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Abstract 16 
 17 
Recent advances in single-cell omics technologies enable the individual and joint profiling of 18 
cellular measurements. Currently, most single-cell analysis pipelines are cluster-centric and 19 
cannot explicitly model the interactions between different feature types. In addition, single-cell 20 
methods are generally designed for a particular task as distinct single-cell problems are 21 
formulated differently. To address these current shortcomings, we present SIMBA, a graph 22 
embedding method that jointly embeds single cells and their defining features, such as genes, 23 
chromatin accessible regions, and transcription factor binding sequences into a common latent 24 
space. By leveraging the co-embedding of cells and features, SIMBA allows for the study of 25 
cellular heterogeneity, clustering-free marker discovery, gene regulation inference, batch effect 26 
removal, and omics data integration. SIMBA has been extensively applied to scRNA-seq, 27 
scATAC-seq, and dual-omics data. We show that SIMBA provides a single framework that allows 28 
diverse single-cell analysis problems to be formulated in a unified way and thus simplifies the 29 
development of new analyses and integration of other single-cell modalities. SIMBA is 30 
implemented as an efficient, comprehensive, and extensible Python library (https://simba-31 
bio.readthedocs.io) for the analysis of single-cell omics data using graph embedding. 32 
 33 
Introduction 34 
 35 
Technology to profile single cells has advanced to several molecular modalities, dramatically 36 
advancing our ability to characterize cell states as well as discover key molecular machinery 37 
that underlies both development and disease. Individual cells are now measured using multiple 38 
molecular modalities, simultaneously. At the same time, single-cell experiments have scaled 39 
such that tens of thousands of cells can be routinely profiled. The emergence of single-cell 40 
multi-omics technologies allows for the measurements of multiple cellular layers, including 41 
genomics, epi-genomics, transcriptomics, and proteomics. Such assays have pioneered an 42 
avenue toward a better understanding of the interplay between layers as they jointly define cell 43 
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states based on diverse genomic and molecular features including genes, regulatory elements, 44 
and transcription factors. While single-cell multi-omic assays have quickly evolved towards the 45 
incorporation of additional modalities with increasing resolution, harnessing their full potential 46 
has posed several significant computational challenges. 47 
 48 
Many single-cell computational methods have been developed for the analysis of one modality 49 
(e.g., scRNA-seq or scATAC-seq analysis) 1-4. Common to these methods is a workflow that 50 
includes routine steps such as feature selection, dimension reduction, clustering, and 51 
differential feature detection. These “cluster-centric” analysis methods rely on accurately 52 
defined clustering solutions to discover meaningful and informative marker features. 53 
Unfortunately, clustering solutions may range widely within the space of the user-defined 54 
clustering resolution (number of clusters) and the chosen clustering algorithm. These 55 
parameters may markedly influence the resulting cluster assignment and clusters may not 56 
always correspond to the correct or intended cell populations, thereby leading to inconsistent 57 
and potentially misleading biological annotations5. Although initial efforts have been made 58 
recently to develop clustering-free approaches to discover informative genes, they are 59 
specifically designed for extracting gene signatures 6, 7 or identifying perturbations between 60 
experimental conditions8 from scRNA-seq data, and are therefore limited to single-modality 61 
and single-task analysis. 62 
 63 
In addition to single-batch/modality analysis, approaches have also been proposed for multi-64 
batch and cross-modality analysis, such as multimodal analysis (distinct cellular parameters are 65 
measured in the same cell)9, batch correction (the same cellular parameter is measure in 66 
different batches) 10-12, and integration of multi-omics datasets (distinct cellular parameters are 67 
measured in different cells)11, 12. These approaches play a critical role in removing batch effects 68 
that confound true biological variation, improving the characterization of cell states by 69 
leveraging the unique strengths of each assay, and providing insights into the complex 70 
mechanisms of gene regulation. However, these tasks are formulated differently from those in 71 
single-batch/modality settings and thus require development of new dedicated analysis 72 
techniques. Also, while multiple types of cellular features might be present, the relation 73 
between features cannot be exploited directly by most current methods. Furthermore, similar 74 
to single-batch/modality analysis methods, these methods identify marker features based on 75 
groups of cells obtained by clustering and therefore are limited to clustering solutions. 76 
Additionally, instead of directly identifying marker features in the integrated space, most batch 77 
correction/multi-omics integration methods need to first detect marker features in the 78 
uncorrected/unintegrated original space of each batch/modality independently, and then 79 
combine them, thus resulting in potentially inconsistent interpretations between 80 
batches/modalities.  81 
 82 
To overcome the limitations in both single-batch/modality analysis and multi-batch/cross-83 
modality analysis, we propose SIMBA (SIngle-cell eMBedding Along with features), a versatile 84 
single-cell embedding method that co-embeds cells and features into a shared latent space, in 85 
which various types of tasks can be performed based on the proximity between entities 86 
including cells and features such as genes, peaks, and DNA sequences. Unlike existing methods 87 
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that require featurization of cells, SIMBA directly encodes the cell-feature or feature-feature 88 
relations into a large multi-entity graph. For each task, SIMBA constructs a graph, wherein 89 
differing entities (i.e., cells and features) are represented as nodes and relations between these 90 
entities are encoded as edges. Once the graph is constructed, SIMBA then applies a multi-entity 91 
graph embedding algorithm derived from social networking technologies as well as a Softmax-92 
based transformation to embed the nodes/entities of the graph into a common low-93 
dimensional space wherein cells and features can be analyzed based on their distance. Hence 94 
SIMBA provides an information-rich embedding space containing cells and all the features, 95 
serving as an informative database of entities. Depending on the task, we can define biological 96 
queries on the “SIMBA database” by considering neighboring entities of either a cell (or cells) or 97 
a feature (or features) at the individual-cell and individual-feature level (Methods). For 98 
example, the query for a cell’s neighboring features can be used to identify marker features 99 
(e.g., marker genes or peaks) or to study the interaction between features (e.g., peak-gene) 100 
while the query for features’ neighboring cells can be used to annotate cells. 101 
 102 
By formulating single-cell analyses as multi-entity graph embedding problems, we show SIMBA 103 
can be used to solve popular single-cell tasks in a unified framework that would otherwise 104 
require the development of distinct specialized approaches for each task, including: 1) 105 
dimensionality reduction techniques for studying cellular states; 2) clustering-free marker 106 
detection based on the similarity between single cells and features; 3) Single-cell multimodal 107 
analysis and the study of gene regulation; 4) batch correction and omics integration analysis as 108 
well as the simultaneous identification of marker features. SIMBA is adapted to these diverse 109 
analysis tasks by simply modifying how the input graph is constructed from the relevant single-110 
cell data.  111 
 112 
We extensively tested SIMBA in multiple scRNA-seq, scATAC-seq and dual-omics datasets 113 
covering popular single-cell tasks including scRNA-seq analysis, scATAC-seq analysis, multimodal 114 
analysis, batch correction, and multi-omics integration. We demonstrate that SIMBA learns the 115 
joint low-dimensional representations of both cells and features and thus enables the ability to 116 
simultaneously study cellular heterogeneity as well as proximity-based marker feature 117 
detection or gene regulation inference in a clustering-free way. We also demonstrate that 118 
SIMBA performs better than or comparably to current state-of-the-art methods specifically 119 
developed for each task. 120 
 121 
Importantly, we developed a scalable and comprehensive Python package that enables 122 
seamless interaction between graph construction, training with PyTorch for graph embedding, 123 
and post-training analysis. The SIMBA package not only provides a self-contained framework 124 
that covers preprocessing, graph embedding, and visualization, but also is compatible with 125 
popular single cell analysis tool Scanpy2.  SIMBA with detailed documentation and extensive 126 
tutorials is available at https://simba-bio.readthedocs.io. 127 
 128 
We believe that SIMBA, as a broadly applicable approach for single cell omics study, not only 129 
outperforms current cluster-centric analysis, but also will simplify the burden of developing 130 
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methods for new single-cell tasks and measurements, while increasing interpretability of 131 
cellular mechanisms and functions.  132 
 133 
Results 134 
 135 
Overview of SIMBA 136 

SIMBA is a single-cell embedding method with support for single- or multi- modality analyses 137 
that embeds cells and their associated genomic features into a shared latent space, generating 138 
interpretable and comparable embeddings of cells and features. It leverages recent graph 139 
embedding techniques that have been successful in modeling complex and hierarchical 140 
information present in natural languages, social networks, and other domains, as “knowledge 141 
graphs”. In our case, the graph encodes cells, different components of cellular regulatory 142 
circuits, and the relations between them. 143 

 144 

Figure1. SIMBA framework overview. SIMBA co-embeds cells and various features 145 
measured during single-cell experiments into a shared latent space to accomplish both 146 
common tasks involved in single-cell data analysis as well as tasks, which remain as open 147 
problems in single-cell genomics.  (Left) Examples of possible biological entities may be 148 
encoded by SIMBA including cells, gene expression measurements, chromatin accessible 149 
regions, TF motifs, and k-mer sequences found in reads. (Middle) SIMBA embedding plot 150 
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with multiple types of entities into a low-dimensional space. All entities represented as 151 
shapes (cell = circle, peak = triangle, gene = square, TF motif = star, k-mer = hexagon) are 152 
colored by relevant cell type (green, orange, and blue in this example). Non-informative 153 
features are colored dark grey. Within the graph, each entity is a node, and an edge 154 
indicates a relation between entities (e.g., a gene is expressed in a cell, a chromatin region 155 
is accessible in a cell, or a TF motif/k-mer is present within an open chromatin region, 156 
etc.). Once connected in a graph, these entities may be embedded into a shared low-157 
dimensional space, with cell-type specific entities embedded in the same neighborhood 158 
and non-informative features embedded elsewhere. (Right) Common single-cell analysis 159 
tasks that may be accomplished using SIMBA. 160 
 161 

SIMBA first encodes different types of entities such as cells, genes, open chromatin regions 162 
(peaks or bins), transcription factor (TF) motifs, and k-mers (short sequences of a specific 163 
length, k), into a single graph (Fig. 1, Methods) where each node represents an individual entity 164 
and edges indicate relations between entities. For example, if a gene is expressed in a cell, an 165 
edge is created between the gene and cell. The weight of this edge is determined by the gene 166 
expression level.  Similarly, an edge is added between a cell and a chromatin region if the region 167 
is open in this cell, or between a chromatin region and a TF motif if the TF motif is found in the 168 
region.  169 

Once the input graph is constructed, a low-dimensional representation of the graph nodes is 170 
then computed using an unsupervised graph embedding method. This graph embedding 171 
procedure leverages the PyTorch-BigGraph framework 13, which allows SIMBA to scale to 172 
millions of cells (Methods). The obtained SIMBA space provides an intuitive way to study gene 173 
regulation and the regulatory mechanisms underlying cell differentiation and specification. The 174 
resulting joint embedding of cells and features not only reconstructs the heterogeneity of cells 175 
but also allows for the discovery of the defining features for each individual cell without relying 176 
on a clustering solution, separating cell-type specific features from the non-informative 177 
features. In fact, the relationship between cells and features can be explored directly through 178 
their mutual proximity in the SIMBA embedding as the distance between embedded nodes 179 
reflects their edge probability, which is informative of the potential importance of a feature to a 180 
cell and the interplay between features (Methods).  181 

Therefore, cell-type-specific features such as marker genes, cis-regulatory elements can be 182 
discovered without clustering in two different ways. When the labels of cells are known, marker 183 
features can be identified as the neighboring features of cells by performing biological queries 184 
(Methods). When these labels are unknown, marker features can be identified through 185 
calculating the imbalance of edge probabilities between a feature and all cells using metrics 186 
such as the Gini index (Methods). 187 

Importantly, graph construction is inherently flexible, enabling SIMBA to be applied to a wide 188 
variety of single-cell tasks. In the following sections, we demonstrate the application of SIMBA 189 
to several popular single-cell tasks including scRNA-seq, scATAC-seq, multimodal analysis, batch 190 
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correction and multi-omics integration (Fig. 1). Extensions to additional tasks will become 191 
readily apparent to the reader and are later discussed. 192 
 193 
 194 
SIMBA enables simultaneous learning of cellular heterogeneity and individual-cell-level 195 
marker genes in scRNA-seq analysis 196 

Single-cell RNA sequencing (scRNA-seq) is the most robust and widely used measurement to 197 
profile single cells. Figure 2a provides an illustrative overview of the SIMBA graph construction 198 
and the resulting low-dimensional embedding matrix of both cells and genes. Here we show 199 
how SIMBA enables simultaneous dimensionality reduction and clustering-free marker gene 200 
detection in scRNA-seq analysis. We applied SIMBA to a popular PBMCs dataset from 10x 201 
Genomics (Supplementary Table 1) to illustrate its workflow. After the standard preprocessing 202 
steps including normalization and log-transformation, SIMBA discretizes the gene expression 203 
matrix into multiple gene expression levels (five levels, by default). The input graph is then 204 
constructed wherein two types of nodes –cells and genes are connected by edges that embody 205 
the relation between them and are weighted according to the corresponding multiple levels of 206 
gene expression. SIMBA then generates embeddings of these nodes through a graph 207 
embedding procedure (Fig. 2a; Methods).  Depending on the task, we have the full flexibility to 208 
visualize either the whole SIMBA embeddings (embeddings of cells and all genes in 209 
Supplementary Fig. 1c) or the partial SIMBA embeddings (embeddings of cells in Fig. 2b, or 210 
embeddings of cells and variable genes in Fig. 2c, or embeddings of any entities of interest) 211 
using visualization tools such as UMAP.  212 

