 minutes at room temperature with gentle rotation. Unreacted PFA was
quenched with glycine (final concentration 125mM) for 5 minutes at room temperature
with gentle rotation. Cells were washed once with ice-cold PBS and pelleted by
centrifugation (800g for 5 minutes). To obtain a soluble chromatin extract, cells were
resuspended in 1mL of LB1 (50mM HEPES pH 7.5, 140mM NaCl, 1mM EDTA, 10%
glycerol, 0.5% NP-40, 0.25% Triton X-100, 1X complete protease inhibitor cocktail) and
incubated at 4°C for 10 minutes while rotating. Samples were centrifuged (1400g for 5
minutes), resuspended in 1mL of LB2 (10mM Tris-HCI pH 8.0, 200mM NaCl, 1mM
EDTA, 0.5mM EGTA, 1X complete protease inhibitor cocktail), and incubated at 4°C for
10 minutes while rotating. Finally, samples were centrifuged (1400g for 5 minutes) and

resuspended in 1mL of LB3 (10mM Tris-HCI pH 8.0, 100mM NaCl, 1mM EDTA, 0.5mM
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EGTA, 0.1% sodium deoxycholate, 0.5% N-Lauroylsarcosine, 1X complete protease
inhibitor cocktail). Samples were homogenized by passing 7-8 times through a
28-gauge needle and Triton X-100 was added to a final concentration of 1%. Chromatin
extracts were sonicated for 14 minutes using a Covaris E220 focused ultrasonicator.
Lysates were centrifuged at maximum speed for 10 minutes at 4°C and 5% of
supernatant was saved as input DNA. Beads were prepared by incubating them in 0.5%
BSA in PBS and antibodies overnight (100uL of Dynabeads Protein A or Protein G
(Invitrogen) plus 20uL of antibody). Antibodies used were: anti-Menin (Bethyl,
A300-105A), anti-UTX (Bethyl, A302-374A), anti-MLL1 (N-term-specific, Bethyl,
A300-086A), anti-MLL3/4 (kindly provided by the Wysocka laboratory*', anti-NF-YA
(Santa Cruz Biotechnology, sc-17753), anti-H3K4me1 (abcam, ab8895), anti-H3K4me3
(Active Motif, 39159), and anti-H4K16ac (Active Motif, 39167). Antibody-Beads mixes
were washed with 0.5% BSA in PBS and then added to the lysates overnight while
rotating at 4°C. Beads were then washed six times with RIPA buffer (50mM HEPES pH
7.5, 500mM LiCl, 1mM EDTA, 0.7% sodium-deoxycholate, 1% NP-40) and once with
TE-NaCl Buffer (10mM Tris-HCI pH 8.0, 50mM NaCl, 1mM EDTA). Chromatin was
eluted from beads in Elution buffer (50mM Tris-HCI pH 8.0, 10mM EDTA, 1% SDS) by
incubating at 65°C for 30 minutes while shaking, supernatant was removed by
centrifugation, and crosslinking was reversed by further incubating chromatin overnight
at 65°C. The eluted chromatin was then treated with RNaseA (10mg/mL) for 1 hour at
37°C and with Proteinase K (Roche) for 2 hours at 55°C. DNA was purified by using

phenol-chloroform extraction followed with ethanol precipitation. The NEBNext Ultra I
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DNA Library Prep kit was used to prepare samples for sequencing on an lllumina

NextSeq500 (75bp read length, single-end, or 37bp read length, paired-end).

ChIP-Seq analysis

ChIP-sequencing samples were sequenced using the lllumina NextSeqg500. ChIP-seq
reads were aligned using Rsubread’s align method and predicted fragment lengths
calculated by the ChIPQC R Bioconductor package(101,102). Normalized, fragment
extended signal bigWigs were created using the rtracklayer R Bioconductor package.
Peak calls were made in MACS2 software(103). Read counts in peaks were calculated
using the featureCounts method in the Rsubread library(102). Differential ChlP-seq
signal were identified using the binomTest from the edgeR R Bioconductor
package(104). Annotation of genomic regions to genes, biological functions, and
pathways were performed using the ChlIPseeker R Bioconductor package(105).
Meta-peak plots were produced using the soGGi package and ChiIP-seq signal
heatmaps generated using the Deeptools and profileplyr software(106). Plots showing
ChIP-Seq read signal over transcription start sites (TSSs) were made with the ngs.plot
software package (v2.61) (ref. (107)). Overlaps between peak sets were determined
using the ChlPpeakAnno R Bioconductor package with a maximum gap between peaks
set to 1kb (ref. (108)). Peaks were annotated with both genes and the various types of
genomic regions using the ChlPseeker R Bioconductor package(105). Range-based
heatmaps showing signal over genomic regions were generated using the soGGi and

profileplyr R Bioconductor package to quantify read signal and group the peak ranges
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and the deepTools software package (v3.3.1) to generate the heatmaps(106). Any
regions included in the ENCODE blacklisted regions of the genome were excluded from
all region-specific analyses(109). For some ChlP-seq experiments, raw Illumina
NextSeq BCL files were converted to FASTQs using lllumina bcl2fastq v02.14.01.07
and reads trimmed using Trimmomatic v0.36 (phred quality threshold 33) and uploaded
to the to the Basepair-server (basepairtech.com). Alignment and ChlP-seq QC was
performed on the basepair platform (Bowtie2). Peak calling was performed using MACS

(v.1.4) within the basepair platform utilizing the default parameters.

RNA-Seq analysis

RNA-Seq samples were sequenced using the Illumina NextSeq500. Transcript
abundance was computed from FASTQ files using Salmon and the GENCODE
reference transcript sequences, transcript counts were imported into R with the tximport
R Bioconductor package, and differential gene expression was determined with the
DESeqg2 R Bioconductor package(110-112). The data was visualized using the ggplot2
R package. Normalized counts were extracted from the DESeq2 results and z-scores
for the indicated gene sets were visualized using both heatmaps and boxplots.
Heatmaps showing gene expression changes across samples were generated using the
pheatmap R package and boxplots were made with the ggplot2 R package. Gene
ontology analysis using the KEGG 2019 database was performed using the Enrichr

tool(67).

Statistical analyses
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Statistical tests were used as indicated in Figure legends. Generation of plots and
statistical analyses were performed using Prism 8 (GraphPad). Error bars represent
standard deviation, unless otherwise noted. We used Student’s t-test (unpaired,
two-tailed) to assess significance between treatment and control groups, and to

calculate P values. P<0.05 was considered statistically significant.

