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Abstract 25 
Removing power line noise and other frequency-specific artifacts from electrophysiological 26 
data without affecting neural signals remains a challenging task. Recently, an approach was 27 
introduced that combines spectral and spatial filtering to effectively remove line noise: Zapline 28 
(de Cheveigné, 2020). This algorithm, however, requires manual selection of the noise 29 
frequency and the number of spatial components to remove during spatial filtering. Moreover, 30 
it assumes that noise frequency and spatial topography are stable over time, which is often 31 
not warranted. To overcome these issues, we introduce Zapline-plus, which allows adaptive 32 
and automatic removal of frequency-specific noise artifacts from M/EEG and LFP data. To 33 
achieve this, our extension first segments the data into periods (chunks) in which the noise is 34 
spatially stable. Then, for each chunk, it searches for peaks in the power spectrum, and finally 35 
applies Zapline. The exact noise frequency around the found target frequency is also 36 
determined separately for every chunk to allow fluctuations of the peak noise frequency over 37 
time. The number of to-be-removed components by Zapline is automatically determined using 38 
an outlier detection algorithm. Finally, the frequency spectrum after cleaning is analyzed for 39 
suboptimal cleaning and parameters are adapted accordingly if necessary before re-running 40 
the process. The software creates a detailed plot for monitoring the cleaning. We showcase 41 
the efficacy of the different features of our algorithm by applying it to four openly available data 42 
sets, two EEG sets containing both stationary and mobile task conditions, and two MEG sets 43 
containing strong line noise. 44 
 45 

Introduction 46 
The task paradigm is well thought out. The experiment set up, the EEG recording goes well, 47 
30 data sets and more. A masterpiece, really. Finally you have time to plot your first power 48 
spectra. Then: peaks in your spectra, particularly at 50 or 60 Hz, but also in other frequencies, 49 
right where you want to analyze your data.  50 
Removing frequency-specific noise artifacts from electrophysiological data is a key issue in 51 
any electroencephalography (EEG) or magnetoencephalography (MEG) experiment. Modern 52 
laboratories contain many different electrical devices that all need power, and with great power 53 
comes great line noise. But noise is not only limited to the 50/60 Hz power line artifact, but 54 
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may also arise from many different sources. Recently, a novel algorithm, Zapline, was 55 
introduced that combines spectral and spatial filters to isolate and remove the power line noise 56 
(Cheveigné, 2019). In this paper, we present an adaptive wrapper software for Zapline to 57 
enable the fully automatic removal of frequency-specific noise artifacts, including the selection 58 
of noise frequencies, chunking the data into segments in which the noise is spatially stable, 59 
automatically selecting the number of principal components to remove with Zapline, as well 60 
as a comprehensive analysis and visualization of the cleaning and its impact on the data. 61 
 62 
EEG noise removal is especially difficult in mobile experiments. 63 
Mobile EEG studies require specific treatment to remove noise stemming from muscles and 64 
other sources, and often independent component analysis (ICA) can be used for this (Klug 65 
and Gramann, 2020). Finding the right way to remove frequency-specific noise from the data, 66 
however, is a difficult task, especially since it it is not necessarily spatially stable and thus can 67 
have a strong negative impact on ICA. Shielding the laboratory, finding the sources and 68 
eliminating them before recording the data help to alleviate the issue, but this is not always 69 
feasible, and sometimes the noise goes unnoticed at first. As recent developments in EEG 70 
experimental paradigms show a trend towards measuring the human in its natural habitat - 71 
the world (Gramann et al., 2014) - it can become increasingly difficult or impossible to control 72 
noise sources. The fields of mobile brain/body imaging (Gramann et al., 2011; Jungnickel et 73 
al., 2019; Makeig et al., 2009) and neuroergonomics (Dehais et al., 2020; Raja and Matthew, 74 
n.d.) use devices like virtual reality head mounted-displays, motion tracking, eye tracking, 75 
treadmills, flight simulators, or actual airplanes, and more. In these experiments, participants 76 
move around and interact with the world, including for example navigating through a city 77 
(Wunderlich and Gramann, 2018), a virtual maze (Gehrke and Gramann, 2021), or flying an 78 
airplane (Dehais et al., 2019). These data sets are almost always riddled with frequency-79 
specific noise, not only stemming from the power line but also from other devices, and often it 80 
is just accepted that recordings contain noise. Removing this noise during processing is 81 
especially important when comparing different conditions like seated vs. mobile experiments, 82 
as different noise sources may be nearby for the different conditions, and untreated noise can 83 
be wrongfully interpreted as an effect of the conditions.  84 
 85 
Line noise artifacts are particularly strong in MEG 86 
Magnetoencephography (MEG) is a technique closely related to EEG, in which rather than 87 
electrical activity itself, its concurrent magnetic fields are recorded (Hämäläinen et al., 1993). 88 
Compared to EEG, MEG allows for better spatial specificity of (superficial) sources of neural 89 
activity in the brain. Moreover, it does not require extended subject preparation and electrode 90 
gel, which makes MEG more feasible for clinical populations as well as children. Magnetic 91 
fields are less distorted by the skull than electrical activity, which makes MEG better suited for 92 
investigating high-frequency neural activity in the so-called gamma band (although gamma is 93 
investigated in EEG as well, e.g. Kloosterman et al. (2019)). However, the gamma band 94 
ranges from roughly ~30 to 100 Hz (Hoogenboom et al., 2006), which encompasses the 50 or 95 
60 Hz line noise (and possibly its first harmonic), to which MEG is highly sensitive and which 96 
can outweigh neural activity by several orders of magnitude. This noise is often removed using 97 
strong filters (see next section), which come at the cost of completely removing true neural 98 
activity in this range as well. This approach hampers in-depth investigation of the function of 99 
gamma activity in neural processing. 100 
 101 
Noise can be removed with spectral filters, regression, or spatial filters 102 
Taken together, removing frequency-specific noise is a vital part of data processing.  103 
Several methods are available to remove this noise, but these all come with individual 104 
drawbacks. Three main approaches can be distinguished: 105 
 106 

(i) Spectral filters: Filtering the data with a simple low-pass or notch filter is the most 107 
conventional approach. However, a low-pass filter may reduce the quality of 108 
decomposing the data using Independent Component Analysis (Dimigen, 2020; 109 
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Hyvarinen, 1997) and a notch filter must have a steep roll-off to keep the notch 110 
small, which comes with the potential of ringing artifacts (Widmann et al., 2015). 111 
Additionally, both options remove all information in (or even above) the noise range 112 
and will make analysis of these frequencies impossible. An approach related to 113 
notch filtering is interpolation of the data in the frequency domain between directly 114 
neighboring frequencies that are unaffected by the noise (e.g. 48 to 52 Hz), 115 
followed by transformation of the data back into the temporal domain (Leske and 116 
Dalal, 2019). This approach indeed does not introduce a deep notch in the data at 117 
the line noise frequency, but nevertheless all information at the line noise frequency 118 
is destroyed, rendering further analysis impossible.  119 

(ii) Regression-based approaches: Regressing a target signal out of the data is 120 
another often used tool. Examples are the CleanLine plugin of EEGLAB (Delorme 121 
and Makeig, 2004), which uses a frequency-domain regression to remove 122 
sinusoidal artifacts from the data, or TSPCA, which uses a provided reference 123 
signal (Cheveigné and Simon, 2007). These approaches depend on either a 124 
provided reference or a successful generation of a target signal in a given 125 
frequency. Here, some noise may be left in the data, especially fluctuations in 126 
amplitude or phase of the noise can be difficult to remove. 127 