When the SIMBA embeddings of cells were visualized, each of the eight cell types, including B 213 
cells, megakaryocytes, CD14 monocytes, FCGR3A monocytes, dendritic cells, NK cells, CD4 T, 214 
and CD8 T cells, was clearly separated (Fig. 2b). When the SIMBA embeddings of both cells and 215 
genes were visualized, the co-embedding space showed that SIMBA not only recovered the 216 
cellular heterogeneity, but also correctly embedded informative genes close to relevant cell 217 
types (Fig. 2c). The same set of marker genes used to annotate these cells from Scanpy2 was 218 
highlighted on the UMAP plot. In addition, as a control, we also show the locations of two 219 
housekeeping genes GAPDH and B2M, which would not be expected to associate with any 220 
particular cell type. From the UMAP plot, we can see that SIMBA not only was able to embed 221 
major-cell-group specific genes to the correct locations (e.g., IL7R was embedded into CD4T 222 
cells and MS4A1 was embedded into B cells), but also was robust to rare-cell-group specific 223 
genes (e.g., PPBP was embedded into megakaryocytes). On the contrary, non-informative or 224 
non-cell-type specific genes such as GAPDH and B2M were embedded in the middle of all cell 225 
groups (Fig. 2c and Supplementary Fig. 1c).  226 

These highlighted genes can be further confirmed with “barcode plot”, which visualizes the 227 
estimated probability of assigning a feature to a cell by SIMBA based on the recovered edge 228 
confidence (Fig. 2d, Supplementary Fig. 1e, Methods). An imbalance in probability indicates 229 
the association of a gene to a sub-population of cells (often corresponding to known cell-types), 230 
whereas a uniform probability distribution indicates a non-cell-type-specific gene. For marker 231 
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genes (CST3 for monocytes and dendritic cells, MS4A1 for B cells, and NGK7 for NK and CD8T 232 
cells), we observed a clear excess in the probability of assigning each gene to their respective 233 
cell types. Conversely, for the housekeeping gene GAPDH, we observed a more uniform 234 
distribution with much lower probability of associating that gene with the top-ranked cells. 235 

 236 

Figure 2. Single-cell RNA-seq analysis of the 10x PBMCs dataset using SIMBA. (a) SIMBA 237 
graph construction and embedding in scRNA-seq analysis. Biological entities including 238 
cells and genes are represented as shapes and colored by relevant cell types (green and 239 
orange). Non-informative genes are colored dark grey. Gene expression measurements 240 
for each cell are organized into a cell-by-gene matrix. These normalized non-negative 241 
observed values undergo discretization into five gene expression levels. Cells and genes 242 
are then assembled into a graph with nodes representing cells and genes, and edges 243 
between them representing different gene expression levels. This graph may then be 244 
embedded into a lower dimensional space resulting in a #entities x #dimension (by default, 245 
50) SIMBA embedding matrix. (b) UMAP visualization of SIMBA embeddings of cells 246 
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colored by cell type. (c) UMAP visualization of SIMBA embeddings of cells and variable 247 
genes. Cells are colored according to cell type as defined in b. Genes are colored slate 248 
blue. Cell-type-specific marker genes and housekeeping genes recovered by Scanpy are 249 
indicated with text and arrows. Genes highlighted in red are shown in d, e, and f. (d) 250 
SIMBA barcode plots of genes CST3, MS4A1, NKG7, and GAPDH. The x-axis indicates the 251 
ordering of a cell as ranked by the probability for each cell to be associated with a given 252 
gene. The y-axis describes the probability. The sum of probability over all cells is equal to 253 
1. Each cell is one bar and colored according to cell type as defined in b. € SIMBA ranking 254 
of genes based on the proposed metrics. All the genes are plotted according to the Gini 255 
index against max score. The same set of genes as in c are annotated. (f) UMAP 256 
visualization of SIMBA embeddings of cells colored by gene expression of (left to right): 257 
CST3, NKG7, MS4A1, and GAPDH. 258 

 259 

SIMBA also provides several quantitative metrics (termed “SIMBA metrics”), including max 260 
value, Gini index, standard deviation, and entropy, to assess cell-type specificity of various 261 
features without requiring the prior knowledge such as cluster labels, predefined cell types, or 262 
known marker genes (Methods). As an example, by inspecting the gene metric plot of max 263 
value (a measurement of maximum probability, a higher value indicates higher cell-type 264 
specificity) vs Gini index (a measurement of imbalance, a higher value indicates higher cell-type 265 
specificity), we observed that the marker genes (e.g., CST3, NKG7, MS4A1) fall in the upper right 266 
corner, as opposed to housekeeping genes (e.g., GAPDH) in the lower left corner (Fig. 2e). 267 
Similar separation is observed with other metrics (Supplementary Fig. 1b). The cell type 268 
specificity of the selected marker genes was further confirmed by visualizing their expression 269 
pattern on UMAP plots (Fig. 2f and Supplementary Fig. 1d), accompanied by SIMBA barcode 270 
plots (Supplementary Fig. 1d).  As a certain feature (e.g., genes) might notably outnumber cells 271 
or other features (when multiple types of features are present), SIMBA metrics not only serve 272 
as an efficient way of ranking features based on their cell type specificity, but also provides a 273 
straightforward way to filter out non-informative (non-cell-type-specific) features so that only 274 
the embeddings of cells and informative features will be visualized and the SIMBA space will 275 
not be crowded with non-informative features (e.g., house-keeping genes).  276 

We next compared the top 600 marker genes identified by SIMBA (based on max value and Gini 277 
index) with those identified by the clustering-based statistical-tests method implemented in 278 
Scanpy (based on z-score calculated from the two-sided Wilcoxon rank-sum test with a 279 
Benjamini-Hochberg p-value correction, one of the statistical tests recommended in Scanpy’s 280 
tutorial) (Supplementary Fig. 2a). Upon comparison, we observed that nearly half of the marker 281 
genes discovered by SIMBA overlap with the marker genes identified by Scanpy 282 
(Supplementary Fig. 2a). However, on inspection of the top non-overlapping marker genes, 283 
genes identified by SIMBA are found to be enriched only within certain groups of cells 284 
(Supplementary Figs. 2b and 2c) while genes identified by Scanpy but not by SIMBA include the 285 
housekeeping gene B2M and multiple ribosomal protein genes (e.g., RPS3 and RPS6) that are 286 
expressed ubiquitously in all cell types (Supplementary Figs. 2b and 2d). Furthermore, a 287 
combination of different statistical tests proposed in Scanpy is required to recover the genes 288 
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identified only by SIMBA. For example, IL7R was identified only by using the t-test and FCER1A 289 
was identified only by using the Wilcoxon rank-sum test, as also noted in the Scanpy’s tutorial, 290 
while SIMBA successfully identified both IL7R and FCER1A as informative genes with a single 291 
procedure and without clustering the cells (Fig. 2e and Supplementary Fig. 1b). These examples 292 
illustrated some limitations of the clustering-based statistical-tests methods. 293 

Lastly, we showed that SIMBA does not require variable gene selection, which is an essential 294 
step in standard scRNA-seq pipelines such as Seurat or Scanpy. SIMBA produces very similar 295 
embeddings for cells with and without variable gene selection (Fig. 2b and Supplementary Fig. 296 
2e), though we observed that variable gene section does improve efficiency of the training 297 
procedure. 298 

SIMBA enables simultaneous characterization of cell states and cis-regulatory elements by 299 
jointly modeling accessible sites and DNA sequences in scATAC-seq analysis 300 
 301 
As one of the most popular single-cell epigenomic techniques, single-cell assay for transposase-302 
accessible chromatin using sequencing (scATAC-seq) has been widely used to profile regions of 303 
open chromatin and identify functional cis-regulatory elements such as enhancers and active 304 
promoters. In scATAC-seq, cells are characterized by different types of features 14, such as regions 305 
of accessible chromatin (“peaks” or “bins”) and cis-regulatory elements (DNA sequences) within 306 
these accessible regions including transcription factor (TF) motifs or k-mers.  307 
 308 
Unlike existing methods that can only use peaks/bins or the DNA sequence within them, SIMBA 309 
can leverage simultaneously both types of features to learn cell states due to its flexibility in 310 
graph construction. Also, as SIMBA encodes cell-feature or feature-feature relations into the 311 
graph based on the simple binary presence of a feature, SIMBA does not need additional 312 
normalization steps such as term frequency-inverse document frequency (TF-IDF), which is 313 
required by most scATAC-seq analyses. When only peaks/bins are used, SIMBA constructs a graph 314 
with nodes representing cells and chromatin regions (peaks or bins) and edges indicating the 315 
accessibility of the chromatin regions in cells (Fig. 3a). When the DNA sequences for chromatin 316 
regions are available, SIMBA can also encode DNA sequences including TF motifs and k-mers into 317 
the graph by adding edges between these entities as nodes and the existing chromatin region 318 
nodes. The edges in this case indicate the presence of TF motifs/k-mers within these chromatin-319 
accessible regions. Through the embedding procedure, SIMBA generates embeddings of cells 320 
along with peaks and DNA sequences (Methods). Finally, either the partial SIMBA embeddings 321 
(embeddings of cells in Fig.3b) or the whole SIMBA embeddings (embeddings of cells and all the 322 
features in Fig.3c) can be visualized. Therefore, SIMBA enables dimensionality reduction by 323 
leveraging both chromatin accessible regions and cis-regulatory sequences. Simultaneously, it 324 
highlights the cell-type-specific open chromatin regions and regulatory DNA sequences in a 325 
clustering-free way. 326 
 327 
To demonstrate the value of SIMBA embeddings for scATAC-seq analysis, we first applied 328 
SIMBA to a scATAC-seq data of 2,034 human hematopoietic cells with FACS-characterized cell 329 
types15(Supplementary Table 1). For the SIMBA embeddings of cells alone, as shown in Fig. 3b, 330 
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SIMBA accurately separated cells such that cells belonging to distinct cell types are visually 331 
separated. For the SIMBA embeddings of cells together with various types of features, as shown 332 
in Fig. 3c, SIMBA successfully embedded distinct features from both positional (peaks/bins) as 333 
well as sequence-content (TF motifs and k-mers) information together based on their biological 334 
relations. Notably, based on SIMBA metrics, these highlighted features that are embedded 335 
within each cell type all have high cell-type specificity scores (shown in the upper right part of 336 
SIMBA metric plots in Figure 3d).  337 
 338 

 339 
 340 

Figure 3. Single-cell ATAC-seq analysis of the human hematopoiesis dataset using SIMBA. 341 
(a) SIMBA graph construction and embedding in scATAC-seq analysis. Biological entities 342 
including cells, peaks/bins, TF motifs, k-mers are represented as shapes and colored by 343 
relevant cell types (green and orange). Non-informative features are colored dark grey. 344 
Cells and chromatin accessible features (peaks / bins) are organized into a cell x peaks / 345 
bins matrix. When sequence information (TF motif or k-mer sequence) within these 346 
regions is available, they can be organized into two sub-matrices to associate a TF motif 347 
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or k-mer sequence with each peak/bin. These constructed feature matrices are then 348 
binarized and assembled into a graph. When a single feature (chromatin accessibility) is 349 
used, the graph encodes cells and peaks/bins as nodes. When multiple features (both 350 
chromatin accessibility and DNA sequences) are used, this graph may then be extended 351 
with the addition of TF motifs and k-mer sequences as nodes connected. Finally, SIMBA 352 
embeddings of these entities are generated through a graph embedding procedure. (b) 353 
UMAP visualization of SIMBA embeddings of cells colored by cell type. (c) UMAP 354 
visualization of SIMBA embeddings of cells and features including TF motifs, k-mers, and 355 
peaks. Cells are colored by cell type while motifs, k-mers, and peaks are colored green, 356 
blue, and pink, respectively. Cell type specific features that are embedded near their 357 
corresponding cell types are indicated as the text labels (colored according to feature type) 358 
with arrows. (d) SIMBA metric plots of TF motifs, k-mers, and peaks. Cell-type specific 359 
features annotated in (c) are highlighted. € Genomic tracks of aligned scATAC-seq 360 
fragments, separated and colored by cell type. Two marker peaks P1 and P2 in red are 361 
shown beneath the alignment. Within the peak P1, k-mer GATAAG and its resembling 362 
GATA1 motif logo are highlighted. (f) UMAP visualization of SIMBA embeddings of cells 363 
colored by TF activity scores of the GATA1 motif and k-mer GATAAG enrichment. (g) 364 
SIMBA barcode plots of the GATA1 motif, k-mer GATAAG, and the two peaks P1 and P2. 365 
Cells are colored according to cell type labels described above. Dotted red line indicates 366 
the same cutoff used in all four plots. 367 