Source data availability

Data supporting the findings of this study are reported in Supplementary Figures 1-24
and Supplementary Tables 1-4. All raw data corresponding to high-throughput
approaches (CRISPR screens, RNA-Seq, and ChlIP-Seq) is available through NCBI
GEO (Accession: GSE186711). All reagents and materials generated in this study will
be available to the scientific community through Addgene and/or MTAs. Further
information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contacts: C. David Allis (alliscd@rockefeller.edu), Scott W. Lowe

(lowes@mskcc.org), and Scott. A. Armstrong (Scott Armstrong@dfci.harvard.edu).
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Figure 1. CRISPR screens uncover functional interplay between the mammalian MLL1/2 and
MLL3/4 chromatin modifying complexes. (A) CRISPR-Cas9-based screening strategy to identify
regulators of response to Menin-MLL inhibition. CPD, cell population doublings; sgRNA, single guide
RNA; T,, final timepoint; T, initial timepoint. (B) Chromatin-focused CRISPR screening data showing the
top 20 most significantly enriching (red) and depleting (blue) genes in the Menin-MLL inhibitor (MI-503)
treatment relative to vehicle (DMSO). Gene scores are shown as the mean log2 fold-change in
abundance of the 6 sgRNAs targeting each gene in each condition. (C) Genome-wide CRISPR
screening data showing gene-level ranking based on differential enrichment of sgRNAs in the
Menin-MLL inhibitor treatment (VTP-50469) relative to vehicle (DMSO). Differential (A) beta-score
between VTP-50469 and DMSO conditions was calculated using MaGeCK. Red circles denote
MLL3/4-UTX complex subunits. Yellow circles denote PRC1.1 complex subunits. (D) Schematic
representation of the top scoring chromatin regulators in the chromatin-focused MI-503 screen and their
corresponding protein complexes. Red denotes enriching subunits. Blue denotes depleting subunits.
Color scale represents the log, fold-change in abundance of the 6 sgRNAs targeting each subunit in the
Menin-MLL inhibitor (MI-503) treatment relative to vehicle (DMSOQO). (E) Viability assay from cells treated
with vehicle (DMSO, black) or Menin-MLL inhibitor (MI-503, red) for 96 hours (mean+SEM, n=3 infection
replicates, P-value calculated by Student’s t-test). sgCtrl, control sgRNA targeting a non-genic region on
chromosome 8. (F) Differential fitness is shown as the relative fitness of double positive cells
(sgMen1-RFP + sgUtx-BFP or sgMen1-RFP + sgCtrl-BFP) to single positive cells (sgMen1-RFP) 16
days post-infection measured by flow cytometry (mean+SEM, n=3 infection replicates, P-value
calculated by Student’s t-test).
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Figure 2. MLL1-Menin complex restricts chromatin occupancy of MLL3/4-UTX at promoters of
target genes. (A) Metagene analysis showing the average chromatin occupancy of Menin at
transcription start sites (TSS), and a region 2000bp downstream and upstream of the TSS. Signals
corresponding to cells treated with Menin-MLL inhibitor (MI-503, solid) compared to cells treated with
vehicle (DMSO, dotted) for 96 hours are shown. RPM, reads per million. (B) Metagene analysis showing
the average chromatin occupancy of UTX at transcription start sites (TSS), and a region 2000bp
downstream and upstream of the TSS. Signals corresponding to cells treated with Menin-MLL inhibitor
(MI-503, solid) compared to cells treated with vehicle (DMSO, dotted) for 96 hours are shown. RPM,
reads per million. (C) Relative Utx mRNA levels determined by gPCR in mouse MLL-AF9 leukemia cells
treated with Menin-MLL inhibitor (MI-503, red) compared to vehicle (DMSO, black) for 96 hours (mean +
SEM, n=38 replicates, P-value calculated by Student’s t-test). (D) Immunoblot analysis of Menin, UTX,
and HSP9O0 proteins (loading control) upon Menin-MLL inhibitor (MI-503) treatment of mouse MLL-AF9
leukemia cells for 96 hours. (E) Heatmaps displaying Menin (black) and UTX (purple) ChIP-Seq signals
mapping to a 4kb window around TSS. Data is shown for DMSO and MI-503-treated cells for 96 hours.
Metagene plot shows the average ChlP-Seq signal for Menin or UTX at promoters that are UTX+ (green)
or UTX- (black) post MI-503 treatment. (F) Genome browser representation of ChlP-Seq normalized
reads for Menin (black) and UTX (purple) in mouse MLL-AF9 leukemia cells treated with either vehicle
(DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours.
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Figure 3. NF-YA contributes to genomic specificity of the Menin-UTX molecular switch on
chromatin. (A) HOMER de novo motif analysis of overlapping ChIP-Seq peaks between Menin (in
DMSO) and UTX (in MI-503) in mouse MLL-AF9 leukemia cells. (B) Genome browser representation of
ChIP-Seq normalized reads (average RPKM) for representative loci bound by Menin (black), UTX
(purple), and NF-YA (red) in cells treated with vehicle (DMSQO) or Menin-MLL inhibitor (MI-503) for 96
hours. (C) Immunoblot analysis of NF-YA and HSP90 proteins (loading control) upon Menin-MLL
inhibitor (MI-503) treatment of mouse MLL-AF9 leukemia cells for 96 hours. (D) Viability assay from cells
treated with vehicle (DMSO, black) or Menin-MLL inhibitor (MI-503, red) for 96 hours (mean+SEM, n=3
infection replicates, P-value calculated by Student’s t-test). sgCtrl, control sgRNA targeting a non-genic
region on chromosome 8. (E) Heatmaps displaying UTX ChIP-Seq signal mapping to a 4-kb window
around TSS in Nfya"T (red) or Nfya*© (black) mouse MLL-AF9 leukemia cells treated with vehicle (DMSO)
or Menin-MLL inhibitor (MI-503) for 96 hours. Metagene plot represents the average UTX ChIP-Seq
signal at promoters.


