

1 Genetic diversity loss in the Anthropocene

2
3 Moises Exposito-Alonso^{1,2,3*}, Tom R. Booker^{4,5,&}, Lucas Czech^{1,&}, Tadashi Fukami^{2,&}, Lauren
4 Gillespie^{1,6,&}, Shannon Hateley^{1,&}, Christopher C. Kyriazis^{7,&}, Patricia L. M. Lang^{2,&}, Laura
5 Leventhal^{1,2,&}, David Nogues-Bravo^{8,&}, Veronica Pagowski^{2,&}, Megan Ruffley^{1,&}, Jeffrey P. Spence^{9,&},
6 Sebastian E. Toro Arana^{1,2,&}, Clemens L. Weiß^{9,&}, Erin Zess^{1,&}.

7
8 ¹Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.

9 ²Department of Biology, Stanford University, Stanford, CA 94305, USA.

10 ³Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.

11 ⁴Department of Zoology, University of British Columbia, Vancouver, Canada.

12 ⁵Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.

13 ⁶Department of Computer Science, Stanford University, Stanford, CA 94305, USA.

14 ⁷Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.

15 ⁸Center for Macroecology, Evolution and Climate, GLOBE Inst., Univ. of Copenhagen, Copenhagen, Denmark.

16 ⁹Department of Genetics, Stanford University, Stanford, CA 94305, USA.

17
18 [&]Authors are listed alphabetically

19 *To whom correspondence should be addressed: moisesexpositoalonso@gmail.com

20
21
22
23 **Keywords:** extinction, genetic diversity, climate change, habitat loss, Anthropocene

24
25
26
27 **More species than ever before are at risk of extinction due to anthropogenic habitat loss and**
28 **climate change. But even species that are not threatened have seen reductions in their populations**
29 **and geographic ranges, likely impacting their genetic diversity. Although preserving genetic**
30 **diversity is key to maintaining adaptability of species, we lack predictive tools and global**
31 **estimates of genetic diversity loss across ecosystems. By bridging theories of biodiversity and**
32 **population genetics, we introduce a mathematical framework to understand the loss of naturally**
33 **occurring DNA mutations within decreasing habitat within a species. Analysing genome-wide**
34 **variation data of 10,095 geo-referenced individuals from 20 plant and animal species, we show**
35 **that genome-wide diversity follows a power law with geographic area (the mutations-area**
36 **relationship), which can predict genetic diversity loss in spatial computer simulations of local**
37 **population extinctions. Given pre-21st century values of ecosystem transformations, we estimate**
38 **that over 10% of genetic diversity may already be lost, surpassing the United Nations targets for**
39 **genetic preservation. These estimated losses could rapidly accelerate with advancing climate**
40 **change and habitat destruction, highlighting the need for forecasting tools that facilitate**
41 **implementation of policies to protect genetic resources globally.**

45 Anthropogenic habitat loss and climate change (1, 2) have led to the extinction of hundreds of species
46 over the last centuries (1, 2) and approximately one million more species (25% of all known species)
47 are at risk of extinction (3). It has been estimated that an even larger fraction—at least 47%—of plant
48 and animal species have lost part of their geographic range in response to the last centuries of
49 anthropogenic activities (4, 5). Though this loss might seem inconsequential compared to losing an
50 entire species, this range contraction reduces genetic diversity, which dictates species' ability to adapt
51 to new environmental conditions (6–8). The loss of geographic range can spiral into a feedback loop
52 where diversity loss further increases the risk of species extinction (9, 10).

53

54 Although genetic diversity is a key dimension of biodiversity (11), it has been overlooked in
55 international conservation initiatives. Only in 2021 did the United Nations' Convention of Biological
56 Diversity propose to preserve at least 90% of all species' genetic diversity (12, 13). Although analyses
57 of genetic markers in animal populations sampled over time with the aim of quantifying recent genetic
58 change are emerging (14, 15) and simulation studies with species distribution models or sensitivity
59 analyses suggest within-species range variation may be strongly impacted (5, 16, 17), theory and
60 scalable approaches to estimate genome-wide diversity loss across species do not yet exist, impairing
61 prioritization and evaluation of conservation targets. Here, we introduce a framework to estimate global
62 genetic diversity loss by bridging biodiversity theory with population genetics, and by combining data
63 on global ecosystem transformations with newly available genomic datasets.

64

65 The first studies that predicted biodiversity reductions in response to habitat loss and climate
66 change in the 1990s and the 2000s projected species extinctions using the relationship of biodiversity
67 with geographic area—termed the species-area relationship (SAR) (18) (see **Supplementary Materials**
68 **[SM] I** for a comparison of mathematical models for predicting biodiversity). In this framework,
69 ecosystems with a larger area (A) harbour a larger number of species (S) resulting from a balance of
70 limited dispersal, habitat heterogeneity, and colonisation-extinction-speciation dynamics. The more a
71 study area is extended, the more species are found. The SAR has been empirically shown to follow a
72 power law, $S = A^z$. It scales consistently across continents and ecosystems (19), with a higher z
73 characterising more speciose and spatially structured ecosystems. Given estimates of decreasing
74 ecosystem areas over time ($A_{t-1} > A_t$), Thomas et al. (20) proposed rough estimates of the percentage of
75 species extinctions in the 21st century ranging from 15 to 37% (**SM I.3**). Though this may be an
76 oversimplification, SAR has become a common tool for policy groups including the Intergovernmental
77 Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (3).

78

79 As species richness is for to ecosystems' biodiversity, within-species variation can be
80 quantitatively described by the richness of genetic mutations within a species, defined here as DNA
81 nucleotide variants appearing in individuals of a species. Although population genetics theory has long
82 established that larger populations have higher genetic diversity (21), and it is known that geographic
83 isolation between populations within the same species results in geographically separated accumulation
84 of different mutations, there have been no attempts to describe the extent of genetic diversity loss driven
85 by species' geographic range reduction using an analogous “mutations-area relationship” (MAR).

86

87 We suspected that such a mutations-area relationship must exist given that another general
88 assumption is shared with species studies, namely that when mutations appear they are first in only one
89 individual, and they typically remain at low frequency in a population, though a few prevail to high
90 frequency through stochastic genetic drift and natural selection (22). This principle of “commonness of
91 rarity” is well-known for species (i.e. most species in an ecosystem are rare while only a few are

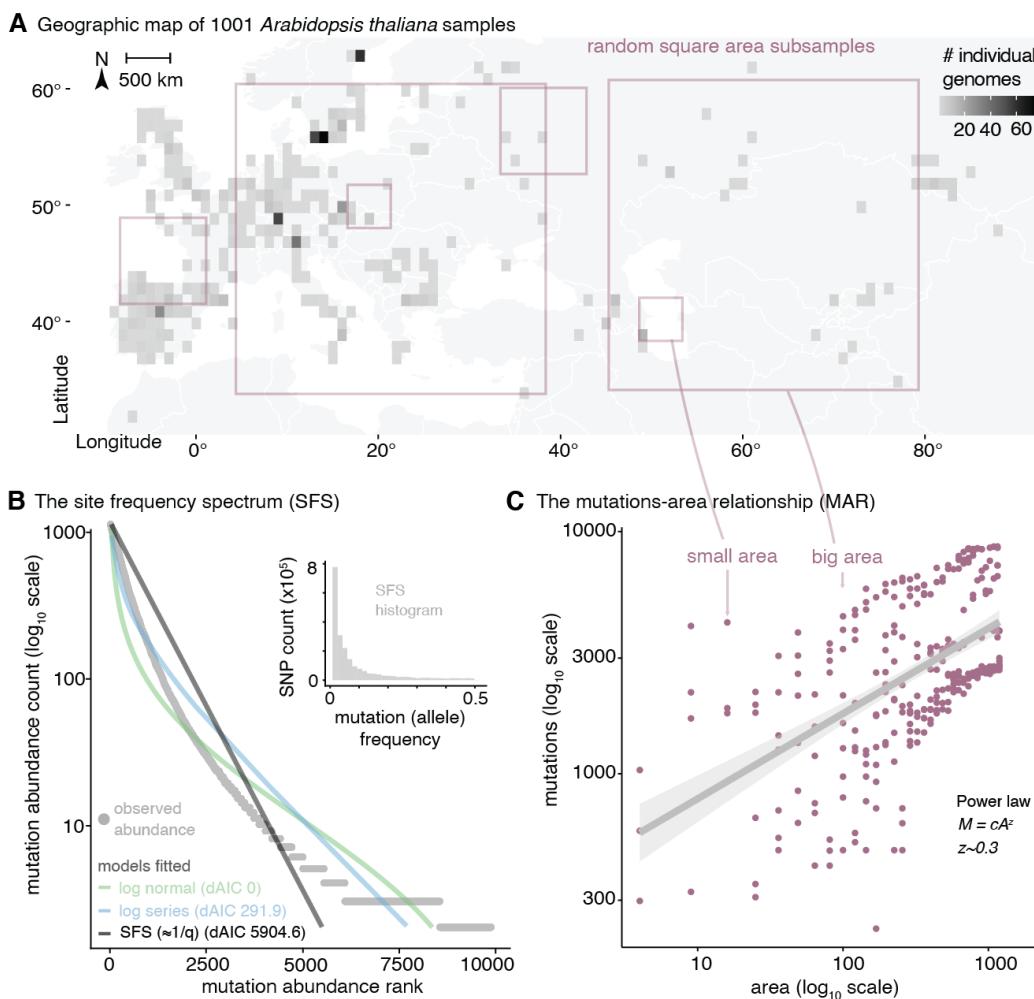
92 common) and, together with limited spatial dispersal of species and communities, is a key statistical
93 condition that led to the power-law SAR.

94

95 To examine the expectation of a power-law MAR, we begin quantifying the rarity of mutations
96 using millions of biallelic genetic variants of the *Arabidopsis thaliana* 1001 genomes dataset (Fig. 1A)
97 (23) by fitting several common models of species abundances (24) to the distribution of mutation
98 frequencies (q), termed the Site Frequency Spectrum in population genetics (Fig. 1B, SM II.1). The
99 canonical L-shaped probability distribution ($1/q$) of this spectrum—which is expected under
100 population-equilibrium and the absence of natural selection processes—fit this data well (Fig. 1B),
101 although the more parameter rich Preston's species abundance log-normal model achieved the best AIC
102 value (Fig. 1B, SM III.1, Table S3, Table S10). Despite the small differences in fit, these models all
103 showcase the similarities of abundance distributions of mutations within species and species within
104 ecosystems, suggesting that they may behave similarly in their relationship to geographic area (22, 24).

105

106



107

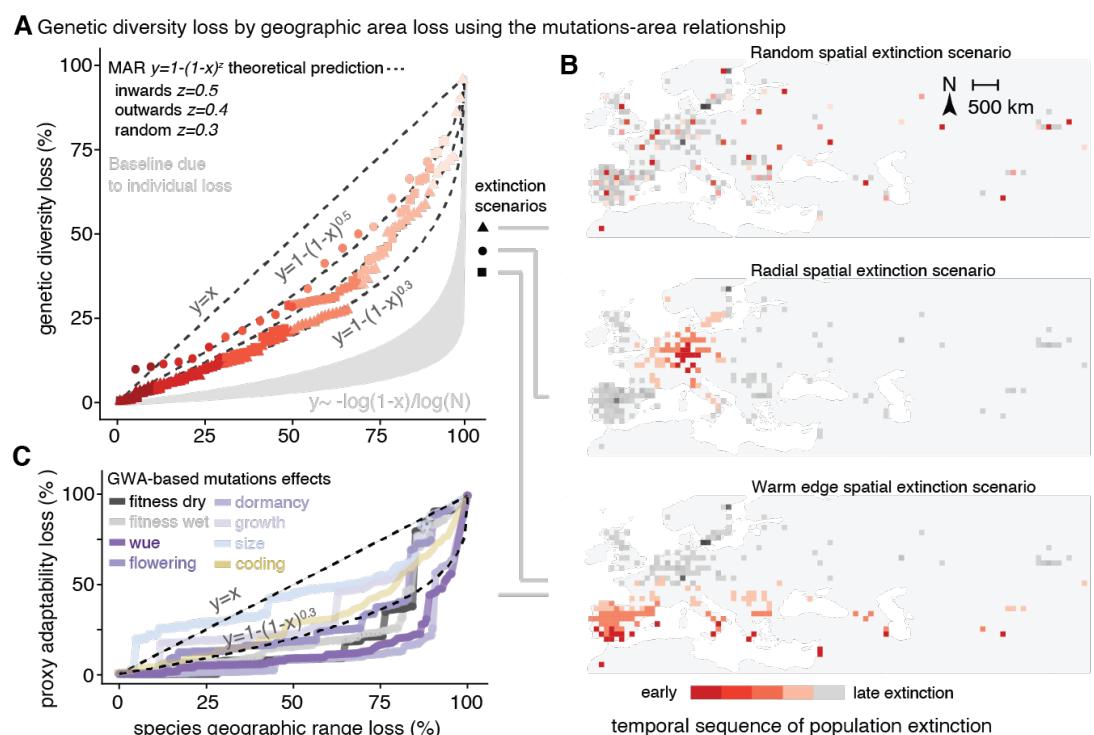
108 **Fig. 1 | Mutations across populations follow a log-normal abundance distribution and a power**
109 **law with species range area.** (A) Density of individuals projected in a 1 x 1 degree latitude/longitude
110 map of Europe and exemplary subsample areas of different sizes. (B) Distribution of mutation (SNPs)
111 frequencies in 1,001 *Arabidopsis thaliana* plants using a site frequency spectrum histogram (grey inset)
112 and a Whittaker's rank abundance curve plot, and the fitted models of common species abundance
113 functions in *A. thaliana* using a dataset random sample of 10,000 mutations also used in (C). The AIC
114 fit of the three models is indicated with respect to the top model, log-normal. (C) The mutations-area

115 relationship (MAR) in log-log space built from 10 random subsamples of different areas of increasing
116 size within *A. thaliana*'s geographic range along with the number of mutations discovered for each area
117 subset.

118
119 To quantify how genetic diversity within a species increases with geographic area, we
120 constructed the MAR by subsampling different regions of different sizes of *Arabidopsis thaliana*'s
121 native range using over one thousand geo-referenced genomes (**Fig. 1A, C**). As a metric of genetic
122 diversity, we modelled the number of mutations (M) in space (number of segregating sites) consistent
123 with the species-centric approach of SAR, which uses species richness as the metric of biodiversity
124 (**SM II.2**). The MAR also followed the power law relationship $M = cA^z$ with a scaling value $z_{MAR} =$
125 0.324 (CI95% = 0.238–0.41) (**Fig. 1C**). Naturally, subsamples of larger areas may also contain more
126 individuals, and therefore should also have more mutations. But the observed power law relationship
127 goes beyond what is expected from the increase of number of samples in an area (which only accounts
128 for increases of $M \approx \log(A)$, see theoretical derivation **SM II.3**). The remainder may be attributed to
129 population genetic drift and spatial natural selection causing structuring of genetic diversity across
130 populations. The discovered power law scaling appears robust to different methods of area
131 quantification, the effects of non-random spatial patterns, random area sampling, fully nested outward
132 or inward sampling (19), raster area calculations, raster grid resolution (~10–1,000 km side cell size),
133 and is adjusted for limited sample sizes (**SM II.3.2, III.3, Fig. S14-18, Tables S7-9**).
134

135 We then wondered whether MAR can predict the loss of genetic diversity due to species' range
136 contractions. We explored several scenarios of range contraction in *A. thaliana* by removing *in silico*
137 grid cells in a map representing populations that are lost (**Fig. 2B**). Our simulations included random
138 local population extinction as if deforestation was scattered across large continents, radial expansion of
139 an extinction front due to intense localised mortality, or local extinction in the warmest regions within
140 a species range (4, 25), among others (**SM III.4**). The MAR-based predictions of genetic loss, using $1 -$
141 $(1 - A_t / A_{t-1})^z$ and assuming $z = 0.3$, conservatively followed the simulated local loss in *A. thaliana*
142 (pseudo- $R^2 = 0.87$, taking all simulations together) (**SM II.4, III.4**).
143

144 Since genetic diversity is ultimately created by spontaneous DNA errors passed onto offspring
145 every generation, the loss of genetic diversity seems reversible, as these mutations could happen again.
146 However, the recovery of genetic diversity through natural mutagenesis is extremely slow (57),
147 especially for mutations affecting adaptation. Simulating a species undergoing only a 5–10% in area
148 reduction, it would take at least ≈ 140 –520 generations to recover its original genetic diversity (2,100–
149 7,800 years for a fast-growing tree or medium-lifespan mammal of 15 year generation length), although
150 for most simulations, recovery virtually never happened over millennia (see **SM II.4-5, Fig. S11, SM**
151 **III.6**).
152
153
154



155
156 **Fig. 2 | The power law of genetic diversity loss with range area loss.** (A) Percentage of loss of total
157 genetic diversity in *Arabidopsis thaliana* from several stochastic simulations (red) of local extinction
158 in (B), and theoretical model projections of genetic diversity loss using the MAR (dotted lines). The
159 expectation for genetic diversity loss based only on individuals is in grey (using starting populations of
160 $N=10^4-10^9$) (SM II.4). (B) Cartoon of several possible range contractions simulated by progressively
161 removing grid cells across the map of Eurasia (red/grey boxes) following different hypothesised spatial
162 extinction patterns. (C) A metric of adaptive capacity loss during warm edge extinction in (B). Using
163 Genome Wide Associations (GWA) to estimate effects of mutation on fitness in different rainfall
164 conditions, water use efficiency [wue], flowering time, seed dormancy, plant growth rate, and plant
165 size. Plotted are the fraction loss of the summed squared effects ($\sum a^2$) of 10,000 mutations from the top
166 1% tails of effects. We also plot (yellow) the fraction of protein-coding alleles lost (nonsynonymous,
167 stop codon loss/gain, and frameshift mutations).

168
169
170 To test the generality of the MAR, we searched in public nucleotide repositories for datasets of
171 hundreds to thousands of whole-genome sequenced individuals for the same species sampled across
172 geographic areas within their native ranges (Table 1, SM IV). In total, we identified 20 wild plant and
173 animal species with such published resources and assembled a dataset amassing a total of 10,095
174 individuals of these species, with 1,522 to 88,332,015 naturally occurring mutations per species,
175 covering a geographic area ranging from 0.03 to 115 million km². Fitting MAR for these diverse species,
176 we recovered z_{MAR} values similar to *A. thaliana*, with many species overlapping in confidence intervals,
177 with the exception of some outliers (mean (SE) $z_{MAR} = 0.31 (\pm 0.038)$, median = 0.26, IQR = ± 0.15 ,
178 range = 0.10–0.82, mean (SE) z^*_{MAR} scaled = 0.26 (± 0.048). See Table 1, SM IV, Fig. S22, Table S10).
179 Theoretical derivations show that z_{MAR} is a consequence of fundamental evolutionary and ecological
180 forces (mutation, dispersal, selection) and should range from 0 to 1, depending on the strength of
181 population structure (SM II.3, see Fig. S10 for its relationship with isolation-by-distance). These
182 predictions were further confirmed by spatial population genetics coalescent and individual-based

183 simulations in 2D and continuous space (**SM II.3**), as well as with mainland-island community
 184 assembly simulations according to the Unified Neutral Theory of Biodiversity (UNTB) (**SM V.3**).
 185
 186

187 **Table 1 |The mutations-area relationship across diverse species.** Summary statistics of individuals
 188 sampled broadly across species distributions, sequencing method and mutations studied, and convex
 189 hull area extent of all samples within a species. The mutations-area relationship (MAR) parameter z ,
 190 which captures how spatially restricted mutations are, including a scaled correction z^* for low sampling
 191 genomic effort. Percent area that needs to be kept for a species to maintain 90% of its genetic diversity,
 192 using the per-species MAR value estimates. Area predictions are not provided for threatened species,
 193 as these have likely already lost substantial genetic diversity and require protection of their full
 194 geographic range (Fig. 3).

Species	N	M _{tot} Method	A _{tot} Km ² x 10 ⁶	MAR z [CI95%]	MAR z* [CI95%]	scaledMin area %	90%
<i>Arabidopsis thaliana</i>	1,135 (1,001) [#]	11,769,920 W	27.34	0.324 (0.238–0.41)	0.312 (0.305 – 0.32)	71–78	
<i>Arabidopsis lyrata</i>	108	17,813,817 W	2.79	0.236 (0.218–0.254)	0.151 (0.137–0.165)	50–66	
<i>Amaranthus tuberculatus</i>	162 (155)	1,033,443 W	0.80	0.109 (0.081–0.136)	0.142 (0.136–0.149)	48–65	
<i>Eucalyptus melliodora</i> ^{VU}	275 (36) [*]	9,378 GBS	0.95	0.466 (0.394–0.538)	0.403 (0.398–0.407)	77–82	
<i>Yucca brevifolia</i> ^{CA}	290	10,695 GBS	NA	0.128 (0.109–0.147)	0.049 (0.037–0.062)	-	
<i>Mimulus guttatus</i>	521 (286) ^{#*}	1,522 GBS	25.14	0.274 (0.259–0.29)	0.231 (0.221–0.241)	63–73	
<i>Panicum virgatum</i>	732 (576) [†]	33,905,044 W	6.29	0.232 (0.211–0.252)	0.126 (0.116–0.136)	43–63	
<i>Panicum hallii</i>	591	45,589 W	2.19	0.824 (0.719 - 0.928)	0.814 (0.745 - 0.883)	88–90	
<i>Pinus contorta</i>	929	32,449 GC	0.89	0.015 (0.014–0.016)	-0.061(-0.062-0.060)	-	
<i>Pinus torreyana</i> ^{CR}	242	478,238 GBS	NA	0.236 (0.19–0.282)	0.105 (0.099–0.11)	-	
<i>Populus trichocarpa</i>	882	28,342,826 W	1.12	0.275 (0.218–0.332)	0.165 (0.155–0.176)	53–67	
<i>Anopheles gambiae</i>	1142 (29) [*]	52,525,957 W	19.96	0.214 (0.164–0.264)	0.122 (0.111–0.132)	42–62	
<i>Acropora millepora</i> ^{NT}	253 (12) [*]	17,931,448 W	0.03	0.246 (0.209–0.283)	0.287 (0.28–0.294)	69–77	
<i>Drosophila melanogaster</i>	271 [%]	5,019 W	115.21	0.437 (0.397–0.477)	0.325 (0.314–0.336)	72–79	
<i>Empidonax traillii</i> ^{Decline}	219 (199) ^{&}	349,014 GBS/GC	7.03	0.214 (0.174–0.254)	0.074 (0.047–0.102)	24–54	
<i>Setophaga petechia</i> ^{Decline}	199	104,711 GBS	15.17	0.251 (0.236 - 0.267)	0.149 (0.135 - 0.163)	49–66	
<i>Peromyscus maniculatus</i>	80 (78) ^{&}	14,076 GBS	22.61	0.488 (0.264–0.713)	0.683 (0.615–0.751)	86–88	
<i>Dicerorhinus sumatrensis</i> ^{CR}	16	8,870,513 W	NA	0.412 (0.369–0.456)	0.127 (0.11–0.144)	-	
<i>Canis lupus</i>	349 (230) [†]	1,517,226 W	19.10	0.256 (0.232–0.28)	0.184 (0.175–0.193)	56–70	
<i>Homo sapiens</i>	2504 (24) [*]	88,332,015 W	80.76	0.431 (0.347–0.514)	0.281 (0.23–0.332)	NA	

[#]Only individuals in the native range were used for the analyses.

[&]Only individuals with available coordinates or matching IDs were used for analyses.

[%]Numbers indicate pools of flies used for Pool-Sequencing.

^{*}Number of geographically separated populations, as multiple individuals were collected per population.

[†]Only natural populations were used, excluding breeds, landraces, and cultivars.

[‡]Area was not reported for species with unknown locations or where less than 2 populations were sampled.

[?]Values excluded from global averages used for conservation applications due to uncertain estimates, suboptimal genomic data type, or because estimates should not be applied for conservation (i.e. humans or nearly extinct Sumatran rhinoceros).

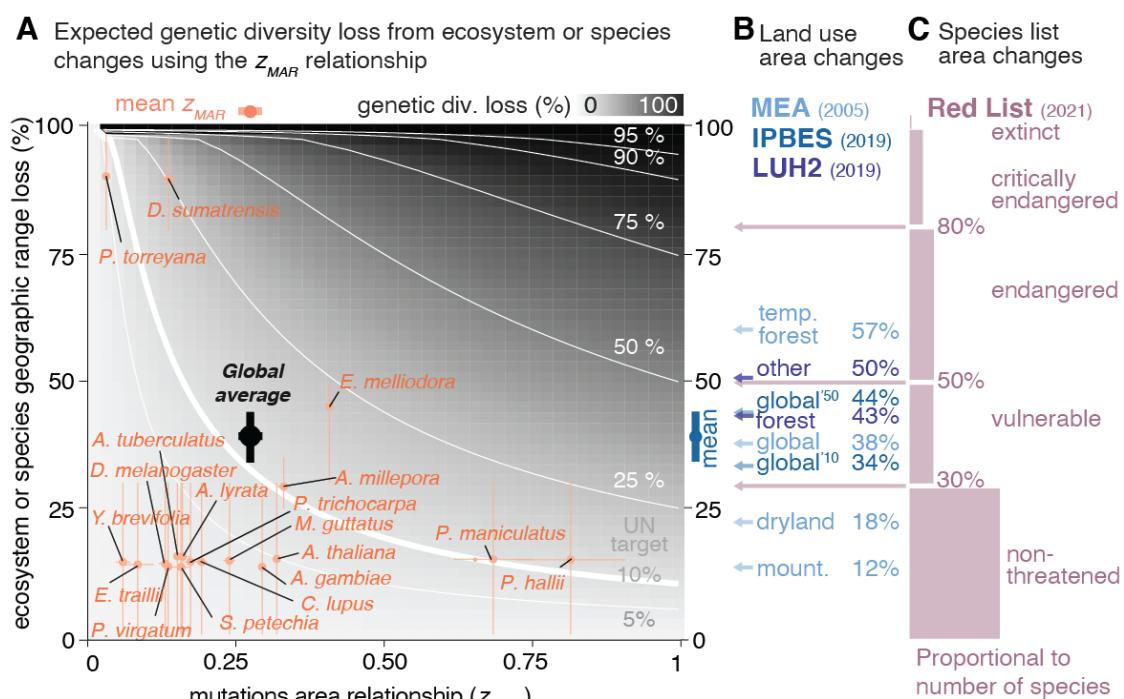
203 *Acronyms: W* = whole-genome re-sequencing or discovery SNP calling. *GBS* = genotyping by sequencing of biallelic SNP markers. *GC* =
 204 *genotyping chip*; *CR* = Red List Critically Endangered. *VU*= Red List Vulnerable. *CA* = included in the California Endangered Species Act.
 205 *Decline* = population decline reported in the Red List.

206
 207
 208 Although we expect species-specific traits related to dispersibility or gene flow to affect z_{MAR}
 209 (e.g. migration rate and environmental selection in population genetic simulations significantly
 210 influences z_{MAR} , **Table S2**), no significant association was found between z_{MAR} and different
 211 ecologically-relevant traits, mating systems, home continents, etc., for the 20 species analysed. Perhaps
 212 this is simply that there are still too few species that have large population genomic data to find such a
 213 signal (**Table 1**, **Table S12-13**). Nevertheless, the relative consistency of z_{MAR} across largely different
 214 species may be promising for conservation purposes, as an average $z_{MAR} \sim 0.3$ (IQR ± 0.15 , **Table 1**,
 215 **Table S11**) could be predictive of large-scale trends of genetic diversity loss in many range-reduced
 216 species that lack genomic information. Further, although species will naturally have different starting

217 levels of total genetic diversity prior to range reductions, for instance, due to genome size, structure, or
218 mating system differences (26), the application of z_{MAR} provides relative estimates of genetic diversity
219 loss. For instance, assuming $z_{MAR} \sim 0.3$, we would predict that an area reduction of ~50% creates an
220 approximate loss of ~20% of genetic diversity relative to the total genetic diversity of a given species.
221

222 Finally, we used MAR to estimate the average global genetic diversity loss caused by pre-21st
223 century land transformations. Although accurate species-specific geographic area reduction data in the
224 last centuries are scarce, we leveraged global land cover transformations from primary ecosystems to
225 urban or cropland systems (3, 27) (**Table S14-15**). Using the average scaled z^*_{MAR} (**Table S18**) and
226 several global averages of Earth's land and coastal transformations for present day (38% global area
227 transformation from (27), 34% from (28), and 43-50% from (29)), we estimate a 10-16% global genetic
228 diversity loss on average across species (**Fig. 3A**). While these estimates may correctly approximate
229 central values across species in an ecosystem, we expect a substantial variation in the extent of loss
230 across species, ranging theoretically from 0 to 100% (**Fig. 3**, **Fig. S26**). One cause of this variation is
231 the heterogeneity in land cover transformations across ecosystems; for example, more pristine high-
232 altitude systems have only lost 0.3% of their area, while highly managed temperate forests and
233 woodlands have lost 67% (**Fig. 3B**, **Table S14-15**).
234

235 Another cause for the variability in genetic loss among species (even within the same
236 ecosystem) may be their differential geographic ranges and abundances, life histories, or species-
237 specific threats. We gathered data from species red-listed by the International Union for Conservation
238 of Nature (IUCN) (1), which evaluates recent population or geographic range area reduction over ± 10
239 years / ± 3 generations to place assessed species in different threat categories using several thresholds
240 (guidelines for assessments and thresholds available at www.iucn.org). Again, assuming that with the
241 average $z_{MAR} \sim 0.3$ we can capture general patterns, we translate these category thresholds into genetic
242 diversity loss (**Fig. 3C**, see **SM V**, **Table S17**). *Vulnerable* species, having lost at least 30% of their
243 geographic distribution, may have experienced >9% of genetic diversity loss, *endangered* species,
244 which have lost over 50% of their geographic distribution, should have incurred >16% of genetic
245 diversity loss, and *critically endangered* species, with over 80% area reduction, likely suffered >33%
246 of genetic diversity loss (**Fig. 3B**). This clearly showcases that even species in no imminent risk of
247 extinction (e.g. least concern, near threatened, vulnerable), such as the majority of species for which
248 population genomic data exists, may already be losing substantial genetic diversity (**Fig. 3A**).
249
250



251
252 **Fig. 3 | The parameter space of genetic diversity loss mapping pre-21st century ecosystem**
253 **transformations and species threat categories against possible values of the mutations-area**
254 **relationship.** (A) Possible values of two key parameters, the mutations-area relationship scaling
255 parameter (MAR) and % of area reduction of a species geographic range (as a proxy of entire ecosystem
256 transformation). The theoretical % of genetic diversity loss is represented as filled grey colour, with
257 isolines in white. Estimates of scaled z^*_{MAR} from Table 1 per species are in orange with their 95%
258 confidence intervals (for unscaled z_{MAR} see Fig. S23). Although exact area losses per species are
259 unknown, species are plotted based on their IUCN Red list (C) status, using the broad ranges of
260 minimum and maximum recent population or area decline per category. The global average is calculated
261 with the average z_{MAR} across species and % of the Earth transformed from IPBES. (B) Percentage of
262 transformed ecosystem area from the Millennium Ecosystem Assessment (MEA) (27) are represented
263 by light blue arrows, from the Intergovernmental Science-Policy Panel for Biodiversity and Ecosystem
264 Services (IPBES) (28) for 2010 and 2050 are dark blue arrows, and from the Land Use Harmonization
265 2 (LUH2) dataset (29) are in dark purple. (C) The minimum criterion value of population or geographic
266 area loss to be classified in each category of the IUCN Red List are indicated with pink arrows (the near
267 threatened category does not have a range of values, instead we used $30\% \pm 10\%$). The number of plant
268 species (for which population abundance loss approximates area loss) included in each category is
269 shown as box sizes (I). The IUCN ranges were used to place ranges of estimates in (A) per species.

270
271 The ultimate challenge is to understand how genetic diversity loss relates to loss of adaptive
272 capacity of a species. To this end, we leveraged the extensive knowledge of the effect of mutations in
273 ecologically relevant traits in *A. thaliana* from Genome-Wide Associations (GWA) (Fig. 2C, SM III).
274 We again conducted spatial warm edge extinction simulations, this time tracking metrics of adaptive
275 capacity, including the total sum of effects estimated from GWA of remaining mutations ($\sum_i a_i$ for
276 $i=1 \dots 10,000$ variants of putative a_i effect), the additive genetic variance ($V_a = \sum_i p_i(1-p_i)a_i^2$, which
277 accounts for each variant's population frequency p_i), and the loss of nonsynonymous mutations (SM
278 III.5). Although determining the effect of mutations through GWA is technically challenging even in
279 model species (30, 31), and variants may even be either deleterious or advantageous depending on
280 genomic backgrounds (32) or environments (33), our simulations suggest putatively functional

281 mutations may be lost more slowly ($z < 0.3$, **Fig. 2C**) than neutral genetic diversity (**Fig. 2A**). In fact,
282 the additive variance V_a parameter, often equated to the rate of adaptation, appears rather stable (34)
283 until just before the extinction event when it sharply collapses (**Fig. S21**; see also **Fig. 2C**, and SM
284 **II.3.4** for simulations that replicate this pattern). This is analogous to the famous “rivet popper”
285 metaphor where ecosystem structure and function may suddenly collapse as species are inadvertently
286 lost (35). Projections of the MAR using genome-wide variation may crucially serve as early
287 conservation tool in non-threatened species (36, 37), before species reach accelerating collapsing
288 extinction dynamics—an acceleration that we expect to be even more dramatic due to elevated drift and
289 accumulation of deleterious mutations of small critically-endangered populations (38, 39).
290

291 To achieve the recently published United Nations target to protect “at least 90% of genetic
292 diversity within all species”(13), it will be necessary to aggressively protect as many populations as
293 possible for each species. Here, we have discovered the existence of a mutations-area relationship
294 (MAR) and provided a mathematical framework to forecast genetic diversity loss with shrinking
295 geographic species ranges. The MAR contrasts with existing studies on the risk of losing entire species
296 by focusing on quantifying the magnitude and dynamics of genetic diversity loss likely ongoing in most
297 species. This framework demonstrates that even with conservative estimates, substantial area protection
298 will be needed to meet the UN Sustainable Development Goals. For vulnerable or endangered species,
299 we may have likely already failed.
300

301 ADDITIONAL INFORMATION

302 **Author contribution** M.E.-A. conceived and led the project. M.E.-A., J.P.S., M.R., S.H., L.G., L.C.,
303 L.L., S.T.A., V.P., E.Z., P.L.M.L., C.C.K., T.B., C.W. conducted research, all authors interpreted the
304 results and wrote the manuscript.
305

306 **Data availability.** The analysed datasets are publicly available or were shared by authors upon request
307 (see Supplementary Materials for details). Code is available at Github
308 (<https://github.com/moiexpositoalonsolab/mar>) and Zenodo (<https://doi.org/10.5281/zenodo.6408624>).
309

310 **Acknowledgements.** We are grateful for many researchers who made their genomic data publicly
311 available and thus made this research possible: the 1001 *Arabidopsis* Genomes Consortium, the
312 *Anopheles gambiae* 1000 Genomes Consortium, the 1000 (Human) Genome Consortium, the European
313 "Drosophila Evolution over Space and Time" (DEST) Consortium, MacLachlan et al., Fuller et al.,
314 Ruegg et al., Kingsley et al., Schweizer et al., and Royer et al.. In addition, we are grateful to all the
315 authors who directly shared intermediate genome variant files: Sujan Mamidi, John Lovell, Dan
316 Jacobson, Manesh Shah, Julia Kreiner, Kay Lucek, Yvonne Willi, Juan D. Palacio Mejia, Justin
317 Borevitz, Megan Supple, Mario Vallejo-Marin, Nicolas Dussex, Lionel Di Santo, and Jill Hamilton.
318 We thank John Wiens, Sue Rhee, Detlef Weigel, Ellie Armstrong, Marty Kardos, Dmitri Petrov, Rob
319 Colwell, Rasmus Nielsen, Anna Michalak, Sean Hoban, Jonathan Pritchard, and members of the Moi
320 and Mordecai Labs for comments, discussion, or references. M.E.-A. is supported by the Office of the
321 Director of the National Institutes of Health's Early Investigator Award with award number:
322 1DP5OD029506-01; by the U.S. Department of Energy, Office of Biological and Environmental
323 Research, grant number: DE-SC0021286; and by the Carnegie Institution for Science. J.P.S. is
324 supported by an NIH training grant (5T32HG000044-23), and S.T.A by the NIGMS Center of the NIH
325 under award number T32GM007276. S.H. and C.L.W. are supported by Stanford's Center for
326 Computational, Evolutionary, and Human Genomics. P.L.M.L. is supported by a Human Frontier
327 Science Program Long-Term Fellowship (LT000330/2019-L). M. R. is supported by the NSF's Plant
328

329 Genome Postdoctoral Research Fellowship in Biology. L. L. and L.G. are supported by NSF's GRFP.
330 Computational analyses were done on the High-Performance Computing clusters *Memex* and *Calc*
331 supported by the Carnegie Institution for Science.