 368 
Our analysis using SIMBA led to several key findings in human hematopoietic differentiation.  369 
 370 
First, SIMBA identified key master regulators of hematopoiesis. As highlighted in Fig. 3c, we 371 
observed that motifs of previously reported TFs were embedded near their respective cell types 372 
in the UMAP plot. For example, the GATA1 and GATA3 motifs are proximal to megakaryocyte-373 
erythroid progenitor (MEP) cells16, the PAX5 and EBF1 motifs are near to common lymphoid 374 
progenitor (CLP) cells17, and the CEBPB and CEBPD motifs are proximal to monocyte (mono) 375 
population18.  376 
 377 
Second, SIMBA revealed an unbiased set of DNA sequences, i.e., k-mers, that represent 378 
important TF binding motifs involved in hematopoiesis. We observed that these k-mers were 379 
embedded near their resembling TF binding motifs and relevant cell subpopulations (Fig. 3c and 380 
3e, Supplementary Fig. 3b), indicating that this methodological framework is capable of de 381 
novo motif discovery. For example, the DNA sequence, CAGCTG is embedded in plasmacytoid 382 
dendritic cells (pDCs); this sequence matches the TCF12 binding motif, which controls dendritic 383 
cell lineage specification. To further illustrate the interpretability of the SIMBA embeddings of 384 
TF motifs and k-mers, we calculated per-cell TF activity scores19 (high-variance TF motifs/k-385 
mers) and visualized them on SIMBA embeddings of cells. As shown in Figure 3f, the GATA1 TF 386 
motif and k-mer GATAAG that were both embedded in MEP cells by SIMBA, also showed high-387 
level activity in MEP cells. The consistency between SIMBA embedding and TF activity was 388 
observed for most of other TF motifs and k-mers as well (Supplementary Fig. 3a, 3b). 389 
 390 
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Third, SIMBA identified differentially accessible chromatin regions that may mediate cell-type 391 
specific gene regulation. For example, the two peaks with coordinates chr19:12997999-392 
12998154 (P1) and chr19:12998329-12998592 (P2) that were embedded within MEP cells were 393 
almost exclusively observed in MEP cells on KLF1 genome track (Fig. 3e). Interestingly, P1, 394 
upstream of KLF1, contains the k-mer GATAAG that matches the GATA1 binding motif, while 395 
transcription factor GATA1 is known to regulate the gene KLF1 and plays a pivotal role in 396 
erythroid cell and megakaryocyte development20. Therefore, by embedding these MEP-cell-397 
related regulatory elements into the neighborhood of MEP cells, SIMBA demonstrates a novel 398 
means of studying the epigenetic landscape of cell differentiation. To further validate the 399 
differentially accessible regions identified by SIMBA, we selected 100 peaks at random from 400 
each annotated cell type in SIMBA co-embedding space. From the heatmap of chromatin 401 
accessibility, we clearly see that the peaks embedded nearby respective types correlate with 402 
strong cell-type specificity. This observation is robust to the number of cells within each cell 403 
type (Supplementary Fig. 3c).  404 
 405 
Available methods for scATAC-seq analysis visualize only cells. While SIMBA diverges from these 406 
available workflows, enabling the co-embedding of cells and features, we still qualitatively and 407 
quantitatively compared the SIMBA embeddings of cells to state-of-the-art scATAC-seq analysis 408 
methods by their ability to distinguish cell types.  Our analyses show that SIMBA overall 409 
performs better than the methods evaluated, further demonstrating the wide utility of SIMBA 410 
(Supplementary Figs. 4 and 5; Supplementary Note 1). 411 
 412 
 413 
SIMBA enables simultaneous learning of cellular heterogeneity and gene regulatory circuits 414 
from integrated analysis of single-cell multimodal data 415 
 416 
scRNA-seq and scATAC-seq are two of the most widely adopted single-cell sequencing 417 
technologies, but they are limited to measuring only a single aspect of cell state at a time. To 418 
improve our ability to interrogate cell states, several single-cell dual-omics technologies have 419 
been recently developed 21-24 to jointly profile transcriptome and chromatin accessibility within 420 
the same individual cells, therefore providing the potential to correlate gene expression with 421 
accessible regulatory elements and further delineate the yet elusive principles of gene 422 
regulation. This section outlines the SIMBA’s ability to simultaneously learn cell heterogeneity 423 
as well as gene regulatory circuits from single-cell multiomic data. We applied SIMBA to three 424 
recent single-cell dual-omics technologies: SHARE-seq22, SNARE-seq21, and a multiome PBMCs 425 
dataset from 10x Genomics (Supplementary Table 1).  426 

Figure 4a illustrates the procedure of graph construction and generation of the final SIMBA 427 
embedding matrix. Briefly, for scRNA-seq, the gene expression matrix is discretized to generate 428 
different levels of gene expression. For scATAC-seq, both the chromatin accessibility matrix and 429 
motif/k-mer match matrix are binarized. In this graph, there are five entity (node) types, 430 
including cells, genes, peaks, motifs, and k-mers. For scRNA-seq, an edge indicates whether a 431 
gene is expressed in a cell and its weight indicates the gene expression level (five levels, by 432 
default). For scATAC-seq, an edge indicates whether a peak is present in a cell or if a TF motif/k-433 
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mer is present within a peak. Once the graph is constructed, the graph embedding procedure is 434 
performed to generate SIMBA embeddings of cells and different types of features.  scATAC-seq 435 
peaks generally greatly outnumber cells and other features and many of these peaks are non-436 
informative, resulting in them dominating the space if the whole SIMBA embeddings are 437 
visualized (Supplementary Fig. 6a, c). In such cases, we leverage the flexibility of SIMBA 438 
embedding to only visualize the partial SIMBA embeddings to improve the visibility of cells and 439 
cell-type-specific features. 440 

 441 

Figure 4. Multimodal analysis of the SHARE-seq hair follicle dataset using SIMBA. (a) 442 
SIMBA graph construction and embedding in multimodal analysis. Overview of SIMBA’s 443 
approach to multimodal (scRNA-seq + scATAC-seq) data analysis. (b) SIMBA metric plots 444 
of genes, TF motifs, and peaks. All these features are plotted according to the Gini index 445 
against max score. Cell-type specific genes, TF motifs, and peaks are highlighted. (c) UMAP 446 
visualization of SIMBA embeddings of cells (Top-left), cells and genes (Top-right), and cells 447 
along with genes, TF motifs, and peaks (Bottom). (d) Ranked scatter plot of candidate 448 
master regulators as identified by SIMBA. € Schematic description of SIMBA’s strategy for 449 
identifying target genes given a master regulator. (f) Top 30 target genes of transcription 450 
factors Lef1 and Hoxc13 as inferred by SIMBA.   451 
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 452 

To demonstrate the usefulness and versatility of the SIMBA embeddings, we analyzed 453 
the cell populations undergoing the dynamic process of hair follicle differentiation from 454 
mouse skin profiled with SHARE-seq. 455 

First, we calculated SIMBA metrics (max values and Gini index scores) to assess the cell-type 456 
specificity of different types of features, including genes, TF motifs, and peaks (Fig. 4b, 457 
Methods).  As shown in Figure 4b, based on these metrics, we successfully recovered genes 458 
associated with hair follicles such as Lef1 and Hoxc13. Similarly, TF motifs and peaks proximal to 459 
the genomic loci of these genes also score in the upper right quadrant of the metric plots. 460 
SIMBA’s cell-type specificity metrics successfully revealed the key genes and regulatory factors 461 
important to the hair follicle differentiation process. 462 

Next, we visualized and interrogated the SIMBA embeddings of 1) cells; 2) cells and top-ranked 463 
genes based on SIMBA metrics; and 3) cells, top-ranked genes and TF motifs based on SIMBA 464 
metrics, and the neighboring peaks of these genes and TF motifs by querying the SIMBA space 465 
(Methods). Figure 4c shows the UMAP visualization of the partial SIMBA embeddings of cells 466 
and informative features. The UMAP visualization of SIMBA embeddings of cells and the full set 467 
of features was also performed (Supplementary Fig. 6a).  468 

The SIMBA embeddings of cells were able to reveal the three fate decisions from transit-469 
amplifying cells (TACs), including inner root sheath (IRS), medulla, and cuticle/cortex. The 470 
SIMBA embeddings of cells and informative features uncovered important genes and regulatory 471 
factors along the hair follicle differentiation trajectories. For example, the marker genes Krt71, 472 
Krt31, and Foxq1 were embedded into their corresponding cell types: IRS, cuticle/cortex, and 473 
medulla, respectively. The Lef1 motif was embedded into the beginning of medulla and 474 
cuticle/cortex lineages while the Hoxc13 motif was embedded into the late stage of 475 
cuticle/cortex differentiation. Peaks near the Lef1 and Hoxc13 loci were also embedded into the 476 
nearby regions of these genes and motifs, as expected.  477 

To show the robustness of SIMBA, we separated the scRNA-seq and scATAC-seq components 478 
within the SHARE-seq dataset and performed each respective single-modality analysis. With the 479 
consistent embedding results of cells as in multimodal analysis, we further demonstrated that 480 
SIMBA embedding procedure is robust to the type and the number of features encoded in the 481 
input graph (Supplementary Fig. 6b,6c). Each reported marker gene was corroborated using 482 
the UMAP plots with cells colored by gene expression as well as using the SIMBA barcode plots. 483 
The two aforementioned TF motifs and their respective peak sets were supported by the 484 
corresponding SIMBA barcode plots, wherein we observed an imbalanced distribution with high 485 
probability towards the correct cell type labels (Supplementary Fig. 7a-d). 486 

Further, we demonstrated that the SIMBA co-embedding space of cells and features provides 487 
the potential to identify master regulators of differentiation and infer their target regulatory 488 
genes. To define a master regulator a priori, we postulated that both its TF motif and TF gene 489 
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should be cell-type specific, given that active gene regulation involves both the expression of a 490 
TF and accessibility of its binding sites. Thus, the TF motif and TF gene should be embedded 491 
closely in the shared latent space. Extending this logic to identify putative master regulators, we 492 
assessed the cell-type-specificity of TF motifs and genes based on SIMBA metrics and ranked all 493 
potential master regulators based on the distance between the TF motif and the respective TF 494 
gene in the shared SIMBA embedding space (Methods).  SIMBA successfully identified 495 
previously described master regulators such as Lef1, Gata6, Nfatc1, and Hoxc13 as the top 496 
master regulators related to lineage commitment in mouse skin (Fig. 4d, Supplementary Table 497 
2). To infer the target genes of a given master regulator, we postulate that in the shared SIMBA 498 
embedding space, 1) the target gene is close to both the TF motif and the TF gene; 2) the 499 
accessible regions (peaks) near the target gene loci must be close to both the TF motif and the 500 
target TF gene. Resting on these assumptions of cis-regulatory dynamics, the inference of target 501 
genes was performed by calculating the distance between target gene candidates and the 502 
respective TF motif and gene. In addition, nearby peaks around the target gene’s locus and the 503 
presence of TF motif in these nearby peaks are also considered (Fig. 4e, Methods). The top 30 504 
target genes of TF Lef1 and TF Hoxc13 inferred by SIMBA are shown respectively (Fig. 4f, 505 
Supplementary Fig. 7e). The full list of ranked target genes is provided in Supplementary Table 506 
3. Notably, our approach recovered targets genes that were also reported in the original 507 
study22. For example, genes Lef1, Jag1, Hoxc13, Gtf2ird1 are regulated by the TF Lef1, while 508 
genes Cybrd1, Hoxc13, St14 are regulated by the TF Hoxc13.  509 

In addition to SHARE-seq, we also applied SIMBA to another two dual-omics datasets, the 510 
mouse cerebral cortex dataset profiled by SNARE-seq21 (Supplementary Fig. 8) and the 511 
multiome PBMCs dataset from 10x Genomics (Supplementary Fig. 9). By validating the 512 
embeddings of cells and features with given cell type labels (Supplementary Fig. 8a and Fig.9a), 513 
marker genes from the original study (Supplementary Fig. 8a,b,d and Fig. 9a,b,d), and 514 
differentially accessible chromatin regions (Supplementary Fig. 8c and Fig. 9c), we further 515 
demonstrate the suitability of SIMBA for multimodal analysis. 516 

 517 
SIMBA enables simultaneous batch correction and clustering-free marker gene detection  518 
 519 
Efforts to collect data from single cells has grown to the level of consortia that span multiple 520 
institutions with the hopes of finely mapping and characterizing specific tissues. This has 521 
brought with it an increased demand for analysis methods that are capable of negating 522 
technical covariates inherent to multi-batch data collection, including experimental replicate 523 
identity, sample preparation, and sequencing platform. Batch correction that removes the 524 
effects of technical covariation while preserving true biological signals is required prior to 525 
downstream analysis 25, 26. Existing methods follow a workflow with four primary steps. The first 526 
step is the actual batch correction, which often generates a “batch corrected” latent space. The 527 
second step clusters cells in this batch corrected space. Based on the clustering result the third 528 
step detects marker genes in the original gene expression space of each batch because the low-529 
dimensional “batch corrected” space is no longer comprised of genes. The fourth step finally 530 
combines the marker genes detected from each batch. However, these methods are clustering-531 
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dependent and may result in the inconsistent explanation of marker genes as marker genes are 532 
detected in each original batch as opposed to the batch-corrected space. Unlike current 533 
methods, in addition to embeddings of cells, SIMBA generates comparable embeddings of 534 
genes and therefore relieves marker gene discovery from a dependence on the original gene 535 
expression space. Thus, SIMBA enables simultaneous batch effect removal and cell-type-536 
specific marker gene detection in the same integrated space without clustering. 537 
 538 