https://doi.org/10.1101/2021.10.22.465184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465184; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4000
wr KO
921 genes DN 1030 genes UP Utx Utx
300 1118rap ® szymz P<0.0001
" S . = T T
A $ 3000
‘. c S
—~ %y e % S 1) .
i:J 200 Afil:va? /\.ﬂuma .ﬁ : S =
.g Gm1110 .- S 2000 & o
9; o, o 8
= Eel @ 0
& 100 g N
' = 1000
iwild Tglb: =1
.
0 b o
| 4 Fold-Ch 0 i ¢ DMSO 8 UTX N Menin peaks @ I - - -
092( old-Change MI-503 vs ) UP in MI-503 [ DMSO  MI-503 DMSO  MI-503
Fridman Senescence_UP Senescence-associated IL-6
0.05 cell cycle and SASP wr
005 P = 0.0005
@ N - Utxwr Utx¥ko 6000 e Utx
0l 005 NES =-1.48 2 o Ux©
015 FDR g-value = 0.05 MI-503 - + - ¥ 8
15 20 <
(% -0.25 | 4 % 4000 P =0.0016
‘OEJ -0.35 | g P =0.0700 P = 0.0806
£ -0.45 o [
< € 2000
Q I >
: Il | Inlinnne
©
Utx"™ + DMSO U™ + MI-503 g N . N U S L S D
MI-503 -  + -+ -+ -+
n 9% NES = 1.50 tg Day 4 Day 6
w04 FDR g-value = 0.05 G
o 03
g o2 IFNB-1
D 0.1
c
g gz?r \'\J o) 10 P =0.0009 e UtxWT
: i : ° " U
s 2 P =0.0051
w T 64 P =0.3395
Utx"™ + MI-503 Utx + MI-503 ﬁ g P =0.0627
3 4 B
E ‘%‘ ﬁ
B 2- ’ﬁ
- o
g_o-.a.... 10 P R S 0 PO I R LF
g
= -2 T T T T T
MI-503 -+ -+ - 4+ - 4+
Day 4 Day 6