(iii) Spatial filters: Spatial filter options like ICA or joint diagonalization (Cheveigné and 128 
Parra, 2014) are widely used and reduce noise by generating their own noise 129 
reference signal from a linear combination of all channels. 130 
 131 

(Cheveigné and Parra, 2014)However, noise is not always linearly separable from neural 132 
activity, and thus removing noise components can inadvertently remove brain signals too. 133 
These methods are also vulnerable to non-stationary of noise, which can be particularly 134 
problematic in mobile EEG experiments. Finally, removing noise components from the data 135 
with a spatial filter relying on linear algebra always reduces the algebraic rank of the data 136 
matrix and can thus limit further analyses (Cohen, 2021). In sum, all of the above options come 137 
with drawbacks. 138 
  139 
Zapline is a promising tool 140 
Recently, a promising new method that combines the spectral and spatial filtering approaches 141 
to overcome some of these issues has been introduced: Zapline (Cheveigné, 2019). Zapline 142 
first uses a notch filter and its complementary counterpart to split the data into the clean and 143 
the noisy part, where summing them together would result in the original data. Then, the noisy 144 
part is decomposed using joint decorrelation (Cheveigné and Parra, 2014) and the 145 
components that carry most of the noise are removed from the noisy data. Last, the now 146 
cleaned, previously noisy, data and the clean data are summed together to form the final 147 
cleaned data set. This approach has the advantage of (in principle) not leaving a notch in the 148 
spectrum while also not reducing the rank of the data matrix. 149 
 150 
Challenges of Zapline 151 
However, some issues remain. On the one hand, as Zapline makes use of a spatial filter, it 152 
assumes a stable spatial topography of the noise over time. But especially in mobile and task-153 
based experiments the spatial distribution of the noise can change (proximity changes of 154 
devices, orientation changes of the participant, touching cables, etc.). When comparing 155 
different conditions, it may even be the case that some noise artifacts are entirely absent in 156 
parts of the recording. This issue can lead to insufficient cleaning in some, too much cleaning 157 
in other parts of the data, or the need to remove many components, which can distort the data. 158 
Furthermore, a key challenge of Zapline is that it needs to be manually tuned to each data set. 159 
Specifically, the following issues can be discerned: 160 

 161 
(i) Finding out the correct number of components to remove. This is not 162 

straightforward – recommendations range from two to four (Cheveigné, 2019), but 163 
in individual cases as many as 25 components have been reported to be removed 164 
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(Miyakoshi et al., 2021). Presumably, the number of components depends on the 165 
noise structure and number of sensors or electrodes. In our tests with high-density 166 
EEG and MEG data, removing of ten to fifteen components was usually necessary 167 
to contain the noise. 168 

(ii) The noise frequency needs to be chosen. In most cases, choosing the power line 169 
frequency is sufficient, but sometimes additional frequencies can be found, like a 170 
90 Hz oscillation of a virtual reality head-mounted display, or other frequencies due 171 
to additional devices in the lab. Moreover, in some of our tests Zapline proved to 172 
be sensitive to even small changes in the target frequency in the range of 0.1 Hz, 173 
which are hard to know in advance, especially if the frequency shifts during the 174 
recording.  175 

 176 
Taken together, Zapline is a powerful tool but requires manual parameter selection, and using 177 
Zapline in an automated analysis pipeline is difficult due to this process of fine tuning. 178 
 179 
Zapline-plus aims to overcome Zapline’s manual tuning issues 180 
We created Zapline-plus – an adaptive wrapper software for Zapline that allows fully automatic 181 
use without parameter tuning. The software searches for outlier peaks in the spectrum and 182 
applies Zapline to remove these. To alleviate the stationarity issue, the data is adaptively 183 
segmented into chunks in which the frequency-specific noise is relatively constant, as 184 
determined by the covariance structure of the data. Within each chunk, the individual chunk 185 
noise peak frequency is detected, and Zapline is applied at this frequency. An adaptive 186 
component detector then removes only the strongest noise components. Finally, a check of 187 
the cleaning is performed and the detection process is adjusted accordingly and the procedure 188 
is repeated if necessary. All used parameters and several performance indicators are stored 189 
to enable an understanding and easy replication of the cleaning, and a detailed plot is created 190 
to allow inspection of the cleaning performance. We tested the software on two open EEG and 191 
two open MEG data sets with promising results. We discuss limitations and implications for 192 
automated processing pipelines. The MATLAB source code of the software is available for 193 
download at https://github.com/MariusKlug/zapline-plus. 194 
 195 

The software package 196 
In this section we describe the different aspects of the adaptive algorithm, the processing flow, 197 
as well as the produced plots and the optional parameters in case the default values are 198 
suboptimal. 199 
 200 
Algorithm 201 
Zapline-plus contains several components that are discussed in the following. 202 
The processing steps include:  203 
 204 

1. the detection of noise frequencies,  205 
2. adaptive segmentation of the time series in chunks based on stability of the noise 206 

topography, 207 
3. applying Zapline on each segment at the detected frequency, 208 
4. automatic detection and removal of noise components, and 209 
5. adaptively changing and repeating the processing to prevent too weak or too strong 210 

cleaning. 211 
 212 
The processing workflow is visualized in Figure 1. 213 
 214 

[Insert Figure 1 here] 215 
 216 
Noise frequency detection 217 
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Noise frequencies are defined as frequencies having abnormally large power compared to the 218 
neighboring frequencies, as determined by spectral density estimation using Welch's method 219 
(Welch, 1967). We used a hanning window because it resulted in less noisy spectra than the 220 
default hamming window for some data sets. The computed power spectral density (PSD) 221 
values are then log transformed (10log10) and the mean over channels is computed 222 
(corresponding to a geometric mean of the spectra that is less outlier-driven). We chose this 223 
approach, because in our experience the individual channel spectra are not always normally 224 
distributed, especially if there are a few very noisy outlier channels. In these cases, they mask 225 
the efficacy of Zapline and hide details of the overall spectrum. Importantly, the resulting 226 
geometric mean PSD is always >= the log of the arithmetic mean PSD. Subsequently, the first 227 
outlier frequency within a minimum (17 Hz) and maximum (99 Hz) frequency is searched with 228 
a 6 Hz moving window. If a frequency has a difference > 4 of log PSD to the center log PSD 229 
(mean of left and right thirds around the current frequency), it is found to be an outlier and the 230 
search is stopped. As the input is in 10log10 space, a difference of 4 corresponds to a 2.5-fold 231 
increase of the outlier power over the center. 232 
 233 
Adaptive time series segmentation into chunks for cleaning 234 
Zapline detects noise components in the data using spatial principal components, and thus 235 
works on the assumption of a spatial noise distribution that is stable over time. However, this 236 
is not always guaranteed. Even small shifts in head orientation or a relocation of the participant 237 
due to the experimental paradigm can lead to slightly different noise topography or entirely 238 
new noise sources. To alleviate this issue, we implemented an adaptive method that segments 239 
the data into chunks with relatively fixed noise topography. Specifically, we apply the following 240 
steps: 241 

1. Narrowband-filter the continuous data around the detected noise frequency +/- 3 242 
Hz. 243 

2. Compute the channel-by-channel (i.e. sensors or electrodes) covariance matrix 244 
within data epochs of one second duration. 245 

3. Compute the distance between pairs of channels in successive covariance 246 
matrices. This yields a measure of the change in covariance over time. A small 247 
distance indicates that the noise is roughly constant, whereas a large distance 248 
indicates a change in noise topography. 249 

