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Abstract

Recent advances in single-cell omics technologies enable the individual and joint profiling of
cellular measurements. Currently, most single-cell analysis pipelines are cluster-centric and
cannot explicitly model the interactions between different feature types. In addition, single-cell
methods are generally designed for a particular task as distinct single-cell problems are
formulated differently. To address these current shortcomings, we present SIMBA, a graph
embedding method that jointly embeds single cells and their defining features, such as genes,
chromatin accessible regions, and transcription factor binding sequences into a common latent
space. By leveraging the co-embedding of cells and features, SIMBA allows for the study of
cellular heterogeneity, clustering-free marker discovery, gene regulation inference, batch effect
removal, and omics data integration. SIMBA has been extensively applied to scRNA-seq,
scATAC-seq, and dual-omics data. We show that SIMBA provides a single framework that allows
diverse single-cell analysis problems to be formulated in a unified way and thus simplifies the
development of new analyses and integration of other single-cell modalities. SIMBA is
implemented as an efficient, comprehensive, and extensible Python library (https://simba-
bio.readthedocs.io) for the analysis of single-cell omics data using graph embedding.

Introduction

Technology to profile single cells has advanced to several molecular modalities, dramatically
advancing our ability to characterize cell states as well as discover key molecular machinery
that underlies both development and disease. Individual cells are now measured using multiple
molecular modalities, simultaneously. At the same time, single-cell experiments have scaled
such that tens of thousands of cells can be routinely profiled. The emergence of single-cell
multi-omics technologies allows for the measurements of multiple cellular layers, including
genomics, epi-genomics, transcriptomics, and proteomics. Such assays have pioneered an
avenue toward a better understanding of the interplay between layers as they jointly define cell
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states based on diverse genomic and molecular features including genes, regulatory elements,
and transcription factors. While single-cell multi-omic assays have quickly evolved towards the
incorporation of additional modalities with increasing resolution, harnessing their full potential
has posed several significant computational challenges.

Many single-cell computational methods have been developed for the analysis of one modality
(e.g., sScRNA-seq or scATAC-seq analysis) 4. Common to these methods is a workflow that
includes routine steps such as feature selection, dimension reduction, clustering, and
differential feature detection. These “cluster-centric” analysis methods rely on accurately
defined clustering solutions to discover meaningful and informative marker features.
Unfortunately, clustering solutions may range widely within the space of the user-defined
clustering resolution (number of clusters) and the chosen clustering algorithm. These
parameters may markedly influence the resulting cluster assignment and clusters may not
always correspond to the correct or intended cell populations, thereby leading to inconsistent
and potentially misleading biological annotations®. Although initial efforts have been made
recently to develop clustering-free approaches to discover informative genes, they are
specifically designed for extracting gene signatures ® 7 or identifying perturbations between
experimental conditions® from scRNA-seq data, and are therefore limited to single-modality
and single-task analysis.

In addition to single-batch/modality analysis, approaches have also been proposed for multi-
batch and cross-modality analysis, such as multimodal analysis (distinct cellular parameters are
measured in the same cell)®, batch correction (the same cellular parameter is measure in
different batches) %12, and integration of multi-omics datasets (distinct cellular parameters are
measured in different cells)! 12, These approaches play a critical role in removing batch effects
that confound true biological variation, improving the characterization of cell states by
leveraging the unique strengths of each assay, and providing insights into the complex
mechanisms of gene regulation. However, these tasks are formulated differently from those in
single-batch/modality settings and thus require development of new dedicated analysis
techniques. Also, while multiple types of cellular features might be present, the relation
between features cannot be exploited directly by most current methods. Furthermore, similar
to single-batch/modality analysis methods, these methods identify marker features based on
groups of cells obtained by clustering and therefore are limited to clustering solutions.
Additionally, instead of directly identifying marker features in the integrated space, most batch
correction/multi-omics integration methods need to first detect marker features in the
uncorrected/unintegrated original space of each batch/modality independently, and then
combine them, thus resulting in potentially inconsistent interpretations between
batches/modalities.

To overcome the limitations in both single-batch/modality analysis and multi-batch/cross-
modality analysis, we propose SIMBA (SIngle-cell eMBedding Along with features), a versatile
single-cell embedding method that co-embeds cells and features into a shared latent space, in
which various types of tasks can be performed based on the proximity between entities
including cells and features such as genes, peaks, and DNA sequences. Unlike existing methods
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88 that require featurization of cells, SIMBA directly encodes the cell-feature or feature-feature
89 relations into a large multi-entity graph. For each task, SIMBA constructs a graph, wherein
90 differing entities (i.e., cells and features) are represented as nodes and relations between these
91 entities are encoded as edges. Once the graph is constructed, SIMBA then applies a multi-entity
92  graph embedding algorithm derived from social networking technologies as well as a Softmax-
93  based transformation to embed the nodes/entities of the graph into a common low-
94  dimensional space wherein cells and features can be analyzed based on their distance. Hence
95  SIMBA provides an information-rich embedding space containing cells and all the features,
96 serving as an informative database of entities. Depending on the task, we can define biological
97  queries on the “SIMBA database” by considering neighboring entities of either a cell (or cells) or
98 afeature (or features) at the individual-cell and individual-feature level (Methods). For
99 example, the query for a cell’s neighboring features can be used to identify marker features
100 (e.g., marker genes or peaks) or to study the interaction between features (e.g., peak-gene)
101  while the query for features’ neighboring cells can be used to annotate cells.
102
103 By formulating single-cell analyses as multi-entity graph embedding problems, we show SIMBA
104  can be used to solve popular single-cell tasks in a unified framework that would otherwise
105 require the development of distinct specialized approaches for each task, including: 1)
106  dimensionality reduction techniques for studying cellular states; 2) clustering-free marker
107  detection based on the similarity between single cells and features; 3) Single-cell multimodal
108  analysis and the study of gene regulation; 4) batch correction and omics integration analysis as
109  well as the simultaneous identification of marker features. SIMBA is adapted to these diverse
110  analysis tasks by simply modifying how the input graph is constructed from the relevant single-
111  cell data.
112
113  We extensively tested SIMBA in multiple scRNA-seq, scATAC-seq and dual-omics datasets
114  covering popular single-cell tasks including scRNA-seq analysis, sSCATAC-seq analysis, multimodal
115  analysis, batch correction, and multi-omics integration. We demonstrate that SIMBA learns the
116  joint low-dimensional representations of both cells and features and thus enables the ability to
117  simultaneously study cellular heterogeneity as well as proximity-based marker feature
118  detection or gene regulation inference in a clustering-free way. We also demonstrate that
119  SIMBA performs better than or comparably to current state-of-the-art methods specifically
120 developed for each task.
121
122  Importantly, we developed a scalable and comprehensive Python package that enables
123 seamless interaction between graph construction, training with PyTorch for graph embedding,
124  and post-training analysis. The SIMBA package not only provides a self-contained framework
125  that covers preprocessing, graph embedding, and visualization, but also is compatible with
126  popular single cell analysis tool Scanpy?. SIMBA with detailed documentation and extensive
127  tutorials is available at https://simba-bio.readthedocs.io.
128
129  We believe that SIMBA, as a broadly applicable approach for single cell omics study, not only
130 outperforms current cluster-centric analysis, but also will simplify the burden of developing
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131  methods for new single-cell tasks and measurements, while increasing interpretability of
132 cellular mechanisms and functions.

133

134  Results

135

136  Overview of SIMBA

137  SIMBA is a single-cell embedding method with support for single- or multi- modality analyses
138 that embeds cells and their associated genomic features into a shared latent space, generating
139 interpretable and comparable embeddings of cells and features. It leverages recent graph

140 embedding techniques that have been successful in modeling complex and hierarchical

141  information present in natural languages, social networks, and other domains, as “knowledge
142  graphs”. In our case, the graph encodes cells, different components of cellular regulatory

143  circuits, and the relations between them.
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144
145 Figurel. SIMBA framework overview. SIMBA co-embeds cells and various features
146 measured during single-cell experiments into a shared latent space to accomplish both
147 common tasks involved in single-cell data analysis as well as tasks, which remain as open
148 problems in single-cell genomics. (Left) Examples of possible biological entities may be
149 encoded by SIMBA including cells, gene expression measurements, chromatin accessible

150 regions, TF motifs, and k-mer sequences found in reads. (Middle) SIMBA embedding plot
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151 with multiple types of entities into a low-dimensional space. All entities represented as
152 shapes (cell = circle, peak = triangle, gene = square, TF motif = star, k-mer = hexagon) are
153 colored by relevant cell type (green, orange, and blue in this example). Non-informative
154 features are colored dark grey. Within the graph, each entity is a node, and an edge
155 indicates a relation between entities (e.g., a gene is expressed in a cell, a chromatin region
156 is accessible in a cell, or a TF motif/k-mer is present within an open chromatin region,
157 etc.). Once connected in a graph, these entities may be embedded into a shared low-
158 dimensional space, with cell-type specific entities embedded in the same neighborhood
159 and non-informative features embedded elsewhere. (Right) Common single-cell analysis
160 tasks that may be accomplished using SIMBA.

161

162  SIMBA first encodes different types of entities such as cells, genes, open chromatin regions

163  (peaks or bins), transcription factor (TF) motifs, and k-mers (short sequences of a specific

164  length, k), into a single graph (Fig. 1, Methods) where each node represents an individual entity
165 and edges indicate relations between entities. For example, if a gene is expressed in a cell, an
166 edge is created between the gene and cell. The weight of this edge is determined by the gene
167  expression level. Similarly, an edge is added between a cell and a chromatin region if the region
168 is open in this cell, or between a chromatin region and a TF motif if the TF motif is found in the
169 region.

170  Once the input graph is constructed, a low-dimensional representation of the graph nodes is
171  then computed using an unsupervised graph embedding method. This graph embedding

172  procedure leverages the PyTorch-BigGraph framework 3, which allows SIMBA to scale to

173  millions of cells (Methods). The obtained SIMBA space provides an intuitive way to study gene
174  regulation and the regulatory mechanisms underlying cell differentiation and specification. The
175 resulting joint embedding of cells and features not only reconstructs the heterogeneity of cells
176  but also allows for the discovery of the defining features for each individual cell without relying
177  on a clustering solution, separating cell-type specific features from the non-informative

178  features. In fact, the relationship between cells and features can be explored directly through
179  their mutual proximity in the SIMBA embedding as the distance between embedded nodes

180 reflects their edge probability, which is informative of the potential importance of a feature to a
181  cell and the interplay between features (Methods).

182  Therefore, cell-type-specific features such as marker genes, cis-regulatory elements can be

183  discovered without clustering in two different ways. When the labels of cells are known, marker
184  features can be identified as the neighboring features of cells by performing biological queries
185 (Methods). When these labels are unknown, marker features can be identified through

186 calculating the imbalance of edge probabilities between a feature and all cells using metrics

187  such as the Gini index (Methods).

188 Importantly, graph construction is inherently flexible, enabling SIMBA to be applied to a wide
189  variety of single-cell tasks. In the following sections, we demonstrate the application of SIMBA
190 to several popular single-cell tasks including scRNA-seq, scATAC-seq, multimodal analysis, batch
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191  correction and multi-omics integration (Fig. 1). Extensions to additional tasks will become
192  readily apparent to the reader and are later discussed.

193

194

195 SIMBA enables simultaneous learning of cellular heterogeneity and individual-cell-level
196  marker genes in scRNA-seq analysis

197  Single-cell RNA sequencing (scRNA-seq) is the most robust and widely used measurement to
198  profile single cells. Figure 2a provides an illustrative overview of the SIMBA graph construction
199  and the resulting low-dimensional embedding matrix of both cells and genes. Here we show
200 how SIMBA enables simultaneous dimensionality reduction and clustering-free marker gene
201  detection in scRNA-seq analysis. We applied SIMBA to a popular PBMCs dataset from 10x

202  Genomics (Supplementary Table 1) to illustrate its workflow. After the standard preprocessing
203  steps including normalization and log-transformation, SIMBA discretizes the gene expression
204  matrix into multiple gene expression levels (five levels, by default). The input graph is then

205 constructed wherein two types of nodes —cells and genes are connected by edges that embody
206  the relation between them and are weighted according to the corresponding multiple levels of
207  gene expression. SIMBA then generates embeddings of these nodes through a graph

208 embedding procedure (Fig. 2a; Methods). Depending on the task, we have the full flexibility to
209  visualize either the whole SIMBA embeddings (embeddings of cells and all genes in

210 Supplementary Fig. 1c) or the partial SIMBA embeddings (embeddings of cells in Fig. 2b, or
211  embeddings of cells and variable genes in Fig. 2c, or embeddings of any entities of interest)
212 using visualization tools such as UMAP.

