

1 **Anti-TRAP/SSP2 monoclonal antibodies can inhibit sporozoite infection and**
2 **enhance protection of anti-CSP monoclonal antibodies**

3

4 Brandon K. Wilder*^{1†}, Vladimir Vigdorovich*¹, Sara Carbonetti¹, Nana Minkah¹, Nina
5 Hertoghs¹, Andrew Raappana¹, Hayley Cardamone¹, Brian G. Oliver¹, Olesya
6 Trakhimets¹, Sudhir Kumar¹, Nicholas Dambrauskas¹, Silvia A. Arredondo¹, Nelly
7 Camargo¹, Stefan H.I. Kappe*^{1,2,3} and D. Noah Sather*^{1,2,3}

8

9 ¹Center for Global Infectious Disease Research, Seattle Children's Research Institute,
10 Seattle, WA, USA

11 ²Department of Pediatrics, University of Washington, Seattle, WA, USA

12 ³Department of Global Health, University of Washington, Seattle, WA, USA

13 [†]Present address: Vaccine and Gene Therapy Institute, Oregon Health & Science
14 University, Beaverton, Oregon, 97006, USA

15 *Equal contribution

16 Correspondence: D. Noah Sather: noah.sather@seattlechildrens.org and
17 Stefan H.I. Kappe: stefan.kappe@seattlechildrens.org

18

19

20 Running title: Anti-TRAP mAbs enhance protection of anti-CSP mAbs

1 **Abstract**

2 Vaccine-induced sterilizing protection from infection by *Plasmodium* parasites, the
3 pathogens that cause malaria, will be essential in the fight against malaria as it would
4 prevent both malaria-related disease and transmission. Stopping the relatively small
5 number of parasites injected by the mosquito before they can migrate from the skin to
6 the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used
7 to pursue this objective by targeting the major parasite surface protein present during
8 this stage, the circumsporozoite protein (CSP). While CSP-based vaccines have
9 recently had encouraging success in disease reduction, this was only achieved with
10 extremely high antibody titers and appeared less effective for a complete block of
11 infection (i.e. sterile protection). While such disease reduction is important, these and
12 other results indicate that strategies focusing on CSP alone may not achieve the high
13 levels of sterile protection needed for malaria eradication. Here, we show that
14 monoclonal antibodies (mAbs) recognizing another sporozoite protein, TRAP/SSP2,
15 exhibit a range of inhibitory activity and that these mAbs can augment CSP-based
16 protection despite conferring no sterile protection on their own. Therefore, pursuing a
17 multivalent subunit vaccine immunization is a promising strategy for improving infection-
18 blocking malaria vaccines.

1 **Introduction**

2 The last few years have marked a disheartening milestone as the first period in a
3 generation without a reduction in the global burden of malaria ¹. The interventions that
4 have provided much of the previous progress, such as insecticide-treated bednets and
5 large-scale treatment programs, are highly susceptible to interruptions due to political or
6 economic instability. This was starkly illustrated by the resurgence of malaria in
7 Venezuela in recent years after near-elimination; and in 2020, more globally, due to
8 interruptions in eradication efforts during the COVID-19 pandemic ¹. Therefore, it is
9 likely that durable, infection-blocking interventions (e.g. vaccines, long-lasting mAbs or
10 chemoprophylactics) will be required to drive malaria to elimination.

11

12 Developing such an intervention is hampered by the complex life cycle of the parasite,
13 which begins when an infected mosquito injects tens to hundreds of the “sporozoite”
14 forms of the parasite into the dermis ². From here, sporozoites actively traverse through
15 multiple cell types in search of an endothelial cell through which they will gain access to
16 the blood ³. Upon entering the bloodstream, a sporozoite is carried to the liver within
17 minutes, where it traverses multiple cell types in the liver parenchyma and eventually
18 establishes infection in a hepatocyte ⁴. Following ~7–10 days of development and
19 genome replication (~2 days in rodent malaria models), each successful liver stage
20 releases 30,000–50,000 “merozoites” that cyclically infect, replicate within and lyse red
21 blood cells ^{5,6}. It is only during this blood stage of infection when symptomatic disease
22 occurs, and is also where a subset of sexually differentiated parasite forms can be
23 picked up by a new mosquito host to continue the transmission cycle. Each step in the

1 infection cycle presents opportunities for intervention, although vaccines targeting the
2 “pre-erythrocytic” stages in the skin and liver have yielded the most promising results⁷.
3
4 The most advanced pre-erythrocytic vaccine is RTS,S⁸—an antibody-eliciting subunit
5 vaccine targeting the major sporozoite surface protein circumsporozoite protein (CSP),
6 which has been recently recommended by the WHO^{1,9}. Vaccines based on attenuated
7 live sporozoites that arrest in the liver and function by a combination of T cells and
8 antibodies have also demonstrated robust protection¹⁰. Unfortunately, despite
9 significant efficacy from both approaches in controlled human malaria infection (CHMI)
10 studies in malaria-naive volunteers, both vaccines have markedly reduced efficacy in
11 field trials and have not met the goals of 75% protection against clinical disease for one
12 year as expressed by the WHO¹¹. Recent encouraging Phase II results with the R21
13 CSP particle in Matrix-M adjuvant do meet this goal¹². However, protection with R21
14 appears dependent on high antibody titers, which would require yearly boosters that are
15 vulnerable to interruptions, and protection is less robust against *infection*. If a vaccine or
16 other intervention (e.g. a mAb or an injectable chemoprophylactic) is to be used as a
17 tool to achieve malaria eradication, it will likely need at least 80% efficacy against
18 *infection* to have a significant and sustained impact on transmission^{13–15}. These
19 realities highlight the significant room for improvement in both T cell and antibody-
20 eliciting vaccines, with the latter more amenable to iterative improvement due to
21 available *in vitro* and *in vivo* preclinical assays^{16–19}.
22

1 Of the hundreds of proteins expressed at the sporozoite stage, at least 47 are surface-
2 exposed²⁰⁻²² and therefore potentially accessible to antibodies. However, few of these
3 proteins have been rigorously investigated for their use in antibody-eliciting vaccines²³.
4 In addition to CSP, the thrombospondin-related anonymous protein (TRAP, also known
5 as sporozoite surface protein 2 or SSP2) has been pursued as a vaccine candidate.
6 Similar to CSP, TRAP is essential for sporozoite infectivity^{24,25}, antibodies against it
7 correlate with protection^{26,27} and the protein is abundant²¹ during the skin stage when
8 parasites are particularly susceptible to antibody mediated inhibition. The TRAP
9 ectodomain consists of 3 main domains: a von Willebrand factor A-like domain (vWA),
10 the thrombospondin repeat (TSR) domain and a repeat domain²⁸. The most advanced
11 TRAP vaccine candidate is an adenovirus/MVA-vectored vaccine eliciting strong T cell
12 responses that has had low or mixed efficacy results in CHMI trials^{29,30} and field trials³¹
13 but has been improved in mice following targeting of the T cell response to the liver³².
14 Antibody function in experiments involving immunization with TRAP-derived peptides
15 have yielded mixed results ranging from significant sporozoite inhibition in vitro³³ to no
16 protection in vivo³⁴. A combination protein TRAP/RTS,S immunization failed to show
17 significant protection in a clinical trial³⁵, while a fusion-protein approach using TRAP
18 and CSP resulted in complete protection in a small mouse study³⁶. These results using
19 TRAP alone or in combination with CSP are difficult to interpret due to the diversity of
20 vaccine platforms used, the possibility of immune interference in studies combining
21 platforms, and the unclear dominance of roles for antibodies and T cells in protection³⁷.
22 Whether a more targeted TRAP antibody response could contribute to protection either
23 alone or in combination with CSP remains poorly defined.

1
2 Here, we used both active immunization and passive transfer of mAbs raised against
3 either *Plasmodium yoelii* (rodent malaria) or *Plasmodium falciparum* (human malaria)
4 TRAP to more directly explore the potential efficacy of anti-TRAP antibodies. We found
5 that anti-TRAP antibodies modestly prevent liver infection in a manner dependent on
6 the TRAP domain recognized. Importantly, we also demonstrate a proof-of-concept that
7 anti-TRAP antibodies with minimal protective capacity of their own can augment anti-
8 CSP antibodies, providing additive protection that raises their protective efficacy above
9 80% sterile protection. Together, these findings argue for further investigation of
10 rationally designed multi-antigen, antibody-eliciting malaria vaccines or mAb
11 prophylactics that target multiple antigens and might include CSP as well as non-CSP
12 targets such as TRAP.

13

14

15 **Results**

16 *PyTRAP polyclonal antibodies can prevent parasite infection of hepatocytes in vitro and*
17 *in vivo.*

18 To elicit potentially functional anti-TRAP antibodies, we generated full-length
19 ectodomains and fragments of both rodent (*P. yoelii*) and human (*P. falciparum*) malaria
20 TRAP proteins (**Fig. 1A; Suppl. Table 1**) and verified their purity (**Fig. 1B**). Serum from
21 mice immunized with the rodent malaria *P. yoelii* TRAP ectodomain (PyTRAP)
22 recognized *Py* sporozoites by immunofluorescence in a pattern consistent with
23 micronemal localization, indicating the antigenic fidelity of the recombinant protein (**Fig.**

1 **2A**). We further tested this serum in an inhibition of sporozoite cell traversal and
2 invasion (ISTI) assay. Compared to control serum, anti-PyTRAP serum was able to
3 modestly but significantly ($p=0.028$) reduce sporozoite invasion of Hepa1-6 hepatoma
4 cells *in vitro* at a level similar to serum from mice immunized with the recombinant
5 PyCSP ectodomain, although the latter failed to reach significance ($p=0.106$) (**Fig. 2B**).
6 In contrast, sporozoite traversal of Hepa1-6 cells was not affected by anti-PyTRAP
7 serum ($p=0.125$), whereas anti-PyCSP serum did significantly reduce traversal
8 ($p=0.0057$) (**Fig. 2C**). The known inhibitory anti-PyCSP mAb 2F6^{38,39} reduced both
9 inhibition and traversal in this assay, as expected (**Fig. 2B and C**).

10
11 PyTRAP-immunized mice were then challenged with *Py* sporozoites via mosquito bite to
12 determine if these antibodies could function *in vivo* to reduce liver infection. We utilized
13 a PyGFP_{luc} parasite, which expresses luciferase, enabling the measurement of liver
14 stage parasite burden by bioluminescence imaging. Mice immunized with a non-specific
15 control protein (Env) showed no reduction in parasite liver stage burden following
16 challenge compared with naive mice. In contrast, mice immunized with the PyTRAP
17 ectodomain showed a significant 62% reduction of parasite liver stage burden. Mice
18 immunized with PyCSP ectodomain showed a 91% reduction relative to naive controls
19 (**Fig. 2D**). Together, these data indicate that anti-PyTRAP antibodies can function *in*
20 *vitro* and *in vivo* to reduce parasite infection of hepatocytes.

