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Abstract

Removing power line noise and other frequency-specific artifacts from electrophysiological
data without affecting neural signals remains a challenging task. Recently, an approach was
introduced that combines spectral and spatial filtering to effectively remove line noise: Zapline
(de Cheveigné, 2020). This algorithm, however, requires manual selection of the noise
frequency and the number of spatial components to remove during spatial filtering. Moreover,
it assumes that noise frequency and spatial topography are stable over time, which is often
not warranted. To overcome these issues, we introduce Zapline-plus, which allows adaptive
and automatic removal of frequency-specific noise artifacts from M/EEG and LFP data. To
achieve this, our extension first segments the data into periods (chunks) in which the noise is
spatially stable. Then, for each chunk, it searches for peaks in the power spectrum, and finally
applies Zapline. The exact noise frequency around the found target frequency is also
determined separately for every chunk to allow fluctuations of the peak noise frequency over
time. The number of to-be-removed components by Zapline is automatically determined using
an outlier detection algorithm. Finally, the frequency spectrum after cleaning is analyzed for
suboptimal cleaning and parameters are adapted accordingly if necessary before re-running
the process. The software creates a detailed plot for monitoring the cleaning. We showcase
the efficacy of the different features of our algorithm by applying it to four openly available data
sets, two EEG sets containing both stationary and mobile task conditions, and two MEG sets
containing strong line noise.

Introduction

The task paradigm is well thought out. The experiment set up, the EEG recording goes well,
30 data sets and more. A masterpiece, really. Finally you have time to plot your first power
spectra. Then: peaks in your spectra, particularly at 50 or 60 Hz, but also in other frequencies,
right where you want to analyze your data.

Removing frequency-specific noise artifacts from electrophysiological data is a key issue in
any electroencephalography (EEG) or magnetoencephalography (MEG) experiment. Modern
laboratories contain many different electrical devices that all need power, and with great power
comes great line noise. But noise is not only limited to the 50/60 Hz power line artifact, but
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55 may also arise from many different sources. Recently, a novel algorithm, Zapline, was
56 introduced that combines spectral and spatial filters to isolate and remove the power line noise
57 (Cheveigné, 2019). In this paper, we present an adaptive wrapper software for Zapline to
58 enable the fully automatic removal of frequency-specific noise artifacts, including the selection
59  of noise frequencies, chunking the data into segments in which the noise is spatially stable,
60 automatically selecting the number of principal components to remove with Zapline, as well
61 as a comprehensive analysis and visualization of the cleaning and its impact on the data.
62
63 EEG noise removal is especially difficult in mobile experiments.
64  Mobile EEG studies require specific treatment to remove noise stemming from muscles and
65  other sources, and often independent component analysis (ICA) can be used for this (Klug
66 and Gramann, 2020). Finding the right way to remove frequency-specific noise from the data,
67 however, is a difficult task, especially since it it is not necessarily spatially stable and thus can
68 have a strong negative impact on ICA. Shielding the laboratory, finding the sources and
69 eliminating them before recording the data help to alleviate the issue, but this is not always
70 feasible, and sometimes the noise goes unnoticed at first. As recent developments in EEG
71  experimental paradigms show a trend towards measuring the human in its natural habitat -
72 the world (Gramann et al., 2014) - it can become increasingly difficult or impossible to control
73  noise sources. The fields of mobile brain/body imaging (Gramann et al., 2011; Jungnickel et
74  al., 2019; Makeig et al., 2009) and neuroergonomics (Dehais et al., 2020; Raja and Matthew,
75 n.d.) use devices like virtual reality head mounted-displays, motion tracking, eye tracking,
76  treadmills, flight simulators, or actual airplanes, and more. In these experiments, participants
77 move around and interact with the world, including for example navigating through a city
78  (Wunderlich and Gramann, 2018), a virtual maze (Gehrke and Gramann, 2021), or flying an
79 airplane (Dehais et al., 2019). These data sets are almost always riddled with frequency-
80  specific noise, not only stemming from the power line but also from other devices, and often it
81 s just accepted that recordings contain noise. Removing this noise during processing is
82  especially important when comparing different conditions like seated vs. mobile experiments,
83 as different noise sources may be nearby for the different conditions, and untreated noise can
84  be wrongfully interpreted as an effect of the conditions.
85
86 Line noise artifacts are particularly strong in MEG
87  Magnetoencephography (MEG) is a technique closely related to EEG, in which rather than
88 electrical activity itself, its concurrent magnetic fields are recorded (Hamal&inen et al., 1993).
89 Compared to EEG, MEG allows for better spatial specificity of (superficial) sources of neural
90 activity in the brain. Moreover, it does not require extended subject preparation and electrode
91 gel, which makes MEG more feasible for clinical populations as well as children. Magnetic
92 fields are less distorted by the skull than electrical activity, which makes MEG better suited for
93 investigating high-frequency neural activity in the so-called gamma band (although gamma is
94 investigated in EEG as well, e.g. Kloosterman et al. (2019)). However, the gamma band
95 ranges from roughly ~30 to 100 Hz (Hoogenboom et al., 2006), which encompasses the 50 or
96 60 Hz line noise (and possibly its first harmonic), to which MEG is highly sensitive and which
97 can outweigh neural activity by several orders of magnitude. This noise is often removed using
98 strong filters (see next section), which come at the cost of completely removing true neural
99 activity in this range as well. This approach hampers in-depth investigation of the function of

100 gamma activity in neural processing.

101

102  Noise can be removed with spectral filters, regression, or spatial filters

103  Taken together, removing frequency-specific noise is a vital part of data processing.

104 Several methods are available to remove this noise, but these all come with individual

105 drawbacks. Three main approaches can be distinguished:

106

107 () Spectral filters: Filtering the data with a simple low-pass or notch filter is the most
108 conventional approach. However, a low-pass filter may reduce the quality of
109 decomposing the data using Independent Component Analysis (Dimigen, 2020;
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110 Hyvarinen, 1997) and a notch filter must have a steep roll-off to keep the notch
111 small, which comes with the potential of ringing artifacts (Widmann et al., 2015).
112 Additionally, both options remove all information in (or even above) the noise range
113 and will make analysis of these frequencies impossible. An approach related to
114 notch filtering is interpolation of the data in the frequency domain between directly
115 neighboring frequencies that are unaffected by the noise (e.g. 48 to 52 Hz),
116 followed by transformation of the data back into the temporal domain (Leske and
117 Dalal, 2019). This approach indeed does not introduce a deep notch in the data at
118 the line noise frequency, but nevertheless all information at the line noise frequency
119 is destroyed, rendering further analysis impossible.

120 (ii) Regression-based approaches: Regressing a target signal out of the data is
121 another often used tool. Examples are the CleanLine plugin of EEGLAB (Delorme
122 and Makeig, 2004), which uses a frequency-domain regression to remove
123 sinusoidal artifacts from the data, or TSPCA, which uses a provided reference
124 signal (Cheveigné and Simon, 2007). These approaches depend on either a
125 provided reference or a successful generation of a target signal in a given
126 frequency. Here, some noise may be left in the data, especially fluctuations in
127 amplitude or phase of the noise can be difficult to remove.

128 (iii) Spatial filters: Spatial filter options like ICA or joint diagonalization (Cheveigné and
129 Parra, 2014) are widely used and reduce noise by generating their own noise
130 reference signal from a linear combination of all channels.