213  When the SIMBA embeddings of cells were visualized, each of the eight cell types, including B
214  cells, megakaryocytes, CD14 monocytes, FCGR3A monocytes, dendritic cells, NK cells, CD4 T,
215 and CD8T cells, was clearly separated (Fig. 2b). When the SIMBA embeddings of both cells and
216  genes were visualized, the co-embedding space showed that SIMBA not only recovered the
217  cellular heterogeneity, but also correctly embedded informative genes close to relevant cell
218  types (Fig. 2c). The same set of marker genes used to annotate these cells from Scanpy? was
219  highlighted on the UMAP plot. In addition, as a control, we also show the locations of two
220 housekeeping genes GAPDH and B2M, which would not be expected to associate with any
221  particular cell type. From the UMAP plot, we can see that SIMBA not only was able to embed
222  major-cell-group specific genes to the correct locations (e.g., IL7R was embedded into CD4T
223 cells and MS4A1 was embedded into B cells), but also was robust to rare-cell-group specific
224  genes (e.g., PPBP was embedded into megakaryocytes). On the contrary, non-informative or
225  non-cell-type specific genes such as GAPDH and B2M were embedded in the middle of all cell
226  groups (Fig. 2c and Supplementary Fig. 1c).

227  These highlighted genes can be further confirmed with “barcode plot”, which visualizes the

228  estimated probability of assigning a feature to a cell by SIMBA based on the recovered edge
229  confidence (Fig. 2d, Supplementary Fig. 1e, Methods). An imbalance in probability indicates
230 the association of a gene to a sub-population of cells (often corresponding to known cell-types),
231  whereas a uniform probability distribution indicates a non-cell-type-specific gene. For marker
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genes (CST3 for monocytes and dendritic cells, MS4A1 for B cells, and NGK7 for NK and CD8T
cells), we observed a clear excess in the probability of assigning each gene to their respective
cell types.-Conversely, for the housekeeping gene GAPDH, we observed a more uniform
distribution with much lower probability of associating that gene with the top-ranked cells.
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Figure 2. Single-cell RNA-seq analysis of the 10x PBMCs dataset using SIMBA. (a) SIMBA
graph construction and embedding in scRNA-seq analysis. Biological entities including
cells and genes are represented as shapes and colored by relevant cell types (green and
orange). Non-informative genes are colored dark grey. Gene expression measurements
for each cell are organized into a cell-by-gene matrix. These normalized non-negative
observed values undergo discretization into five gene expression levels. Cells and genes
are then assembled into a graph with nodes representing cells and genes, and edges
between them representing different gene expression levels. This graph may then be
embedded into a lower dimensional space resulting in a #entities x #dimension (by default,
50) SIMBA embedding matrix. (b) UMAP visualization of SIMBA embeddings of cells
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247 colored by cell type. (c) UMAP visualization of SIMBA embeddings of cells and variable
248 genes. Cells are colored according to cell type as defined in b. Genes are colored slate
249 blue. Cell-type-specific marker genes and housekeeping genes recovered by Scanpy are
250 indicated with text and arrows. Genes highlighted in red are shown in d, e, and f. (d)
251 SIMBA barcode plots of genes CST3, MS4A1, NKG7, and GAPDH. The x-axis indicates the
252 ordering of a cell as ranked by the probability for each cell to be associated with a given
253 gene. The y-axis describes the probability. The sum of probability over all cells is equal to
254 1. Each cell is one bar and colored according to cell type as defined in b. € SIMBA ranking
255 of genes based on the proposed metrics. All the genes are plotted according to the Gini
256 index against max score. The same set of genes as in ¢ are annotated. (f) UMAP
257 visualization of SIMBA embeddings of cells colored by gene expression of (left to right):
258 CST3, NKG7, MS4A1, and GAPDH.

259

260 SIMBA also provides several quantitative metrics (termed “SIMBA metrics”), including max

261 value, Gini index, standard deviation, and entropy, to assess cell-type specificity of various

262  features without requiring the prior knowledge such as cluster labels, predefined cell types, or
263  known marker genes (Methods). As an example, by inspecting the gene metric plot of max

264  value (a measurement of maximum probability, a higher value indicates higher cell-type

265  specificity) vs Gini index (a measurement of imbalance, a higher value indicates higher cell-type
266  specificity), we observed that the marker genes (e.g., CST3, NKG7, MS4A1) fall in the upper right
267  corner, as opposed to housekeeping genes (e.g., GAPDH) in the lower left corner (Fig. 2e).

268  Similar separation is observed with other metrics (Supplementary Fig. 1b). The cell type

269  specificity of the selected marker genes was further confirmed by visualizing their expression
270  pattern on UMAP plots (Fig. 2f and Supplementary Fig. 1d), accompanied by SIMBA barcode
271  plots (Supplementary Fig. 1d). As a certain feature (e.g., genes) might notably outnumber cells
272  or other features (when multiple types of features are present), SIMBA metrics not only serve
273  as an efficient way of ranking features based on their cell type specificity, but also provides a
274  straightforward way to filter out non-informative (non-cell-type-specific) features so that only
275 the embeddings of cells and informative features will be visualized and the SIMBA space will
276  not be crowded with non-informative features (e.g., house-keeping genes).

277  We next compared the top 600 marker genes identified by SIMBA (based on max value and Gini
278 index) with those identified by the clustering-based statistical-tests method implemented in
279  Scanpy (based on z-score calculated from the two-sided Wilcoxon rank-sum test with a

280 Benjamini-Hochberg p-value correction, one of the statistical tests recommended in Scanpy’s
281  tutorial) (Supplementary Fig. 2a). Upon comparison, we observed that nearly half of the marker
282  genes discovered by SIMBA overlap with the marker genes identified by Scanpy

283  (Supplementary Fig. 2a). However, on inspection of the top non-overlapping marker genes,
284  genes identified by SIMBA are found to be enriched only within certain groups of cells

285  (Supplementary Figs. 2b and 2c) while genes identified by Scanpy but not by SIMBA include the
286  housekeeping gene B2M and multiple ribosomal protein genes (e.g., RPS3 and RPS6) that are
287  expressed ubiquitously in all cell types (Supplementary Figs. 2b and 2d). Furthermore, a

288 combination of different statistical tests proposed in Scanpy is required to recover the genes


https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.17.464750; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

289 identified only by SIMBA. For example, IL7R was identified only by using the t-test and FCER1A
290 was identified only by using the Wilcoxon rank-sum test, as also noted in the Scanpy’s tutorial,
291  while SIMBA successfully identified both IL7R and FCER1A as informative genes with a single
292  procedure and without clustering the cells (Fig. 2e and Supplementary Fig. 1b). These examples
293  illustrated some limitations of the clustering-based statistical-tests methods.

294  Lastly, we showed that SIMBA does not require variable gene selection, which is an essential
295 step in standard scRNA-seq pipelines such as Seurat or Scanpy. SIMBA produces very similar
296  embeddings for cells with and without variable gene selection (Fig. 2b and Supplementary Fig.
297  2e), though we observed that variable gene section does improve efficiency of the training
298  procedure.

299  SIMBA enables simultaneous characterization of cell states and cis-regulatory elements by
300 jointly modeling accessible sites and DNA sequences in scATAC-seq analysis

301

302 As one of the most popular single-cell epigenomic techniques, single-cell assay for transposase-
303  accessible chromatin using sequencing (scATAC-seq) has been widely used to profile regions of
304 open chromatin and identify functional cis-regulatory elements such as enhancers and active
305 promoters. In scATAC-seq, cells are characterized by different types of features 4, such as regions
306  of accessible chromatin (“peaks” or “bins”) and cis-regulatory elements (DNA sequences) within
307 these accessible regions including transcription factor (TF) motifs or k-mers.

308

309 Unlike existing methods that can only use peaks/bins or the DNA sequence within them, SIMBA
310 can leverage simultaneously both types of features to learn cell states due to its flexibility in
311  graph construction. Also, as SIMBA encodes cell-feature or feature-feature relations into the
312 graph based on the simple binary presence of a feature, SIMBA does not need additional
313 normalization steps such as term frequency-inverse document frequency (TF-IDF), which is
314  required by most scATAC-seq analyses. When only peaks/bins are used, SIMBA constructs a graph
315 with nodes representing cells and chromatin regions (peaks or bins) and edges indicating the
316  accessibility of the chromatin regions in cells (Fig. 3a). When the DNA sequences for chromatin
317 regions are available, SIMBA can also encode DNA sequences including TF motifs and k-mers into
318 the graph by adding edges between these entities as nodes and the existing chromatin region
319 nodes. The edges in this case indicate the presence of TF motifs/k-mers within these chromatin-
320 accessible regions. Through the embedding procedure, SIMBA generates embeddings of cells
321  along with peaks and DNA sequences (Methods). Finally, either the partial SIMBA embeddings
322  (embeddings of cells in Fig.3b) or the whole SIMBA embeddings (embeddings of cells and all the
323  features in Fig.3c) can be visualized. Therefore, SIMBA enables dimensionality reduction by
324  leveraging both chromatin accessible regions and cis-regulatory sequences. Simultaneously, it
325 highlights the cell-type-specific open chromatin regions and regulatory DNA sequences in a
326  clustering-free way.

327

328 To demonstrate the value of SIMBA embeddings for scATAC-seq analysis, we first applied

329 SIMBA to a scATAC-seq data of 2,034 human hematopoietic cells with FACS-characterized cell
330 types'®(Supplementary Table 1). For the SIMBA embeddings of cells alone, as shown in Fig. 3b,
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SIMBA accurately separated cells such that cells belonging to distinct cell types are visually
separated. For the SIMBA embeddings of cells together with various types of features, as shown
in Fig. 3¢, SIMBA successfully embedded distinct features from both positional (peaks/bins) as
well as sequence-content (TF motifs and k-mers) information together based on their biological
relations. Notably, based on SIMBA metrics, these highlighted features that are embedded

within each cell type all have high cell-type specificity scores (shown in the upper right part of
SIMBA metric plots in Figure 3d).
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Figure 3. Single-cell ATAC-seq analysis of the human hematopoiesis dataset using SIMBA.
(a) SIMBA graph construction and embedding in scATAC-seq analysis. Biological entities
including cells, peaks/bins, TF motifs, k-mers are represented as shapes and colored by
relevant cell types (green and orange). Non-informative features are colored dark grey.
Cells and chromatin accessible features (peaks / bins) are organized into a cell x peaks /
bins matrix. When sequence information (TF motif or k-mer sequence) within these
regions is available, they can be organized into two sub-matrices to associate a TF motif
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348 or k-mer sequence with each peak/bin. These constructed feature matrices are then
349 binarized and assembled into a graph. When a single feature (chromatin accessibility) is
350 used, the graph encodes cells and peaks/bins as nodes. When multiple features (both
351 chromatin accessibility and DNA sequences) are used, this graph may then be extended
352 with the addition of TF motifs and k-mer sequences as nodes connected. Finally, SIMBA
353 embeddings of these entities are generated through a graph embedding procedure. (b)
354 UMAP visualization of SIMBA embeddings of cells colored by cell type. (c) UMAP
355 visualization of SIMBA embeddings of cells and features including TF motifs, k-mers, and
356 peaks. Cells are colored by cell type while motifs, k-mers, and peaks are colored green,
357 blue, and pink, respectively. Cell type specific features that are embedded near their
358 corresponding cell types are indicated as the text labels (colored according to feature type)
359 with arrows. (d) SIMBA metric plots of TF motifs, k-mers, and peaks. Cell-type specific
360 features annotated in (c) are highlighted. € Genomic tracks of aligned scATAC-seq
361 fragments, separated and colored by cell type. Two marker peaks P1 and P2 in red are
362 shown beneath the alignment. Within the peak P1, k-mer GATAAG and its resembling
363 GATA1 motif logo are highlighted. (f) UMAP visualization of SIMBA embeddings of cells
364 colored by TF activity scores of the GATA1 motif and k-mer GATAAG enrichment. (g)
365 SIMBA barcode plots of the GATA1 motif, k-mer GATAAG, and the two peaks P1 and P2.
366 Cells are colored according to cell type labels described above. Dotted red line indicates
367 the same cutoff used in all four plots.