21

1 *PyTRAP mAbs display a diverse array of functions in vitro and can provide additive*
2 *protection to anti-CSP antibodies in vivo.*

3 Serum polyclonal antibodies, as studied above, are a mixture of many antibody
4 specificities, making it difficult to characterize the relative contribution to functional
5 activity of responses directed at different domains. To enable such a characterization of
6 the repertoire of PyTRAP-elicited antibodies, we produced a panel of 15 mAbs. When
7 tested in ISTI at 10, 50 and 100 μ g/mL, 12 of these mAbs significantly inhibited invasion
8 or cell traversal at one or more concentrations, with mAbs TY03 and TY11 showing the
9 most consistent and potent inhibition (**Fig. 3A, Suppl. Fig. 1**).

10

11 Overall, the mAbs demonstrated a wide range of binding affinities to recombinant
12 PyTRAP (**Fig. 3B, Suppl. Table 2**) and recognized epitopes in the vWA, TSR and
13 repeat regions (**Suppl. Table 3**), thus covering the entire protein ectodomain. Among
14 the 15 mAbs recovered, 10 mAbs bound to the vWA domain. Six of these (TY02, TY05,
15 TY06, TY10, TY11, TY20) shared variable-segment assignments for both heavy and
16 light chains, had closely related complementarity-determining-region (CDR) sequences
17 and had 88.4–96.7% and 93.9–96.9% sequence identity in the variable-region
18 sequences of their heavy and light chain, respectively (**Suppl. Table 4 and Suppl. Fig.**
19 **2A,B**). As expected, these antibodies were functionally similar in that they bound
20 specifically to the vWA domain (**Suppl. Table 3**), clustered in the same epitope bin
21 (**Suppl. Fig. 3A,B**) and inhibited sporozoite infection *in vitro* (**Fig. 3A, Suppl. Fig. 1**).
22 Two mAbs specifically recognized the TSR domain, and the remaining three mAbs
23 bound epitopes in the repeat region (**Suppl. Table 3**). These non-vWA antibodies

1 showed only modest or no sporozoite inhibition of infection *in vitro* (**Fig. 3A**). Binding
2 interference experiments allowed for the assignment of several distinct epitope bins
3 (**Suppl. Fig. 3A,B**) in addition to the one largely formed by the aforementioned group of
4 mAbs sharing high sequence identity. This likely indicates that the mAbs in our panel
5 bind several distant epitopes on PyTRAP. In addition, this panel of mAbs showed a
6 wide range of binding kinetics, with all strongly inhibitory mAbs having a k_{on} of $>10^5$ M $^{-1}$
7 s $^{-1}$ and a k_{dis} of $<10^{-2}$ s $^{-1}$ (**Figure 3B**, note the red box, **Suppl. Table 4**). Together,
8 these data demonstrate that, similar to polyclonal antibodies, anti-PyTRAP mAbs can
9 mediate anti-parasitic function *in vitro*, and that inhibitory function likely depends on fast
10 and stable binding to the vWA domain. However, within the vWA domain some epitopes
11 show higher correlation between binding and blocking of infection compared to others.

12

13 We next wanted to determine whether an anti-PyTRAP mAb could provide sterilizing
14 protection *in vivo* on its own or in combination with an anti-CSP mAb. For this, we chose
15 three vWA domain-binding anti-PyTRAP mAbs from distinct epitope bins: TY03 and
16 TY11, which were the top-performing mAbs in ISTI, and TY12, which failed to
17 demonstrate efficacy in ISTI. Neither the anti-PyTRAP mAbs nor the anti-CSP mAb
18 showed significant binding to the mismatched Ag *in vitro* (**Suppl. Fig. 4A, B**), indicating
19 target specificity. The anti-PyTRAP mAbs were given at 300 μ g/mouse (~ 15 mg/kg)
20 alone or with a partially protective dose of 100 μ g/mouse (~ 5 mg/kg) of anti-PyCSP
21 mAb 2F6 prior to mosquito bite challenge ³⁸. As shown in **Fig. 3C** and **Table 1**, mice
22 administered anti-PyCSP mAb 2F6 showed significant sterile protection, with 9/18
23 (50%) remaining blood stage parasitemia-free, compared to 2/15 (13.3%) for mice

1 receiving non-specific murine IgG ($p=0.032$; this value was not corrected for multiple
2 comparisons due to small sample size and a small number of predefined comparisons
3 being made). Neither TY11 nor TY12 showed any protection (2/13 or 15.4% non-
4 infected) despite TY11 demonstrating the most robust inhibition *in vitro*. Administration
5 of the mAb TY03 resulted in 7/16 mice (43.7%) remaining parasitemia-free, not
6 reaching statistical significance. When combined with the anti-CSP mAb, only the
7 addition of TY03 afforded significant sterile protection (87.5% or 14/16 mice) over the
8 control group ($p<0.001$), which, importantly, was a significant improvement over
9 protection observed with anti-PyCSP mAb alone ($p=0.025$; again not corrected for
10 multiple comparisons as above). Together these data indicate that while *in vitro* testing
11 of mAbs can be useful for identifying non-functional mAbs (e.g. TY12), they should be
12 validated *in vivo* for function. Importantly, these data provide proof of concept that non-
13 CSP antibodies can provide additive protection to anti-CSP antibodies.

14

15 *Antibodies targeting the human malaria parasite *P. falciparum* TRAP can function*
16 *against sporozoite invasion of hepatocytes.*

17 We next wanted to determine if antibodies directed against TRAP/SSP2 from the
18 human malaria parasite, *P. falciparum*, could also function to prevent sporozoite
19 infection. Serum from mice immunized with the ectodomain of *P. falciparum* TRAP
20 (PfTRAP) was able to recognize Pf sporozoites in IFA (**Fig. 4A**) and demonstrated
21 consistent inhibition of Pf sporozoite invasion *in vitro* at a level similar to serum from
22 mice immunized with the ectodomain of *P. falciparum* CSP (PfCSP) (**Fig. 4B**). Inhibition
23 of sporozoite traversal *in vitro* was more modest as compared to anti-PfCSP polyclonal

1 serum (**Fig. 4C**). The known inhibitory anti-PfCSP mAb 2A10⁴⁰ demonstrated robust
2 inhibition of both invasion and traversal (**Fig. 4B and C**).
3

4 Using a similar approach to the anti-PyTRAP work described above, we isolated 7 anti-
5 PfTRAP mAbs from immunized mice. Of these, 5 mAbs recognized the vWA domain
6 with AKBR-3, AKBR-4 and AKBR-6 likely recognizing adjacent epitopes (**Suppl. Fig.**
7 **3C,D**), and 2 mAbs recognized the TSR domains (**Suppl. Table 3**). In contrast to the
8 high proportion of functional anti-PyTRAP mAbs (12 of 15), only 2 of 7 anti-PfTRAP
9 mAbs, both recognizing the vWA domain, showed any sporozoite-inhibitory function *in*
10 *vitro*: AKBR-4 and AKBR-10. Further, only AKBR-4 demonstrated significant inhibition of
11 both invasion and traversal (**Fig. 5A, Suppl. Fig. 5**), despite having unremarkable
12 binding properties with the PfTRAP ectodomain (**Fig. 5B**). Surprisingly, mAb AKBR-7,
13 which had the best binding properties of the set ($K_d \sim 0.15 \pm 0.04$ nM, **Suppl. Table 2**),
14 demonstrated the worst inhibitory properties (**Fig. 5B**). Similar to the case with the anti-
15 PyTRAP mAb panel described above, our data suggest that the PfTRAP vWA domain
16 contains epitopes exposing vulnerability to inhibition, however lack of mAbs that
17 strongly bind other portions of PfTRAP make it difficult to discount the roles that these
18 domains may play in inhibition *in vivo*.
19

20 *A vWA-directed anti-PfTRAP mAb increases the protection afforded by a protective*
21 *CSP mAb.*
22 Because *Pf* sporozoites do not infect murine livers, the only means to test the activity of
23 anti-*Pf* antibodies against sporozoite infection *in vivo* is by either challenging passively

1 or actively immunized wild-type mice with transgenic rodent parasites expressing the *Pf*
2 proteins of interest^{41–43} or by passive immunization of immune-deficient humanized liver
3 mice (FRGhuHep) that can be challenged with wild type *Pf* sporozoites¹⁷. We chose to
4 utilize the latter as it is an established model of antibody-mediated protection against *Pf*
5 infection^{17,44–49} and allows testing of any future combination of anti-*Pf* antibodies
6 without the need for generating combinatorial transgenic parasites. In this model,
7 humanized-liver mice receive a passive transfer of antibodies and are then infected with
8 *Pf* sporozoites via mosquito bite. Six days later, mice are injected with human red blood
9 cells, which can then be infected by merozoites emerging from the liver, and blood
10 stage infection can be quantified by qRT-PCR on days 7 and 9. In this model, detection
11 of parasites by qRT-PCR on either days 7 or 9 has proven to be a stringent and
12 sensitive means of detecting the presence of blood stage parasites^{17,50,51}. Therefore,
13 we define sterile protection in this model as the absence of parasites in the blood above
14 the limit of detection at either day 7 or 9.

15
16 Using this method, we tested the ability of the anti-*Pf*TRAP mAb AKBR-4 to provide
17 sterile protection against *Pf* mosquito-bite infection alone or in combination with a
18 partially-protective anti-*Pf*CSP mAb CIS43⁴⁵. Neither the anti-*Pf*TRAP mAb nor the anti-
19 CSP mAb showed significant binding to the mismatched Ag in vitro (**Suppl. Fig. 4C, D**),
20 indicating target specificity. We chose a dose of 50 µg/mouse (~2.5 mg/kg) for each
21 mAb as this provides partial protection with an anti-*Pf*CSP mAb⁴⁵ and gives a serum
22 concentration of ~10 µg/mL at the time of infection, which is achievable by both active
23 vaccination and passive transfer of long-lasting mAbs^{52,53}. We previously conducted

1 passive administration, mosquito bite challenge in 2 independent experiments ⁴⁵, which
2 showed that 50 µg/mouse dose of anti-PfCSP mAb CIS43 was protective (5/7 and 5/8
3 protected in each experiment), compared to control mice (0/7 and 0/7 protected). To
4 avoid unnecessary repetition of FRGhuHep experiments, we included those cohorts in
5 our overall analysis of mAbs in this study and conducted a third independent experiment
6 with the control and 50 µg/mouse dose of anti-PfCSP mAb CIS43 groups in each. In
7 these experiments, 50 µg/mouse mAb CIS43 yielded a total of 15/23 protected (65%),
8 which was significant compared to 0/19 of control mice protected (0%, p<0.0001; **Table**
9 **2, Fig. 5C**). To determine if the protection afforded by CIS43 would scale linearly with
10 dose and possibly reach 100%, we included a group of 5 FRGhuHep mice in a single
11 experiment, in which the dose was increased 3-fold to 150 µg/mouse. This resulted in 3
12 of 5 mice protected (60%; p=0.002 over control) but was not significantly different from
13 the groups that received 50 µg/mouse.