332

333 REFERENCES

- 334 1. IUCN, The IUCN Red List of Threatened Species. <https://www.iucnredlist.org>.
- 335 2. S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, J. Agard, A. Arneth, P. Balvanera, K. A.
336 Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M.
337 Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A.
338 Purvis, J. Razzaque, B. Reyers, R. R. Chowdhury, Y.-J. Shin, I. Visseren-Hamakers, K. J. Willis,
339 C. N. Zayas, Pervasive human-driven decline of life on Earth points to the need for
340 transformative change. *Science*. **366**, eaax3100 (2019).
- 341 3. IPBES, *Global Assessment Report on Biodiversity and Ecosystem Services* (IPBES Secretariat,
342 Bonn, Germany, 2019; <https://www.ipbes.net/global-assessment-report-biodiversity-ecosystem-services>).
- 344 4. J. J. Wiens, Climate-Related Local Extinctions Are Already Widespread among Plant and
345 Animal Species. *PLoS Biol.* **14**, e2001104 (2016).
- 346 5. W. Thuiller, S. Lavorel, M. B. Araújo, M. T. Sykes, I. C. Prentice, Climate change threats to
347 plant diversity in Europe. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 8245–8250 (2005).
- 348 6. M. Exposito-Alonso, F. Vasseur, W. Ding, G. Wang, H. A. Burbano, D. Weigel, Genomic basis
349 and evolutionary potential for extreme drought adaptation in *Arabidopsis thaliana*. *Nat Ecol
350 Evol.* **2**, 352–358 (2018).
- 351 7. C. Parmesan, Ecological and Evolutionary Responses to Recent Climate Change. *Annu. Rev.
352 Ecol. Evol. Syst.* **37**, 637–669 (2006).
- 353 8. T. Capblancq, M. C. Fitzpatrick, R. A. Bay, M. Exposito-Alonso, S. R. Keller, Genomic
354 Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes. *Annu. Rev. Ecol.
355 Evol. Syst.* **51**, 245–269 (2020).
- 356 9. M. Lynch, J. Conery, R. Burger, Mutation Accumulation and the Extinction of Small
357 Populations. *Am. Nat.* **146**, 489–518 (1995).
- 358 10. D. Spielman, B. W. Brook, R. Frankham, Most species are not driven to extinction before
359 genetic factors impact them. *Proceedings of the National Academy of Sciences*. **101** (2004), pp.
360 15261–15264.
- 361 11. W. Steffen, K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R.
362 Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M.
363 Persson, V. Ramanathan, B. Reyers, S. Sörlin, Planetary boundaries: Guiding human
364 development on a changing planet. *Science*. **347** (2015), doi:10.1126/science.1259855.
- 365 12. S. Díaz, N. Zafra-Calvo, A. Purvis, P. H. Verburg, D. Obura, P. Leadley, R. Chaplin-Kramer, L.
366 De Meester, E. Dulloo, B. Martín-López, M. R. Shaw, P. Visconti, W. Broadgate, M. W.
367 Bruford, N. D. Burgess, J. Cavender-Bares, F. DeClerck, J. M. Fernández-Palacios, L. A.
368 Garibaldi, S. L. L. Hill, F. Isbell, C. K. Khoury, C. B. Krug, J. Liu, M. Maron, P. J. K.
369 McGowan, H. M. Pereira, V. Reyes-García, J. Rocha, C. Rondinini, L. Shannon, Y.-J. Shin, P.
370 V. R. Snelgrove, E. M. Spehn, B. Strassburg, S. M. Subramanian, J. J. Tewksbury, J. E. M.
371 Watson, A. E. Zanne, Set ambitious goals for biodiversity and sustainability. *Science*. **370**, 411–

372 413 (2020).

373 13. CBD, 1st Draft of The Post-2020 Global Biodiversity Framework (2021), (available at
374 <https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf>).

375 14. D. M. Leigh, A. P. Hendry, E. Vázquez-Domínguez, V. L. Friesen, Estimated six per cent loss of
376 genetic variation in wild populations since the industrial revolution. *Evol. Appl.* **12**, 1505–1512
377 (2019).

378 15. K. L. Millette, V. Fugère, C. Debysier, A. Greiner, F. J. J. Chain, A. Gonzalez, No consistent
379 effects of humans on animal genetic diversity worldwide. *Ecol. Lett.* **23**, 55–67 (2020).

380 16. I. G. Alsos, D. Ehrlich, W. Thuiller, P. B. Eidesen, A. Tribsch, P. Schönswetter, C. Lagaye, P.
381 Taberlet, C. Brochmann, Genetic consequences of climate change for northern plants. *Proc. Biol.
382 Sci.* **279**, 2042–2051 (2012).

383 17. S. Theodoridis, C. Rahbek, D. Nogues-Bravo, Exposure of mammal genetic diversity to mid-21st
384 century global change. *Ecography (Cop.)* (2021), doi:10.1111/ecog.05588.

385 18. O. Arrhenius, Species and Area. *J. Ecol.* **9**, 95–99 (1921).

386 19. D. Storch, P. Keil, W. Jetz, Universal species-area and endemics-area relationships at continental
387 scales. *Nature*. **488**, 78–81 (2012).

388 20. C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F.
389 N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van
390 Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips,
391 S. E. Williams, Extinction risk from climate change. *Nature*. **427**, 145–148 (2004).

392 21. V. Buffalo, Quantifying the relationship between genetic diversity and population size suggests
393 natural selection cannot explain Lewontin's paradox. *eLife*. **10** (2021), doi:10.7554/eLife.67509.

394 22. R. A. Fisher, XVII.—The Distribution of Gene Ratios for Rare Mutations. *Proceedings of the
395 Royal Society of Edinburgh*. **50**, 204–219 (1931).

396 23. 1001 Genomes Consortium, 1,135 Genomes Reveal the Global Pattern of Polymorphism in
397 *Arabidopsis thaliana*. *Cell*. **166**, 481–491 (2016).

398 24. F. W. Preston, The canonical distribution of commonness and rarity: Part I. *Ecology*. **43**, 185
399 (1962).

400 25. A. Hampe, R. J. Petit, Conserving biodiversity under climate change: the rear edge matters. *Ecol.
401 Lett.* **8**, 461–467 (2005).

402 26. V. Buffalo, Why do species get a thin slice of π ? Revisiting Lewontin's Paradox of Variation.
403 *bioRxiv* (2021), p. 2021.02.03.429633.

404 27. Millennium Ecosystem Assessment, *Millennium ecosystem assessment* (Millennium Ecosystem
405 Assessment, 2005; <http://chapter.ser.org/europe/files/2012/08/Harris.pdf>).

406 28. Ipbes, *Global assessment report of the Intergovernmental Science-Policy Platform on
407 Biodiversity and Ecosystem Services* (IPBES Secretariat, Bonn, Germany, 2019;
408 <https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf>).

409 29. G. C. Hurtt, L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk,
410 S. Fujimori, K. Klein Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J.
411 Jungclaus, J. O. Kaplan, J. Kennedy, T. Krisztin, D. Lawrence, P. Lawrence, L. Ma, O. Mertz, J.

412 Pongratz, A. Popp, B. Poulter, K. Riahi, E. Shevliakova, E. Stehfest, P. Thornton, F. N. Tubiello,
413 D. P. van Vuuren, X. Zhang, Harmonization of global land use change and management for the
414 period 850–2100 (LUH2) for CMIP6. *Geosci. Model Dev.* **13**, 5425–5464 (2020).

415 30. G. Gibson, Rare and common variants: twenty arguments. *Nat. Rev. Genet.* **13**, 135–145 (2011).

416 31. M. V. Rockman, The QTN program and the alleles that matter for evolution: all that's gold does
417 not glitter. *Evolution*. **66**, 1–17 (2012).

418 32. M. J. Harms, J. W. Thornton, Evolutionary biochemistry: revealing the historical and physical
419 causes of protein properties. *Nat. Rev. Genet.* **14**, 559–571 (2013).

420 33. M. Exposito-Alonso, 500 Genomes Field Experiment Team, H. A. Burbano, O. Bossdorf, R.
421 Nielsen, D. Weigel, Natural selection in the *Arabidopsis thaliana* genome in present and future
422 climates. *Nature*. **573**, 126–129 (2019).

423 34. H. R. Taft, D. A. Roff, Do bottlenecks increase additive genetic variance? *Conserv. Genet.* **13**,
424 333–342 (2012).

425 35. P. Ehrlich, B. Walker, Rivets and redundancy. *Bioscience*. **48**, 387 (1998).

426 36. C. C. Kyriazis, R. K. Wayne, K. E. Lohmueller, Strongly deleterious mutations are a primary
427 determinant of extinction risk due to inbreeding depression. *Evolution Letters*. **n/a** (2020),
428 doi:10.1002/evl3.209.

429 37. M. Kardos, E. Armstrong, S. W. Fitzpatrick, S. Hauser, P. Hedrick, J. Miller, D. Tallmon, W.
430 Chris Funk, The crucial role of genome-wide genetic variation in conservation. *bioRxiv* (2021),
431 p. 2021.07.05.451163.

432 38. R. Lande, Risks of Population Extinction from Demographic and Environmental Stochasticity
433 and Random Catastrophes. *Am. Nat.* **142**, 911–927 (1993).

434 39. M. Lynch, R. Lande, The critical effective size for a genetically secure population. *Anim.*
435 *Conserv.* **1**, 70–72 (1998).

436

437 SUPPLEMENTAL REFERENCES

438 1. S. P. Hubbell, *The Unified Neutral Theory of Biodiversity and Biogeography* (Monographs in
439 Population Biology, 2001).

440 2. M. Tokeshi, Niche Apportionment or Random Assortment: Species Abundance Patterns
441 Revisited. *J. Anim. Ecol.* **59**, 1129–1146 (1990).

442 3. M. Tokeshi, in *Advances in Ecological Research*, M. Begon, A. H. Fitter, Eds. (Academic Press,
443 1993; <https://www.sciencedirect.com/science/article/pii/S0065250408600422>), vol. 24, pp. 111–
444 186.

445 4. MOTOMURA, I, A statistical treatment of ecological communities. *Zoological Magazine*. **44**,
446 379–383 (1932).

447 5. R. H. MacArthur, On the relative abundance of bird species. *Proc. Natl. Acad. Sci. U. S. A.* **43**,
448 293–295 (1957).

449 6. R. A. Fisher, A. S. Corbet, C. B. Williams, The Relation Between the Number of Species and the
450 Number of Individuals in a Random Sample of an Animal Population. *J. Anim. Ecol.* **12**, 42–58
451 (1943).

452 7. F. W. Preston, The canonical distribution of commonness and rarity: Part I. *Ecology*. **43**, 185
453 (1962).

454 8. F. W. Preston, The commonness, and rarity, of species. *Ecology*. **29**, 254–283 (1948).

455 9. D. Alonso, A. J. McKane, Sampling Hubbell's neutral theory of biodiversity. *Ecol. Lett.* **7**, 901–
456 910 (2004).

457 10. D. Storch, P. Keil, W. Jetz, Universal species-area and endemics-area relationships at continental
458 scales. *Nature*. **488**, 78–81 (2012).

459 11. S. L. Pimm, G. J. Russell, J. L. Gittleman, T. M. Brooks, The future of biodiversity. *Science*.
460 **269**, 347–350 (1995).

461 12. C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F.
462 N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van
463 Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips,
464 S. E. Williams, Extinction risk from climate change. *Nature*. **427**, 145–148 (2004).

465 13. J. F. C. Kingman, The coalescent. *Stochastic Process. Appl.* **13**, 235–248 (1982).

466 14. R. C. Griffiths, S. Tavaré, The age of a mutation in a general coalescent tree. *Communications in
467 Statistics. Stochastic Models*. **14**, 273–295 (1998).

468 15. R. A. Fisher, XVII.—The Distribution of Gene Ratios for Rare Mutations. *Proceedings of the
469 Royal Society of Edinburgh*. **50**, 204–219 (1931).

470 16. M. W. Hahn, *Molecular Population Genetics* (Oxford University Press, 2018;
471 <https://play.google.com/store/books/details?id=3BDkswEACAAJ>).

472 17. V. Buffalo, Quantifying the relationship between genetic diversity and population size suggests
473 natural selection cannot explain Lewontin's paradox. *eLife*. **10** (2021), doi:10.7554/eLife.67509.

474 18. D. R. Marshal, A. D. H. Brown, in *Crop genetic resources for today and tomorrow*, O. H.
475 Frankel, J. G. Hawkes, Eds. (Cambridge University Press, 1975;
476 <https://www.researchgate.net/publication/280057199>), vol. 2.

477 19. S. Wright, Isolation by Distance. *Genetics*. **28**, 114–138 (1943).

478 20. J. Novembre, M. Stephens, Interpreting principal component analyses of spatial population
479 genetic variation. *Nat. Genet.* **40**, 646–649 (2008).

480 21. H. Fan 樊海英, Q. Zhang 张清臣, J. Rao 饶娟娟, J. Cao 曹静文, X. Lu 卢欣, Genetic Diversity-
481 Area Relationships across Bird Species. *Am. Nat.* **194**, 736–740 (2019).

482 22. P. R. A. Campos, V. M. de Oliveira, A. Rosas, Epistasis and environmental heterogeneity in the
483 speciation process. *Ecol. Modell.* **221**, 2546–2554 (2010).

484 23. J. Kelleher, A. M. Etheridge, G. McVean, Efficient Coalescent Simulation and Genealogical
485 Analysis for Large Sample Sizes. *PLoS Comput. Biol.* **12**, e1004842 (2016).

486 24. B. C. Haller, P. W. Messer, SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher
487 Model. *Mol. Biol. Evol.* **36**, 632–637 (2019).

488 25. T. R. Booker, S. Yeaman, M. C. Whitlock, The WZA: A window-based method for
489 characterizing genotype–environment association. *bioRxiv* (2021), p. 2021.06.25.449972.

490 26. J. Kelleher, K. R. Thornton, J. Ashander, P. L. Ralph, Efficient pedigree recording for fast
491 population genetics simulation. *PLoS Comput. Biol.* (2018), p. e1006581.

492 27. B. C. Haller, J. Galloway, J. Kelleher, P. W. Messer, P. L. Ralph, Tree-sequence recording in
493 SLiM opens new horizons for forward-time simulation of whole genomes. *Mol. Ecol. Resour.*
494 **19**, 552–566 (2019).

495 28. R. R. Hudson, M. Slatkin, W. P. Maddison, Estimation of levels of gene flow from DNA
496 sequence data. *Genetics* **132**, 583–589 (1992).

497 29. 1001 Genomes Consortium, 1,135 Genomes Reveal the Global Pattern of Polymorphism in
498 *Arabidopsis thaliana*. *Cell* **166**, 481–491 (2016).

499 30. B. J. McGill, B. J. Enquist, E. Weiher, M. Westoby, Rebuilding community ecology from
500 functional traits. *Trends Ecol. Evol.* **21**, 178–185 (2006).

501 31. P. I. Prado, M. Miranda, A. Chalom, *sads: R package for fitting species abundance distributions*
502 (Github, 2018; <https://github.com/piLaboratory/sads>).

503 32. T. J. Matthews, K. A. Triantis, R. J. Whittaker, F. Guilhaumon, *sars: an R package for fitting,*
504 *evaluating and comparing species–area relationship models*. *Ecography* **42**, 1446–1455 (2019).

505 33. F. He, S. P. Hubbell, Species-area relationships always overestimate extinction rates from habitat
506 loss. *Nature* **473**, 368–371 (2011).

507 34. R. J. H. & J. van Etten, *raster: Geographic analysis and modeling with raster data* (2012),
508 (available at <http://CRAN.R-project.org/package=raster>).

509 35. M. Exposito-Alonso, 500 Genomes Field Experiment Team, H. A. Burbano, O. Bossdorf, R.
510 Nielsen, D. Weigel, Natural selection in the *Arabidopsis thaliana* genome in present and future
511 climates. *Nature* **573**, 126–129 (2019).

512 36. Y. B. Simons, K. Bullaughey, R. R. Hudson, G. Sella, A population genetic interpretation of
513 GWAS findings for human quantitative traits. *PLoS Biol.* **16**, e2002985 (2018).

514 37. M. Exposito-Alonso, C. Becker, V. J. Schuenemann, E. Reiter, C. Setzer, R. Slovak, B. Brachi, J.
515 Hagmann, D. G. Grimm, J. Chen, W. Busch, J. Bergelson, R. W. Ness, J. Krause, H. A. Burbano,
516 D. Weigel, The rate and potential relevance of new mutations in a colonizing plant lineage. *PLoS
517 Genet.* **14**, e1007155 (2018).

518 38. H. Seebens, T. M. Blackburn, E. E. Dyer, P. Genovesi, P. E. Hulme, J. M. Jeschke, S. Pagad, P.
519 Pyšek, M. Winter, M. Arianoutsou, S. Bacher, B. Blasius, G. Brundu, C. Capinha, L. Celesti-

520 Grapow, W. Dawson, S. Dullinger, N. Fuentes, H. Jäger, J. Kartesz, M. Kenis, H. Kreft, I. Kühn,
521 B. Lenzner, A. Liebhold, A. Mosena, D. Moser, M. Nishino, D. Pearman, J. Pergl, W. Rabitsch,
522 J. Rojas-Sandoval, A. Roques, S. Rorke, S. Rossinelli, H. E. Roy, R. Scalera, S. Schindler, K.
523 Štajerová, B. Tokarska-Guzik, M. van Kleunen, K. Walker, P. Weigelt, T. Yamanaka, F. Essl,
524 No saturation in the accumulation of alien species worldwide. *Nat. Commun.* **8**, 14435 (2017).

525 39. H. Seebens, F. Essl, W. Dawson, N. Fuentes, D. Moser, J. Pergl, P. Pyšek, M. van Kleunen, E.
526 Weber, M. Winter, B. Blasius, Global trade will accelerate plant invasions in emerging
527 economies under climate change. *Glob. Chang. Biol.* **21**, 4128–4140 (2015).

528 40. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P.
529 Sklar, P. I. W. de Bakker, M. J. Daly, P. C. Sham, PLINK: a tool set for whole-genome
530 association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

531 41. C. Mérot, R. A. Oomen, A. Tigano, M. Wellenreuther, A Roadmap for Understanding the
532 Evolutionary Significance of Structural Genomic Variation. *Trends Ecol. Evol.* **35**, 561–572
533 (2020).

534 42. K. Lucek, Y. Willi, Drivers of linkage disequilibrium across a species' geographic range. *PLoS
535 Genet.* **17**, e1009477 (2021).

536 43. J. M. Kreiner, D. A. Giacomini, F. Bemm, B. Waithaka, J. Regalado, C. Lanz, J. Hildebrandt, P.
537 H. Sikkema, P. J. Tranel, D. Weigel, J. R. Stinchcombe, S. I. Wright, Multiple modes of
538 convergent adaptation in the spread of glyphosate-resistant *Amaranthus tuberculatus*. *Proc. Natl.
539 Acad. Sci. U. S. A.* **116**, 21076–21084 (2019).

540 44. M. A. Supple, J. G. Bragg, L. M. Broadhurst, A. B. Nicotra, M. Byrne, R. L. Andrew, A.
541 Widdup, N. C. Aitken, J. O. Borevitz, Landscape genomic prediction for restoration of a
542 Eucalyptus foundation species under climate change. *eLife.* **7** (2018), doi:10.7554/eLife.31835.

543 45. M. Vallejo-Marín, J. Friedman, A. D. Twyford, O. Lepais, S. M. Ickert-Bond, M. A. Streisfeld,
544 L. Yant, M. van Kleunen, M. C. Rotter, J. R. Puzey, Population genomic and historical analysis
545 suggests a global invasion by bridgehead processes in *Mimulus guttatus*. *Commun Biol.* **4**, 327
546 (2021).

547 46. J. T. Lovell, A. H. MacQueen, S. Mamidi, J. Bonnette, J. Jenkins, J. D. Napier, A. Sreedasyam,
548 A. Healey, A. Session, S. Shu, K. Barry, S. Bonos, L. Boston, C. Daum, S. Deshpande, A.
549 Ewing, P. P. Grabowski, T. Haque, M. Harrison, J. Jiang, D. Kudrna, A. Lipzen, T. H.
550 Pendergast 4th, C. Plott, P. Qi, C. A. Sasaki, E. V. Shakirov, D. Sims, M. Sharma, R. Sharma, A.
551 Stewart, V. R. Singan, Y. Tang, S. Thibivillier, J. Webber, X. Weng, M. Williams, G. A. Wu, Y.
552 Yoshinaga, M. Zane, L. Zhang, J. Zhang, K. D. Behrman, A. R. Boe, P. A. Fay, F. B. Fritsch, J.
553 D. Jastrow, J. Lloyd-Reilley, J. M. Martínez-Reyna, R. Matamala, R. B. Mitchell, F. M.
554 Rouquette Jr, P. Ronald, M. Saha, C. M. Tobias, M. Udvardi, R. A. Wing, Y. Wu, L. E. Bartley,
555 M. Casler, K. M. Devos, D. B. Lowry, D. S. Rokhsar, J. Grimwood, T. E. Juenger, J. Schmutz,
556 Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. *Nature* (2021),
557 doi:10.1038/s41586-020-03127-1.

558 47. I. R. MacLachlan, T. K. McDonald, B. M. Lind, L. H. Rieseberg, S. Yeaman, S. N. Aitken,
559 Genome-wide shifts in climate-related variation underpin responses to selective breeding in a
560 widespread conifer. *Proc. Natl. Acad. Sci. U. S. A.* **118** (2021), doi:10.1073/pnas.2016900118.

561 48. G. Tuskan, W. Muchero, J.-G. Chen, D. Jacobson, T. Tschaplinski, D. Rokhsar, W. Schackwitz,
562 J. Schmutz, S. DiFazio, *Populus Trichocarpa Genome-Wide Association Study (GWAS)*
563 Population SNP Dataset Released, (available at <https://doi.ccs.ornl.gov/ui/doi/55>).

564 49. Anopheles gambiae 1000 Genomes Consortium, Data analysis group, Partner working group,
565 Sample collections—Angola:, Burkina Faso:, Cameroon:, Gabon:, Guinea:, Guinea-Bissau:,
566 Kenya:, Uganda:, Crosses:, Sequencing and data production, Web application development,
567 Project coordination, Genetic diversity of the African malaria vector *Anopheles gambiae*.
568 *Nature*. **552**, 96–100 (2017).

569 50. Z. L. Fuller, V. J. L. Mocellin, L. A. Morris, N. Cantin, J. Shepherd, L. Sarre, J. Peng, Y. Liao, J.
570 Pickrell, P. Andolfatto, M. Matz, L. K. Bay, M. Przeworski, Population genetics of the coral
571 *Acropora millepora*: Toward genomic prediction of bleaching. *Science*. **369** (2020),
572 doi:10.1126/science.aba4674.

573 51. K. Ruegg, E. C. Anderson, M. Somveille, R. A. Bay, M. Whitfield, E. H. Paxton, T. B. Smith,
574 Linking climate niches across seasons to assess population vulnerability in a migratory bird.
575 *Glob. Chang. Biol.* **27**, 3519–3531 (2021).

576 52. R. A. Bay, R. J. Harrigan, V. Le Underwood, H. Lisle Gibbs, T. B. Smith, K. Ruegg, Genomic
577 signals of selection predict climate-driven population declines in a migratory bird. *Science*. **359**,
578 83–86 (2018).

579 53. E. P. Kingsley, K. M. Kozak, S. P. Pfeifer, D.-S. Yang, H. E. Hoekstra, The ultimate and
580 proximate mechanisms driving the evolution of long tails in forest deer mice. *Evolution*. **71**, 261–
581 273 (2017).

582 54. L. Smeds, J. Aspi, J. Berglund, I. Kojola, K. Tirronen, H. Ellegren, Whole-genome analyses
583 provide no evidence for dog introgression in Fennoscandian wolf populations. *Evol. Appl.* **14**,
584 721–734 (2021).

585 55. R. M. Schweizer, J. Robinson, R. Harrigan, P. Silva, M. Galverni, M. Musiani, R. E. Green, J.
586 Novembre, R. K. Wayne, Targeted capture and resequencing of 1040 genes reveal
587 environmentally driven functional variation in grey wolves. *Mol. Ecol.* **25**, 357–379 (2016).

588 56. 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M.
589 Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis, A global
590 reference for human genetic variation. *Nature*. **526**, 68–74 (2015).

591 57. J. D. Palacio-Mejía, P. P. Grabowski, E. M. Ortiz, G. A. Silva-Arias, T. Haque, D. L. Des
592 Marais, J. Bonnette, D. B. Lowry, T. E. Juenger, Geographic patterns of genomic diversity and
593 structure in the C4 grass *Panicum hallii* across its natural distribution. *AoB Plants*. **13**, lab002
594 (2021).

595 58. A. M. Royer, M. A. Streisfeld, C. I. Smith, Population genomics of divergence within an obligate
596 pollination mutualism: Selection maintains differences between Joshua tree species. *Am. J. Bot.*
597 **103**, 1730–1741 (2016).

598 59. M. Kapun, J. C. B. Nunez, M. Bogaerts-Márquez, J. Murga-Moreno, M. Paris, J. Outten, M.
599 Coronado-Zamora, C. Tern, O. Rota-Stabelli, M. P. García Guerreiro, S. Casillas, D. J. Orengo,

600 E. Puerma, M. Kankare, L. Ometto, V. Loeschke, B. S. Onder, J. K. Abbott, S. W. Schaeffer, S.
601 Rajpurohit, E. L. Behrman, M. F. Schou, T. J. S. Merritt, B. P. Lazzaro, A. Glaser-Schmitt, E.
602 Argyridou, F. Staubach, Y. Wang, E. Tauber, S. V. Serga, D. K. Fabian, K. A. Dyer, C. W.
603 Wheat, J. Parsch, S. Grath, M. S. Veselinovic, M. Stamenkovic-Radak, M. Jelic, A. J. Buendía-
604 Ruiz, M. Josefa Gómez-Julián, M. Luisa Espinosa-Jimenez, F. D. Gallardo-Jiménez, A.
605 Patenkovic, K. Eric, M. Tanaskovic, A. Ullastres, L. Guio, M. Merenciano, S. Guirao-Rico, V.
606 Horváth, D. J. Obbard, E. Pasyukova, V. E. Alatortsev, C. P. Vieira, J. Vieira, J. Roberto Torres,
607 I. Kozeretska, O. M. Maistrenko, C. Montchamp-Moreau, D. V. Mukha, H. E. Machado, A.
608 Barbadilla, D. Petrov, P. Schmidt, J. Gonzalez, T. Flatt, A. O. Bergland, Drosophila Evolution
609 over Space and Time (DEST) - A New Population Genomics Resource. *bioRxiv* (2021), p.
610 2021.02.01.428994.

611 60. L. N. Di Santo, S. Hoban, T. L. Parchman, J. W. Wright, J. A. Hamilton, Reduced representation
612 sequencing to understand the evolutionary history of Torrey pine (*Pinus torreyana* Parry) with
613 implications for rare species conservation. *bioRxiv* (2021), p. 2021.07.02.450939.

614 61. J. von Seth, N. Dussex, D. Díez-Del-Molino, T. van der Valk, V. E. Kutschera, M. Kierczak, C.
615 C. Steiner, S. Liu, M. T. P. Gilbert, M.-H. S. Sinding, S. Prost, K. Guschanski, S. K. S. S.
616 Nathan, S. Brace, Y. L. Chan, C. W. Wheat, P. Skoglund, O. A. Ryder, B. Goossens, A.
617 Götherström, L. Dalén, Genomic insights into the conservation status of the world's last
618 remaining Sumatran rhinoceros populations. *Nat. Commun.* **12**, 2393 (2021).

619 62. Millennium Ecosystem Assessment, *Millennium ecosystem assessment* (Millennium Ecosystem
620 Assessment, 2005; <http://chapter.ser.org/europe/files/2012/08/Harris.pdf>).

621 63. G. C. Hurtt, L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk,
622 S. Fujimori, K. Klein Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J.
623 Jungclaus, J. O. Kaplan, J. Kennedy, T. Krisztin, D. Lawrence, P. Lawrence, L. Ma, O. Mertz, J.
624 Pongratz, A. Popp, B. Poulter, K. Riahi, E. Shevliakova, E. Stehfest, P. Thornton, F. N. Tubiello,
625 D. P. van Vuuren, X. Zhang, Harmonization of global land use change and management for the
626 period 850–2100 (LUH2) for CMIP6. *Geosci. Model Dev.* **13**, 5425–5464 (2020).

627 64. S. Theodoridis, C. Rahbek, D. Nogues-Bravo, Exposure of mammal genetic diversity to mid-21st
628 century global change. *Ecography (Cop.)* (2021), doi:10.1111/ecog.05588.

629 65. I. Overcast, M. Ruffley, J. Rosindell, L. Harmon, P. A. V. Borges, B. C. Emerson, R. S. Etienne,
630 R. Gillespie, H. Krehenwinkel, D. Luke Mahler, F. Massol, C. E. Parent, J. Patiño, B. Peter, B.
631 Week, C. Wagner, M. J. Hickerson, A. Rominger, A unified model of species abundance, genetic
632 diversity, and functional diversity reveals the mechanisms structuring ecological communities.
633 *bioRxiv* (2020), p. 2020.01.30.927236.

634 66. S. Díaz, N. Zafra-Calvo, A. Purvis, P. H. Verburg, D. Obura, P. Leadley, R. Chaplin-Kramer, L.
635 De Meester, E. Dulloo, B. Martín-López, M. R. Shaw, P. Visconti, W. Broadgate, M. W.
636 Bruford, N. D. Burgess, J. Cavender-Bares, F. DeClerck, J. M. Fernández-Palacios, L. A.
637 Garibaldi, S. L. L. Hill, F. Isbell, C. K. Khoury, C. B. Krug, J. Liu, M. Maron, P. J. K.
638 McGowan, H. M. Pereira, V. Reyes-García, J. Rocha, C. Rondinini, L. Shannon, Y.-J. Shin, P.
639 V. R. Snelgrove, E. M. Spehn, B. Strassburg, S. M. Subramanian, J. J. Tewksbury, J. E. M.
640 Watson, A. E. Zanne, Set ambitious goals for biodiversity and sustainability. *Science* **370**, 411–
641 413 (2020).

642 67. C. Rahbek, R. K. Colwell, Biodiversity: Species loss revisited. *Nature*. **473** (2011), pp. 288–289.

643 68. H. M. Pereira, G. C. Daily, Modeling biodiversity dynamics in countryside landscapes. *Ecology*.
644 **87**, 1877–1885 (2006).

645 69. J. Harte, A. B. Smith, D. Storch, Biodiversity scales from plots to biomes with a universal
646 species-area curve. *Ecol. Lett.* **12**, 789–797 (2009).

647 70. D. R. Lockwood, C. M. Richards, G. M. Volk, Probabilistic models for collecting genetic
648 diversity: Comparisons, caveats, and limitations. *Crop Sci.* **47**, 861–866 (2007).

649 71. L. Czech, M. Exposito-Alonso, grenepipe: A flexible, scalable, and reproducible pipeline to
650 automate variant and frequency calling from sequence reads. *arXiv* (2021), (available at
651 <http://arxiv.org/abs/2103.15167>).

652 72. A. Miraldo, S. Li, M. K. Borregaard, A. Flórez-Rodríguez, S. Gopalakrishnan, M. Rizvanovic, Z.
653 Wang, C. Rahbek, K. A. Marske, D. Nogués-Bravo, An Anthropocene map of genetic diversity.
654 *Science*. **353**, 1532–1535 (2016).

655 73. D. H. Parks, T. Mankowski, S. Zangooei, M. S. Porter, D. G. Armanini, D. J. Baird, M. G. I.
656 Langille, R. G. Beiko, GenGIS 2: Geospatial Analysis of Traditional and Genetic Biodiversity,
657 with New Gradient Algorithms and an Extensible Plugin Framework. *PLoS One*. **8**, e69885
658 (2013).

659 74. C. Li, D. Tian, B. Tang, X. Liu, X. Teng, W. Zhao, Z. Zhang, S. Song, Genome Variation Map: a
660 worldwide collection of genome variations across multiple species. *Nucleic Acids Res.* **49**,
661 D1186–D1191 (2021).

662 75. M. Kardos, E. Armstrong, S. W. Fitzpatrick, S. Hauser, P. Hedrick, J. Miller, D. Tallmon, W.
663 Chris Funk, The crucial role of genome-wide genetic variation in conservation. *bioRxiv* (2021),
664 p. 2021.07.05.451163.

665 76. D. Spielman, B. W. Brook, R. Frankham, Most species are not driven to extinction before
666 genetic factors impact them. *Proceedings of the National Academy of Sciences*. **101** (2004), pp.
667 15261–15264.