 539 
 540 

Figure 5. Batch correction analysis of scRNA-seq data using SIMBA. (a) SIMBA graph 541 
construction and embedding in batch correction analysis. Overview of SIMBA’s approach 542 
to batch correction across scRNA-seq datasets. Distinct shapes indicate the type of entity 543 
(cell or gene). Colors distinguish batches or cell types. (b) UMAP visualization of the 544 
scRNA-seq human pancreas dataset with five batches of different studies before and after 545 
batch correction. Cells are colored by scRNA-seq data source and cell type respectively. 546 
Top: UMAP visualization before batch correction; Bottom: UMAP visualization after batch 547 
correction with SIMBA; (c) UMAP visualization of SIMBA embeddings of cells and genes, 548 
with batch effect removed and known marker genes highlighted. 549 

 550 
We first demonstrate that SIMBA readily corrects batch effects and produces joint embeddings 551 
of cells and genes across multiple scRNA-seq datasets generated from varying sequencing 552 
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platforms and cell type compositions. While existing methods for scRNA-seq analysis rely on 553 
specialized tools for batch correction, SIMBA works as a stand-alone method obviating the need 554 
for prior input data correction when applied to multi-batch scRNA-seq dataset. SIMBA 555 
accomplishes batch correction by encoding multiple scRNA-seq datasets into a single graph (Fig. 556 
5a). Cell nodes across batches are connected to gene nodes through experimentally measured 557 
edges as in the previously described scRNA-seq graph construction. Here, the gene nodes are 558 
shared between the cell nodes of different batches. In addition to the experimentally measured 559 
edges, batch correction is further enhanced through computationally inferred edges drawn 560 
between similar cell nodes across datasets using a truncated randomized singular value 561 
decomposition (SVD)-based procedure. SIMBA then generates the embeddings of all nodes 562 
including cells of each batch and genes from the resulting graph (Methods). The SIMBA 563 
embeddings of cells naturally represent the batch-corrected space. In addition, the whole 564 
SIMBA embeddings of all entities provide the batch-corrected space, in which cells and genes 565 
co-exist, and therefore allow for individual-cell-level marker detection by performing biological 566 
queries of cells in the SIMBA space (Methods). We visualized both SIMBA embeddings of cells 567 
(Fig. 5b), and the whole SIMBA embeddings of cells and genes (Fig. 5c) in UMAP.  568 
 569 
We applied SIMBA to two multi-batch scRNA-seq datasets; a mouse atlas dataset composed of 570 
two batches and a human pancreas dataset spanning five batches used in a recent benchmark 571 
study25 (Supplementary Table 1). The mouse atlas dataset contains two scRNA-seq datasets 572 
with shared cell types from different sequencing platform. The human pancreas dataset 573 
contains five samples pooled from five sources using four different sequencing techniques, in 574 
which not all cell types are shared across each sample. For both datasets, SIMBA successfully 575 
corrected batch effects, evenly mixing batches within annotated cell type clusters, while 576 
maintaining the segregation of these clusters in the resulting embedding, indicating 577 
preservation of biological signal and elimination of confounding technical covariates (Fig. 5b, 578 
Supplementary Fig. 12b). It is important to note that the mouse atlas dataset was collected 579 
from nine different organ systems, so there exists some expected heterogeneity within cell type 580 
labels. Conversely, the human pancreas datasets are curated from a single organ and SIMBA 581 
sufficiently separated cell types into transcriptionally distinct, homogeneous cell clusters (Fig. 582 
5b).  583 
 584 
Through removing batch effects during graph embedding, SIMBA simultaneously identifies cell-585 
type-specific marker genes (Fig. 5c). In the absence of the eliminated technical covariation, 586 
marker genes are identifiable by performing biological queries for neighboring genes within cell 587 
types in the SIMBA embeddings of cells and genes (Methods). In the case of unknown cell 588 
labels, marker genes can be identified by calculating SIMBA metrics (Methods). SIMBA correctly 589 
embeds known cell-type-specific marker genes proximal to the correct cell type labels, while 590 
non-marker genes were non-proximal to specifically-labelled cells (Supplementary Fig. 10, 11). 591 
The resulting marker genes recapitulated the clustering-based differential expression (DE) 592 
analysis results for each dataset27-32 (e.g. Cdh5, Tie1, Myct1 for endothelial cell and C1qc, Fcgr1 593 
for macrophage, S100a8, Trem3 for Neutrophil in the mouse atlas dataset and KIF12 for alpha 594 
cell and KRT19 for ductal cell in the human pancreas dataset) and are shown to be expressed 595 
specifically in the queried cell types (Supplementary Fig. 10, 11). Taken together, these results 596 
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distinguish SIMBA from existing batch correction methods that rely on clustering in a batch-597 
corrected space, followed by differential gene expression analysis in the original, uncorrected 598 
space of each batch. 599 
 600 
While SIMBA is a versatile graph embedding method that can perform multiple tasks and 601 
generate embeddings of both cells and genes, we evaluated the SIMBA embeddings of cells for 602 
this task with methods that were specifically designed for batch correction. We considered 603 
three widely adopted batch correction methods that demonstrated top-tier performance based 604 
on a recent benchmark study25: Seurat3, LIGER and Harmony. Our results indicate that SIMBA 605 
achieved comparable batch correction performance both qualitatively and quantitatively while 606 
enabling simultaneous marker gene detection by providing the additional SIMBA embeddings 607 
of genes. (Supplementary Note 2, Supplementary Figure 12). 608 
 609 
SIMBA enables simultaneous multi-omics integration and clustering-free multi-type marker 610 
feature detection 611 
 612 
Single-cell assays are now capable of measuring a broad range of cellular modalities and data is 613 
being generated that describes cells by varying features sets, which has motivated the need for 614 
methods that leverage these features to perform multi-omics integration such that a more 615 
comprehensive description of cell state may be learned. This is different from multi-modal 616 
analysis because the correspondence between individual cells is unknown. Current multi-omics 617 
integration methods follow a similar workflow as the previously described batch correction 618 
methods, including: 1) generating a low-dimensional integrated space of cells; 2) clustering cells 619 
in the integrated space; 3) detecting marker features in the original feature (e.g., genes, peaks) 620 
space of each modality because the low-dimensional integrated space no longer consists of the 621 
original features. Unlike existing multi-omics integration methods that cannot directly explore 622 
multi-type features in the integrated space and require clustering for identifying marker 623 
features, we demonstrate that SIMBA enables simultaneous multi-omics integration and 624 
clustering-free detection of distinct marker features, specifically as it is applied to datasets 625 
comprised of scRNA-seq and scATAC-seq.  626 
 627 
SIMBA accomplishes this integration by first building one graph for scRNA-seq data and another 628 
graph for scATAC-seq data independently as described in previous sections (Fig. 6a). To connect 629 
these two graphs, SIMBA then calculates gene activity scores by summarizing accessible regions 630 
from scATAC-seq data and then infers edges between cells of different assays based on their 631 
shared gene expression modules as previously described in the batch correction section. Finally, 632 
SIMBA embeds the graph of cells, genes, and peaks into a common, low-dimensional space. The 633 
SIMBA embeddings of cells naturally represent the integrated space of multiple modalities.  634 
Furthermore, the SIMBA embeddings of all entities provide the integrated space containing cell, 635 
genes, and peaks, and therefore enable the individual-cell-level marker detection of multi-type 636 
features by performing biological queries of cells in SIMBA space (Methods). The SIMBA 637 
embeddings of these multi-omics entities can be visualized either partially or as a whole using 638 
UMAP or similar visualization tools. 639 
 640 
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 641 
Figure 6. Multi-omics integration of scRNA-seq + scATAC-seq data using SIMBA. (a) SIMBA 642 
graph construction and embedding in multi-omics integration. Overview of SIMBA’s 643 
approach to data integration across scRNA-seq and scATAC-seq. Distinct shapes indicate 644 
the type of entity (cell, gene, or peak). Colors distinguish batches or cell types. (b) UMAP 645 
visualization of the integrated scRNA-seq and scATAC-seq data manually created from the 646 
10x human PBMCs dataset before and after data integration. Cells are colored by single-647 
cell modality and cell type respectively. Top: UMAP visualization before integration; 648 
Bottom: UMAP visualization after integration with SIMBA. (c) UMAP visualization of 649 
SIMBA embeddings of cells, genes, and peaks with two cell modalities integrated and 650 
known marker genes highlighted. 651 

 652 
To facilitate the evaluation of data integration performance, we created datasets with ground-653 
truth labels by manually splitting the dual-omics datasets into two single-modality datasets (i.e., 654 
scRNA-seq and scATAC-seq), in which we know the true matching between cells across the two 655 
modalities. We then applied SIMBA to the integration analysis of two case studies where 656 
scRNA-seq and scATAC-seq datasets are generated from the SHARE-seq mouse skin dataset and 657 
the 10x Genomics multiome human PBMCs dataset, respectively (Supplementary Table 1).  658 
 659 
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We first visualized the SIMBA embeddings of cells and observed that SIMBA was able to 660 
preserve cellular heterogeneity while evenly mixing the two modalities (Fig. 6b, Supplementary 661 
Fig. 15b). We then visualized the SIMBA embeddings of cells, genes, and top-ranked peaks 662 
based on SIMBA metrics and observed that in addition to learning cellular heterogeneity, 663 
SIMBA simultaneously identified marker genes and peaks at single-cell resolution. In the co-664 
embedding space, we observed that the neighbor genes of cells (highlighted in UMAP plots), 665 
are each exclusively expressed in their corresponding cell types (Supplementary Figs. 13a-e, 666 
14a-c,e). For example, in the SHARE-seq mouse skin dataset, Foxq1 and Shh are located within 667 
medulla and TAC-2, respectively; in the 10x PBMCs dataset, PAPSS2 and KCNMA1, which are 668 
the marker genes of blood monocytes, are embedded close to each other. Similarly, we 669 
observed that the neighbor peaks of cells show a clear cell-type-specific accessibility pattern 670 
that is robust to the cluster size of a given cell type (Supplementary Figs. 13f and 14d).  671 
 672 
The joint embedding of cells and features produced by SIMBA is fundamentally distinguished 673 
from other multi-omics integration methods in that it simultaneously achieves integration as 674 
well as marker feature discovery. However, we still sought to compare the SIMBA embeddings 675 
of cells with two widely-adopted single-cell multi-omics integration methods, Seurat3 and 676 
LIGER, based on their ability to integrate single-cell modalities while persevering cellular 677 
heterogeneity (Supplementary Note 3). We observed that SIMBA achieved the overall best 678 
performance on the mouse skin SHARE-seq dataset and 10x PBMCs multiome dataset. 679 
 680 
Discussion 681 
 682 
Multimodal measurements of individual cells offer new and unexplored opportunities to study 683 
cell identity as a function of the complex interactions between omic layers. While these 684 
datasets offer an exciting potential for discovery, computational analysis methods to fully 685 
delineate the cell states and molecular processes across multiple genomic features remain 686 
insufficient. 687 
 688 
As presented in this manuscript, SIMBA models cells and measured features as nodes encoded 689 
in a graph and employs a scalable and efficient graph embedding procedure to embed nodes of 690 
cells and features into a shared latent space. We demonstrate that direct graph representations 691 
of single-cell data capture not only the relations between cells and the quantified features of 692 
the experiment (e.g., gene expression or chromatin accessibility) but also hierarchical relations 693 
between features. An example of such a hierarchical relation is the coordinate-level description 694 
of an ATAC-seq peak and the corresponding TF motifs and/or k-mer sequences contained 695 
within that region. In the resulting joint embedding, proximity-based biological queries can be 696 
performed to discover cell-type-specific co-regulatory machinery across modalities. Therefore, 697 
SIMBA enables simultaneous learning of cellular heterogeneity and cell-type-specific 698 
multimodal features and complements the current gene regulatory network analyses. SIMBA 699 
also circumvents the ordinary reliance on cell clustering for cell sub-population feature 700 
discovery. We thus avoid user-defined clustering solutions, which may lead to artifactual 701 
discovery or false negative results. 702 
 703 
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SIMBA has been extensively benchmarked across single-cell modalities and tasks, obtaining 704 
better or comparable performance metrics when compared to current state-of-the-art methods 705 
developed for the respective task. In contrast to tools developed and optimized for a single, 706 
specific task these results suggest a wide applicability of SIMBA’s graph-based framework, 707 
obviating the need to combine multiple analysis tools.  708 
 709 
Graph embedding methods hold significant promise for the analysis of biological data. Previous 710 
applications of graph embedding include functional annotation of genes 33, transcription factor 711 
binding to DNA motifs 34 and more recent single-cell RNA-seq analyses 35, 36. The graph encoding 712 
and embedding procedures we have outlined may be potentially improved and extended to 713 
better represent biological entities and capture their respective relations.  714 
 715 
Foreseeable extensions of SIMBA may include the analyses of increasingly complex datasets. 716 
For example, in the analysis of spatial transcriptomics wherein transcriptomic measurements 717 
are mapped to the true cell coordinates within a tissue 37,  we can encode the spatial proximity 718 
into a SIMBA graph. We also envision extending this framework to data describing 3-D 719 
chromatin conformation wherein the interaction between DNA segments can be encoded to 720 
represent how regulatory regions are linked to genes38. Another potential extension of SIMBA 721 
could consider single-cell lineage-tracing datasets39  wherein both cellular lineage information 722 
and gene expression measurements are captured and can be potentially encoded into a SIMBA 723 
graph to represent their longitudinal relations. In general, we are interested in the further 724 
incorporation of external information and hierarchical relations between features in the graph. 725 
We anticipate our comprehensive and extensible SIMBA framework (https://simba-726 
bio.readthedocs.io/) will provide the possibility to leverage a priori knowledge for graph 727 
embedding and the flexibility to extend to new experimental designs.  728 
 729 
It is likely that multi-omics assays will continue to improve as well as expand in scope. Already, 730 
innovation in these data-generating technologies have outpaced the development of 731 
corresponding computational frameworks required to gain integrative insights from such rich 732 
data. This disparity highlights a need for methods that break through previous limitations and 733 
are easily extended to future cell measurements. We believe SIMBA satisfies these conditions 734 
as a comprehensive and extensible method for exploring cellular heterogeneity and 735 
investigating the regulatory mechanisms that drive cellular diversity while laying a groundwork 736 
for the development of new non-cluster-centric analysis methods for single cell omics data. 737 
 738 
 739 
Methods 740 
 741 
Single-cell data preprocessing 742 
 743 