14
15 On its own, passive administration of 50 µg/mouse of AKB-4 failed to provide any
16 sterile protection over two of these experiments (0/11, 0%). Yet, when 50 µg/mouse of
17 AKB-4 was combined with 50 µg/mouse of the anti-PfCSP mAb (100 µg mAb/mouse
18 total), 14/16 (88%; p<0.0001 over control) mice were steriley protected over two
19 independent experiments. The improvement afforded by the AKB-4/anti-PfCSP mAb
20 combination over the efficacy of the anti-PfCSP mAb alone trended toward, but did not
21 reach statistical significance at this group size (p=0.131). Together, these results
22 provide the proof of concept that antibodies directed against PfTRAP can reduce *Pf*

1 sporozoite cell traversal and invasion of hepatocytes *in vitro*, and potentially enhance
2 the protection of anti-CSP mAbs when used in combination with the latter.

3

4 **Discussion**

5 Studies examining CSP-elicited antibody responses have shown that within a polyclonal
6 antibody population only a subset are highly potent antibody clones, and their
7 distinguishing binding properties can be quite nuanced^{39,44,45,54–58}. Understanding the
8 characteristics associated with protection is crucial for the development of superior mAb
9 products and vaccine immunogens, yet such studies have not been previously
10 performed for TRAP or other non-CSP pre-erythrocytic antibody targets. Here, we show
11 that the polyclonal antibody response to PyTRAP ectodomain can substantially reduce
12 parasite infection of hepatocytes *in vitro* and use mAbs to conclude that this effect is
13 likely driven by vWA and TSR-specific antibodies. These findings are in line with some
14 previous work using antibodies against TRAP protein fragments³³, yet they contrast
15 other observations that failed to see significant inhibition³⁴. Our data with PfTRAP were
16 more limited but the only mAb that was functional *in vitro* also recognized the vWA
17 domain. Taken together, our data with polyclonal and monoclonal antibodies clearly
18 demonstrate that TRAP is a viable antibody target, and that its vWA domain contains
19 sites of vulnerability.

20

21 Critical for any vaccine or mAb product that can be used for malaria eradication will be
22 achieving high levels of sterile protection at sustainable antibody levels. Experience with
23 RTS,S—which elicits extremely high peak levels of anti-CSP antibodies—as well as

1 published data describing the activity of potent anti-CSP mAbs in animal models
2 suggest that increasing anti-CSP antibody titers can increase protection^{45,55,59}. The first
3 CHMI trial using passive transfer of the anti-PfCSP mAb CIS43 (also used in this study)
4 showed that mAbs can provide sterilizing protection against *P. falciparum* mosquito-bite
5 infection at serum concentrations between ~50–500 µg/mL⁶⁰. However, maintenance
6 of such high antibody titers for over a year may not be sustainable for active or passive
7 immunization strategies. As an alternative to frequent vaccine boosting or mAb
8 injections to sustain high titers, it may be possible to achieve high levels of protection at
9 lower antibody titers using multivalent vaccination or multiple mAbs recognizing distinct
10 protein targets. However, there have been no studies to date directly addressing this
11 question, which is best examined using passive transfer of antibodies followed by
12 mosquito bite challenge, as done here.

13
14 Our data in the *Py* model show that an anti-PyTRAP mAb, offering no significant
15 protection by itself, can improve protection against mosquito-bite infection of a partially-
16 protective anti-CSP mAb regimen. Our experiments using *Pf* mosquito-bite challenge in
17 FRGhuHep mice, which received a combination of anti-PfCSP and anti-PfTRAP mAbs,
18 did not show a statistically significant improvement over anti-PfCSP mAb treatment
19 alone. However, the fact that this combination was the only regimen to deliver strong
20 protection in repeated experiments, as well as the strong statistical trend observed, offer
21 support for such an approach against *P. falciparum*. Importantly, the 88% sterile
22 protection was achieved using a low total dose of mAb (100 µg/mouse or ~5 mg/kg).
23 This total dose of 100 µg/mouse (50 µg/mouse each of anti-PfCSP and anti-PfTRAP

1 mAb) is expected to give a total circulating mAb concentration of ~20 µg/mL⁴⁵ —a level
2 that can be achieved for ~36 weeks with a single 20 mg/kg injection of long-lasting
3 mAbs^{52,60,61} or ~4 years via active vaccination⁶². Although it remains to be seen how
4 accurately these animal models translate to the clinic, these data suggest that reaching
5 the 80% sterile protection threshold needed for vaccines¹¹ or injectable anti-malarials¹⁵
6 that can be used as eradication tools may be achieved by targeting multiple proteins
7 rather than by increasing the concentration of antibodies recognizing CSP alone.

8

9 Intriguingly, our data showed that some anti-TRAP mAbs, when combined with anti-
10 CSP mAbs, resulted in enhanced protection despite providing no statistically significant
11 sterile protection on their own. These observations may be explained by the fact that the
12 sterile protection readout requires the prevention of all parasites from successfully
13 infecting the liver, effectively introducing a threshold effect. Therefore, it is possible that
14 a weakly inhibitory mAb would have a more pronounced effect in combination with a
15 partially protective regimen (e.g., that of a suboptimal dose of an anti-CSP mAb) than
16 would be predicted by single-mAb experiments when using sterile protection as a
17 readout. Additional studies clarifying the additive vs. synergistic nature of this or any
18 multivalent approach will be needed to determine the utility of combining CSP with other
19 immunogens, but will require large group sizes and experiments designed specifically to
20 test such hypotheses.

21

22 In summary, we present a proof-of-concept that antibodies targeting TRAP can
23 contribute to sterile protection when used in combination with anti-CSP antibodies.

1 These findings support vaccine and mAb strategies involving multiple *Plasmodium* pre-
2 erythrocytic-stage antigens, and argue that efforts to develop a long-lasting, infection-
3 blocking malaria intervention would greatly benefit from identifying non-CSP antibody
4 targets that can enhance CSP-elicited protection. Although such a multivalent approach
5 can be achieved with mAbs, it is currently limited by cost⁶³. Active vaccination with
6 multiple antigens has been hampered by challenges of generating and combining
7 multiple protein-in-adjuvant formulations, although this may be more easily achieved by
8 the use of mRNA-based vaccines, which have proven adept as a multi-antigen vaccine
9 platform in preclinical studies^{64,65}. Our data, which demonstrate that enhanced
10 protection over CSP-only strategies is possible by way of multivalent subunit
11 vaccination or delivery of mAbs, provide the impetus to pursue such strategies in
12 preclinical studies that better define additive protection and identify additional targets.
13
14

1 **Materials and Methods**

2 *Recombinant protein production*

3 Recombinant proteins were produced in transiently transfected suspension culture of
4 FreeStyle 293 cells (Thermo Fisher Scientific, Waltham, MA, USA), as previously
5 described ⁶⁶. Briefly, codon-optimized constructs encoding the ectodomains or deletion
6 constructs of *Plasmodium falciparum* TRAP (PfTRAP), *Plasmodium yoelii* CSP (PyCSP)
7 and *Plasmodium yoelii* TRAP (PyTRAP) were generated as fusions to the 8xHis and
8 AviTag ⁶⁷ sequences (**Suppl. Table 1**). Following transfection using the high-density
9 PEI method ⁶⁸ and the subsequent 5-day incubation, cells were removed by
10 centrifugation and the culture supernatants were supplemented with NaCl (+350 mM)
11 and sodium azide (0.02%). Treated culture supernatants were passed by gravity
12 through NiNTA agarose, washed with Wash Buffer (10 mM Tris-HCl, pH 8, 300 mM
13 NaCl, 10 mM imidazole), and eluted with Elution Buffer (10 mM Tris-HCl, pH 7.4, 300
14 mM NaCl, 200 mM imidazole). Further purification was performed by size-exclusion
15 chromatography using a calibrated Superdex 200 (10/600) column (Cytiva,
16 Marlborough, MA, USA). The HIV Env gp120 control protein was produced, as
17 previously described ⁶⁹. When required, site-specific biotinylation with BirA and buffer-
18 exchange by gel filtration was performed, as previously described ⁶⁶.

19

20 *Antibody cloning and production*

21 Antibodies were cloned and produced, as previously described ⁶⁶. Briefly, ectodomain
22 PfTRAP and PyTRAP constructs were used as immunogens, and their biotinylated
23 versions were used to isolate antigen-specific B cells by flow cytometry (see sample
24 gating strategy in **Suppl. Fig. 6**). Following culture previously described medium ⁶⁶

1 modified by the addition of 1.5 μ M CpG (ODN-1826) (Integrated DNA Technologies,
2 Coralville, IA, USA), wells containing B cells producing antigen-binding IgG were
3 identified by ELISA, immunoglobulin-encoding transcripts were amplified by RT-PCR
4 and used for the generation of heavy- and light-chain constructs for recombinant mAb
5 expression. The sequences were annotated using IgBLAST ⁷⁰.
6 To express recombinant mAbs, the plasmid DNA was used to transfect suspension
7 cultures of FreeStyle 293 cells (Thermo), as described above. After five days in culture,
8 cells were removed by centrifugation and the cultures were supplemented with NaCl
9 (+350 mM) and sodium azide (0.02%). Treated culture supernatants were passed by
10 gravity through Protein G resin equilibrated in Wash Buffer (10 mM HEPES, pH 7, 300
11 mM NaCl, 2 mM EDTA), washed with Wash Buffer, and eluted with 100 mM glycine, pH
12 2.7. Resulting eluates were buffer-exchanged by repeated centrifugal ultrafiltration with
13 HBS-E (10 mM HEPES, pH 7, 150 mM NaCl, 2 mM EDTA).
14

15 *Binding properties of mAbs*

16 Binding kinetics measurements were characterized using biolayer interferometry (BLI)
17 measurements on an Octet QK^e instrument (Sartorius, Göttingen, Germany), as
18 previously described ⁶⁶. Briefly, antibodies in culture supernatants were immobilized on
19 anti-Mouse IgG Fc Capture biosensors and allowed to associate with antigen serially
20 diluted (in the range of 1–1000 nM) in 10x Kinetics Buffer (10xKB: PBS + 0.1% Bovine
21 Serum Albumin, 0.02% Tween-20 and 0.05% sodium azide) followed by dissociation in
22 10x KB. Resulting sensogram data was evaluated using ForteBio Data Analysis
23 software (version 7.0.1.5) to generate a fit to the 1:1 binding model and provide

1 estimates for the k_{on} and k_{dis} rate constants (see sample sensorgrams and fitted curves
2 in **Suppl. Fig. 7**).