668 77. Ipbes, *Global assessment report of the Intergovernmental Science-Policy Platform on*
669 *Biodiversity and Ecosystem Services* (IPBES Secretariat, Bonn, Germany, 2019;
670 <https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf>).

671

Science

AAAS

Supplementary Materials for

Genetic diversity loss in the Anthropocene

Moises Exposito-Alonso, Tom R. Booker, Lucas Czech, Tadashi Fukami, Lauren Gillespie,
Shannon Hateley, Christopher C. Kyriazis, Patricia L. M. Lang, Laura Leventhal, David
Nogues-Bravo, Veronica Pagowski, Megan Ruffley, Jeffrey P. Spence, Sebastian E. Toro
Arana, Clemens L. Weiß, Erin Zess.

Correspondence to: moisesexpositoalonso@gmail.com

This PDF file includes:

Supplementary Methods
Supplementary Results
Figs. S1 to S27
Tables S1 to S18

27

28 Table of contents

29

30

SUPPLEMENTAL METHODS

5

31

I. Background on species biodiversity and biogeography

5

32

I.1 Theoretical models of biodiversity

5

33

Fig. S1 | Example of typical plots used for species abundance curve studies

5

34

I.1.2. Niche apportionment approaches

5

35

I.1.2. Niche statistical approaches of species sampling

6

36

Fig. S2 | Summary of theoretical models of Species Abundance Curves.

7

37

I.2 Metric of species diversity

7

38

I.3 Biogeography of species and extinction.

7

39

Fig. S3 | Example of a Species-Area Relationship in Galapagos Islands

8

40

I.4 Estimating extinction of species from the species area relationship

8

41

II. Population genetics models and the site frequency spectrum.

8

42

II.1 The Wright-Fisher model and the site frequency spectrum

8

43

Fig. S4 | Similarity between the Species Abundance Distribution and the Site Frequency Spectrum

10

44

II.2 Metrics of genetic diversity

10

45

II.3 Spatial genetics and the mutations-area relationship (MAR)

11

46

II.3.1 Panmictic population

11

47

Fig. S5 | Expected ranges of z MAR given sample sizes.

14

48

II.3.2 Scaling zMAR for low sampling and low census size

14

49

II.3.3 Meta-populations in space

14

50

Fig. S6 | msprime 2D deme simulations and the mutations-area relationship

15

51

Table S1 | msprime population genetic simulations in 2D

15

52

II.3.4 Meta-populations in space with local adaptation

15

53

Fig. S7 | SLiM population genetic simulations in 2D with selection and local adaptation

16

54

Table S2 | Linear model explaining zMAR by migration rate and natural selection

16

55

II.3.5. Meta-populations in space with purifying selection

16

56

Fig. S8 | SLiM population genetic simulations in 2D with purifying selection

17

57

II.3.6 Continuous-space non-Wright-Fisher models

17

58

Fig. S9 | Continuous space SLiM population genetic simulations

18

59

II.3.7 Connection of zMAR with the isolation-by-distance pattern

18

60

Fig. S10 | SLiM population genetic simulations in 2D comparing FST and zMAR

19

61

II.4 The loss of mutations (genetic diversity) in space

19

62

II.5 Recovery of genetic diversity after a bottleneck or local extinction

20

63

Fig. S11 | 2D stepping-stone msprime simulations with extinction and recovery

20

64

SUPPLEMENTAL RESULTS

21

65

III. The mutations-area relationship with the 1001 *Arabidopsis* Genomes

21

66

III.1 The Site Frequency Spectrum of the 1001 *Arabidopsis* Genomes

21

67

Fig. S12 | Mutation abundance study in *A. thaliana*

21

68	Fig. S13 Fit of mutation abundance study in <i>A. thaliana</i> with different SAD models	22
69	Table S3 AIC values for model fit of common species distribution curves.	22
70	III.2 Building the Mutations-Area Relationship	23
71	Table S4 Different SAR curves fit to mutations.	23
72	Table S5 The mutations-area relationship (MAR).	24
73	Table S6 The endemic-mutations-area relationship (EMAR).	24
74	Fig. S14 The mutations-area and endemic-mutations-area relationships in <i>A. thaliana</i> .	24
75	III.3 Testing numerical artefacts	24
76	Table S7 MAR built with different area calculations and grid sizes	25
77	Fig. S15 Cartoon of raster sampling to build the MAR	26
78	Fig. S16 MAR comparison with different area calculations.	26
79	Fig. S17 MAR and EMAR in <i>Arabidopsis thaliana</i> using outward and inward sampling.	27
80	Table S8 Outward and inward MAR and EMAR	27
81	Table S9 MAR for putatively neutral, deleterious, and locally adaptive alleles in <i>Arabidopsis thaliana</i>	28
82		28
83	III.4 Local population extinction in <i>Arabidopsis</i>	28
84	Fig. S18 Loss of mutations with habitat loss in <i>A. thaliana</i> .	29
85	III.5 Potential impacts of genetic loss in adaptability	29
86	Fig. S19 Bias of low frequency mutations and effect size for fitness traits in <i>A. thaliana</i> .	30
87	Fig. S20 Simulations illustrating the potential loss of locally-adaptive mutations in <i>A. thaliana</i> .	31
88	Fig. S21 Extinction simulations showing proxies of adaptive capacity of <i>A. thaliana</i> .	31
89	III.6 Case study of a massive natural bottleneck	31
90	IV. The mutations-area relationship in diverse species	33
91	Fig. S22 MAR summaries across species.	43
92	Table S10 The mutations-area relationship across species. Extended Table 1	43
93	IV.1 Exclusion of species from global averages	43
94	Table S11 Mean zMAR and other summary statistics across species.	44
95	Table S12 Traits, life history, and other characteristics of the analyzed species.	44
96	Table S13 Association of traits, life history, and other characteristics with zMAR.	45
97	V. An estimate of global genetic diversity loss	46
98	V.1 Estimates of ecosystem area losses	46
99	Table S14 Millennium Ecosystem Assessment land cover transformation.	46
100	Table S15 IPBES land cover transformation,	46
101	Table S16 Land Use Harmonization 2 from 1850 to 2015	47
102	Table S17 IUCN Red List categories of extinction risk and number of species.	47
103	V.2 A global estimate of genetic loss	48
104	Fig. S23 The parameter space of genetic diversity loss, extended	49
105	Table S18 Estimates of average expected genetic loss for different ecosystems.	49
106	V.3 Community ecology simulations and MAR	51
107	Fig. S24 zMAR calculated from MESS eco-evolutionary simulations	51
108	V.4 The nested species extinction and genetic diversity loss processes	52
109	Fig. S25 Cartoon of nested extinction of species and genetic diversity loss.	52

110	Fig. S26 The distribution of per-species area lost and total ecosystem extinction with 1000 species	53
111	Fig. S27 Numeric simulation of nested species and genetic diversity loss.	54
112	VI. Limitations and outlook	55
113	VI.1 Reasons for overestimations	55
114	VI.2 Reasons for underestimations	55
115	VI.3 Final notes	56
116	SUPPLEMENTAL REFERENCES	57
117	<hr/>	
118		
119		

120 SUPPLEMENTAL METHODS

121

122 I. Background on species biodiversity and biogeography

123

124 I.1 Theoretical models of biodiversity

125

Studies in biogeography have modelled the species-area relationship with several functions. Below we summarise the different approaches using an example of richness of $S = 100$ species, with variable abundance or area, A.

126

We may visualise the different areas or abundances of species as a frequency histogram (Fig. S1, Preston plot), with x-axis: logarithm of abundance bins (historically \log_2 as a rough approximation to the natural logarithm), and y-axis: number of species at given abundance. Alternatively, as a rank-abundance diagram (Fig. S1, Whittaker plot): x-axis: species list, ranked in order of descending abundance (i.e. from common to rare), and y-axis: logarithm of % relative abundance.

127

128

129

130

131

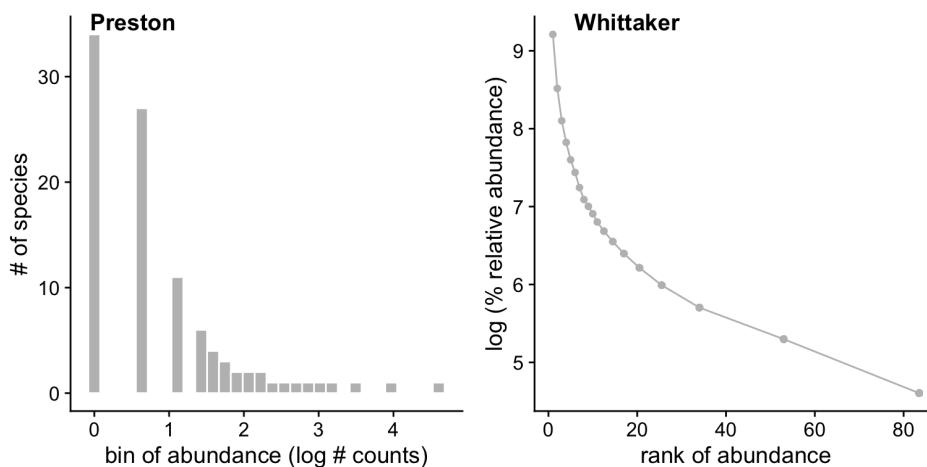
132

133

134

135

136



137

138 Fig. S1 | Example of typical plots used for species abundance curve studies

139

Due to their strong skew, Species Abundance Curves are often plotted using the Preston plot (left) where the x axis represents bins of \log_2 abundances (also referred to as octaves), or using the Whittaker plot (right) where the x axis is the rank of each species in a dataset and y axis the species' relative abundance.

140

141

142

143

144

145

I.1.2. Niche apportionment approaches

146

147

148

A series of theoretical deterministic and stochastic "niche apportionment models" have been put forward (summarised in (1) or (2, 3)).

149

150

151

152

The Motomura (4) geometric series suggests that each species that arrives takes half the area. The first would take 50%, the second 50% of 50%, and so forth, which can be expressed as:

153

154

$$P_i = 0.5^i.$$

155

156

157

158

Similarly, one can imagine that as a species colonises a habitat, it takes up a fraction different than 50%. This gives a geometric series with parameters k which can be written as

159 $P_i = k(1 - k)^{i-1}$.

160

161 Other geometric series-related models include stochasticity, where k instead of being a fixed
162 parameter is a random uniform variable and there is a k_i each time i a new species arrives to
163 the ecosystem. The "dominance preemption" model draws from 50-100% at any new arrival
164 of a species, the random fraction model draws from 0-100%. Then the abundance of a species
165 depends on the stochastic process of previous $f = 1 \dots i-1$ species arriving first:

166

167
$$E[P_i | P_1, \dots, P_{i-1}, k_i] = k_i \times \left(1 - \sum_{f=1}^{i-1} P_f\right)$$

168

169 Another approach is the broken stick by MacArthur (5), which theorised a habitat is broken
170 into $S-1$ places at random, which creates S fractions of an area. Then the relative area of a
171 species is:

172

173
$$E[P_i] = \left(\frac{1}{S}\right) \sum_{w=i}^S \frac{1}{w}.$$

174

175

176 I.1.2. Niche statistical approaches of species sampling

177

178 Differently from niche partitioning functions, statistical approaches such as the log-series
179 from Fisher (6) and log-normal from Preston (7) are probability distributions, and approach
180 modelling in a conceptually different way: they model the sampling process of species
181 collections given an underlying relative abundance (see below).

182

183

184 Statistical-based derivations probably began with Fisher (6), with the log-series
185 distribution. It assumes that species abundances in the community are independent identically
186 distributed variables, sampling is a Poisson process, sampling is done with replacement, or
187 the fraction sampled is small enough to approximate a sample with replacement. Here,

188

189
$$S_n = \frac{\alpha x^n}{n},$$

190

191 where x is a constant $x \in [0, 1]$ related to the sample dataset (typically close to 1),
192 $x = \frac{N}{\alpha+N}$, and α is a new constant term (ecosystem-specific) that is used as a measure of
193 biodiversity. Fisher proposed the number of species could be estimated as:

194

195
$$S = \alpha \times \log\left(1 + \frac{N}{\alpha}\right).$$

196

197

198 Finally, Preston (8) posed that the skewness of previous proposals is due to lack of
199 sampling. With little data, common species are collected sooner, but with more abundant
200 sampling, the rarest species are also well-sampled and have abundances well above 0. Preston
201 then proposed that the octaves (bins of doubling abundance) follow a normal distribution,
202 making the raw abundance log-normal distributed. Given S_0 is the number of species in the
203 model octave of abundance and a variance composite of the log-Normal σ^2 , the number of
204 species per abundance (octave) bin $R (= \log(n))$ is:

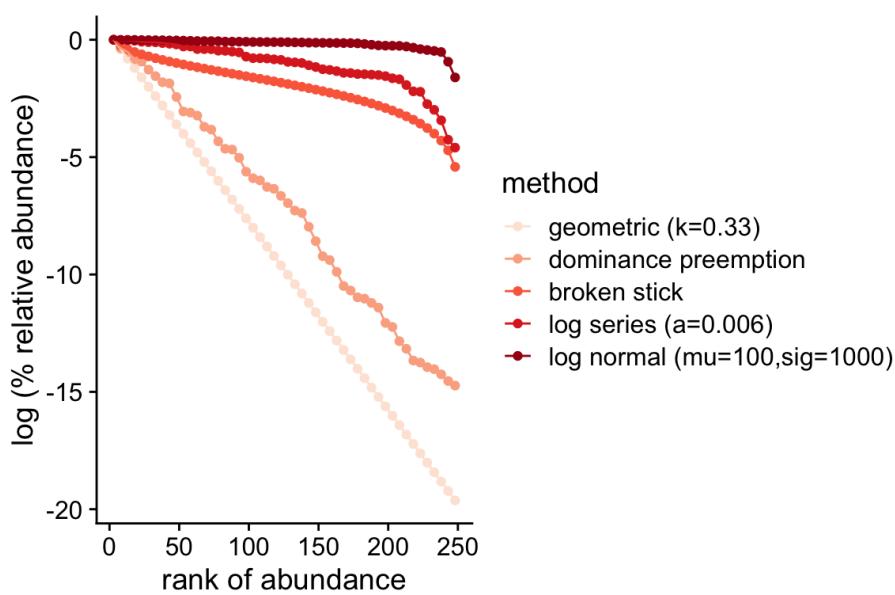
205 $S_R = S_0 e^{-R^2/2\sigma^2}$.

206

207 The Unified Neutral Theory of Biodiversity (UNTB) by Hubbell (1) takes a stochastic
208 approach of a community with immigrants, extinctions, and speciation in continuous
209 dynamics. Interestingly, the UNTB's key parameter, θ , coincides with Fisher's α , as the log-
210 series is a limiting case of UNTB. Hubbell's discovery was that $\alpha=2J_m v$, where J_m is the size
211 of the external metacommunity that provides migrants of species to the focal community, and
212 v is the speciation rate. Alonso and McKane (9) derived the so-called Metacommunity Zero-
213 Sum Multinomial (MZSM) distribution from the UNTB. In practice, both distributions have
214 almost-identical fits (lines completely overlapping in Fig. S2 below).

215

216



217

218 **Fig. S2 | Summary of theoretical models of Species Abundance Curves.**

219 Five niche partitioning or statistical models shown in a Whittaker plot. The different models expect different levels of
220 evenness in abundance across the species in the community, from the lowest (geometric series) to the highest (log-normal).

221

222

223 **I.2 Metric of species diversity**

224

225 Although a number of metrics exist to measure species diversity, such as the Shannon index,
226 $H' = -\sum_{i=1}^S P_i \log P_i$ (with P_i the relative proportions of species abundances) or Fisher's non-
227 dimensional α parameter, the study of species abundances and area relationships has focused
228 on species richness S , that is, the total number of species in a given location or area. Below
229 we therefore focus on species richness.

230

231

232 **I.3 Biogeography of species and extinction.**

233

234 **SAD and SAR connection**

235

236 Due to many species being rare, it is expected that as researchers sample an area, the most
237 common species will be sampled first, and as the area studied increases, more and more
238 species will be discovered. This is thought to happen following a power law relationship,

239 where the number of species in that area S_A increases with the sampled area A , with scaling z
240 (slope in a log-log plot), and with a constant c :

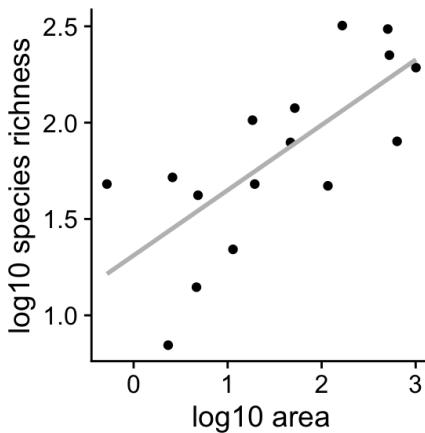
241

$$242 SAR(A) = cA^z.$$

243

244 Preston (7) derived theoretically that from a log-normal series, one would expect
245 $z=0.27$, under a number of assumptions (Fig. S3). This has been empirically shown to be
246 close to reality (7, 10), although there is some variation across ecosystems and spatial scales.

247



248

249 **Fig. S3 | Example of a Species-Area Relationship in Galapagos Islands**

250 Classic species richness dataset from the Galapagos Islands (Preston, 1962). It depicts species richness as a function of
251 island area in a log-log plot.

252

253

254 **I.4 Estimating extinction of species from the species area relationship**

255

256 The first estimates of species extinction used the SAR relationship. Given a reduction of
257 ecosystem area, A , by an area of a (11, 12). If these areas, as well as the SAR scaling, z , are
258 known, then one can predict the number of species in the future as:

259

$$260 S_{\text{now}} - S_{\text{fut}} = cA_{\text{now}}^z - cA_{\text{fut}}^z,$$

261

262 However, we are normally interested in the fraction of species that will go extinct X_s so we
263 can take the ratio:

264

$$265 X_s = \frac{S_{\text{now}} - S_{\text{fut}}}{S_{\text{now}}} = 1 - \frac{cA_{\text{fut}}^z}{cA_{\text{now}}^z} = 1 - \left(\frac{A_{\text{fut}}}{A_{\text{now}}} \right)^z.$$

266

267

268 **II. Population genetics models and the site frequency spectrum.**

269

270 **II.1 The Wright-Fisher model and the site frequency spectrum**

271

272 Statisticians and population geneticists from the 20th century, Wright and Fisher, built a
273 simple statistical model of evolution of a population. It assumes that each generation a
274 population of N monoecious (hermaphrodite) individuals mate randomly to create a new
275 generation of N individuals and then immediately die so that only N individuals remain in the
population at any given time. This random sampling process causes the frequency of a variant

276 in one generation to possibly differ from its frequency in the previous generation—a process
277 known as genetic drift.

278

279 When a nucleotide mutation or variant (e.g. ACGAA → ACGTA) emerges by a
280 random process of, for instance, DNA replication error, it will first be in 1/N individuals (if
281 we consider these diploid, 1/2N chromosomes). Through random sampling that T mutation
282 may be lost, stay at the same frequency, or randomly move to higher frequency. Although
283 rarely, just by chance, the mutation may reach 100% frequency. This results in a
284 “commonness of rarity” when looking at mutations in a population, as we have seen in
285 previous sections for species. Since these genetic drift dynamics affect all mutations genome-
286 wide, we therefore expect the majority of mutations to be absent, or rare, and only a much
287 smaller proportion of variants to be at moderate or high frequencies.

288

289 The site frequency spectrum (SFS) refers to the distribution of frequencies of variants
290 in a population. This is the number of sites at which we observe a variant at frequency q in a
291 sample of n individuals. To derive the expected SFS distribution, we turn to Kingman’s
292 Coalescent (13). Both models describe the same ideal population of random mating, constant
293 population size, and mutations emerging at a low rate and drifting in frequency. But while the
294 Wright-Fisher model describes the dynamics of a whole population forward-in-time, the
295 Kingman’s Coalescent describes the genealogy of a sample of individuals from a population,
296 going backward in time. By building a model around the individuals that are sampled or that
297 survived, rather than of an entire population, the Coalescent provides a simpler way to derive
298 expectations in small populations or in cases, for example here, where a limited sample of
299 genomes are sequenced. Using the Coalescent (see (14) for details), one obtains that the
300 expected number of mutations of a given abundance, n , is inversely related to their frequency,
301 q :

302

$$303 M_n = c \frac{1}{q}$$

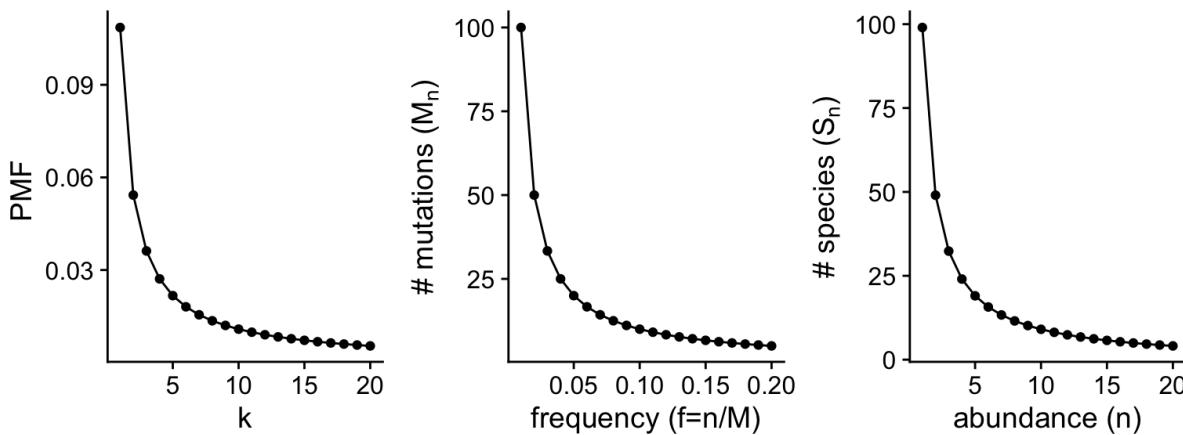
304

305 for some constant c that depends on the mutation rate and the population size. This SFS from
306 population genetics theory is remarkably similar to the Species Abundance Relationship. In
307 fact, Fisher himself (15) derived an expression similar to the above.

308

309 Rearranging terms, one can see this is a constrained version of the log-series
310 Probability Mass Function (PMF), which Fisher also proposed for the distribution of species
311 abundances (6). Below, one can graphically see the similarities (Fig. S4):

312



313

314 **Fig. S4 | Similarity between the Species Abundance Distribution and the Site Frequency Spectrum**
315 Left is the Probability Mass Function of the log-series ($p=0.999$), center is the SFS ($N=100$, $c=1$), and right is
316 the log-series-based abundance of species ($\alpha=100$, $N=10000$).

317
318 Keeping the abundance, n , constant (and low), when the number of individuals
319 $N \rightarrow \infty$, we know that the constant x from Fisher's SAD approaches 1, $x = \frac{N}{N+\alpha} \rightarrow 1$. Then,
320 we can rewrite the number of species at any given abundance (S_n) as:
321

322
$$S_n = \alpha \frac{(\frac{N}{\alpha+N})^n}{n} = \alpha \frac{1^n}{n} = c \frac{1}{n} = M_n$$

323

324 So both have the same form as the log series PMF: $f(k) = \frac{-1}{\ln(1-p)} \frac{p^k}{k}$ when $p \rightarrow 1$. In
325 the next section we will see that the constants of the SAD and the SFS are proportional to
326 species and mutation diversity, although the Site Frequency Spectrum (SFS) is a specific case
327 of SAD. One can also see that because the constant in the SFS is the population scaled
328 mutation rate, $c = \theta = N_e \mu$, and Fisher's $\alpha \approx \theta$ for large N .
329

330 II.2 Metrics of genetic diversity

331
332 In population genetics, multiple measurements of genetic diversity have been put forward.
333 The most straightforward is the allelic richness, also number of mutations, or also called the
334 number of segregating sites. Segregating sites, M , is the direct equivalent of the species
335 richness, S , and it depends on the number of samples used and length of DNA sequence
336 explored (Note: we use the non-standard notation, M , as the standard in population genetics is
337 S [for segregating sites] but this is already in use for species richness. We then use M for
338 mutations and S for species). This metric can also be thought of as the area under the curve of
339 the SFS. Two other metrics that describe the SFS but that aim to be sequence-length- and
340 individual independent are Watterson's Theta, θ_W , and Nucleotide diversity, π , (also called θ_π
341). These two metrics of diversity are identical at population equilibrium and are estimates of
342 $4N_e \mu$ (when the SFS follows a 1/q relationship), with effective population size N_e and per-
343 generation mutation rate μ , whereas they differ in non-equilibrium demographics, under
344 natural selection, or under other behaviors not considered in the Wright-Fisher neutral model,
345 such as different mating systems (16).
346

347 First, π is described as:
348

349
$$\pi = \frac{\sum_{i=1}^{n-1} i(n-i)M_i}{n(n-1)/2},$$

350

351 and θ_W as:
352

353
$$\theta_W = \frac{\sum_{i=1}^{n-1} M_i}{\sum_{i=1}^{n-1} 1/i},$$

354

355 where $\sum_{i=1}^{n-1} 1/i$ is the $n-1^{th}$ Harmonic number, which serves to scale the segregating
356 sites based on the assumption that the abundance of mutations follows a 1/q SFS. The
357 diversity metrics π and θ_W are both functions of the SFS, as opposed to Fisher's α from the
358 Species Abundance Distribution, which is a parameter that changes the shape of the
359 distribution.
360

361 Although often nucleotide diversity π is reported as a typical measure of genetic
362 diversity of a species, since it can be calculated for a single genome and it captures the
363 process of inbreeding of a population (17), classic literature relating germplasm management
364 for conservation and breeding has advocated for allelic richness (18).

365

366

367 II.3 Spatial genetics and the mutations-area relationship (MAR)

368

369 Since its inception, a number of concepts in population genetics have dealt with genetic
370 variation in populations of different sizes, or populations separated in space. For instance, one
371 classic result in population genetics is the relationship of $\pi \approx 4N_c \mu$, which relates genetic
372 diversity π with the effective population size N_e and the mutation rate of the species μ . A
373 relationship which is still studied nowadays in an effort to reconcile data with theory (17).

374 In 1943, Sewall Wright turned to study the genetics of multiple populations within a
375 species. He proposed that populations sampled further apart geographically must differ more
376 in allele frequency due to more independent drift (19), leading to the commonly used
377 correlation between geographic distance and the metric of differentiation F_{ST} . Most
378 prominently, the use of correlation in the accumulation of mutations of populations that are
379 geographically close or share evolutionary history has been uncovered using dimensionality
380 reduction approaches such as PCA (20).

381 Despite these enormous advances in understanding spatial genetic structures,
382 surprisingly little quantitative work has been done to parametrize the loss of genetic diversity
383 by direct loss of habitat.

384 Because of the abundance of rare mutations in populations, it is straightforward to
385 think that the more area and individuals sampled, the more segregating sites will be found.
386 Analogous to the Species Area Relationship (SAR), $S = cA^z$, we should thus be able to
387 estimate the equivalent scaling for a mutations-area relationship (MAR):

388

$$389 \quad M = cA^z,$$

390

391 with a scaling $z = z_{MAR}$, which corresponds to the slope of best fit in a log-log-plot of
392 A and M for a given species. (Other functions are often fit empirically for SAR datasets,
393 which we explore later in section III.3. We work with the power law because of its historical
394 use, mathematical convenience, and because other more complicated functions only
395 improved fitting marginally, see Table S4).

396

397 This differs from other efforts to understand the number of segregating sites or
398 heterozygosity differences across species that differ in their total census size or geographic
399 distribution (21, 22). The MAR instead is built within a species, as its ultimate aim is to relate
400 the number of mutations left in a species as it loses spatial populations.

401

402 Below we derive what are the expectations of MAR taking two opposite scenarios of
403 neutral population evolution, and study how many segregating sites or mutations M are
404 discovered with increasing area in the simulations. We further test the scenario of meta-
405 populations in space with varying migration rates and neutral or natural selection processes.

406

407 II.3.1 Panmictic population

408

409 The expected number of mutations, M , is a constant that depends on the mutation rate, μ , and
410 the expected total branch length of the population genealogy, L , with $M = \mu L$. Under the

411 coalescent, the total branch length is equal to the number of lineages or individuals sampled
412 from the population, n , times the time of the genealogy during which there are such lineages,
413 T_n , plus $n-1$ times the time in the genealogy with such number of lineages, and so forth:

414

$$415 L = nT_n + (n-1)T_{n-1} + \dots + 2T_2.$$

416
417 Under the coalescent,

418

$$419 E[T_n] = \frac{2N_e}{n(n-1)},$$

420
421 and thus:

422

$$423 E[L] = n \frac{2N_e}{n(n-1)} + (n-1) \frac{2N_e}{(n-1)(n-2)} + \dots;$$

424
425 which simplifies to

426

$$427 E[L] = 2N_e \left(\frac{1}{n-1} + \frac{1}{n-2} + \dots + 1 \right) = 2N_e H_{n-1},$$

428
429 where H_{n-1} is the $(n-1)$ th harmonic number. This is of course related to one of the
430 diversity metrics (section II.2), where Watterson's Θ_W scales the number of segregating sites
431 (M) by the harmonic number of sampled individuals. This is based on the expectation that as
432 more individuals are sampled, we expect to discover more mutations proportional to the
433 above harmonic number. Because such number is not so easy to work with to create an
434 expectation for z_{MAR} , we further simplify this expectation following the Taylor expansion
435 approximation of the harmonic number:

436

$$437 H_n = \gamma + \log(n) + \frac{1}{2n} + O\left(\frac{1}{n^2}\right) \simeq \gamma + \log(n) + \frac{1}{2n},$$

438
439 which we can further approximate as:

440

$$441 E[L] \approx 2N_e \log(n-1) + c.$$

442
443 Therefore, assuming a constant mutation rate and effective population size (N_e) under
444 panmixia, M grows following $\log(n)$. In such a case, a log-log plot (typical power law plot)
445 does not display a linear relationship, and the slope is asymptotic to $z \rightarrow 0$ for $N \rightarrow \infty$. On the
446 other hand, with low values of x (area or individuals sampled close to 0), the slope z_{MAR} will
447 be incorrectly high. We can show this effect trivially by studying the local derivative of the
448 function $\log_{10}(M) = \log_{10}(\log(N))$. The local slope of that function is an approximation of our
449 z_{MAR} parameter. This can be locally estimated at any given point N by taking the derivative:

450

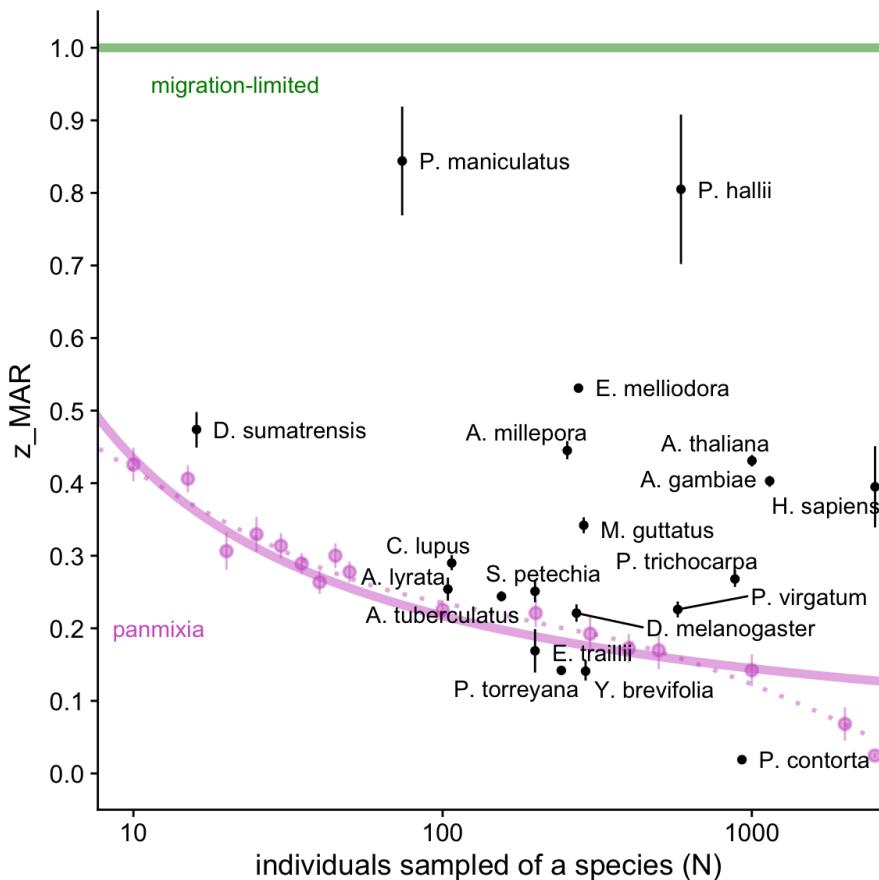
$$451 \frac{d \log_{10}(\log(N))}{d(\log_{10}(N))} = \frac{1}{\log_{10}(N) \log(10)}.$$

452
453 The implication of this nonlinear function is that if we sampled only few individuals
454 or areas of a species (e.g., $n=100$), even if this species was completely panmictic we would
455 expect a non-zero z_{MAR} , a value that will change with sampling effort. We can roughly approximate
456 z_{MAR} by the local slope of the number in the midpoint of the graph, e.g., for $n=100$ we look at
457 the slope at $n=50$, and obtain $1/(\log_{10}(50) \times \log(10)) \approx 0.256$. Therefore, with small sample
458 sizes, this parameter will not be helpful to understand whether a species behaves

459 panmictically or is limited by migration, which may be problematic for estimates of genetic
460 diversity loss later. We can visualise our expectation of the z_{MAR} under panmixia plotting the
461 first derivative above (Fig. S5). Because—as we will show below—we do expect a power
462 law relationship under a migration-limited scenario, z_{MAR} should theoretically not change with
463 sample size. The graphical study of the (non-)linearity of the log-log plots between the
464 number of mutations and area sampled should be diagnostic to this problem (We see for
465 instance that *Pinus contorta* has a highly nonlinear relationship, likely due to the use of
466 ascertained intermediate frequency markers instead of genome-wide data, Fig. S22).
467

468 Finally, we used msprime (23) to corroborate this finding (z_{MAR} being constant with
469 respect to sample size) with simulations, simulating 1600 demes in a 40x40 grid of demes or
470 populations of $N=N_e=1000$ that are completely panmictic (universal gene flow or dispersal,
471 so this is equivalent to a single panmictic deme). We observed the z_{MAR} for $t=100\dots10,000$
472 generations in \log_{10} increments. After this time, we sample $n=1\dots100$ individuals in
473 increasingly large groups of adjacent demes. The range of estimates of z_{MAR} in these
474 simulations was 0.07-0.15.
475

476 Fig. S5 indicates that the minimum average z_{MAR} even under panmixia would
477 continuously increase with lower numbers of individuals of a species sampled. This is due to
478 the fact that the site frequency spectrum is not fully sampled with small numbers of
479 individuals. Therefore, we devised an approach to rescale z_{MAR} .
480
481
482



483

484 **Fig. S5 | Expected ranges of z_{MAR} given sample sizes.**

485 For increasing numbers of individuals sampled, we plot the expected mean z_{MAR} under two theoretical trends of a migration-
486 limited (green) and a panmictic (purple) species (Purple dots indicate averages from SLiM simulations under panmixia to
487 confirm the theoretical trend based on the derivative approach above). In black, z_{MAR} and 95% Confidence Interval of
488 species analyzed in section IV are plotted (see section for details).