Figure 4. Transcriptional co-regulation of tumor suppressive pathways by the Menin-UTX switch.
(A) Volcano plot of differentially expressed genes in mouse MLL-AF9 leukemia cells treated with Menin
inhibitor (MI-503) or vehicle (DMSO) for 96 hours. Significantly (P<0.05) downregulated (DN) genes are
shown on the left (h=921 genes). Significantly (P<0.05) upregulated (UP) genes are shown on the right
(n=1030). (B) Upset plot showing significant overlap (red) between genes that undergo replacement of
Menin by UTX at their promoters and MI-503-induced genes. P-value for overlap is shown. (C) Boxplot
showing expression levels of genes that are induced by Menin-MLL inhibitor (MI-503) treatment and are
bound by UTX at their promoters in this condition and by Menin at steady-state. Expression levels are
shown for Utx"T and Utx*° leukemia cells. Midline in boxplots represent median. P-value for MI-503
comparison is shown. (D) Gene set enrichment analysis (GSEA) showing that Menin-UTX targets
induced by Menin-MLL inhibitor (MI-503) are significantly enriched for genes regulating cellular
senescence. FDR, false discovery rate; NES, normalized enrichment score. (E) Heatmap showing
relative gene expression levels of senescence-associated cell cycle and senescence-associated
secretory phenotype (SASP) genes in mouse Utx"T and Utx*° MLL-AF9 leukemia cells treated with
Menin-MLL inhibitor (MI-503) or vehicle (DMSO) for 96 hours. (F) and (G) Secreted levels of IL-6 and IFN
B-1 in conditioned-media derived from mouse Utx"T (black) and Utx*° (red) MLL-AF9 leukemia cells
treated with Menin-MLL inhibitor (MI-503) or vehicle (DMSO) for four or six days. Data are quantified as
pg/mL of secreted cytokine per million cells Data are quantified as pg/mL of secreted cytokine per
million cells (mean+SEM, n=3 replicates, P-value calculated by Student’s t-test).
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Figure 5. Enzymatic activity of UTX is dispensable for its tumor suppressive functions in response
to Menin-MLL inhibition. (A) Schematic of UTX protein. Highlighted are the 8 tetratricopeptide repeats
(TPR) (93-385aa) and the histone demethylase (JmjC) domain (1095-1258aa). Three ~500 amino acid
long truncations are also represented. (B) Growth competition assay in mouse Utx*° MLL-AF9 leukemia
cells expressing different RFP-tagged Utx cDNAs and treated with Menin-MLL inhibitor (MI-503) for 2 or
6 days. Graph shows the relative growth of leukemia cells infected with RFP-tagged Utx cDNAs
measured by flow cytometry (mean+SEM, n=3 infection replicates, P-value calculated by Student’s
t-test). (C) Principal component analysis (PCA) of gene expression data from Utx*° MLL-AF9 leukemia
cells expressing different RFP-tagged Utx cDNAs and treated with vehicle (DMSO) or Menin-MLL
inhibitor (MI-503) for 96 hours. (D) Cdkn2c expression (mean normalized read counts) from different Utx
truncations in mouse MLL-AF9 leukemia and treated with vehicle (DMSO) or Menin-MLL (MI-503) for 96
hours (mean+SEM, n=3 replicates, P-value calculated by Student’s t-test).
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Figure 6. Combinatorial targeting of Menin and CDK4/6 overcomes resistance associated with
MLL3/4 dysfunction. (A) Genome browser representation of ChIP-Seq (top) and RNA-Seq (bottom)
normalized reads (average RPKM) for Cdkn2c and Cdkn2d loci from mouse Utx"T or Utx"® MLL-AF9
leukemia cells treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours. (B) Cdkn2c
and Cdkn2d expression (mean normalized read counts) from mouse Utx"T (black) and Utx¥° (red)
MLL-AF9 leukemia cells treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours
(mean+SEM, n=3 replicates, P-value calculated by Student’s t-test). (C) Proposed model and rationale
for combination therapies based on Menin-MLL and CDK4/6 inhibitors. Our data support a model
whereby (1) Menin restricts UTX-mediated transcriptional activation of tumor suppressor genes,
including Cdkn2c and Cdkn2d, which are natural inhibitors of the CDK4 and CDK®6 kinases, which in turn
inhibit cell cycle arrest and senescence. Model predicts that CDK4/6 inhibition using Palbociclib should
boost the anti-cancer activity of Menin-MLL inhibitors, which we show induces a MLL3/4-UTX tumor
suppressive axis, by more potently inhibiting these downstream kinases. (2) Menin is known to be
required for activation of MLL-FP targets like Meis1 and Cdké6 itself to sustain leukemia. Our model
predicts that combination therapies based on Menin-MLL and CDK4/6 inhibitors should act
synergistically to suppress leukemia proliferation by potently engaging two parallel pathways that
converge on regulation of cell cycle progression. (D) Relative viability of Utx"VT and Uitx° MLL-AF9
leukemia cells treated with either vehicle (DMSO), Menin-MLL inhibitor (MI-503), CDK4/6 inhibitor
(Palbociclib), or a combination of both inhibitors for 6 days (mean+SEM, n=3 replicates, P-value
calculated by Student’s t-test).
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Figure 7. In vivo response to Menin-MLL inhibition is accompanied by induction of
MLL3/4-UTX-dependent tumor suppressive programs. (A) Longitudinal flow cytometry analysis
showing the fraction of CD45lo, cKIT+ leukemia cells in the peripheral blood of an NPM7c mutant
patient (Patient 1) during cycle 1 of Menin-MLL inhibitor (SDNX-5613) treatment as part of the
AUGMENT-101 clinical trial (NCT04065399). (B) Temporal gene expression changes for MLL-FP targets
in FACS-sorted leukemia blasts cells isolated from Patient 1 as part of the AUGMENT-101 clinical trial
(NCT04065399). Heatmap shows all MLL-FP targets that are differentially expressed at day 14 vs. day
0 of treatment cycle 1. (C) Temporal expression levels of genes involved in cell cycle arrest and
senescence (CDKN1A, CDKN2B, and CDKN2C) and MLL-FP targets (HOXA9, CDK6, PBX3, and MEIST)
in leukemia blasts cells isolated from Patient 1 treated with SDNX-5613. (D) Temporal gene expression
changes for MLL-FP targets in FACS-sorted leukemia blasts cells isolated from Patient 2 treated with
SDNX-5613 as part of the AUGMENT-101 clinical trial (NCT04065399). Heatmap shows all MLL-FP
targets that are differentially expressed at day 10 vs. day 0 of treatment cycle 1. (E) Temporal expression
levels of genes involved in cell cycle arrest and senescence (CDKN1A, CDKN1B, and CDKN3) and
MLL-FP targets (HOXA7, CDK6, MEF2C, and MEIST) in leukemia blasts cells isolated from Patient 2
treated with SDNX-5613. (F) Schematic of in vivo treatment experiments using genetically-defined acute
myeloid leukemia (AML) patient-derived xenografts (PDXs). Mice were transplanted with either
MLL3-WT or MLL3-Mutant AML PDXs and, upon disease engraftment, were randomized into
Menin-MLL inhibitor (VTP-50469, 0.1% in rodent diet) or normal chow for a duration of 4 weeks. Disease
progression was monitored weekly by bleeding and AML cells were sorted at 7 days post initiation of
treatment using magnetic mouse cell depletion from the bone marrow of animals to perform RNA-Seq.
(G) Disease progression as measured by the percentage of human CD45+ cells in the peripheral blood
(PB) of mice harboring MLL3-WT leukemia treated with vehicle (grey) or Menin-MLL inhibitor
(VTP-50469, blue). (H) Boxplot denoting gene expression changes of Menin-UTX targets in AML cells
isolated from mice harboring MLL3-WT leukemia treated with vehicle (grey) or Menin-MLL inhibitor
(VTP-50469, blue). (I) Disease progression as measured by the percentage of human CD45+ cells in the
peripheral blood (PB) of mice harboring MLL3-mutant leukemia treated with vehicle (grey) or Menin-MLL
inhibitor (VTP-50469, blue). (J) Boxplot denoting gene expression changes of Menin-UTX targets in AML
cells isolated from mice harboring MLL3-mutant leukemia treated with vehicle (grey) or Menin-MLL
inhibitor (VTP-50469, blue). (K) Leukemia burden in the bone marrow of recipient mice transplanted with
the MLL3-mutant AML PDX and treated with Menin-MLL inhibitor (VTP-50469), CDK4/6 inhibitor
(Palbociclib) or the combination of these two inhibitors (measured by % of human CD45+ cells).
VTP-50469 was administered via drug-supplemented rodent chow (0.1%) for 10 days, Palbociclib was
given once daily via intraperitoneal injections (35mg/kg) for 7 days. (L) Representative FACS plots
showing the abundance of human leukemia cells in recipient mice from each treatment group. (M)
Heatmap denoting changes in cell cycle-associated gene expression signatures in FACS-sorted human
leukemia cells isolated from recipient mice transplanted with the MLL3-mutant PDX and treated with
VTP-50469, Palbociclib, or the combination of these two inhibitors.
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FIGURE 8 - Molecular switch between the mammalian MLL complexes dictates
cellular response to Menin-MLL inhibition
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Supplementary Figure 1. Generation and characterization of Cas9-expressing MLL-AF9
leukemia cells. (A) Dose response curve analysis of mouse MLL-AF9 leukemia (WT-MA9) cells
treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours (mean+SEM, n=3
replicates). (B) Immunoblot analysis of mouse Cas9-expressing MLL-AF9 leukemia cells. (C)
Distribution of mouse Cas9-expressing MLL-AF9 leukemia cells determined by intracellular staining
of Cas9 and flow cytometry. (D) Growth competition assay to test enzymatic activity of Cas9 in
mouse MLL-AF9 leukemia cells (mean+SEM, n=3 infection replicates). (E) CD11b cell surface
expression measured by flow cytometry for vehicle (DMSO, grey) or Menin-MLL inhibitor (MI-503,
blue) treatment of mouse MLL-AF9 leukemia cells for 96 hours. (F) Quantification of %CD11b
positive cells for vehicle (DMSO, grey) or Menin-MLL inhibitor (MI-503, blue) for 96 hours
(mean+SEM, n=3 replicates, P-value calculated by Student’s t-test). (G) Quantification of %Annexin
V positive cells after treatment with vehicle (DMSO, grey) or Menin-MLL inhibitor (MI-503, blue) at
different time points (mean+SEM, n=3 replicates, P-value calculated by Student’s t-test).
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Supplementary Figure 2. Genome-wide CRISPR screening identifies the MLL3/4-UTX
complex as a key determinant of response to Menin-MLL inhibition. (A) Genome-wide
screening data showing gene-level ranking based on differential enrichment of sgRNAs under
Menin-MLL inhibitor treatment (VTP-50469) relative to vehicle (DMSOQ). Differential (A) beta-score
between VTP-50469 and DMSO conditions was calculated using MaGeCK. A positive A beta-score
denotes enrichment of specific gene-targeting sgRNAs. A negative A beta-score denotes depletion
of specific gene-targeting sgRNAs. Red circles denote genes represented by enriched sgRNAs
(genes whose inactivation promotes resistance to Menin-MLL inhibition). Blue circles denote genes
represented by depleted sgRNAs (genes whose inactivation promotes sensitivity to Menin-MLL
inhibition). The top 100 candidate mediators of resistance were selected for gene ontology (GO)
analysis. (B) Top-scoring GO categories based on P-values obtained from GO analysis. (C)
Percentage of genes within a given gene set that scored among the top 100 candidate mediators of
resistance. (D) Fold-change of individual sgRNAs relative to T, from either VTP-50469-treated or
DMSO-treated cells (P-value calculated by Student’s t-test).
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Supplementary Figure 3. MLL3/4-UTX complex dictates therapeutic response of leukemia
cells to Menin-MLL inhibition. (A) Layout of growth competition assay to assess the effect of
genetic loss of Utx, MII3, or Mll4 in MLL-AF9 leukemia cells. (B) Growth competition assay in mouse
MLL-AF9 cells. Graph shows the relative growth of cells infected with RFP-tagged Utx sgRNAs
measured by flow cytometry (mean+SEM, n=3 infection replicates). sgControl targets a non-genic
region in chromosome 8 as negative control. (C) Growth competition assay in mouse MLL-AF9
cells. Graph shows the relative growth of cells infected with RFP-tagged MII3 sgRNAs measured by
flow cytometry (mean+SEM, n=3 infection replicates). sgControl targets a non-genic region in
chromosome 8 as negative control. (D) Growth competition assay in mouse MLL-AF9 cells. Graph
shows the relative growth of cells infected with RFP-tagged MIll4 sgRNAs measured by flow
cytometry (mean+SEM, n=8 infection replicates). sgControl targets a non-genic region in
chromosome 8 as negative control. (E) Relative percentage of sgUtx-expressing (RFP+) cells over
time after transduction of mouse MLL-AF9 cells treated with vehicle (DMSQO) or Menin-MLL inhibitor
(MI-503) (mean+SEM, n=3 infection replicates). (F) Relative percentage of sgMII3-expressing (RFP+)
cells over time after transduction of MLL-AF9 cells treated with vehicle (DMSO) or Menin-MLL
inhibitor  (MI-503) (mean+SEM, n=8 infection replicates). (G) Relative percentage of
sgMIll4-expressing (RFP+) cells over time after transduction of MLL-AF9 cells treated with vehicle
(DMSO) or Menin-MLL inhibitor (MI-503) (mean+SEM, n=3 infection replicates).
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Supplementary Figure 4. Utx deletion suppresses the lethality phenotype associated with
Men1 loss in leukemia. (A) Growth competition assay in mouse MLL-AF9 cells. Graph shows the
relative growth of cells infected with RFP-tagged Men1 sgRNAs measured by flow cytometry
(mean+SEM, n=38 infection replicates). sgRenilla Luciferase (RenLuc) and sgRpa3 were negative and
positive controls, respectively. (B) Plots from flow cytometry analysis of leukemia cells
co-expressing sgMen1-RFP and sgUtx-BFP (sg1 or sg2) at 2 and 16 days post-infection. (C)
Amplicon sequencing results of the mouse Men1 and Utx loci from leukemia cells co-expressing
sgMen1 and sgUtx (sg1 or sg2). (D) Growth competition assay in an independently-derived mouse
MLL-AF9 cell line. Graph shows the relative growth of cells infected with RFP-tagged sgRNAs
(sgControl and sgMen1) measured by flow cytometry (mean+SEM, n=3 infection replicates). (E)
Differential fitness of mouse MLL-AF9 cells is shown as the relative fithess of double positive cells
(sgMen1-RFP + sgUtx-BFP or sgMen1-RFP + sgControl-BFP) to single positive cells (sgMen1-RFP)
9 days post-infection measured by flow cytometry (mean+SEM, n=3 infection replicates, P-value
calculated by Student’s t-test).