131

132 (Cheveigné and Parra, 2014)However, noise is not always linearly separable from neural
133 activity, and thus removing noise components can inadvertently remove brain signals too.
134  These methods are also vulnerable to non-stationary of noise, which can be particularly
135  problematic in mobile EEG experiments. Finally, removing noise components from the data
136  with a spatial filter relying on linear algebra always reduces the algebraic rank of the data
137  matrix and can thus limit further analyses (Cohen, 2021). In sum, all of the above options come
138  with drawbacks.

139

140  Zapline is a promising tool

141  Recently, a promising new method that combines the spectral and spatial filtering approaches
142  to overcome some of these issues has been introduced: Zapline (Cheveigné, 2019). Zapline
143 first uses a notch filter and its complementary counterpart to split the data into the clean and
144  the noisy part, where summing them together would result in the original data. Then, the noisy
145 part is decomposed using joint decorrelation (Cheveigné and Parra, 2014) and the
146  components that carry most of the noise are removed from the noisy data. Last, the now
147  cleaned, previously noisy, data and the clean data are summed together to form the final
148 cleaned data set. This approach has the advantage of (in principle) not leaving a notch in the
149  spectrum while also not reducing the rank of the data matrix.

150

151 Challenges of Zapline

152  However, some issues remain. On the one hand, as Zapline makes use of a spatial filter, it
153  assumes a stable spatial topography of the noise over time. But especially in mobile and task-
154  based experiments the spatial distribution of the noise can change (proximity changes of
155 devices, orientation changes of the participant, touching cables, etc.). When comparing
156  different conditions, it may even be the case that some noise artifacts are entirely absent in
157  parts of the recording. This issue can lead to insufficient cleaning in some, too much cleaning
158 in other parts of the data, or the need to remove many components, which can distort the data.
159  Furthermore, a key challenge of Zapline is that it needs to be manually tuned to each data set.
160  Specifically, the following issues can be discerned:

161

162 () Finding out the correct number of components to remove. This is not
163 straightforward — recommendations range from two to four (Cheveigné, 2019), but
164 in individual cases as many as 25 components have been reported to be removed
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165 (Miyakoshi et al., 2021). Presumably, the number of components depends on the
166 noise structure and number of sensors or electrodes. In our tests with high-density
167 EEG and MEG data, removing of ten to fifteen components was usually necessary
168 to contain the noise.

169 (i) The noise frequency needs to be chosen. In most cases, choosing the power line
170 frequency is sufficient, but sometimes additional frequencies can be found, like a
171 90 Hz oscillation of a virtual reality head-mounted display, or other frequencies due
172 to additional devices in the lab. Moreover, in some of our tests Zapline proved to
173 be sensitive to even small changes in the target frequency in the range of 0.1 Hz,
174 which are hard to know in advance, especially if the frequency shifts during the
175 recording.

176

177  Taken together, Zapline is a powerful tool but requires manual parameter selection, and using
178  Zapline in an automated analysis pipeline is difficult due to this process of fine tuning.

179

180 Zapline-plus aims to overcome Zapline’s manual tuning issues

181  We created Zapline-plus — an adaptive wrapper software for Zapline that allows fully automatic
182  use without parameter tuning. The software searches for outlier peaks in the spectrum and
183  applies Zapline to remove these. To alleviate the stationarity issue, the data is adaptively
184 segmented into chunks in which the frequency-specific noise is relatively constant, as
185 determined by the covariance structure of the data. Within each chunk, the individual chunk
186 noise peak frequency is detected, and Zapline is applied at this frequency. An adaptive
187 component detector then removes only the strongest noise components. Finally, a check of
188 the cleaning is performed and the detection process is adjusted accordingly and the procedure
189 is repeated if necessary. All used parameters and several performance indicators are stored
190 to enable an understanding and easy replication of the cleaning, and a detailed plot is created
191 to allow inspection of the cleaning performance. We tested the software on two open EEG and
192  two open MEG data sets with promising results. We discuss limitations and implications for
193  automated processing pipelines. The MATLAB source code of the software is available for
194  download at https://github.com/MariusKlug/zapline-plus.

195

196 The software package

197 Inthis section we describe the different aspects of the adaptive algorithm, the processing flow,
198 as well as the produced plots and the optional parameters in case the default values are
199  suboptimal.

200

201  Algorithm

202  Zapline-plus contains several components that are discussed in the following.

203  The processing steps include:

204

205 1. the detection of noise frequencies,

206 2. adaptive segmentation of the time series in chunks based on stability of the noise
207 topography,

208 3. applying Zapline on each segment at the detected frequency,

209 4. automatic detection and removal of noise components, and

210 5. adaptively changing and repeating the processing to prevent too weak or too strong
211 cleaning.

212

213  The processing workflow is visualized in Figure 1.

214

215 [Insert Figure 1 here]

216

217 Noise frequency detection
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218 Noise frequencies are defined as frequencies having abnormally large power compared to the
219 neighboring frequencies, as determined by spectral density estimation using Welch's method
220 (Welch, 1967). We used a hanning window because it resulted in less noisy spectra than the
221  default hamming window for some data sets. The computed power spectral density (PSD)
222  values are then log transformed (10logio) and the mean over channels is computed
223  (corresponding to a geometric mean of the spectra that is less outlier-driven). We chose this
224 approach, because in our experience the individual channel spectra are not always normally
225  distributed, especially if there are a few very noisy outlier channels. In these cases, they mask
226 the efficacy of Zapline and hide details of the overall spectrum. Importantly, the resulting
227  geometric mean PSD is always >= the log of the arithmetic mean PSD. Subsequently, the first
228  outlier frequency within a minimum (17 Hz) and maximum (99 Hz) frequency is searched with
229 a6 Hz moving window. If a frequency has a difference > 4 of log PSD to the center log PSD
230 (mean of left and right thirds around the current frequency), it is found to be an outlier and the
231  search is stopped. As the input is in 10logio space, a difference of 4 corresponds to a 2.5-fold
232  increase of the outlier power over the center.

233

234  Adaptive time series segmentation into chunks for cleaning

235  Zapline detects noise components in the data using spatial principal components, and thus
236  works on the assumption of a spatial noise distribution that is stable over time. However, this
237 s not always guaranteed. Even small shifts in head orientation or a relocation of the participant
238 due to the experimental paradigm can lead to slightly different noise topography or entirely
239  new noise sources. To alleviate this issue, we implemented an adaptive method that segments
240 the data into chunks with relatively fixed noise topography. Specifically, we apply the following

241  steps:

242 1. Narrowband-filter the continuous data around the detected noise frequency +/- 3
243 Hz.

244 2. Compute the channel-by-channel (i.e. sensors or electrodes) covariance matrix
245 within data epochs of one second duration.

246 3. Compute the distance between pairs of channels in successive covariance
247 matrices. This yields a measure of the change in covariance over time. A small
248 distance indicates that the noise is roughly constant, whereas a large distance
249 indicates a change in noise topography.

250 4. Determine segments (chunks) of stable noise topography by detecting peaks in the
251 covariance stationarity.