4. Determine segments (chunks) of stable noise topography by detecting peaks in the 250 
covariance stationarity. 251 

 252 
We found that this method reliably detected segments in which the noise was spatially 253 
constant. However, we chose a minimum segment duration of 30 seconds to enable sufficient 254 
data for the spatial decomposition employed by Zapline. Applying Zapline separately to each 255 
chunk does not only allow different linear decompositions per chunk, but also allows fine-256 
tuning of the target frequency to the peak in this chunk, further improving Zapline’s 257 
effectiveness. Finally, this adaptive segmentation might help noise removal in cases where a 258 
change in noise topography is related to an external event in task-related data that cause 259 
subjects to move, such as a trial onset or the start of a short break in the experiment during 260 
which the recording continues. 261 
 262 
Application of Zapline 263 
To detect the chunk’s noise peak we first search for the peak frequency within a ±0.05 Hz 264 
range around the previously detected target frequency. We then determine a fine-grained 265 
threshold to define oscillations being present or absent in that chunk: The mean of the two 266 
lower 5% log PSD quantiles of the first and last third in a 6 Hz area around the target frequency 267 
is computed, and the difference to the center power (mean of left and right third log PSDs 268 
around the target frequency) is taken as a measure of deviation from the mean. (On a side 269 
note, both the standard deviation and the median absolute deviation did not lead to good 270 
results, as they can be driven by outliers to the top.) Finally, the threshold is defined as the 271 
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center power + 2 x deviation measure, and if the log PSD of the found peak frequency is above 272 
this threshold, the chunk is found to have a noise artifact. 273 
 274 
In the next step, cleaning is performed on a per-chunk basis using the original Zapline 275 
algorithm, using either the found frequency peak and adaptive removal settings (starting with 276 
3 standard deviations (SD), see section "Detection of noise components", adaptive, see 277 
section “Adaptive changes”), or the original noise peak of the full data set and a fixed number 278 
of components to remove (starting at 1, adaptive, see section “Adaptive changes”). We chose 279 
to remove a minimum number even when no artifact was found, to make sure even missed 280 
artifacts are removed while also making sure not too many components are removed in case 281 
no artifact is actually present in the chunk at that frequency. 282 
 283 
Detection of noise components 284 
One essential parameter of Zapline is the number of to-be-removed components after sorting 285 
components based on amount of explained variance. So far, this had to be chosen manually, 286 
based on visual inspection of the “elbow” in the sorted components (i.e. transition from a sharp 287 
to shallow drop-off). We adapted the function to include a detector for outliers in the computed 288 
JD scores that represents to what extent the components load on the noise. To this end, an 289 
iterative approach based on a standard mean + standard deviation (SD) threshold is used. In 290 
each iteration, the detector removes outliers and then recomputes mean and SD across all 291 
components, and repeats this procedure until none are left. The number of removed outliers 292 
is then taken as the number of components to remove in Zapline. We found this iterative 293 
approach to be more robust than an approach based on the median absolute deviation in this 294 
scenario. In a final step, if the number of found outliers is less than the entered fixed removal, 295 
the latter is being used, and, to prevent removing an unreasonable amount of components, 296 
the number is capped at 1/5th of the components. We found a value of 3 SDs to work well in 297 
most cases, but sometimes even this automatic detector removes too many or too few 298 
components, which is why the SD parameter is adapted in the next step. 299 
 300 
Adaptive changes of the cleaning procedure 301 
After each chunk has been cleaned, the chunks are concatenated again and the cleaned 302 
spectrum is computed as in section “Noise frequency detection”. Although the software 303 
already contains several steps to find an optimal noise reduction, the cleaning can still be too 304 
weak or too strong. We implemented a check for suboptimal cleaning by using the same fine-305 
grained threshold as in section “Application of Zapline”. This check is now applied to search 306 
for introduced notches or remaining peaks in the power spectrum, indicating that the cleaning 307 
was too strong or too weak, respectively. Specifically, if there are 0.5 % of samples of the 308 
spectrum in the range of +/- 0.05 Hz around the noise frequency above the threshold of center 309 
power + 2 x deviation measure, the cleaning is found to be too weak. If there are 0.5% samples 310 
of the spectrum in the range of -0.4 to +0.1 Hz around the noise frequency below the threshold 311 
of center power – 2 x deviation measure, the cleaning is found to be too strong. If the cleaning 312 
was too weak, the SD for the number of noise components is reduced by 0.25, up to a 313 
minimum of 2.5, and the fixed number of removed components (for chunks where no noise 314 
was detected) is increased by 1. If the cleaning was too strong, the SD for step "Noise 315 
component detection" is increased by 0.25, up to a maximum of 4, and the fixed number of 316 
removed components (for chunks where no noise was detected) is decreased by 1, up to a 317 
minimum of the initial fixed removal of 1. Too strong cleaning always takes precedence over 318 
too weak cleaning, and if the cleaning was once found to be too strong, it can never become 319 
stronger again even after it was weakened and is now found to be too weak. 320 

Using these new values, the entire cleaning process of this noise frequency is re-run 321 
and re-evaluated. This leads to a maximally reduced noise artifact while ensuring minimal 322 
impact on any other frequencies. If no further adaptation of the cleaning needs to be 323 
performed, this noise frequency is assumed to be cleaned, and the next noise frequency is 324 
searched (see section “Detection of noise components”) using the current noise frequency 325 
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+0.05 Hz as the new minimum frequency. If no other noise frequency is found, the cleaning 326 
completes. 327 
 328 
Output figures 329 
For every frequency-specific noise artifact that is removed, a figure is generated. Example 330 
plots can be seen in Figures 4 and 5. Importantly, the plot per frequency is being overwritten 331 
in case the parameters are adapted, so the final plots only show the final values. These plots 332 
contain all information that is necessary to determine the success of the cleaning in a 333 
colorblind-friendly color scheme. The top row of the figure contains visualizations of the 334 
cleaning process, the bottom row contains the final spectra and analytics information. 335 
 336 

[Insert Figure 2 here] 337 
 338 

[Insert Figure 3 here] 339 
 340 
In the top row, first, the noise frequency of this iteration is shown in a zoomed-in spectrum to 341 
+/– 1.1 Hz around the frequency (Figure 3A). The threshold that led to the detection of this 342 
frequency is shown in addition (red line), unless the detection is disabled. Next, the cleaning 343 
of the individual chunks is visualized in two ways: The number of removed components per 344 
chunk (Figure 3B), and the individual noise frequency detected for each chunk (Figure 3C). 345 
Additionally, chunks in which no noise was detected are marked as such and the mean 346 
number of removed components is denoted in the title of the plot. As each chunk contains a 347 
set of components and accompanying artifact scores, this is too much to be visualized without 348 
cluttering the plot, so we chose to only plot the mean artifact scores over all chunks next 349 
(Figure 3D). This plot also contains the mean number of removed components (red vertical 350 
line). Ideally, this line should cross the scores around the "elbow" of the curve, which indicates 351 
that the outliers (i.e. the components which carry most of the noise) were detected correctly. 352 
The abscissa is cut to one third of the number of components to allow the visualization of the 353 
knee point. This is independent of the nkeep parameter that can be set (see section 354 
"Parameters and outputs”). The SD value that was used for the detector is denoted in the title 355 
of this plot. To finalize the visualization of the cleaning process, the zoomed-in spectrum of 356 
the cleaned data is shown alongside the thresholds that determine if the cleaning was too 357 
strong or too weak with respective horizontal lines (Figure 3E). The same y-axis is used as in 358 
Figure 3A to allow comparison of pre- vs. post-cleaning. The legend of this plot also contains 359 
the proportion of frequency samples that are below or above these thresholds, which 360 
determines whether the cleaning needs to be adapted. It may happen that values exceeding 361 
these thresholds remain, which can be either due to the minimum or maximum SD level being 362 
reached or due to the fact that the cleaning would to too strong if set to a stronger level. 363 