3 The relative specificity of Ag recognition by the mAbs was assayed using biotinylated
4 Ags (30 μ g/mL, with the exception of PfCSP, which was used at 10 μ g/mL) immobilized
5 on streptavidin biosensors, and incubated with mAbs (50 μ g/mL, with the exception of
6 anti-PfCSP, which was used at 10 μ g/mL) diluted in 10xKB.

7 Epitope bins within anti-TRAP mAb panels were assigned based on the interference
8 patterns similar to previous work^{71,72}. First, His-tagged PyTRAP or PfTRAP (30 μ g/mL)
9 was immobilized on NiNTA biosensors in HBS-NPM buffer (20 mM HEPES, pH 7, 150
10 mM NaCl, 1 mM MgCl₂, 0.1 mg/mL Bovine Serum Albumin, 0.05% NaN₃, 0.02% Tween-
11 20). Interference for each pair of mAbs was assessed by binding the first mAb (mAb1)
12 (50 μ g/mL, except for TY14 and TY15, which were used at 100 μ g/mL) to saturation
13 before allowing the binding from the second mAb (mAb2) (50 μ g/mL) to take place.

14 Magnitude of the signal for each mAb2 binding event was corrected by subtracting the
15 signal for the corresponding mAb1 binding step. Additionally, the signal for each mAb2
16 binding was collected in absence of pre-bound mAb1 (i.e., “blank” HBS-NPM buffer was
17 used in place of mAb1 solution) and used to normalize the corrected mAb2 signal.

18 Finally, the normalized mAb2 values were collected for each mAb1 and the resulting
19 interference pattern sets were used to calculate the Pearson correlation coefficients
20 using R (version 4.0.2) and plotted using the R packages pheatmap (1.0.12). Network
21 graphs were plotted using R package igraph (version 1.2.10) with edges connecting
22 pairs of nodes with a Pearson correlation coefficient >0.7; and clusters of
23 interconnected nodes are referred to as epitope bins.

1

2 *Coarse epitope mapping by ELISA*

3 Domain specificity of the mAbs was characterized by enzyme-linked immunosorbent
4 assay (ELISA) using TRAP ectodomain and fragments from PfTRAP and PyTRAP, as
5 previously described ⁶⁶.

6

7 *Sporozoite production*

8 For rodent parasite (*P. yoelii*), female Swiss Webster mice for parasite maintenance
9 were purchased from Envigo (Livermore, CA, USA) and injected intraperitoneally (i.p.)
10 with blood stage PyGFPluc ⁷³. Three days later, gametocyte exflagellation was
11 confirmed and the infected mice were used to feed female *Anopheles stephensi*
12 mosquitoes. Fourteen to 16 days after the feed, salivary gland sporozoites were isolated
13 from the mosquitoes and used in mouse infections.

14 For human malaria (*P. falciparum*) experiments, infected *A. stephensi* mosquitoes were
15 produced, as previously described ⁷⁴.

16

17 *Animal studies ethics statement*

18 All procedures involving animals were performed in adherence to protocols of the
19 Institutional Animal Care and Use Committee (IACUC) at the Seattle Children's
20 Research Institute.

21

1 *Mouse active immunization and challenge*

2 To generate polyclonal serum and a source of mouse mAbs, six to eight week-old

3 BALBc/J mice were purchased from Jackson Laboratories (Bar Harbor, ME, USA) and

4 injected intramuscularly three times at days 0, 14 and 38 using Adjuplex mixed with 20–

5 25 µg of target protein. Mice immunized with recombinant *Py* proteins were then

6 challenged by the bite of 15 PyGFP-*infected* mosquitos, as described ³⁸. Briefly, the

7 proportion of mosquitos infected with *Py* was determined by presence of midgut oocysts

8 on days 7–12. This proportion was used to prepare a cage with 15 infected mosquitoes

9 per animal (i.e. if 50% of mosquitoes had oocysts, 30 mosquitos/animal were used).

10 These mosquitos were then exposed to anesthetized mice for 10 minutes with lifting of

11 mice every minute to encourage active probing as opposed to blood feeding. Forty-two

12 hours later, parasite liver burden was assessed by bioluminescent imaging, as

13 previously described ³⁸. Mice were then immediately sacrificed and splenocytes

14 collected and cryopreserved for B cell isolation and mAb production.

15

16 Mice immunized with *Pf* proteins were immunized as above with the exception that mice

17 were additionally boosted with IV protein three days prior to sacrifice and collection and

18 cryopreservation of splenocytes.

19

20 For both, serum was collected from immunized mice by collecting whole blood in BD

21 microtainer serum tubes (Becton-Dickinson, Franklin Lakes, NJ, USA), allowing blood to

22 clot at room temperature for at least 30 minutes and then centrifuged according to

23 manufacturer's instructions to separate serum for storage and use in *in vitro* assays.

1
2 *Sporozoite immunofluorescence microscopy*
3 *Py* or *Pf* sporozoites were stained as previously described⁷⁵. Briefly, freshly dissected
4 *Py* or *Pf* sporozoites were fixed with 4% PFA and air-dried onto glass slides overnight.
5 These were then permeabilized with 0.1% Triton X-100 and stained with polyclonal
6 (serum at 1:100-1:800 dilution) or monoclonal (10 µg/mL) antibodies. Sporozoites were
7 identified by co-staining with anti-CSP mAbs as well as DAPI for nuclear localization.
8 Images were acquired using an Olympus IX-70 DeltaVision deconvolution microscope
9 at 100X magnification.

10
11 *In vitro inhibition of sporozoite traversal and invasion (ISTI)*
12 *In vitro* ISTI was performed, as previously described for both *Py* and *Pf*⁷⁶. Briefly,
13 freshly-dissected sporozoites were added to hepatoma cells (Hepa1-6 for *Py* and HC-04
14 for *Pf*) plated a day prior in 96-well plates in the presence of antibodies and FITC-
15 dextran in technical duplicates or triplicates. After 90 minutes, cells were fixed,
16 permeabilized and stained with Alexa Fluor 647-labeled anti-CSP mAbs and analyzed
17 by flow cytometry. Invaded cells were identified by the presence of CSP and traversed
18 cells by the uptake of FITC-dextran with gating set to uninfected, stained wells. Within
19 each experimental replicate, antibody-treated wells were normalized to the invasion and
20 traversal of wells treated with pre-immune serum or non-specific mouse IgG, which was
21 set to 100%.

22

1 *Anti-Py mAb passive transfer and challenge*

2 Six to eight week-old BALBc/J mice were intravenously injected with indicated doses of

3 mAbs 24 hours prior to challenge by bite of 5 PyGFP-*infected* mosquitos following

4 the same methods as described above for “Mouse active immunization and challenge”.

5 Mice were followed up for infection by Giemsa-stained thin blood smear every other day

6 from days 3–14 for identification of blood stage parasites. Mice in which we failed to

7 identify parasites in 40,000 red blood cells over the entire period were considered

8 negative and steriley protected. Control mice were administered non-specific polyclonal

9 mouse IgG at a dose equivalent to the highest dose in experimental groups.

10

11 *anti-Pf mAb passive transfer in FRG humanized liver mice*

12 Mice repopulated with human hepatocytes (FRGhuHep) were purchased from Yecuris,

13 Inc. (Tualatin, OR, USA) and infected with *Pf* via mosquito bite, as previously described

14 ^{17,45}. Briefly, indicated doses of mAb were intravenously injected into mice 24 hours

15 prior to challenge by the bite of 5 *Pf*-infected mosquitos using the same criteria and

16 methods as above. On day 6 post-infection, mice were intravenously injected with 400

17 μ L of human red blood cells. On days 7 and 9 post-infection, 100 μ L of peripheral blood

18 was collected, immediately added to Nuclisens Buffer (bioMerieux, Inc., Durham, NC,

19 USA) for lysis and storage. Parasite presence was quantified by qRT-PCR for *Pf* 18s

20 rRNA, as previously described ⁷⁷. Any mouse with a Ct value above the “no template”

21 control at either day was considered positive for parasitemia.

22

1 *Statistics*

2 Statistical analyses and plotting were carried out in Prism (version 9.2.0) (GraphPad
3 Software, San Diego, CA, USA) or in R (version 4.0.2) using packages Exact (version
4 2.1), ggpubr (version 0.4.0), ggstatsplot (version 0.7.2). Statistical tests and outcomes
5 are noted in the figure legend for each figure. For all tests, a p-value of <0.05 was
6 considered significant and values not specifically labeled were above this threshold.

7

8 **Data availability**

9 DNA sequences encoding the mAbs described here have been deposited in GenBank
10 (accession numbers OK484322–OK484365).

1 **Acknowledgements**

2 We would like to thank the vivarium staff at Seattle Children's Research Institute for
3 their support of animal studies, and Weldon DeBusk for his assistance with the flow
4 cytometry experiments. We would like to thank Dr. Sean C. Murphy of the University of
5 Washington for performing the *Pf* qPCR analysis. Additionally, we would like to thank
6 Dr. Paul T. Edlefsen of the Fred Hutch Cancer Research Center for the helpful
7 discussions of statistical analysis and Drs. Neville Kisalu and Robert Seder of the NIH
8 VRC for their provision of mAb CIS43. This study was funded by NIH R01 AI117234 to
9 S.H.K. and D.N.S.

10

11

1 **Author contributions**

2 B.K.W. and V.V. contributed equally to this work.

3 Conceptualization and experimental design: B.K.W., V.V., S.H.I.K. and D.N.S.

4 Investigation: B.K.W., V.V., S.C., N.M., N.H., A.R., H.C, B.G.O., O.T., S.K., N.D., S.A.A.

5 and N.C.