a. Single-cell RNA-seq 744 
Genes expressed in fewer than three cells were filtered.   Raw counts were library size-745 
normalized and subsequently log-transformed. Optionally, variable gene selection 12 (a 746 
python version is implemented in SIMBA that is inspired by Scanpy2) may be performed  747 
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to remove non-informative genes and accelerate the training procedure. Notable 748 
differences in the resulting cell embeddings were not observed upon limiting feature 749 
input to those identified by variable gene selection but SIMBA embeddings of non-750 
variable genes will not be generated as they are not encoded in the graph. 751 

  752 
 b. Single-cell ATAC-seq 753 

Peaks present in fewer than three cells were filtered. Optionally, we implemented a 754 
scalable truncated-SVD-based procedure to select variable peaks as a preliminary step 755 
to additionally filter non-informative peaks and accelerate the training procedure. First 756 
the top k principal components (PCs) were selected, with k chosen based on the elbow 757 
plot of variance ratio. Then for each of the top k PCs, peaks were automatically selected 758 
based on the loadings using a knee point detection algorithm implemented by ‘kneed’40. 759 
Finally, peaks selected for each PC were combined and denoted as “variable peaks”. 760 
Similar to the observation made with scRNA-seq data, the optional step of variable peak 761 
selection has a negligible effect on the resulting cell embedding. Despite this minimal 762 
impact on the resulting embedding, this feature selection step imparts a significant 763 
practical advantage in reducing training procedure time.  764 
 765 
k-mer and motif scanning was performed using packages ‘Biostrings’ and ‘motifmatchr’ 766 
with JASPAR202041.  Included in the implementation of SIMBA is a convenient R 767 
command line script “scan_for_kmers_motifs.R” , which will convert a list of peaks 768 
(formatted in a bed file) to a sparse peaks-by-k-mers/motifs matrix, which is stored as 769 
an hdf5-formated file. 770 

 771 
Graph construction (five scenarios) 772 
 773 

i. Single-cell RNA-seq analysis 774 
The distribution of non-zero values in the normalized gene expression matrix was first 775 
approximated using a k-means clustering-based procedure. First, the continuous non-776 
zero values were binned into 𝑛 intervals (by default 𝑛=5). Bin widths were defined using 777 
1-dimensional k-means clustering wherein the values in each bin are assigned to the 778 
same cluster center. The continuous matrix is then converted into a discrete matrix 779 
wherein1,… , 𝑛 are used to denote 𝑛 levels of gene expression. Zero values are retained 780 
in this matrix.  Then the graph was constructed by encoding two types of entities, cells 781 
and genes, as nodes and relations with 𝑛 different weights between them, i.e., 𝑛 levels 782 
of gene expression, as edges. These 𝑛 relation weights range from 1.0 to 5.0 with a step 783 
size of 5/𝑛 denoting gene expression levels (lowest: 1.0, highest: 5.0), such that edges 784 
corresponding to high expression levels affect embeddings more strongly than those 785 
with intermediate or low expression levels. This discretization is implemented in the 786 
SIMBA package using the function, “si.tl.discretize()”. 787 

 788 
ii. Single-cell ATAC-seq analysis 789 

Peak-by-cell matrices were binarized, with “1” indicating at least one read within a peak 790 
and “0” otherwise. The graph was constructed by encoding two types of entities, cells 791 
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and peaks, as nodes and the relation between them, denoting the presence of a given 792 
peak in a cell, as edges. The single relation type was assigned with a weight of 1.0. When 793 
the DNA sequence features were available, they were encoded into the graph using k-794 
mer and motif sequence entities as nodes. This was performed by first binarizing the 795 
peak-by-k-mer/motif matrix then constructing an extension to the original peak/cell 796 
graph using the peaks, k-mers, and motifs as nodes and the presence of these entities 797 
within peaks as edges between these additional nodes and the peak nodes. The relation 798 
between k-mers and peaks was assigned a weight of 0.02 while the relation between TF 799 
motifs was assigned a weight of 0.2. Of note, k-mers and motifs may be used 800 
independently of each other as node inputs to the graph, depending on the specific 801 
analysis task. 802 

 803 
iii. Multimodal analysis 804 

Combination of the above outlined strategies for graph construction of scRNA-seq and 805 
scATAC-seq data was used to construct a multi-omics graph. 806 

 807 
iv. Batch correction 808 

A graph for each batch was constructed as described in i).  Edges between cells of 809 
different batches were inferred through a procedure based on truncated randomized 810 
singular value decomposition (SVD) to link disjoint graphs of different batches. More 811 
specifically, in the case of scRNA-seq data, consider two gene expression matrices 812 
𝑋1!!×# and 𝑋2!"×#, where 𝑛$, 𝑛% denotes the number of cells and 𝑚 denotes the 813 
number of the shared features, i.e., variable genes, between datasets. The matrix 814 
𝑋!!×!"  was then computed by multiplying 𝑋1 and 𝑋2:  815 

 816 
𝑋 = 𝑋1 × 𝑋2& 	 817 

 818 
Truncated randomized SVD was subsequently performed on 𝑋: 819 
 820 

𝑋 ≈ 𝑈 × Σ × 𝑉&  821 
 822 
where 𝑈 is an 𝑛$ × 𝑑 matrix,  Σ is an 𝑑 × 𝑑 matrix, and 𝑉 is an 𝑛% × 𝑑 matrix (by 823 
default 𝑑 = 20).  824 
 825 
Both 𝑈 and 𝑉 were further 𝐿2 normalized. For each cell in 𝑈, we searched for 𝑘 826 
nearest neighbors in 𝑉 and vice versa (by default, 𝑘 = 20). Eventually, only the mutual 827 
nearest neighbors between 𝑈 and 𝑉 were retained as inferred edges between cells 828 
(represented as dashed lines in Fig. 5a). The procedure of inferring edges between 829 
cells of different batches is implemented in the function “si.tl.infer_edges()” in the 830 
SIMBA package. 831 
 832 
For multiple batches, SIMBA can flexibly infer edges between any pair of datasets. In 833 
practice, however edges are inferred between the largest dataset(s) or the dataset(s) 834 
containing the most complete set of expected cell types and other datasets.  835 
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 836 
v. Multi-omics integration 837 

scRNA-seq and scATAC-seq graphs were constructed following steps i) and ii), 838 
respectively. To infer the edges between cells of scRNA-seq and scATAC-seq, gene 839 
activity scores were first calculated for scATAC-seq data3. More specifically, for each 840 
gene, peaks within 100kb upstream and downstream of the TSS were considered. 841 
Peaks overlapping gene body region or within 5kb upstream of gene bodies were 842 
given the weight of 1.0. Otherwise, peaks were weighted based on their distances to 843 

TSS using the exponential decay function: 𝑒
#$%&'()*+

,--- . Subsequently, the gene score of 844 
each gene was computed as a weighted sum of the considered peaks. These gene 845 
scores were then scaled to respective gene size. These steps are implemented by the 846 
function “si.tl.gene_scores()” in SIMBA. For user convenience, the SIMBA package 847 
curates the gene annotations of several commonly used reference genomes, including 848 
hg19, hg38, mm9, and mm10. Once gene scores were obtained, the same procedure 849 
described in iv) was performed to infer edges between cells profiled by scRNA-seq and 850 
scATAC-seq using the function, “si.tl.infer_edges()” in SIMBA. 851 
 852 

The procedure of generating constructed graphs is implemented in the function, 853 
“si.tl.gen_graph()” in the SIMBA package. 854 

  855 
Graph Embeddings with Type Constraints 856 

 857 
Following the construction of a multi-relational graph between biological entities, we 858 
adapted graph embedding techniques from the knowledge graph and recommendation 859 
systems literature to construct unsupervised representations for these entities. 860 

 861 
We provide as input a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 is a set of entities (vertices) 862 
and 𝐸 is a set of edges, with a generic edge 𝑒 = (𝑢, 𝑣) between a source entity 𝑢 and 863 
destination entity 𝑣. We further assume that each entity has a distinct known type (e.g., 864 
cell, peak, etc.). 865 

 866 
Graph embedding methods learn a 𝐷-dimensional embedding vector for each 𝑣 ∈ 𝑉 by 867 
optimizing a link prediction objective via stochastic gradient descent, with 𝐷=50 used 868 
for our experiments. We will denote the full embedding matrix as 𝜃 ∈ 	𝑅|(|×) and the 869 
embedding for an entity 𝑣 as 𝜃*. 870 

 871 
For an edge 𝑒	 = 	 (𝑢, 𝑣) , we denote 𝑠+ =	𝜃, ∗ 	𝜃* as the score for 𝑒, and optimize a 872 
multi-class log loss 873 

ℒ = 	−𝑙𝑜𝑔
exp	(𝑠+)

∑ exp	(𝑠′+)+-∈𝒩
 874 

 875 
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Where 𝒩 is a set of “negative sampled” candidate edges generated by corrupting 𝑒 42. 876 
This log loss objective attempts to maximize the score for all (𝑢, 𝑣) ∈ 𝐸 and minimize it 877 
for (𝑢, 𝑣) ∉ 𝐸. 878 

 879 
Negative samples are constructed by replacing either the source or target entity in the 880 
target edge 𝑒	 = 	 (𝑢, 𝑣) with a randomly sampled entity. However, in graphs like ours 881 
where only edges between certain entity types are possible, previous work has shown 882 
that it is beneficial to optimize the loss only over candidate edges that satisfy the type 883 
constraints43. Thus, for e.g., a cell-peak edge we only sample negative candidates 884 
between cell and peak entities. This modification is crucial in our setting since most 885 
randomly selected edges will be of invalid type (e.g., peak-peak), forcing the 886 
embeddings to primarily be optimized for irrelevant tasks (e.g., having low dot product 887 
between every pair of peaks). 888 

 889 
Furthermore, it has been frequently observed that in graphs with wide distribution of 890 
node degrees, it is advantageous to sample negatives proportional to some function of 891 
the node degree to produce more informative embeddings that don’t merely capture 892 
the degree distribution 13, 44.  For each graph edge in the dataset encountered in a 893 
training batch, we produce 100 negatives by corrupting the edge with a source or 894 
destination sampled uniformly from the nodes with the correct types for this relation 895 
and 100 by corrupting the edge with a source or destination node sampled with 896 
probability proportional to its degree13. 897 

 898 
As with many ML methods, graph embeddings are prone to overfitting in a low-data 899 
regime (i.e., low ratio of edges to parameters). We observed overfitting measurable as a 900 
gap between training and validation loss on the link prediction task, which we addressed 901 
with 𝐿2 regularization on the embeddings 𝜃, 902 

 903 

ℒ0+1 = ℒ + 𝜆	PP𝜃,2%
)

23$,∈4

. 904 

 905 
with λ =𝑤𝑑 ∗ 	𝑤𝑑_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. For weight decay parameter (𝑤𝑑), by default it is calculated 906 
automatically as 5

4+
, where 𝑁+  is the training sample size (i.e., the total number of edges) 907 

and 𝐶 is a constant. For weight decay interval (𝑤𝑑_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙), we set it to 50 for all 908 
experiments. 909 

 910 
We use the PyTorch-BigGraph framework, which provides efficient computation of 911 
multi-relation graph embeddings over multiple entity types and can scale to graphs with 912 
millions or billions of entities13. For 1.3 million cells, the PyTorch-BigGraph training itself 913 
takes only ~ 1.5 hours using 12 cores without the requirement of GPU (https://simba-914 
bio.readthedocs.io/en/latest/rna_10x_mouse_brain_1p3M.html). 915 