Figure 3F shows the raw spectrum as the mean of the log-transformed channel 364 
spectra. Vertical shaded areas denote the minimal and maximal frequency to be checked by 365 
the detector, as this can be useful to know in case a spectral peak is present in this area and 366 
thus goes undetected. In Figure 3G the spectra of the cleaned (green), as well as the removed 367 
data (red), are plotted. The abscissa in this plot is relative to the noise frequency which 368 
facilitates distinguishing removed harmonics from other frequencies. Last, as it was shown 369 
that Zapline can have undesirable effects on the spectrum below the noise frequency 370 
(Miyakoshi et al., 2021), Figure 3H shows the spectra of the raw and cleaned data again 371 
zoomed in to the part 10 Hz below the noise frequency to determine if this was the case. In 372 
the title of Figures 3 G and H we also denote several analytics: the proportion of removed 373 
power (computed on log-transformed data, corresponding to the geometric mean) of the 374 
complete spectrum, of the power +/– 0.05 Hz around the noise frequency, and of the power –375 
11 Hz to –1 Hz below the noise frequency, as well as the ratios of power +/– 0.05 Hz around 376 
the noise frequency to the center power before and after cleaning. These plots facilitate both, 377 
an understanding of the data set itself, as well as the functioning of the cleaning. Although the 378 
algorithm is adaptive in many ways and should work "as is", it is naturally possible that the 379 
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noise has properties that make cleaning with Zapline-plus difficult or impossible. Hence, these 380 
plots should always be inspected to determine if the cleaning was successful. 381 
 382 
Parameters and outputs 383 
Although we strive to provide a fully automatic solution with no need for parameter tweaking, 384 
we still would like to provide options for all relevant aspects of the algorithm, including 385 
switching adaptations off in case they do not work as intended. Here, we describe the 386 
parameters, our reasoning for the default values and reasonable ranges, as well as the output 387 
of the cleaning and additional thoughts. The data and sampling rate are required inputs, all 388 
additional parameters can be entered either in key-value pairs or as a single struct: 389 
 390 

- noisefreqs (default = empty): Vector with one or more noise frequencies to be 391 
removed. If empty or missing, noise frequencies will be detected automatically. 392 
Individual chunk peak detection will still be applied if set. 393 

- minfreq (default = 17): Minimum frequency to be considered as noise when searching 394 
for noise frequencies automatically. We chose this default as it is well above the 395 
potentially problematic range of alpha oscillations (8 - 13 Hz) and also above the third 396 
subharmonic of 50 Hz, which was present in some MEG data sets. 397 

- maxfreq (default = 99): Maximum frequency to be considered as noise when searching 398 
for noise freqs automatically. We chose this default as is is below the second 399 
harmonics of the 50 Hz line noise. If the line noise cannot be removed successfully in 400 
the original frequency, trying to remove the harmonics can potentially lead to 401 
overcleaning. 402 

- adaptiveNremove (default = true): Boolean if the automatic detection of number of 403 
removed components (see section "Detection of noise components") should be used. 404 
If set to false, a fixed number of components will be removed in all chunks. As this is 405 
a core feature of the algorithm it is switched on by default. 406 

- fixedNremove (default = 1): Fixed number of removed components per chunk. If 407 
adaptiveNremove is set to true, this will be the minimum. Will be automatically adapted 408 
if "adaptiveSigma" is set to true. We chose this default to remove at least one 409 
component at all times, no matter whether or not a noise oscillation was detected per 410 
chunk, as the detector can fail to find an oscillation that should be removed, and 411 
removing a single component does not lead to a large effect if no oscillation was 412 
present in the chunk. 413 

- detectionWinsize (default = 6): Window size in Hz for the detection of noise peaks. As 414 
the detector uses the lower and upper third of the window to determine the center 415 
power (see section "Application of Zapline”) this leaves a noise bandwidth of 2 Hz. In 416 
our tests, some data sets indeed had such a large bandwidth of line noise, which can 417 
occur if the noise varies in time. 418 

- coarseFreqDetectPowerDiff (default = 4): Threshold in 10log10 scale above the center 419 
power of the spectrum to detect a peak as noise frequency. If this is too high, weaker 420 
noise can go undetected and thus uncleaned. If it is too low, spurious peak oscillations 421 
can be wrongfully classified as noise artifacts. This default corresponds to a 2.5-fold 422 
increase of the noise amplitude over the center power in the detection window which 423 
worked well in our tests. 424 

- coarseFreqDetectLowerPowerDiff (default = 1.76): Threshold in 10log10 scale above 425 
the center power of the spectrum to detect the end of a noise artifact peak. This is 426 
necessary for the noise frequency detector to stop. This default corresponds to a 1.5 427 
x increase of the noise amplitude over the center power in the detection window which 428 
worked well in our tests. 429 

- searchIndividualNoise (default = true): Boolean whether or not individual noise peaks 430 
should be applied on the individual chunks instead of the noise frequency specified or 431 
found on the complete data (see section "Application of Zapline"). As this is a core 432 
feature of the algorithm it is switched on by default. 433 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2021.10.18.464805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464805
http://creativecommons.org/licenses/by/4.0/


 9 

- freqDetectMultFine (default = 2): Multiplier for the 5\% quantile deviation detector of 434 
the fine noise frequency detection for adaption of SD thresholds for too strong/weak 435 
cleaning (see section “Application of Zapline”). If this value is lowered, the adaptive 436 
changes of section "Adaptive changes of the cleaning procedure" are stricter, if it is 437 
increased, these adaptations happen more rarely.  438 

- detailedFreqBoundsUpper (default = [-0.05 0.05]): Frequency boundaries for the fine 439 
threshold of too weak cleaning. This is also used for the search of individual chunk 440 
noise peaks as well as the computation of analytics values of removed power and ratio 441 
of noise power to surroundings. Low values mean a more direct adaptation to the peak, 442 
but too low values might mean that the actual noise peaks are missed. 443 

- detailedFreqBoundsLower (default = [-0.4 0.1]): Frequency boundaries for the fine 444 
threshold of too strong cleaning. Too strong cleaning usually makes a notch into the 445 
spectrum slightly below the noise frequency, which is why these boundaries are not 446 
centered around the noise peak. 447 

- maxProportionAboveUpper (default = 0.005): Proportion of frequency samples that 448 
may be above the upper threshold before cleaning is adapted. We chose this value 449 
since it allows a few potential outliers before adapting the cleaning. 450 

- maxProportionBelowLower (default = 0.005): Proportion of frequency samples that 451 
may be below the lower threshold before cleaning is adapted. We chose this value 452 
since it allows a few potential outliers before adapting the cleaning. 453 

- noiseCompDetectSigma (default = 3): Initial SD threshold for iterative outlier detection 454 
of noise components to be removed (see section "Detection of noise components"). 455 
Will be automatically adapted if "adaptiveSigma" is set to 1. This value led to the fewest 456 
adaptations in our tests. 457 

- adaptiveSigma (default = 1): Boolean if automatic adaptation of 458 
noiseCompDetectSigma should be used. Also adapts fixedNremove when cleaning 459 
becomes stricter (see section "Adaptive changes of the cleaning procedure”). As this 460 
is a core feature of the algorithm it is switched on by default. 461 

- minsigma (default = 2.5): Minimum when adapting noiseCompDetectSigma. We found 462 
that a lower SD than 2.5 usually resulted in removing too many components and a 463 
distortion of the data. 464 

- maxsigma (default = 4): Maximum when adapting noiseCompDetectSigma. We found 465 
that a SD higher than 4 usually did not relax the cleaning meaningfully anymore. 466 

- chunkLength (default = 0): Length of chunks to be cleaned in seconds. If set to 0, 467 
automatic, adaptive chunking based on the data covariance matrix will be used. 468 