https://doi.org/10.1101/2021.10.22.465184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465184; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SUPPLEMENTARY FIGURE 5

A B c P=0.3834

WT-MA9 (MLL1-r) P-09472 oy P=0TH17

Il

o
]

o

P=0.5136

°
E 2 .
S 0.0
3
4 2 )
]
2 -1.04
° °
T T T
—_

0+ T T T T T T " ) sgggl sg1  sg2 sgg;rl sgl  sg2
2 4 6 8 10 12 14 16 18 sgUtx-BFP sgUtx-BFP
Days after infection sgMLL1(hu)_1-RFP sgMLL1(hu)_2-RFP

-e- sgControl
-# sgMLL1(human)_1
- sgMLL1(human)_2

o
o

Relative Cell Proliferation
©
o

Relative Cell Proliferation
S
o
o
(<]

%RFP* cells
(normalized to day 2)
=]
S

(=)
I

—

OCI-AML3 (non MLL1-r) 2 P0.0396
150 & sgControl 5 P=0.0604 (o)
-4 sgRPA3 g 14
> -~ sgMEN1 s d
2.8 100 [
] 3
P
L8 2 o
E s K
@ <
E [+
gl e
0t T T T T T 1 sgCtrl  sg1  sg2
3 4 5 6 7 8 9 BFP ‘m‘
Days after infection
SgMEN1-RFP
Meis1 Meis1