489

490

491 **II.3.2 Scaling z_{MAR} for low sampling and low census size**

492

493 Let $z_{pan-n} = E[z_{MAR} | n, \text{panmixia}]$, be the expected value of z_{MAR} of a panmictic
494 species given that we only have small sampling of n . Although theoretically z_{MAR} should
495 approach 0, with small samples it can be upwardly biased. In order to force the possible
496 values of z_{MAR} to range 0-1 despite small sample sizes, we can scale it as:

497

498
$$z_{\text{naive scaled}} = (z_{MAR} - z_{pan-n}) / (1 - z_{pan-n}).$$

499

500 In words, this moves the purple line in Fig. S5 to zero, stretching the space above it
501 accordingly.

502

503 Most species have census sizes so large that z_{MAR} should indeed approach 0 under
504 panmixia, so we should correct the sample estimate z_{MAR} to range 0-1. However, some
505 species have such low census size N that even if we sample all individuals of a species, the
506 sample size will still be small. In those cases, we should not scale z_{MAR} to range 0-1, but
507 rather scale it from $z_{pan-N} - 1$, where $z_{pan-N} = E[z_{MAR} | N, \text{panmixia}]$ is the expected value of
508 z_{MAR} given a census size N (plants or animals living in the wild). The updated scaling
509 approach for both census and sample size would then be:

510

511
$$z_{\text{scaled}}^* = (1 - z_{pan-N}) (z_{MAR} - z_{pan-n}) / (1 - z_{pan-n}) + z_{pan-N}.$$

512

513

514 Note that this scaled estimate must be conservative because while we adjust the
515 minimum z for the average value expected for low sample sizes, we do not adjust for the
516 maximum possible z , which only under very extraordinary theoretical conditions can be $z=1$,
517 namely under an unrealistic complete disconnection of populations by gene flow (see below).
518 Because deriving the maximum z would require more biological knowledge of the species'
519 demography, landscape connectivity, genome structure, etc., and because we rather create
520 conservative estimates, we do not create further scaling approaches.

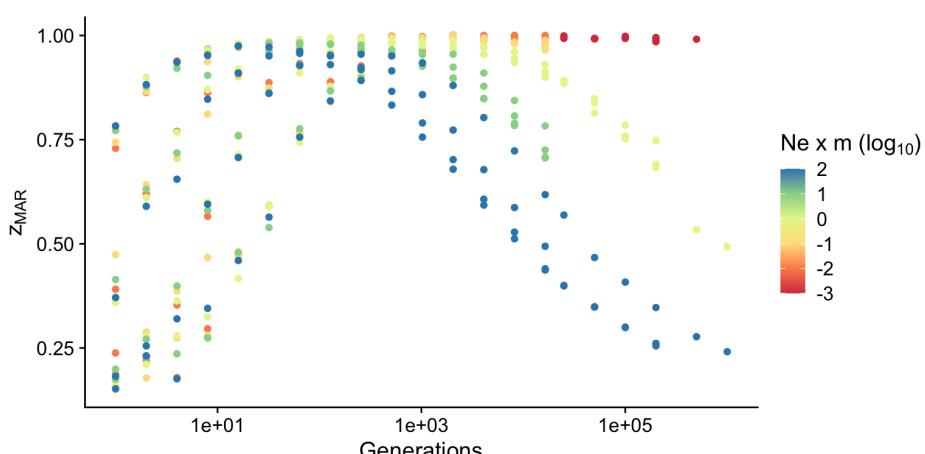
521

522 **II.3.3 Meta-populations in space**

523

524 A more realistic simulation than a panmictic population is that of the same 40x40 deme grid
525 where migration can happen between adjacent demes. This migration rate can be changed to
526 understand the effect of population structure and migration on z_{MAR} . Under no migration (or
527 very low migration), we expect the mutations in two distinct populations (and thus their SFS)
528 to be (almost) completely independent. Hence, when explored demes are doubled (N_e
529 doubles), we discover twice as many mutations. In this case, the number of mutations should
530 scale linearly with the area, so we expect the following to be true: $M=A$, $\log(M) = \log(A)$,
531 and $z_{MAR}=1$. Our analyses under different sampling schemes, and with different numbers of
532 "burn-in generations" (generations since a single deme colonised the full 40x40 space)
533 confirm that z_{MAR} approaches 1 in the limit of low migration (see Table S1 and Fig. S6).
534 Different from the panmictic situation, as we increase the sampled area, we not only increase
535 n , which would lead to a $\log(A)$ in mutations, but also increase N_e .

536
537
538



539

540 **Fig. S6 | msprime 2D deme simulations and the mutations-area relationship**
541 Simulations with different burn-in and migration rates under neutrality, and their corresponding z_{MAR} .
542

543 **Table S1 | msprime population genetic simulations in 2D**

544 Simulations summarised by grouping ranges of the resulting z_{MAR} parameters. The average parameters of the simulations
545 with similar z_{MAR} EW provided. (Acronyms: Nemt = product of effective population size, migration rate, and simulated
546 generations).

547

z_{MAR}	Samples/deme	Generations	Migration rate	N_{emt}
0.2 +/- 0.05	2.4	50001.7	0.0271675	5000044.23
0.3 +/- 0.05	20.25	70003	0.0561655	7000075.77
0.4 +/- 0.05	26.5714286	13057.4286	0.04450857	1305497.96
0.5 +/- 0.05	12.9230769	121759.462	0.04017769	752221.743
0.6 +/- 0.05	15.6111111	3218.77778	0.045735	321174.768
0.7 +/- 0.05	35.6842105	35034.8421	0.03395895	143791.614
0.8 +/- 0.05	35.030303	15655.1212	0.03055818	58023.5539
0.9 +/- 0.05	36.5806452	3057.12903	0.0253029	15290.4081
1 +/- 0.05	42.0140845	13625.4085	0.00861178	1798.36141

548
549

550 These simulations corroborated that we can recover z_{MAR} values ranging between 0-1
551 just varying migration and burn-in generation parameters. We found that it was both the time
552 of the system to reach an equilibrium as well as the migration rate that determined z_{MAR} . In
553 the future, it will be interesting to study different non-equilibrium scenarios to better
554 understand how genetic drift, gene flow, and different landscape structures may shape the
555 z_{MAR} .

556

557 II.3.4 Metapopulations in space with local adaptation

558

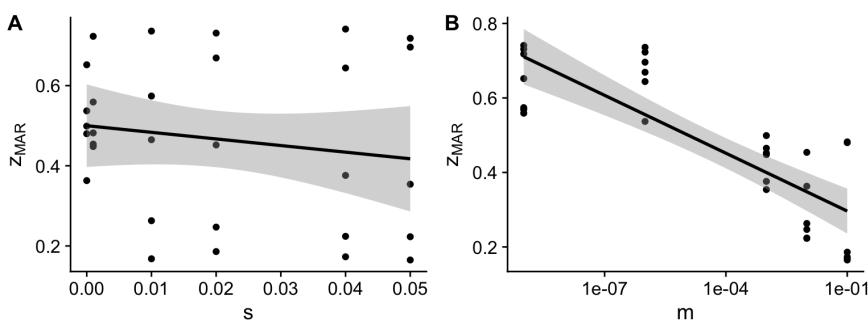
559 In order to simulate local adaptation, we use the individual-based simulation software SLiM
560 (24) following the approach of (25). These simulations were set up for 196 demes arranged in
561 a 14 x 14 grid. Each grid cell contains a population of $N=1000$ and has an environment
562 attribute, e , which varied spatially from the lower-left to the upper-right corners (approx. $-7 < e < 7$). 12 locations in the genome were allowed to be under directional natural selection. The
563 selection coefficient was fixed for a simulation, and grid runs were conducted with
564 $0 < s < 0.05$, but this selection would vary based on the environmental selection value of a grid
565 cell, according to $e \times s$. Therefore, these alleles are antagonistic pleiotropic. Selected
566 mutations across the 12 loci in the genome behaved additively (e.g. if an individual in grid
567

568 cell i had two of the selected mutations, fitness would be $w=1+2s \times e_i$). The migration rate
569 varied from one individual in a billion (1×10^{-9}), to one individual every ten (1×10^{-1}). Finally,
570 the mutation rate was set to 10^{-8} mutations/bp/generation and the recombination rate to 10^{-7}
571 crossovers/bp/generation.

572

573

574



575

Fig. S7 | SLiM population genetic simulations in 2D with selection and local adaptation

576 Simulations were carried out with different combinations of migration rates and strength of antagonistic
577 pleiotropic selection at 12 QTLs. (A) Marginal relationship between z_{MAR} with the strength of spatially-varying
578 selection s . (B) Marginal relationship between z_{MAR} with the migration rate m .

579

580 These results, together with individual-based simulations, corroborate what we had
581 observed with coalescent simulations, i.e. that z_{MAR} is lowest with a high migration rate. The
582 simulations also appear to show a negative effect of selection on z_{MAR} . Generating a linear
583 model fitting migration rate and selection and their interaction to understand what factors
584 explain the scaling coefficient: $z_{MAR} \sim \log_{10}(m) + s + \log_{10}(m) s$; we confirm that both had a
585 significant effect, and that selection significantly reduces z_{MAR} (Fig. S7, see below summary
586 Table S2). This may seem counterintuitive, as one may expect that locally-adaptive mutations
587 are rare and will be localised only to where they are adaptive. More work is necessary to
588 understand the signatures that spatially-varying natural selection (and its different types)
589 create on z_{MAR} , but we can think that under migration limited scenarios (where z approaches
590 1) adaptive alleles and their linked mutations permeate faster to similar neighbour
591 environments than neutral alleles.

592

593

Table S2 | Linear model explaining z_{MAR} by migration rate and natural selection

594 Summary table of the linear model $z_{MAR} \sim \text{mig} + s + \text{mig:s}$

	Estimate	SE	t-value	P-value
intercept	0.3385022	0.0469174	7.214859	0.0000001
mig	-0.0419733	0.0085804	-4.891792	0.0000407
s	-4.693492	1.6290184	-2.881178	0.0076725
mig : s	-0.4998393	0.2426463	-2.059950	0.0491621

595

596

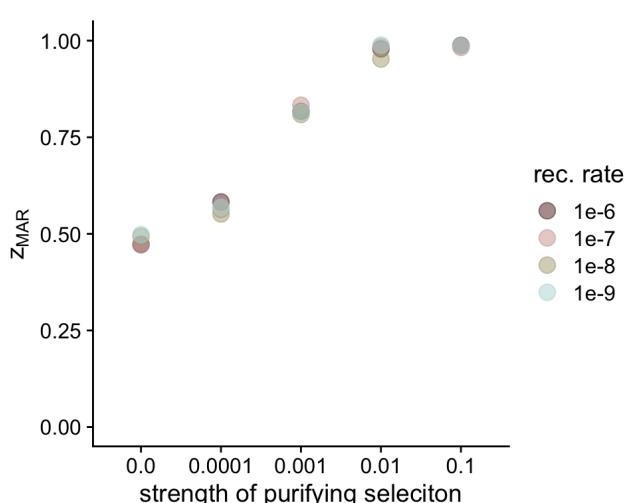
597 **II.3.5. Metapopulations in space with purifying selection**

598

599

600 To understand the effect of purifying selection on z_{MAR} we also ran 2D simulations with a
601 fraction of the genome allowed to be globally-deleterious (i.e. independent of the spatially-
602 varying environment). We simulated an increasingly strong purifying selection ($|s|$ range
603 from 0.0 to 0.1), simulating roughly that 29% of the genome of Arabidopsis is coding
604 (arabidopsis.org) and mutations can be deleterious. We also varied the degree of
605 recombination. Following our expectation, with stronger purifying selection deleterious

606 mutations are pushed to lower allele frequencies, stopping their geographic spread, which
607 increases z_{MAR} . Recombination rate appears to have a minor role on z_{MAR} (Fig. S8).
608
609



610

Fig. S8 | SLiM population genetic simulations in 2D with purifying selection

Simulations were carried out with varying strengths of purifying selection ($|s|$ range from 0.0 to 0.1) at coding positions, representing about 29% of the genome. Different values of recombination rate were also used in all pairwise combinations with $|s|$.

611

612 II.3.6 Continuous-space non-Wright-Fisher models

613

614 In order to confirm z_{MAR} generality in highly realistic conditions and its behavior through the
615 population extinction process (II.4), we set up SLiM simulations in continuous space using
616 non-Wright-Fisher dynamics (24). Spatial population structure in these simulations was
617 established through individual dispersal, local mate choice and spatial competition, which we
618 chose to lead to realistic values of F_{ST} across space. Spatial competition also acted as
619 population control, by keeping the total population size below a target carrying capacity
620 through direct effects on individual fitness. In addition to competition, fitness was also
621 affected by individual age as well as by a polygenic trait under stabilising selection. A subset
622 of variants (final proportion ~10%) directly affected this trait with effect sizes drawn from a
623 Gaussian distribution with mean = 0.0 and standard deviation = 0.1, and a fitness penalty was
624 incurred by deviating from the optimal trait value using a Gaussian fitness function centered
625 at the optimum and with a standard deviation = 5.0. We initialised functional variation for
626 SLiM using neutral coalescent simulations with msprime (23) to reduce the computational
627 burden of burn-in, and loaded the resulting tree sequences into SLiM (26, 27). We drew
628 functional effect sizes for these variants, placed individuals into continuous space, and ran
629 simulations forward-in-time for 5,000 generations. After that, the geographic distribution of
630 the species experienced impacts as expected during global change: every generation, 0.001 of
631 one edge of the species distribution got its carrying capacity reduced to 0. This meant that
632 over 1,000 generations the whole species would disappear (note that this is a reasonable
633 fraction of area reduction given the estimates of yearly deforestation and habitat change in
634 section V). We subsequently overlayed neutral mutations on the tree sequence using
635 msprime, and analysed genomes sampled throughout the extinction process (by tracking them
636 in the tree sequence output) and extracted using tskit.
637
638

639

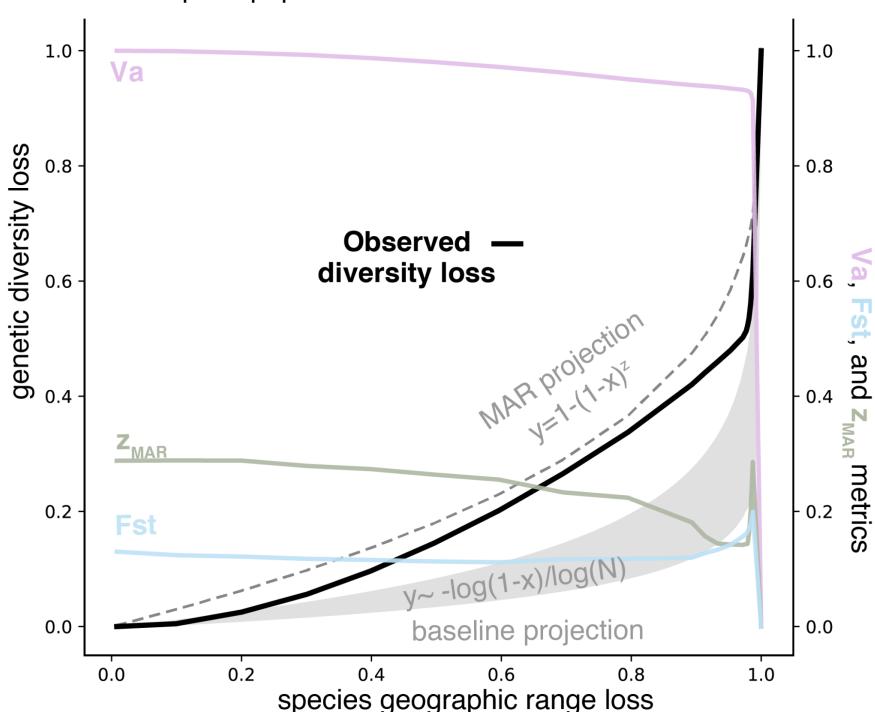
640

641

642

643

Change in population parameters and genetic diversity loss in continuous-space population extinctions



644

Fig. S9 | Continuous space SLiM population genetic simulations

At 19 timepoints leading up to extinction, 1,000 individuals were sampled randomly in continuous space to quantify diversity loss (black line). The prediction of MAR (dashed line) using the starting z_{MAR} seemed to follow the real trend better than the baseline of just loss of individuals (dashed line). This suggests that even if z_{MAR} varies during the population extinction process, it is relevant to understand genetic loss by area reduction. We also tracked metrics of population structure (z_{MAR} , F_{ST}) and a proxy of adaptive capacity (V_a), which showed qualitatively similar patterns as the GWA-based trends (Fig S21).

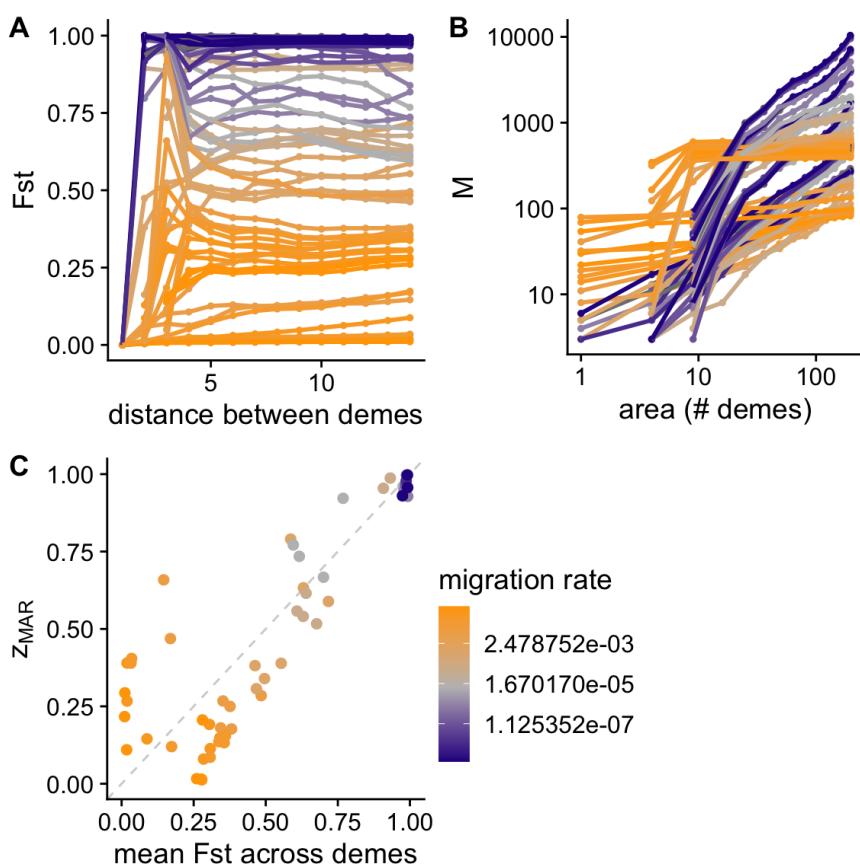
645

II.3.7 Connection of z_{MAR} with the isolation-by-distance pattern

646

647 Ultimately, z_{MAR} is a complex integrator of evolutionary forces acting in space (mutation, 648 migration, drift, selection) and captures how structured the distribution of a species' 649 mutations is. Although the isolation-by-distance pattern conceptually resembles z_{MAR} , we have 650 found no obvious analytical expression that relates both. Note that F_{ST} is defined based on 651 heterozygosity or π , instead of the number of segregating sites (i.e., mutations M). For 652 instance, using Hudson's estimator (28) to compute F_{ST} across a set of populations we 653 calculate $F_{ST} = 1 - (\pi_w / \pi_b)$, where π_w is the diversity or heterozygosity within a population 654 and π_b is the same parameter calculated for the meta-population. Plotting F_{ST} of a 655 metapopulation by the distance of the farthest demes shows the typical non-linear trend of 656 isolation-by-distance, which shows that very close populations have similar allele frequencies 657 whereas populations further away drift apart. A challenge of F_{ST} is that it requires pre- 658 defining discrete populations, which is straightforward in stepping-stone simulations but hard 659 in real data. Comparing average F_{ST} of our 14x14 spatial demes and z_{MAR} , we see that the two 660 parameters correlate (Fig. S10C). However, it appears that for low values of F_{ST} , z_{MAR} captures 661 more variation across the simulations (Fig. S10). These patterns were also confirmed in 662 continuous space simulations (not shown). 663

664



672

673 **Fig. S10 | SLiM population genetic simulations in 2D comparing F_{ST} and z_{MAR}**

674 Neutral SLiM simulations with different degrees of migration. (A) Hudson's F_{ST} across populations with different area
 675 subsamples. Following the expectation of the isolation-by-distance pattern, as the distance between the farthest demes in the
 676 subsample increases, F_{ST} becomes larger and saturates at large distances. (B) The mutations-area relationship. (C)
 677 Comparison between F_{ST} and z_{MAR} .

678

679

680 II.4 The loss of mutations (genetic diversity) in space

681

682 The aim is to predict the fraction of genetic diversity loss, x_M , from shrinking of an ecosystem
 683 by an area a . To define all terms, we then have a past area A_{t-1} and a present reduced area
 684 $A_t = A_{t-1} - a$, and a fraction of area extinct $x = a/A_{t-1}$

685

686 We first think of the loss of genetic diversity x_M through the basic process of losing
 687 individuals. From the population genetics's coalescent theory derivation of the number of
 688 mutations or segregating sites from individuals we got the approximation $M \sim \log(N)$.
 689 Assuming the loss of area is simply the loss of individuals ($A = N$), we can derive the fraction
 690 of genetic diversity loss as:

691

$$692 x_M = 1 - \frac{M_t}{M_{t-1}} = 1 - \frac{\log(N_t)}{\log(N_{t-1})} = 1 - \frac{\log(N_{t-1}(1-x))}{\log(N_{t-1})} = 1 - \frac{\log(N_{t-1}) + \log(1-x)}{\log(N_{t-1})}$$

$$693 = -\frac{\log(1-x)}{\log(N_{t-1})}$$

694

695 The loss of mutations is then in the scale of: $\log(1-x)$; which is very slow, as we
 696 expected from having derived the trend that under panmixia $z_{MAR} \approx 0$. A substantial loss of
 697 genetic diversity in this case only happens when population extinction is almost complete.

698
699
700
701
702
703

Species do not typically behave perfectly panmictic given different z_{MAR} values. Under population structure, we can use our relationship to project the number of mutations (genetic diversity) lost as the geographic distribution due to habitat loss or climate change following equation:

$$704 \quad x_M = 1 - \frac{M_t}{M_{t-1}} = 1 - \frac{MAR(A_t)}{MAR(A_{t-1})} = 1 - \frac{A_t^z}{A_{t-1}^z} = 1 - \left(\frac{A_t}{A_{t-1}} \right)^z = 1 - (1-x)^z.$$

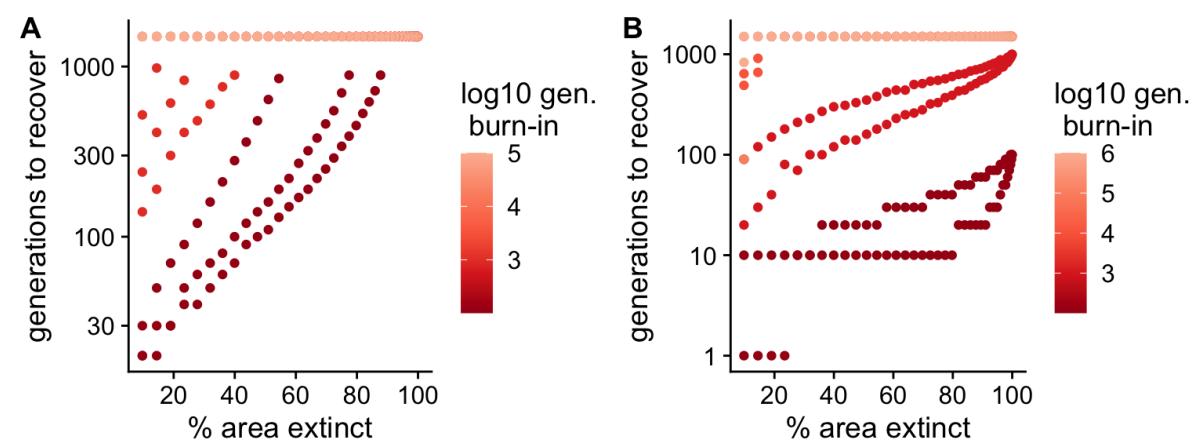
705
706
707
708

In the most extreme scenario of $z_{MAR} \approx 1$, the fraction loss of geographic area directly translates to the same fraction loss of genetic diversity.

709 Reality should be in between the panmictic and fully-migration-limited cases. With
710 combinations of environmental selection, non-equilibrium demography, and long-range
711 dispersal, we may get intermediate z_{MAR} values, and it will be empirical estimates that can
712 inform us how much may be lost (Section III).

713
714
715

II.5 Recovery of genetic diversity after a bottleneck or local extinction



717 **Fig. S11 | 2D stepping-stone msprime simulations with extinction and recovery**

718 (A) Recovery of genetic diversity (number mutations) after loss of a fraction of the population. (B) Recovery of genetic
719 diversity after instantaneous loss of a fraction of the population and consecutive repopulation.

720 *Simulations with number of generations until recovery that are exceedingly large are assigned a value of 1,500, as none
721 are realistic for current conservation timelines.

722
723
724
725
726
727
728
729
730
731
732
733
734

The intuition that rapid recovery of genetic diversity may be possible is likely flawed. While genetic recovery may be faster than speciation rates, which are on the order of millions of years, the time for a set of populations that went through a simulation burn-in of 1,000 generations (not yet in diversity equilibrium), and that suffer an instantaneous 5% reduction of area and an instantaneous recovery (e.g., through reforestation) would range from 20-90 generations. This number of generations for long-lived species would translate into centuries or millennia of recovery without further impacts. About 49% of simulations – including every simulation that reached equilibrium (burn-in generations $>10,000$) – have a recovery time of more than a thousand generations (Fig. S11).

735 SUPPLEMENTAL RESULTS

736

737 III. The mutations-area relationship with the 1001 *Arabidopsis* Genomes

738

739 We begin testing the idea of a general mutations-area relationship using the extensive
740 sampling of the model plant species *Arabidopsis thaliana* and the 1001 *Arabidopsis* Genomes
741 Project (29). This section will serve as a case study to explore different approaches and biases
742 when building MAR to then apply the learned lessons across species (section IV).

743

744

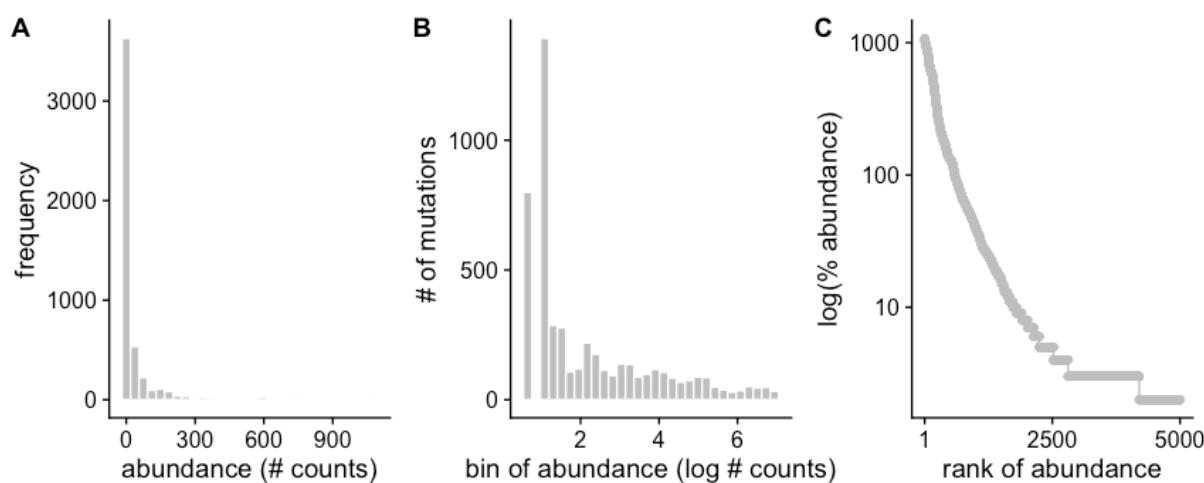
745 III.1 The Site Frequency Spectrum of the 1001 *Arabidopsis* Genomes

746

747 We began analyzing the frequency distribution of 11,769,920 biallelic genetic variants (i.e.,
748 mutations), which is typically called the Site Frequency Spectrum (SFS) in population
749 genetics.

750

751



752

753 Fig. S12 | Mutation abundance study in *A. thaliana*

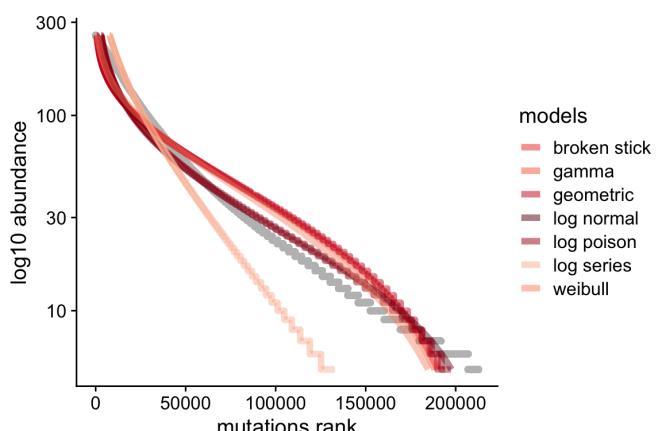
754 (A) Site Frequency Spectrum (SFS). (B) Preston plot of mutation abundances. (C) Whittaker plot of mutation rank
755 abundances.

756

757 To showcase the similarities to the Species Abundance Distributions (SAD), we use
758 the Whittaker plot of mutation rank abundance (Fig. S12) that suggests a log-normal of S-
759 shape may be the best fitting model (Table S3). For a review listing many popular models,
760 see (30), and for implementation details of 13 SAD models see the thorough manual of R
761 package SADS (31). As we shall see later, the log-normal distribution seems to be the best fit
762 across species.

763

764



765

766 **Fig. S13 | Fit of mutation abundance study in *A. thaliana* with different SAD models**

767 Representative models from Table S3 are plotted along with the observed frequency of 11,769,920 mutations.

768

769 Although model AIC captures best the fit of a curve accounting for the difference in
770 parameter complexity of each model and the statistical distributions behind, we often are
771 interested in the variance explained. We then calculated a proxy of predictive accuracy using
772 a pseudo- R^2 approach of the difference between the model fit and the observed data as:

773 $R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$. For *A. thaliana*, we used 10,000 SNPs sampled at random to an accuracy of
774 over $R^2 > 0.999$ for both the top log-Normal model and the bottom log-Series model,
775 indicating that all “commonness of rarity” models must have a pretty good fit of mutation
776 frequency data.

777

778 **Table S3 | AIC values for model fit of common species distribution curves.**

779 For each SAD model, the degrees of freedom and the delta AIC compared to the top model are reported.

780

Model	dAIC	df
log-Normal	0	2
Poisson	7204.37509	2
Geometric	44267.5475	1
Weibull	45872.3678	2
Gamma	48805.6065	2
Broken Stick	49076.4368	0
UNTB (MTZSM)	168434.181	1
log-Series	168434.726	1

781

782

783 The typical SFS from population genetics is of course not implemented in current packages for Species
784 Abundance Distributions like R sads. For comparison, in the main text we also calculate the log
785 likelihood and AIC of this following the standard population genetics likelihood:

786

$$787 \log L = \sum_i \log\left(\frac{1}{Nq_i}\right) - \log(H_n(N-1))$$

788

789 where N represents the number of individuals in a sample, and q_i is the minor allele frequency of a
790 SNP in the sample, in the main text calculated for $i=1\dots 10000$ random SNPs (see main text). As
791 before, H_n is the harmonic number function.

792

793

794

795 III.2 Building the Mutations-Area Relationship

796

797 In the following, we explain how the area was estimated that was used to compute z_{MAR} on
798 real world data. In short, we used a grid on the world map, with samples placed on the map
799 based on their geo-coordinates of origin (Fig. 1). We first create square spatial subsamples of
800 the *Arabidopsis thaliana* geographic distribution (Fig. 1, Fig. S15) and quantify diversity M
801 as the total segregating sites. Excluding zeros, these two variables are fed to the sars_power
802 function from the R SARS package (32).

803

804 Although the power law mutations-area relationship was already theoretically
805 motivated (II.3), here we also fit different types of functions typically applied to the Species-
806 Area Relationship. Doing this, we reach the conclusion that multiple models perform very
807 similarly, and the classic power law is among the top models, see Table S4. Although small
808 marginal fitting accuracy could be achieved with other models, for mathematical convenience
809 and historical continuity, we use the power law for later sections and the study of MAR
810 across species (Sections IV and V).

811

812

813 **Table S4 | Different SAR curves fit to mutations.**

814 We fit 20 different functions and calculated the variance explained (R2), Pearson's r, and Spearman's rho.

815

Model	R2	r	rho
Asymptotic regression	0.21825683	0.46717965	0.53510077
Beta-P cumulative	0.22012799	0.46917799	0.53374757
Chapman Richards	0	NA	NA
Cumulative Weibull 3 par.	0.21929646	0.468291	0.53374757
Cumulative Weibull 4 par.	0.21930145	0.46829633	0.53374757
Extended Power model 1	0.21833611	0.46726449	0.53026812
Extended Power model 2	0.21682584	0.46564561	0.53462775
Gompertz	0.16393078	0.40488366	0.45964364
Heleg(Logistic)	0.21929721	0.4682918	0.53531975
Kobayashi	0.222228406	0.47147011	0.53526975
Linear model	0.19579007	0.44248171	0.53510077
Logarithmic	0.20280401	0.45033767	0.53430311
Logistic(Standard)	0.22536996	0.47473146	0.53549765
Monod	0.22500999	0.47435217	0.53579276
Negative exponential	0.22801633	0.47751055	0.53447179
Persistence function 1	0.21929612	0.46829063	0.53501182
Persistence function 2	0.21760028	0.46647645	0.53409266
Power	0.21929556	0.46829004	0.53543785
PowerR	0.21753225	0.46640353	0.53493321
Rational function	0.22072491	0.46981369	0.53451874

816

817

818

819 Because in the species literature it is recommended to only quantify richness of
820 endemic species (33), we also count segregating sites that are private to the area subsample,
821 creating the equivalent endemic-mutations-area relationship (EMAR) (33). The MAR slope
822 and 95% Confidence Interval was $z = 0.324$ (0.238 - 0.41) (Table S5, Fig. S14 A), while the
823 EMAR was $z = 1.241$ (1.208 - 1.274) (Table S6, Fig. S14 B). Interestingly, the endemics-area
824 relationship of $z \approx 1$ resembles that of endemic species, whereas the total mutation
825 relationship with area is above that of species relationships, which typically follows the
826 canonical $z \approx 0.2 - 0.4$.