- minChunkLength (default = 30): Minimum length of the chunks when adaptive 469 
chunking is used. We chose a minimum chunk length of 30 s because shorter chunks 470 
resulted in both, a sometimes suboptimal decomposition within Zapline and a lower 471 
frequency resolution for the chunk noise peak detector. Smaller chunks result in better 472 
adaptation to non-stationary noise, but also potentially worse decomposition within 473 
Zapline. The necessary minimum chunk length for ideal performance may also depend 474 
on the sampling rate. 475 

- winSizeCompleteSpectrum (default = 0): Window size in samples of the pwelch 476 
function to compute the spectrum of the complete data set for detecting the noise 477 
frequencies. If 0, a window length of sampling rate x chunkLength is used. This 478 
parameter mainly adjusts the resolution of the computed spectrum. We chose relatively 479 
long windows to ensure a high resolution for the noise frequency detector. 480 

- nkeep (default = 0): Principal Component Analysis dimension reduction of the data 481 
within Zapline. If 0, no reduction will be applied. This option can be useful for extremely 482 
high number of channels in which there is a risk of overfitting, but in our tests even on 483 
high-density EEG and MEG data it did not lead to better results. 484 

- plotResults (default = 1): Boolean if plot should be created.  485 
 486 
After completing the cleaning, Zapline-plus passes out the complete configuration struct 487 
including all adaptations that were applied during the cleaning. This allows a perfect replication 488 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2021.10.18.464805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464805
http://creativecommons.org/licenses/by/4.0/


 10 

of the cleaning when applying the configuration to the same raw data again and facilitates 489 
reporting the procedure. Additionally, the generated analytics values that can be found in the 490 
plot are also passed out as a struct: raw and final cleaned log spectra of all channels, SD used 491 
for detection, proportion of removed power of the complete spectra, the noise frequencies, 492 
and below noise frequencies, ratio of noise powers to surroundings before and after cleaning 493 
per noise frequency, proportion of spectrum samples above/below the threshold for each 494 
frequency, matrices of number of removed components per noise frequency and chunk, of 495 
artifact component scores per noise frequency and chunk, of individual noise peaks found per 496 
noise frequency and chunk, and whether or not the noise peak exceeded the threshold, per 497 
noise frequency and chunk. These values allow an easy check of the complete Zapline-plus 498 
cleaning both for each subject and on the group-level. 499 
 500 
A note on the sampling rate of the data 501 
Modern M/EEG setups typically record data at high sampling rates of at least 500 Hz (1200 502 
Hz is common for MEG), which allows for high temporal resolution and investigation of very 503 
high frequencies. However, brain activity is typically not quantified beyond 100 Hz, and lower 504 
sampling rates such as 250 Hz are typically deemed sufficient for ERP studies investigating 505 
the onset of neural responses. Importantly, the presence of high frequencies in the data poses 506 
a major challenge for line noise removal with Zapline, because Zapline also needs to handle 507 
the (sub)-harmonics (integer divisions and multiples of the line noise frequency) that emerge 508 
with frequency-specific noise. For example, at a sample rate of 1200 Hz, Zapline will remove 509 
line noise at 50 Hz also at multiples of 50 Hz all the way up to 600 Hz (Nyquist frequency), 510 
yielding as many as twelve harmonics. In addition, noise removal at 25 Hz (beta range) can 511 
also often be observed. We noticed that Zapline performed worse with data at higher sampling 512 
rates, due to the increased complexity of the data. Thus, to make Zapline's task easier, it is 513 
advisable to downsample the data prior to running Zapline-plus. For the MEG data analyzed 514 
here, we down-sampled to 350 Hz, for the EEG data to 250 Hz, such that only 50 and 100 Hz, 515 
and 150 Hz for the MEG data, are considered for noise removal. Indeed, we found that 516 
Zapline-plus performed much better at lower sampling rates. 517 
 518 

Example applications 519 
Data sets 520 
In order to test the efficacy of the Zapline-plus algorithm we ran it on four different openly 521 
available datasets, two EEG data sets containing both stationary and mobile conditions, and 522 
two stationary MEG data sets. Notably, line noise is usually extremely strong in MEG, despite 523 
extensive shielding of the equipment that is commonly applied. 524 
 525 
EEG study I 526 
This is an open data set available at https://openneuro.org/datasets/ds003620/versions/1.0.2 527 
(Liebherr et al., 2021). Data of 41 participants (aged 18-39 years, M = 23.1 years, 26 female 528 
and 15 male) is available, of which we only used 24 sets for technical reasons. The experiment 529 
consisted of an auditory oddball task which was administered either in a laboratory 530 
environment, or on a grass field, or on the campus of the University of South Australia. 531 
Continuous EEG data was recorded with a 500 Hz sampling rate using 32 active Ag/AgCl 532 
electrodes and the BrainVision LiveAmp (Brain Products GmbH, Gilching, Germany). 533 
Electrode impedances were kept below 20k Ohm and channels were referenced to the FCz 534 
electrode. See Liebherr et al. (2021) for details. 535 
 536 
EEG study II 537 
This is an open data set available at http://dx.doi.org/10.14279/depositonce-10493 (Gramann 538 
et al., 2021). Data of 19 participants (aged 20-46 years, mean 30.3 years, 10 female and 9 539 
male) are available, which we all used. The experiment consisted of a rotation on the spot, 540 
which either happened in a virtual reality environment with physical rotation or in the same 541 
environment on a 2D monitor using a joystick to rotate the view. EEG data for each condition 542 
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was recorded with a 1000 Hz sampling rate using 157 active Ag/AgCl electrodes (129 on the 543 
scalp in a custom equidistant layout, 28 around the neck in a custom neck band) and the 544 
BrainAmp Move System (Brain Products GmbH, Gilching, Germany). Electrode impedances 545 
were kept below 10k$\Omega$ for scalp electrodes and below 50k Ohm for neck electrodes, 546 
and channels were referenced to the FCz electrode. See Gramann et al. (2021) for details. 547 
 548 
MEG study I 549 
This open data set is available at 550 
https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0 (Schoffelen et al., 551 
2019). We randomly selected 12 of the 204 subjects to test Zapline-plus. Subjects performed 552 
a language task, during which they had to process linguistic utterances that either consisted 553 
of normal or scrambled sentences. Four of the analyzed subjects were reading the stimuli 554 
(subject IDs V1001, V1012, V1024, V1036), the other eight listened to the stimuli (subject IDs 555 
A2027, A2035, A2051, A2064, A2072, A2088, A2101, A2110). Magnetoencephalographic 556 
data were collected with a 275-channel axial gradiometer system (CTF). The MEG recording 557 
for each subject lasted ca. 45 minutes. The signals were digitized at a sampling frequency of 558 
1200 Hz (cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). See 559 
Schoffelen et al. (2019) for details. 560 
 561 
MEG study II 562 
This data set comprises open MEG data from the Cam-CAN set of the Cambridge Centre for 563 
Ageing and Neuroscience, available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan 564 
(Shafto et al., 2014; Taylor et al., 2017). We randomly selected 23 of the 647 participants. 565 
Participants performed a sensory motor task on audio-visual stimuli (bilateral sine gratings 566 
and concurrent audio tone). Participants were asked to respond each time a stimulus was 567 
presented. The task lasted for 8 minutes and 40 seconds. Magnetoencephalographic data 568 
were collected with a 306-channel Elekta Neuromag Vectorview (102 magnetometers and 204 569 
planar gradiometers) at a sampling rate of 1000 Hz (bandpass 0.03-330 Hz). Only planar 570 
gradiometers were used in the analysis. See Shafto et al. (2014) and Taylor et al. (2017) for 571 
details. 572 
 573 
Processing 574 
The following preprocessing steps were applied: removal of excess channels, resampling to 575 
250/350 Hz (for the EEG and MEG sets, respectively), and merging of all conditions per study 576 
(EEG study II only). First, to test the different elements of the algorithm, we ran eight different 577 
sets of settings on EEG study II (which contained complex artifacts that differed between the 578 
two conditions): 579 
 580 