368

369  Our analysis using SIMBA led to several key findings in human hematopoietic differentiation.
370

371  First, SIMBA identified key master regulators of hematopoiesis. As highlighted in Fig. 3¢, we
372  observed that motifs of previously reported TFs were embedded near their respective cell types
373  inthe UMAP plot. For example, the GATA1 and GATA3 motifs are proximal to megakaryocyte-
374  erythroid progenitor (MEP) cells'®, the PAX5 and EBF1 motifs are near to common lymphoid
375  progenitor (CLP) cells'’, and the CEBPB and CEBPD motifs are proximal to monocyte (mono)
376  population®®,

377

378 Second, SIMBA revealed an unbiased set of DNA sequences, i.e., k-mers, that represent

379 important TF binding motifs involved in hematopoiesis. We observed that these k-mers were
380 embedded near their resembling TF binding motifs and relevant cell subpopulations (Fig. 3¢ and
381 3e, Supplementary Fig. 3b), indicating that this methodological framework is capable of de
382  novo motif discovery. For example, the DNA sequence, CAGCTG is embedded in plasmacytoid
383  dendritic cells (pDCs); this sequence matches the TCF12 binding motif, which controls dendritic
384 cell lineage specification. To further illustrate the interpretability of the SIMBA embeddings of
385  TF motifs and k-mers, we calculated per-cell TF activity scores'® (high-variance TF motifs/k-
386  mers) and visualized them on SIMBA embeddings of cells. As shown in Figure 3f, the GATA1 TF
387  motif and k-mer GATAAG that were both embedded in MEP cells by SIMBA, also showed high-
388 level activity in MEP cells. The consistency between SIMBA embedding and TF activity was

389 observed for most of other TF motifs and k-mers as well (Supplementary Fig. 3a, 3b).

390
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391 Third, SIMBA identified differentially accessible chromatin regions that may mediate cell-type
392  specific gene regulation. For example, the two peaks with coordinates chr19:12997999-

393 12998154 (P1) and chr19:12998329-12998592 (P2) that were embedded within MEP cells were
394  almost exclusively observed in MEP cells on KLF1 genome track (Fig. 3e). Interestingly, P1,

395 upstream of KLF1, contains the k-mer GATAAG that matches the GATA1 binding motif, while
396 transcription factor GATA1L is known to regulate the gene KLF1 and plays a pivotal role in

397 erythroid cell and megakaryocyte development?®. Therefore, by embedding these MEP-cell-
398 related regulatory elements into the neighborhood of MEP cells, SIMBA demonstrates a novel
399 means of studying the epigenetic landscape of cell differentiation. To further validate the

400 differentially accessible regions identified by SIMBA, we selected 100 peaks at random from
401 each annotated cell type in SIMBA co-embedding space. From the heatmap of chromatin

402  accessibility, we clearly see that the peaks embedded nearby respective types correlate with
403  strong cell-type specificity. This observation is robust to the number of cells within each cell
404  type (Supplementary Fig. 3c).

405

406  Available methods for scATAC-seq analysis visualize only cells. While SIMBA diverges from these
407  available workflows, enabling the co-embedding of cells and features, we still qualitatively and
408 quantitatively compared the SIMBA embeddings of cells to state-of-the-art scATAC-seq analysis
409 methods by their ability to distinguish cell types. Our analyses show that SIMBA overall

410 performs better than the methods evaluated, further demonstrating the wide utility of SIMBA
411  (Supplementary Figs. 4 and 5; Supplementary Note 1).

412

413

414  SIMBA enables simultaneous learning of cellular heterogeneity and gene regulatory circuits
415 from integrated analysis of single-cell multimodal data

416

417  scRNA-seq and scATAC-seq are two of the most widely adopted single-cell sequencing

418 technologies, but they are limited to measuring only a single aspect of cell state at a time. To
419 improve our ability to interrogate cell states, several single-cell dual-omics technologies have
420 been recently developed 224 to jointly profile transcriptome and chromatin accessibility within
421  the same individual cells, therefore providing the potential to correlate gene expression with
422  accessible regulatory elements and further delineate the yet elusive principles of gene

423  regulation. This section outlines the SIMBA’s ability to simultaneously learn cell heterogeneity
424 as well as gene regulatory circuits from single-cell multiomic data. We applied SIMBA to three
425  recent single-cell dual-omics technologies: SHARE-seq??, SNARE-seq??, and a multiome PBMCs
426  dataset from 10x Genomics (Supplementary Table 1).

427  Figure 4a illustrates the procedure of graph construction and generation of the final SIMBA

428 embedding matrix. Briefly, for scRNA-seq, the gene expression matrix is discretized to generate
429  different levels of gene expression. For scATAC-seq, both the chromatin accessibility matrix and
430  motif/k-mer match matrix are binarized. In this graph, there are five entity (node) types,

431 including cells, genes, peaks, motifs, and k-mers. For scRNA-seq, an edge indicates whether a
432  geneis expressed in a cell and its weight indicates the gene expression level (five levels, by

433  default). For scATAC-seq, an edge indicates whether a peak is present in a cell or if a TF motif/k-
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mer is present within a peak. Once the graph is constructed, the graph embedding procedure is
performed to generate SIMBA embeddings of cells and different types of features. scATAC-seq
peaks generally greatly outnumber cells and other features and many of these peaks are non-
informative, resulting in them dominating the space if the whole SIMBA embeddings are
visualized (Supplementary Fig. 6a, c). In such cases, we leverage the flexibility of SIMBA
embedding to only visualize the partial SIMBA embeddings to improve the visibility of cells and

cell-type-specific features.
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Figure 4. Multimodal analysis of the SHARE-seq hair follicle dataset using SIMBA. (a)
SIMBA graph construction and embedding in multimodal analysis. Overview of SIMBA’s
approach to multimodal (scRNA-seq + scATAC-seq) data analysis. (b) SIMBA metric plots
of genes, TF motifs, and peaks. All these features are plotted according to the Gini index
against max score. Cell-type specific genes, TF motifs, and peaks are highlighted. (c) UMAP
visualization of SIMBA embeddings of cells (Top-left), cells and genes (Top-right), and cells
along with genes, TF motifs, and peaks (Bottom). (d) Ranked scatter plot of candidate
master regulators as identified by SIMBA. € Schematic description of SIMBA’s strategy for
identifying target genes given a master regulator. (f) Top 30 target genes of transcription
factors Lefl and Hoxc13 as inferred by SIMBA.
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452

453 To demonstrate the usefulness and versatility of the SIMBA embeddings, we analyzed
454 the cell populations undergoing the dynamic process of hair follicle differentiation from
455 mouse skin profiled with SHARE-seq.

456  First, we calculated SIMBA metrics (max values and Gini index scores) to assess the cell-type
457  specificity of different types of features, including genes, TF motifs, and peaks (Fig. 4b,

458 Methods). As shown in Figure 4b, based on these metrics, we successfully recovered genes
459  associated with hair follicles such as Lef1 and Hoxc13. Similarly, TF motifs and peaks proximal to
460 the genomic loci of these genes also score in the upper right quadrant of the metric plots.

461  SIMBA'’s cell-type specificity metrics successfully revealed the key genes and regulatory factors
462  important to the hair follicle differentiation process.

463  Next, we visualized and interrogated the SIMBA embeddings of 1) cells; 2) cells and top-ranked
464  genes based on SIMBA metrics; and 3) cells, top-ranked genes and TF motifs based on SIMBA
465  metrics, and the neighboring peaks of these genes and TF motifs by querying the SIMBA space
466 (Methods). Figure 4c shows the UMAP visualization of the partial SIMBA embeddings of cells
467 and informative features. The UMAP visualization of SIMBA embeddings of cells and the full set
468  of features was also performed (Supplementary Fig. 6a).

469 The SIMBA embeddings of cells were able to reveal the three fate decisions from transit-

470  amplifying cells (TACs), including inner root sheath (IRS), medulla, and cuticle/cortex. The

471  SIMBA embeddings of cells and informative features uncovered important genes and regulatory
472  factors along the hair follicle differentiation trajectories. For example, the marker genes Krt71,
473  Krt31, and Foxgl were embedded into their corresponding cell types: IRS, cuticle/cortex, and
474  medulla, respectively. The Lefl motif was embedded into the beginning of medulla and

475  cuticle/cortex lineages while the Hoxc13 motif was embedded into the late stage of

476  cuticle/cortex differentiation. Peaks near the Lef1 and Hoxc13 loci were also embedded into the
477  nearby regions of these genes and motifs, as expected.

478  To show the robustness of SIMBA, we separated the scRNA-seq and scATAC-seq components
479  within the SHARE-seq dataset and performed each respective single-modality analysis. With the
480 consistent embedding results of cells as in multimodal analysis, we further demonstrated that
481  SIMBA embedding procedure is robust to the type and the number of features encoded in the
482  input graph (Supplementary Fig. 6b,6¢). Each reported marker gene was corroborated using
483 the UMAP plots with cells colored by gene expression as well as using the SIMBA barcode plots.
484  The two aforementioned TF motifs and their respective peak sets were supported by the

485  corresponding SIMBA barcode plots, wherein we observed an imbalanced distribution with high
486  probability towards the correct cell type labels (Supplementary Fig. 7a-d).

487  Further, we demonstrated that the SIMBA co-embedding space of cells and features provides
488 the potential to identify master regulators of differentiation and infer their target regulatory
489  genes. To define a master regulator a priori, we postulated that both its TF motif and TF gene
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490 should be cell-type specific, given that active gene regulation involves both the expression of a
491  TF and accessibility of its binding sites. Thus, the TF motif and TF gene should be embedded

492 closely in the shared latent space. Extending this logic to identify putative master regulators, we
493  assessed the cell-type-specificity of TF motifs and genes based on SIMBA metrics and ranked all
494  potential master regulators based on the distance between the TF motif and the respective TF
495 gene in the shared SIMBA embedding space (Methods). SIMBA successfully identified

496  previously described master regulators such as Lefl, Gata6, Nfatcl, and Hoxc13 as the top

497  master regulators related to lineage commitment in mouse skin (Fig. 4d, Supplementary Table
498  2). To infer the target genes of a given master regulator, we postulate that in the shared SIMBA
499 embedding space, 1) the target gene is close to both the TF motif and the TF gene; 2) the

500 accessible regions (peaks) near the target gene loci must be close to both the TF motif and the
501 target TF gene. Resting on these assumptions of cis-regulatory dynamics, the inference of target
502 genes was performed by calculating the distance between target gene candidates and the

503 respective TF motif and gene. In addition, nearby peaks around the target gene’s locus and the
504  presence of TF motif in these nearby peaks are also considered (Fig. 4e, Methods). The top 30
505 target genes of TF Lefl and TF Hoxc13 inferred by SIMBA are shown respectively (Fig. 4f,

506 Supplementary Fig. 7e). The full list of ranked target genes is provided in Supplementary Table
507 3. Notably, our approach recovered targets genes that were also reported in the original

508  study??. For example, genes Lefl, Jag1, Hoxc13, Gtf2ird1 are regulated by the TF Lef1, while

509 genes Cybrdl, Hoxc13, St14 are regulated by the TF Hoxc13.

510 In addition to SHARE-seq, we also applied SIMBA to another two dual-omics datasets, the

511  mouse cerebral cortex dataset profiled by SNARE-seq?! (Supplementary Fig. 8) and the

512  multiome PBMCs dataset from 10x Genomics (Supplementary Fig. 9). By validating the

513 embeddings of cells and features with given cell type labels (Supplementary Fig. 8a and Fig.9a),
514  marker genes from the original study (Supplementary Fig. 8a,b,d and Fig. 9a,b,d), and

515 differentially accessible chromatin regions (Supplementary Fig. 8c and Fig. 9c), we further

516 demonstrate the suitability of SIMBA for multimodal analysis.