252

253  We found that this method reliably detected segments in which the noise was spatially
254  constant. However, we chose a minimum segment duration of 30 seconds to enable sufficient
255 data for the spatial decomposition employed by Zapline. Applying Zapline separately to each
256  chunk does not only allow different linear decompositions per chunk, but also allows fine-
257 tuning of the target frequency to the peak in this chunk, further improving Zapline’'s
258 effectiveness. Finally, this adaptive segmentation might help noise removal in cases where a
259 change in noise topography is related to an external event in task-related data that cause
260  subjects to move, such as a trial onset or the start of a short break in the experiment during
261  which the recording continues.

262

263  Application of Zapline

264  To detect the chunk’s noise peak we first search for the peak frequency within a +0.05 Hz
265 range around the previously detected target frequency. We then determine a fine-grained
266 threshold to define oscillations being present or absent in that chunk: The mean of the two
267 lower 5% log PSD quantiles of the first and last third in a 6 Hz area around the target frequency
268 is computed, and the difference to the center power (mean of left and right third log PSDs
269  around the target frequency) is taken as a measure of deviation from the mean. (On a side
270 note, both the standard deviation and the median absolute deviation did not lead to good
271  results, as they can be driven by outliers to the top.) Finally, the threshold is defined as the
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272  center power + 2 x deviation measure, and if the log PSD of the found peak frequency is above
273  this threshold, the chunk is found to have a noise artifact.

274

275 In the next step, cleaning is performed on a per-chunk basis using the original Zapline
276  algorithm, using either the found frequency peak and adaptive removal settings (starting with
277 3 standard deviations (SD), see section "Detection of noise components”, adaptive, see
278  section “Adaptive changes”), or the original noise peak of the full data set and a fixed number
279  of components to remove (starting at 1, adaptive, see section “Adaptive changes”). We chose
280 to remove a minimum number even when no artifact was found, to make sure even missed
281  artifacts are removed while also making sure not too many components are removed in case
282  no artifact is actually present in the chunk at that frequency.

283

284  Detection of noise components

285  One essential parameter of Zapline is the number of to-be-removed components after sorting
286  components based on amount of explained variance. So far, this had to be chosen manually,
287  based on visual inspection of the “elbow” in the sorted components (i.e. transition from a sharp
288 to shallow drop-off). We adapted the function to include a detector for outliers in the computed
289  JD scores that represents to what extent the components load on the noise. To this end, an
290 iterative approach based on a standard mean + standard deviation (SD) threshold is used. In
291 each iteration, the detector removes outliers and then recomputes mean and SD across all
292  components, and repeats this procedure until none are left. The number of removed outliers
293  is then taken as the number of components to remove in Zapline. We found this iterative
294  approach to be more robust than an approach based on the median absolute deviation in this
295  scenario. In afinal step, if the number of found outliers is less than the entered fixed removal,
296 the latter is being used, and, to prevent removing an unreasonable amount of components,
297  the number is capped at 1/5th of the components. We found a value of 3 SDs to work well in
298 most cases, but sometimes even this automatic detector removes too many or too few
299  components, which is why the SD parameter is adapted in the next step.

300

301 Adaptive changes of the cleaning procedure

302 After each chunk has been cleaned, the chunks are concatenated again and the cleaned
303 spectrum is computed as in section “Noise frequency detection”. Although the software
304 already contains several steps to find an optimal noise reduction, the cleaning can still be too
305 weak or too strong. We implemented a check for suboptimal cleaning by using the same fine-
306 grained threshold as in section “Application of Zapline”. This check is now applied to search
307 for introduced notches or remaining peaks in the power spectrum, indicating that the cleaning
308 was too strong or too weak, respectively. Specifically, if there are 0.5 % of samples of the
309 spectrum in the range of +/- 0.05 Hz around the noise frequency above the threshold of center
310 power + 2 x deviation measure, the cleaning is found to be too weak. If there are 0.5% samples
311  of the spectrum in the range of -0.4 to +0.1 Hz around the noise frequency below the threshold
312  of center power — 2 x deviation measure, the cleaning is found to be too strong. If the cleaning
313 was too weak, the SD for the number of noise components is reduced by 0.25, up to a
314  minimum of 2.5, and the fixed number of removed components (for chunks where no noise
315 was detected) is increased by 1. If the cleaning was too strong, the SD for step "Noise
316 component detection” is increased by 0.25, up to a maximum of 4, and the fixed number of
317 removed components (for chunks where no noise was detected) is decreased by 1, up to a
318 minimum of the initial fixed removal of 1. Too strong cleaning always takes precedence over
319 too weak cleaning, and if the cleaning was once found to be too strong, it can never become
320 stronger again even after it was weakened and is now found to be too weak.

321 Using these new values, the entire cleaning process of this noise frequency is re-run
322 and re-evaluated. This leads to a maximally reduced noise artifact while ensuring minimal
323 impact on any other frequencies. If no further adaptation of the cleaning needs to be
324  performed, this noise frequency is assumed to be cleaned, and the next noise frequency is
325 searched (see section “Detection of noise components”) using the current noise frequency
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326  +0.05 Hz as the new minimum frequency. If no other noise frequency is found, the cleaning
327 completes.

328

329  Output figures

330 For every frequency-specific noise artifact that is removed, a figure is generated. Example
331 plots can be seen in Figures 4 and 5. Importantly, the plot per frequency is being overwritten
332 in case the parameters are adapted, so the final plots only show the final values. These plots
333  contain all information that is necessary to determine the success of the cleaning in a
334  colorblind-friendly color scheme. The top row of the figure contains visualizations of the
335 cleaning process, the bottom row contains the final spectra and analytics information.

336

337 [Insert Figure 2 here]
338
339 [Insert Figure 3 here]
340

341 In the top row, first, the noise frequency of this iteration is shown in a zoomed-in spectrum to
342  +/- 1.1 Hz around the frequency (Figure 3A). The threshold that led to the detection of this
343  frequency is shown in addition (red line), unless the detection is disabled. Next, the cleaning
344  of the individual chunks is visualized in two ways: The number of removed components per
345 chunk (Figure 3B), and the individual noise frequency detected for each chunk (Figure 3C).
346  Additionally, chunks in which no noise was detected are marked as such and the mean
347  number of removed components is denoted in the title of the plot. As each chunk contains a
348  set of components and accompanying artifact scores, this is too much to be visualized without
349  cluttering the plot, so we chose to only plot the mean artifact scores over all chunks next
350 (Figure 3D). This plot also contains the mean number of removed components (red vertical
351 line). Ideally, this line should cross the scores around the "elbow" of the curve, which indicates
352 that the outliers (i.e. the components which carry most of the noise) were detected correctly.
353 The abscissa is cut to one third of the number of components to allow the visualization of the
354  knee point. This is independent of the nkeep parameter that can be set (see section
355 "Parameters and outputs”). The SD value that was used for the detector is denoted in the title
356 of this plot. To finalize the visualization of the cleaning process, the zoomed-in spectrum of
357 the cleaned data is shown alongside the thresholds that determine if the cleaning was too
358 strong or too weak with respective horizontal lines (Figure 3E). The same y-axis is used as in
359  Figure 3A to allow comparison of pre- vs. post-cleaning. The legend of this plot also contains
360 the proportion of frequency samples that are below or above these thresholds, which
361 determines whether the cleaning needs to be adapted. It may happen that values exceeding
362 these thresholds remain, which can be either due to the minimum or maximum SD level being
363 reached or due to the fact that the cleaning would to too strong if set to a stronger level.