1. Using a fixed removal of 3 components and no chunks, corresponding to standard 581 
Zapline use. 582 

2. Using a fixed removal, but chunking the data into 150s segments. 583 
3. Using the automatic detector of noise components, but no chunks. 584 
4. Combining 150s chunks and automatic noise component detector. 585 
5. Using 150s chunks with individual peak detection and automatic noise component 586 

detector. 587 
6. Using 150s chunks without peak detection and automatic noise component 588 

detection with adaptive changes for over- or undercleaning. 589 
7. Using 150s chunks with individual peak detection, as well as automatic detection 590 

with adaptive changes 591 
8. Using all features (default): adaptive chunk length with individual peak detection, 592 

as well as automatic detection with adaptive changes. 593 
 594 
All conditions used the automatic detector of noise frequencies. With this approach we tried 595 
to mimic the creation of the algorithm with successive improvements. 596 
 597 
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Subsequently, we ran Zapline-plus additionally on EEG study I and on the MEG studies. For 598 
EEG study I we used only default values, for the MEG studies we set 'noisefreqs' to 50 as we 599 
expected only line noise and wanted to prevent false positive noise frequency detection due 600 
to very strong (sub-)harmonics of the line frequency.  601 
 602 

Results 603 
Overall, the cleaned spectra show that zapline-plus successfully removed the strong line noise 604 
peaks while introducing only minimal notches. The results of the cleaning of all example 605 
studies are depicted in Figure 4, and Table 1 lists the results for analytics for the cleaning 606 
using successively enabled features for EEG study II (the number of removed components 607 
per cleaning step, the ratio of noise/surroundings after cleaning, the proportion of removed 608 
power below noise, and the proportion of frequency samples below and above the adaptation 609 
threshold). Only EEG study II had noise frequencies different from line, which is why we 610 
specifically show the raw and clean 50 Hz / surroundings power ratios. Table 2 shows the 611 
results for the four example datasets (the final SD value for detection, the number of removed 612 
components per cleaning step, the ratio of noise/surroundings before and after cleaning, and 613 
the proportion of removed power below noise). 614 
 615 

[Insert Table 1 here] 616 
 617 

[Insert Table 2 here] 618 
 619 
Suboptimal case results 620 
Viewing only the average results of the final cleaning, however, yields only a limited 621 
understanding of the detailed processes. Some data sets had less-than-ideal results, for 622 
example they showed a distortion of the spectrum below noise such that the power was 623 
actually increased. This could be seen mostly in data sets with particularly strong noise 624 
contamination, especially in MEG study I where four data sets had more than 800 times 625 
stronger power at noise frequency than surroundings, up to almost 7000 times for the noisiest 626 
data set (Figure 4, MEG study I, right panel). All these four data sets, but only them, exhibited 627 
a negative removal of power below noise, i.e. an increase of power in the cleaned data, and 628 
they drive the average that can be see in Table 2 and Figure 4, MEG study I, left panel (green 629 
line above black). Also, while all data sets showed a reduction in power of the noise, some of 630 
them had comparably strong residual noise peaks (ratios of noise/surroundings above 1.2, 631 
these usually also had very high ratios before cleaning), indicating that Zapline-plus could not 632 
fully clean these data sets. 633 
 634 

[Insert Figure 4 here] 635 
 636 
Zapline-plus does not affect phase angle of the signal 637 
Zapline-plus removes frequency-specific artifacts using the data’s power spectrum, but it is 638 
unknown to what extent the phase angle of the remaining signal at the cleaned frequency is 639 
affected by the cleaning process. Assuming that frequency-specific noise such as line noise 640 
is strongly oscillatory and thus has a steady circular progression of phase angle over time, we 641 
asked whether Zapline-plus indeed strictly removes a noise time course with such a steady 642 
phase from the contaminated signal. 643 

To address this question, we computed the 50 Hz oscillatory phase and power of the 644 
noise time series, as generated by Zapline-plus for removal from a chunk of 50-Hz 645 
contaminated MEG data (duration 543 s). We then used the peaks in the sawtooth-like 50 Hz 646 
phase time series (i.e. where phase was at 2*pi) to segment the time-domain noise data into 647 
“trials” of 2001 samples (5.7 s duration), and averaged the trials. Due to time-locking to the 648 
2*pi phase angle of the 50 Hz oscillation, this resulted in a strong, oscillatory average time 649 
course (Figure 5A), which we confirmed to be at exactly 50 Hz (Figure 5B). We reasoned that 650 
any phase irregularities in the trial-average time series would result in an average power drop-651 
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off towards the trial borders due to reduced time-locking further away from time zero. Visual 652 
inspection of Figure 5B does not reveal such a drop-off (see Figure 5A, oscillation equally 653 
strong at all time points), suggesting that the phase angle of the 50 Hz artifact was constant 654 
throughout the noise time series. Note that we cut the time axis of the figure because the 655 
edges did not contain time-frequency data. 656 

To quantify the stability of the 50 Hz phase angle, we then computed the inter-trial 657 
phase coherence (ITPC) for each time point. ITPC is an established measure of phase stability 658 
that ranges between 0 (highly variable phase angle across trials at a given time point) and 1 659 
(exact same phase) (Tallon-Baudry et al., 1996). We expected 50 Hz ITPC to reach its peak 660 
at time zero, because the trials were aligned to a fixed phase angle (2*pi) at this timepoint – 661 
and fall off at towards the trial boundaries due to any phase irregularities occurring from trial 662 
to trial. This inverted-U shape is indeed what we found (purple line in Figure 5C). Crucially, 663 
however, 50-Hz ITPC dropped only ca. 1% at the trial borders, (0.4 s from time zero, 664 
corresponding to 20 periods), ITPC=0.965 vs. 0.954, indicating that the phase of the 50 Hz 665 
oscillation in the noise data was very stable over time. ITPC of frequencies around 50 Hz was 666 
consistently low (ITPC < 0.06, cyan lines in Figure 5, right), as expected since the trials were 667 
strictly based on the 50 Hz phase angle. This suggests that Zapline-plus removes a very 668 
rhythmically stable 50 Hz oscillation from the raw signal. We conclude that the phase of 50 Hz 669 
activity remaining in the data after line noise removal with Zapline-plus (e.g. gamma activity) 670 
can be assumed to be unaffected, and can thus safely be used in subsequent analysis. 671 

 672 
[Insert Figure 5 here] 673 

 674 

Discussion 675 
In this work, we extended Zapline to allow fully automatic removal of line noise and other 676 
spectral peaks, while giving the user a maximum of flexibility and information, as well as 677 
allowing complete replicability of the processing. We evaluated the algorithm on two EEG and 678 
two MEG data sets. First, we checked whether the different parts of the algorithm improved 679 
the cleaning on one EEG study, then we applied the final default values to the three other 680 
datasets. Taken together, the results show that the new features allow for fully automatic noise 681 
removal and make the algorithm applicable for different kinds of electrophysiological data, 682 
resulting in a substantial decrease of frequency-specific noise with minimal negative impact 683 
on true neural activity. 684 
 685 
Efficacy of the algorithm 686 
Examination of the algorithm components on EEG study II showed that they do improve the 687 
results. However, the improvement is not a simple linear relationship. Both, using fixed 150s 688 
chunks, and using automatic detection of to-be-removed components improved the clean ratio 689 
of noise/surrounding power similarly over using the standard fixed approach. In doing so, using 690 
auto detection affected the power below noise frequencies (-11 to -1 Hz) more than chunks 691 
did, but chunks had a larger proportion of samples below the threshold directly at the noise 692 
frequency, meaning chunks introduced a slight notch into the spectrum, whereas auto cleaning 693 
without chunks distorted the spectrum more generally. Interestingly, combining these two 694 
approaches led to the lowest ratio of noise/surroundings power while also introducing 695 
substantial amounts of overcleaning, both in terms of general distortion (% removed below 696 
noise) and a notch (% below lower threshold). This combination also had the fewest samples 697 
above the adaptation threshold, corresponding to the low noise/surroundings ratio.  698 