 916 
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The resulting graph embeddings have two desirable properties that we will take 917 
advantage of: 918 
1. First-order similarity: for two entity types 𝑇$,  𝑇%  with a relation between them, 919 
edges with high likelihood should have higher dot product; specifically, for any 𝑢 ∈ 𝑇$, 920 
the predicted probability distribution over edges to 𝑇% originating from 𝑢 is 921 
approximated as  +./∗.1

∑ +./∗.1212∈4"
 . 922 

2. Second-order similarity: within a single entity type, entities that have ‘similar 923 
contexts’, i.e., a similar distribution of edge probabilities, should have similar 924 
embeddings. Thus, the embeddings of each entity type provide a low-rank latent space 925 
that encodes the similarity of those entities’ edge distributions. 926 

 927 
Evaluation of the model during training 928 

 929 
During the PyTorch-BigGraph training procedure, a small percent of edges is held out 930 
(by default, the evaluation fraction is set to 5%) to monitor overfitting and evaluate the 931 
final model. Five metrics are computed on the reserved set of edges, including mean 932 
reciprocal rank (MRR, the average of the reciprocal of the ranks of all positives), R1 (the 933 
fraction of positives that rank better than all their negatives, i.e., have a rank of 1), R10 934 
(the fraction of positives that rank in the top 10 among their negatives), R50 (the 935 
fraction of positives that rank in the top 50 among their negatives), and AUC (Area 936 
Under the Curve). By default, we show MRR along with training loss and validation loss 937 
while other metrics are also available in SIMBA package (Supplementary Fig. 1a).  The 938 
learning curves for validation loss and these metrics can be used to determine when 939 
training has completed. The relative values of training and validation loss along with 940 
these evaluation metrics can be used to identify issues with training (underfitting vs 941 
overfitting) and tune the hyperparameters weight decay, embedding dimension, and 942 
number of training epochs appropriately. For example, in Supplementary Figure 1a 943 
training can be stopped once the validation loss plateaus. However, for most datasets 944 
we find that the default parameters do not need tuning.  945 

 946 
Softmax transformation 947 
 948 

PyTorch-BigGraph training provides initial embeddings of all entities (nodes).  However, 949 
entities of different types (e.g., cells vs peaks, cells of different batches or modalities) 950 
have different edge distributions and thus may lie on different manifolds of the latent 951 
space. To make the embeddings of entities of different types comparable, we transform 952 
the embeddings of features with the Softmax function by utilizing the first-order 953 
similarity between cells (reference) and features (query). In the case of batch correction 954 
or multi-omics integration, the Softmax transformation is also performed based on the 955 
first-order similarity between cells of different batches or modalities.  956 
 957 
Given the initial embeddings of cells (reference) (𝑣7! , … , 𝑣7)) and features (𝑣8! , … , 𝑣25), 958 
the model-estimated probability of an edge [𝑐9 , 𝑓:^ obeys 959 
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 960 
𝑃 `𝑣7%,86 	a ∝ exp `𝑣7% ⋅ 𝑣86a 961 

 962 
Therefore, if a random edge was sampled from feature 𝑓:  to a cell, the model would 963 
estimate the distribution over such edges as 964 
 965 

𝑝7%,86 =
exp	(𝑣7% ⋅ 𝑣86)

∑ exp	(𝑣77 ⋅ 𝑣86)
!
<3$

 966 

 967 
i.e., the Softmax weights between all cells {𝑐9}  and the feature 𝑓:. We can then compute 968 
new embeddings for features as a linear combination of the cell embeddings weighted 969 
by the edge probabilities raised to some power. 970 

 971 

𝑣g86 =
∑ 𝑝7%,86

&#! 𝑣7%
!
93$

∑ 𝑝7%,86
&#! 	!

93$
 972 

 973 
𝑇 is a temperature hyperparameter that controls the sharpness of the weighting over 974 
cells. At 𝑇 = 1, the cell embeddings are weighted by their estimated edge probabilities; 975 
at 𝑇 → 0, each feature embedding is assigned the cell embedding of its nearest 976 
neighbor; at  𝑇 → ∞, it becomes a discrete uniform distribution, and each query 977 
becomes the average of reference embeddings. We set 𝑇 = 0.5  for all the analyses. 978 

 979 
 These steps are implemented in the function “si.tl.embed()” in the SIMBA package. 980 
 981 
Metrics to assess cell-type specificity 982 
 983 

Four metrics are proposed to assess the cell type specificity of each feature from 984 
different aspects, including max value (a higher value indicates higher cell-type 985 
specificity), Gini index (a higher value indicates higher cell-type specificity), standard 986 
deviation (a higher value indicates higher cell-type specificity), and entropy (a lower 987 
value indicates higher cell-type specificity). We observe these four metrics generally give 988 
consistent results. For SIMBA metric plot, by default, Gini index is plotted against max 989 
value. For feature 𝑓:  : 990 
 991 
The max value is defined as the average normalized similarity of top 𝑘 cells (by default, 992 
𝑘=50). The similarity normalization function is defined as: 993 
 994 

𝑛𝑜𝑟𝑚(𝑥9) = 𝑥9 − 𝑙𝑜𝑔
∑ exp	(𝑥:)!
:3$

𝑛 	 995 

 996 
Where 𝑖 = 1,… , 𝑛. 𝑛 is the number of cells and 𝑥9  represents the dot product of 𝑣g86  and 997 
the embedding of cell 𝑖.  998 
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 999 
The max value is computed as: 1000 
 1001 

max[𝑓:^ =
∑ 𝑛𝑜𝑟𝑚(𝑥9)<
93$

𝑘  1002 

 1003 
The Gini index is computed as: 1004 
 1005 

gini[f=^ =
∑ (2𝑖 − 𝑛 − 1) ∗ 𝑝7%,86
!
93$

𝑛∑ 𝑝7%,86
!
93$

 1006 

 1007 
The standard deviation is computed as: 1008 
 1009 

std[f=^ = t
1

𝑛 − 1P(𝑝7%,86 − 𝜇)%
!

93$

 1010 

Where 𝜇 = $
!
∑ 𝑝7%,86
!
93$ . 1011 

 1012 
Entropy is computed as: 1013 

entropy[f=^ = −P𝑝7%,86log	(𝑝7%,86)
!

93$

 1014 

 1015 
Queries of entities in SIMBA space 1016 
 1017 

The informative SIMBA embedding space serves as a database of entities including cells 1018 
and features. To query the “SIMBA database” for the neighboring entities of a given cell 1019 
or feature, we first build a k-d tree of all entities based on their SIMBA embeddings. We 1020 
then search for the nearest neighbors in the tree using Euclidean distance. To do so, 1021 
SIMBA query can perform either K-nearest neighbors (KNN) or nearest neighbor search 1022 
within a specified radius. SIMBA also provides the option to limit the search to entities 1023 
of certain types, which is useful when a certain type of entity significantly outnumbered 1024 
others. For example, the K nearest features of a given cell may be all peaks while genes 1025 
are the features of interest. In this case, SIMBA allows users to add “filters” to ensure 1026 
that nearest neighbor search is performed within the specified types of entities. This 1027 
procedure is implemented in the function “st.tl.query()” and its visualization is 1028 
implemented in the function “st.pl.query()” in the SIMBA package. 1029 

 1030 
Identification of master regulators 1031 

 1032 
To identify master regulators, we take into consideration both the cell type specificity of 1033 
each pair of TF motif and TF gene and the distance between them. More specifically, for 1034 
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each TF motif, first its distances (Euclidean distance by default) to all the genes are 1035 
calculated in the SIMBA embedding space. Then the rank of this TF gene among all these 1036 
genes is computed. In addition, we also assess the cell type specificity of this pair of TF 1037 
motif and TF gene based on SIMBA metrics (by default, max value and Gini index are 1038 
used). The same procedure is performed for all TFs. Finally, we identify master 1039 
regulators by filtering out TFs with low cell-type specificity and scoring them based on 1040 
TF gene rank. This procedure is implemented in the function 1041 
“st.tl.find_master_regulators()” in SIMBA package. 1042 
 1043 

 1044 
Identification of TF target genes 1045 

Given a master regulator, its target genes are identified by comparing the locations of 1046 
the TF gene, TF motif, and the peaks near the genomic loci of candidate target genes in 1047 
the SIMBA co-embedding space (Fig. 4e). More specifically we first search for 𝑘 nearest 1048 
neighbor genes around the motif (TF motif) and the gene (TF gene) of this master 1049 
regulator, respectively (𝑘 = 200 by default). The union of these neighbor genes is the 1050 
initial set of candidate target genes. These genes are then filtered based on the criterion 1051 
that open regions (peaks) within 100kb upstream and downstream of the TSS of a 1052 
putative target gene must contain the TF motif.  1053 

Next, for each candidate target gene, we compute four types of distances in SIMBA 1054 
embedding space: distances between the embeddings of 1) the candidate target gene 1055 
and TF gene; 2) the candidate target gene and TF motif; 3) peaks near the genomic locus 1056 
of the candidate target gene and TF motif; 4) peaks near the genomic locus of the 1057 
candidate target gene and the candidate gene. All the distances (Euclidean distances by 1058 
default) are converted to ranks out of all genes or all peaks to make the distances 1059 
comparable across different master regulators. 1060 

The final list of target genes is decided using the calculated ranks based on two criteria: 1061 
1) at least one of the nearest peaks to TF gene or TF motif is within a predetermined 1062 
range (top 1,000 by default); 2) the average rank of the candidate target gene is within a 1063 
predetermined range (top 5,000 by default). This procedure is implemented in the 1064 
function “st.tl. find_target_genes ()” in SIMBA. 1065 

Benchmarking scATAC-seq computational methods 1066 
 1067 
To compare SIMBA to other scATAC-seq computational methods including SnapATAC 4, 1068 
Cusanovich201845, and cisTopic46, we employed the previously developed benchmarking 1069 
framework from Chen et al14(Supplementary Table 1). This framework evaluates 1070 
different methods based on their ability to distinguish cell types. We applied three 1071 
clustering algorithms: k-means clustering, hierarchical clustering, and Louvain on the 1072 
feature matrix derived from each method.  1073 
 1074 
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For datasets with ground-truth (FACS-sorted labels or known tissue labels), including 1075 
simulated bone marrow data, Buenrostro 2018, and sci-ATAC-seq subset, three metrics 1076 
including Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and 1077 
Homogeneity are applied to evaluate the performance. ARI measures the similarity 1078 
between two clusters, comparing all pairs of samples assigned to matching or different 1079 
clusters in the predicted clustering solution vs the true cluster/cell type label.  AMI 1080 
describes an observed frequency of co-occurrence compared to an expected frequency 1081 
of co-occurrence between two variables, informing the mutual dependence or strength 1082 
of association of these two variables. Homogeneity measures whether a clustering 1083 
algorithm preserves cluster assignments towards samples that belong to a single class. A 1084 
higher metric value indicates a better clustering solution. 1085 
 1086 
For 10x PBMCs dataset with no ground truth, the Residual Average Gini Index (RAGI) 1087 
proposed in the benchmarking study14 is used as the clustering evaluation metric. RAGI 1088 
measures the relative exclusivity of marker genes to their corresponding clusters in 1089 
comparison to housekeeping genes, which should demonstrate low specificity to any 1090 
given cluster. In brief, the mean Gini Index is computed for both marker genes and 1091 
housekeeping genes. The difference between the means is computed to obtain the 1092 
average residual specificity (i.e., RAGI) of a clustering solution with respect to marker 1093 
genes. A higher RAGI indicates a better separation of biologically distinct clusters. 1094 
 1095 

Benchmarking single-cell batch correction methods 1096 
 1097 
The batch correction performance of SIMBA was compared to Seurat312, LIGER11 and 1098 
Harmony10 in two benchmark datasets: the mouse atlas dataset and the human 1099 
pancreas dataset (Supplementary Table 1). For Seurat3, LIGER and Harmony, the batch 1100 
correction was done with the same parameters used in a previous benchmark study25.  1101 
 1102 
To evaluate the batch integration performance, average Silhouette width (ASW), 1103 
adjusted Rand index (ARI), and local inverse Simpson’s index (LISI)10 were calculated for 1104 
the batches and cell types using the Euclidean distance as described in a previous 1105 
benchmark25. To make a fair evaluation, only the cell types that are present in all 1106 
batches were considered. We used the same number of dimensions (50) for these 1107 
methods and all other parameters were set as in the benchmark. 1108 
 1109 
Average Silhouette width (ASW) 1110 
 1111 
Average Silhouette width is the mean value of Silhouette scores calculated from each 1112 
cell. Silhouette width measures the relative closeness of cells with the same label 1113 
compared to the cells with the different label and ranges from -1 to +1. Silhouette score 1114 
for a data point with a label is calculated as  1115 
 1116 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)} 1117 
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 1118 
where 𝑎(𝑖) is the distance to the closest point with the same label, and 𝑏(𝑖) is the 1119 
distance to the closest point with different labels. A high Silhouette score means the 1120 
point is located more closely with the same label, where a low Silhouette score closer to 1121 
-1 means the point is located closer with different labels than that of itself. The ideal 1122 
batch correction result will give a low ASW score for batch labels as the point is well 1123 
mixed with other batches and a high ASW score for the cell type labels as the cells of the 1124 
same cell type should cluster together after the batch correction. The final score is 1125 
calculated as the median ASW scores from 20 subsets of randomly sampled 80% cells.  1126 
 1127 
Average Rand Index (ARI) 1128 
 1129 
To evaluate the cell type purity, the true cell type labels and the k-means clustering 1130 
solution were used to calculate the cell type ARI. To evaluate the batch correction 1131 
performance, the true batch labels and the k-means clustering solution were used to 1132 
calculate the batch ARI. The final ARI was calculated as the median ARI scores of 20 1133 
subsets comprised of randomly sampled 80% cells for batches and cell types, 1134 
respectively.  A superior batch correction will have a high cell type ARI (high agreement 1135 
between the clustering solution and the true cell type labels), and a low batch ARI ( the 1136 
clustering solution is not mainly driven by batches and clusters contain cells with well-1137 
mixed batch labels). 1138 