827 We must note that EMAR, the genetic analogy of the Endemic-(species)-Area
828 Relationship (EAR) may not be that meaningful when analyzing genomic data (we did not
829 find a way to theoretically motivate it in section II), and later we see it overestimates loss in
830 our simulations (Fig. S18)
831

832 **Table S5 | The mutations-area relationship (MAR).**

833 Fitted values in a log-log power function between area sampled and mutations discovered.

	Estimate	Std. Error	t value	P	2.5%	97.5%	nls.Est.	nls.2.5%	nls.97.5%
c	494.565432	135.6314588	3.646392	0.0003138	223.3025141	765.8283493	494.5531270	278.1107276	822.829918
z	0.323727	0.0430277	7.523681	0.0000000	0.2376715	0.4097824	0.3237367	0.2430303	0.413162

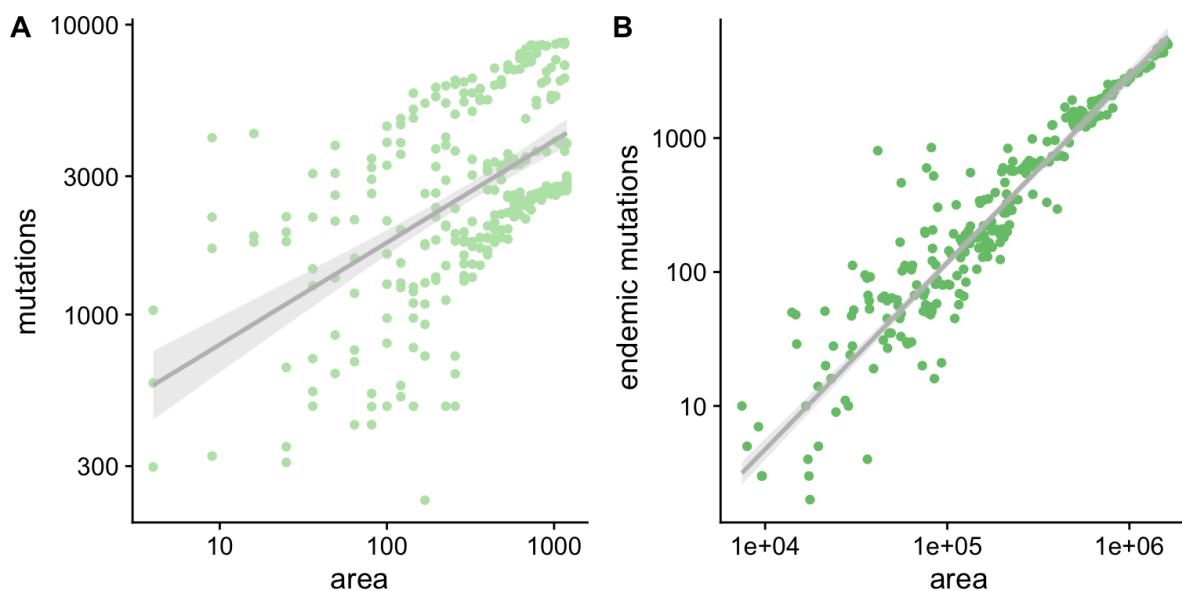
834
835

836 **Table S6 | The endemic-mutations-area relationship (EMAR).**

837 Fitted values in a log-log power function between area sampled and endemic mutations discovered.

	Estimate	Std. Error	t value	P	2.5%	97.5%	nls.Est.	nls.2.5%	nls.97.5%
c	0.0001001	0.0000231	4.337758	1.98e-05	0.0000539	0.0001463	0.0001001	0.0000635	0.0001555
z	1.2411831	0.0165268	75.101442	0.00e+00	1.2081296	1.2742366	1.2412125	1.2096087	1.2737927

838
839
840



841

842 **Fig. S14 | The mutations-area and endemic-mutations-area relationships in *A. thaliana*.**

843 Dividing *A. thaliana* native geographic distribution into a 1 degree lat/long grid, square areas with 1 degree side-length to
844 36 degrees side-length were randomly placed (n=100 for each size) across the distribution, and genetic diversity metrics
845 were computed to produce the (A) Mutations-Area Relationship and (B) Endemic-Mutations Area relationship.

846

847

848 **III.3 Testing for potential numerical artefacts**

849

850 We wondered whether MAR estimates may be affected by some numerical artefacts in our
851 software pipeline (available at <https://github.com/moiexpositoalonsolab/mar>). For instance,
852 real world data may have uneven sampling in space, the spatial resolution of georeferenced
853 samples may vary, projection of samples into gridded maps may have limited resolution,
854 software pipelines may produce biased estimates, etc. To test this, we conducted several
855 experiments:
856

857 **Lower bound of the method for z_{MAR} .** Our first experiment when building the MAR
858 aimed to make sure that spatial sampling, or some unknown bias in genome sequencing, or
859 the number of samples used, are not creating artificially large z_{MAR} . We then simulated a mock
860 dataset of *A. thaliana* with the same number of mutations, samples, and using the original
861 geographic locations. The number of SNPs were also sampled in a way that we created a
862 canonical 1/q SFS for the whole species. Under no biases, we then expect the MAR to follow
863 the theoretical derivation under panmixia with a $z \sim 0$. This exercise confirmed we get a value
864 approaching zero: $z = 0.033$, (-0.095 - 0.162).
865

866 **Table S7 | MAR built with different area calculations and grid sizes**

Grid resolution (deg.)	z_{MAR} [CI95%] (cell area)	z_{MAR} [CI95%] (total area)
A=N	0.431 (0.423 - 0.439)	NA
0.1	0.435 (0.424 - 0.446)	0.367 (0.281 - 0.454)
0.25	0.454 (0.449 - 0.459)	0.422 (0.376 - 0.467)
0.5	0.488 (0.465 - 0.511)	0.352 (0.152 - 0.551)
1	0.543 (0.529 - 0.558)	0.389 (0.295 - 0.483)
2.5	0.644 (0.6 - 0.688)	0.388 (0.251 - 0.526)
5	0.617 (0.205 - 1.029)	0.403 (-0.204 - 1.011)

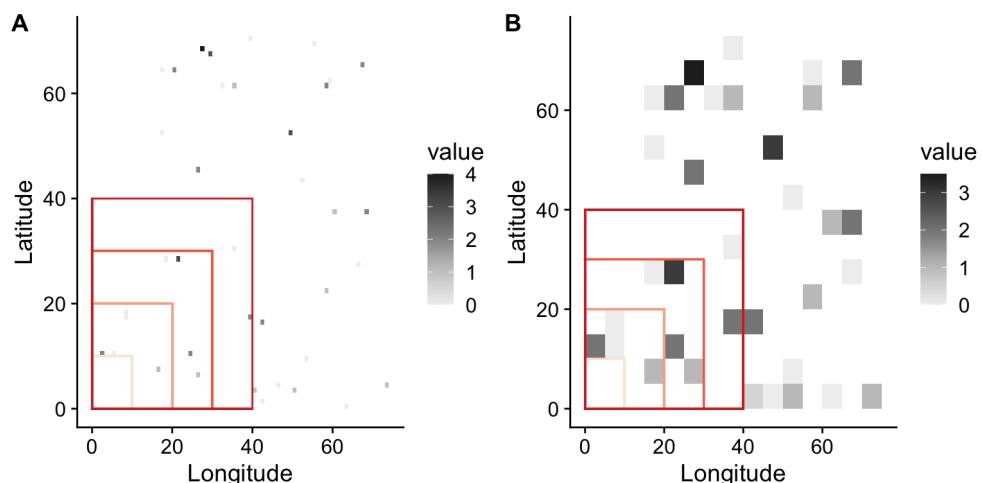
868
869
870 **Grid sizes, area calculations, and non-random spatial sampling.** In order to
871 streamline geospatial operations, we implemented the MAR relationship calculations in this
872 project using R raster objects (34). This required projecting the collected samples of a species
873 and the observations of any given mutation into a world map (i.e., each mutation's geographic
874 distribution). Necessarily, in order to be able to assign areas to sets of samples or mutations
875 on the map, the projection requires the choice of a grid size. The larger the grid size (e.g.,
876 lower spatial resolution), the faster the spatial operations can be performed. Further, for larger
877 grid sizes, we expect the slope of MAR to be more influenced by larger-scale patterns, while
878 for smaller grid sizes, the MAR will be influenced by smaller-scale patterns. To test this, we
879 repeated the subsampling of *A. thaliana* distribution with grid sizes ranging 0.1 degrees
880 latitude/longitude (roughly 10km side-length in temperate regions) to 10 degrees (roughly
881 1,000 km side-length). The estimates were roughly consistent between 0.4-0.6, but increases
882 in value at larger grid sizes (row in Table S7 for large grid size values), a scale-dependent
883 pattern that resembles results of SAR of species in ecosystems fitted at different scales (10).
884
885

886 Because we often have sparse samples of individuals in space, we devised two
887 strategies to calculate areas during the subsampling of MAR (see cartoon in Fig. S15): (A)
888 the total square area of the minimum and maximum latitude/longitude values of all the
889 samples analyzed. That is, simply the area of the red box in the figure. (B) the sum of areas of
890 grid cells that contain at least one sample. That is, the sum of the grey squares within the red
891 box in the figure. In addition, we also calculated the MAR relationship assuming the total
892 area is equal to the number of individuals ($A=N$) (which should be theoretically equivalent to
893 a grid of very high resolution where we end up with a maximum of one individual sampled at
894 any grid cell).
895

896 Table S7 values suggest there is a dependency of z_{MAR} with the grid size when areas
897 are calculated as the sum of grid cells with at least one sample. Our intuition for this pattern
898 is that lower resolution grids (e.g., 5 degrees side) lead to some grid cells having many
899 samples, which would increase the number of mutations discovered when discovering the

900 area. On the other hand, the calculation of z_{MAR} using the total area does not seem to affect the
901 z_{MAR} estimate; however, because large areas often do not have samples (limiting the potential
902 to find new mutations), it creates a higher variance in the estimate of z_{MAR} (see confidence
903 intervals in Table S7 and Fig. S16). Here, we favored consistency of z at the expense of
904 broader, more conservative confidence intervals. All the estimates reported below and in the
905 main text therefore use the total area approach.

906
907
908

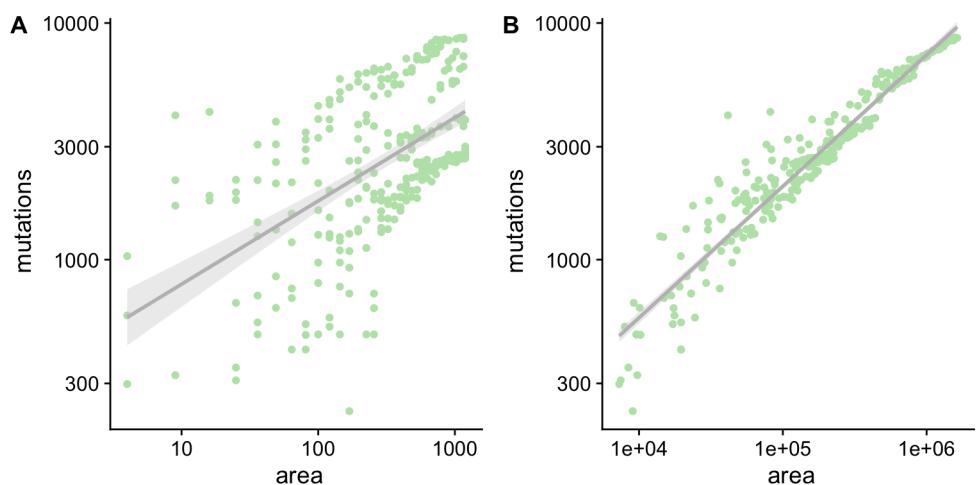


909

Fig. S15 | Cartoon of raster sampling to build the MAR

Map of mock samples of a species projected into a raster. Grey scale indicates the number of samples per grid cell. Red boxes exemplify the process of spatial subsampling of increasing area to build the MAR relationship. Two example grid sizes were created for illustrative purposes: (A) Small grid size or high spatial resolution. (B) Large grid size or low spatial resolution.

910
911
912
913
914
915
916



917

Fig. S16 | MAR comparison with different area calculations.

(A) Using total area, (B) using grid cell sum with at least one sample. For 1 degree latitude/longitude grid cell.

918
919
920

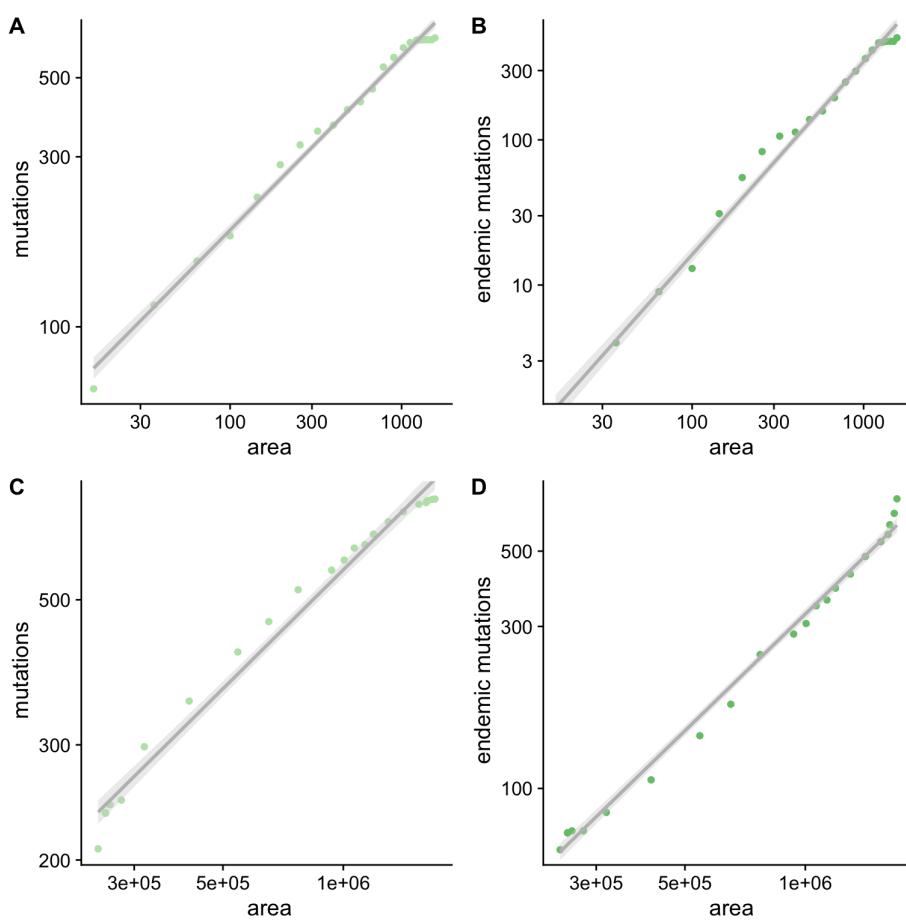
Geographic subsampling strategy (inwards, outwards, random). It has been indicated that the way the Species-Area Relationship (SAR) and Endemics-Area Relationship (EAR) are created may create differences in the scaling parameter z . The plots and estimates above were produced by randomly placing boxes of different size or area across the distribution of the species. Often, however, either discovery of species or extinction happen

926 in certain patterns. For instance, we often imagine sampling an ecosystem concentrically
927 outwards from a focal point, whereas we may think of the extinction process of species area
928 reductions being concentrically inwards (33). Because these patterns seem of importance, we
929 also calculated the MAR and EMAR outwards from the latitude and longitude median of all
930 the samples in the map, moving outwardly until the map is filled (Fig. S17, Table S8).
931 Likewise, the inward pattern is conducted in an inverse manner.

932

933

934



935

936

Fig. S17 | MAR and EMAR in *Arabidopsis thaliana* using outward and inward sampling.

Dividing *A. thaliana* native distribution in 1 degree lat/long grid, a square area of 1 degree was placed at the median of the sampling range and was expanded iteratively by 1 degree lat/long until all the area of the distribution was covered. (A-B) MAR and EMAR using a typical outward sampling. (C-D) MAR and EMAR using an inward sampling. The latter may not be a common process of sample collection, but it is common for extinction progress.

941

942

Table S8 | Outward and inward MAR and EMAR

The MAR and EMAR relationship computed with inward or outward nested subsampling, calculating area only as those cells with samples.

943

944

945

Relationship	z
MAR outwards	0.444 (0.412 - 0.476)
EMAR outwards	1.086 (0.982 - 1.189)
MAR inwards	0.561 (0.524 - 0.597)
EMAR inwards	1.295 (1.192 - 1.399)

946

947

948 **Incomplete sampling of the species.** To check whether the relationship holds with
949 few individuals of a species or limited geographic distributions, we compared the species-
950 wide MAR with that of subset populations. Downsampling the native distribution of *A.*
951 *thaliana* to a region within North-East Spain (-2.00–4.25 degrees East, 36.52–42.97 degrees
952 North), or to a region within Germany (2.69–13.73 degrees East, 50.0–52.0 degrees North),
953 and using only 1,000 SNPs, we recovered $z_{MAR} = 0.423(0.233-0.614)$ for Spain and
954 0.525(0.242-0.807) for Germany, which were close to the estimate based on the whole
955 distribution (Table 1). This result is reassuring in that if migratory patterns are relatively
956 homogeneous, one may be able to estimate this parameter from a subset of the species
957 distribution. For heterogeneous population structure cases, we expect incomplete sampling to
958 produce unreliable estimates.
959

960 **Number of genome-wide SNPs used.** To check whether different numbers of SNPs
961 used for the analyses would lead to different z_{MAR} , we conducted analyses with random
962 subsets consisting of 100, 1,000, and 10,000 SNPs, replicated 3 times. Estimates had a
963 coefficient of variation of 4.7%, which is way below the standard error of typical estimates
964 (Table 1).
965

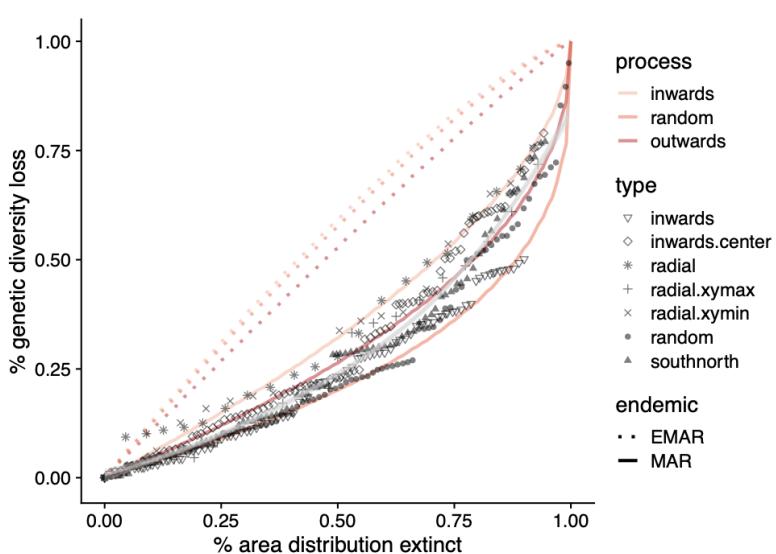
966 **Locally-adaptive variants.** We then aimed to understand the effect of utilizing SNPs
967 that appear to be related to adaptation. To study this, we utilized an outdoor climate-
968 manipulated experiment that recorded fitness data (survivorship and reproduction output of
969 seeds) for 515 *Arabidopsis thaliana* ecotypes part of the 1001 Genomes set in 8 environments
970 (Exposito-Alonso, 2019). We devised two sets of alleles: 10,000 that were negatively
971 correlated with fitness in a Genome-Wide Association across 8 different environments, and
972 10,000 alleles that were associated positively with fitness in one environment but negatively
973 in another (antagonistic pleiotropic). The MAR relationship was computed as before and
974 compared to the original random (putatively neutral) set of alleles from the previous sections
975 (Table S9). Although we see a trend that locally-adaptive alleles have a slightly higher z ,
976 estimates overlap. The effects seen here of having smaller z for adaptive alleles than neutral
977 variation could, however, be due to top GWA SNPs often being ascertained to higher
978 frequency than background SNPs.
979
980

981 **Table S9 | MAR for putatively neutral, deleterious, and locally adaptive alleles in *Arabidopsis thaliana***
982

SNP set	z
neutral	0.324 (0.238 - 0.41)
globally deleterious	0.209 (0.13 - 0.288)
locally adaptive	0.291 (0.217 - 0.365)
globally positive	0.234 (0.137 - 0.332)

983
984
985 **III.4 Local population extinction in *Arabidopsis***
986
987 Using the MAR framework, we can make projections of loss of mutations (or its inverse, the
988 remaining genetic diversity. By doing this, the known intuition is that with $z > 1$ (as from
989 EMAR) the decrease of diversity is much faster than the decrease of habitat, but with $z < 1$
990 (as from MAR), there is a (desirable) slower dynamics of genetic loss. In the latter, despite
991 habitats disappearing, reservoirs of mutations distributed across different locations enable
992 conservation of certain variation. To study which one is more likely and to observe the

993 stochastic nature of genetic diversity loss, we simulated in silico population extinctions of
994 map cells from the *Arabidopsis* map (Fig. 1) and directly estimated from the genome matrix
995 of remaining individuals the remaining genetic diversity. These simulations were
996 implemented to capture different hypothesised patterns of extinction (see main text). All,
997 however, agree with the more hopeful estimate of $z_{MAR} \approx 0.3$.
998
999
1000



1001

Fig. S18 | Loss of mutations with habitat loss in *A. thaliana*.

Predictions based on MAR and EMAR functions and in silico extinction stochastic simulations in *A. thaliana*.

1004

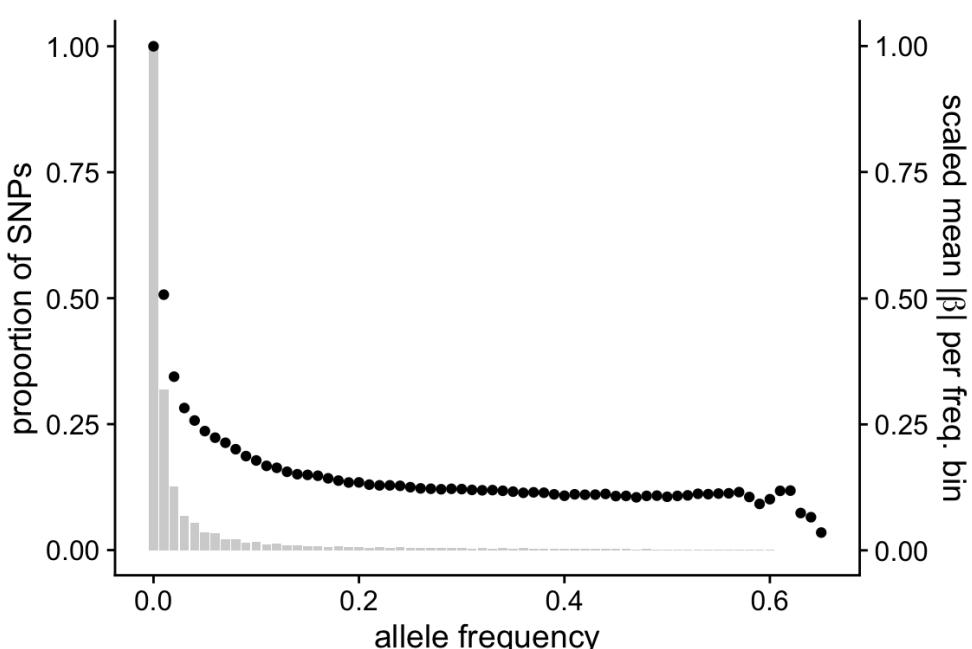
1005 To study the fit of the genetic loss predictions based on MAR relationships and the
1006 results from computer simulations, we calculated a pseudo- R^2 based on the squared
1007 differences between the predicted line and the “observed” genetic loss as: $R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$.
1008 This results in a high fit $R^2=0.872$ of the MAR, built from random samples of distribution
1009 areas, while the EMAR had a poor fit due to overestimation of genetic loss: $R^2=-0.710$
1010 (negative values indicate predictions are worse than the mean of the data).
1011
1012

1013 III.5 Potential impacts of genetic loss in adaptability

1014

1015 Although likely imperfect, Genome-Wide Associations could help to understand the
1016 relevance of mutations in different frequency classes in model organisms such as *Arabidopsis*
1017 *thaliana*. Fig. S19 shows the site frequency spectrum and a metric of the “total accumulated
1018 effect in fitness” of the alleles in every bin. Effect sizes were retrieved from GWA on lifetime
1019 fitness of 515 ecotypes in outdoor experiments (35). The average effect size across 8 fitness
1020 GWA from 8 experimental combinations were used: high/low precipitation, high/low latitude
1021 of outdoor stations, and high/low plant density. This exercise showcases the phenomenon that
1022 low frequency variants often have strong effect sizes, which is expected under a stabilising
1023 selection quantitative model (36). Because low frequency alleles will be the first to be lost
1024 during a bottleneck (as would happen with the rapid extinction of populations of a species),
1025 we may expect to lose variants that are related to fitness and thus potentially lose diversity
1026 that could be advantageous in some environments. Alternatively, deleterious mutations are
1027 also expected to be at low frequency, in which case would also make them more easily lost.

1028
1029



1030

1031 **Fig. S19 | Bias of low frequency mutations and effect size for fitness traits in *A. thaliana*.**
1032 Grey bars represent the site frequency spectrum (scaled for visualisation purposes). The black dots represent the mean
1033 absolute effects of alleles as estimated from GWAs with 515 accessions scored for fitness traits in 8 outdoor experiments.
1034

1035

1036 To further build intuition on the progress of extinction in relation to loss of genetic
1037 diversity that is not neutral, we repeated warm edge extinction simulations with several
1038 subsets of alleles: randomly selected SNPs, SNPs that were associated positively in 2
1039 environments (low precipitation Spain and high precipitation Germany) (labelled globally
1040 positive), and SNPs that were associated positively in one environment and negatively in the
1041 other (labelled antagonistic pleiotropic or putatively locally-adaptive). This (Fig. S20)
1042 supports our intuition that although putatively functional alleles (or alleles tightly linked to
1043 such functional ones) may have slower loss dynamics than neutral variants due to a high
1044 frequency and z_{MAR} , certain population extinction patterns may actually lead to rapid loss of
1045 potentially-adaptive genetic diversity. The complexity of these patterns, together with the
1046 evolutionary feedback created by lowering genetic standing variation that affects fitness,
1047 make the inference of adaptive capacity loss even more difficult than just inferring the loss of
1048 genetic diversity itself.
1049

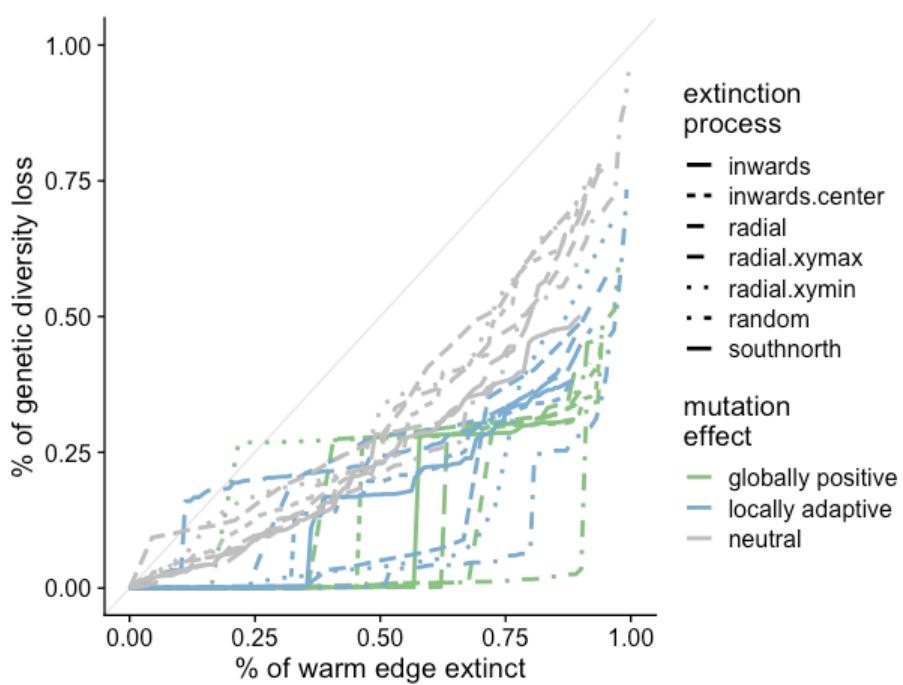


Fig. S20 | Simulations illustrating the potential loss of locally-adaptive mutations in *A. thaliana*.

Simulations of extinction using multiple patterns of population losses with different subsets of alleles ascertained to show positive associations in fitness GWA in two outdoor experiments (green), positive associations in one environment (e.g. low precipitation) but negative in a second environment (e.g. high precipitation) or vice versa (green). These were compared to a random set (grey).

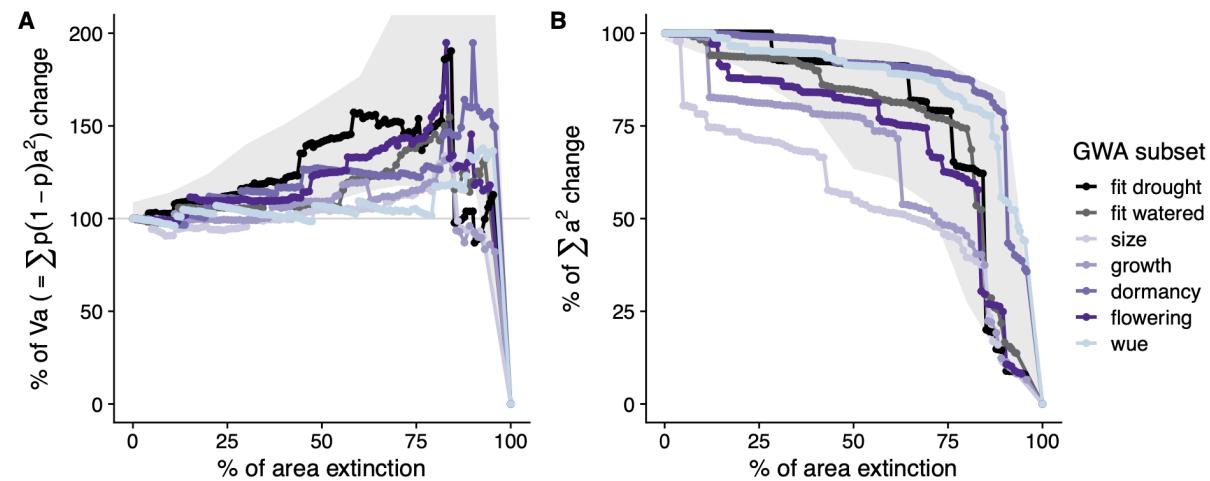


Fig. S21 | Extinction simulations showing proxies of adaptive capacity of *A. thaliana*.

Using estimated allele effect sizes from 10,000 SNPs in the 1% P-value tails of several Genome-Wide Associations, we show (A) Percentage of change of V_a as a proxy of adaptive potential and (B) raw square sum of allele effects to showcase the inflating effect of intermediate frequency alleles. Grey background shape indicates the minimum and maximum boundaries of trajectories created by replicated frequency-matched non-effect sets of SNPs (one per GWA). The trajectories of some effect alleles appear to show faster loss than the non-effect background trajectories.

III.6 Case study of a massive natural bottleneck

A recent colonisation of North America by *Arabidopsis thaliana* can help us understand the recovery of genetic variation. Whole-genome sequencing of 100 specimens of North American *A. thaliana* indicates that it migrated from its native range of Europe to North

1072 America in the 17th century, and began spreading across the continent from a genetically-
1073 homogeneous population (37). Despite ideal conditions to re-gain genetic diversity—a
1074 continental population expansion aided by human travel (38, 39)—only ~8,000 new
1075 mutations were detected through spontaneous accumulation, equivalent to only ~0.067% of
1076 the species-wide native genetic diversity. Because most of these mutations are at very low
1077 frequency, as expected during population expansion, the scaling of genetic diversity with area
1078 is approximately 1 ($z_{MAR} = 1.025$ [CI95%: 0.878 - 1.173]).
1079
1080
1081

1082 IV. The mutations-area relationship in diverse species

1083

1084 Every dataset was retrieved online either from the published article in the form of VCF or
1085 fastq files, or provided by the study authors upon request. All datasets were first transformed
1086 into PLINK files using PLINK v1.9 (40). For computational efficiency, and since we showed
1087 random subsampling does not appear to affect calculations of z_{MAR} (Section III.3), we
1088 conducted all analyses with up to 10,000 randomly selected SNPs for each species sampled
1089 genome-wide, or in the largest chromosome for those species with large genomes. We aim to
1090 use mostly unfiltered SNP datasets to avoid ascertainment biased toward intermediate
1091 frequency SNPs, and therefore we did not apply a MAF filter for any analyses. By default,
1092 PLINK transforms SNP matrices into biallelic (if multiallelic, it takes the two most common
1093 alleles). Although the preservation of structural genetic variation may also be relevant and
1094 may have important consequences in adaptation (41), we do not expect dramatic differences
1095 in their scaling relationship compared to biallelic SNPs, as their SFS are relatively similar
1096 (Structural variants may show a skew to lower frequency, resulting in steeper z_{MAR} . By
1097 excluding those, our analyses may be conservative). In order to properly characterise the
1098 geographic distribution of a mutation using all available geo-tagged individuals, we filtered
1099 for genotyping rate (plink --geno), and the final value is reported per dataset.