6 Data analysis and visualization: B.K.W., V.V., N.H., N.M.

7 Writing — Original draft: B.K.W.

8 Writing — Review and editing: B.K.W., V.V., S.H.I.K. and D.N.S.

9 Resources: S.H.I.K. and D.N.S.

10 Supervision, Project Administration and Funding Acquisition: B.K.W., S.H.I.K., D.N.S.

11

12

1 Competing Interests statement

2 The authors declare no competing interests.

1 References

- 2 1. World Health Organization. *World malaria report 2021*. (World Health Organization, 2021).
- 3 2. Medica, D. L. & Sinnis, P. Quantitative dynamics of Plasmodium yoelii sporozoite
- 4 transmission by infected anopheline mosquitoes. *Infect. Immun.* **73**, 4363–4369 (2005).
- 5 3. Ejigiri, I. & Sinnis, P. Plasmodium sporozoite-host interactions from the dermis to the
- 6 hepatocyte. *Curr. Opin. Microbiol.* **12**, 401–407 (2009).
- 7 4. Vaughan, A. M. & Kappe, S. H. I. Malaria Parasite Liver Infection and Exoerythrocytic
- 8 Biology. *Cold Spring Harb. Perspect. Med.* **7**, (2017).
- 9 5. Cowman, A. F., Healer, J., Marapana, D. & Marsh, K. Malaria: Biology and Disease. *Cell*
- 10 **167**, 610–624 (2016).
- 11 6. Lindner, S. E., Miller, J. L. & Kappe, S. H. I. Malaria parasite pre-erythrocytic infection:
- 12 preparation meets opportunity. *Cell. Microbiol.* **14**, 316–324 (2012).
- 13 7. Duffy, P. E. & Patrick Gorres, J. Malaria vaccines since 2000: progress, priorities, products. *NPJ Vaccines* **5**, 48 (2020).
- 14 8. Tinto, H. *et al.* Long-term incidence of severe malaria following RTS,S/AS01 vaccination in
- 15 children and infants in Africa: an open-label 3-year extension study of a phase 3
- 16 randomised controlled trial. *Lancet Infect. Dis.* **19**, 821–832 (2019).
- 17 9. Vogel, G. WHO gives first malaria vaccine the green light. *Science* **374**, 245–246 (2021).
- 18 10. Epstein, J. E. *et al.* Protection against Plasmodium falciparum malaria by PfSPZ Vaccine. *JCI Insight* **2**, e89154 (2017).
- 19 11. Malaria Vaccine Funders Group. *Malaria Vaccine Technology Roadmap*.
<https://www.who.int/publications/m/item/malaria-vaccine-technology-roadmap> (2013).
- 20 12. Datoo, M. S. *et al.* Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant
- 21 Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled
- 22 trial. *Lancet* **397**, 1809–1818 (2021).
- 23 13. White, M. T., Verity, R., Churcher, T. S. & Ghani, A. C. Vaccine approaches to malaria
- 24 control and elimination: Insights from mathematical models. *Vaccine* **33**, 7544–7550 (2015).
- 25 14. Penny, M. A., Camponovo, F., Chitnis, N., Smith, T. A. & Tanner, M. Future use-cases of
- 26 vaccines in malaria control and elimination. *Parasite Epidemiol Control* **10**, e00145 (2020).
- 27 15. Macintyre, F. *et al.* Injectable anti-malarials revisited: discovery and development of new
- 28 agents to protect against malaria. *Malar. J.* **17**, 402 (2018).
- 29 16. Roth, A. *et al.* A comprehensive model for assessment of liver stage therapies targeting
- 30 Plasmodium vivax and Plasmodium falciparum. *Nat. Commun.* **9**, 1837 (2018).
- 31 17. Sack, B. K. *et al.* Humoral protection against mosquito bite-transmitted Plasmodium
- 32 falciparum infection in humanized mice. *NPJ Vaccines* **2**, 27 (2017).
- 33 18. Steel, R. W. J. *et al.* An Opsonic Phagocytosis Assay for Plasmodium falciparum
- 34 Sporozoites. *Clin. Vaccine Immunol.* **24**, (2017).
- 35 19. Boyle, M. J. *et al.* Human antibodies fix complement to inhibit Plasmodium falciparum
- 36 invasion of erythrocytes and are associated with protection against malaria. *Immunity* **42**,
- 37 580–590 (2015).
- 38 20. Swearingen, K. E. *et al.* Proteogenomic analysis of the total and surface-exposed
- 39 proteomes of Plasmodium vivax salivary gland sporozoites. *PLoS Negl. Trop. Dis.* **11**,
- 40 e0005791 (2017).
- 41 21. Swearingen, K. E. *et al.* Interrogating the Plasmodium Sporozoite Surface: Identification of
- 42 Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass
- 43 Spectrometry-Based Proteomics. *PLoS Pathog.* **12**, (2016).
- 44 22. Lindner, S. E. *et al.* Total and putative surface proteomics of malaria parasite salivary gland
- 45 sporozoites. *Mol. Cell. Proteomics* **12**, 1127–1143 (2013).
- 46 23. Sack, B., Kappe, S. H. I. & Sather, D. N. Towards functional antibody-based vaccines to

1 prevent pre-erythrocytic malaria infection. *Expert Rev. Vaccines* **16**, 403–414 (2017).

2 24. Sultan, A. A. *et al.* TRAP is necessary for gliding motility and infectivity of plasmodium
3 sporozoites. *Cell* **90**, 511–522 (1997).

4 25. Klug, D. *et al.* Evolutionarily distant I domains can functionally replace the essential ligand-
5 binding domain of Plasmodium TRAP. *Elife* **9**, (2020).

6 26. John, C. C. *et al.* Correlation of high levels of antibodies to multiple pre-erythrocytic
7 Plasmodium falciparum antigens and protection from infection. *Am. J. Trop. Med. Hyg.* **73**,
8 222–228 (2005).

9 27. Scarselli, E. *et al.* Analysis of the human antibody response to thrombospondin-related
10 anonymous protein of Plasmodium falciparum. *Infect. Immun.* **61**, 3490–3495 (1993).

11 28. Dolo, A. *et al.* Thrombospondin related adhesive protein (TRAP), a potential malaria
12 vaccine candidate. *Parassitologia* **41**, 425–428 (1999).

13 29. Hodgson, S. H. *et al.* Evaluation of the efficacy of ChAd63-MVA vectored vaccines
14 expressing circumsporozoite protein and ME-TRAP against controlled human malaria
15 infection in malaria-naive individuals. *J. Infect. Dis.* **211**, 1076–1086 (2015).

16 30. Ewer, K. J. *et al.* Protective CD8+ T-cell immunity to human malaria induced by
17 chimpanzee adenovirus-MVA immunisation. *Nat. Commun.* **4**, 2836 (2013).

18 31. Ogwang, C. *et al.* Prime-boost vaccination with chimpanzee adenovirus and modified
19 vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum
20 infection in Kenyan adults. *Sci. Transl. Med.* **7**, 286re5 (2015).

21 32. Gola, A. *et al.* Prime and target immunization protects against liver-stage malaria in mice.
22 *Sci. Transl. Med.* **10**, (2018).

23 33. Charoenvit, Y. *et al.* Development of two monoclonal antibodies against Plasmodium
24 falciparum sporozoite surface protein 2 and mapping of B-cell epitopes. *Infect. Immun.* **65**,
25 3430–3437 (1997).

26 34. Gant, S. *et al.* Antibodies against thrombospondin-related anonymous protein do not inhibit
27 Plasmodium sporozoite infectivity in vivo. *Infect. Immun.* **68**, 3667–3673 (2000).

28 35. Kester, K. E. *et al.* Sequential Phase 1 and Phase 2 randomized, controlled trials of the
29 safety, immunogenicity and efficacy of combined pre-erythrocytic vaccine antigens RTS,S
30 and TRAP formulated with AS02 Adjuvant System in healthy, malaria naïve adults. *Vaccine*
31 **32**, 6683–6691 (2014).

32 36. Lu, C. *et al.* Design and assessment of TRAP-CSP fusion antigens as effective malaria
33 vaccines. *PLoS One* **15**, e0216260 (2020).

34 37. Rampling, T. *et al.* Safety and High Level Efficacy of the Combination Malaria Vaccine
35 Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara
36 Vectored Vaccines Expressing ME-TRAP. *J. Infect. Dis.* **214**, 772–781 (2016).

37 38. Sack, B. K. *et al.* Model for in vivo assessment of humoral protection against malaria
38 sporozoite challenge by passive transfer of monoclonal antibodies and immune serum.
39 *Infect. Immun.* **82**, 808–817 (2014).

40 39. Vijayan, K. *et al.* Antibody interference by a non-neutralizing antibody abrogates humoral
41 protection against Plasmodium yoelii liver stage. *Cell Rep.* **36**, 109489 (2021).

42 40. Deal, C. *et al.* Vectored antibody gene delivery protects against Plasmodium falciparum
43 sporozoite challenge in mice. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 12528–12532 (2014).

44 41. Atcheson, E. *et al.* Tailoring a Plasmodium vivax Vaccine To Enhance Efficacy through a
45 Combination of a CSP Virus-Like Particle and TRAP Viral Vectors. *Infect. Immun.* **86**,
46 (2018).

47 42. Longley, R. J. *et al.* Assessment of the Plasmodium falciparum Preerythrocytic Antigen
48 UIS3 as a Potential Candidate for a Malaria Vaccine. *Infect. Immun.* **85**, (2017).

49 43. Longley, R. J. *et al.* Comparative assessment of vaccine vectors encoding ten malaria
50 antigens identifies two protective liver-stage candidates. *Sci. Rep.* **5**, 11820 (2015).

51 44. Tan, J. *et al.* A public antibody lineage that potently inhibits malaria infection through dual

1 binding to the circumsporozoite protein. *Nat. Med.* **24**, 401–407 (2018).

2 45. Kisalu, N. K. *et al.* A human monoclonal antibody prevents malaria infection by targeting a
3 new site of vulnerability on the parasite. *Nat. Med.* **24**, 408–416 (2018).

4 46. Triller, G. *et al.* Natural Parasite Exposure Induces Protective Human Anti-Malarial
5 Antibodies. *Immunity* **47**, 1197–1209.e10 (2017).

6 47. Kublin, J. G. *et al.* Complete attenuation of genetically engineered Plasmodium falciparum
7 sporozoites in human subjects. *Sci. Transl. Med.* **9**, (2017).

8 48. Ishizuka, A. S. *et al.* Protection against malaria at 1 year and immune correlates following
9 PfSPZ vaccination. *Nat. Med.* **22**, 614–623 (2016).

10 49. Foquet, L. *et al.* Vaccine-induced monoclonal antibodies targeting circumsporozoite protein
11 prevent Plasmodium falciparum infection. *J. Clin. Invest.* **124**, 140–144 (2014).

12 50. Goswami, D. *et al.* A replication-competent late liver stage-attenuated human malaria
13 parasite. *JCI Insight* **5**, (2020).

14 51. Foquet, L. *et al.* Plasmodium falciparum Liver Stage Infection and Transition to Stable
15 Blood Stage Infection in Liver-Humanized and Blood-Humanized FRGN KO Mice Enables
16 Testing of Blood Stage Inhibitory Antibodies (Reticulocyte-Binding Protein Homolog 5) In
17 Vivo. *Front. Immunol.* **9**, 524 (2018).

18 52. Gaudinski, M. R. *et al.* Safety and pharmacokinetics of the Fc-modified HIV-1 human
19 monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. *PLoS
20 Med.* **15**, e1002493 (2018).

21 53. Ledgerwood, J. E. *et al.* Safety, pharmacokinetics and neutralization of the broadly
22 neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. *Clin. Exp.
23 Immunol.* **182**, 289–301 (2015).

24 54. Alanine, D. G. W. *et al.* Human Antibodies that Slow Erythrocyte Invasion Potentiate
25 Malaria-Neutralizing Antibodies. *Cell* **178**, 216–228.e21 (2019).

26 55. Wang, L. T. *et al.* A Potent Anti-Malarial Human Monoclonal Antibody Targets
27 Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver.
28 *Immunity* (2020) doi:10.1016/j.jimmuni.2020.08.014.