517

518 SIMBA enables simultaneous batch correction and clustering-free marker gene detection

519

520  Efforts to collect data from single cells has grown to the level of consortia that span multiple
521 institutions with the hopes of finely mapping and characterizing specific tissues. This has

522 brought with it an increased demand for analysis methods that are capable of negating

523  technical covariates inherent to multi-batch data collection, including experimental replicate
524  identity, sample preparation, and sequencing platform. Batch correction that removes the

525  effects of technical covariation while preserving true biological signals is required prior to

526  downstream analysis 2> 26, Existing methods follow a workflow with four primary steps. The first
527  stepis the actual batch correction, which often generates a “batch corrected” latent space. The
528 second step clusters cells in this batch corrected space. Based on the clustering result the third
529 step detects marker genes in the original gene expression space of each batch because the low-
530 dimensional “batch corrected” space is no longer comprised of genes. The fourth step finally
531 combines the marker genes detected from each batch. However, these methods are clustering-
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532  dependent and may result in the inconsistent explanation of marker genes as marker genes are
533 detected in each original batch as opposed to the batch-corrected space. Unlike current
534  methods, in addition to embeddings of cells, SIMBA generates comparable embeddings of
535 genes and therefore relieves marker gene discovery from a dependence on the original gene
536  expression space. Thus, SIMBA enables simultaneous batch effect removal and cell-type-
537  specific marker gene detection in the same integrated space without clustering.
538
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540
541 Figure 5. Batch correction analysis of scRNA-seq data using SIMBA. (a) SIMBA graph
542 construction and embedding in batch correction analysis. Overview of SIMBA’s approach
543 to batch correction across scRNA-seq datasets. Distinct shapes indicate the type of entity
544 (cell or gene). Colors distinguish batches or cell types. (b) UMAP visualization of the
545 scRNA-seq human pancreas dataset with five batches of different studies before and after
546 batch correction. Cells are colored by scRNA-seq data source and cell type respectively.
547 Top: UMAP visualization before batch correction; Bottom: UMAP visualization after batch
548 correction with SIMBA; (c) UMAP visualization of SIMBA embeddings of cells and genes,
549 with batch effect removed and known marker genes highlighted.
550
551  We first demonstrate that SIMBA readily corrects batch effects and produces joint embeddings
552  of cells and genes across multiple scRNA-seq datasets generated from varying sequencing
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553  platforms and cell type compositions. While existing methods for scRNA-seq analysis rely on
554  specialized tools for batch correction, SIMBA works as a stand-alone method obviating the need
555  for prior input data correction when applied to multi-batch scRNA-seq dataset. SIMBA

556  accomplishes batch correction by encoding multiple scRNA-seq datasets into a single graph (Fig.
557  5a). Cell nodes across batches are connected to gene nodes through experimentally measured
558 edges asin the previously described scRNA-seq graph construction. Here, the gene nodes are
559  shared between the cell nodes of different batches. In addition to the experimentally measured
560 edges, batch correction is further enhanced through computationally inferred edges drawn

561 between similar cell nodes across datasets using a truncated randomized singular value

562  decomposition (SVD)-based procedure. SIMBA then generates the embeddings of all nodes

563 including cells of each batch and genes from the resulting graph (Methods). The SIMBA

564 embeddings of cells naturally represent the batch-corrected space. In addition, the whole

565 SIMBA embeddings of all entities provide the batch-corrected space, in which cells and genes
566  co-exist, and therefore allow for individual-cell-level marker detection by performing biological
567  queries of cells in the SIMBA space (Methods). We visualized both SIMBA embeddings of cells
568  (Fig. 5b), and the whole SIMBA embeddings of cells and genes (Fig. 5¢) in UMAP.

569

570  We applied SIMBA to two multi-batch scRNA-seq datasets; a mouse atlas dataset composed of
571 two batches and a human pancreas dataset spanning five batches used in a recent benchmark
572  study® (Supplementary Table 1). The mouse atlas dataset contains two scRNA-seq datasets
573  with shared cell types from different sequencing platform. The human pancreas dataset

574  contains five samples pooled from five sources using four different sequencing techniques, in
575  which not all cell types are shared across each sample. For both datasets, SIMBA successfully
576  corrected batch effects, evenly mixing batches within annotated cell type clusters, while

577  maintaining the segregation of these clusters in the resulting embedding, indicating

578  preservation of biological signal and elimination of confounding technical covariates (Fig. 5b,
579  Supplementary Fig. 12b). It is important to note that the mouse atlas dataset was collected

580 from nine different organ systems, so there exists some expected heterogeneity within cell type
581 labels. Conversely, the human pancreas datasets are curated from a single organ and SIMBA
582  sufficiently separated cell types into transcriptionally distinct, homogeneous cell clusters (Fig.
583  5b).

584

585  Through removing batch effects during graph embedding, SIMBA simultaneously identifies cell-
586 type-specific marker genes (Fig. 5¢). In the absence of the eliminated technical covariation,

587  marker genes are identifiable by performing biological queries for neighboring genes within cell
588 types in the SIMBA embeddings of cells and genes (Methods). In the case of unknown cell

589 labels, marker genes can be identified by calculating SIMBA metrics (Methods). SIMBA correctly
590 embeds known cell-type-specific marker genes proximal to the correct cell type labels, while
591 non-marker genes were non-proximal to specifically-labelled cells (Supplementary Fig. 10, 11).
592  The resulting marker genes recapitulated the clustering-based differential expression (DE)

593  analysis results for each dataset?’-32 (e.g. Cdh5, Tiel, Myct1 for endothelial cell and C1qc, Fegrl
594  for macrophage, $100a8, Trem3 for Neutrophil in the mouse atlas dataset and KIF12 for alpha
595 cell and KRT19 for ductal cell in the human pancreas dataset) and are shown to be expressed
596 specifically in the queried cell types (Supplementary Fig. 10, 11). Taken together, these results
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597  distinguish SIMBA from existing batch correction methods that rely on clustering in a batch-
598 corrected space, followed by differential gene expression analysis in the original, uncorrected
599  space of each batch.

600

601  While SIMBA is a versatile graph embedding method that can perform multiple tasks and

602 generate embeddings of both cells and genes, we evaluated the SIMBA embeddings of cells for
603 this task with methods that were specifically designed for batch correction. We considered

604  three widely adopted batch correction methods that demonstrated top-tier performance based
605 on arecent benchmark study?: Seurat3, LIGER and Harmony. Our results indicate that SIMBA
606 achieved comparable batch correction performance both qualitatively and quantitatively while
607  enabling simultaneous marker gene detection by providing the additional SIMBA embeddings
608 of genes. (Supplementary Note 2, Supplementary Figure 12).

609

610 SIMBA enables simultaneous multi-omics integration and clustering-free multi-type marker
611 feature detection

612

613  Single-cell assays are now capable of measuring a broad range of cellular modalities and data is
614  being generated that describes cells by varying features sets, which has motivated the need for
615 methods that leverage these features to perform multi-omics integration such that a more

616 comprehensive description of cell state may be learned. This is different from multi-modal

617  analysis because the correspondence between individual cells is unknown. Current multi-omics
618 integration methods follow a similar workflow as the previously described batch correction

619 methods, including: 1) generating a low-dimensional integrated space of cells; 2) clustering cells
620 inthe integrated space; 3) detecting marker features in the original feature (e.g., genes, peaks)
621  space of each modality because the low-dimensional integrated space no longer consists of the
622  original features. Unlike existing multi-omics integration methods that cannot directly explore
623  multi-type features in the integrated space and require clustering for identifying marker

624  features, we demonstrate that SIMBA enables simultaneous multi-omics integration and

625 clustering-free detection of distinct marker features, specifically as it is applied to datasets

626  comprised of scRNA-seq and scATAC-seq.

627

628  SIMBA accomplishes this integration by first building one graph for scRNA-seq data and another
629 graph for scATAC-seq data independently as described in previous sections (Fig. 6a). To connect
630 these two graphs, SIMBA then calculates gene activity scores by summarizing accessible regions
631 from scATAC-seq data and then infers edges between cells of different assays based on their
632  shared gene expression modules as previously described in the batch correction section. Finally,
633  SIMBA embeds the graph of cells, genes, and peaks into a common, low-dimensional space. The
634  SIMBA embeddings of cells naturally represent the integrated space of multiple modalities.

635  Furthermore, the SIMBA embeddings of all entities provide the integrated space containing cell,
636  genes, and peaks, and therefore enable the individual-cell-level marker detection of multi-type
637 features by performing biological queries of cells in SIMBA space (Methods). The SIMBA

638 embeddings of these multi-omics entities can be visualized either partially or as a whole using
639  UMAP or similar visualization tools.

640
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Figure 6. Multi-omics integration of scRNA-seq + scATAC-seq data using SIMBA. (a) SIMBA
graph construction and embedding in multi-omics integration. Overview of SIMBA's
approach to data integration across scRNA-seq and scATAC-seq. Distinct shapes indicate
the type of entity (cell, gene, or peak). Colors distinguish batches or cell types. (b) UMAP
visualization of the integrated scRNA-seq and scATAC-seq data manually created from the
10x human PBMCs dataset before and after data integration. Cells are colored by single-
cell modality and cell type respectively. Top: UMAP visualization before integration;
Bottom: UMAP visualization after integration with SIMBA. (c) UMAP visualization of
SIMBA embeddings of cells, genes, and peaks with two cell modalities integrated and

known marker genes highlighted.

To facilitate the evaluation of data integration performance, we created datasets with ground-
truth labels by manually splitting the dual-omics datasets into two single-modality datasets (i.e.,
scRNA-seq and scATAC-seq), in which we know the true matching between cells across the two
modalities. We then applied SIMBA to the integration analysis of two case studies where
scRNA-seq and scATAC-seq datasets are generated from the SHARE-seq mouse skin dataset and
the 10x Genomics multiome human PBMCs dataset, respectively (Supplementary Table 1).
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660  We first visualized the SIMBA embeddings of cells and observed that SIMBA was able to

661  preserve cellular heterogeneity while evenly mixing the two modalities (Fig. 6b, Supplementary
662  Fig. 15b). We then visualized the SIMBA embeddings of cells, genes, and top-ranked peaks

663 based on SIMBA metrics and observed that in addition to learning cellular heterogeneity,

664  SIMBA simultaneously identified marker genes and peaks at single-cell resolution. In the co-
665 embedding space, we observed that the neighbor genes of cells (highlighted in UMAP plots),
666  are each exclusively expressed in their corresponding cell types (Supplementary Figs. 13a-e,
667  14a-c,e). For example, in the SHARE-seq mouse skin dataset, Foxqg1 and Shh are located within
668 medulla and TAC-2, respectively; in the 10x PBMCs dataset, PAPSS2 and KCNMA1, which are
669 the marker genes of blood monocytes, are embedded close to each other. Similarly, we

670 observed that the neighbor peaks of cells show a clear cell-type-specific accessibility pattern
671 thatis robust to the cluster size of a given cell type (Supplementary Figs. 13f and 14d).

672

673  The joint embedding of cells and features produced by SIMBA is fundamentally distinguished
674  from other multi-omics integration methods in that it simultaneously achieves integration as
675  well as marker feature discovery. However, we still sought to compare the SIMBA embeddings
676  of cells with two widely-adopted single-cell multi-omics integration methods, Seurat3 and

677 LIGER, based on their ability to integrate single-cell modalities while persevering cellular

678  heterogeneity (Supplementary Note 3). We observed that SIMBA achieved the overall best
679  performance on the mouse skin SHARE-seq dataset and 10x PBMCs multiome dataset.

680

681 Discussion

682

683  Multimodal measurements of individual cells offer new and unexplored opportunities to study
684  cell identity as a function of the complex interactions between omic layers. While these

685  datasets offer an exciting potential for discovery, computational analysis methods to fully

686 delineate the cell states and molecular processes across multiple genomic features remain
687 insufficient.

688

689  As presented in this manuscript, SIMBA models cells and measured features as nodes encoded
690 inagraph and employs a scalable and efficient graph embedding procedure to embed nodes of
691 cells and features into a shared latent space. We demonstrate that direct graph representations
692  of single-cell data capture not only the relations between cells and the quantified features of
693 the experiment (e.g., gene expression or chromatin accessibility) but also hierarchical relations
694  between features. An example of such a hierarchical relation is the coordinate-level description
695 of an ATAC-seq peak and the corresponding TF motifs and/or k-mer sequences contained

696  within that region. In the resulting joint embedding, proximity-based biological queries can be
697 performed to discover cell-type-specific co-regulatory machinery across modalities. Therefore,
698  SIMBA enables simultaneous learning of cellular heterogeneity and cell-type-specific

699  multimodal features and complements the current gene regulatory network analyses. SIMBA
700 also circumvents the ordinary reliance on cell clustering for cell sub-population feature

701  discovery. We thus avoid user-defined clustering solutions, which may lead to artifactual

702  discovery or false negative results.