1100

1101 Details for dataset processing or homogenization are described below.

1102

- 1103 - The 1001 Arabidopsis Genomes Consortium (29) generated a WGS Illumina
1104 sequencing dataset of *Arabidopsis thaliana* comprising 1,135 individuals and
1105 11,769,920 SNPs. The VCF with the data is available at: <https://1001genomes.org>.
1106 The raw sequencing data is available at
1107 <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA273563>. These included recently
1108 colonised regions such as North America or Japan. Analyses of z_{MAR} were calculated
1109 only for the native range, which comprises most of the species diversity (>99%) and
1110 1001 individuals. For computational efficiency, we conducted analyses using
1111 randomly sampled SNPs from chromosome 1, as we did not observe any difference
1112 when sampling from other chromosomes. A number of MAR approaches were tested
1113 in this species (section III). For homogeneity, the final reported estimate (Table 1)
1114 was conducted following the same procedures as other species with a random sample
1115 of 10,000 SNPs.
- 1116 - Lucek & Willi (42) recently published a dataset of WGS Illumina sequencing 108
1117 *Arabidopsis lyrata* individuals from North America, which the authors directly shared
1118 as a VCF. The raw data is available at
1119 <https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB30473>. We retrieved the
1120 latitude/longitude data from the supplemental material. We applied a genotyping rate
1121 filter ending with a dataset of 0.955431 genotyping rate. 10,000 SNPs were subsetted
1122 at random from the genome-wide data.
- 1123 - Kreiner et al. (43) WGS Illumina sequenced 165 individuals of *Amaranthus*
1124 *tuberculatus*. The raw data is available in the link
1125 <https://www.ebi.ac.uk/ena/browser/view/PRJEB31711>. The authors provided a VCF.
1126 Overall, 155 individuals contained latitude and longitude information and were kept
1127 for the analyses. The genotyping rate was 0.98162 and we subsetted randomly 10,000
1128 SNPs.

1129

1130

1131

1132 - Supple et al. (44) generated a dataset of *Eucalyptus melliodora* of 275 individuals
1133 from 36 broadly distributed populations. The dataset was produced by Illumina
1134 sequence Genotyping-by-Sequencing (GBS) libraries digested with ApeKI as in
1135 Elshire et al. (2011). The raw data is available at
1136 <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA413429/>. The authors provided the
1137 dataset in PLINK format. Genotyping rate was 0.769807 but we did not apply a
1138 further filter to avoid reducing the total number of variants. We conducted analyses
1139 with all 9378 SNPs. The genotyping rate in this dataset is likely not problematic as the
1140 total number of GPS locations is 36, with multiple individuals sampled closely. This
1141 sampling scheme probably allows to characterise an allele's distribution correctly
1142 despite the lower genotyping rate.

1143

1144 - Vallejo-Marin et al. (45) generated a GBS dataset of 521 *Mimulus* plants, with 286
1145 samples being *Mimulus guttatus* from its native distribution. Libraries for
1146 Genotyping-By-Sequencing were prepared with PstI enzyme as described in Twyford
1147 & Friedman (2015) and sequenced using Illumina. The VCF of this dataset is
1148 available at <http://hdl.handle.net/11667/168> and was also directly shared by the
1149 authors. After applying a filtering for missingness, we ended up with a genotyping
1150 rate of 0.904192 and 1,498 SNPs, which were used for the analyses.

1151

1152 - Lovell & MacQueen (46) generated a WGS Illumina sequencing dataset of
1153 Switchgrass, *Panicum virgatum*, of a collection of 732 individuals and 33,905,044
1154 variants. The raw data is available at:
1155 <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA622568>. The authors provided a
1156 VCF file and latitude/longitude tables. 576 individuals were from natural collections.
1157 The dataset contains also other collections such as cultivars, which were not used to
1158 build the MAR. The genotyping rate was 0.976393 and analyses were conducted with
1159 10,000 SNPs drawn from the largest chromosome.

1160

1161 - MacLachlan et al. (47) generated a SNP chip dataset of *Pinus contorta* comprising
1162 929 trees with latitude and longitude information and 32,449 SNPs. Genotyping was
1163 conducted with the AdapTree lodgepole pine Affymetrix Axiom 50,298 SNP array
1164 and data was provided in the supplemental material of the paper along with custom
1165 scripts to parse the data. The database is available at
1166 <https://datadryad.org/stash/dataset/doi:10.5061/dryad.ncjsxkstp>. The genome matrix
1167 was transformed into PLINK. The genotyping rate was 0.959146, and analyses were
1168 conducted with 10,000 randomly drawn SNPs. The fact that this dataset was created
1169 with ascertained SNPs likely generates a frequency bias. In Fig. S22, one can see that
1170 this may be a problem to calculate z_{MAR} , as the mutations~area graph appears
1171 nonlinear and rapidly saturates. This confirms the expectation that SNPs are
1172 ascertained to be common, as they are discovered immediately with very few samples.

1173

1174 - Tuskan et al. (48) WGS Illumina sequenced 882 *Populus trichocarpa* trees. The
1175 dataset includes 28,342,826 SNPs. The data is available under this DOI
1176 <https://doi.ccs.ornl.gov/ui/doi/55> which redirects to a globus data sharing platform.
1177 The authors provided the dataset as a VCF along with latitude/longitude coordinates.
1178 This dataset was downsampled to the first chromosome. The genotyping rate was
1179 0.921191, and 10,000 SNPs were randomly sampled for analyses.

1180

1181 - The Anopheles gambiae 1000 Genomes Consortium (49) (Phase 2) produced Whole-
1182 Genome Illumina sequencing data for 1142 wild-caught mosquitoes of *Anopheles*
1183 *gambiae*. All raw and processed data are available through
1184 <https://www.malariagen.net/data>. We downloaded a VCF and latitude/longitude
1185 coordinate files. The VCF was filtered for genotyping rate ending up at a 0.998895
1186 rate. For efficiency, 10,000 randomly-selected SNPs from the VCF of the largest
1187 chromosome 2L were used for analyses downstream.

1188

1189 - Fuller et al. (50) WGS Illumina sequenced 253 coral individuals of *Acropora*
1190 *millepora* in 12 reefs. The dataset was downloaded as fastq files from the published
1191 online material from <https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA593014>,
1192 and SNPs were called as described in the supplemental material ending with
1193 17,931,448, which were filtered to achieve a genotyping rate of 0.935709 for a total of
1194 2,512 SNPs, which were used in the analyses.

1195

1196 - Ruegg et al. (51) generated a dataset of 219 birds *Empidonax traillii*, for which 199
1197 could be matched with geographic coordinates. SNPs were ascertained from several
1198 publications using RAD seq and Fluidigm 96.96 IFC described and available in their
1199 repository <https://github.com/eriqande/ruegg-et-al-wifl-genoscape>. A total of 349,014
1200 SNPs were parsed using their custom scripts and we transformed them into PLINK
1201 files. A genotyping rate filter was applied ending with a 0.96061 rate and 195,700
1202 SNPs. 10,000 SNPs were selected at random for downstream analyses. Similarly, as
1203 with the *Pinus contorta*, the incorporation of some ascertained SNPs in the dataset
1204 based on Fluidigm technology could lead to quick saturation of the MAR curve (Fig.
1205 S22).

1206

1207 - Bay et al. (52) generated a dataset of 199 *Setophaga petechia* birds using a Restriction
1208 site-associated DNA sequencing (RAD-Seq). The raw data is available at
1209 <https://www.ncbi.nlm.nih.gov/bioproject/421926>. The authors shared a VCF file, with
1210 a genotyping rate of 0.962419 and a total of 104,711 SNPs. 10,000 SNPs were
1211 selected at random for downstream analyses.

1212

1213 - Kingsley et al. (53) produced a dataset of 80 *Peromyscus maniculatus* deermice, for
1214 which 78 could be matched with geographic locations. The SNP dataset was produced
1215 using MY-select capture followed by Illumina sequencing. The VCF and PLINK files
1216 are available via Figshare at <https://doi.org/10.6084/m9.figshare.1541235>. The dataset
1217 included a total of 14,076 variants which were filtered to achieve a genotyping rate of
1218 0.940411 for 2,946 SNPs, which were used in subsequent analyses.

1219

1220 - We identified two published datasets for wolves. Smeds et al. (54) produced a WGS
1221 Illumina sequencing dataset and combined it with pre-existing datasets for a total of
1222 349 local dog breeds and wolves, of which 230 were *Canis lupus* from natural
1223 populations. However, these samples did not have GPS locations assigned. The
1224 second dataset we identified was from Schweizer et al. (55), which contained 107
1225 geo-tagged grey wolves from North America using a capture and resequencing
1226 approach for 1040 genes. The raw data is available at
1227 <https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP065570>, and meta-data along
1228 with a VCF area available at <https://doi.org/10.1111/mec.13467>. This data contained
1229 13,092 SNPs at 0.993061 calling rate, and a better geographic resolution. We report
1230 data for the second dataset.

1231

1232 - The 1000 Genome Consortium (56) created WGS Illumina sequencing for over 2,504
1233 humans and 24 unique geographic locations. We downloaded chromosome 1 from
1234 <http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/1000G2504highcoverage/working/20190425NYGCGATK/> and gathered the
1235 population locations from <https://www.internationalgenome.org/data-portal/population>. To conduct analyses, we subsampled 10,000 SNPs at genotyping
1236 rate 0.991069.

1237

1238

1239 - Palacio-Mejia (57) used WGS for 591 *Panicum hallii* individuals to sequence at low
1240 coverage. The raw data is available at
1241 <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA390994>. The authors shared an
1242 unfiltered VCF of 45,589 SNPs. Because of the low-coverage, stringent filters of
1243 calling rates as used for other species would lead to removing all SNPs, and we settled
1244 on a genotyping rate of 0.825824 for 242 variants, all of which were used for
1245 downstream analyses.

1246

1247

1248 - Royer et al. (58) produced a SNP dataset using RAD-Seq based Genotyping-By-
1249 Sequencing of 290 *Yucca brevifolia* (Joshua Tree) individuals. A total of 10,695 SNPs
1250 with a genotyping rate of 0.897501 were used for the analyses. The data was available
1251 at Dryad <https://datadryad.org/stash/dataset/doi%253A10.5061%252Fdryad.7pj4t>.

1252

1253 - Kapun et al. (59) produced a WGS dataset of pooled *Drosophila melanogaster*,
1254 sequencing ~80 pooled individuals from each of 271 populations as part of the
1255 European "Drosophila Evolution over Space and Time" (DEST) project. A total of
1256 5,019 shared SNPs with a genotyping rate of 0.937697 were used for analyses. The
1257 dataset, both raw and processed, is available through <https://dest.bio>.

1258

1259 - Di Santo et al. (60) studied the highly-threatened species *Pinus torreyana*. They used
1260 Genotyping-by-Sequencing of 242 individuals of the last remaining populations. The dataset
1261 is not yet available through NCBI but the authors kindly shared a VCF directly
1262 with us. From a total set of 166,564 SNPs with a genotyping rate of 0.964632, 10,000
1263 were randomly selected for our analyses.

1264

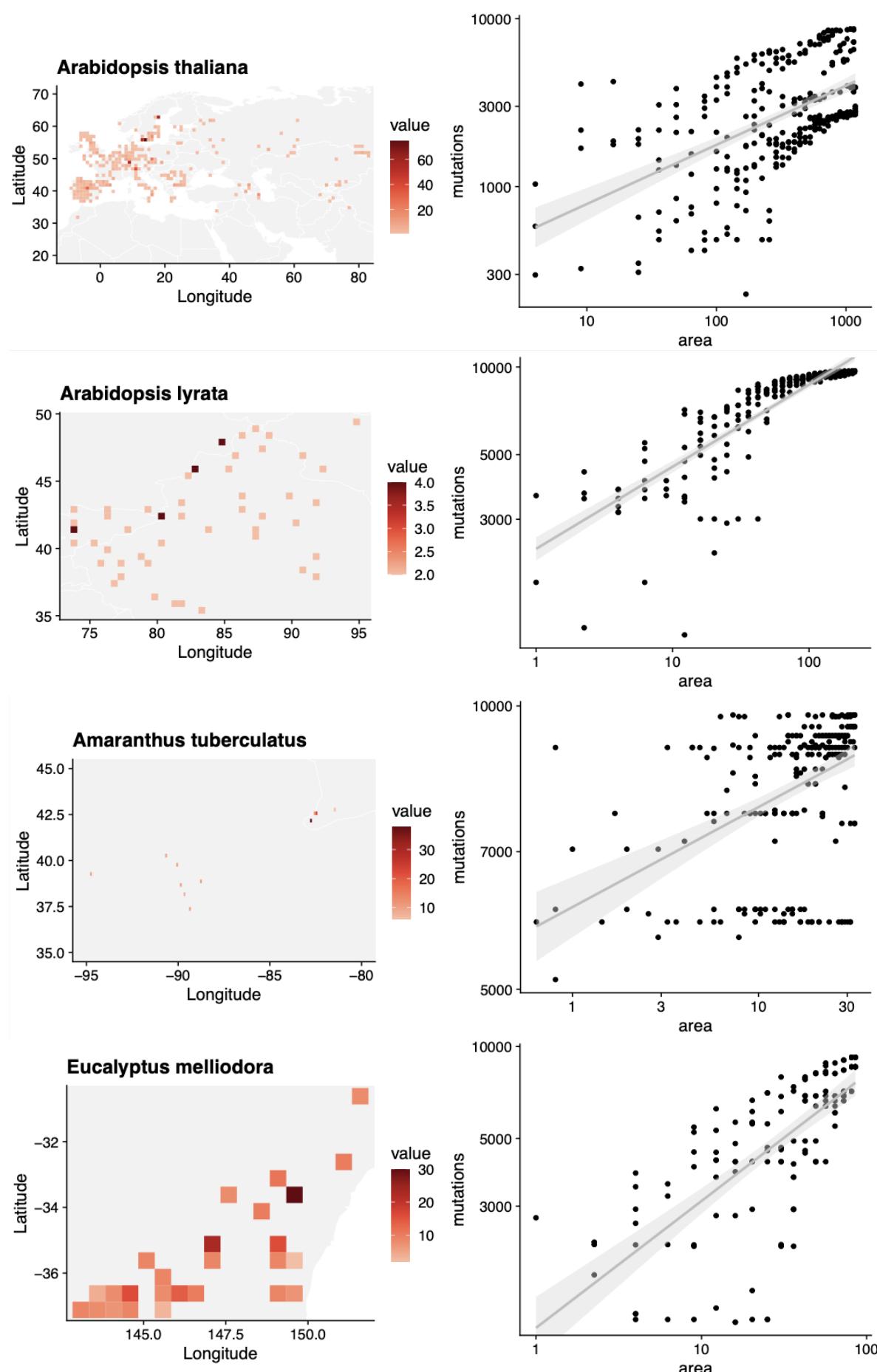
1265 - von Seth et al. (61) studied the highly-threatened species *Dicerorhinus sumatrensis*.
1266 They used Illumina WGS of 16 individuals of the last remaining populations. The raw
1267 data is available at <https://www.ebi.ac.uk/ena/browser/view/PRJEB35511>. The
1268 authors shared a VCF. In total, this comprises a set of 8,870,513 SNPs, with a
1269 genotyping rate of 0.854862, which we did not further filter due to the small number
1270 of individuals. For computational efficiency we selected 10,000 SNPs from the largest
1271 chromosome.

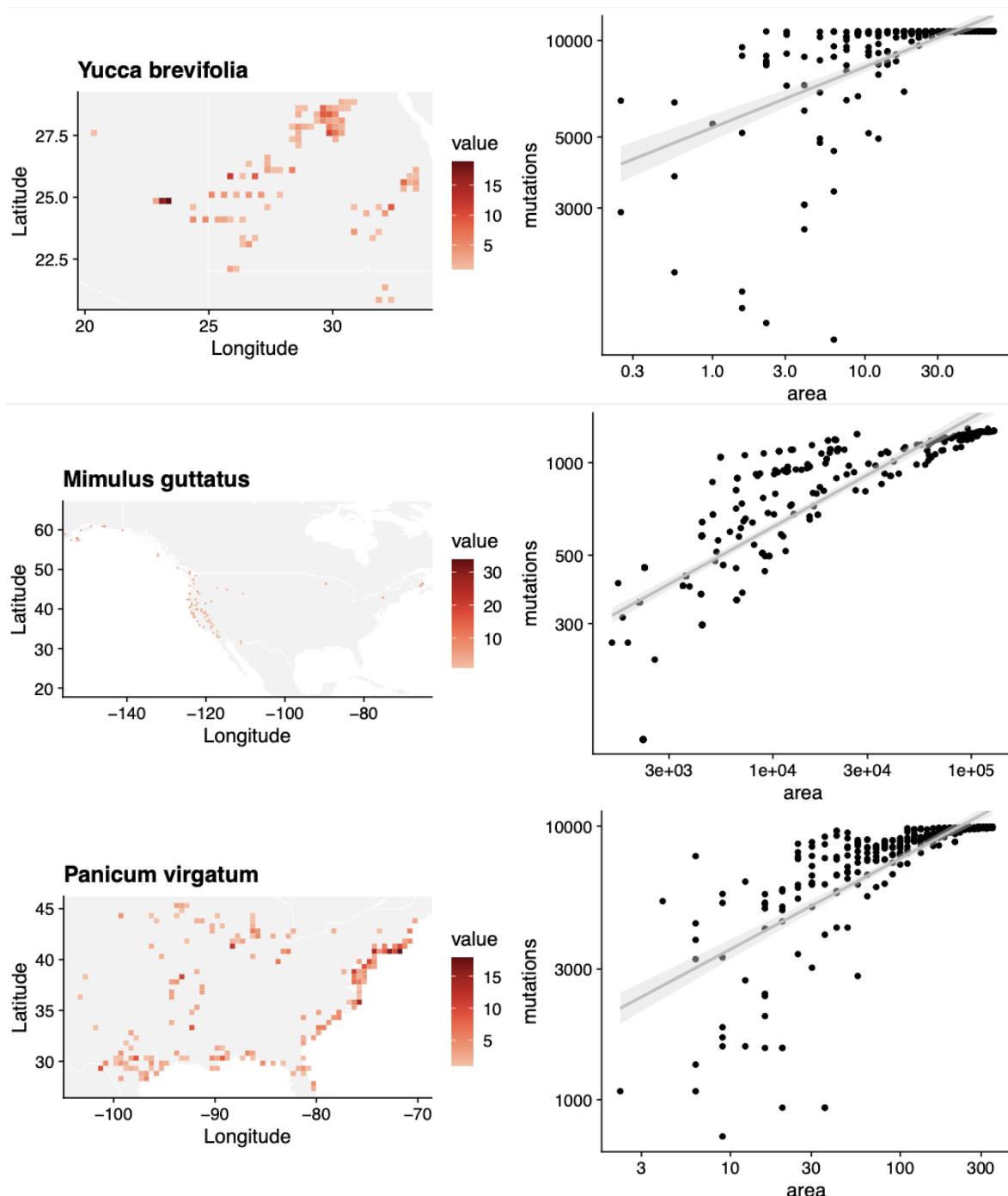
1272

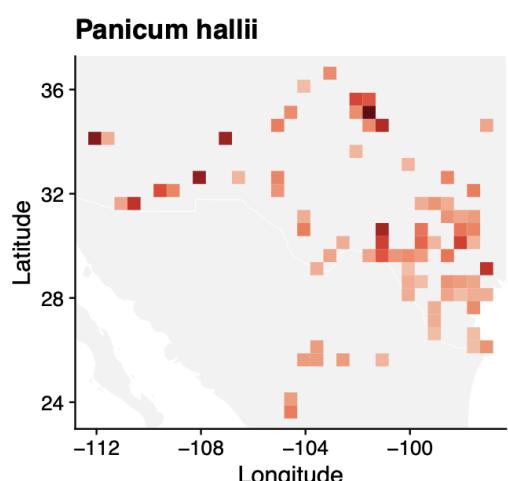
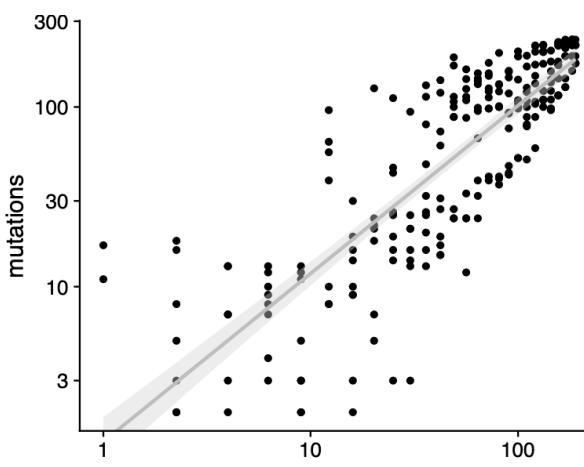
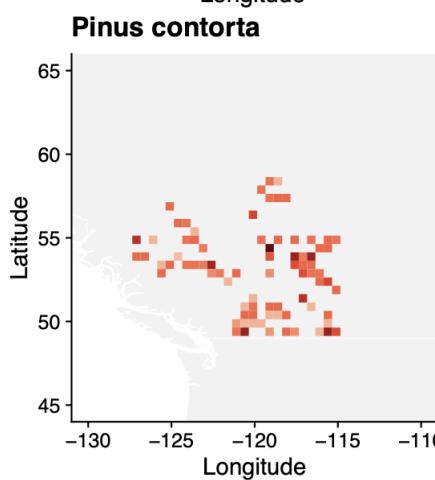
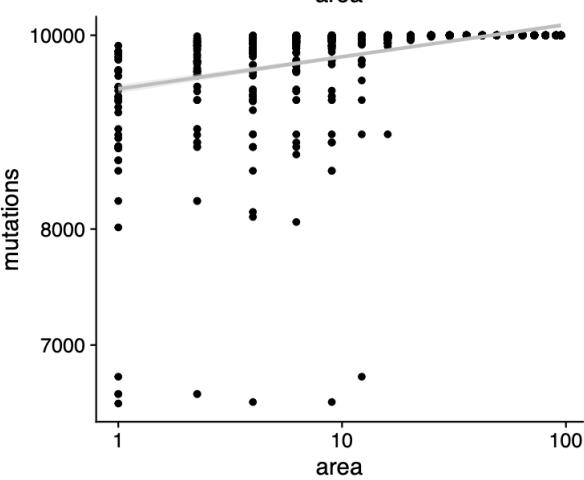
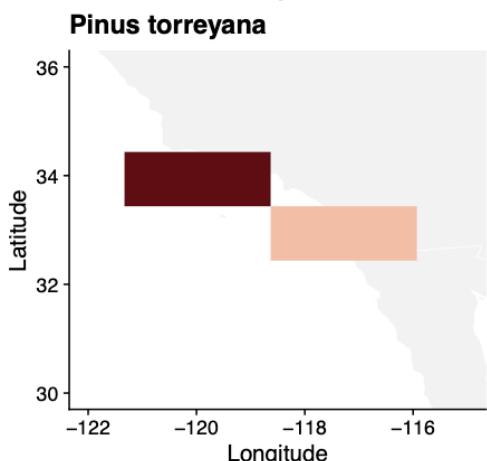
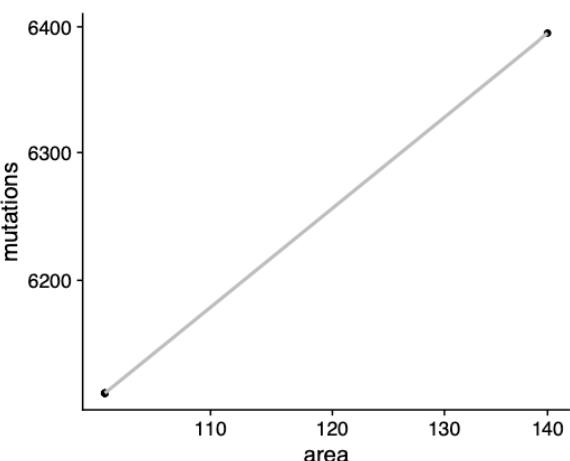
1273 Information and results per species are gathered in Table 1 and its extended version, Table
1274 S10, and the average z_{MAR} across species are provided in Table S11.

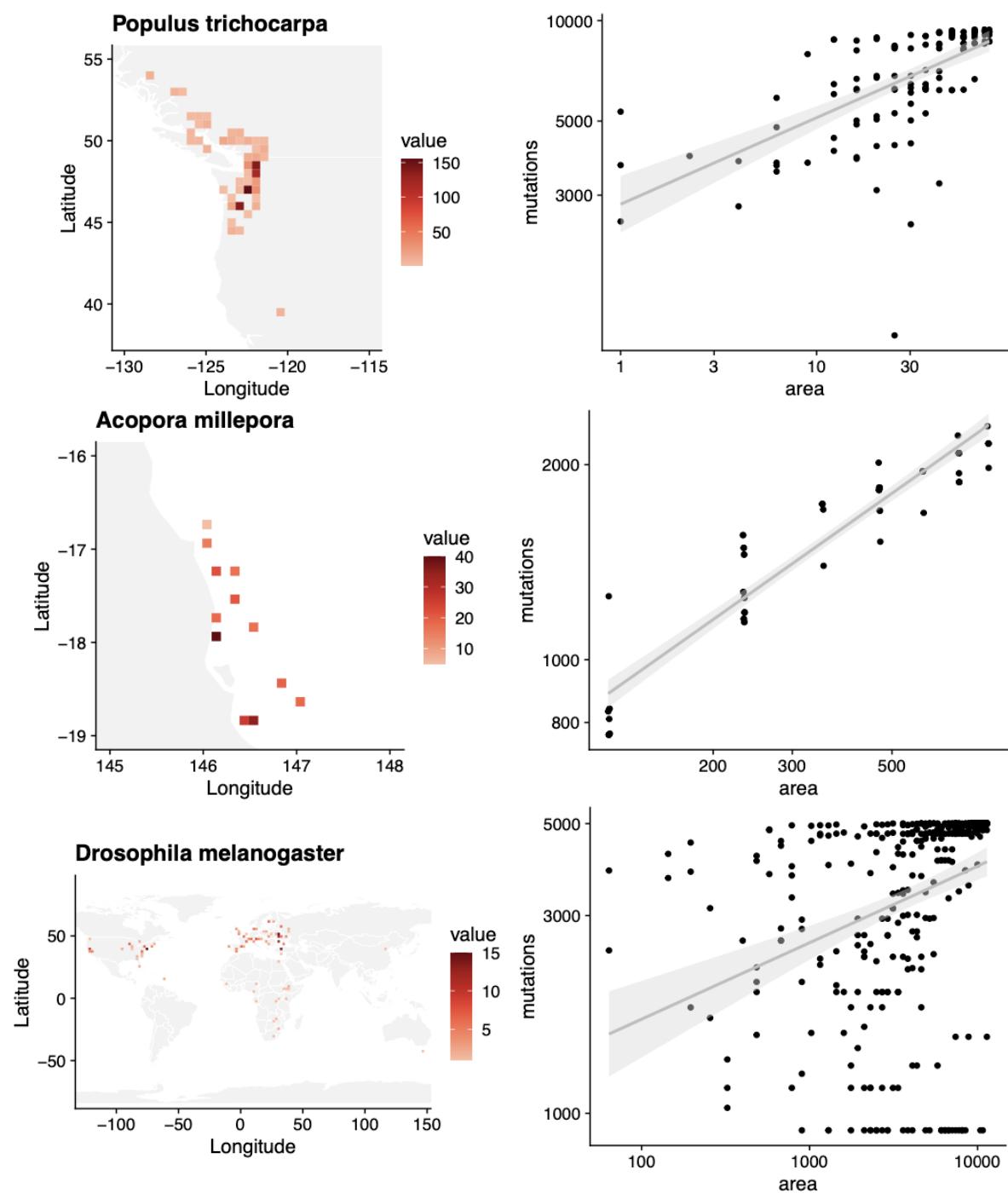
1275

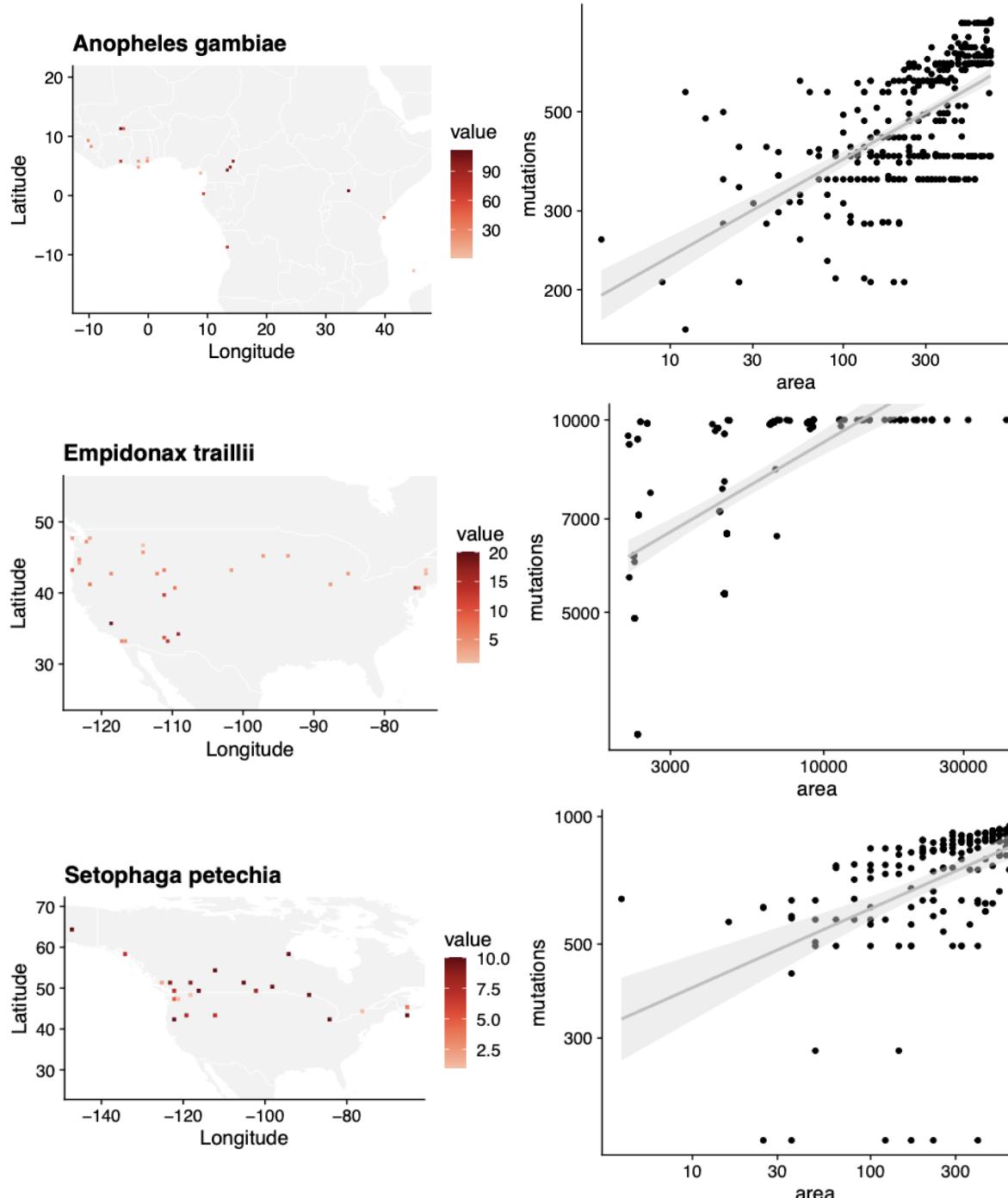
1276

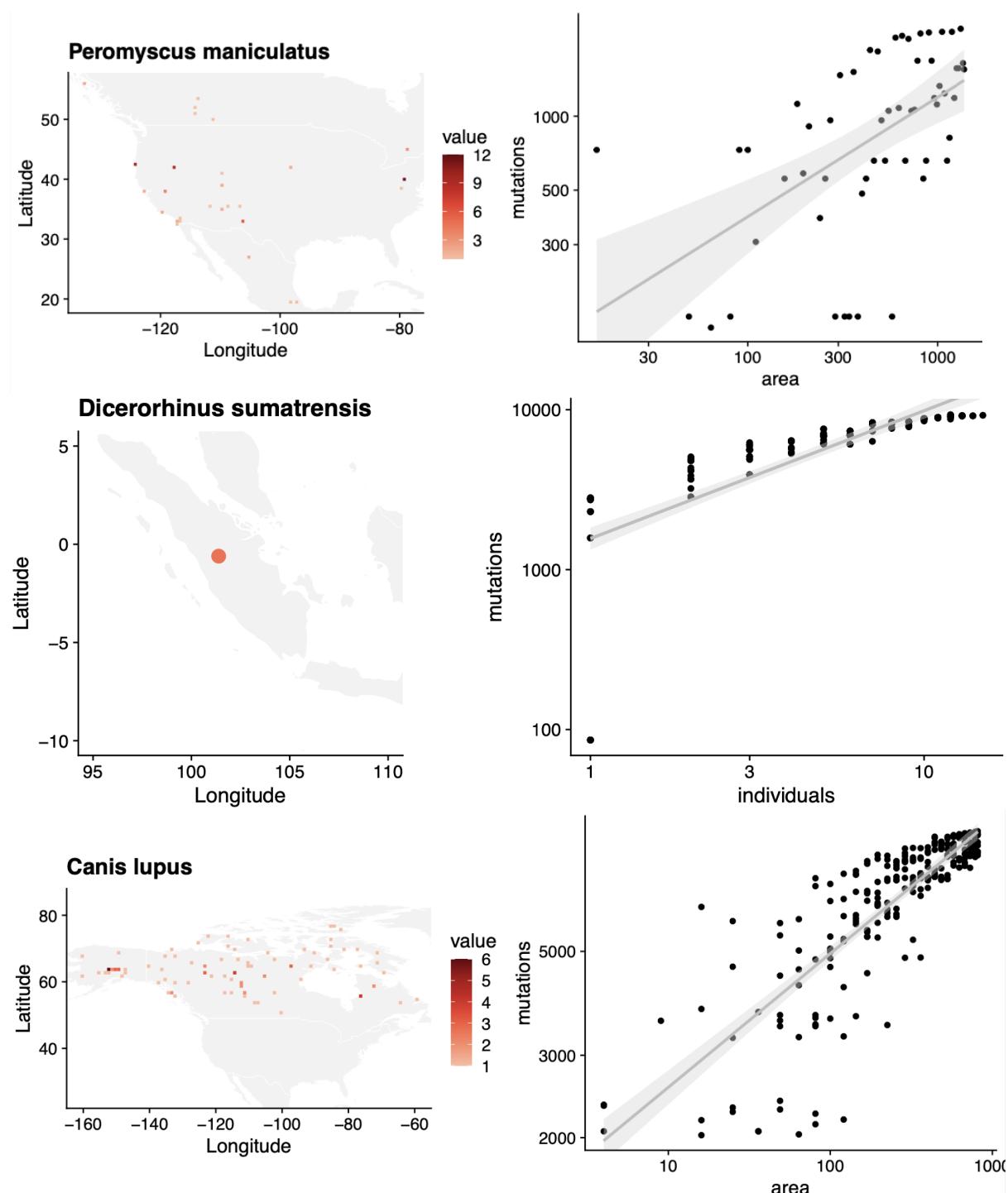


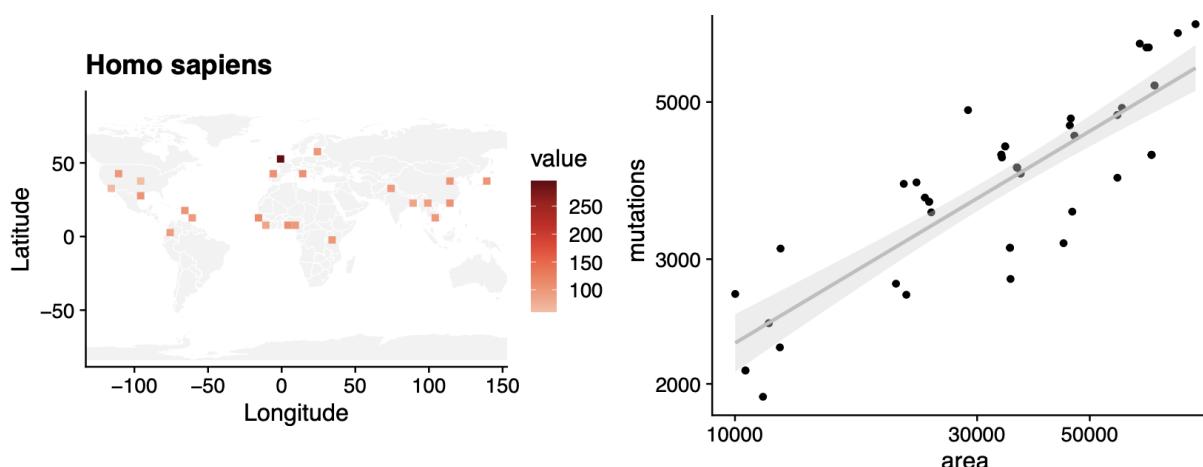












1277
1278
1279
1280

Fig. S22 | MAR summaries across species.