 1139 
Local Inverse Simpson’s Index (LISI) 1140 
 1141 
Local Inverse Simpson’s Index (LISI) 10 measures the local batch and cell type mixing. For 1142 
each data point, it considers the Gaussian kernel weighted distribution of labels in its 1143 
neighborhood with a perplexity argument. We set perplexity to 50 40 as in the previous 1144 
benchmark study. Using the weighted neighborhood label distribution, the inverse 1145 
Simpson’s index is calculated as $

∑ >(@)8
 where 𝑙 is the batch or cell type labels and 𝑝(𝑙) is 1146 

the probability of each label in the local neighborhood obtained with the kernel. For 1147 
each cell, the LISI is the expected number of cells to be sampled locally before a cell of 1148 
the same label is sampled. A perfect batch correction will have a cell type LISI (cLISI) of 1 1149 
and a batch LISI (integration LISI, iLISI) close to the number of batches. The final LISI 1150 
score was calculated as the average LISI scores of all cells. 1151 
 1152 
Further details are described in Supplementary Note 2. 1153 
 1154 

 1155 
Benchmarking single cell multi-omics integration methods 1156 

 1157 
Two pairs of scRNA-seq and scATAC-seq datasets manually split from the dual-omics 1158 
SHARE-seq mouse skin dataset and 10X PBMCs dataset respectively were used for the 1159 
modality integration task. For Seurat3 and LIGER, the parameters and preprocessing 1160 
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were done as described in their documentations. However, for the LIGER analysis of the 1161 
SHARE-seq mouse skin dataset the parameter ‘lambda’ was set to 30 and the 1162 
‘ref_dataset’ was set to scATAC-seq to get a better alignment. For the Raw results, the 1163 
activity matrix of scATAC-seq was constructed using Seurat3 and the first 20 PCs of the 1164 
scRNA-seq count matrix and the activity matrix were used for the comparison. The 1165 
integration results generated by each method were evaluated with four metrics—1166 
Anchoring distance, anchoring distance rank, Silhouette index, and cluster agreement— 1167 
as described below.  1168 
 1169 
Anchoring distance 1170 
The Anchoring distance  was proposed in Dou et al., 202047 and is the normalized 1171 
distance between the matched cells of two modalities (e.g. RNA and ATAC). Here we 1172 
considered the Euclidean distance and normalized the distance by the mean of the 1173 
distances calculated between random pairs of cells. The number of pairs randomly 1174 
sampled was set to 10% of the total number of cells. 1175 
 1176 

 Anchoring distance rank 1177 
Given that the anchoring distance does not account for the local density of cells, we 1178 
propose a new metric entitled anchoring distance rank (ADR). The ADR is based on the 1179 
normalized rank of the distance between the matched cells of two modalities. For each 1180 
cell 𝑥9:  with cell identity i and modality j, the distance between the cell and all the other 1181 
cells of the other modality j’, 𝑑[𝑥9: , 𝑥<:-^, 𝑘 = 1,… ,𝑁	is calculated, where N is the total 1182 
number of cells. Then the rank of 𝑟9 = 	𝑑(𝑥9: , 𝑥9:-) within the calculated distances is 1183 
normalized by the number of pairs 𝑁 − 1 to obtain the final anchoring rank 𝑚9 =

0%B$
4B$

. 1184 
For each cell, an anchoring rank of 0 indicates an ideal modality integration performance 1185 
as the matched cells are closest to each other in the embedding.  1186 
 1187 
Silhouette index 1188 
The silhouette index was calculated as described in 10) based on the cluster assignment 1189 
wherein each cluster consists of two cells, one cell from a scRNA-seq dataset and one 1190 
cell from a scATAC-seq dataset.  1191 
 1192 
Fraction in the same cluster 1193 
Fraction in the same cluster was calculated as the fraction of the matched cells from two 1194 
modalities in the same cluster. The clusters of cells were generated using Louvain 1195 
algorithm and the number of clusters is equal to the number of cell types in the dataset. 1196 
 1197 
Further details are described in Supplementary Note 3. 1198 
 1199 

 1200 
Data availability: 1201 
 1202 
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All the datasets used in this study (eight scRNA-seq datasets, four scATAC-seq datasets, and 1203 
three dual-omics datasets) are summarized in Supplementary Table 1. All these datasets are 1204 
curated in the SIMBA package, and they can be easily downloaded and imported directly to 1205 
reproduce the analyses presented in this manuscript. 1206 
 1207 
Code availability: 1208 
 1209 
We provide a comprehensive Python package ‘simba’ available at 1210 
https://anaconda.org/bioconda/simba and https://github.com/pinellolab/simba. All the 1211 
proposed procedures are implemented in the “simba” package. ‘simba’ can be easily installed 1212 
with conda “conda install simba”. We also built a website (https://simba-bio.readthedocs.io), 1213 
providing a detailed introduction of the ‘simba’ software and several SIMBA tutorials for 1214 
different types of single-cell analyses presented in this manuscript. 1215 
 1216 
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Supplementary Figures 1352 
 1353 

 1354 
 1355 
Supplementary Figure 1. SIMBA analysis of the scRNA-seq 10x PBMCs dataset. 1356 

a. Three default metrics used to evaluate SIMBA training procedure, including training loss 1357 
(top), validation loss (middle), mean reciprocal rank (MRR) 1358 

b. SIMBA metric plots of genes. All the genes are plotted according to the Gini index 1359 
against max score, standard deviation (std) against max score, and entropy against max 1360 
score, respectively. The same set of genes as in Figure 2c are highlighted. 1361 

c. UMAP visualization of the SIMBA embeddings of cells and the SIMBA embeddings of 1362 
cells and all genes. Genes highlighted in (b) are also highlighted in the UMAP plot. 1363 

d. UMAP visualization of the SIMBA embeddings of cells, colored by gene expression of the 1364 
genes highlighted in (b). 1365 

e. SIMBA barcode plots of the genes highlighted in (b). 1366 
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 1367 
 1368 

 1369 
Supplementary Figure 2. Comparison of SIMBA with Scanpy on the scRNA-seq 10x PBMCs 1370 
dataset. 1371 

a. Venn diagram of top marker genes identified by SIMBA and Scanpy 1372 
b. Scanpy-derived UMAP visualization of cells colored by cell type 1373 
c. Top marker genes detected only by SIMBA. Colored by intensity of gene expression. 1374 
d. Top marker genes detected only by Scanpy. Colored by intensity of gene expression.  1375 
e. SIMBA embedding result after implementing variable gene selection. Left: variable gene 1376 

selection step implemented in SIMBA. Middle: UMAP visualization of SIMBA 1377 
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embeddings of cells. Right: UMAP visualization of SIMBA embeddings of cells and 1378 
variable genes.  1379 

 1380 

 1381 
 1382 
Supplementary Figure 3. SIMBA analysis of the Buenrostro2018 dataset 1383 
 1384 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type (top-left), and TF 1385 
activity scores of TF motifs calculated with chromVAR, respectively. The SIMBA barcode 1386 
plot of each TF motif is shown below the UMAP plot. 1387 

b. Top: UMAP visualization of SIMBA embeddings of cells colored by TF activity scores of k-1388 
mers calculated with chromVAR. Middle: SIMBA barcode plots of the corresponding k-1389 
mers. Bottom: the matching known motif against the enriched k-mer sequences. 1390 

c. Heatmap of cells against neighboring peaks of each cell type that are selected in the 1391 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  1392 
 1393 
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 1394 
 1395 

 1396 
 1397 

 1398 

 1399 
 1400 
Supplementary Figure 4. Comparison of SIMBA performance using scATAC-seq peaks and DNA 1401 
sequence content vs only scATAC-seq peaks.  Top: UMAP visualization of SIMBA embeddings of 1402 
cells for each indicated dataset generated from only scATAC-seq peak information.  Bottom: 1403 
UMAP visualization of SIMBA embeddings of cells for each indicated dataset generated from 1404 
scATAC-seq peak information and DNA sequence content information.  1405 
  1406 
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 1407 
Supplementary Figure 5. Benchmark of SIMBA against top-performing scATAC-seq analysis 1408 
methods. 1409 
  1410 
Top: Evaluation of SIMBA and other methods including cisTopic, SnapATAC, Cusanovich2018 for 1411 
scATAC-seq analysis using metrics 1) ARI, AMI, and Homogeneity for datasets with ground truth 1412 
cell type labels and 2) Residual Average Gini Index (RAGI) for the 10x PBMCs dataset without 1413 
ground truth labels. 1414 
 1415 
Bottom: UMAP visualization of feature matrices produced by each method on each dataset 1416 
colored by cell type annotation or cluster label.  1417 
 1418 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2021.10.17.464750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/


 1419 
 1420 
Supplementary Figure 6. SIMBA multimodal analysis of the SHARE-seq hair follicle dataset. 1421 
 1422 
a. SIMBA embedding results when both gene expression and chromatin accessibility are 1423 

encoded in the graph. Left: UMAP visualization of SIMBA embeddings of cells and genes. 1424 
Middle: UMAP visualization of SIMBA embeddings of cells along with genes, TF motifs, and 1425 
k-mers. Right: UMAP visualization of SIMBA embeddings of cells along with genes, peaks, TF 1426 
motifs, and k-mers. 1427 

b. SIMBA embedding results when only gene expression is encoded in the graph. Left: UMAP 1428 
visualization of SIMBA embeddings of cells. Right: UMAP visualization of SIMBA embeddings 1429 
of cells and variable genes. 1430 

c. SIMBA embedding results when only chromatin accessibility is encoded in the graph. Left: 1431 
UMAP visualization of SIMBA embeddings of cells. Right: UMAP visualization of SIMBA 1432 
embeddings of cells and peaks. 1433 

 1434 
 1435 
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 1436 
Supplementary Figure 7. Cell type specific marker genes and the target genes of master 1437 
regulators identified by SIMBA in the SHARE-seq hair follicle subset dataset. 1438 
 1439 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type and gene 1440 
expression intensity.  1441 

b. SIMBA barcode plots of each gene plotted above.  1442 
c. SIMBA barcode plots of TF motifs Lef1 and Hoxc13.  1443 
d. SIMBA barcode plots of peaks near the loci of Lef1 and Hoxc13. 1444 
e. Top 30 target genes of the master regulators Relb, Gata6, and Nfatc1 as inferred by 1445 

SIMBA.   1446 
 1447 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2021.10.17.464750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/


 1448 
 1449 
Supplementary Figure 8. SIMBA multimodal analysis of the SNARE-seq mouse cerebral cortex 1450 
dataset. 1451 
 1452 

a. From top to bottom: UMAP visualization of SIMBA embeddings of (i) cells (ii) genes 1453 
alongside cells (iii) genes, motifs, and k-mers alongside cells (iv) genes, peaks, motifs, 1454 
and k-mers alongside cells. 1455 

b. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 1456 
intensity.  1457 

c. Heatmap of cells against neighboring peaks of each cell type that are selected in the 1458 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  1459 

d. SIMBA barcode plots of the genes highlighted in (a). 1460 
 1461 
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 1462 
 1463 
Supplementary Figure 9. SIMBA multimodal analysis of the 10x multiome PBMCs dataset. 1464 
 1465 

a. From top to bottom: UMAP visualization of SIMBA embeddings of (i) cells (ii) genes 1466 
alongside cells (iii) genes, motifs, and k-mers alongside cells (iv) genes, peaks, motifs, 1467 
and k-mers alongside cells. 1468 

b. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 1469 
intensity.  1470 

c. Heatmap of cells against neighboring peaks of each cluster that are selected in the 1471 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  1472 

d. SIMBA barcode plots of the genes highlighted in (a). 1473 
 1474 
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 1475 
 1476 
Supplementary Figure 10. SIMBA-inferred marker genes for the scRNA-seq mouse atlas dataset 1477 
in batch correction analysis. 1478 
 1479 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type.  1480 
b. UMAP visualization of SIMBA embeddings of cells and genes.  1481 
c. UMAP visualization of SIMBA embeddings of cells and genes. Biological “query” points 1482 

are highlighted with a red “+”. Nearby informative genes are colored accordingly.   1483 
d. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 1484 

intensity, separated by cell type.  1485 
 1486 
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 1487 
 1488 
Supplementary Figure 11. SIMBA-inferred marker genes for the scRNA-seq human pancreas 1489 
dataset in batch correction analysis. 1490 
 1491 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type.  1492 
b. UMAP visualization of SIMBA embeddings of cells and genes.  1493 
c. UMAP visualization of SIMBA embeddings of cells and genes. Biological “query” points 1494 

are highlighted with a red “+”. Nearby informative genes are colored accordingly.   1495 
d. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 1496 

intensity, separated by cell type.  1497 
 1498 
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 1499 
Supplementary Figure 12. Comparison of SIMBA to other methods for batch correction of the 1500 
mouse atlas (a-b) and human pancreas scRNA-seq datasets (c-d).  1501 

a, c. Quantitative comparison of SIMBA with three other batch correction methods 1502 
including Seurat3, LIGER and Harmony, using, left-to-right: average silhouette width (ASW), 1503 
adjusted Rand index (ARI), and local inverse Simpson’s index (LISI)  1504 
b, d. UMAP visualization of raw and preprocessed data alongside the batch corrected 1505 
results produced by Seurat3, LIGER, Harmony, and SIMBA. Colored by technology (top) and 1506 
cell type (bottom).  1507 

