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More species than ever before are at risk of extinction due to anthropogenic habitat loss and
climate change. But even species that are not threatened have seen reductions in their populations
and geographic ranges, likely impacting their genetic diversity. Although preserving genetic
diversity is key to maintaining adaptability of species, we lack predictive tools and global
estimates of genetic diversity loss across ecosystems. By bridging theories of biodiversity and
population genetics, we introduce a mathematical framework to understand the loss of naturally
occurring DNA mutations within decreasing habitat within a species. Analysing genome-wide
variation data of 10,095 geo-referenced individuals from 20 plant and animal species, we show
that genome-wide diversity follows a power law with geographic area (the mutations-area
relationship), which can predict genetic diversity loss in spatial computer simulations of local
population extinctions. Given pre-21* century values of ecosystem transformations, we estimate
that over 10% of genetic diversity may already be lost, surpassing the United Nations targets for
genetic preservation. These estimated losses could rapidly accelerate with advancing climate
change and habitat destruction, highlighting the need for forecasting tools that facilitate
implementation of policies to protect genetic resources globally.
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Anthropogenic habitat loss and climate change (/, 2) have led to the extinction of hundreds of species
over the last centuries (/, 2) and approximately one million more species (25% of all known species)
are at risk of extinction (3). It has been estimated that an even larger fraction—at least 47% —of plant
and animal species have lost part of their geographic range in response to the last centuries of
anthropogenic activities (4, 5). Though this loss might seem inconsequential compared to losing an
entire species, this range contraction reduces genetic diversity, which dictates species' ability to adapt
to new environmental conditions (6—8). The loss of geographic range can spiral into a feedback loop
where diversity loss further increases the risk of species extinction (9, 10).

Although genetic diversity is a key dimension of biodiversity (/7), it has been overlooked in
international conservation initiatives. Only in 2021 did the United Nations’ Convention of Biological
Diversity propose to preserve at least 90% of all species' genetic diversity (12, 13). Although analyses
of genetic markers in animal populations sampled over time with the aim of quantifying recent genetic
change are emerging (/4, 15) and simulation studies with species distribution models or sensitivity
analyses suggest within-species range variation may be strongly impacted (5, /6, 17), theory and
scalable approaches to estimate genome-wide diversity loss across species do not yet exist, impairing
prioritization and evaluation of conservation targets. Here, we introduce a framework to estimate global
genetic diversity loss by bridging biodiversity theory with population genetics, and by combining data
on global ecosystem transformations with newly available genomic datasets.

The first studies that predicted biodiversity reductions in response to habitat loss and climate
change in the 1990s and the 2000s projected species extinctions using the relationship of biodiversity
with geographic area—termed the species-area relationship (SAR) (/8) (see Supplementary Materials
[SM] I for a comparison of mathematical models for predicting biodiversity). In this framework,
ecosystems with a larger area (4) harbour a larger number of species (S) resulting from a balance of
limited dispersal, habitat heterogeneity, and colonisation-extinction-speciation dynamics. The more a
study area is extended, the more species are found. The SAR has been empirically shown to follow a
power law, S = A° It scales consistently across continents and ecosystems (/9), with a higher z
characterising more speciose and spatially structured ecosystems. Given estimates of decreasing
ecosystem areas over time (4.; > A;), Thomas et al. (20) proposed rough estimates of the percentage of
species extinctions in the 21% century ranging from 15 to 37% (SM L.3). Though this may be an
oversimplification, SAR has become a common tool for policy groups including the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (3).

As species richness is for to ecosystems’ biodiversity, within-species variation can be
quantitatively described by the richness of genetic mutations within a species, defined here as DNA
nucleotide variants appearing in individuals of a species. Although population genetics theory has long
established that larger populations have higher genetic diversity (27), and it is known that geographic
isolation between populations within the same species results in geographically separated accumulation
of different mutations, there have been no attempts to describe the extent of genetic diversity loss driven
by species’ geographic range reduction using an analogous “mutations-area relationship” (MAR).