The strong overcleaning effect can be explained by the fact that not all noise 699 
oscillations were present in all chunks. Although the automatic detection of components to 700 
remove should be able to select fewer samples with less noise, it requires some sort of 'knee-701 
point' or 'corner' in the artifact scores. In chunks with no oscillation in the given noise 702 
frequency, the scores exhibit an almost linear decrease, which can lead to erroneously 703 
removing large numbers of components. This negative interaction effect can be fixed by either 704 
adapting the SD level the detector uses, or by simply not using auto detection when no noise 705 
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is present. Using either improvement alone led to similar levels of cleaning in terms of 706 
noise/surroundings power as well as % of samples above threshold, while the adaptive 707 
cleaning had a slightly reduced impact on the spectrum below noise and a reduced notch. 708 
Combining all options, chunks with individual peak detection, as well as automatic detection 709 
with adaptation, led to even better overall results.  710 

Last, adding the adaptive variable chunk length based on the spatial stability of the 711 
noise (using the full feature set of the algorithm) improved the specificity of the cleaning even 712 
further. This combination had a lower % of samples below and above the adaptation threshold 713 
and a lower impact to the spectrum below noise. Overall, the combination of all features of the 714 
algorithm successfully cleans the data, while keeping the distortions to the spectrum as low 715 
as possible. 716 

Applying this final combination to all example data sets led to substantial improvements 717 
of the spectra. In EEG study I, there was 50 Hz line noise present in the data, and an unknown 718 
oscillation at around 7 Hz, plus harmonics. The former was detected and successfully cleaned 719 
by Zapline-plus, whereas the latter was too small to be detected. EEG study II is a particularly 720 
heavily contaminated study, as can be seen by the various peaks in the spectrum. However, 721 
Zapline-plus was able to successfully clean these data, not only at line noise, but also all other 722 
strong peaks. This example emphasizes the importance of the automatic noise frequency 723 
detector, as these oscillations are difficult to anticipate. 724 

Applying Zapline-plus on the MEG studies shows that even extremely noisy data is 725 
successfully cleaned. It can be seen in MEG study I, however, that Zapline-plus may have an 726 
impact on the overall spectrum by increasing the broadband power. This effect is driven by 727 
four of the twelve data sets, which show extreme levels of noise before cleaning, the other 728 
eight do not show such an increase. In these cases the actual impact of the cleaning on final 729 
measures must be closely examined in order to decide whether the trade-off of reduced noise 730 
vs. spectrum distortions is worth it in this particular analysis or if the cleaning must be adapted. 731 
 732 
Other notes 733 
In EEG study II, it was clearly visible that some noise frequencies were only present in the first 734 
or second part of the data (body vs joystick rotation, see Figure 3 for an example of a noise 735 
frequency only present in the second half). This underlines the importance of the chunking 736 
and individual frequency detection, as this allows checking whether the oscillation is actually 737 
present in that chunk and prevent overcleaning. We would also like to point out the importance 738 
of fine-tuned noise frequency detection for some frequencies, especially the one seen in 739 
Figure 3. The separation of 20.9 Hz and, subsequently, 21.1 Hz noise is important as the two 740 
frequencies can not be cleaned together. This would be impossible to see without a high 741 
resolution of the frequency spectrum, and simply cleaning with a fixed 21 Hz setting does lead 742 
to subpar results. Also, as can be seen in Figure 2 the peak frequency of the line noise is not 743 
always stationary and Zapline-plus is able to detect these variations. 744 
 745 
Limitations 746 
As we showed, the cleaning is not always perfect. Especially with data that is heavily 747 
contaminated with noise, it is possible to 1) change the spectrum below the noise frequency 748 
such that the power is actually increased, 2) leave residual noise in the data, or 3) after 749 
cleaning, leave a small notch in the spectrum. Although the default values of the algorithm are 750 
chosen to fit most of the data sets, in some cases it might be better to adjust them according 751 
to the results obtained from the automatic cleaning and then re-run Zapline-plus. The user is 752 
strongly advised to always check the resulting analytics plots after applying Zapline-plus. 753 
 754 
Future directions 755 
It might also be that no matter the parameter adjustment, the cleaning will remain suboptimal. 756 
In these cases it could be useful to combine Zapline-plus with CleanLine, since these two 757 
methods rely on distinct, complementary algorithms to isolate and remove line noise. Zapline, 758 
on the one hand, applies a fixed spatial filter over the entire data segment, allowing it to 759 
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account for variations in noise amplitude in the temporal domain, but strictly not changes in 760 
noise topography. Cleanline, in contrast, removes a fixed oscillatory noise signal in the time-761 
domain data in each channel separately, allowing full flexibility in the spatial, but not the 762 
temporal domain. Indeed, a recent paper shows that combining the two methods can improve 763 
the cleaning of heavily contaminated data (Miyakoshi et al., 2021). Examining the possibility 764 
of an automatic extra CleanLine step if Zapline-plus alone yielded suboptimal results would 765 
be an option for future investigations.  766 

Another interesting possibility is to visualize the topographies of the removed artifacts. 767 
As Zapline internally uses spatial filters, these can be visualized like any other spatial filter and 768 
be added to the analytics information feedback for the user. However, this is not 769 
straightforward as Zapline-plus specifically uses different spatial decompositions and different 770 
number of removed components for each chunk. Still, if the filters vary only slightly, visualizing 771 
the average of the removed topographies could be valuable feedback. 772 

Lastly, it could be explored whether Zapline-plus can also be used for other 773 
applications. For example, some of our tests suggest that one could remove very regular 774 
mechanical walking artifacts in mobile EEG studies, or the steps could be extracted to create 775 
events for subsequent analysis. Another option would be to extract alpha oscillations (8-13 776 
Hz) that exceed the 1/f background activity. This topic has already been mentioned in the 777 
original Zapline paper (Cheveigné, 2019), but with a focus on removing alpha for other 778 
analysis. Extracting only the oscillatory alpha time series by switching the "clean" with the 779 
"noise" data could result in more specific alpha signals than using a standard band-pass filter. 780 
In sum, Zapline-plus is essentially a tool created for noise removal, but it can also be used to 781 
extract all kinds of oscillatory activity to be used in other analyses, which makes it a versatile 782 
tool in any analysis pipeline. 783 
 784 
Implications for the field 785 
Removing line noise is an undeniably important part of electrophysiological data processing, 786 
and having the option to do so without risking the analysis of potentially important frequencies 787 
while retaining full data rank is a valuable tool. The newly added features of fully automatic 788 
and documented processing including the detection of noise oscillations are especially 789 
important considering the current trend towards complete automatic processing pipelines 790 
(Bigdely-Shamlo et al., 2015; Cruz et al., 2018; Gabard-Durnam et al., 2018; Pedroni et al., 791 
2019) and the need for more rigorous methods in neurophysiological analysis (Cohen, 2017) 792 
due to the replication crisis (Collaboration, 2015). Also, although the impact of preprocessing 793 
has been investigated in parts (Robbins et al., 2020), and some pipelines create 794 
comprehensive documentation of their processes, a documentation of the line noise removal 795 
as detailed as provided by Zapline-plus is lacking thus far. Zapline-plus contributes to the field 796 
by making the removal of line noise and other oscillation artifacts in large data sets automatic, 797 
easy, transparent, and reproducible, while limiting its potential negative impact on downstream 798 
analysis. It can easily be integrated in any automatic processing pipeline. 799 
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The data used in this study is available for download as laid out in the Datasets section. The 813 
MATLAB source code of the software is available for download at 814 
https://github.com/MariusKlug/zapline-plus. 815 
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  916 