For each species we plot (left) the map of sample density in space and (right) the mutations-area relationship. (The locations of 16 *Dicerorhinus sumatrensis* are unknown so only Sumatra is shown. *Pinus torreyana* was only found in two extant populations.)

1281

1282
1283
1284
1285
1286
1287
1288

Table S10 | The mutations-area relationship across species. Extended Table 1

The Mutations-Area Relationship (MAR) fitted with Area = Individuals and the scaled version. In the main text areas to protect 90% of genetic diversity per species are provided given the scaled z^* . Here, we also provide the average estimated area based on % of grid cells per species to be transformed from 2015 to 2050 using the LUH² dataset, the area where at least 10% of grid cells will be transformed, and the genetic loss corresponding to those area transformations (see section V.2).

Species (study)	SFS mod [ΔAIC]	MAR (A=N) z_N [CI95%]	MAR scaled z^* [CI95%]	LUH ² change '50	LUH ² >10% change '50	LUH ² extinct '50	LUH ² >10% extinct '50
<i>Arabidopsis thaliana</i> (29)	logN (85.8)	0.431 (0.423 - 0.439)	0.312 (0.305-0.32)	4.58	13.54	1.12	3.43
<i>Arabidopsis lyrata</i> (42)	logN (9592.4)	0.254 (0.238 - 0.27)	0.15 (0.136-0.165)	0.79	2.64	0.19	0.64
<i>Amaranthus tuberculatus</i> (43)	logN (7317.5)	0.244 (0.237 - 0.251)	0.142 (0.135-0.148)	4.86	11.13	1.19	2.79
<i>Eucalyptus melliodora</i> (44)	logN (157.5)	0.531 (0.526 - 0.536)	0.402 (0.397-0.406)	3.82	7.77	0.93	1.92
<i>Yucca brevifolia</i> (58)	logN(33300)	0.141 (0.128 - 0.155)	0.049 (0.037-0.062)	0.74	0	0.18	0
<i>Mimulus guttatus</i> (45)	logN (580.8)	0.342 (0.331 - 0.353)	0.231 (0.221-0.241)	3.78	NA	0.92	NA
<i>Panicum virgatum</i> (46)	logN (8345.2)	0.226 (0.215 - 0.237)	0.126 (0.116-0.136)	8.07	27.65	2	7.47
<i>Panicum hallii</i> (57)	logN (86)	0.983 (0.907 - 1.059)	0.814 (0.745 - 0.883)	3.78	11.36	0.92	2.85
<i>Pinus contorta</i> (47)	Wei (19413.7)	0.019 (0.018 - 0.02)	-	1.95	5.54	0.47	1.36
<i>Pinus torreyana</i> (60)	logN(766156)	0.239 (0.232 - 0.245)	0.105 (0.099-0.11)	25.4	NA	6.79	NA
<i>Populus trichocarpa</i> (48)	logS (0)	0.268 (0.257 - 0.28)	0.164 (0.154-0.175)	4.68	17.28	1.14	4.45
<i>Anopheles gambiae</i> (49)	logS (0)	0.221 (0.209 - 0.233)	0.121 (0.11-0.132)	9.95	21.96	2.48	5.78
<i>Acropora millepora</i> (50)	logN (452.3)	0.403 (0.395 - 0.41)	0.287 (0.28-0.293)	72.73	84.69	26.79	36.26
<i>Drosophila melanogaster</i> (59)	logN(33300)	0.445 (0.433 - 0.458)	0.324 (0.313-0.336)	0.95	NA	0.23	NA
<i>Empidonax traillii</i> (51)	Wei (640401.9)	0.169 (0.139 - 0.199)	0.074 (0.047-0.101)	5.55	15.14	1.36	3.86
<i>Setophaga petechia</i> (52)	ln (67138.5)	0.251 (0.236 - 0.267)	0.149 (0.135 - 0.163)	2.83	7.54	0.69	1.86
<i>Peromyscus maniculatus</i> (53)	logN (1449.7)	0.844 (0.769 - 0.919)	0.68 (0.613-0.748)	5.61	13.68	1.38	3.47
<i>Dicerorhinus sumatrensis</i> (61)	w (107864.2)	0.474 (0.449 - 0.498)	0.123 (0.106-0.14)	0.25	NA	0.06	NA
<i>Canis lupus</i> (55)	logN (85.8)	0.29 (0.28 - 0.301)	0.183 (0.174-0.193)	0.23	NA	0.06	NA
<i>Homo sapiens</i> (56)	logN (9592.4)	0.395 (0.339 - 0.451)	0.28 (0.229-0.331)	28.81	40.13	7.83	11.58

1289
1290
1291

Extended acronyms:

logN: log Normal distribution. logS: log Series distribution. Wei: Weibull distribution.

1292
1293

IV.1 Exclusion of species from global averages

1294 To avoid contaminating across-species averages of z_{MAR} with estimates of species whose data
1295 we do not fully trust, we conducted global averages excluding species for which we are not
1296 confident z_{MAR} reflects the correct species diversity-area relationships.
1297
1298 *Pinus contorta* showed a lower z_{MAR} than what is expected in a theoretical baseline from
1299 individual sampling (section II). This is most likely due to this being the only species for
1300 which SNPs were previously ascertained to be intermediate frequency (i.e. the genome
1301 technology was a SNP chip). This alters SFS, so we are not confident the z_{MAR} is the true
1302 parameter of the species.
1303
1304 *Yucca brevifolia* was a dense sampling of several local populations within a constrained area
1305 that is a hybrid zone. Since this species was not sampled range-wide we do not feel confident
1306 to include it in downstream analyses. The species also has a lower z than expected (Fig. S5)
1307
1308 *Pinus torreyana* only has two wild populations left, and therefore the MAR is based on two
1309 area sizes (Fig. S22). Because this is such a threatened species with already most of its range
1310 loss, we do not have confidence in the z parameter.
1311
1312 *Dicerorhinus sumatrensis* has only ~30 estimated adult individuals in the wild. Again we do
1313 not have confidence in the z parameter in such extinction-edge cases.
1314
1315 *Homo sapiens*. We exclude our own species.
1316

1317 **Table S11 | Mean z_{MAR} and other summary statistics across species.**

1318 We selected those species that did not show artefacts in Fig. S22 or whose z_{MAR} overlapped with 0 to calculate a species-
1319 wide mean. See section IV.1.
1320

	z_{MAR}	$z_{MAR} (A=N)$	$z^*_{MAR} \text{ scaled}$
mean	0.31	0.39	0.27
mean se	0.038	0.053	0.048
median	0.25	0.29	0.18
IQR	0.15	0.19	0.17

1321
1322
1323 Although we could not see any obvious patterns relating z_{MAR} with certain groups of
1324 species (Table 1), we wondered whether any life history trait of the species analysed could
1325 explain the variation we observed (see Table S12 of traits). An ANOVA did not show any
1326 significant relationship. Because we know theoretically this parameter must be related to the
1327 degree of dispersal ability of genotypes of a species relative to the whole species geographic
1328 range, we expect traits involved in determining these to be good predictors. Future work will
1329 be necessary to validate this, as the sample size (n=19) may not permit enough power to
1330 detect these expected patterns.
1331

1332 **Table S12 | Traits, life history, and other characteristics of the analyzed species.**

Species	RedList	Known Decline	Kingdom	Reproduction	Pollination	Mobility	AreaRange
Arabidopsis thaliana	NO	NO	Plantae	Selfing	Selfing	Sessile	27337467.4
Arabidopsis lyrata	NO	NO	Plantae	Outcrossing	Vector	Sessile	2791301.4
Amaranthus tuberculatus	LC	NO	Plantae	Outcrossing	Vector	Sessile	804124.8
Eucalyptus melliodora	VU	NO	Plantae	Outcrossing	Wind	Sessile	948699.3
Yucca brevifolia	LC	YES	Plantae	Outcrossing	Vector	Sessile	1213454.4
Mimulus guttatus	LC	NO	Plantae	Outcrossing	Vector	Sessile	25138310.6
Panicum virgatum	LC	NO	Plantae	Outcrossing	Wind	Sessile	6291400.2

Panicum hallii	NO	NO	Plantae	Outcrossing	Wind	Sessile	2188807.4
Pinus contorta	LC	NO	Plantae	Outcrossing	Wind	Sessile	886182.2
Pinus torreyana	CR	YES	Plantae	Outcrossing	Wind	Sessile	30781.95
Populus trichocarpa	LC	NO	Plantae	Outcrossing	Wind	Sessile	1119664.1
Drosophila melanogaster	NO	NO	Animalia	Outcrossing	Activemating	Fly	115208408
Anopheles gambiae	NO	NO	Animalia	Outcrossing	Activemating	Fly	19959809.9
Acropora millepora	NT	YES	Animalia	Outcrossing	Activemating	Fly	26725.9
Empidonax traillii	LC	YES	Animalia	Outcrossing	Activemating	Fly	7027395.2
Setophaga petechia	LC	NO	Animalia	Outcrossing	Activemating	Fly	15172431.15
Peromyscus maniculatus	LC	NO	Animalia	Outcrossing	Activemating	Mobile	22609152.6
Dicerorhinus sumatrensis	CR	YES	Animalia	Outcrossing	Activemating	Mobile	3335605.58
Canis lupus	LC	NO	Animalia	Outcrossing	Activemating	Mobile	19102403.5
Homo sapiens	NA	NA	NA	NA	NA	NA	80763121.8

1333

1334

1335 **Table S13 | Association of traits, life history, and other characteristics with z_{MAR} .**

1336 Acronyms: NO=not assessed but likely non-threatened, LC=low concern, VU=vulnerable, CR=critically endangered

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
RedList	4	0.0952396	0.0238099	0.5580988	0.7040464
KnownDecline	1	0.0275537	0.0275537	0.6458527	0.4580865
Kingdom	1	0.0011684	0.0011684	0.0273876	0.8750400
Reproduction	1	0.0003238	0.0003238	0.0075890	0.9339612
Pollination	1	0.0375975	0.0375975	0.8812784	0.3909509
Mobility	1	0.1600627	0.1600627	3.7518370	0.1104995
AreaRange	1	0.0174745	0.0174745	0.4095989	0.5503439
Residuals	5	0.2133125	0.0426625	NA	NA

1337

1338

1339 While no association between life history and z_{MAR} was found (Table S13), this may
1340 be due to limited power, as the sample size of species analysed here is still small, n=20.

1341 Further studies expanding the numbers of species will be necessary to confirm or reject this
1342 expected association.

1343

1344

1345

1346

1347 1348 V. An estimate of global genetic diversity loss

1349 Using the approach described in section II.4, we generated a number of estimates either per
1350 ecosystem or per species. All estimates below tried to be conservative, and thus we always
1351 used the scaled z_{MAR} values (section II.3.2.).

1352

1353 V.1 Estimates of ecosystem area losses

1354

1355 **Table S14 | Millennium Ecosystem Assessment land cover transformation.**

1356 Changes of ecosystem area pre-21st century. Ecosystem names are repeated for ecosystem sub-classes.

1357 Source: <https://www.millenniumassessment.org>

1358

1359

System	Area (km ² x10 ⁶)	Earth % surface	Protected areas (%)	Area transformed (%)
MARINE	349.3	68.6	0.3	NA
COASTAL	17.2	4.1	7	NA
- TERRESTRIAL	6	4.1	4	11
- MARINE	11.2	2.2	9	NA
INLAND WATER	10.3	7	12	11
FOREST/WOODLAND	41.9	28.4	10	42
- TROPICAL	23.3	15.8	11	34
- TEMPERATE	6.2	4.2	16	67
- BOREAL	12.4	8.4	4	25
DRYLAND	59.9	40.6	7	18
- HYPERARID	9.6	6.5	11	1
- ARID	15.3	10.4	6	5
- SEMIARID	22.3	15.3	6	25
- SUBHUMID	12.7	8.6	7	35
ISLAND	7.1	4.8	17	17
- STATES	4.7	3.2	18	21
MOUNTAINS	35.8	24.3	14	12
- 300-1000	13	8.8	11	13
- 1000-2500	11.3	7.7	14	13
- 2500-4500	9.6	6.5	18	6
- 4500+	1.8	1.2	22	0.3
POLAR	23	15.6	42	0.38
CULTIVATED	35.3	23.9	6	47
- PASTURE	0.1	0.1	4	11
- CROPLAND	8.3	5.7	4	62
- MIXED	26.9	18.2	6	43
URBAN	3.6	2.4	0	100
GLOBAL	510	NA	4	38

1360

1361

1362

1363 Ecosystem transformation has been tracked over decades. We extracted ecosystem
1364 transformations from the Millennium Ecosystem Assessment (62), which estimated
1365 ecosystem transformations from presumably native systems to cultivated or urban areas by
1366 GLC2000 land cover dataset (Table S14). The forest/woodland is calculated as percentage
1367 change between potential vegetation from WWF ecoregions to the current actual
1368 forest/woodland areas from GLC2000. These provide bulk ecosystem reductions, not for a
1369 given species, but may be a good proxy for an average across species.

1370

1371 **Table S15 | IPBES land cover transformation.**

1372 Source: <https://ipbes.net>

1373

Region	Area(Mkm2)	MSA 2010	MSA 2050 SSP2	MSA 2050 SSP1	MSA 2050 SSP3
North America	20	65	56	NA	NA
Central and South America	18	65	53	NA	NA
Middle East and Northern Africa	11	81	77	NA	NA
Sub-Saharan Africa	24	70	56	NA	NA
Western and Central Europe	6	37	29	NA	NA
Russian region and Central Asia	21	73	65	NA	NA

South Asia	5	44	35	NA	NA
China region	11	56	49	NA	NA
Southeast Asia	7	55	43	NA	NA
Japan, Korea and Oceania	8	71	57	NA	NA
Polar	2	96	91	NA	NA
World	132	66	56	62	54

1374

1375

1376

1377

1378 The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
1379 Services (IPBES) recently used a PBL satellite product from the Netherlands Environmental
1380 Assessment Agency (<https://www.pbl.nl/en/nature-and-biodiversity>) to study the % of area
1381 ecosystem transformation in the world (Table S15). This provides an updated estimate to the
1382 Millennium Assessment as well as projections under several Shared Socioeconomic
1383 Pathways (1-3) for 2050. These were reported per region as of 2010, and for projections to
1384 2050 (scenario SSP2). Instead of direct area, the metric is a composite of land use
1385 information to predict Mean Species Abundance (MSA), a measure of the size of populations
1386 of wild organisms as a percentage of their inferred abundance in their natural state (% MSA).
1387

1388 A global transformation metric can also be captured by the most updated land use
1389 transformation data, the Land Use Harmonization 2 (release v2e for 2015-2011 and release
1390 v2h for baseline 1850-2015) (63). Baseline transformation of primary ecosystems was
1391 calculated subtracting the total area covered by primary forest (primf) and primary non-forest
1392 (primn) variables between year 1850 layer (roughly pre-industrial baseline) and the present,
1393 2015, as $I - A_{2015} / A_{1850}$ (Table S16). Analyses that use projections to mid-21st century were
1394 conducted similarly as in (64), summing over all transitions from primary forest (primf),
1395 primary non-forest (primn), secondary forest (secdf) and secondary non-forest (secdn) lands
1396 to any other category for all years within the 2015-2050 period (see Table S10).
1397

1398 **Table S16 | Land Use Harmonization 2 from 1850 to 2015**

1399 Source: <https://luh.umd.edu/data.shtml>

1400

	Area %
Primary forest transformed	43
Primary non-forest transformed	50

1401

1402 Finally, we searched for timely estimates of forest reduction (based on vegetation
1403 cover) reported in the Global Forest Watch website:

1404 <https://www.globalforestwatch.org/dashboards/global/> (accessed June 2021). From 2002 to
1405 2020, there has been a global tree cover loss of 10%, with an annual tree cover loss of 0.6-
1406 1.1%.

1407

1408 Although these are not direct area transformations, we also used the IUCN Red List
1409 resource (<https://www.iucnredlist.org>, Table S12 shows status of the species analysed here),
1410 which includes guides to categorise species as vulnerable, endangered, critically endangered,
1411 and extinct, and has conducted extensive assessments across thousands of species (Table
1412 S17).

1413

1414 **Table S17 | IUCN Red List categories of extinction risk and number of species.**

1415 Source: www.iucnredlist.org, January 2021

1416

IUCN Red List	Description	Criterion of area or pop.	# plant species
---------------	-------------	---------------------------	-----------------

Category		reduction (>%)	
EX	Extinct	100	164
EW	Extinct in the Wild	100	
CR	Critically Endangered	80	4674
EN	Endangered	50	8593
VU	Vulnerable	30	8459
NC, LR, NT, DD, LC	No Concern, Low Risk, Near Threatened, Data Deficient, Least Concern, Other	0	32237

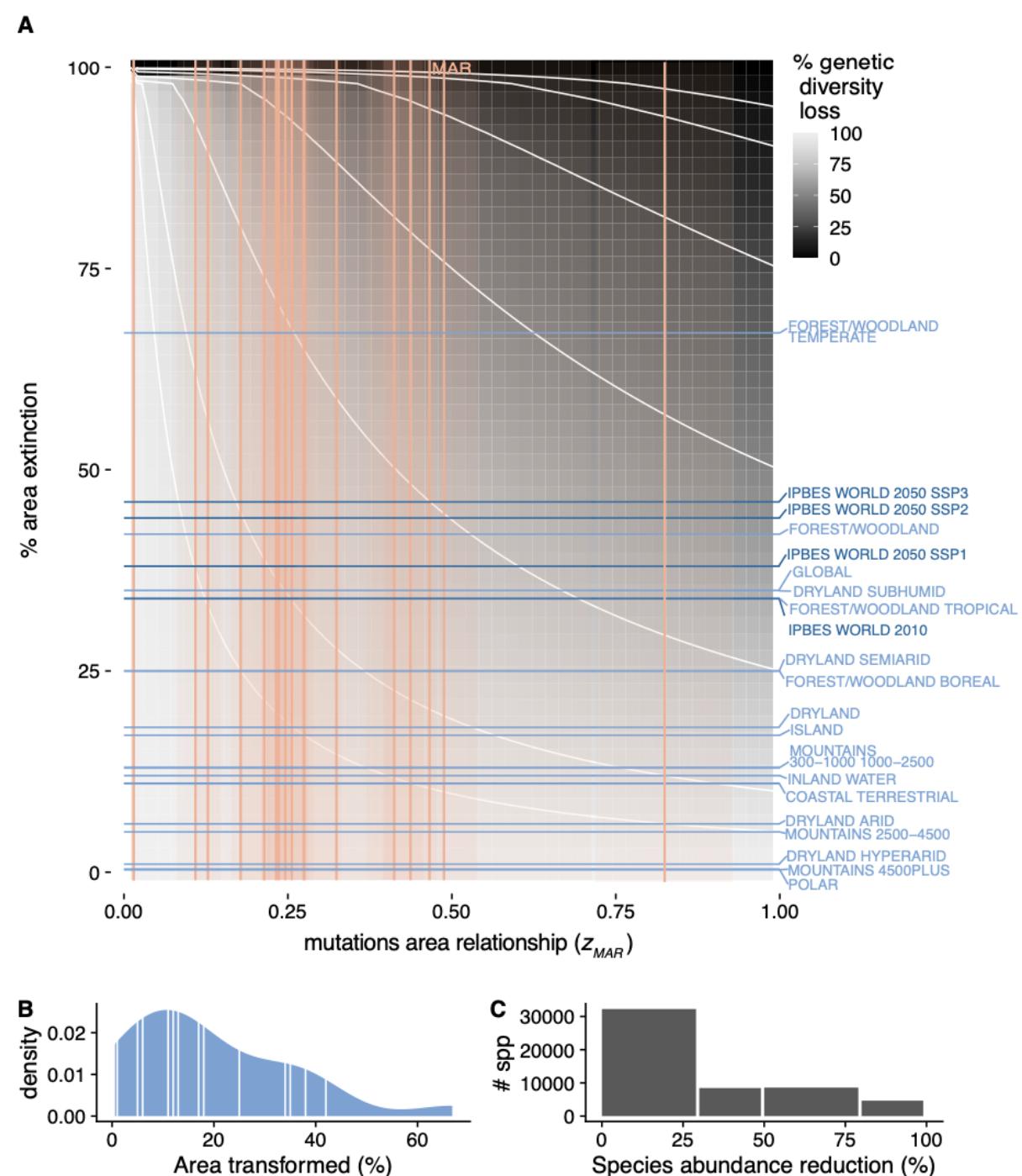
1417
1418

1419 **V.2 A global estimate of genetic loss**

1420

1421 Taking the estimates and standard error of z_{MAR} across species, and the world's reduction of
1422 ecosystems we can calculate the fraction of genetic diversity reduction following the MAR
1423 equation (section II.4), giving a range of estimates (Table S18).

1424



1425

1426

Fig. S23 | The parameter space of genetic diversity loss, extended

1427

(A) The theoretical space of genetic diversity loss. z_{MAR} values (using area, unscaled for samples, differently from Fig. 32) computed for species analyzed here are marked as orange vertical lines, with confidence intervals as orange shading. Blue horizontal lines correspond to ecosystem transformations from the Millennium Assessment (light blue) and IPBES Assessment (dark blue) (B) Density histogram of percentages of area transformed across ecosystems from the MA, with averages per ecosystem marked in the distribution as well as horizontal lines in (A). (C) The number of species of each of the IUCN categories and the most optimistic range of area or abundance reduction for each of the category brackets.

1428

1429

1430

1431

1432

1433

1434

1435

Table S18 | Estimates of average expected genetic loss for different ecosystems.

1436

Assuming ecosystem transformation approximately translates into average species distribution reduction, and using the ranges of z_{MAR} from Table 1 of the main text, we project the average genetic loss using the Mutations Area Relationship.

1437

1438

System	Area transformed (%)	Genetic loss % (mean z based)	Genetic loss % (min z based)	Genetic loss % (max z based)
--------	----------------------	---------------------------------	--------------------------------	--------------------------------

<i>COASTAL TERRESTRIAL</i>	11	3.2	0.9	9
<i>INLAND WATER</i>	11	3.2	0.9	79.7
<i>FOREST/WOODLAND</i>	42	14.0	4	35.8
<i>FOREST/WOODLAND</i>	34	10.5	3	28.7
<i>TROPICAL</i>				
<i>FOREST/WOODLAND</i>	67	26.5	7.9	59.4
<i>TEMPERATE</i>				
<i>FOREST/WOODLAND</i>	25	7.7	2.1	20.9
<i>BOREAL</i>				
<i>DRYLAND</i>	18	5.4	1.5	14.9
<i>DRYLAND HYPERARID</i>	1	0.3	0.1	0.8
<i>DRYLAND ARID</i>	5	1.4	0.4	4.1
<i>DRYLAND SEMIARID</i>	25	7.7	2.1	20.9
<i>DRYLAND SUBHUMID</i>	35	11.3	3.2	29.6
<i>ISLAND</i>	17	5.0	1.4	14.1
<i>MOUNTAINS</i>	12	3.5	0.9	9.9
<i>MOUNTAINS 300-1000</i>	13	3.8	1	10.7
<i>MOUNTAINS 1000-2500</i>	13	3.8	1	10.7
<i>MOUNTAINS 2500-4500</i>	6	1.7	0.5	4.9
<i>MOUNTAINS 4500+</i>	0.3	0.1	0	0.2
<i>POLAR</i>	0.4	0.1	0	0.3
<i>GLOBAL</i>	38	12.4	3.5	32.2

1439

1440

1441 Assuming the average z_{MAR} , and utilising tree cover from the Global Forest Watch
1442 (<https://www.globalforestwatch.org>), which estimates 0.6-1.1% of transformation per year
1443 across Canada, United States and Australia, we extrapolated genetic diversity loss in the next
1444 50 years for tree species to be 8-15% genetic diversity loss.

1445

1446 Assuming that the calculated z_{MAR} estimates (Table 1) are representative of plant
1447 species, we conducted an experiment to create a distribution of % of genetic diversity loss in
1448 threatened species. We used the number of species in each IUCN category (Table S17) for a
1449 total of 54,127 plant species. For plant species, one of the evaluation criteria of percentage of
1450 population loss likely translates faithfully to area reduction in the species. Thus, the
1451 proportion of species per category gives a discrete probability distribution of the ranges of
1452 percentage of area loss: $P(0-29\%)=0.596$, $P(30-49\%)=0.156$, $P(50-79\%)=0.159$, $P(80-99\%)=0.086$,
1453 $P(99\%-100\%)=0.003$. Using a simulation-based sampling approach, we drew
1454 350,000 random area reductions A_t / A_{t-1} from the previous distribution and a z_{MAR} from the
1455 mean and variance of our estimates from Table 1 for plants. These were plugged into the
1456 MAR equation (Section II.4) to calculate the percentage of genetic diversity loss of these
1457 350,000 random draws. The resulting distribution had a median and interquartile range of
1458 17.53 % [7.51- 31.82]..

1459

1460 Using the Land Use Harmonization 2 dataset, we also create per-species predictions
1461 based on the % transformation of each of the sampled regions per species (Table S14). As
1462 before, the land use transformations that merit be considered area losses are all transitions
1463 from primary forest (primf), primary non-forest (primn), secondary forest (secdf) and
1464 secondary non-forest (secdn) lands to any other category. Taking all the locations where each
1465 species has been sampled, we extracted the predicted % of land use change per cell and
1466 summed over all cells where individuals had been sampled (we call this LUH² change ‘50,
1467 see column in Table S10). We also produced the alternative area loss estimate taking that at
1468 least 10% predicted habitat transformation for a grid cell renders the entire area of that grid
1469 cell as impacted or lost (we call this LUH² >10% change ‘50). These per-species area losses,
1470 in combination with the matched z_{MAR} , provided a range of potential loss estimates to 2050
1471 ranging 0-36% depending on the species (Table S10).

1472

1473

1474 V.3 Community ecology simulations and MAR

1475

1476 To test whether intermediate levels of MAR would be expected across species in entire
1477 ecosystems, we conducted community assembly simulations of ~100-500 species following
1478 the Neutral Theory of Biodiversity (1, 41) and coalescent simulations (23) using the software
1479 MESS (65). These simulations are computationally demanding and could not run in a
1480 complete 2D spatial grid. Instead, they were simulated in a mainland-island system, with
1481 islands of increasing areas. The community forms by species colonising an empty island
1482 according to Hubbell's Unified Neutral Theory of Biodiversity and Biogeography (UNTB),
1483 where all species are equally likely to colonise and persist in the local community. Continued
1484 colonisation and migration to the local community continues to bring in new species that may
1485 or may not survive, while also continuously bringing in individuals of species already in the
1486 local community. The community assembly process ends when the community has reached
1487 an equilibrium denoted as the balance between local extinction and new species dispersing
1488 into the area (Hubbell 2001). Once the forward-time process has ended, we simulate the
1489 coalescent history of each species backward in time. For this, MESS considers the population
1490 size, divergence time, and migration rates of the meta and local communities. These
1491 coalescent simulations provide us with genetic data and ultimately diversity estimates for
1492 each species in the community.

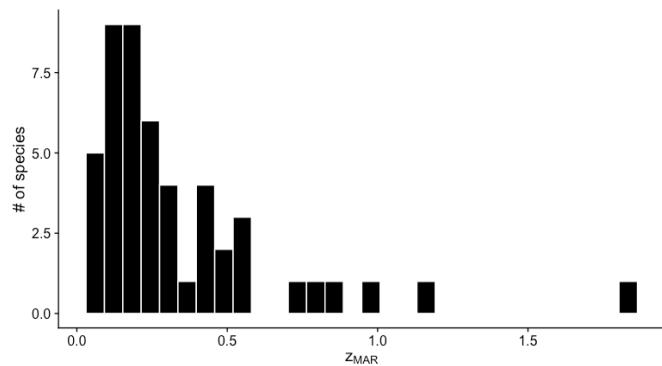
1493

1494 We simulated 100 MESS communities, and for each community the size of the local
1495 community was varied from 1K to 100K. We varied the size of communities to emulate
1496 variation in area occupied by a given community because we assume as the number of
1497 individuals in a community increases from 1,000 to 100,000, so does the area occupied. All
1498 other parameters were kept consistent across each of these community simulations, and most
1499 remained at their default value. The parameters changed were the length of the sequences
1500 simulated for the coalescent-based simulations, which was fixed at 10,000 bp, and the
1501 migration rate, which was fixed at 0.01.

1502

1503 The simulation output was used to then compute a single z_{SAR} for the system as
1504 $S=cA^{z_{SAR}}$, and one z_{MAR} for each species in the same way, $M=cA^{z_{MAR}}$. This resulted in the
1505 distribution of z_{MAR} from Fig. S24. This confirmed that we can recover typical z_{SAR} and z_{MAR}
1506 values from completely stochastic neutral yet spatially structured systems such as species in
1507 communities and mutations in populations of a species.

1508



1509

1510 Fig. S24 | z_{MAR} calculated from MESS eco-evolutionary simulations

1511

1512 Using the MESS framework of a mainland-island model with different island sizes, z_{MAR} per species is recovered. The

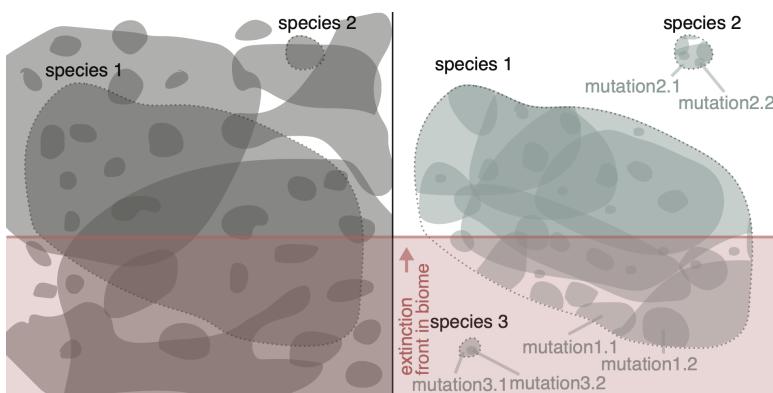
stochastic nature of the simulations results in each species having different abundances and migration histories that change

1513 the scaling value. Values were typically around 0.3. Rarely some species had values above 1, which appear could be noisy
1514 estimates from recently colonising species in the simulations.
1515
1516
1517

1518 V.4 The nested species extinction and genetic diversity loss processes

1519
1520 Finally, we worried that our estimates of V.2 would be mistaken as overestimates. In fact, we
1521 believe these may be underestimated. Recent policy proposals for the United Nations'
1522 Sustainability Goals emphasize that the target of protecting 90% of species genetic diversity
1523 for all species cannot leave the already-extinct species behind (66) (That is, one cannot
1524 protect 90% of species and leave 10% to become extinct to meet this goal). This clearly
1525 exemplifies a problem in conservation biology that what researchers can study is (most of the
1526 time) what has escaped extinction, and therefore if we do not account for extinct species in
1527 our overall estimates of genetic diversity loss we may naively think ecosystems have not
1528 suffered genetic diversity loss (i.e. in the extreme scenario, an ecosystem that has lost all but
1529 one abundant species may not really appear genetically eroded if such species is in good
1530 shape).
1531

1532 We then created spatial simulations in R where 1,000 species are distributed in
1533 100x100 grid cells following a UNTB abundance distribution and then proceeded with an
1534 edge extinction of the ecosystem (see Fig. S25 for a cartoon).
1535
1536
1537

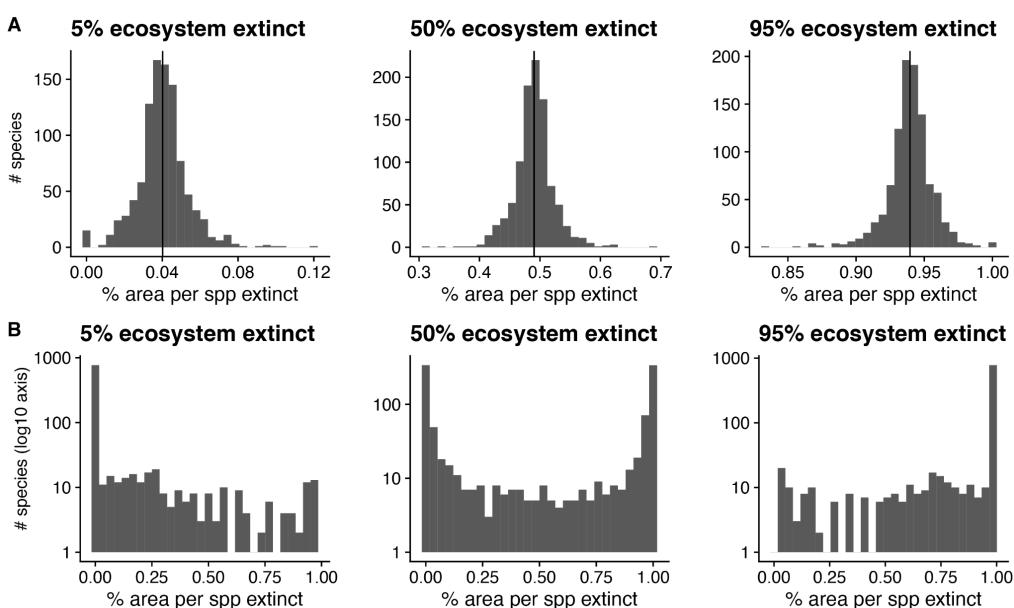


1538
1539 **Fig. S25 | Cartoon of nested extinction of species and genetic diversity loss.**
1540 An ecosystem with multiple species within it (left), distributed in space, with few species broadly distributed and many
1541 narrowly distributed. Moving one level of biological organization lower, mutations within species (right) are also spatially
1542 distributed with many narrowly distributed. As extinction happens (red line moving bottom to top), all species below the red
1543 line go extinct, but only the mutations within species 1 below the line are lost, while mutations above the line remain.
1544 Species 3 has already become extinct, and therefore also all the mutations within it.
1545
1546

1547 Two extreme types of distributions of species can be imagined: species are randomly
1548 placed in space, or species are found mostly in perfectly contiguous ranges (We ended up
1549 using as an example a simulation with 85% of the individuals of a species found in a core
1550 square continuous distribution and 15% found outside that core in fragmented observations,
1551 as this scenario produced the canonical SAR of $z \sim 0.3$). Spatial structure interestingly creates
1552 two extreme distributions of area reductions across species (Fig. S26): random placement of
1553 cell habitats essentially show that the average area reduction per ecosystem is followed by
1554 most species, while autocorrelated placement of cell habitats create a U distribution in area
1555 reductions, where at the beginning of the extinction process most species have not

1556 experienced any impact (Fig. S26B left) but at the end of ecosystem reduction virtually all
1557 species are already extinct (Note we may be at the beginning of S26B process given the data
1558 from IUCN, Fig 3C).