We suspected that such a mutations-area relationship must exist given that another general
assumption is shared with species studies, namely that when mutations appear they are first in only one
individual, and they typically remain at low frequency in a population, though a few prevail to high
frequency through stochastic genetic drift and natural selection (22). This principle of “commonness of
rarity” is well-known for species (i.e. most species in an ecosystem are rare while only a few are
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92  common) and, together with limited spatial dispersal of species and communities, is a key statistical

93  condition that led to the power-law SAR.

94

95 To examine the expectation of a power-law MAR, we begin quantifying the rarity of mutations

96  using millions of biallelic genetic variants of the Arabidopsis thaliana 1001 genomes dataset (Fig. 1A)

97  (23) by fitting several common models of species abundances (24) to the distribution of mutation

98  frequencies (gq), termed the Site Frequency Spectrum in population genetics (Fig. 1B, SM I1.1). The

99  canonical L-shaped probability distribution (//g) of this spectrum—which is expected under
100  population-equilibrium and the absence of natural selection processes—fit this data well (Fig. 1B),
101  although the more parameter rich Preston’s species abundance log-normal model achieved the best AIC
102  value (Fig. 1B, SM II1.1, Table S3, Table S10). Despite the small differences in fit, these models all
103  showcase the similarities of abundance distributions of mutations within species and species within
104  ecosystems, suggesting that they may behave similarly in their relationship to geographic area (22, 24).
105

106
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108  Fig. 1 | Mutations across populations follow a log-normal abundance distribution and a power
109 law with species range area. (A) Density of individuals projected in a 1 x 1 degree latitude/longitude
110  map of Europe and exemplary subsample areas of different sizes. (B) Distribution of mutation (SNPs)
111  frequencies in 1,001 Arabidopsis thaliana plants using a site frequency spectrum histogram (grey inset)
112 and a Whittaker’s rank abundance curve plot, and the fitted models of common species abundance
113 functions in 4. thaliana using a dataset random sample of 10,000 mutations also used in (C). The AIC
114  fit of the three models is indicated with respect to the top model, log-normal. (C) The mutations-area
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115  relationship (MAR) in log-log space built from 10 random subsamples of different areas of increasing
116  size within 4. thaliana’s geographic range along with the number of mutations discovered for each area
117  subset.

118

119 To quantify how genetic diversity within a species increases with geographic area, we
120  constructed the MAR by subsampling different regions of different sizes of Arabidopsis thaliana’s
121  native range using over one thousand geo-referenced genomes (Fig. 1A, C). As a metric of genetic
122 diversity, we modelled the number of mutations (M) in space (number of segregating sites) consistent
123 with the species-centric approach of SAR, which uses species richness as the metric of biodiversity
124  (SM I1.2). The MAR also followed the power law relationship M = c4” with a scaling value zyur =
125  0.324 (CI95% = 0.238-0.41) (Fig. 1C). Naturally, subsamples of larger areas may also contain more
126  individuals, and therefore should also have more mutations. But the observed power law relationship
127  goes beyond what is expected from the increase of number of samples in an area (which only accounts
128  for increases of M = log(A4), see theoretical derivation SM 1L.3). The remainder may be attributed to
129  population genetic drift and spatial natural selection causing structuring of genetic diversity across
130  populations. The discovered power law scaling appears robust to different methods of area
131  quantification, the effects of non-random spatial patterns, random area sampling, fully nested outward
132 or inward sampling (/9), raster area calculations, raster grid resolution (~10-1,000 km side cell size),
133 and is adjusted for limited sample sizes (SM 11.3.2, I11.3, Fig. S14-18, Tables S7-9).

134

135 We then wondered whether MAR can predict the loss of genetic diversity due to species’ range
136  contractions. We explored several scenarios of range contraction in 4. thaliana by removing in silico
137  grid cells in a map representing populations that are lost (Fig. 2B). Our simulations included random
138  local population extinction as if deforestation was scattered across large continents, radial expansion of
139  an extinction front due to intense localised mortality, or local extinction in the warmest regions within
140  aspecies range (4, 25), among others (SM II1.4). The MAR-based predictions of genetic loss, using /-
141 (1-A;/ A1 )" and assuming z = 0.3, conservatively followed the simulated local loss in 4. thaliana
142 (pseudo-R’ = 0.87, taking all simulations together) (SM I1.4, I11.4).