29 56. Livingstone, M. C. *et al.* In vitro and in vivo inhibition of malaria parasite infection by
30 monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). *Sci.
31 Rep.* **11**, 5318 (2021).

32 57. Douglas, A. D. *et al.* A defined mechanistic correlate of protection against Plasmodium
33 falciparum malaria in non-human primates. *Nat. Commun.* **10**, 1953 (2019).

34 58. Scally, S. W. *et al.* Rare PfCSP C-terminal antibodies induced by live sporozoite
35 vaccination are ineffective against malaria infection. *J. Exp. Med.* **215**, 63–75 (2018).

36 59. Kisalu, N. K. *et al.* Enhancing durability of CIS43 monoclonal antibody by Fc mutation or
37 AAV delivery for malaria prevention. *JCI Insight* **6**, (2021).

38 60. Gaudinski, M. R. *et al.* A Monoclonal Antibody for Malaria Prevention. *N. Engl. J. Med.* **385**,
39 803–814 (2021).

40 61. Gaudinski, M. R. *et al.* Safety and pharmacokinetics of broadly neutralising human
41 monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical
42 trial. *Lancet HIV* **6**, e667–e679 (2019).

43 62. Minassian, A. M. *et al.* Reduced blood-stage malaria growth and immune correlates in
44 humans following RH5 vaccination. *Med (N Y)* **2**, 701–719.e19 (2021).

45 63. Pelfrene, E., Mura, M., Cavaleiro Sanches, A. & Cavaleri, M. Monoclonal antibodies as anti-
46 infective products: a promising future? *Clin. Microbiol. Infect.* **25**, 60–64 (2019).

47 64. Chahal, J. S. *et al.* Dendrimer-RNA nanoparticles generate protective immunity against
48 lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. *Proc.
49 Natl. Acad. Sci. U. S. A.* **113**, E4133–42 (2016).

50 65. Vogel, A. B. *et al.* Self-Amplifying RNA Vaccines Give Equivalent Protection against
51 Influenza to mRNA Vaccines but at Much Lower Doses. *Mol. Ther.* **26**, 446–455 (2018).

1 66. Carbonetti, S. *et al.* A method for the isolation and characterization of functional murine
2 monoclonal antibodies by single B cell cloning. *J. Immunol. Methods* **448**, 66–73 (2017).

3 67. Fairhead, M. & Howarth, M. Site-specific biotinylation of purified proteins using BirA.
4 *Methods Mol. Biol.* **1266**, 171–184 (2015).

5 68. Backliwal, G., Hildinger, M., Hasija, V. & Wurm, F. M. High-density transfection with HEK-
6 293 cells allows doubling of transient titers and removes need for a priori DNA complex
7 formation with PEI. *Biotechnol. Bioeng.* **99**, 721–727 (2008).

8 69. Sather, D. N. *et al.* Factors associated with the development of cross-reactive neutralizing
9 antibodies during human immunodeficiency virus type 1 infection. *J. Virol.* **83**, 757–769
10 (2009).

11 70. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain
12 sequence analysis tool. *Nucleic Acids Res.* **41**, W34–40 (2013).

13 71. Abdiche, Y. N. *et al.* High-throughput epitope binning assays on label-free array-based
14 biosensors can yield exquisite epitope discrimination that facilitates the selection of
15 monoclonal antibodies with functional activity. *PLoS One* **9**, e92451 (2014).

16 72. Mast, F. D. *et al.* Highly synergistic combinations of nanobodies that target SARS-CoV-2
17 and are resistant to escape. *Elife* **10**, (2021).

18 73. Miller, J. L. *et al.* Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite
19 infection using luciferase-expressing Plasmodium yoelii. *PLoS One* **8**, e60820 (2013).

20 74. Vaughan, A. M. *et al.* A transgenic Plasmodium falciparum NF54 strain that expresses
21 GFP-luciferase throughout the parasite life cycle. *Mol. Biochem. Parasitol.* **186**, 143–147
22 (2012).

23 75. Sack, B. K. *et al.* Mechanisms of stage-transcending protection following immunization of
24 mice with late liver stage-arresting genetically attenuated malaria parasites. *PLoS Pathog.*
25 **11**, e1004855 (2015).

26 76. Douglass, A. N., Metzger, P. G., Kappe, S. H. I. & Kaushansky, A. Flow Cytometry-Based
27 Assessment of Antibody Function Against Malaria Pre-erythrocytic Infection. *Methods Mol.*
28 *Biol.* **1325**, 49–58 (2015).

29 77. Murphy, S. C. *et al.* Real-time quantitative reverse transcription PCR for monitoring of
30 blood-stage Plasmodium falciparum infections in malaria human challenge trials. *Am. J.*
31 *Trop. Med. Hyg.* **86**, 383–394 (2012).

32
33

34

1 **Tables**

2 *Table 1. Combination of anti-PyCSP and anti-PyTRAP can improve sterile protection*
3 *from mosquito bite challenge.*

4

	Sterile Protection ^a				Comparison p-value ^b	
	Exp 1	Exp 2	Exp 3	Combined	vs. mlgG	vs. α CSP + mlgG
400 mlgG ^c	1/5 (20%)	0/5 (0%)	1/5 (20%)	2/15 (13.3%)	–	0.033
100 μ g α CSP + 300 μ g mlgG ^c						–
300 μ g TY11 + 100 μ g mlgG ^c	4/8 (50%)	3/5 (60%)	2/5 (40%)	9/18 (50%)	0.033	–
300 μ g TY12 + 100 μ g mlgG ^c	1/3 (33%)	0/5 (0%)	1/5 (20%)	2/13 (15.4%)	0.956	0.049
300 μ g TY03 + 100 μ g mlgG ^c	2/4 (50%)	0/5 (0%)	0/4 (0%)	2/13 (15.4%)	0.956	0.049
100 μ g α CSP + 300 μ g TY11	5/6 (83.3%)	0/5 (0%)	2/5 (40%)	7/16 (43.7%)	0.072	0.734
100 μ g α CSP + 300 μ g TY12	2/4 (50%)	1/5 (20%)	1/5 (20%)	4/14 (28.6%)	0.355	0.279
100 μ g α CSP + 300 μ g TY03	3/4 (75%)	0/5 (0%)	2/5 (40%)	5/14 (35.7%)	0.211	0.586
100 μ g α CSP + 300 μ g TY03	6/6 (100%)	4/5 (90%)	4/5 (80%)	14/16 (87.5%)	0.000034	0.025

5

6 ^a Sterile protection: mice that remain parasite-free (via microscopic blood-smear
7 monitoring) throughout the experimental time course.

8 ^b Barnard's exact test p-values shown were not adjusted for multiple comparisons due
9 to small group sizes and a small number of predefined comparisons being made.

10 ^c mlgG: normal mouse IgG control

11

12 Mice were injected with 100 μ g/mouse of anti-CSP mAb (2F6), 300 μ g/mouse of an
13 anti-PyTRAP mAb or a combination of both 24h prior to challenge by 5 Py-infected
14 mosquitos. Where only one mAb was injected, mice were also given non-specific mlgG
15 to total 400 μ g/mouse. Mice were tracked for 14 days for parasitemia by thin blood
16 smear and those remaining parasite-free at day 14 were considered steriley protected.
17 Number and percentages of mice protected across 3 independent experiments are
18 shown.

19

1 *Table 2. Combination of anti-PfCSP and anti-PfTRAP can improve sterile protection*
2 *from mosquito bite challenge.*

3

	Sterile Protection ^a				Comparison p-value ^b	
	Exp 1	Exp 2	Exp 3	Combined	vs. mIgG	vs. 50 µg αCSP
150 µg mIgG^c	0/7 (0%) #	0/7 (0%) #	0/5 (0%)	0/19 (0%)	–	<0.0001
50 µg AKBR-4	0/6 (0%)	–	0/5 (0%)	0/11 (0%)	1	0.0002
50 µg αCSP	5/7 (71%) #	5/8 (63%) #	5/8 (63%)	15/23 (65%)	<0.0001	–
150 µg αCSP	–	3/5 (60%)	–	3/5 (60%)	0.002	0.88
50 µg AKBR-4 + 50 µg αCSP	–	6/7 (86%)	8/9 (89%)	14/16 (88%)	<0.0001	0.131

4 ^a Sterile protection: mice that remain parasite-free (via microscopic blood-smear
5 monitoring) throughout the experimental time course.

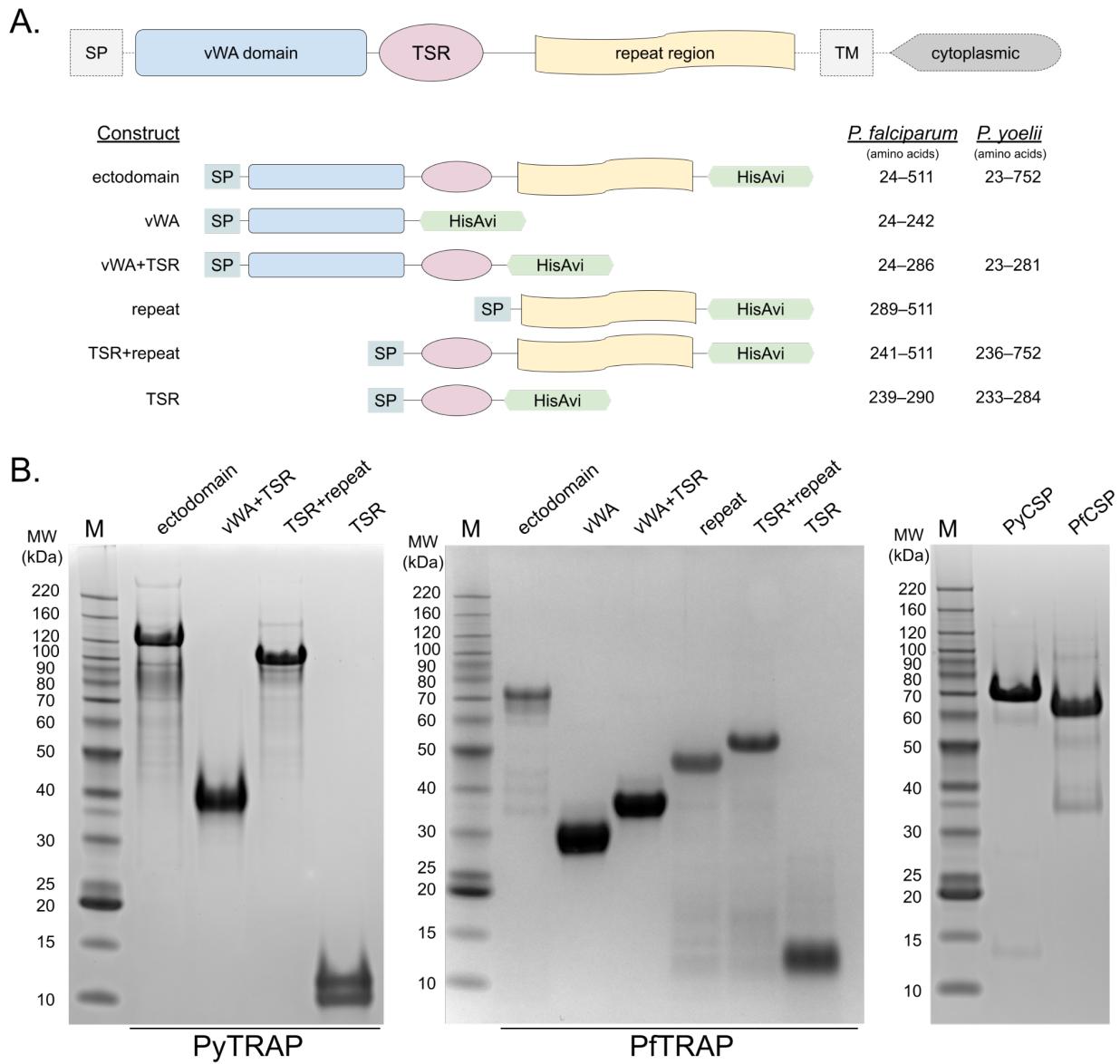
6 ^b Barnard's exact test p-values shown were not adjusted for multiple comparisons due
7 to small group sizes and a small number of predefined comparisons being made.