1559
1560

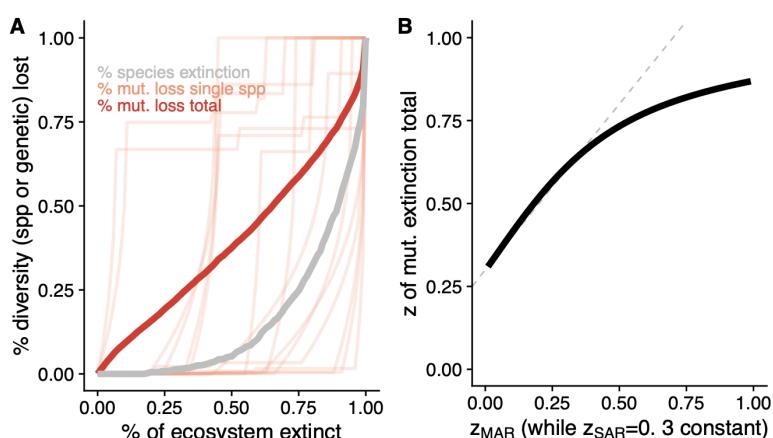


1561

1562 **Fig. S26 | The distribution of per-species area lost and total ecosystem extinction with 1000 species**
1563 Two ecosystems of 100x100 cells with 1000 species. Species are either randomly distributed in cells (A) or spatially
1564 autocorrelated with occupying mostly contiguous cells (B). As the extinction process wipes out part of the ecosystem
1565 (snapshots are provided at 5%, 50%, and 95%), the area loss per species (and hence genetic diversity lost) is tracked. In (A)
1566 the average area lost per species is roughly the total reduction of the ecosystem, whereas in (B) the distribution is U shaped
1567 (note the log-scaled y-axis). While in (B) the mean area lost in the distribution correctly captures the area loss of the
1568 ecosystem, per species losses are highly uneven.

1569

1570 To study the consequence of the above differential area loss and the effect of some
1571 species going extinct on the total ecosystem genetic diversity, we conducted the next
1572 analysis: For extant species, we assumed they would lose genetic diversity following the
1573 MAR relationship (section II.4), with all species having $z_{MAR} = 0.3$ for simplicity (i.e. all
1574 species lose genetic diversity at the same rate). For extinct species (100% of their area
1575 reduced), we considered genetic diversity loss was 100%. The compound total genetic
1576 diversity loss would then just be the sum of those $X_{Tot} = \sum_{i=1}^{1000} X_i$ (Of course, in reality species
1577 may vary in their genome-wide diversity average, and we could for instance use Watterson's
1578 Θ_W (see section II.2) to scale the total loss of genetic diversity in the ecosystem accounting
1579 for different basal level of diversity per species: $\sum_{i=1}^{1000} \Theta_{Wi} X_i$). Interestingly, if we calculate the
1580 z of the slope of compound genetic diversity across species in an ecosystem it is much larger
1581 than MAR or SAR alone: $z_{compounded} = 0.6$ (Fig. S27).
1582



1583

1584

Fig. S27 | Numeric simulation of nested species and genetic diversity loss.

1585

(A) Simulating the extinction of an ecosystem with 1,000 species that follow a log-normal species abundance curve.

1586

Extinction of the ecosystem creates a curve of species loss of $z \sim 0.3$ (grey). Likewise, each species trajectory (light red, 15 species drawn randomly) follows a simulated genetic diversity loss of $z_{MAR} \sim 0.3$ as they lose area. Because species' geographic distributions are by construction smaller than the whole ecosystem area, those distributed closer to the start of the extinction front lose area first, while those distributed farthest from the extinction front only lose area when the ecosystem is almost completely destroyed. Because genetic diversity loss is both due to complete extinction of species as well as area reduction of extant species, the compound genetic diversity loss curve (red) follows the faster loss dynamics. (B) Holding $z_{SAR} = 0.3$ constant, and varying z_{MAR} in independent simulations shows that the compound genetic diversity across species is close to the sum of both z slopes (the SAR and the MAR), but it saturates at ca. 0.85 (grey dotted line shows $z_{MAR} + z_{SAR}$).

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

VI. Limitations and outlook

1599

1600

In this last section we list some potential limitations of an inherently simple scaling law, and
1601 what approaches could be used to address those and improve genetic diversity loss
1602 projections.

1603

1604

VI.1 Reasons for overestimations

1605

1606

Many researchers have posited that SAR likely overestimates species extinction (33, 67). For
1607 instance:

- Ignoring that a diversity-area relationship can be defined outwards, inwards, or focusing on endemisms can have an impact (10, 33, 67). To address this, we confirmed relative consistency between inward, outward, and random placement MAR, and proposed that the EMAR may not be that appropriate to study genetic diversity loss (or at least EMAR does not show predictability in our simulation).
- Species may persist in altered habitats, like some animals are known to do (68). We have focused some of the estimates in this study on plants, for which area loss should equate to population loss and vice versa, but further extensions could be applied in the future as described by Pereira and Daily (68).
- SAR is not a mechanistic model (69). We have derived its ranges of possible values and averages analytically and are beginning to understand how evolutionary forces shape MAR. Realistic simulations can help understand in a process-based framework how populations (and their MAR) react to partial population extinction (continuous space simulations with progressive area reductions appear to fit well with the MAR predictions calculated before the extinction process starts, section III.2.6).
- There is a scale dependence in the SAR slope, with slight increase in the slope at large scales (10). Since power laws are typically fit with large-scale datasets and used to predict local scale extinctions, predictions could be overestimated at local scales.

1626

VI.2 Reasons for underestimations

1627

1628

While the simplicity of power laws to make predictions of species extinction may lead to overestimations, there are also important reasons to believe MAR would underestimate genetic loss.

- Perhaps even more so than in species list datasets and census, the discovery of low frequency genetic variants is highly underpowered (70). These are highly prevalent, but genomic pipelines, with the aim to be conservative, often filter out rare variants. This would underestimate z_{MAR} and therefore the degree of genetic diversity loss with area shrinkage. This is clear in the pre-selected-only marker dataset of *Pinus contorta*.
- Related to the previous: Although sequencing methods have an error rate that misreads true nucleotide sequences, this rate is typically extremely low (many sequencing projects described here used Illumina HiSeq series, which has a 0.112% error rate, or about 1 misread nucleotide in 1000). This could intuitively lead to overestimates in mutations in space but in fact, the mis-reading of DNA ends up causing an underestimation. This is because bioinformatic software that transforms raw data into SNP variant tables errs towards the conservative direction, often not calling mutations that have been observed very few times, and thus likely under-representing rare mutations (71).
- The use of scaled z_{MAR} proposed in section II.3.2. accounts for that the minimum z_{MAR} is rarely exactly 0, especially when sample sizes are limited. We use this correction

1648 scaling down z_{MAR} to be conservative. However, z_{MAR} could only in very exceptional
1649 circumstances be 1, but we do not correct for this, again, to have a conservatively low
1650 z_{MAR} . Hence, our conservative approach would generally lead to underestimates of
1651 genetic diversity loss.

1652 - When species shrink in area, the effective population size of the remaining population
1653 decreases, increasing drift and moving towards a lower diversity equilibrium. This
1654 reactive process is not captured by the phenomenological MAR relationship.
1655 - The nested extinction of species and genetic diversity loss (section V.3) would lead
1656 us, by the right of “survival bias”, to underestimate how much genetic diversity has
1657 been lost cumulative in an ecosystem.

1658

1659 VI.3 Final notes

1660

1661 Ultimately, to make accurate predictions of genetic diversity loss and increased extinction
1662 risk of species, very detailed data and expert assessment per species will be required: census
1663 sizes, genome size, migration in metapopulations, mating system, detailed maps of genetic
1664 makeups, and finescale area transformations. This could enable mechanistic models projected
1665 forward-in-time such as discussed in section II.3.6. The production of new genomic datasets
1666 across entire ecosystems should further help create maps of genetic diversity at high
1667 resolution to track losses (72–74).

1668

1669 Our philosophy in this work has been to err on the conservative side when projecting
1670 genetic diversity loss (e.g. using area calculations that produce lower z_{MAR} values, scaling
1671 them for low sample bias, using lower estimates of ecosystem transformation, etc.). However,
1672 this conservative approach can also lead us into under-estimating loss. As described in V.4.,
1673 the phenomenon of survival bias likely leads us to underestimate what has been lost given we
1674 do not observe it. A phenomenon also highlighted as a possible explanation for the relatively
1675 shy difference in genetic diversity between threatened and non-threatened species (75, 76)

1676

1677 Because to our knowledge, no other approaches exist to project genetic diversity, we
1678 believe that MAR is a quantitative and scalable first-approximation of genetic diversity that
1679 would just require accurate understanding of abundance or area reductions and minimal
1680 information about population structure or mating/dispersal/range relationships. Given that
1681 scaling relationships are already applied by conservation policy (77), and given that
1682 assumptions and limitations are understood, we expect MAR to become a relevant tool to
1683 project losses of a dimension of biodiversity so far mostly invisible or unaddressable in large
1684 conservation projections.

1685

1686

1687

1688 SUPPLEMENTAL REFERENCES

1689

1690

1691 1. S. P. Hubbell, *The Unified Neutral Theory of Biodiversity and Biogeography* (Monographs in
1692 Population Biology, 2001).

1693 2. M. Tokeshi, Niche Apportionment or Random Assortment: Species Abundance Patterns
1694 Revisited. *J. Anim. Ecol.* **59**, 1129–1146 (1990).

1695 3. M. Tokeshi, in *Advances in Ecological Research*, M. Begon, A. H. Fitter, Eds. (Academic Press,
1696 1993; <https://www.sciencedirect.com/science/article/pii/S0065250408600422>), vol. 24, pp. 111–
1697 186.

1698 4. MOTOMURA, I, A statistical treatment of ecological communities. *Zoological Magazine*. **44**,
1699 379–383 (1932).

1700 5. R. H. MacArthur, On the relative abundance of bird species. *Proc. Natl. Acad. Sci. U. S. A.* **43**,
1701 293–295 (1957).

1702 6. R. A. Fisher, A. S. Corbet, C. B. Williams, The Relation Between the Number of Species and the
1703 Number of Individuals in a Random Sample of an Animal Population. *J. Anim. Ecol.* **12**, 42–58
1704 (1943).

1705 7. F. W. Preston, The canonical distribution of commonness and rarity: Part I. *Ecology*. **43**, 185
1706 (1962).

1707 8. F. W. Preston, The commonness, and rarity, of species. *Ecology*. **29**, 254–283 (1948).

1708 9. D. Alonso, A. J. McKane, Sampling Hubbell's neutral theory of biodiversity. *Ecol. Lett.* **7**, 901–
1709 910 (2004).

1710 10. D. Storch, P. Keil, W. Jetz, Universal species-area and endemics-area relationships at continental
1711 scales. *Nature*. **488**, 78–81 (2012).

1712 11. S. L. Pimm, G. J. Russell, J. L. Gittleman, T. M. Brooks, The future of biodiversity. *Science*.
1713 **269**, 347–350 (1995).

1714 12. C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F.
1715 N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van
1716 Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips,
1717 S. E. Williams, Extinction risk from climate change. *Nature*. **427**, 145–148 (2004).

1718 13. J. F. C. Kingman, The coalescent. *Stochastic Process. Appl.* **13**, 235–248 (1982).

1719 14. R. C. Griffiths, S. Tavaré, The age of a mutation in a general coalescent tree. *Communications in
1720 Statistics. Stochastic Models*. **14**, 273–295 (1998).

1721 15. R. A. Fisher, XVII.—The Distribution of Gene Ratios for Rare Mutations. *Proceedings of the
1722 Royal Society of Edinburgh*. **50**, 204–219 (1931).

1723 16. M. W. Hahn, *Molecular Population Genetics* (Oxford University Press, 2018;
1724 <https://play.google.com/store/books/details?id=3BDkswEACAAJ>).

1725 17. V. Buffalo, Quantifying the relationship between genetic diversity and population size suggests
1726 natural selection cannot explain Lewontin's paradox. *Elife*. **10** (2021), doi:10.7554/eLife.67509.

1727 18. D. R. Marshal, A. D. H. Brown, in *Crop genetic resources for today and tomorrow*, O. H.
1728 Frankel, J. G. Hawkes, Eds. (Cambridge University Press, 1975;
1729 <https://www.researchgate.net/publication/280057199>), vol. 2.

1730 19. S. Wright, Isolation by Distance. *Genetics*. **28**, 114–138 (1943).

1731 20. J. Novembre, M. Stephens, Interpreting principal component analyses of spatial population
1732 genetic variation. *Nat. Genet.* **40**, 646–649 (2008).

1733 21. H. Fan 樊海英, Q. Zhang 张清臣, J. Rao 饶娟娟, J. Cao 曹静文, X. Lu 卢欣, Genetic Diversity-
1734 Area Relationships across Bird Species. *Am. Nat.* **194**, 736–740 (2019).

1735 22. P. R. A. Campos, V. M. de Oliveira, A. Rosas, Epistasis and environmental heterogeneity in the
1736 speciation process. *Ecol. Modell.* **221**, 2546–2554 (2010).

1737 23. J. Kelleher, A. M. Etheridge, G. McVean, Efficient Coalescent Simulation and Genealogical
1738 Analysis for Large Sample Sizes. *PLoS Comput. Biol.* **12**, e1004842 (2016).

1739 24. B. C. Haller, P. W. Messer, SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher
1740 Model. *Mol. Biol. Evol.* **36**, 632–637 (2019).

1741 25. T. R. Booker, S. Yeaman, M. C. Whitlock, The WZA: A window-based method for
1742 characterizing genotype-environment association. *bioRxiv* (2021), p. 2021.06.25.449972.

1743 26. J. Kelleher, K. R. Thornton, J. Ashander, P. L. Ralph, Efficient pedigree recording for fast
1744 population genetics simulation. *PLoS Comput. Biol.* (2018), p. e1006581.

1745 27. B. C. Haller, J. Galloway, J. Kelleher, P. W. Messer, P. L. Ralph, Tree-sequence recording in
1746 SLiM opens new horizons for forward-time simulation of whole genomes. *Mol. Ecol. Resour.*
1747 **19**, 552–566 (2019).

1748 28. R. R. Hudson, M. Slatkin, W. P. Maddison, Estimation of levels of gene flow from DNA
1749 sequence data. *Genetics*. **132**, 583–589 (1992).

1750 29. 1001 Genomes Consortium, 1,135 Genomes Reveal the Global Pattern of Polymorphism in
1751 *Arabidopsis thaliana*. *Cell*. **166**, 481–491 (2016).

1752 30. B. J. McGill, B. J. Enquist, E. Weiher, M. Westoby, Rebuilding community ecology from
1753 functional traits. *Trends Ecol. Evol.* **21**, 178–185 (2006).

1754 31. P. I. Prado, M. Miranda, A. Chalom, *sads: R package for fitting species abundance distributions*
1755 (Github, 2018; <https://github.com/piLaboratory/sads>).

1756 32. T. J. Matthews, K. A. Triantis, R. J. Whittaker, F. Guilhaumon, *sars: an R package for fitting,*
1757 *evaluating and comparing species-area relationship models*. *Ecography*. **42**, 1446–1455 (2019).

1758 33. F. He, S. P. Hubbell, Species-area relationships always overestimate extinction rates from habitat
1759 loss. *Nature*. **473**, 368–371 (2011).

1760 34. R. J. H. & J. van Etten, *raster: Geographic analysis and modeling with raster data* (2012),
1761 (available at <http://CRAN.R-project.org/package=raster>).

1762 35. M. Exposito-Alonso, 500 Genomes Field Experiment Team, H. A. Burbano, O. Bossdorf, R.
1763 Nielsen, D. Weigel, Natural selection in the *Arabidopsis thaliana* genome in present and future
1764 climates. *Nature*. **573**, 126–129 (2019).

1765 36. Y. B. Simons, K. Bullaughey, R. R. Hudson, G. Sella, A population genetic interpretation of
1766 GWAS findings for human quantitative traits. *PLoS Biol.* **16**, e2002985 (2018).

1767 37. M. Exposito-Alonso, C. Becker, V. J. Schuenemann, E. Reiter, C. Setzer, R. Slovak, B. Brachi, J.
1768 Hagemann, D. G. Grimm, J. Chen, W. Busch, J. Bergelson, R. W. Ness, J. Krause, H. A. Burbano,
1769 D. Weigel, The rate and potential relevance of new mutations in a colonizing plant lineage. *PLoS
1770 Genet.* **14**, e1007155 (2018).

1771 38. H. Seebens, T. M. Blackburn, E. E. Dyer, P. Genovesi, P. E. Hulme, J. M. Jeschke, S. Pagad, P.
1772 Pyšek, M. Winter, M. Arianoutsou, S. Bacher, B. Blasius, G. Brundu, C. Capinha, L. Celesti-
1773 Grapow, W. Dawson, S. Dullinger, N. Fuentes, H. Jäger, J. Kartesz, M. Kenis, H. Kreft, I. Kühn,
1774 B. Lenzner, A. Liebhold, A. Mosena, D. Moser, M. Nishino, D. Pearman, J. Pergl, W. Rabitsch,
1775 J. Rojas-Sandoval, A. Roques, S. Rorke, S. Rossinelli, H. E. Roy, R. Scalera, S. Schindler, K.
1776 Štajerová, B. Tokarska-Guzik, M. van Kleunen, K. Walker, P. Weigelt, T. Yamanaka, F. Essl,
1777 No saturation in the accumulation of alien species worldwide. *Nat. Commun.* **8**, 14435 (2017).

1778 39. H. Seebens, F. Essl, W. Dawson, N. Fuentes, D. Moser, J. Pergl, P. Pyšek, M. van Kleunen, E.
1779 Weber, M. Winter, B. Blasius, Global trade will accelerate plant invasions in emerging
1780 economies under climate change. *Glob. Chang. Biol.* **21**, 4128–4140 (2015).

1781 40. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P.
1782 Sklar, P. I. W. de Bakker, M. J. Daly, P. C. Sham, PLINK: a tool set for whole-genome
1783 association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

1784 41. C. Merot, R. A. Oomen, A. Tigano, M. Wellenreuther, A Roadmap for Understanding the
1785 Evolutionary Significance of Structural Genomic Variation. *Trends Ecol. Evol.* **35**, 561–572
1786 (2020).

1787 42. K. Lucek, Y. Willi, Drivers of linkage disequilibrium across a species' geographic range. *PLoS
1788 Genet.* **17**, e1009477 (2021).

1789 43. J. M. Kreiner, D. A. Giacomini, F. Bemm, B. Waithaka, J. Regalado, C. Lanz, J. Hildebrandt, P.
1790 H. Sikkema, P. J. Tranel, D. Weigel, J. R. Stinchcombe, S. I. Wright, Multiple modes of
1791 convergent adaptation in the spread of glyphosate-resistant *Amaranthus tuberculatus*. *Proc. Natl.
1792 Acad. Sci. U. S. A.* **116**, 21076–21084 (2019).

1793 44. M. A. Supple, J. G. Bragg, L. M. Broadhurst, A. B. Nicotra, M. Byrne, R. L. Andrew, A.
1794 Widdup, N. C. Aitken, J. O. Borevitz, Landscape genomic prediction for restoration of a
1795 Eucalyptus foundation species under climate change. *Elife.* **7** (2018), doi:10.7554/eLife.31835.

1796 45. M. Vallejo-Marín, J. Friedman, A. D. Twyford, O. Lepais, S. M. Ickert-Bond, M. A. Streisfeld,
1797 L. Yant, M. van Kleunen, M. C. Rotter, J. R. Puzey, Population genomic and historical analysis
1798 suggests a global invasion by bridgehead processes in *Mimulus guttatus*. *Commun Biol.* **4**, 327
1799 (2021).

1800 46. J. T. Lovell, A. H. MacQueen, S. Mamidi, J. Bonnette, J. Jenkins, J. D. Napier, A. Sreedasyam,
1801 A. Healey, A. Session, S. Shu, K. Barry, S. Bonos, L. Boston, C. Daum, S. Deshpande, A.
1802 Ewing, P. P. Grabowski, T. Haque, M. Harrison, J. Jiang, D. Kudrna, A. Lipzen, T. H.
1803 Pendegast 4th, C. Plott, P. Qi, C. A. Sasaki, E. V. Shakirov, D. Sims, M. Sharma, R. Sharma, A.
1804 Stewart, V. R. Singan, Y. Tang, S. Thibivillier, J. Webber, X. Weng, M. Williams, G. A. Wu, Y.
1805 Yoshinaga, M. Zane, L. Zhang, J. Zhang, K. D. Behrman, A. R. Boe, P. A. Fay, F. B. Fritschi, J.
1806 D. Jastrow, J. Lloyd-Reilley, J. M. Martínez-Reyna, R. Matamala, R. B. Mitchell, F. M.
1807 Rouquette Jr, P. Ronald, M. Saha, C. M. Tobias, M. Udvardi, R. A. Wing, Y. Wu, L. E. Bartley,
1808 M. Casler, K. M. Devos, D. B. Lowry, D. S. Rokhsar, J. Grimwood, T. E. Juenger, J. Schmutz,
1809 Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. *Nature* (2021),
1810 doi:10.1038/s41586-020-03127-1.

1811 47. I. R. MacLachlan, T. K. McDonald, B. M. Lind, L. H. Rieseberg, S. Yeaman, S. N. Aitken,
1812 Genome-wide shifts in climate-related variation underpin responses to selective breeding in a
1813 widespread conifer. *Proc. Natl. Acad. Sci. U. S. A.* **118** (2021), doi:10.1073/pnas.2016900118.

1814 48. G. Tuskan, W. Muchero, J.-G. Chen, D. Jacobson, T. Tschaplinski, D. Rokhsar, W. Schackwitz,
1815 J. Schmutz, S. DiFazio, *Populus Trichocarpa Genome-Wide Association Study (GWAS)*
1816 Population SNP Dataset Released, (available at <https://doi.ccs.ornl.gov/ui/doi/55>).

1817 49. Anopheles gambiae 1000 Genomes Consortium, Data analysis group, Partner working group,
1818 Sample collections—Angola:, Burkina Faso:, Cameroon:, Gabon:, Guinea:, Guinea-Bissau:,
1819 Kenya:, Uganda:, Crosses:, Sequencing and data production, Web application development,
1820 Project coordination, Genetic diversity of the African malaria vector *Anopheles gambiae*.
1821 *Nature*. **552**, 96–100 (2017).

1822 50. Z. L. Fuller, V. J. L. Mocellin, L. A. Morris, N. Cantin, J. Shepherd, L. Sarre, J. Peng, Y. Liao, J.
1823 Pickrell, P. Andolfatto, M. Matz, L. K. Bay, M. Przeworski, Population genetics of the coral
1824 *Acropora millepora*: Toward genomic prediction of bleaching. *Science*. **369** (2020),
1825 doi:10.1126/science.aba4674.

1826 51. K. Ruegg, E. C. Anderson, M. Somveille, R. A. Bay, M. Whitfield, E. H. Paxton, T. B. Smith,
1827 Linking climate niches across seasons to assess population vulnerability in a migratory bird.
1828 *Glob. Chang. Biol.* **27**, 3519–3531 (2021).

1829 52. R. A. Bay, R. J. Harrigan, V. Le Underwood, H. Lisle Gibbs, T. B. Smith, K. Ruegg, Genomic
1830 signals of selection predict climate-driven population declines in a migratory bird. *Science*. **359**,
1831 83–86 (2018).

1832 53. E. P. Kingsley, K. M. Kozak, S. P. Pfeifer, D.-S. Yang, H. E. Hoekstra, The ultimate and
1833 proximate mechanisms driving the evolution of long tails in forest deer mice. *Evolution*. **71**, 261–
1834 273 (2017).

1835 54. L. Smeds, J. Aspi, J. Berglund, I. Kojola, K. Tirronen, H. Ellegren, Whole-genome analyses
1836 provide no evidence for dog introgression in Fennoscandian wolf populations. *Evol. Appl.* **14**,
1837 721–734 (2021).

1838 55. R. M. Schweizer, J. Robinson, R. Harrigan, P. Silva, M. Galverni, M. Musiani, R. E. Green, J.
1839 Novembre, R. K. Wayne, Targeted capture and resequencing of 1040 genes reveal
1840 environmentally driven functional variation in grey wolves. *Mol. Ecol.* **25**, 357–379 (2016).

1841 56. 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M.
1842 Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis, A global
1843 reference for human genetic variation. *Nature*. **526**, 68–74 (2015).

1844 57. J. D. Palacio-Mejía, P. P. Grabowski, E. M. Ortiz, G. A. Silva-Arias, T. Haque, D. L. Des
1845 Marais, J. Bonnette, D. B. Lowry, T. E. Juenger, Geographic patterns of genomic diversity and
1846 structure in the C4 grass *Panicum hallii* across its natural distribution. *AoB Plants*. **13**, lab002
1847 (2021).

1848 58. A. M. Royer, M. A. Streisfeld, C. I. Smith, Population genomics of divergence within an obligate
1849 pollination mutualism: Selection maintains differences between Joshua tree species. *Am. J. Bot.*
1850 **103**, 1730–1741 (2016).

1851 59. M. Kapun, J. C. B. Nunez, M. Bogaerts-Márquez, J. Murga-Moreno, M. Paris, J. Outten, M.
1852 Coronado-Zamora, C. Tern, O. Rota-Stabelli, M. P. García Guerreiro, S. Casillas, D. J. Orengo,
1853 E. Puerma, M. Kankare, L. Ometto, V. Loeschke, B. S. Onder, J. K. Abbott, S. W. Schaeffer, S.
1854 Rajpurohit, E. L. Behrman, M. F. Schou, T. J. S. Merritt, B. P. Lazzaro, A. Glaser-Schmitt, E.

1855 Argyridou, F. Staubach, Y. Wang, E. Tauber, S. V. Serga, D. K. Fabian, K. A. Dyer, C. W.
1856 Wheat, J. Parsch, S. Grath, M. S. Veselinovic, M. Stamenkovic-Radak, M. Jelic, A. J. Buendía-
1857 Ruiz, M. Josefa Gómez-Julián, M. Luisa Espinosa-Jimenez, F. D. Gallardo-Jiménez, A.
1858 Patenkovic, K. Eric, M. Tanaskovic, A. Ullastres, L. Guio, M. Merenciano, S. Guirao-Rico, V.
1859 Horváth, D. J. Obbard, E. Pasyukova, V. E. Alatortsev, C. P. Vieira, J. Vieira, J. Roberto Torres,
1860 I. Kozeretska, O. M. Maistrenko, C. Montchamp-Moreau, D. V. Mukha, H. E. Machado, A.
1861 Barbadilla, D. Petrov, P. Schmidt, J. Gonzalez, T. Flatt, A. O. Bergland, Drosophila Evolution
1862 over Space and Time (DEST) - A New Population Genomics Resource. *bioRxiv* (2021), p.
1863 2021.02.01.428994.

1864 60. L. N. Di Santo, S. Hoban, T. L. Parchman, J. W. Wright, J. A. Hamilton, Reduced representation
1865 sequencing to understand the evolutionary history of Torrey pine (*Pinus torreyana* Parry) with
1866 implications for rare species conservation. *bioRxiv* (2021), p. 2021.07.02.450939.

1867 61. J. von Seth, N. Dussex, D. Díez-Del-Molino, T. van der Valk, V. E. Kutschera, M. Kierczak, C.
1868 C. Steiner, S. Liu, M. T. P. Gilbert, M.-H. S. Sinding, S. Prost, K. Guschanski, S. K. S. S.
1869 Nathan, S. Brace, Y. L. Chan, C. W. Wheat, P. Skoglund, O. A. Ryder, B. Goossens, A.
1870 Götherström, L. Dalén, Genomic insights into the conservation status of the world's last
1871 remaining Sumatran rhinoceros populations. *Nat. Commun.* **12**, 2393 (2021).

1872 62. Millennium Ecosystem Assessment, *Millennium ecosystem assessment* (Millennium Ecosystem
1873 Assessment, 2005; <http://chapter.ser.org/europe/files/2012/08/Harris.pdf>).

1874 63. G. C. Hurt, L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk,
1875 S. Fujimori, K. Klein Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J.
1876 Jungclaus, J. O. Kaplan, J. Kennedy, T. Krisztin, D. Lawrence, P. Lawrence, L. Ma, O. Mertz, J.
1877 Pongratz, A. Popp, B. Poulter, K. Riahi, E. Shevliakova, E. Stehfest, P. Thornton, F. N. Tubiello,
1878 D. P. van Vuuren, X. Zhang, Harmonization of global land use change and management for the
1879 period 850–2100 (LUH2) for CMIP6. *Geosci. Model Dev.* **13**, 5425–5464 (2020).

1880 64. S. Theodoridis, C. Rahbek, D. Nogues-Bravo, Exposure of mammal genetic diversity to mid-21st
1881 century global change. *Ecography (Cop.)* (2021), doi:10.1111/ecog.05588.

1882 65. I. Overcast, M. Ruffley, J. Rosindell, L. Harmon, P. A. V. Borges, B. C. Emerson, R. S. Etienne,
1883 R. Gillespie, H. Krehenwinkel, D. Luke Mahler, F. Massol, C. E. Parent, J. Patiño, B. Peter, B.
1884 Week, C. Wagner, M. J. Hickerson, A. Rominger, A unified model of species abundance, genetic
1885 diversity, and functional diversity reveals the mechanisms structuring ecological communities.
1886 *bioRxiv* (2020), p. 2020.01.30.927236.

1887 66. S. Díaz, N. Zafra-Calvo, A. Purvis, P. H. Verburg, D. Obura, P. Leadley, R. Chaplin-Kramer, L.
1888 De Meester, E. Dulloo, B. Martín-López, M. R. Shaw, P. Visconti, W. Broadgate, M. W.
1889 Bruford, N. D. Burgess, J. Cavender-Bares, F. DeClerck, J. M. Fernández-Palacios, L. A.
1890 Garibaldi, S. L. L. Hill, F. Isbell, C. K. Khoury, C. B. Krug, J. Liu, M. Maron, P. J. K.
1891 McGowan, H. M. Pereira, V. Reyes-García, J. Rocha, C. Rondinini, L. Shannon, Y.-J. Shin, P.
1892 V. R. Snelgrove, E. M. Spehn, B. Strassburg, S. M. Subramanian, J. J. Tewksbury, J. E. M.
1893 Watson, A. E. Zanne, Set ambitious goals for biodiversity and sustainability. *Science* **370**, 411–
1894 413 (2020).

1895 67. C. Rahbek, R. K. Colwell, Biodiversity: Species loss revisited. *Nature* **473** (2011), pp. 288–289.

1896 68. H. M. Pereira, G. C. Daily, Modeling biodiversity dynamics in countryside landscapes. *Ecology*.
1897 **87**, 1877–1885 (2006).

1898 69. J. Harte, A. B. Smith, D. Storch, Biodiversity scales from plots to biomes with a universal
1899 species-area curve. *Ecol. Lett.* **12**, 789–797 (2009).

1900 70. D. R. Lockwood, C. M. Richards, G. M. Volk, Probabilistic models for collecting genetic
1901 diversity: Comparisons, caveats, and limitations. *Crop Sci.* **47**, 861–866 (2007).

1902 71. L. Czech, M. Exposito-Alonso, grenepipe: A flexible, scalable, and reproducible pipeline to
1903 automate variant and frequency calling from sequence reads. *arXiv* (2021), (available at
1904 <http://arxiv.org/abs/2103.15167>).

1905 72. A. Miraldo, S. Li, M. K. Borregaard, A. Flórez-Rodríguez, S. Gopalakrishnan, M. Rizvanovic, Z.
1906 Wang, C. Rahbek, K. A. Marske, D. Nogués-Bravo, An Anthropocene map of genetic diversity.
1907 *Science*. **353**, 1532–1535 (2016).

1908 73. D. H. Parks, T. Mankowski, S. Zangooei, M. S. Porter, D. G. Armanini, D. J. Baird, M. G. I.
1909 Langille, R. G. Beiko, GenGIS 2: Geospatial Analysis of Traditional and Genetic Biodiversity,
1910 with New Gradient Algorithms and an Extensible Plugin Framework. *PLoS One*. **8**, e69885
1911 (2013).

1912 74. C. Li, D. Tian, B. Tang, X. Liu, X. Teng, W. Zhao, Z. Zhang, S. Song, Genome Variation Map: a
1913 worldwide collection of genome variations across multiple species. *Nucleic Acids Res.* **49**,
1914 D1186–D1191 (2021).

1915 75. M. Kardos, E. Armstrong, S. W. Fitzpatrick, S. Hauser, P. Hedrick, J. Miller, D. Tallmon, W.
1916 Chris Funk, The crucial role of genome-wide genetic variation in conservation. *bioRxiv* (2021),
1917 p. 2021.07.05.451163.

1918 76. D. Spielman, B. W. Brook, R. Frankham, Most species are not driven to extinction before
1919 genetic factors impact them. *Proceedings of the National Academy of Sciences*. **101** (2004), pp.
1920 15261–15264.

1921 77. Ipbes, *Global assessment report of the Intergovernmental Science-Policy Platform on*
1922 *Biodiversity and Ecosystem Services* (IPBES Secretariat, Bonn, Germany, 2019;
1923 <https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf>).

1924