364 Figure 3F shows the raw spectrum as the mean of the log-transformed channel
365 spectra. Vertical shaded areas denote the minimal and maximal frequency to be checked by
366 the detector, as this can be useful to know in case a spectral peak is present in this area and
367 thus goes undetected. In Figure 3G the spectra of the cleaned (green), as well as the removed
368 data (red), are plotted. The abscissa in this plot is relative to the noise frequency which
369 facilitates distinguishing removed harmonics from other frequencies. Last, as it was shown
370 that Zapline can have undesirable effects on the spectrum below the noise frequency
371  (Miyakoshi et al., 2021), Figure 3H shows the spectra of the raw and cleaned data again
372  zoomed in to the part 10 Hz below the noise frequency to determine if this was the case. In
373  the title of Figures 3 G and H we also denote several analytics: the proportion of removed
374  power (computed on log-transformed data, corresponding to the geometric mean) of the
375 complete spectrum, of the power +/— 0.05 Hz around the noise frequency, and of the power —
376 11 Hzto —1 Hz below the noise frequency, as well as the ratios of power +/— 0.05 Hz around
377 the noise frequency to the center power before and after cleaning. These plots facilitate both,
378 anunderstanding of the data set itself, as well as the functioning of the cleaning. Although the
379  algorithm is adaptive in many ways and should work "as is", it is naturally possible that the
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noise has properties that make cleaning with Zapline-plus difficult or impossible. Hence, these
plots should always be inspected to determine if the cleaning was successful.

Parameters and outputs

Although we strive to provide a fully automatic solution with no need for parameter tweaking,
we still would like to provide options for all relevant aspects of the algorithm, including
switching adaptations off in case they do not work as intended. Here, we describe the
parameters, our reasoning for the default values and reasonable ranges, as well as the output
of the cleaning and additional thoughts. The data and sampling rate are required inputs, all
additional parameters can be entered either in key-value pairs or as a single struct:

- noisefreqs (default = empty): Vector with one or more noise frequencies to be
removed. If empty or missing, noise frequencies will be detected automatically.
Individual chunk peak detection will still be applied if set.

- minfreq (default = 17): Minimum frequency to be considered as noise when searching
for noise frequencies automatically. We chose this default as it is well above the
potentially problematic range of alpha oscillations (8 - 13 Hz) and also above the third
subharmonic of 50 Hz, which was present in some MEG data sets.

- maxfreq (default = 99): Maximum frequency to be considered as noise when searching
for noise freqs automatically. We chose this default as is is below the second
harmonics of the 50 Hz line noise. If the line noise cannot be removed successfully in
the original frequency, trying to remove the harmonics can potentially lead to
overcleaning.

- adaptiveNremove (default = true): Boolean if the automatic detection of number of
removed components (see section "Detection of hoise components") should be used.
If set to false, a fixed number of components will be removed in all chunks. As this is
a core feature of the algorithm it is switched on by default.

- fixedNremove (default = 1): Fixed number of removed components per chunk. If
adaptiveNremove is set to true, this will be the minimum. Will be automatically adapted
if "adaptiveSigma" is set to true. We chose this default to remove at least one
component at all times, no matter whether or not a noise oscillation was detected per
chunk, as the detector can fail to find an oscillation that should be removed, and
removing a single component does not lead to a large effect if no oscillation was
present in the chunk.

- detectionWinsize (default = 6): Window size in Hz for the detection of noise peaks. As
the detector uses the lower and upper third of the window to determine the center
power (see section "Application of Zapline”) this leaves a noise bandwidth of 2 Hz. In
our tests, some data sets indeed had such a large bandwidth of line noise, which can
occur if the noise varies in time.

- coarseFreqDetectPowerDiff (default = 4): Threshold in 10log*® scale above the center
power of the spectrum to detect a peak as noise frequency. If this is too high, weaker
noise can go undetected and thus uncleaned. If it is too low, spurious peak oscillations
can be wrongfully classified as noise artifacts. This default corresponds to a 2.5-fold
increase of the noise amplitude over the center power in the detection window which
worked well in our tests.

- coarseFregDetectLowerPowerDiff (default = 1.76): Threshold in 10log*® scale above
the center power of the spectrum to detect the end of a noise artifact peak. This is
necessary for the noise frequency detector to stop. This default corresponds to a 1.5
x increase of the noise amplitude over the center power in the detection window which
worked well in our tests.

- searchindividualNoise (default = true): Boolean whether or not individual noise peaks
should be applied on the individual chunks instead of the noise frequency specified or
found on the complete data (see section "Application of Zapline"). As this is a core
feature of the algorithm it is switched on by default.
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434 - freqDetectMultFine (default = 2): Multiplier for the 5\% quantile deviation detector of
435 the fine noise frequency detection for adaption of SD thresholds for too strong/weak
436 cleaning (see section “Application of Zapline”). If this value is lowered, the adaptive
437 changes of section "Adaptive changes of the cleaning procedure" are stricter, if it is
438 increased, these adaptations happen more rarely.

439 - detailedFregBoundsUpper (default = [-0.05 0.05]): Frequency boundaries for the fine
440 threshold of too weak cleaning. This is also used for the search of individual chunk
441 noise peaks as well as the computation of analytics values of removed power and ratio
442 of noise power to surroundings. Low values mean a more direct adaptation to the peak,
443 but too low values might mean that the actual noise peaks are missed.

444 - detailedFregBoundsLower (default = [-0.4 0.1]): Frequency boundaries for the fine
445 threshold of too strong cleaning. Too strong cleaning usually makes a notch into the
446 spectrum slightly below the noise frequency, which is why these boundaries are not
447 centered around the noise peak.

448 - maxProportionAboveUpper (default = 0.005): Proportion of frequency samples that
449 may be above the upper threshold before cleaning is adapted. We chose this value
450 since it allows a few potential outliers before adapting the cleaning.

451 - maxProportionBelowLower (default = 0.005): Proportion of frequency samples that
452 may be below the lower threshold before cleaning is adapted. We chose this value
453 since it allows a few potential outliers before adapting the cleaning.

454 - noiseCompDetectSigma (default = 3): Initial SD threshold for iterative outlier detection
455 of noise components to be removed (see section "Detection of noise components").
456 Will be automatically adapted if "adaptiveSigma" is set to 1. This value led to the fewest
457 adaptations in our tests.

458 - adaptiveSigma  (default = 1): Boolean if automatic adaptation of
459 noiseCompDetectSigma should be used. Also adapts fixedNremove when cleaning
460 becomes stricter (see section "Adaptive changes of the cleaning procedure”). As this
461 is a core feature of the algorithm it is switched on by default.

462 - minsigma (default = 2.5): Minimum when adapting noiseCompDetectSigma. We found
463 that a lower SD than 2.5 usually resulted in removing too many components and a
464 distortion of the data.

465 - maxsigma (default = 4): Maximum when adapting noiseCompDetectSigma. We found
466 that a SD higher than 4 usually did not relax the cleaning meaningfully anymore.

467 - chunkLength (default = 0): Length of chunks to be cleaned in seconds. If set to O,
468 automatic, adaptive chunking based on the data covariance matrix will be used.