143

144 Since genetic diversity is ultimately created by spontaneous DNA errors passed onto offspring
145  every generation, the loss of genetic diversity seems reversible, as these mutations could happen again.
146  However, the recovery of genetic diversity through natural mutagenesis is extremely slow (57),
147  especially for mutations affecting adaptation. Simulating a species undergoing only a 5-10% in area
148  reduction, it would take at least 140520 generations to recover its original genetic diversity (2,100—
149 7,800 years for a fast-growing tree or medium-lifespan mammal of 15 year generation length), although
150  for most simulations, recovery virtually never happened over millennia (see SM 11.4-5, Fig. S11, SM
151  IIL6).

152

153

154
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A Genetic diversity loss by geographic area loss using the mutations-area relationship
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155
156  Fig. 2 | The power law of genetic diversity loss with range area loss. (A) Percentage of loss of total

157  genetic diversity in Arabidopsis thaliana from several stochastic simulations (red) of local extinction
158  in (B), and theoretical model projections of genetic diversity loss using the MAR (dotted lines). The
159  expectation for genetic diversity loss based only on individuals is in grey (using starting populations of
160  N=10%-10°) (SM IL4). (B) Cartoon of several possible range contractions simulated by progressively
161  removing grid cells across the map of Eurasia (red/grey boxes) following different hypothesised spatial
162  extinction patterns. (C) A metric of adaptive capacity loss during warm edge extinction in (B). Using
163  Genome Wide Associations (GWA) to estimate effects of mutation on fitness in different rainfall
164  conditions, water use efficiency [wue], flowering time, seed dormancy, plant growth rate, and plant
165  size. Plotted are the fraction loss of the summed squared effects (Ya’) of 10,000 mutations from the top
166 1% tails of effects. We also plot (yellow) the fraction of protein-coding alleles lost (nonsynonymous,
167  stop codon loss/gain, and frameshift mutations).

168

169

170 To test the generality of the MAR, we searched in public nucleotide repositories for datasets of
171  hundreds to thousands of whole-genome sequenced individuals for the same species sampled across
172 geographic areas within their native ranges (Table 1, SM IV). In total, we identified 20 wild plant and
173  animal species with such published resources and assembled a dataset amassing a total of 10,095
174  individuals of these species, with 1,522 to 88,332,015 naturally occurring mutations per species,
175  covering a geographic area ranging from 0.03 to 115 million km?. Fitting MAR for these diverse species,
176  we recovered zyur values similar to A. thaliana, with many species overlapping in confidence intervals,
177  with the exception of some outliers (mean (SE) zaur = 0.31 (£0.038), median = 0.26, IQR = £0.15,
178  range=0.10-0.82, mean (SE) z*y4z scaled = 0.26 (+0.048). See Table 1, SM 1V, Fig. S22, Table S10).
179  Theoretical derivations show that zuur is a consequence of fundamental evolutionary and ecological
180  forces (mutation, dispersal, selection) and should range from 0 to 1, depending on the strength of
181  population structure (SM IL.3, see Fig. S10 for its relationship with isolation-by-distance). These
182  predictions were further confirmed by spatial population genetics coalescent and individual-based
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183  simulations in 2D and continuous space (SM 1IL3), as well as with mainland-island community
184  assembly simulations according to the Unified Neutral Theory of Biodiversity (UNTB) (SM V.3).

185

186

187  Table 1 |The mutations-area relationship across diverse species. Summary statistics of individuals
188  sampled broadly across species distributions, sequencing method and mutations studied, and convex
189  hull area extent of all samples within a species. The mutations-area relationship (MAR) parameter z,
190  which captures how spatially restricted mutations are, including a scaled correction z* for low sampling
191  genomic effort. Percent area that needs to be kept for a species to maintain 90% of its genetic diversity,
192  using the per-species MAR value estimates. Area predictions are not provided for threatened species,
193  as these have likely already lost substantial genetic diversity and require protection of their full
194  geographic range (Fig. 3).