 1508 
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 1509 
 1510 
Supplementary Figure 13. SIMBA-inferred marker features for the SHARE-seq mouse skin 1511 
dataset in multi-omics integration analysis. 1512 
 1513 

a. UMAP visualization of SIMBA embeddings of cells with two cellular modalities 1514 
integrated.  1515 

b. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular 1516 
modalities integrated.  1517 

c. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular 1518 
modalities integrated. Biological “query” points are highlighted with a red “+”. Nearby 1519 
informative genes and peaks are colored accordingly.   1520 

d. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cell 1521 
modalities integrated and known marker genes highlighted. 1522 

e. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 1523 
intensity, separated by cell type.  1524 

f. Heatmap of cells against neighboring peaks of each cell type that are selected in the 1525 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  1526 

  1527 
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 1528 

 1529 
 1530 
Supplementary Figure 14. SIMBA-inferred marker features for the 10x human PBMCs dataset in 1531 
multi-omics integration analysis. 1532 
 1533 

a. UMAP visualization of SIMBA embeddings of cells with two cellular modalities 1534 
integrated.  1535 

b. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular 1536 
modalities integrated.  1537 

c. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular 1538 
modalities integrated. Biological “query” points are highlighted with a red “+”. Nearby 1539 
informative genes and peaks are colored accordingly.   1540 

d. Heatmap of cells against neighboring peaks of each cluster that are selected in the 1541 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  1542 

e. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 1543 
intensity, separated by cell type.  1544 

 1545 
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 1546 
Supplementary Figure 15. Comparison of SIMBA to other methods for multi-omics integration 1547 
of the SHARE-seq mouse skin (a-b) and 10x multiome human PBMCs (c-d) datasets. 1548 

a, c. Quantitative comparison of SIMBA with two other methods including Seurat3, 1549 
LIGER for multi-omics integration, using, left-to-right: anchoring distance rank, 1550 
anchoring distance, silhouette index, and Fraction in the same cluster. 1551 
b, d. UMAP visualization of the raw scRNA-seq and scATAC-seq data from the 10x 1552 
multiome human PBMCs dataset alongside the integrated results produced by Seurat3, 1553 
LIGER, and SIMBA. Colored by data modality (top) and cluster assignment (bottom). The 1554 
red intervals of violin plot of Anchoring distance and Silhouette index shows the 95%   1555 
of the mean. 1556 
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 1557 
Supplementary Notes 1558 
 1559 
Supplementary Note 1: Comparison with scATAC-seq methods 1560 
 1561 
To assess SIMBA’s ability to cluster cell types based on scATAC-seq profiles, we compared SIMBA 1562 
with specialized methods specifically designed for this task. We observed that SIMBA yields 1563 
consistent embeddings of cells when using either a single feature (peaks) or multiple features 1564 
(peaks and DNA sequences from within those peaks) as input to the graph. This comparison was 1565 
performed across four scATAC-seq datasets of varying profiling technologies and organisms 1566 
(Supplementary Fig. 4). Given these differences, to create a fair comparison we used the same 1567 
set of features (i.e., peaks) for SIMBA as other methods. SIMBA’s performance was compared 1568 
against three of the top methods, including SnapATAC1, Cusanovich20182, and cisTopic3 1569 
recommended by our recent benchmark study4. This comparison was first made qualitatively 1570 
based on UMAP visualization and then quantitatively based on clustering performance. SIMBA 1571 
performed as well as or better than each of the methods evaluated. These results comparing 1572 
SIMBA to scATAC-seq-specialized methods highlight SIMBA’s wide utility for single-cell analyses 1573 
(Supplementary Fig. 5). 1574 

 1575 

Supplementary Note 2:  Comparison with batch correction methods 1576 
 1577 
Multiple methods have now been developed to correct for the technical effects of sample 1578 
preparation and data collection in single cells. To assess SIMBA’s performance in removing batch 1579 
effects, we compared it to Seurat35, LIGER6 and Harmony7, three top-performing batch 1580 
correction methods recommended in a recent benchmark study8.  1581 
 1582 
Two datasets, including a mouse atlas dataset and a human pancreas dataset (see 1583 
Supplementary Table 1), were used for the evaluation. The mouse atlas dataset is composed of 1584 
two scRNA-seq subsets with shared cell types from different sequencing platforms. The human 1585 
pancreas dataset is composed of five samples pooled from five distinct sources using four 1586 
different sequencing techniques wherein not all cell types are shared across each sample. 1587 
 1588 
To qualitatively compare these methods, we visualized cells of each dataset before and after 1589 
batch-correction in UMAP plots (Supplementary Fig. 12b,d). To quantitatively evaluate the 1590 
performance of each method, using the benchmarking pipeline laid out in Tran et al8, we 1591 
measured the conservation of biological information and batch effect removal based on three 1592 
different metrics: average silhouette width (ASW), adjusted Rand index (ARI), and local inverse 1593 
Simpson’s index (LSI)7 as in the previously-mentioned benchmark study8 (Supplementary Fig. 1594 
12a,c; Methods). Each metric measures the relative mixing of class labels, where optimal 1595 
performance is associated with maximal mixing in the batch labels and minimal mixing in the 1596 
cell type labels. 1597 
 1598 
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The “Raw” batch correction results are the first 50 principal components of the horizontally 1599 
concatenated gene-by-cell expression count matrix using stats::prcomp in R package with 1600 
centering and scaling. The “Raw, preprocessed” batch correction used the preprocessed data 1601 
with log normalization with scaling factor 104 and selection of 3000 highly variable genes with 1602 
Seurat v3 with no restriction on the minimum number of cells and genes. 1603 
 1604 
For batch correction using Seurat v3, default options are used for pancreas dataset whereas for 1605 
mouse atlas dataset no cutoff was used for the minimum number of cells and genes as in Tran 1606 
et al.8. The dimension of the batch corrected embedding is set as 50 dimensions following the 1607 
default option for Seurat::RunPCA and for the consistency with SIMBA.  1608 
 1609 
For batch correction using LIGER, the same arguments are used (lambda = 5, nrep = 3) are used 1610 
for liger::optimizeALS in Tran et al. other than the number of factors k was set as 50 for 1611 
consistency with other methods for both datasets.  1612 
 1613 
For batch correction using Harmony, the same arguments are used as in Tran et al.8 other than 1614 
the number of dimensions of the output embedding was set to 50 instead of 20. We note that 1615 
the output embedding of 20 dimensions would result in the similar result as when used 50 1616 
dimensions in these methods. 1617 
 1618 
Supplementary Note 3: Comparison with multi-omics integration methods 1619 
 1620 
Seurat3 and LIGER are two of the most widely-adopted methods for single-cell data integration. 1621 
Here, we demonstrate that SIMBA outperforms these methods on two separate datasets, the 1622 
recently published SHARE-seq mouse skin dataset and the similarly recent 10x PBMCs multiome 1623 
dataset (Supplementary Table 1). We focus on Seurat3 and LIGER as they have explicit 1624 
documentation for the task of integrating scRNA-seq and scATAC-seq data.  1625 
 1626 
We first qualitatively evaluated these methods by inspecting UMAP visualization plots. For the 1627 
SHARE-seq dataset, we observed that all three methods perform comparably well in mixing 1628 
cells of two modalities though LIGER generated particularly small and noisy clusters 1629 
(Supplementary Fig. 15b). For the 10X PBMCs dataset, SIMBA resulted in the best mixing of 1630 
cells belonging to each modality whereas other methods clustered cells separately within the 1631 
originating modalities (Supplementary Fig. 15d). We next quantitatively assessed the 1632 
integration performance of each method using four metrics that measure the distances 1633 
between matched cells in the integrated space (Methods). In addition to the commonly-used 1634 
metrics including anchoring distance, Silhouette index, and Fraction in the same cluster, we 1635 
developed an additional metric, anchoring distance rank (ADR), which represents the 1636 
normalized rank of the distance between matching cells. If two matching cells from scRNA-seq 1637 
and scATAC-seq are mutually closest to one another, their ADR will be close to 0 (Methods) and 1638 
thus a minimized ADR is ideal. Overall SIMBA showed the best performance according to ADR 1639 
as well as cluster agreement while showing comparable or better performance according to the 1640 
remaining metrics for both datasets (Supplementary Fig. 15a,c). 1641 
 1642 
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 1643 
The modality integration procedure for Seurat v3 and LIGER follows the tutorial provided by the 1644 
authors (Seurat v3: 1645 
https://satijalab.org/seurat/archive/v3.1/atacseq_integration_vignette.html; LIGER: 1646 
http://htmlpreview.github.io/?https://github.com/welch-1647 
lab/liger/blob/master/vignettes/Integrating_scRNA_and_scATAC_data.html).  1648 
 1649 
Both Seurat v3 and LIGER formulate the modality integration task between scRNA-seq and 1650 
scATAC-seq data as a batch correction task between scRNA-seq and gene activity matrix 1651 
constructed from scATAC-seq. In Seurat v3, the gene activity score of a gene is calculated as the 1652 
sum of the read counts in the peaks that falls within from 2kb upstream of the TSS to the end of 1653 
the gene body.  In LIGER, this score is calculated as the sum of all read counts that falls within 1654 
3kb upstream of the TSS to the end of the gene body. 1655 
 1656 
The “Raw” results start from a scRNA-seq count matrix and a gene activity matrix calculated by 1657 
Seurat v3. Filtering for the shared genes in both modalities resulted in 16738 genes for the 1658 
SHARE-seq mouse skin dataset and 11045 genes for the 10X PBMCs dataset. Gene-by-cell gene 1659 
expression matrix and gene activity matrix were horizontally concatenated along matching rows 1660 
(genes). The output embedding is the first 20 principal components calculated by the R function 1661 
stats::prcomp  with centering and scaling.  1662 
 1663 
For the modality integration using Seurat v3, the gene expression count was filtered using the 1664 
default parameters min.cells = 3 and min.features = 200. The co-embedding was created as 1665 
described in the tutorial of the package using the scRNA-seq. The output embedding consists of 1666 
the first 50 principal components, which is the default option of Seurat::RunPCA.  1667 
 1668 
For the modality integration using LIGER, the gene expression count and gene activity matrices 1669 
were normalized and filtered for the genes that are shared between both matrices. The values 1670 
were then scaled according to the tutorial. In applying LIGER to the SHARE-seq mouse skin 1671 
dataset, the function, liger::optimizeALS was used with the default parameters, k = 20 and 1672 
lambda = 5.  The scRNA-seq dataset was indicated as the reference in the function, 1673 
liger::quantile_norm as described in the documentation. The scRNA-seq and scATAC-seq 1674 
modalities of the 10X PBMC multiome dataset were unable to be aligned using the default 1675 
parameters. Thus lambda = 30 and max.iters = 100 were used for the liger::optimizeALS 1676 
function and the scATAC-seq dataset was indicated as the reference using the 1677 
liger::quantile_norm function to ensure a better alignment. 1678 
 1679 
References 1680 
 1681 
 1682 
1. Fang, R. et al. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat 1683 

Commun 12, 1337 (2021). 1684 
2. Cusanovich, D.A. et al. The cis-regulatory dynamics of embryonic development at single-1685 

cell resolution. Nature 555, 538-542 (2018). 1686 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2021.10.17.464750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/


3. Bravo Gonzalez-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-1687 
seq data. Nat Methods 16, 397-400 (2019). 1688 

4. Chen, H. et al. Assessment of computational methods for the analysis of single-cell 1689 
ATAC-seq data. Genome Biology 20, 241 (2019). 1690 

5. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 1691 
e1821 (2019). 1692 

6. Welch, J.D. et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of 1693 
Brain Cell Identity. Cell 177, 1873-1887 e1817 (2019). 1694 

7. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with 1695 
Harmony. Nat Methods 16, 1289-1296 (2019). 1696 

8. Tran, H.T.N. et al. A benchmark of batch-effect correction methods for single-cell RNA 1697 
sequencing data. Genome Biol 21, 12 (2020). 1698 

 1699 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2021.10.17.464750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/