469 - minChunkLength (default = 30): Minimum length of the chunks when adaptive
470 chunking is used. We chose a minimum chunk length of 30 s because shorter chunks
471 resulted in both, a sometimes suboptimal decomposition within Zapline and a lower
472 frequency resolution for the chunk noise peak detector. Smaller chunks result in better
473 adaptation to non-stationary noise, but also potentially worse decomposition within
474 Zapline. The necessary minimum chunk length for ideal performance may also depend
475 on the sampling rate.

476 - winSizeCompleteSpectrum (default = 0): Window size in samples of the pwelch
477 function to compute the spectrum of the complete data set for detecting the noise
478 frequencies. If 0, a window length of sampling rate x chunkLength is used. This
479 parameter mainly adjusts the resolution of the computed spectrum. We chose relatively
480 long windows to ensure a high resolution for the noise frequency detector.

481 - nkeep (default = 0): Principal Component Analysis dimension reduction of the data
482 within Zapline. If 0, no reduction will be applied. This option can be useful for extremely
483 high number of channels in which there is a risk of overfitting, but in our tests even on
484 high-density EEG and MEG data it did not lead to better results.

485 - plotResults (default = 1): Boolean if plot should be created.

486

487  After completing the cleaning, Zapline-plus passes out the complete configuration struct
488 including all adaptations that were applied during the cleaning. This allows a perfect replication
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489  of the cleaning when applying the configuration to the same raw data again and facilitates
490 reporting the procedure. Additionally, the generated analytics values that can be found in the
491 plot are also passed out as a struct: raw and final cleaned log spectra of all channels, SD used
492  for detection, proportion of removed power of the complete spectra, the noise frequencies,
493  and below noise frequencies, ratio of noise powers to surroundings before and after cleaning
494  per noise frequency, proportion of spectrum samples above/below the threshold for each
495  frequency, matrices of number of removed components per noise frequency and chunk, of
496  artifact component scores per noise frequency and chunk, of individual noise peaks found per
497  noise frequency and chunk, and whether or not the noise peak exceeded the threshold, per
498 noise frequency and chunk. These values allow an easy check of the complete Zapline-plus
499  cleaning both for each subject and on the group-level.

500

501 A note on the sampling rate of the data

502 Modern M/EEG setups typically record data at high sampling rates of at least 500 Hz (1200
503 Hzis common for MEG), which allows for high temporal resolution and investigation of very
504 high frequencies. However, brain activity is typically not quantified beyond 100 Hz, and lower
505 sampling rates such as 250 Hz are typically deemed sufficient for ERP studies investigating
506 the onset of neural responses. Importantly, the presence of high frequencies in the data poses
507 a major challenge for line noise removal with Zapline, because Zapline also needs to handle
508 the (sub)-harmonics (integer divisions and multiples of the line noise frequency) that emerge
509 with frequency-specific noise. For example, at a sample rate of 1200 Hz, Zapline will remove
510 line noise at 50 Hz also at multiples of 50 Hz all the way up to 600 Hz (Nyquist frequency),
511 yielding as many as twelve harmonics. In addition, noise removal at 25 Hz (beta range) can
512  also often be observed. We noticed that Zapline performed worse with data at higher sampling
513 rates, due to the increased complexity of the data. Thus, to make Zapline's task easier, it is
514  advisable to downsample the data prior to running Zapline-plus. For the MEG data analyzed
515 here, we down-sampled to 350 Hz, for the EEG data to 250 Hz, such that only 50 and 100 Hz,
516 and 150 Hz for the MEG data, are considered for noise removal. Indeed, we found that
517  Zapline-plus performed much better at lower sampling rates.

518

519 Example applications

520 Data sets

521 In order to test the efficacy of the Zapline-plus algorithm we ran it on four different openly
522  available datasets, two EEG data sets containing both stationary and mobile conditions, and
523  two stationary MEG data sets. Notably, line noise is usually extremely strong in MEG, despite
524  extensive shielding of the equipment that is commonly applied.

525

526 EEG study |

527  This is an open data set available at https://openneuro.org/datasets/ds003620/versions/1.0.2
528 (Liebherr et al., 2021). Data of 41 participants (aged 18-39 years, M = 23.1 years, 26 female
529 and 15 male) is available, of which we only used 24 sets for technical reasons. The experiment
530 consisted of an auditory oddball task which was administered either in a laboratory
531 environment, or on a grass field, or on the campus of the University of South Australia.
532  Continuous EEG data was recorded with a 500 Hz sampling rate using 32 active Ag/AgCI
533 electrodes and the BrainVision LiveAmp (Brain Products GmbH, Gilching, Germany).
534  Electrode impedances were kept below 20k Ohm and channels were referenced to the FCz
535 electrode. See Liebherr et al. (2021) for details.

536

537 EEG study I

538 This is an open data set available at http://dx.doi.org/10.14279/depositonce-10493 (Gramann
539 et al.,, 2021). Data of 19 participants (aged 20-46 years, mean 30.3 years, 10 female and 9
540 male) are available, which we all used. The experiment consisted of a rotation on the spot,
541  which either happened in a virtual reality environment with physical rotation or in the same
542  environment on a 2D monitor using a joystick to rotate the view. EEG data for each condition
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543  was recorded with a 1000 Hz sampling rate using 157 active Ag/AgCl electrodes (129 on the
544  scalp in a custom equidistant layout, 28 around the neck in a custom neck band) and the
545  BrainAmp Move System (Brain Products GmbH, Gilching, Germany). Electrode impedances
546  were kept below 10k$\Omega$ for scalp electrodes and below 50k Ohm for neck electrodes,
547  and channels were referenced to the FCz electrode. See Gramann et al. (2021) for details.
548

549 MEG study |

550 This open data set is available at
551  https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09 236?70 (Schoffelen et al.,
552  2019). We randomly selected 12 of the 204 subjects to test Zapline-plus. Subjects performed
553  alanguage task, during which they had to process linguistic utterances that either consisted
554  of normal or scrambled sentences. Four of the analyzed subjects were reading the stimuli
555  (subject IDs V1001, V1012, V1024, V1036), the other eight listened to the stimuli (subject IDs
556  A2027, A2035, A2051, A2064, A2072, A2088, A2101, A2110). Magnetoencephalographic
557  data were collected with a 275-channel axial gradiometer system (CTF). The MEG recording
558 for each subject lasted ca. 45 minutes. The signals were digitized at a sampling frequency of
559 1200 Hz (cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). See
560  Schoffelen et al. (2019) for details.

561

562 MEG study Il

563  This data set comprises open MEG data from the Cam-CAN set of the Cambridge Centre for
564 Ageing and Neuroscience, available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan
565 (Shafto et al., 2014; Taylor et al., 2017). We randomly selected 23 of the 647 participants.
566  Participants performed a sensory motor task on audio-visual stimuli (bilateral sine gratings
567 and concurrent audio tone). Participants were asked to respond each time a stimulus was
568 presented. The task lasted for 8 minutes and 40 seconds. Magnetoencephalographic data
569  were collected with a 306-channel Elekta Neuromag Vectorview (102 magnetometers and 204
570 planar gradiometers) at a sampling rate of 1000 Hz (bandpass 0.03-330 Hz). Only planar
571 gradiometers were used in the analysis. See Shafto et al. (2014) and Taylor et al. (2017) for
572  details.