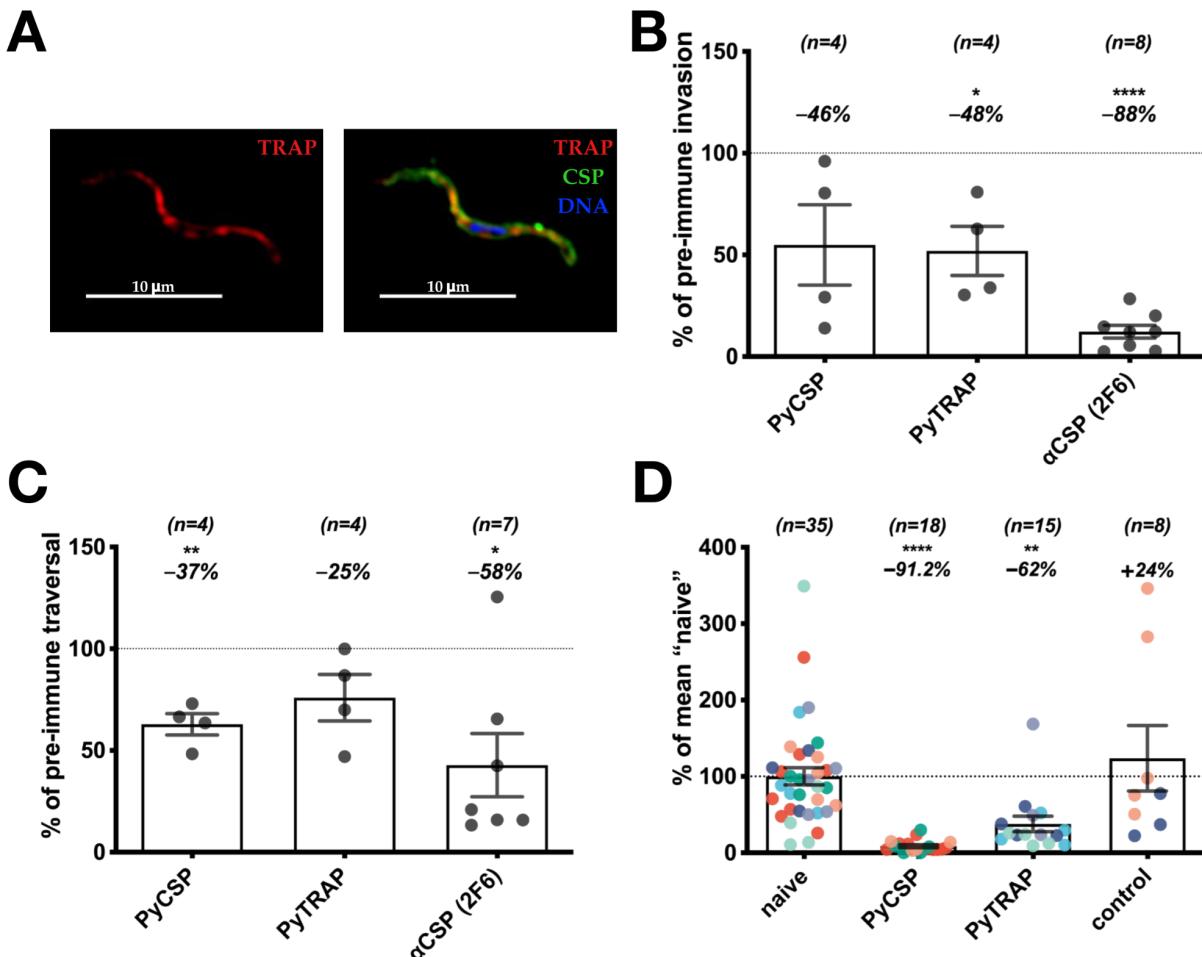
8 ^c mIgG: normal mouse IgG control

9 # indicates results previously reported in Kisalu *et al.* ⁵⁵.

10

11 Mice were injected with indicated doses of either non-specific mIgG, anti-CSP mAb
12 CIS43, anti-PfTRAP mAb AKBR-4 or a combination of anti-CSP and AKBR-4 24h prior
13 to challenge with 5 *Pf*-infected mosquito bites. Mice were injected with human red blood
14 cells at day 5 and 6, and then blood sampled at days 7 and 9 to detect blood stage
15 parasitemia by qPCR. Number and percentages of mice protected across 3
16 independent experiments are shown.

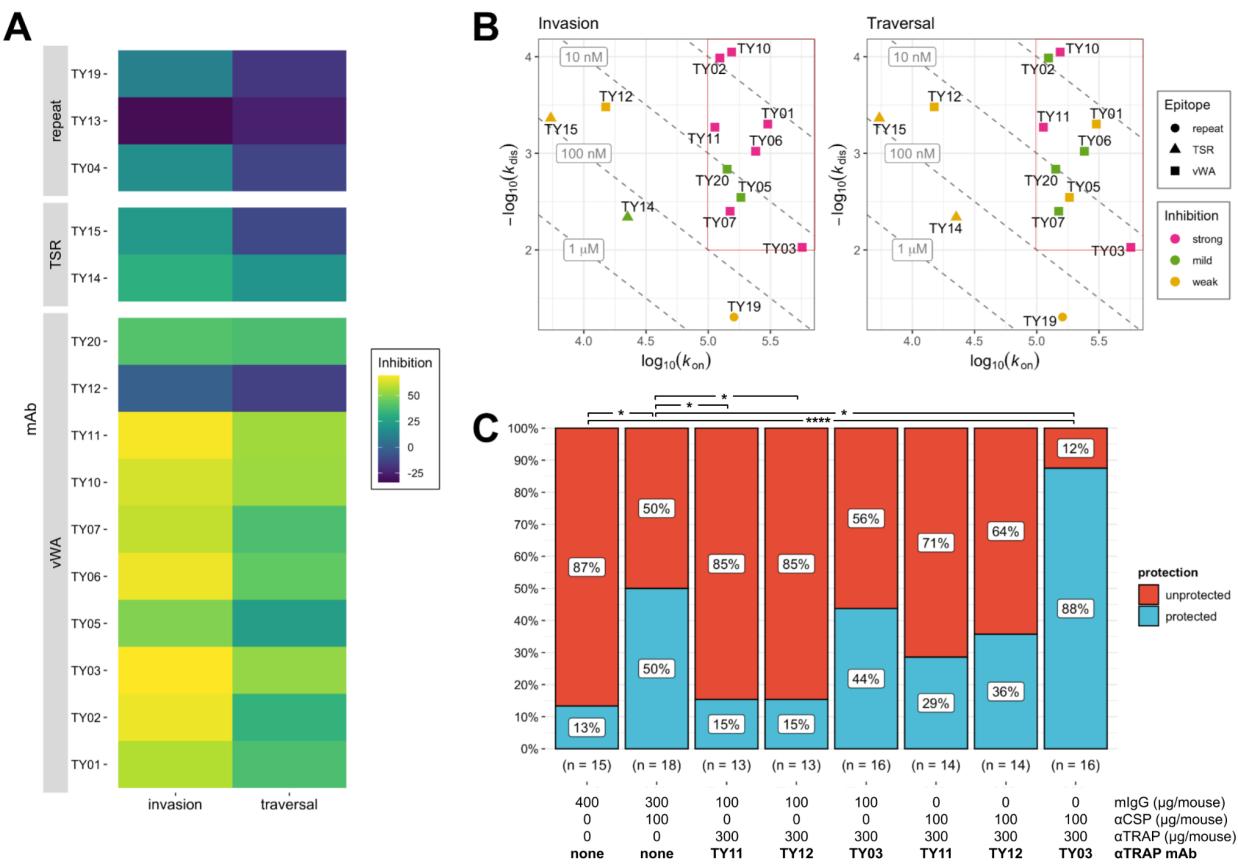

17


18

19

20

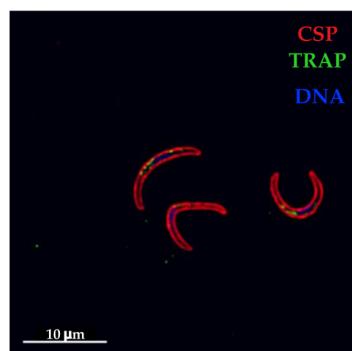
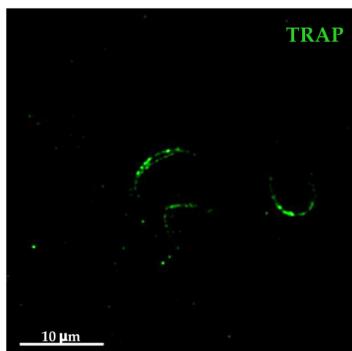
1 **Figures**



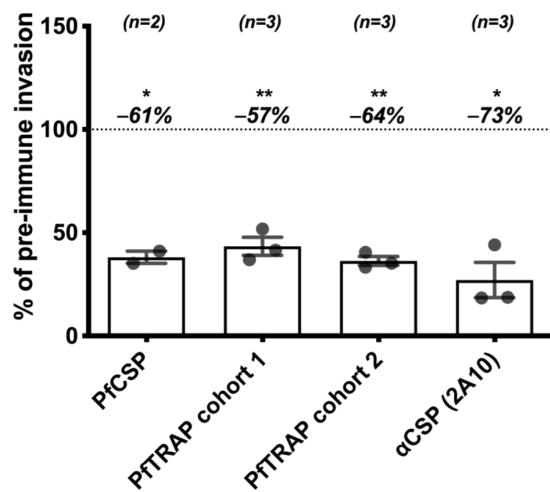
1
2 *Figure 2. Polyclonal antibodies to PyTRAP inhibit parasite invasion, traversal and in vivo
3 infection.*