703
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704  SIMBA has been extensively benchmarked across single-cell modalities and tasks, obtaining
705  better or comparable performance metrics when compared to current state-of-the-art methods
706  developed for the respective task. In contrast to tools developed and optimized for a single,
707  specific task these results suggest a wide applicability of SIMBA’s graph-based framework,

708  obviating the need to combine multiple analysis tools.

709

710 Graph embedding methods hold significant promise for the analysis of biological data. Previous
711  applications of graph embedding include functional annotation of genes 33, transcription factor
712 binding to DNA motifs 34 and more recent single-cell RNA-seq analyses 3* 36, The graph encoding
713  and embedding procedures we have outlined may be potentially improved and extended to
714  better represent biological entities and capture their respective relations.

715

716  Foreseeable extensions of SIMBA may include the analyses of increasingly complex datasets.
717  For example, in the analysis of spatial transcriptomics wherein transcriptomic measurements
718  are mapped to the true cell coordinates within a tissue 3/, we can encode the spatial proximity
719  into a SIMBA graph. We also envision extending this framework to data describing 3-D

720  chromatin conformation wherein the interaction between DNA segments can be encoded to
721  represent how regulatory regions are linked to genes®. Another potential extension of SIMBA
722  could consider single-cell lineage-tracing datasets®® wherein both cellular lineage information
723  and gene expression measurements are captured and can be potentially encoded into a SIMBA
724  graph to represent their longitudinal relations. In general, we are interested in the further

725  incorporation of external information and hierarchical relations between features in the graph.
726  We anticipate our comprehensive and extensible SIMBA framework (https://simba-

727  bio.readthedocs.io/) will provide the possibility to leverage a priori knowledge for graph

728 embedding and the flexibility to extend to new experimental designs.

729

730  ltis likely that multi-omics assays will continue to improve as well as expand in scope. Already,
731 innovation in these data-generating technologies have outpaced the development of

732 corresponding computational frameworks required to gain integrative insights from such rich
733 data. This disparity highlights a need for methods that break through previous limitations and
734  are easily extended to future cell measurements. We believe SIMBA satisfies these conditions
735 as a comprehensive and extensible method for exploring cellular heterogeneity and

736  investigating the regulatory mechanisms that drive cellular diversity while laying a groundwork
737  for the development of new non-cluster-centric analysis methods for single cell omics data.
738

739

740 Methods

741

742  Single-cell data preprocessing

743

744 a. Single-cell RNA-seq

745 Genes expressed in fewer than three cells were filtered. Raw counts were library size-
746 normalized and subsequently log-transformed. Optionally, variable gene selection ? (a

747 python version is implemented in SIMBA that is inspired by Scanpy?) may be performed
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748 to remove non-informative genes and accelerate the training procedure. Notable

749 differences in the resulting cell embeddings were not observed upon limiting feature
750 input to those identified by variable gene selection but SIMBA embeddings of non-

751 variable genes will not be generated as they are not encoded in the graph.

752

753 b. Single-cell ATAC-seq

754 Peaks present in fewer than three cells were filtered. Optionally, we implemented a
755 scalable truncated-SVD-based procedure to select variable peaks as a preliminary step
756 to additionally filter non-informative peaks and accelerate the training procedure. First
757 the top k principal components (PCs) were selected, with k chosen based on the elbow
758 plot of variance ratio. Then for each of the top k PCs, peaks were automatically selected
759 based on the loadings using a knee point detection algorithm implemented by ‘kneed’#°.
760 Finally, peaks selected for each PC were combined and denoted as “variable peaks”.
761 Similar to the observation made with scRNA-seq data, the optional step of variable peak
762 selection has a negligible effect on the resulting cell embedding. Despite this minimal
763 impact on the resulting embedding, this feature selection step imparts a significant

764 practical advantage in reducing training procedure time.

765

766 k-mer and motif scanning was performed using packages ‘Biostrings’ and ‘motifmatchr’
767 with JASPAR2020*. Included in the implementation of SIMBA is a convenient R

768 command line script “scan_for_kmers_motifs.R” , which will convert a list of peaks

769 (formatted in a bed file) to a sparse peaks-by-k-mers/motifs matrix, which is stored as
770 an hdf5-formated file.

771

772  Graph construction (five scenarios)

773

774 i. Single-cell RNA-seq analysis

775 The distribution of non-zero values in the normalized gene expression matrix was first
776 approximated using a k-means clustering-based procedure. First, the continuous non-
777 zero values were binned into n intervals (by default n=5). Bin widths were defined using
778 1-dimensional k-means clustering wherein the values in each bin are assigned to the
779 same cluster center. The continuous matrix is then converted into a discrete matrix

780 whereinl, ..., n are used to denote n levels of gene expression. Zero values are retained
781 in this matrix. Then the graph was constructed by encoding two types of entities, cells
782 and genes, as nodes and relations with n different weights between them, i.e., n levels
783 of gene expression, as edges. These n relation weights range from 1.0 to 5.0 with a step
784 size of 5/n denoting gene expression levels (lowest: 1.0, highest: 5.0), such that edges
785 corresponding to high expression levels affect embeddings more strongly than those
786 with intermediate or low expression levels. This discretization is implemented in the
787 SIMBA package using the function, “si.tl.discretize()”.

788

789 ii. Single-cell ATAC-seq analysis

790 Peak-by-cell matrices were binarized, with “1” indicating at least one read within a peak

791 and “0” otherwise. The graph was constructed by encoding two types of entities, cells
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and peaks, as nodes and the relation between them, denoting the presence of a given
peak in a cell, as edges. The single relation type was assigned with a weight of 1.0. When
the DNA sequence features were available, they were encoded into the graph using k-
mer and motif sequence entities as nodes. This was performed by first binarizing the
peak-by-k-mer/motif matrix then constructing an extension to the original peak/cell
graph using the peaks, k-mers, and motifs as nodes and the presence of these entities
within peaks as edges between these additional nodes and the peak nodes. The relation
between k-mers and peaks was assigned a weight of 0.02 while the relation between TF
motifs was assigned a weight of 0.2. Of note, k-mers and motifs may be used
independently of each other as node inputs to the graph, depending on the specific
analysis task.

Multimodal analysis
Combination of the above outlined strategies for graph construction of scRNA-seq and
SCATAC-seq data was used to construct a multi-omics graph.

Batch correction
A graph for each batch was constructed as described in i). Edges between cells of
different batches were inferred through a procedure based on truncated randomized
singular value decomposition (SVD) to link disjoint graphs of different batches. More
specifically, in the case of scRNA-seq data, consider two gene expression matrices
X1y, xm and X2,_.m, where n,, n, denotes the number of cells and m denotes the
number of the shared features, i.e., variable genes, between datasets. The matrix
Xn,xn, Was then computed by multiplying X1 and X2:

X =X1xXx2T
Truncated randomized SVD was subsequently performed on X:
X=UxZIxVT

where U is an n; X d matrix, Zisan d X d matrix, and V is an n, X d matrix (by
default d = 20).

Both U and V were further L2 normalized. For each cell in U, we searched for k
nearest neighbors in V and vice versa (by default, k = 20). Eventually, only the mutual
nearest neighbors between U and V were retained as inferred edges between cells
(represented as dashed lines in Fig. 5a). The procedure of inferring edges between
cells of different batches is implemented in the function “si.tl.infer_edges()” in the
SIMBA package.

For multiple batches, SIMBA can flexibly infer edges between any pair of datasets. In
practice, however edges are inferred between the largest dataset(s) or the dataset(s)
containing the most complete set of expected cell types and other datasets.
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Multi-omics integration

scRNA-seq and scATAC-seq graphs were constructed following steps i) and ii),
respectively. To infer the edges between cells of scRNA-seq and scATAC-seq, gene
activity scores were first calculated for scATAC-seq data3. More specifically, for each
gene, peaks within 100kb upstream and downstream of the TSS were considered.
Peaks overlapping gene body region or within 5kb upstream of gene bodies were
given the weight of 1.0. Otherwise, peaks were weighted based on their distances to

—distance

TSS using the exponential decay function: e sooo . Subsequently, the gene score of
each gene was computed as a weighted sum of the considered peaks. These gene
scores were then scaled to respective gene size. These steps are implemented by the
function “si.tl.gene_scores()” in SIMBA. For user convenience, the SIMBA package
curates the gene annotations of several commonly used reference genomes, including
hg19, hg38, mm9, and mm10. Once gene scores were obtained, the same procedure
described in iv) was performed to infer edges between cells profiled by scRNA-seq and
scATAC-seq using the function, “si.tl.infer_edges()” in SIMBA.

The procedure of generating constructed graphs is implemented in the function,
“si.tl.gen_graph()” in the SIMBA package.

Graph Embeddings with Type Constraints

Following the construction of a multi-relational graph between biological entities, we
adapted graph embedding techniques from the knowledge graph and recommendation
systems literature to construct unsupervised representations for these entities.

We provide as input a directed graph G = (V, E), where V is a set of entities (vertices)
and E is a set of edges, with a generic edge e = (u, v) between a source entity u and
destination entity v. We further assume that each entity has a distinct known type (e.g.,
cell, peak, etc.).

Graph embedding methods learn a D-dimensional embedding vector for each v € V by
optimizing a link prediction objective via stochastic gradient descent, with D=50 used
for our experiments. We will denote the full embedding matrix as 8 € R!VI*P and the
embedding for an entity v as 6,,.

Foranedgee = (u,v), we denotes, = 6, * 8, as the score for e, and optimize a
multi-class log loss
exp (se)

L= -lo -
g Zere]\f €xp (S e)
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876 Where IV is a set of “negative sampled” candidate edges generated by corrupting e %2.
877 This log loss objective attempts to maximize the score for all (1, v) € E and minimize it
878 for(u,v) € E.
879
880 Negative samples are constructed by replacing either the source or target entity in the
881 target edge e = (u,v) with a randomly sampled entity. However, in graphs like ours
882 where only edges between certain entity types are possible, previous work has shown
883 that it is beneficial to optimize the loss only over candidate edges that satisfy the type
884 constraints®3. Thus, for e.g., a cell-peak edge we only sample negative candidates
885 between cell and peak entities. This modification is crucial in our setting since most
886 randomly selected edges will be of invalid type (e.g., peak-peak), forcing the
887 embeddings to primarily be optimized for irrelevant tasks (e.g., having low dot product
888 between every pair of peaks).
889
890 Furthermore, it has been frequently observed that in graphs with wide distribution of
891 node degrees, it is advantageous to sample negatives proportional to some function of
892 the node degree to produce more informative embeddings that don’t merely capture
893 the degree distribution > 44, For each graph edge in the dataset encountered in a
894 training batch, we produce 100 negatives by corrupting the edge with a source or
895 destination sampled uniformly from the nodes with the correct types for this relation
896 and 100 by corrupting the edge with a source or destination node sampled with
897 probability proportional to its degree?!3.
898
899 As with many ML methods, graph embeddings are prone to overfitting in a low-data
900 regime (i.e., low ratio of edges to parameters). We observed overfitting measurable as a
901 gap between training and validation loss on the link prediction task, which we addressed
902 with L2 regularization on the embeddings 09,
903
D

904 Lyeg =L+ 2 z z 0Z,.

UEN d=1
905
906 with A =wd * wd_interval. For weight decay parameter (wd), by default it is calculated
907 automatically as N% where N, is the training sample size (i.e., the total number of edges)
908 and C is a constant. For weight decay interval (wd_interval), we set it to 50 for all
909 experiments.
910
911 We use the PyTorch-BigGraph framework, which provides efficient computation of
912 multi-relation graph embeddings over multiple entity types and can scale to graphs with
913 millions or billions of entities!3. For 1.3 million cells, the PyTorch-BigGraph training itself
914 takes only ~ 1.5 hours using 12 cores without the requirement of GPU (https://simba-
915 bio.readthedocs.io/en/latest/rna_10x_mouse_brain_1p3M.html).

916
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The resulting graph embeddings have two desirable properties that we will take
advantage of:

1. First-order similarity: for two entity types T;, T, with a relation between them,
edges with high likelihood should have higher dot product; specifically, forany u € T},
the predicted probability distribution over edges to T, originating from u is

. Xy*Xp
approximated as W
2. Second-order similarity: within a single entity type, entities that have ‘similar
contexts’, i.e., a similar distribution of edge probabilities, should have similar
embeddings. Thus, the embeddings of each entity type provide a low-rank latent space

that encodes the similarity of those entities’ edge distributions.