573

574  Processing

575  The following preprocessing steps were applied: removal of excess channels, resampling to
576  250/350 Hz (for the EEG and MEG sets, respectively), and merging of all conditions per study
577 (EEG study Il only). First, to test the different elements of the algorithm, we ran eight different
578 sets of settings on EEG study Il (which contained complex artifacts that differed between the
579  two conditions):

580

581 1. Using a fixed removal of 3 components and no chunks, corresponding to standard
582 Zapline use.

583 2. Using a fixed removal, but chunking the data into 150s segments.

584 3. Using the automatic detector of noise components, but no chunks.

585 4. Combining 150s chunks and automatic noise component detector.

586 5. Using 150s chunks with individual peak detection and automatic noise component

587 detector.

588 6. Using 150s chunks without peak detection and automatic noise component
589 detection with adaptive changes for over- or undercleaning.

590 7. Using 150s chunks with individual peak detection, as well as automatic detection
591 with adaptive changes

592 8. Using all features (default): adaptive chunk length with individual peak detection,
593 as well as automatic detection with adaptive changes.

594

595 All conditions used the automatic detector of noise frequencies. With this approach we tried
596 to mimic the creation of the algorithm with successive improvements.
597
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598  Subsequently, we ran Zapline-plus additionally on EEG study | and on the MEG studies. For
599 EEG study | we used only default values, for the MEG studies we set 'noisefreqs’ to 50 as we
600 expected only line noise and wanted to prevent false positive noise frequency detection due
601 to very strong (sub-)harmonics of the line frequency.

602

603 Results

604  Overall, the cleaned spectra show that zapline-plus successfully removed the strong line noise
605 peaks while introducing only minimal notches. The results of the cleaning of all example
606  studies are depicted in Figure 4, and Table 1 lists the results for analytics for the cleaning
607  using successively enabled features for EEG study Il (the number of removed components
608 per cleaning step, the ratio of noise/surroundings after cleaning, the proportion of removed
609  power below noise, and the proportion of frequency samples below and above the adaptation
610 threshold). Only EEG study Il had noise frequencies different from line, which is why we
611  specifically show the raw and clean 50 Hz / surroundings power ratios. Table 2 shows the
612  results for the four example datasets (the final SD value for detection, the number of removed
613  components per cleaning step, the ratio of noise/surroundings before and after cleaning, and
614 the proportion of removed power below noise).

615
616 [Insert Table 1 here]
617
618 [Insert Table 2 here]
619

620 Suboptimal case results

621 Viewing only the average results of the final cleaning, however, yields only a limited
622 understanding of the detailed processes. Some data sets had less-than-ideal results, for
623 example they showed a distortion of the spectrum below noise such that the power was
624  actually increased. This could be seen mostly in data sets with particularly strong noise
625 contamination, especially in MEG study | where four data sets had more than 800 times
626  stronger power at noise frequency than surroundings, up to almost 7000 times for the noisiest
627 data set (Figure 4, MEG study I, right panel). All these four data sets, but only them, exhibited
628 a negative removal of power below noise, i.e. an increase of power in the cleaned data, and
629 they drive the average that can be see in Table 2 and Figure 4, MEG study I, left panel (green
630 line above black). Also, while all data sets showed a reduction in power of the noise, some of
631 them had comparably strong residual noise peaks (ratios of noise/surroundings above 1.2,
632 these usually also had very high ratios before cleaning), indicating that Zapline-plus could not
633  fully clean these data sets.

634

635 [Insert Figure 4 here]

636

637  Zapline-plus does not affect phase angle of the signal

638  Zapline-plus removes frequency-specific artifacts using the data’s power spectrum, but it is
639 unknown to what extent the phase angle of the remaining signal at the cleaned frequency is
640 affected by the cleaning process. Assuming that frequency-specific noise such as line noise
641 is strongly oscillatory and thus has a steady circular progression of phase angle over time, we
642  asked whether Zapline-plus indeed strictly removes a noise time course with such a steady
643  phase from the contaminated signal.

644 To address this question, we computed the 50 Hz oscillatory phase and power of the
645 noise time series, as generated by Zapline-plus for removal from a chunk of 50-Hz
646  contaminated MEG data (duration 543 s). We then used the peaks in the sawtooth-like 50 Hz
647 phase time series (i.e. where phase was at 2*pi) to segment the time-domain noise data into
648  “trials” of 2001 samples (5.7 s duration), and averaged the trials. Due to time-locking to the
649  2*pi phase angle of the 50 Hz oscillation, this resulted in a strong, oscillatory average time
650 course (Figure 5A), which we confirmed to be at exactly 50 Hz (Figure 5B). We reasoned that
651 any phase irregularities in the trial-average time series would result in an average power drop-
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652  off towards the trial borders due to reduced time-locking further away from time zero. Visual
653  inspection of Figure 5B does not reveal such a drop-off (see Figure 5A, oscillation equally
654  strong at all time points), suggesting that the phase angle of the 50 Hz artifact was constant
655 throughout the noise time series. Note that we cut the time axis of the figure because the
656  edges did not contain time-frequency data.

657 To quantify the stability of the 50 Hz phase angle, we then computed the inter-trial
658 phase coherence (ITPC) for each time point. ITPC is an established measure of phase stability
659 that ranges between 0 (highly variable phase angle across trials at a given time point) and 1
660 (exact same phase) (Tallon-Baudry et al., 1996). We expected 50 Hz ITPC to reach its peak
661  at time zero, because the trials were aligned to a fixed phase angle (2*pi) at this timepoint —
662  and fall off at towards the trial boundaries due to any phase irregularities occurring from trial
663  to trial. This inverted-U shape is indeed what we found (purple line in Figure 5C). Crucially,
664  however, 50-Hz ITPC dropped only ca. 1% at the trial borders, (0.4 s from time zero,
665  corresponding to 20 periods), ITPC=0.965 vs. 0.954, indicating that the phase of the 50 Hz
666  oscillation in the noise data was very stable over time. ITPC of frequencies around 50 Hz was
667  consistently low (ITPC < 0.06, cyan lines in Figure 5, right), as expected since the trials were
668  strictly based on the 50 Hz phase angle. This suggests that Zapline-plus removes a very
669  rhythmically stable 50 Hz oscillation from the raw signal. We conclude that the phase of 50 Hz
670 activity remaining in the data after line noise removal with Zapline-plus (e.g. gamma activity)
671 can be assumed to be unaffected, and can thus safely be used in subsequent analysis.

672

673 [Insert Figure 5 here]

674

675 Discussion

676 In this work, we extended Zapline to allow fully automatic removal of line noise and other
677  spectral peaks, while giving the user a maximum of flexibility and information, as well as
678 allowing complete replicability of the processing. We evaluated the algorithm on two EEG and
679 two MEG data sets. First, we checked whether the different parts of the algorithm improved
680 the cleaning on one EEG study, then we applied the final default values to the three other
681  datasets. Taken together, the results show that the new features allow for fully automatic noise
682 removal and make the algorithm applicable for different kinds of electrophysiological data,
683  resulting in a substantial decrease of frequency-specific noise with minimal negative impact
684  on true neural activity.