P=0.0073

15 P=0.0116
: P=0.0003

°
L

1.0

0.5

Relative mRNA levels
Relative mRNA levels

0.0 00
DMSO  MI-503 sgCil sg1  sg2
| N

BFP gUxBFP

sgMen1-RFP

Supplementary Figure 5. Men1 and Utx epistasis is independent of the MLL-fusion. (A) Growth
competition assay in mouse MLL-AF9 leukemia cells. Graph shows the relative growth of cells,
infected with RFP-tagged sgRNAs that target the 5’-end of the human MLL7 gene present in the
MLL-AF9 fusion, measured by flow cytometry (mean+SEM, n=3 infection replicates). (B) Differential
fitness of mouse MLL-AF9 leukemia cells is shown as the relative fitness of double positive cells
(sgMLL1(hu)_1-RFP + sgUtx-BFP or sgMLL1(hu)_1-RFP + sgControl-BFP) to single positive cells
(sgMLL1(hu)_1-RFP) 16 days post-infection measured by flow cytometry (mean+SEM, n=3 infection
replicates, P-value calculated by Student’s t-test). (C) Differential fitness of mouse MLL-AF9 cells is
shown as the relative fitness of double positive cells (sgMLL1(hu)_2-RFP + sgUtx-BFP or
sgMLL1(hu)_2-RFP + sgControl-BFP) to single positive cells (sgMLL1(hu)_2-RFP) 16 days
post-infection measured by flow cytometry (mean+SEM, n=3 infection replicates, P-value
calculated by Student’s t-test). (D) Growth competition assay in human non MLL7-r (OCI-AMLS3)
cells. Graph shows the relative growth of cells infected with RFP-tagged sgRNAs measured by flow
cytometry (mean+SEM, n=3 infection replicates). (E) Differential fithess of human OCI-AMLS cells is
shown as the relative fitness of double positive cells to single positive cells 20 days post-infection
measured by flow cytometry (mean+SEM, n=3 infection replicates, P-value calculated by Student’s
t-test). (F) gPCR analysis for Meis1 expression in mouse MLL-AF9 leukemia cells treated with
vehicle (DMSO, black) or Menin-MLL inhibitor (MI-503, red) for 96 hours (mean+SEM, n=3
replicates, P-value calculated by Student’s t-test). (G) gPCR analysis for Meis1 expression in mouse
MLL-AF9 leukemia cells co-expressing sgMen1-RFP and sgUtx-BFP, or a control sgRNA
(mean+SEM, n=3 replicates, P-value calculated by Student’s t-test).
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Supplementary Figure 6. Distinct genomic distribution of Menin and UTX in the context of
Menin-MLL inhibition. (A) Genomic distribution of Menin and UTX ChlIP-Seq peaks from mouse
MLL-AF9 leukemia cells treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours.
(B) Upset plot showing a comparison between the genomic distribution of Menin ChIP-Seq peaks
in vehicle (DMSO, light grey), genomic distribution of UTX ChIP-Seq peaks in Menin-MLL inhibitor
(MI-503, grey), and the overlap between UTX ChlIP-Seq peaks in MI-503 and Menin ChIP-Seq peaks
in DMSO (blue). (C) ChIP-Seq normalized reads per 10-kb bin for Menin (MI-503 vs DMSO, y-axis)
and UTX (MI-503 vs DMSO, x-axis). Pearson’s correlation coefficient is indicated.
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Supplementary Figure 7. Menin-independent mammalian cells do not exhibit chromatin
changes associated with the Menin-UTX molecular switch. (A) Immunoblot analysis of
Cas9-expressing mouse fibroblast (NIH-3T3) cells expressing different controls and Men1 sgRNAs.
(B) Growth competition assay in mouse fibroblast cells. Graph shows the relative growth of cells
infected with RFP-tagged sgRNAs measured by flow cytometry (mean+SEM, n=3 infection
replicates). (C) Genomic distribution of Menin ChiP-Seq peaks from mouse fibroblasts (top) or
MLL-AF9 leukemia cells (bottom). (D) Venn diagram comparing the number of Menin peaks
detected in mouse MLL-AF9 leukemia cells (grey) vs. NIH-3T3 fibroblasts (yellow). (E) Heatmaps
displaying UTX ChIP-Seq signals mapping to a 4-kb window around TSSs. Data is shown for mouse
MLL-AF9 cells (left) and mouse fibroblasts (right) treated with vehicle (DMSO) or Menin-MLL
inhibitor (MI-503) for 96 hours. Metagene plot represents the average ChlP-Seq signal for UTX at
promoters that are enriched for UTX (green) or not (black) in mouse MLL-AF9 cells treated with
MI-503.
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Supplementary Figure 8. Disruption of Menin-MLL1 interaction leads to targeting of
MLL3/4-UTX to sites normally bound by the MLL1-Menin complex. (A) Schematic
representation of the mammalian MLL1 and MLL2 histone methyltransferase complexes.
Highlighted in red is the enzymatic subunit of the complex (MLL1 and MLL2 are mutually exclusive).
Yellow denotes shared subunits with the MLL3/4 complex. (B) Schematic representation of the
mammalian MLL3 and MLL4 histone methyltransferase complexes. Highlighted in pink and purple
are the enzymatic subunits of the complex (MLL3 and MLL4 are mutually exclusive). Yellow denotes
shared subunits with the MLL1/2 complex. Green denotes non-enzymatic subunits of the MLL3/4
complex. (C) Heatmaps displaying MLL1 (red) and H3K4me3 (blue) ChlP-Seq signals mapping to a
4-kb window around TSSs. Data is shown for cells treated with vehicle (DMSQO) or Menin-MLL
inhibitor (MI-503) for 96 hours. Metagene plot represents the average ChlIP-Seq signal for each
protein at promoters that are UTX+ (green) or UTX- (black). Heatmaps displaying MLL3/4 (pink) and
H3K4me1 (grey) ChIP-Seq signals mapping to a 4-kb window around TSSs. Data is shown for cells
treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours. Metagene plot represents
the average ChIP-Seq signal for each protein at promoters that are UTX+ (green) or UTX- (black). (D)
Density plot showing correlation between H3K4me3 and MLL1 ChlIP-Seq signals (MI-503 vs
DMSO). Signals correspond to summed signal +2kb around TSSs that overlap with UTX peaks in
MI-503 condition. (E) Density plot showing correlation between H3K4me3 and MLL1 ChIP-Seq
signals (MI-503 vs DMSOQ). Signals correspond to summed signal +2kb around TSSs that do not
overlap with UTX peaks in MI-503 condition. (F) Density plot showing correlation between
H3K4me1 and MLL3/4 ChIP-Seq signals (MI-503 vs DMSO). Signals correspond to summed signal
+2kb around TSSs that overlap with UTX peaks in MI-503 condition. (G) Density plot showing
correlation between H3K4mel1 and MLL3/4 ChIP-Seq signals (MI-503 vs DMSO). Signals
correspond to summed signal +2kb around TSSs that do not overlap with UTX peaks in MI-503
condition.
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Supplementary Figure 9. MLL1-Menin genomic targets are distinct from MLL-FP targets. (A)
Schematic representation of ectopic chromatin complexes that are formed by MLL-fusion proteins
(MLL-FPs). (B) Heatmaps displaying Menin (black), MLL1 (red), H3K4me3 (blue), and H3K79me2
(green) ChlP-Seq signals mapping to MLL-AF9 target loci (139 sites) from MLL-AF9 leukemia cells
treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours. Metagene plot represents
the average ChIP-Seq signal for each protein at promoters. (C) Heatmaps displaying H3K79me2
ChIP-Seq signals mapping to a 4-kb window around TSSs in MLL-AF9 leukemia cells treated with
vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours. Metaplot represents the average
ChIP-Seq signal for H3K79me2 at promoters that are bound by UTX in MLL-AF9 cells treated with
MI-503.
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Supplementary Figure 10. Destabilization of the MLL3/4-UTX complex is sufficient to blunt
cellular responses to Menin-MLL inhibition. (A) Layout of growth competition assay to assess the
effects of expressing a H3.1K4M oncohistone mutation in MLL-AF9 leukemia cells in response to
Menin-MLL inhibition. (B) Relative percentage of RFP+ transgene (H3.1WT or H3.1K4M) cells over
time after transduction of mouse MLL-AF9 cells treated with vehicle (DMSQO) or Menin-MLL inhibitor
(MI-503) (mean+SEM, n=3 replicates, P-value calculated by Student’s t-test, P < 0.001 = ***). (C)
Expression of H3.1WT-RFP or H3.1K4M-RFP in mouse MLL-AF9 leukemia cells treated with DMSO
or MI-503 was monitored by tracking RFP+ cells by flow cytometry over time. (D) Immunoblot
analysis of HA-tag from MLL-AF9 leukemia cells expressing H3.1WT-HA or H3.1K4M-HA and
treated with vehicle (DMSQO) or Menin-MLL inhibitor (MI-503) for 6 days. (E) Immunoblot analysis of
MLL4, UTX, HSP90 (loading control), H3K4me1, and total H3 (loading control) from MLL-AF9
leukemia cells expressing H3.1WT or H3.1K4M and treated with DMSO or MI-503 for 6 days.
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Supplementary Figure 11. NF-Y restricts chromatin occupancy of UTX at promoter regions.
(A) Motif analysis of Menin ChIP-Seq peaks detected in NIH-3T3 mouse fibroblasts. (B) Motif
analysis of UTX ChlIP-Seq peaks detected in NIH-3T3 mouse fibroblasts. (C) Heatmaps displaying
UTX (purple), Menin (black), and NF-YA (red) ChIP-Seq signals mapping to a 4-kb window around
TSSs. Data is shown for vehicle (DMSO) and Menin-MLL inhibitor (MI-503)-treated cells for 96
hours. Metagene plot represents the average ChlP-Seq signal for each protein at promoters.
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Supplementary Figure 12. NF-Y facilitates promoter regulation by Menin. (A) Immunoblot
analysis of NF-YA and HSP90 proteins (loading control) in mouse MLL-AF9 leukemia cells
transduced with a control sgRNA (sgCitrl) or three independent Nfya-targeting sgRNAs. Direct blue
staining of histones (bottom) serves as an additional loading control. (B) Viability assay from cells
treated with vehicle (DMSO, black) or Menin-MLL inhibitor (MI-503, red) for 6 days (mean+SEM, n=3
infection replicates, P-value calculated by Student’s t-test). sgCtrl, control sgRNA targeting a
non-genic region on chromosome 8. (C) Genome browser representation of Menin ChIP-Seq
normalized reads (average RPKM) for representative loci bound by Menin in Nfya"T (black) or Nfya<®
(blue) MLL-AF9 leukemia cells treated with vehicle (DMSO) and Menin-MLL inhibitor (MI-503) for 96
hours. (D) Co-essentiality scatter plot showing relationship between MEN1 loss-of-function and
dependency to NFYA, MLL1 (KMT2A), MLL3 (KMT2C), and UTX (KDMG6A). (E) Co-essentiality
scatter plot showing relationship between MEN1 loss-of-function and dependency to CDKN2C and
CDK®6. (F) Co-essentiality scatter plot showing relationship between MEN1 loss-of-function and
dependency to NFYA and MLL1 (KMT2A) (G) Co-essentiality scatter plot showing relationship
between MEN1 loss-of-function and dependency to MLL3 (KMT2C) and CDKN2C.
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Supplementary Figure 13. Menin-UTX molecular switch coincides with local changes in
histone acetylation. (A) Average ChIP-Seq signal for H3K27ac at transcription start sites (TSS)
+2kb of the Menin-UTX target genes. Signals corresponding to genes that are upregulated (red) or
down-regulated (black) when cells are treated with Menin-MLL inhibitor (MI-503) for 96 hours. RPM,
reads per million. (B) Heatmaps displaying UTX (purple) or H4K16ac (black) ChlP-Seq signals
mapping to a 4-kb window around TSSs in MLL-AF9 leukemia cells treated with vehicle (DMSO) or
Menin-MLL inhibitor (MI-503) for 96 hours. Metagene plot represents the average ChlP-Seq signal
for each protein at promoters that are bound by UTX in mouse MLL-AF9 leukemia cells treated with
MI-503 for 96 hours. (C) Genome browser representation of ChIP-Seq normalized reads (average
RPKM) for UTX (purple), H4K16ac (grey), and MOF (blue) at Cdkn2c and Cdkn2d loci from MLL-AF9
cells treated with DMSO or MI-503 for 96 hours.
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Supplementary Figure 14. Transcriptional assessment of UtxKO MLL-AF9 leukemia cells. (A)
Immunoblot analysis of UTX and -actin (loading control) from mouse UtxWT and UtxKO MLL-AF9
leukemia cells. (B) Principal component analysis (PCA) using RNA-Seq gene expression data from
Utx"T and Utx¥© cells treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours.
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Supplementary Figure 15. MLL-AF9 target genes are not regulated by the Menin-UTX
molecular switch. (A) Boxplot showing expression levels of MLL-AF9 target genes, which are
suppressed by the Menin-MLL inhibitor (MI-503) treatment for 96 hours. Expression levels are
shown for Utx"'T (left) and Utx*© (right) mouse leukemia cells. (B) Heatmap of Z-scores for expression
of MLL-AF9 target genes from Utx"V" and Utx*° leukemia cells treated with DMSO or MI-503 for 96
hours. (C) GSEA plots showing changes in regulation of myeloid cell differentiation in genes induced
by MI-503 for 96 hours. FDR, false discovery rate; NES, normalized enrichment score. (D) Meis1
(left) and Hoxa9 (right) expression (mean normalized read counts) from Utx"T and Utx*° leukemia
cells treated with vehicle (DMSO) or Menin-MLL (MI-503) for 96 hours (mean+SEM, n=3 replicates,