Evaluation of the model during training

During the PyTorch-BigGraph training procedure, a small percent of edges is held out
(by default, the evaluation fraction is set to 5%) to monitor overfitting and evaluate the
final model. Five metrics are computed on the reserved set of edges, including mean
reciprocal rank (MRR, the average of the reciprocal of the ranks of all positives), R1 (the
fraction of positives that rank better than all their negatives, i.e., have a rank of 1), R10
(the fraction of positives that rank in the top 10 among their negatives), R50 (the
fraction of positives that rank in the top 50 among their negatives), and AUC (Area
Under the Curve). By default, we show MRR along with training loss and validation loss
while other metrics are also available in SIMBA package (Supplementary Fig. 1a). The
learning curves for validation loss and these metrics can be used to determine when
training has completed. The relative values of training and validation loss along with
these evaluation metrics can be used to identify issues with training (underfitting vs
overfitting) and tune the hyperparameters weight decay, embedding dimension, and
number of training epochs appropriately. For example, in Supplementary Figure 1a
training can be stopped once the validation loss plateaus. However, for most datasets
we find that the default parameters do not need tuning.

Softmax transformation

PyTorch-BigGraph training provides initial embeddings of all entities (nodes). However,
entities of different types (e.g., cells vs peaks, cells of different batches or modalities)
have different edge distributions and thus may lie on different manifolds of the latent
space. To make the embeddings of entities of different types comparable, we transform
the embeddings of features with the Softmax function by utilizing the first-order
similarity between cells (reference) and features (query). In the case of batch correction
or multi-omics integration, the Softmax transformation is also performed based on the
first-order similarity between cells of different batches or modalities.

Given the initial embeddings of cells (reference) (v.,, ..., v, ) and features (vy,, ..., vq, ),
the model-estimated probability of an edge (c;, f;) obeys
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960
961 P (vci'fj ) X exp (vci . vfj)
962
963 Therefore, if a random edge was sampled from feature f] to a cell, the model would
964 estimate the distribution over such edges as
965
oo e ()
Peut s = Sa_sexp ey 7))
967
968 i.e., the Softmax weights between all cells {c;} and the feature f;. We can then compute
969 new embeddings for features as a linear combination of the cell embeddings weighted
970 by the edge probabilities raised to some power.
971
o i=1 pZi,fliji
972 vfj = ﬁ
i=1Pc,f;
973
974 T is a temperature hyperparameter that controls the sharpness of the weighting over
975 cells. At T = 1, the cell embeddings are weighted by their estimated edge probabilities;
976 at T — 0, each feature embedding is assigned the cell embedding of its nearest
977 neighbor; at T — oo, it becomes a discrete uniform distribution, and each query
978 becomes the average of reference embeddings. We set T = 0.5 for all the analyses.
979
980 These steps are implemented in the function “si.tl.embed()” in the SIMBA package.
981
982  Metrics to assess cell-type specificity
983
984 Four metrics are proposed to assess the cell type specificity of each feature from
985 different aspects, including max value (a higher value indicates higher cell-type
986 specificity), Gini index (a higher value indicates higher cell-type specificity), standard
987 deviation (a higher value indicates higher cell-type specificity), and entropy (a lower
988 value indicates higher cell-type specificity). We observe these four metrics generally give
989 consistent results. For SIMBA metric plot, by default, Gini index is plotted against max
990 value. For feature f; :
991
992 The max value is defined as the average normalized similarity of top k cells (by default,
993 k=50). The similarity normalization function is defined as:
994
n
995 norm(x;) = x; — long(x])
996
997 Where i = 1, ...,n. nis the number of cells and x; represents the dot product of ﬁfj and

998 the embedding of cell i.
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999
1000 The max value is computed as:
1001

k
1002 max(f;) = Ziz1 ncl)(rm(xl)
1003
1004 The Gini index is computed as:
1005
LiQRi—n—1)*p. ¢
1006 gini(f) = el - )+ Peus,
n Zi=1 pci,fj
1007
1008 The standard deviation is computed as:
1009
1 n
1010 std(£) = |7 ) ey, — )7
i=1
1011 Where 1 = =3 p. /.
1012
1013 Entropy is computed as:
n
1014 entropy(fj) = — z pci,fjlog (pci,fj)
i=1

1015
1016  Queries of entities in SIMBA space
1017
1018 The informative SIMBA embedding space serves as a database of entities including cells
1019 and features. To query the “SIMBA database” for the neighboring entities of a given cell
1020 or feature, we first build a k-d tree of all entities based on their SIMBA embeddings. We
1021 then search for the nearest neighbors in the tree using Euclidean distance. To do so,
1022 SIMBA query can perform either K-nearest neighbors (KNN) or nearest neighbor search
1023 within a specified radius. SIMBA also provides the option to limit the search to entities
1024 of certain types, which is useful when a certain type of entity significantly outnumbered
1025 others. For example, the K nearest features of a given cell may be all peaks while genes
1026 are the features of interest. In this case, SIMBA allows users to add “filters” to ensure
1027 that nearest neighbor search is performed within the specified types of entities. This
1028 procedure is implemented in the function “st.tl.query()” and its visualization is
1029 implemented in the function “st.pl.query()” in the SIMBA package.
1030
1031 Identification of master regulators
1032
1033 To identify master regulators, we take into consideration both the cell type specificity of

1034 each pair of TF motif and TF gene and the distance between them. More specifically, for
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1035 each TF motif, first its distances (Euclidean distance by default) to all the genes are

1036 calculated in the SIMBA embedding space. Then the rank of this TF gene among all these
1037 genes is computed. In addition, we also assess the cell type specificity of this pair of TF
1038 motif and TF gene based on SIMBA metrics (by default, max value and Gini index are
1039 used). The same procedure is performed for all TFs. Finally, we identify master

1040 regulators by filtering out TFs with low cell-type specificity and scoring them based on
1041 TF gene rank. This procedure is implemented in the function

1042 “st.tl.find_master_regulators()” in SIMBA package.

1043

1044

1045 Identification of TF target genes

1046 Given a master regulator, its target genes are identified by comparing the locations of
1047 the TF gene, TF motif, and the peaks near the genomic loci of candidate target genes in
1048 the SIMBA co-embedding space (Fig. 4e). More specifically we first search for k nearest
1049 neighbor genes around the motif (TF motif) and the gene (TF gene) of this master

1050 regulator, respectively (k = 200 by default). The union of these neighbor genes is the
1051 initial set of candidate target genes. These genes are then filtered based on the criterion
1052 that open regions (peaks) within 100kb upstream and downstream of the TSS of a

1053 putative target gene must contain the TF motif.

1054 Next, for each candidate target gene, we compute four types of distances in SIMBA
1055 embedding space: distances between the embeddings of 1) the candidate target gene
1056 and TF gene; 2) the candidate target gene and TF motif; 3) peaks near the genomic locus
1057 of the candidate target gene and TF motif; 4) peaks near the genomic locus of the

1058 candidate target gene and the candidate gene. All the distances (Euclidean distances by
1059 default) are converted to ranks out of all genes or all peaks to make the distances

1060 comparable across different master regulators.

1061 The final list of target genes is decided using the calculated ranks based on two criteria:
1062 1) at least one of the nearest peaks to TF gene or TF motif is within a predetermined
1063 range (top 1,000 by default); 2) the average rank of the candidate target gene is within a
1064 predetermined range (top 5,000 by default). This procedure is implemented in the

1065 function “st.tl. find_target_genes ()” in SIMBA.

1066  Benchmarking scATAC-seq computational methods

1067

1068 To compare SIMBA to other scATAC-seq computational methods including SnapATAC 4,
1069 Cusanovich2018*, and cisTopic*¢, we employed the previously developed benchmarking
1070 framework from Chen et al**(Supplementary Table 1). This framework evaluates

1071 different methods based on their ability to distinguish cell types. We applied three

1072 clustering algorithms: k-means clustering, hierarchical clustering, and Louvain on the
1073 feature matrix derived from each method.

1074
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1075 For datasets with ground-truth (FACS-sorted labels or known tissue labels), including
1076 simulated bone marrow data, Buenrostro 2018, and sci-ATAC-seq subset, three metrics
1077 including Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and

1078 Homogeneity are applied to evaluate the performance. ARl measures the similarity
1079 between two clusters, comparing all pairs of samples assigned to matching or different
1080 clusters in the predicted clustering solution vs the true cluster/cell type label. AMI
1081 describes an observed frequency of co-occurrence compared to an expected frequency
1082 of co-occurrence between two variables, informing the mutual dependence or strength
1083 of association of these two variables. Homogeneity measures whether a clustering
1084 algorithm preserves cluster assignments towards samples that belong to a single class. A
1085 higher metric value indicates a better clustering solution.

1086

1087 For 10x PBMCs dataset with no ground truth, the Residual Average Gini Index (RAGI)
1088 proposed in the benchmarking study# is used as the clustering evaluation metric. RAGI
1089 measures the relative exclusivity of marker genes to their corresponding clusters in
1090 comparison to housekeeping genes, which should demonstrate low specificity to any
1091 given cluster. In brief, the mean Gini Index is computed for both marker genes and
1092 housekeeping genes. The difference between the means is computed to obtain the
1093 average residual specificity (i.e., RAGI) of a clustering solution with respect to marker
1094 genes. A higher RAGI indicates a better separation of biologically distinct clusters.

1095

1096  Benchmarking single-cell batch correction methods

1097

1098 The batch correction performance of SIMBA was compared to Seurat3'?, LIGER!! and
1099 Harmony'® in two benchmark datasets: the mouse atlas dataset and the human

1100 pancreas dataset (Supplementary Table 1). For Seurat3, LIGER and Harmony, the batch
1101 correction was done with the same parameters used in a previous benchmark study?®.
1102

1103 To evaluate the batch integration performance, average Silhouette width (ASW),

1104 adjusted Rand index (ARI), and local inverse Simpson’s index (LISI)!° were calculated for
1105 the batches and cell types using the Euclidean distance as described in a previous

1106 benchmark?®. To make a fair evaluation, only the cell types that are present in all

1107 batches were considered. We used the same number of dimensions (50) for these
1108 methods and all other parameters were set as in the benchmark.

1109

1110 Average Silhouette width (ASW)

1111

1112 Average Silhouette width is the mean value of Silhouette scores calculated from each
1113 cell. Silhouette width measures the relative closeness of cells with the same label

1114 compared to the cells with the different label and ranges from -1 to +1. Silhouette score
1115 for a data point with a label is calculated as

1116

1117 s(i) = b(i) — a(®)

max{a(i), b(i)}
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1118

1119 where a(i) is the distance to the closest point with the same label, and b (i) is the

1120 distance to the closest point with different labels. A high Silhouette score means the
1121 point is located more closely with the same label, where a low Silhouette score closer to
1122 -1 means the point is located closer with different labels than that of itself. The ideal
1123 batch correction result will give a low ASW score for batch labels as the point is well
1124 mixed with other batches and a high ASW score for the cell type labels as the cells of the
1125 same cell type should cluster together after the batch correction. The final score is
1126 calculated as the median ASW scores from 20 subsets of randomly sampled 80% cells.
1127

1128 Average Rand Index (ARI)

1129

1130 To evaluate the cell type purity, the true cell type labels and the k-means clustering
1131 solution were used to calculate the cell type ARI. To evaluate the batch correction

1132 performance, the true batch labels and the k-means clustering solution were used to
1133 calculate the batch ARI. The final ARl was calculated as the median ARI scores of 20
1134 subsets comprised of randomly sampled 80% cells for batches and cell types,

1135 respectively. A superior batch correction will have a high cell type ARI (high agreement
1136 between the clustering solution and the true cell type labels), and a low batch ARI ( the
1137 clustering solution is not mainly driven by batches and clusters contain cells with well-
1138 mixed batch labels).