Tables 917 
 918 

 1. original 

Zapline 

2. fixed chunks 3. auto comp. 
detection 

4. auto + fixed 
chunks 

final # of removed 
components 

3 (0) 3 (0) 4.55 (1.93) 5.76 (1.61) 

clean ratio 
nois/surroundings 

1.22 (0.21) 1.09 (0.12) 1.08 (0.04) 0.97 (0.07) 

% removed power 
below noise 

1.73 (0.57) 1.87 (0.46) 3.05 (2.10) 4.30 (1.36) 

% below lower 
threhsold 

0 (0) 3.36 (6.67) 0.20 (0.63) 20.08 (16.78) 

% above upper 
threshold 

23.13 (11.37) 16.79 (13.67) 14.74 (9.94) 6.82 (7.06) 

 5. auto + fixed 
chunks + peaks 

6. auto + 
adaptive + fixed 

chunks 

7. auto + 
adaptive + fixed 
chunks + peaks 

8 .auto + 
adaptive + 

variable chunks 
+ peaks 
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final # of removed 
components 

4.08 (1.09) 3.63 (0.88) 3.31 (0.92) 3.20 (0.78) 

clean ratio 
noise/surroundings 

1.00 (0.05) 1.01 (0.05) 1.03 (0.04) 1.03 (0.08) 

% removed power 
below noise 

3.01 (0.95) 2.41 (0.72) 2.20 (0.69) 2.12 (1.92) 

% below lower 
threhsold 

9.31 (12.84) 5.26 (11.01) 2.94 (6.51) 0.36 (1.44) 

% above upper 
threshold 

7.25 (7.90) 8.33 (6.85) 8.37 (7.47) 5.64 (10.81) 

Table 1 | Algorithm steps applied to an example dataset. Analytics (mean and standard 919 
deviation) when using varying features enabled during cleaning of EEG study II. The removed 920 
power below noise refers to -11 Hz to -1 Hz below the detected noise frequency, the 921 
percentage below/above thresholds refer to the proportion of samples in the spectrum 922 
exceeding the thresholds for fine-grained adaptation. Although they were not always used, 923 
they are always available for analysis. The values are first averaged over all detected noise 924 
frequencies per subject. “1. original Zapline” refers to the basic fixed version of Zapline, “2. 925 
fixed chunks” refers to applying the basic Zapline on regular 150s chunks, “3. auto comp. 926 
detection” refers to using automatic detection of components to remove, “4. auto + fixed 927 
chunks” refers to using automatic noise component detection on regular 150s chunks, “5. auto 928 
+ fixed chunks + peaks” refers to using automatic noise component detection on regular 150s 929 
chunks with individual chunk noise peak detection, “6. auto + adaptive + fixed chunks” refers 930 
to using automatic noise detection on regular 150s chunks with adaptive detection strength, 931 
“7. auto + adaptive + fixed chunks + peaks” refers to using automatic noise component 932 
detection on regular 150s chunks with individual peak detection and adaptive detection 933 
strength, and “8. auto + adaptive + variable chunks + peaks” refers to using automatic noise 934 
component detection on automatically detected variable chunks with individual peak detection 935 
and adaptive detection strength (see also section “Processing”). N = 19. 936 
 937 

 EEG study I 
(N = 24) 

EEG study II 
(N = 19) 

MEG study I 
(N = 12) 

MEG study II 
(N = 23) 

final SD of detector 2.63 (0.18) 3.10 (0.40) 3.42 (0.73) 3.38 (0.61) 

final # of removed 
components 

2.83 (0.95) 3.20 (0.78) 17.18 (8.62) 8.21 (3.66) 

raw ratio noise/surroundings 6.99 (6.26) 2.40 (1.91) 962.6 (1799.6) 232.6 (369.4) 

clean ratio 
noise/surroundings 

1.22 (0.17) 1.03 (0.08) 1.32 (0.61) 1.00 (0.05) 

% of removed power below 
noise 

6.20 (2.60) 2.12 (1.92) 
 

-31.34 (75.71) 3.52 (1.38) 

Table 2 | Analytics results of the cleaning of four openly available data sets (mean and 938 
standard deviation). The removed power below noise refers to -11 Hz to -1 Hz below the 939 
detected noise frequency. For EEG study II the values are first averaged over all detected 940 
noise frequencies per subject, the other studies had only 50 Hz line noise removed. 941 
 942 
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Figures943 

 944 
Figure 1 | Processing flow of the Zapline-plus algorithm. Please see the text for details 945 
about the individual steps. 946 
 947 
 948 
 949 

 950 
Figure 2 | Example output plots produced by Zapline-plus for 50 Hz line noise. Shown is 951 
a 9 min MEG data set from MEG study I (see section “Datasets”), with 50 Hz predefined as 952 
the noise to remove. For a detailed explanation of the individual subplots, see section “Plots” 953 
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A. Power spectrum centered around the noise frequency. B. Number of components removed 954 
by Zapline for each chunk. Chunks were defined as periods in which the noise was spatially 955 
stable. C. Specific noise frequencies detected within each chunk. D. Component scores, 956 
sorted in descending strength. Red line, threshold for rejection based on outlier detection. E. 957 
Same as A., but after removal of the noise components. F. Full power spectrum, depicting 958 
both the line noise and (sub-)harmonics. G. As E. but showing clean and noise data 959 
separately. The x-axis expresses frequency relative to the removed noise frequency, where 1 960 
indicates the noise frequency. H. Power spectrum of 10 Hz range below the noise frequency, 961 
indicating to what extent non-noise frequencies were affected by the cleaning.  962 
 963 
 964 
 965 

 966 
Figure 3 | Example output plots produced by Zapline-plus for 21 Hz noise. Figure 3 | 967 
Example output plots produced by Zapline-plus for 21 Hz noise. Shown is a 87 min EEG 968 
data set from EEG study II (see section Datasets) containing a mobile and a stationary 969 
condition. This noise artifact was present only in the first part of the data. For an explanation 970 
of the individual subplots, see section Plots. For a detailed explanation of the individual 971 
subplots, see section Plots. Conventions as in Figure 2. 972 
 973 
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 974 
Figure 4 | Frequency spectra and 50 Hz noise removal results of the example data sets. 975 
Rows, results for the four M/EEG data sets.datasets. Left panels: frequency spectra before 976 
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and after applying Zapline-plus. Right panels: ratio of power at noise / surrounding frequency 977 
for raw and cleaned data. A ratio of 1 (i.e. 100) indicates absence of any remaining noise 978 
artifact in the power spectrum. 979 
 980 
 981 

 982 
Figure 5 | Assessment of phase angle stability of a 50-Hz noise timeseries generated 983 
by Zapline-plus. A. Noise time course after averaging over short “trials” centered around the 984 
2*pi phase angle of 50 Hz. B. Spectrogram of the average trial depicted in A. C. Inter-trial 985 
phase coherence (ITPC) of 50 Hz (y-axis on the left) and neighboring frequencies (y-axis on 986 
the right).  987 
 988 
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