P-value calculated by Student’s t-test).
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Supplementary Figure 16. Gene sets and pathways regulated by Menin-UTX molecular
switch. (A) Gene ontology (GO) analysis of Menin-UTX targets using expression data from mouse
MLL-AF9 leukemia cells treated with vehicle (DMSO) or Menin-MLL (MI-503) for 96 hours. Top 10
GO categories sorted based on statistical significance are shown. (B) GSEA plots showing changes
in regulation of autophagy genes induced by MI-503 treatment for 96 hours. FDR, false discovery
rate; NES, normalized enrichment score. (C) GSEA plots showing changes in insulin signaling
pathway genes induced by MI-503 treatment for 96 hours. (D) GSEA plots showing changes in
neurotrophin signaling pathway genes induced by MI-503 treatment for 96 hours. (E) GSEA plots
showing changes in endocytosis genes induced by MI-503 treatment for 96 hours. (F) GSEA plots
showing changes in MAPK signaling pathway genes induced by MI-503 treatment for 96 hours. (G)
GSEA plots showing changes in mitophagy genes induced by MI-503 treatment for 96 hours. (H)
RNA Pol Il ChIP-Seq signal determined for senescence and cell-cycle arrest-associated genes that
are Menin-UTX targets.


https://doi.org/10.1101/2021.10.22.465184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.22.465184; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SUPPLEMENTARY FIGURE 17

A

IL-3 IL-15
P =0.0001 7 4 R
& 6000+ 3 037 oUWt
3 {_ o UtxW ° .
8 ple ® Utx*© S 34 @ Utx
é’ 4000+ P =0.0041 € P =0.3220
E P=00172 g o] P=0.0187
i P=0.1117 = . P =0.6606
- =0. = o
£ 20004 > ole
2 e ™
: 1] ﬁﬂﬁ alid : ﬁ %Wﬁ i
= 0 T T T T T T T T =20 T T T T T T T T
MI-503 -+ -+ -+ -+ MI-503 -+ - + - + - 4
Day 4 Day 6 Day 4 Day 6
c Utx"T  Utxx°©
-+ -+ -+ -+ MI-503
Eotaxin
G-CSF
GM-CSF
IFNy
IL-1
IL-1
IL-2
IL-4
IL-5
IL-7
IL-9
IL-10 —
IL-12 (p40) 115
IL-12 (p70)
IL-13 g
IL-15 5 g_,
IL-17 € §
CXCL10 P10 2
cXcL1 ?3
LIF 13
CXCL5 5a
3 O
ccL2 ls 83
M-CSF 53
cXcL9 g
ccLs E
ccL4
CXcL2 L lo
ccLs
TNFa
EPO
ccL21
CX3CL1
IFNB-1
IL-11
IL-20
MDC
ccLi2
ccL20
ccLig