1139

1140 Local Inverse Simpson’s Index (LISI)

1141

1142 Local Inverse Simpson’s Index (LISI) X° measures the local batch and cell type mixing. For
1143 each data point, it considers the Gaussian kernel weighted distribution of labels in its
1144 neighborhood with a perplexity argument. We set perplexity to 50 40 as in the previous
1145 benchmark study. Using the weighted neighborhood label distribution, the inverse
1146 Simpson’s index is calculated as 21;(1) where [ is the batch or cell type labels and p(1) is
1147 the probability of each label in the local neighborhood obtained with the kernel. For
1148 each cell, the LISI is the expected number of cells to be sampled locally before a cell of
1149 the same label is sampled. A perfect batch correction will have a cell type LISI (cLISI) of 1
1150 and a batch LISI (integration LISI, iLISI) close to the number of batches. The final LISI
1151 score was calculated as the average LISI scores of all cells.

1152

1153 Further details are described in Supplementary Note 2.

1154

1155

1156  Benchmarking single cell multi-omics integration methods

1157

1158 Two pairs of scRNA-seq and scATAC-seq datasets manually split from the dual-omics
1159 SHARE-seq mouse skin dataset and 10X PBMCs dataset respectively were used for the

1160 modality integration task. For Seurat3 and LIGER, the parameters and preprocessing
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1161 were done as described in their documentations. However, for the LIGER analysis of the
1162 SHARE-seq mouse skin dataset the parameter ‘lambda’ was set to 30 and the

1163 ‘ref_dataset’ was set to scATAC-seq to get a better alignment. For the Raw results, the
1164 activity matrix of scATAC-seq was constructed using Seurat3 and the first 20 PCs of the
1165 scRNA-seq count matrix and the activity matrix were used for the comparison. The
1166 integration results generated by each method were evaluated with four metrics—

1167 Anchoring distance, anchoring distance rank, Silhouette index, and cluster agreement—
1168 as described below.

1169

1170 Anchoring distance

1171 The Anchoring distance was proposed in Dou et al., 2020% and is the normalized

1172 distance between the matched cells of two modalities (e.g. RNA and ATAC). Here we
1173 considered the Euclidean distance and normalized the distance by the mean of the
1174 distances calculated between random pairs of cells. The number of pairs randomly
1175 sampled was set to 10% of the total number of cells.

1176

1177 Anchoring distance rank

1178 Given that the anchoring distance does not account for the local density of cells, we
1179 propose a new metric entitled anchoring distance rank (ADR). The ADR is based on the
1180 normalized rank of the distance between the matched cells of two modalities. For each
1181 cell x;; with cell identity i and modality j, the distance between the cell and all the other
1182 cells of the other modality j’, d(xij, xkj,), k =1, ..., N is calculated, where N is the total
1183 number of cells. Then the rank of r; = d(x;}, x;;,) within the calculated distances is
1184 normalized by the number of pairs N — 1 to obtain the final anchoring rank m; = :vlj
1185 For each cell, an anchoring rank of 0 indicates an ideal modality integration performance
1186 as the matched cells are closest to each other in the embedding.

1187

1188 Silhouette index

1189 The silhouette index was calculated as described in 10) based on the cluster assignment
1190 wherein each cluster consists of two cells, one cell from a scRNA-seq dataset and one
1191 cell from a scATAC-seq dataset.

1192

1193 Fraction in the same cluster

1194 Fraction in the same cluster was calculated as the fraction of the matched cells from two
1195 modalities in the same cluster. The clusters of cells were generated using Louvain

1196 algorithm and the number of clusters is equal to the number of cell types in the dataset.
1197

1198 Further details are described in Supplementary Note 3.

1199

1200

1201  Data availability:
1202
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1203  All the datasets used in this study (eight scRNA-seq datasets, four scATAC-seq datasets, and
1204  three dual-omics datasets) are summarized in Supplementary Table 1. All these datasets are
1205 curated in the SIMBA package, and they can be easily downloaded and imported directly to
1206  reproduce the analyses presented in this manuscript.

1207

1208 Code availability:

1209

1210 We provide a comprehensive Python package ‘simba’ available at

1211  https://anaconda.org/bioconda/simba and https://github.com/pinellolab/simba. All the

1212 proposed procedures are implemented in the “simba” package. ‘simba’ can be easily installed
1213  with conda “conda install simba”. We also built a website (https://simba-bio.readthedocs.io),
1214  providing a detailed introduction of the ‘simba’ software and several SIMBA tutorials for

1215  different types of single-cell analyses presented in this manuscript.
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1356  Supplementary Figure 1. SIMBA analysis of the scRNA-seq 10x PBMCs dataset.

1357 a. Three default metrics used to evaluate SIMBA training procedure, including training loss
1358 (top), validation loss (middle), mean reciprocal rank (MRR)

1359 b. SIMBA metric plots of genes. All the genes are plotted according to the Gini index

1360 against max score, standard deviation (std) against max score, and entropy against max
1361 score, respectively. The same set of genes as in Figure 2c are highlighted.

1362 c. UMAP visualization of the SIMBA embeddings of cells and the SIMBA embeddings of
1363 cells and all genes. Genes highlighted in (b) are also highlighted in the UMAP plot.

1364 d. UMAP visualization of the SIMBA embeddings of cells, colored by gene expression of the
1365 genes highlighted in (b).

1366 e. SIMBA barcode plots of the genes highlighted in (b).
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1370  Supplementary Figure 2. Comparison of SIMBA with Scanpy on the scRNA-seq 10x PBMCs
1371  dataset.

1372 a. Venn diagram of top marker genes identified by SIMBA and Scanpy

1373 b. Scanpy-derived UMAP visualization of cells colored by cell type

1374 c. Top marker genes detected only by SIMBA. Colored by intensity of gene expression.
1375 d. Top marker genes detected only by Scanpy. Colored by intensity of gene expression.
1376 e. SIMBA embedding result after implementing variable gene selection. Left: variable gene

1377 selection step implemented in SIMBA. Middle: UMAP visualization of SIMBA
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1378 embeddings of cells. Right: UMAP visualization of SIMBA embeddings of cells and
1379 variable genes.
1380

a SIMEAV((eHsi "“:‘“'7’

o~ @ HSC
k4 °
= “ -
: . i i | S
L]
L]
.
o L o LA
UM = o= e =
CEBF 51 MAF HOXAS 10) G
sy I I I @
i e 7 i 45 A
. H i 7 I ’ E28 \ l
CEBPD - EIS 2) 10) HOXA: G
- — o - | —_— A
nnnnn stAn eve n
~ ' pe I > l l
o X 7y s
R 7 ' _— i |
sssss €nve s
Yoo
l L) fom § ]
b c
AAAAAAAAAA m cacrc caccre o
e > Neighbor peaks
N I . |
” s e
S W L
TAAAT AGMA g oG
Joo | Jo Joo e
| T 1 ———— o [ — | —_— @

»»»»

Al WAL A

SO I ) B :

1382

1383  Supplementary Figure 3. SIMBA analysis of the Buenrostro2018 dataset

1384

1385 a. UMAP visualization of SIMBA embeddings of cells colored by cell type (top-left), and TF
1386 activity scores of TF motifs calculated with chromVAR, respectively. The SIMBA barcode
1387 plot of each TF motif is shown below the UMAP plot.

1388 b. Top: UMAP visualization of SIMBA embeddings of cells colored by TF activity scores of k-
1389 mers calculated with chromVAR. Middle: SIMBA barcode plots of the corresponding k-
1390 mers. Bottom: the matching known motif against the enriched k-mer sequences.

1391 c. Heatmap of cells against neighboring peaks of each cell type that are selected in the
1392 SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.

1393
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1401  Supplementary Figure 4. Comparison of SIMBA performance using scATAC-seq peaks and DNA
1402  sequence content vs only scATAC-seq peaks. Top: UMAP visualization of SIMBA embeddings of
1403  cells for each indicated dataset generated from only scATAC-seq peak information. Bottom:
1404  UMAP visualization of SIMBA embeddings of cells for each indicated dataset generated from
1405  scATAC-seq peak information and DNA sequence content information.

1406
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1407
1408  Supplementary Figure 5. Benchmark of SIMBA against top-performing scATAC-seq analysis

1409 methods.

1410

1411  Top: Evaluation of SIMBA and other methods including cisTopic, SnapATAC, Cusanovich2018 for
1412  scATAC-seq analysis using metrics 1) ARI, AMI, and Homogeneity for datasets with ground truth
1413  cell type labels and 2) Residual Average Gini Index (RAGI) for the 10x PBMCs dataset without
1414  ground truth labels.

1415

1416  Bottom: UMAP visualization of feature matrices produced by each method on each dataset
1417  colored by cell type annotation or cluster label.

1418


https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/

1419
1420

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.17.464750; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

SIMBA (cells + genes)

UMAP1

SIMBA (cells)

00 25 75 100

5.0
UMAP1

SIMBA (cells)

75

Multimodality

TAC
TAC-2
® RS
® Medulla
Hair Shaft-
cuticle.cortex

® gene

Single modality -

TAC
TAC2
° RS
® Medulla
Hair Shaft-
cuticle.cortex

Single modality -

TAC
TAC2
® RS
® Medulla
Hair Shaft-
cuticle.cortex

SIMBA (cells + genes + motifs + kmers)

TF_Hoxc13
2

UMAP2

0
UMAP1

scRNA-seq

SIMBA (cells + genes)

UMAP2

Y Y bin,

o
e

" &
Folats” * 55 13
v 1
nt3 S
0 5
0 7.

00 25 5.
UMAP1

ScATAC-seq
SIMBA (cells +peaks)

,\; Vea!&tkom&l—_-:n

10 Jepeaki(foxci3) |
_Peaka(Lef1) .,_;
Peak3(Lef]) 2 Peak2(lef) %

UMAP2

- TPeakiLef1) ‘,%\
5 .

-5 0
UMAP1

TAC1

TAC2

RS

Medulla

Hair Shaft-
cuticle.cortex

gene
kmer
motif

TAC1

TAC2

IRS

Medulla

Hair Shaft-
cuticle.cortex

gene

TAC

TAC2

IRS

Medulla

Hair Shaft-
cuticle.cortex

peak

UMAP2

SIMBA (cells + genes + peaks + motifs + kmers)

Peaki(Lefn) Teak(Lel

UMAP1

TAC1
TAC2
o RS
® Medulla
Hair Shaft-
cuticle.cortex

o gene
® kmer
* motif

peak

Supplementary Figure 6. SIMBA multimodal analysis of the SHARE-seq hair follicle dataset.

a.

SIMBA embedding results when both gene expression and chromatin accessibility are

encoded in the graph. Left: UMAP visualization of SIMBA embeddings of cells and genes.
Middle: UMAP visualization of SIMBA embeddings of cells along with genes, TF motifs, and
k-mers. Right: UMAP visualization of SIMBA embeddings of cells along with genes, peaks, TF

motifs, and k-mers.

SIMBA embedding results when only gene expression is encoded in the graph. Left: UMAP

visualization of SIMBA embeddings of cells. Right: UMAP visualization of SIMBA embeddings
of cells and variable genes.

SIMBA embedding results when only chromatin accessibility is encoded in the graph. Left:

UMAP visualization of SIMBA embeddings of cells. Right: UMAP visualization of SIMBA
embeddings of cells and peaks.
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SIMBA.

Supplementary Figure 7. Cell type specific marker genes and the target genes of master
regulators identified by SIMBA in the SHARE-seq hair follicle subset dataset.

UMAP visualization of SIMBA embeddings of cells colored by cell type and gene
expression intensity.
SIMBA barcode plots of each gene plotted above.
SIMBA barcode plots of TF motifs Lef1 and Hoxc13.
SIMBA barcode plots of peaks near the loci of Lef1 and Hoxc13.

Top 30 target genes of the master regulators Relb, Gata6, and Nfatc1 as inferred by
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1450  Supplementary Figure 8. SIMBA multimodal analysis of the SNARE-seq mouse cerebral cortex
1451  dataset.

1452

1453 a. From top to bottom: UMAP visualization of SIMBA embeddings of (i) cells (ii) genes
1454 alongside cells (iii) genes, motifs, and k-mers alongside cells (iv) genes, peaks, motifs,
1455 and k-mers alongside cells.

1456 b. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression
1457 intensity.

1458 c. Heatmap of cells against neighboring peaks of each cell type that are selected in the
1459 SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.
1460 d. SIMBA barcode plots of the genes highlighted in (a).

1461
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1462 -
1463
1464  Supplementary Figure 9. SIMBA multimodal analysis of the 10x multiome PBMCs dataset.