4 Mice were immunized three times with PyTRAP or PyCSP ectodomains. **(A)** Immune
5 sera were used to verify binding to *Py* sporozoites via immunofluorescence. Shown is a
6 representative example of fixed, permeabilized sporozoites labeled with a 1:100 dilution
7 of polyclonal mouse serum from PyTRAP immunization. The anti-mouse IgG (anti-
8 TRAP serum) is in the red channel shown alone on the left and in combination with anti-
9 CSP mAb 2F6 (green channel) and a DAPI nuclear stain (blue channel); 10- μ m scale
10 bars are shown. Immune sera were then assessed for function in vitro for inhibition of
11 invasion **(B)** and traversal **(C)**. In **B** and **C**, pooled serum from cohorts of n=5 mice
12 (number of cohorts indicated above each bar) was tested in three independent assays.
13 Each data point represents the average "% of pre-immune" invasion or traversal of
14 these independent assays for each cohort pool. Each bar indicates the group mean,
15 with error bars representing standard error of the mean. Values representing percent
16 changes from 100% (indicated by dotted lines) are shown above. Asterisks indicate a
17 significant difference from 100% as determined by a two-tailed one-sample *t*-test. **(D)**
18 Immunized mice were challenged by the bite of 15 PyGFPluc-infected mosquitos and

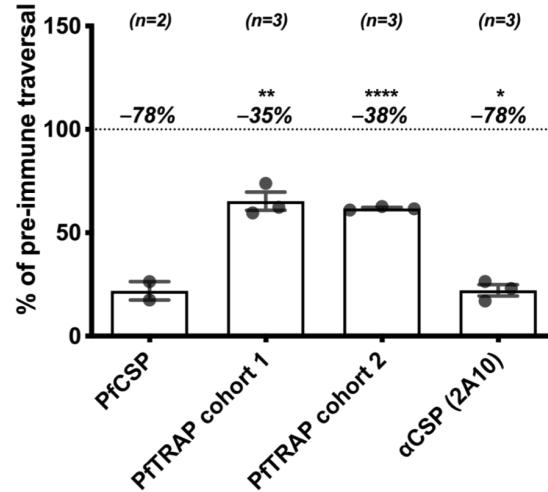
1 assessed for parasite liver burden by bioluminescent imaging. Each data point
2 represents an individual mouse with each color corresponding to an independent
3 immunization-challenge experiment (total number of animals shown above each bar).
4 Each data point was normalized to the mean flux from “naive” mice within each
5 challenge experiment, while “control” mice were an additional group immunized with
6 HIV Env gp120 protein. Each bar indicates the group mean, with error bars representing
7 standard error of the mean. Values representing percent changes from 100% (indicated
8 by a dotted line) are shown above. Asterisks indicate significance as determined by
9 ANOVA with Kruskall-Wallis post-test. For **B-D**, * is $p \leq 0.05$; ** is $p \leq 0.01$; and **** is
10 $p \leq 0.0001$.

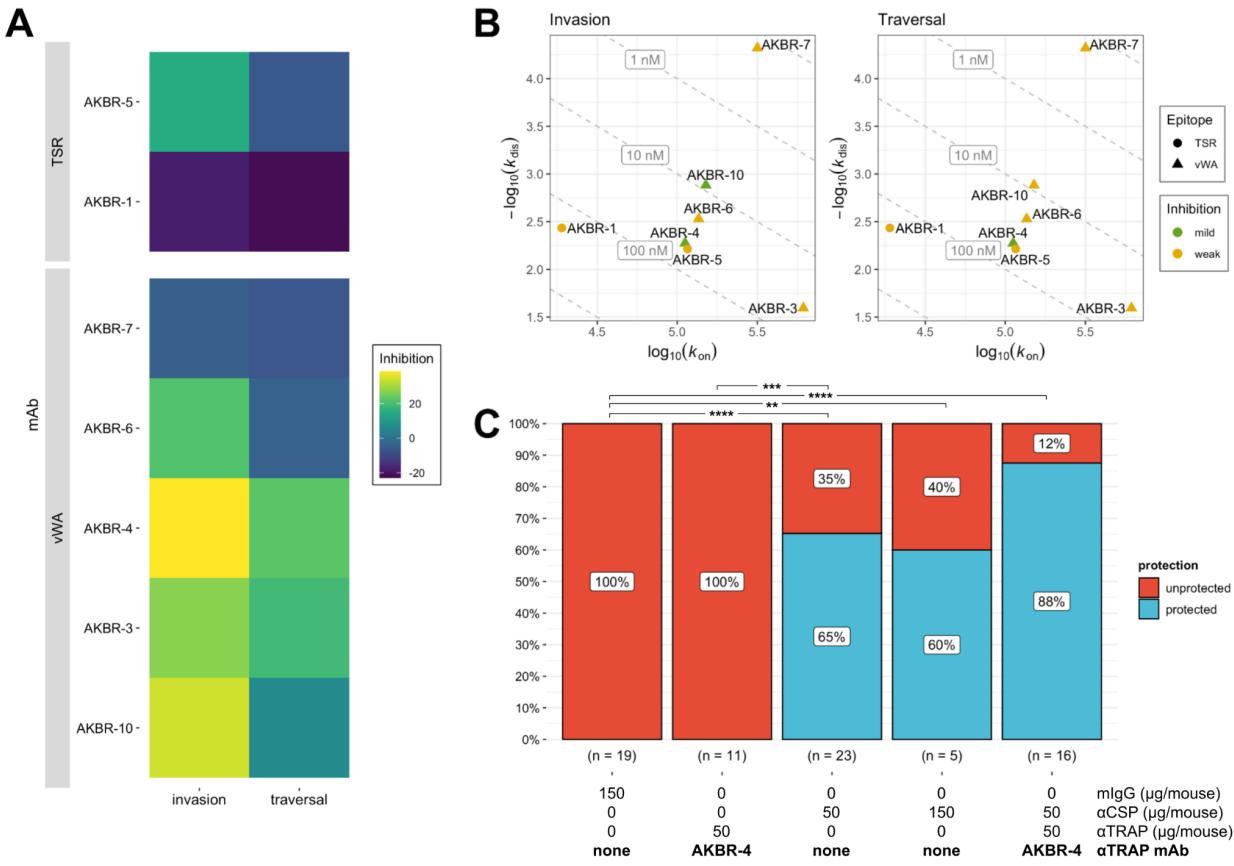
1


2 *Figure 3. Effects of PyTRAP monoclonal antibodies on parasite activity.*

3 (A) Each mAb was assessed for in vitro function of inhibition of invasion and traversal.
4 In each case, mean values of % inhibition (i.e., 100% – invasion or traversal value) from
5 the 100- μ g/mL mAb concentrations (bar plots with these and additional conditions
6 shown in **Suppl. Fig. 1**) are represented on a color axis. (B) Binding kinetics for each
7 mAb was measured by BLI and shown as kinetic maps with gray dashed diagonal
8 contour lines labeled with the corresponding K_d values and symbols representing the
9 characterized epitopes for invasion (*left*) and traversal (*right*) inhibition. Higher-affinity
10 (i.e., those possessing lower K_d values) mAbs are closer to the upper-right corner of this
11 plot. Symbol color coding represents “strong” inhibition for mean values $\leq 50\%$, “mild”
12 inhibition for values $\leq 70\%$ and “weak” for mean values $>70\%$ observed at the 100-
13 μ g/mL concentration. Red box highlights the region of the kinetic plots containing the
14 values for mAbs that showed strong inhibition in invasion and traversal assays. (C)
15 Summarized sterile protection ratios following passive-transfer-challenge experiments
16 (number of animals in each group is shown below the corresponding bar, individual
17 values shown in Table 1). For C, * is $p \leq 0.05$ and *** is $p \leq 0.0001$; values reported were
18 not adjusted for multiple comparisons due to small group size and limited comparisons.


A

B


C

1

2 *Figure 4. Polyclonal antibodies to PfTRAP inhibit parasite invasion and traversal in vitro.*

3 Mice were immunized three times with PfTRAP or PfCSP ectodomains. (A) Immune
4 sera were used to verify binding to *Pf* sporozoites via immunofluorescence. Shown are
5 fixed, permeabilized sporozoites labeled with a 1:800 dilution of polyclonal anti-PfTRAP
6 mouse serum (followed by anti-mouse IgG secondary; green channel), fluorescently
7 labeled anti-PfCSP monoclonal antibody 2A10 (red channel, right image) and DAPI
8 nuclear stain (blue channel, right image); 10-μm scale bars are shown. Immune serum
9 was then assessed for function in vitro for inhibition of invasion (B) and traversal (C). In
10 B and C, each data point is the average “% of pre-immune” invasion or traversal from
11 technical triplicates in independent experiments; two separate immunization experiment
12 sets are represented as “PfTRAP cohort 1” and “PfTRAP cohort 2”. Each bar indicates
13 the group mean, with error bars representing standard error of the mean and percent
14 change from 100% (shown as dashed line) shown above. Asterisks indicate a
15 significant difference from 100% as determined by two-tailed one-sample *t*-test where *
16 is $p \leq 0.05$; ** is $p \leq 0.01$; and **** is $p \leq 0.0001$.
17

1

2 *Figure 5. Monoclonal antibodies to PfTRAP inhibit parasite invasion, traversal in vitro.*

3 **(A)** Each mAb was assessed for in vitro function of inhibition of invasion and traversal.
4 In each case, mean values of % inhibition (i.e., 100% – invasion or traversal value) from
5 the 100-µg/mL mAb concentrations (bar plots with these and additional conditions
6 shown in Suppl. Fig. 5) are represented on a color axis. **(B)** Binding kinetics for each
7 mAb was measured by BLI and shown as kinetic maps with gray dashed diagonal
8 contour lines labeled with the corresponding K_d values and symbols representing the
9 characterized epitopes for invasion (*left*) and traversal (*right*) inhibition. Higher-affinity
10 (i.e., those possessing lower K_d values) mAbs are closer to the upper-right corner of this
11 plot. Symbol color coding represents “mild” inhibition for values $\leq 70\%$ and “weak” for
12 mean values $>70\%$ observed at the 100-µg/mL concentration. **(C)** Summarized sterile
13 protection breakdowns following passive-transfer-challenge experiments (number of
14 animals in each group is shown below the corresponding bar, individual values shown in
15 Table 2). For **C**, ** is $p \leq 0.01$, *** is $p \leq 0.001$, and **** is $p \leq 0.0001$; values reported were
16 not adjusted for multiple comparisons due to small group size and limited comparisons.
17