Supplementary Figure 17. MLL3/4-UTX-dependent induction of SASP cytokines upon
Menin-MLL inhibition. (A) Secreted levels of IL-3 in mouse UtxWT and UtxKO MLL-AF9 leukemia
cells treated with Menin inhibitor (MI-503) or vehicle (DMSQO) after four or six days. Data are
quantified as pg/mL of secreted cytokine per million cells (mean+SEM, n=3 replicates, P-value
calculated by Student’s t-test). (B) Secreted levels of IL-15 in Utx"T and Utx*°® MLL-AF9 leukemia
cells treated with Menin inhibitor (MI-503) or vehicle (DMSQO) after four or six days. Data are
quantified as pg/mL of secreted cytokine per million cells (mean+SEM, n=3 replicates, P-value
calculated by Student’s t-test). (C) Heatmap of cytokine array results from Utx"'T and Utx*° MLL-AF9
leukemia cells treated with Menin inhibitor (MI-503) or vehicle (DMSO) after four or six days. Data
are quantified as pg/mL of secreted cytokine per million cells and represent the mean of three
biological replicates. Note that the very high levels of IFNB-1 secretion relative to the rest of the
cytokines measured affect the dynamic range of data visualization.
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Supplementary Figure 18. Expression of UTX truncations in MLL-AF9 Utx*° leukemia cells. (A)
Representation of the lentiviral vector used to stably co-express N-terminal
HA-/C-terminal-Flag-tagged Utx cDNAs and the fluorescent protein RFP. (B) Flow cytometry plots
showing RFP expression of the different mouse MLL-AF9 leukemia cell lines generated with the Utx

truncations. (C) Immunoblotting validation of expression of the different Utx truncations in mouse
MLL-AF9 leukemia cells.
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Supplementary Figure 19. Transcriptional characterization of the different Utx truncations in
mouse MLL-AF9 leukemia cells. (A) Boxplot showing expression levels of Menin-UTX target
genes in mouse MLL-AF9 leukemia cells treated with vehicle (DMSO) or Menin-MLL inhibitor
(MI-503) for 96 hours.
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Supplementary Figure 20. UTX-dependent phenotypes are not associated with global
changes in H3K27 methylation. (A) Genomic distribution of H3K27me3 ChIP-Seq peaks from
mouse leukemia cells treated with vehicle (DMSO) or Menin-MLL inhibitor (MI-503) for 96 hours. (B)
Genome browser representation of ChlP-Seq normalized reads (average RPKM) for H3K27me3
from MLL-AF9 cells treated with DMSO or MI-503 for 96 hours. (C) Immunoblot analysis of EZH2,
B-actin (loading control), H3K27me3, and total H3 (loading control) from Ezh2"T and Ezh2X° mouse
MLL-AF9 leukemia cells. (D) Viability assay from mouse Ezh2"" (left) and Ezh2X° (right) MLL-AF9
leukemia cells treated with vehicle (DMSO, black) or Menin-MLL inhibitor (MI-503, grey or blue) for
96 hours (mean+SEM, n=3 infection replicates, P-value calculated by Student’s t-test). sgCitrl,
control sgRNA targeting a non-genic region on chromosome 8.
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Supplementary Figure 21. Induction of the Menin-UTX molecular switch upon Menin-MLL1
inhibition in human leukemia cells. (A) Genome browser representation of ChlP-Seq normalized
reads (average RPKM) for Menin (black) or MLL1 (red) at CDKN2C and CDKN1A loci from MOLM13
human leukemia cells treated with vehicle (DMSQO) or Menin-MLL inhibitor (VTP-50469) for 7 days.
(B) Boxplot showing expression levels of SASP genes in MOLM13 human leukemia cells treated
with DMSO or MI-503 for 96 hours. (C) Boxplot showing expression levels of SASP genes in
OCI-AML3 human leukemia cells treated with DMSO or MI-503 for 96 hours. (D) Cdk6 expression
(mean normalized read counts) from Utx"T (black) and Utx*° (red) leukemia cells treated with DMSO
or MI-503 for 96 hours (mean+SEM, n=3 replicates, P-value calculated by Student’s t-test).
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Supplementary Figure 22. Characterization of primary human AML samples from patients
participating in the Syndax Phase | Menin-MLL inhibitor trial. (A) Immunophenotyping of primary
human AML cells isolated from Patient 1 (NPM17c mutant AML). (B) Heatmap representation of
Z-scores from longitudinal gene expression analysis of AML cells derived from Patient 1 (NPM1c
mutant AML) treated with SNDX-5613. (C) Heatmap representation of Z-scores from longitudinal
gene expression analysis of AML cells derived from Patient 2 (MLL-rearranged AML) treated with
SNDX-5613.
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Supplementary Figure 23. Modeling of Menin-MLL inhibitor response in patient-derived
xenografts. (A) Characteristics of MLL-r AML PDX samples analyzed in this study. (B) Targeted

sequencing validation of MLL3 status in PDX samples.
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Supplementary Figure 24. Transcriptional characterization of Menin-MLL inhibitor response
in patient-derived xenografts. (A) PCA using gene expression data obtained from MLL3-WT
(DFAM68555) and MLL3-Mutant (MSK042D) PDX samples treated with vehicle (DMSO) or
Menin-MLL inhibitor (VTP-50469). Analysis was performed using the top 500
differentially-expressed genes upon treatment of MLL3-WT PDXs with VTP-50469. Note that
MLL3-Mutant PDX samples are virtually overlapping independent of the condition, suggesting that
the induction of the Menin-UTX molecular switch is impaired in the context of MLL3 mutation. (B)
GSEA showing that Menin-MLL inhibition using VTP-50469 leads to induction of cellular
senescence in MLL3-WT PDX. (C) GSEA showing that Menin-MLL inhibition using VTP-50469 fails
to induce cellular senescence in MLL3-Mutant PDX. (D) Distance matrix for expression of all genes
from RNA-Seq data obtained from MLL3-Mutant (MSK042D) PDX samples treated with DMSO,
VTP-50469, Palbociclib, or a combination of the two inhibitors.
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