1465

1466 a. From top to bottom: UMAP visualization of SIMBA embeddings of (i) cells (ii) genes
1467 alongside cells (iii) genes, motifs, and k-mers alongside cells (iv) genes, peaks, motifs,
1468 and k-mers alongside cells.

1469 b. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression
1470 intensity.

1471 c. Heatmap of cells against neighboring peaks of each cluster that are selected in the
1472 SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.
1473 d. SIMBA barcode plots of the genes highlighted in (a).

1474
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1476
1477  Supplementary Figure 10. SIMBA-inferred marker genes for the scRNA-seq mouse atlas dataset
1478  in batch correction analysis.

1479

1480 a. UMAP visualization of SIMBA embeddings of cells colored by cell type.

1481 b. UMAP visualization of SIMBA embeddings of cells and genes.

1482 c. UMAP visualization of SIMBA embeddings of cells and genes. Biological “query” points
1483 are highlighted with a red “+”. Nearby informative genes are colored accordingly.

1484 d. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression
1485 intensity, separated by cell type.
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1488
1489  Supplementary Figure 11. SIMBA-inferred marker genes for the scRNA-seq human pancreas
1490 dataset in batch correction analysis.
1491
1492 a. UMAP visualization of SIMBA embeddings of cells colored by cell type.
1493 b. UMAP visualization of SIMBA embeddings of cells and genes.
1494 c. UMAP visualization of SIMBA embeddings of cells and genes. Biological “query” points
1495 are highlighted with a red “+”. Nearby informative genes are colored accordingly.
1496 d. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression
1497 intensity, separated by cell type.
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Supplementary Figure 12. Comparison of SIMBA to other methods for batch correction of the
mouse atlas (a-b) and human pancreas scRNA-seq datasets (c-d).
a, ¢. Quantitative comparison of SIMBA with three other batch correction methods
including Seurat3, LIGER and Harmony, using, left-to-right: average silhouette width (ASW),
adjusted Rand index (ARI), and local inverse Simpson’s index (LISI)
b, d. UMAP visualization of raw and preprocessed data alongside the batch corrected
results produced by Seurat3, LIGER, Harmony, and SIMBA. Colored by technology (top) and
cell type (bottom).
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1511  Supplementary Figure 13. SIMBA-inferred marker features for the SHARE-seq mouse skin
1512  dataset in multi-omics integration analysis.

Sth Wiy

1513

1514 a. UMAP visualization of SIMBA embeddings of cells with two cellular modalities

1515 integrated.

1516 b. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular
1517 modalities integrated.

1518 c. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular
1519 modalities integrated. Biological “query” points are highlighted with a red “+”. Nearby
1520 informative genes and peaks are colored accordingly.

1521 d. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cell
1522 modalities integrated and known marker genes highlighted.

1523 e. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression
1524 intensity, separated by cell type.

1525 f. Heatmap of cells against neighboring peaks of each cell type that are selected in the
1526 SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.

1527
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Supplementary Figure 14. SIMBA-inferred marker features for the 10x human PBMCs dataset in
multi-omics integration analysis.

a. UMAP visualization of SIMBA embeddings of cells with two cellular modalities
integrated.

b. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular
modalities integrated.

c. UMAP visualization of SIMBA embeddings of cells, genes, and peaks with two cellular
modalities integrated. Biological “query” points are highlighted with a red “+”. Nearby
informative genes and peaks are colored accordingly.

d. Heatmap of cells against neighboring peaks of each cluster that are selected in the
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.

e. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression
intensity, separated by cell type.
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Supplementary Figure 15. Comparison of SIMBA to other methods for multi-omics integration
of the SHARE-seq mouse skin (a-b) and 10x multiome human PBMCs (c-d) datasets.
a, ¢. Quantitative comparison of SIMBA with two other methods including Seurat3,
LIGER for multi-omics integration, using, left-to-right: anchoring distance rank,
anchoring distance, silhouette index, and Fraction in the same cluster.
b, d. UMAP visualization of the raw scRNA-seq and scATAC-seq data from the 10x
multiome human PBMCs dataset alongside the integrated results produced by Seurat3,
LIGER, and SIMBA. Colored by data modality (top) and cluster assignment (bottom). The
red intervals of violin plot of Anchoring distance and Silhouette index shows the 95%
of the mean.
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1557

1558  Supplementary Notes

1559

1560  Supplementary Note 1: Comparison with scATAC-seq methods
1561

1562  To assess SIMBA’s ability to cluster cell types based on scATAC-seq profiles, we compared SIMBA
1563  with specialized methods specifically designed for this task. We observed that SIMBA vyields
1564  consistent embeddings of cells when using either a single feature (peaks) or multiple features
1565 (peaks and DNA sequences from within those peaks) as input to the graph. This comparison was
1566  performed across four scATAC-seq datasets of varying profiling technologies and organisms
1567  (Supplementary Fig. 4). Given these differences, to create a fair comparison we used the same
1568 set of features (i.e., peaks) for SIMBA as other methods. SIMBA’s performance was compared
1569  against three of the top methods, including SnapATAC!, Cusanovich2018?, and cisTopic3
1570 recommended by our recent benchmark study*. This comparison was first made qualitatively
1571  based on UMAP visualization and then quantitatively based on clustering performance. SIMBA
1572  performed as well as or better than each of the methods evaluated. These results comparing
1573  SIMBA to scATAC-seg-specialized methods highlight SIMBA’s wide utility for single-cell analyses
1574  (Supplementary Fig. 5).

1575

1576  Supplementary Note 2: Comparison with batch correction methods

1577

1578  Multiple methods have now been developed to correct for the technical effects of sample
1579  preparation and data collection in single cells. To assess SIMBA’s performance in removing batch
1580 effects, we compared it to Seurat3®, LIGER® and Harmony’, three top-performing batch
1581  correction methods recommended in a recent benchmark study?.

1582

1583 Two datasets, including a mouse atlas dataset and a human pancreas dataset (see
1584  Supplementary Table 1), were used for the evaluation. The mouse atlas dataset is composed of
1585  two scRNA-seq subsets with shared cell types from different sequencing platforms. The human
1586  pancreas dataset is composed of five samples pooled from five distinct sources using four
1587  different sequencing techniques wherein not all cell types are shared across each sample.

1588

1589  To qualitatively compare these methods, we visualized cells of each dataset before and after
1590  batch-correction in UMAP plots (Supplementary Fig. 12b,d). To quantitatively evaluate the
1591  performance of each method, using the benchmarking pipeline laid out in Tran et aff, we

1592 measured the conservation of biological information and batch effect removal based on three
1593  different metrics: average silhouette width (ASW), adjusted Rand index (ARI), and local inverse
1594  Simpson’s index (LSI)” as in the previously-mentioned benchmark study® (Supplementary Fig.
1595  12a,c; Methods). Each metric measures the relative mixing of class labels, where optimal

1596  performance is associated with maximal mixing in the batch labels and minimal mixing in the
1597  cell type labels.

1598
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1599  The “Raw” batch correction results are the first 50 principal components of the horizontally
1600 concatenated gene-by-cell expression count matrix using stats::prcomp in R package with

1601 centering and scaling. The “Raw, preprocessed” batch correction used the preprocessed data
1602  with log normalization with scaling factor 10* and selection of 3000 highly variable genes with
1603  Seurat v3 with no restriction on the minimum number of cells and genes.

1604

1605  For batch correction using Seurat v3, default options are used for pancreas dataset whereas for
1606  mouse atlas dataset no cutoff was used for the minimum number of cells and genes as in Tran
1607 et al.®. The dimension of the batch corrected embedding is set as 50 dimensions following the
1608  default option for Seurat::RunPCA and for the consistency with SIMBA.

1609

1610  For batch correction using LIGER, the same arguments are used (lambda =5, nrep = 3) are used
1611  for liger::optimizeALS in Tran et al. other than the number of factors k was set as 50 for

1612  consistency with other methods for both datasets.

1613

1614  For batch correction using Harmony, the same arguments are used as in Tran et al.® other than
1615 the number of dimensions of the output embedding was set to 50 instead of 20. We note that
1616  the output embedding of 20 dimensions would result in the similar result as when used 50
1617  dimensions in these methods.

1618

1619 Supplementary Note 3: Comparison with multi-omics integration methods

1620

1621  Seurat3 and LIGER are two of the most widely-adopted methods for single-cell data integration.
1622  Here, we demonstrate that SIMBA outperforms these methods on two separate datasets, the
1623  recently published SHARE-seq mouse skin dataset and the similarly recent 10x PBMCs multiome
1624  dataset (Supplementary Table 1). We focus on Seurat3 and LIGER as they have explicit

1625 documentation for the task of integrating scRNA-seq and scATAC-seq data.

1626

1627  We first qualitatively evaluated these methods by inspecting UMAP visualization plots. For the
1628 SHARE-seq dataset, we observed that all three methods perform comparably well in mixing
1629  cells of two modalities though LIGER generated particularly small and noisy clusters

1630  (Supplementary Fig. 15b). For the 10X PBMCs dataset, SIMBA resulted in the best mixing of
1631 cells belonging to each modality whereas other methods clustered cells separately within the
1632  originating modalities (Supplementary Fig. 15d). We next quantitatively assessed the

1633  integration performance of each method using four metrics that measure the distances

1634  between matched cells in the integrated space (Methods). In addition to the commonly-used
1635  metrics including anchoring distance, Silhouette index, and Fraction in the same cluster, we
1636  developed an additional metric, anchoring distance rank (ADR), which represents the

1637 normalized rank of the distance between matching cells. If two matching cells from scRNA-seq
1638  and scATAC-seq are mutually closest to one another, their ADR will be close to 0 (Methods) and
1639  thus a minimized ADR is ideal. Overall SIMBA showed the best performance according to ADR
1640 as well as cluster agreement while showing comparable or better performance according to the
1641  remaining metrics for both datasets (Supplementary Fig. 15a,c).

1642
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1643

1644  The modality integration procedure for Seurat v3 and LIGER follows the tutorial provided by the
1645  authors (Seurat v3:

1646  https://satijalab.org/seurat/archive/v3.1/atacseq integration vignette.html; LIGER:

1647  http://htmlpreview.github.io/?https://github.com/welch-

1648 lab/liger/blob/master/vignettes/Integrating scRNA and scATAC data.html).

1649

1650  Both Seurat v3 and LIGER formulate the modality integration task between scRNA-seq and

1651  scATAC-seq data as a batch correction task between scRNA-seq and gene activity matrix

1652  constructed from scATAC-seq. In Seurat v3, the gene activity score of a gene is calculated as the
1653  sum of the read counts in the peaks that falls within from 2kb upstream of the TSS to the end of
1654  the gene body. In LIGER, this score is calculated as the sum of all read counts that falls within
1655  3kb upstream of the TSS to the end of the gene body.

1656

1657 The “Raw” results start from a scRNA-seq count matrix and a gene activity matrix calculated by
1658  Seurat v3. Filtering for the shared genes in both modalities resulted in 16738 genes for the
1659  SHARE-seq mouse skin dataset and 11045 genes for the 10X PBMCs dataset. Gene-by-cell gene
1660  expression matrix and gene activity matrix were horizontally concatenated along matching rows
1661 (genes). The output embedding is the first 20 principal components calculated by the R function
1662  stats::prcomp with centering and scaling.

1663

1664  For the modality integration using Seurat v3, the gene expression count was filtered using the
1665  default parameters min.cells = 3 and min.features = 200. The co-embedding was created as
1666  described in the tutorial of the package using the scRNA-seq. The output embedding consists of
1667  the first 50 principal components, which is the default option of Seurat::RunPCA.

1668

1669  For the modality integration using LIGER, the gene expression count and gene activity matrices
1670 were normalized and filtered for the genes that are shared between both matrices. The values
1671  were then scaled according to the tutorial. In applying LIGER to the SHARE-seq mouse skin

1672  dataset, the function, liger::optimizeALS was used with the default parameters, k = 20 and

1673 lambda =5. The scRNA-seq dataset was indicated as the reference in the function,

1674  liger::quantile_norm as described in the documentation. The scRNA-seq and scATAC-seq

1675 modalities of the 10X PBMC multiome dataset were unable to be aligned using the default

1676  parameters. Thus lambda = 30 and max.iters = 100 were used for the liger::optimizeALS

1677  function and the scATAC-seq dataset was indicated as the reference using the

1678  liger::quantile_norm function to ensure a better alignment.

1679
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