685

686  Efficacy of the algorithm

687  Examination of the algorithm components on EEG study Il showed that they do improve the
688  results. However, the improvement is not a simple linear relationship. Both, using fixed 150s
689  chunks, and using automatic detection of to-be-removed components improved the clean ratio
690  of noise/surrounding power similarly over using the standard fixed approach. In doing so, using
691  auto detection affected the power below noise frequencies (-11 to -1 Hz) more than chunks
692  did, but chunks had a larger proportion of samples below the threshold directly at the noise
693 frequency, meaning chunks introduced a slight notch into the spectrum, whereas auto cleaning
694  without chunks distorted the spectrum more generally. Interestingly, combining these two
695 approaches led to the lowest ratio of noise/surroundings power while also introducing
696  substantial amounts of overcleaning, both in terms of general distortion (% removed below
697  noise) and a notch (% below lower threshold). This combination also had the fewest samples
698 above the adaptation threshold, corresponding to the low noise/surroundings ratio.

699 The strong overcleaning effect can be explained by the fact that not all noise
700 oscillations were present in all chunks. Although the automatic detection of components to
701  remove should be able to select fewer samples with less noise, it requires some sort of 'knee-
702  point' or 'corner' in the artifact scores. In chunks with no oscillation in the given noise
703 frequency, the scores exhibit an almost linear decrease, which can lead to erroneously
704  removing large numbers of components. This negative interaction effect can be fixed by either
705 adapting the SD level the detector uses, or by simply not using auto detection when no noise
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706 is present. Using either improvement alone led to similar levels of cleaning in terms of
707  noise/surroundings power as well as % of samples above threshold, while the adaptive
708 cleaning had a slightly reduced impact on the spectrum below noise and a reduced notch.
709  Combining all options, chunks with individual peak detection, as well as automatic detection
710  with adaptation, led to even better overall results.

711 Last, adding the adaptive variable chunk length based on the spatial stability of the
712 noise (using the full feature set of the algorithm) improved the specificity of the cleaning even
713  further. This combination had a lower % of samples below and above the adaptation threshold
714  and alower impact to the spectrum below noise. Overall, the combination of all features of the
715  algorithm successfully cleans the data, while keeping the distortions to the spectrum as low
716  as possible.

717 Applying this final combination to all example data sets led to substantial improvements
718  of the spectra. In EEG study I, there was 50 Hz line noise present in the data, and an unknown
719  oscillation at around 7 Hz, plus harmonics. The former was detected and successfully cleaned
720 by Zapline-plus, whereas the latter was too small to be detected. EEG study Il is a particularly
721  heavily contaminated study, as can be seen by the various peaks in the spectrum. However,
722  Zapline-plus was able to successfully clean these data, not only at line noise, but also all other
723  strong peaks. This example emphasizes the importance of the automatic noise frequency
724  detector, as these oscillations are difficult to anticipate.

725 Applying Zapline-plus on the MEG studies shows that even extremely noisy data is
726  successfully cleaned. It can be seen in MEG study |, however, that Zapline-plus may have an
727  impact on the overall spectrum by increasing the broadband power. This effect is driven by
728  four of the twelve data sets, which show extreme levels of noise before cleaning, the other
729  eight do not show such an increase. In these cases the actual impact of the cleaning on final
730 measures must be closely examined in order to decide whether the trade-off of reduced noise
731  vs. spectrum distortions is worth it in this particular analysis or if the cleaning must be adapted.
732

733 Other notes

734  In EEG study I, it was clearly visible that some noise frequencies were only present in the first
735  or second part of the data (body vs joystick rotation, see Figure 3 for an example of a noise
736  frequency only present in the second half). This underlines the importance of the chunking
737 and individual frequency detection, as this allows checking whether the oscillation is actually
738 present in that chunk and prevent overcleaning. We would also like to point out the importance
739  of fine-tuned noise frequency detection for some frequencies, especially the one seen in
740  Figure 3. The separation of 20.9 Hz and, subsequently, 21.1 Hz noise is important as the two
741  frequencies can not be cleaned together. This would be impossible to see without a high
742  resolution of the frequency spectrum, and simply cleaning with a fixed 21 Hz setting does lead
743  to subpar results. Also, as can be seen in Figure 2 the peak frequency of the line noise is not
744  always stationary and Zapline-plus is able to detect these variations.

745

746  Limitations

747  As we showed, the cleaning is not always perfect. Especially with data that is heavily
748  contaminated with noise, it is possible to 1) change the spectrum below the noise frequency
749  such that the power is actually increased, 2) leave residual noise in the data, or 3) after
750 cleaning, leave a small notch in the spectrum. Although the default values of the algorithm are
751  chosen to fit most of the data sets, in some cases it might be better to adjust them according
752  to the results obtained from the automatic cleaning and then re-run Zapline-plus. The user is
753  strongly advised to always check the resulting analytics plots after applying Zapline-plus.

754

755  Future directions

756 It might also be that no matter the parameter adjustment, the cleaning will remain suboptimal.
757 In these cases it could be useful to combine Zapline-plus with CleanLine, since these two
758  methods rely on distinct, complementary algorithms to isolate and remove line noise. Zapline,
759  on the one hand, applies a fixed spatial filter over the entire data segment, allowing it to
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760  account for variations in noise amplitude in the temporal domain, but strictly not changes in
761  noise topography. Cleanline, in contrast, removes a fixed oscillatory noise signal in the time-
762 domain data in each channel separately, allowing full flexibility in the spatial, but not the
763  temporal domain. Indeed, a recent paper shows that combining the two methods can improve
764  the cleaning of heavily contaminated data (Miyakoshi et al., 2021). Examining the possibility
765  of an automatic extra CleanLine step if Zapline-plus alone yielded suboptimal results would
766  be an option for future investigations.

767 Another interesting possibility is to visualize the topographies of the removed artifacts.
768  As Zapline internally uses spatial filters, these can be visualized like any other spatial filter and
769 be added to the analytics information feedback for the user. However, this is not
770  straightforward as Zapline-plus specifically uses different spatial decompositions and different
771  number of removed components for each chunk. Still, if the filters vary only slightly, visualizing
772  the average of the removed topographies could be valuable feedback.

773 Lastly, it could be explored whether Zapline-plus can also be used for other
774  applications. For example, some of our tests suggest that one could remove very regular
775  mechanical walking artifacts in mobile EEG studies, or the steps could be extracted to create
776  events for subsequent analysis. Another option would be to extract alpha oscillations (8-13
777  Hz) that exceed the 1/f background activity. This topic has already been mentioned in the
778 original Zapline paper (Cheveigné, 2019), but with a focus on removing alpha for other
779 analysis. Extracting only the oscillatory alpha time series by switching the "clean" with the
780  "noise" data could result in more specific alpha signals than using a standard band-pass filter.
781  In sum, Zapline-plus is essentially a tool created for noise removal, but it can also be used to
782  extract all kinds of oscillatory activity to be used in other analyses, which makes it a versatile
783  tool in any analysis pipeline.

784

785 Implications for the field

786  Removing line noise is an undeniably important part of electrophysiological data processing,
787  and having the option to do so without risking the analysis of potentially important frequencies
788  while retaining full data rank is a valuable tool. The newly added features of fully automatic
789 and documented processing including the detection of noise oscillations are especially
790 important considering the current trend towards complete automatic processing pipelines
791  (Bigdely-Shamlo et al., 2015; Cruz et al., 2018; Gabard-Durnam et al., 2018; Pedroni et al.,
792  2019) and the need for more rigorous methods in neurophysiological analysis (Cohen, 2017)
793  due to the replication crisis (Collaboration, 2015). Also, although the impact of preprocessing
794 has been investigated in parts (Robbins et al., 2020), and some pipelines create
795 comprehensive documentation of their processes, a documentation of the line noise removal
796 as detailed as provided by Zapline-plus is lacking thus far. Zapline-plus contributes to the field
797 by making the removal of line noise and other oscillation artifacts in large data sets automatic,
798 easy, transparent, and reproducible, while limiting its potential negative impact on downstream
799 analysis. It can easily be integrated in any automatic processing pipeline.
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813  The data used in this study is available for download as laid out in the Datasets section. The
814 MATLAB source code of the software is available for download at
815  https://github.com/MariusKlug/zapline-plus.
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Tables
1. original 2. fixed chunks 3. auto comp. 4. auto + fixed
Zapline detection chunks
final # of removed 3(0) 3(0) 4.55 (1.93) 5.76 (1.61)
components
clean ratio 1.22 (0.21) 1.09 (0.12) 1.08 (0.04) 0.97 (0.07)
nois/surroundings
% removed power 1.73 (0.57) 1.87 (0.46) 3.05(2.10) 4.30 (1.36)
below noise
% below lower 0 (0) 3.36 (6.67) 0.20 (0.63) 20.08 (16.78)
threhsold
% above upper 23.13 (11.37) 16.79 (13.67) 14.74 (9.94) 6.82 (7.06)
threshold
5. auto + fixed 6. auto + 7. auto + 8 .auto +
chunks + peaks adaptive + fixed | adaptive + fixed adaptive +
chunks chunks + peaks | variable chunks
+ peaks
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final # of removed 4.08 (1.09) 3.63 (0.88) 3.31(0.92) 3.20(0.78)
components

clean ratio 1.00 (0.05) 1.01 (0.05) 1.03 (0.04) 1.03 (0.08)
noise/surroundings

% removed power 3.01 (0.95) 2.41 (0.72) 2.20 (0.69) 2.12 (1.92)
below noise

% below lower 9.31 (12.84) 5.26 (11.01) 2.94 (6.51) 0.36 (1.44)
threhsold

% above upper 7.25 (7.90) 8.33 (6.85) 8.37 (7.47) 5.64 (10.81)
threshold

919 Table 1 | Algorithm steps applied to an example dataset. Analytics (mean and standard
920 deviation) when using varying features enabled during cleaning of EEG study Il. The removed
921  power below noise refers to -11 Hz to -1 Hz below the detected noise frequency, the
922  percentage below/above thresholds refer to the proportion of samples in the spectrum
923  exceeding the thresholds for fine-grained adaptation. Although they were not always used,
924  they are always available for analysis. The values are first averaged over all detected noise
925 frequencies per subject. “1. original Zapline” refers to the basic fixed version of Zapline, “2.
926 fixed chunks” refers to applying the basic Zapline on regular 150s chunks, “3. auto comp.
927  detection” refers to using automatic detection of components to remove, “4. auto + fixed
928  chunks’ refers to using automatic noise component detection on regular 150s chunks, “5. auto
929  + fixed chunks + peaks” refers to using automatic noise component detection on regular 150s
930 chunks with individual chunk noise peak detection, “6. auto + adaptive + fixed chunks” refers
931 to using automatic noise detection on regular 150s chunks with adaptive detection strength,
932  “7. auto + adaptive + fixed chunks + peaks” refers to using automatic noise component
933  detection on regular 150s chunks with individual peak detection and adaptive detection
934  strength, and “8. auto + adaptive + variable chunks + peaks” refers to using automatic noise
935 component detection on automatically detected variable chunks with individual peak detection
936 and adaptive detection strength (see also section “Processing”). N = 19.

937

EEG study | EEG study I MEG study | MEG study I
(N =24) (N=19) (N=12) (N =23)

final SD of detector 2.63 (0.18) 3.10 (0.40) 3.42 (0.73) 3.38 (0.61)
final # of removed 2.83 (0.95) 3.20 (0.78) 17.18 (8.62) 8.21 (3.66)
components
raw ratio noise/surroundings 6.99 (6.26) 2.40 (1.91) 962.6 (1799.6) | 232.6 (369.4)
clean ratio 1.22 (0.17) 1.03 (0.08) 1.32 (0.61) 1.00 (0.05)
noise/surroundings
% of removed power below 6.20 (2.60) 2.12(1.92) -31.34 (75.71) 3.52 (1.38)
noise

938 Table 2 | Analytics results of the cleaning of four openly available data sets (mean and
939 standard deviation). The removed power below noise refers to -11 Hz to -1 Hz below the
940 detected noise frequency. For EEG study Il the values are first averaged over all detected
941 noise frequencies per subject, the other studies had only 50 Hz line noise removed.

942
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945  Figure 1 | Processing flow of the Zapline-plus algorithm. Please see the text for details
946  about the individual steps.
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951  Figure 2 | Example output plots produced by Zapline-plus for 50 Hz line noise. Shown is
952 a9 min MEG data set from MEG study | (see section “Datasets”), with 50 Hz predefined as
953  the noise to remove. For a detailed explanation of the individual subplots, see section “Plots”
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954  A. Power spectrum centered around the noise frequency. B. Number of components removed
955 by Zapline for each chunk. Chunks were defined as periods in which the noise was spatially
956 stable. C. Specific noise frequencies detected within each chunk. D. Component scores,
957  sorted in descending strength. Red line, threshold for rejection based on outlier detection. E.
958 Same as A., but after removal of the noise components. F. Full power spectrum, depicting
959  both the line noise and (sub-)harmonics. G. As E. but showing clean and noise data
960 separately. The x-axis expresses frequency relative to the removed noise frequency, where 1
961 indicates the noise frequency. H. Power spectrum of 10 Hz range below the noise frequency,
962 indicating to what extent non-noise frequencies were affected by the cleaning.
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967  Figure 3 | Example output plots produced by Zapline-plus for 21 Hz noise. Figure 3 |
968 Example output plots produced by Zapline-plus for 21 Hz noise. Shown is a 87 min EEG
969 data set from EEG study Il (see section Datasets) containing a mobile and a stationary
970 condition. This noise artifact was present only in the first part of the data. For an explanation
971  of the individual subplots, see section Plots. For a detailed explanation of the individual
972  subplots, see section Plots. Conventions as in Figure 2.
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EEG study |, frequency spectra, N=24 50 Hz noise removal
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975  Figure 4 | Frequency spectra and 50 Hz noise removal results of the example data sets.
976  Rows, results for the four M/EEG data sets.datasets. Left panels: frequency spectra before
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977  and after applying Zapline-plus. Right panels: ratio of power at noise / surrounding frequency
978 for raw and cleaned data. A ratio of 1 (i.e. 10°) indicates absence of any remaining noise
979  artifact in the power spectrum.
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983  Figure 5| Assessment of phase angle stability of a 50-Hz noise timeseries generated
984 by Zapline-plus. A. Noise time course after averaging over short “trials” centered around the
985  2*pi phase angle of 50 Hz. B. Spectrogram of the average trial depicted in A. C. Inter-trial
986 phase coherence (ITPC) of 50 Hz (y-axis on the left) and neighboring frequencies (y-axis on
987  the right).
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