Species N Mot Aot MAR MAR scaledMin area 9%
Method Km?x10° z [C195%)] z* [CI195%)] %
#f" Arabidopsis thaliana 1,135 (1,001)* 11,769,920 W 27.34  0.324(0.238-0.41) 0.312(0.305-0.32) 71-78
= Arabidopsis lyrata 108 17,813,817 W 2.79 0.236 (0.218-0.254) 0.151 (0.137-0.165) 50-66
= Amaranthus tuberculatus 162 (155) 1,033,443 W 0.80 0.109 (0.081-0.136) 0.142 (0.136-0.149) 48-65
@ Eucalyptus melliodora” 275 (36)" 9,378 GBS 0.95 0.466 (0.394-0.538) 0.403 (0.398-0.407) 77-82
4 Yucca brevifolia™ 290 10,695 GBS NA ?0.128 (0.109-0.147) 0.049 (0.037-0.062) -
8 Mimulus guttatus 521 (286)" 1,522 GBS 25.14  0.274 (0.259-0.29)  0.231 (0.221-0.241) 63-73
" Panicum virgatum 732 (576)" 33,905,044 W 6.29 0.232 (0.211-0.252) 0.126 (0.116-0.136) 43-63
\ Panicum hallii 591 45,589 W 2.19 0.824 (0.719 - 0.928) 0.814 (0.745 - 0.883) 88-90
A Pinus contorta 929 32,449 GC 0.89 ?0.015 (0.014-0.016) -0.061(-0.062-0.060) -
A Pinus torreyana™® 242 478,238 GBS NA ?0.236 (0.19-0.282) 0.105 (0.099-0.11) -
@ Populus trichocarpa 882 28,342,826 W 1.12 0.275(0.218-0.332) 0.165 (0.155-0.176) 53-67
N Anopheles gambiae 1142 (29)" 52,525,957 W 19.96 0214 (0.164-0.264) 0.122 (0.111-0.132) 42-62
¥ Acropora millepora™” 253 (12)" 17,931,448 W 0.03 0.246 (0.209-0.283) 0.287 (0.28-0.294)  69-77
& Drosophila melanogaster ~ 271" 5,019 W 115.21  0.437 (0.397-0.477) 0.325(0.314-0.336) 72-79
& Empidonax traillii P 219 (199)% 349,014 GBS/GC 7.03 0.214 (0.174-0.254) 0.074 (0.047-0.102) 24-54
& Setophaga petechia®<™ 199 104,711 GBS 15.17  0.251(0.236 - 0.267) 0.149 (0.135 - 0.163) 49--66
', Peromyscus maniculatus 80 (78)% 14,076 GBS 22.61  0.488 (0.264-0.713) 0.683 (0.615-0.751) 86-88
‘W Dicerorhinus sumatrensis® 16 8,870,513 W NA ?0.412 (0.369-0.456) 0.127 (0.11-0.144) -
¥ Canis lupus 349 (230)° 1,517,226 W 19.10  0.256 (0.232-0.28)  0.184 (0.175-0.193) 56-70
¢ Homo sapiens 2504 (24)" 88,332,015 W 80.76  70.431(0.347-0.514) 0.281 (0.23-0.332) NA
195 “Only individuals in the native range were used for the analyses.
196 “Only individuals with available coordinates or matching IDs were used for analyses.

197 %Numbers indicate pools of flies used for Pool-Sequencing.
198 *Number of geographically separated populations, as multiple individuals were collected per population.

199 "Only natural populations were used, excluding breeds, landraces, and cultivars.

200 Area was not reported for species with unknown locations or where less than 2 populations were sampled.

201 "Values excluded from global averages used for conservation applications due to uncertain estimates, suboptimal genomic data type, or
202 because estimates should not be applied for conservation (i.e. humans or nearly extinct Sumatran rhinoceros).

203 Acronyms: W = whole-genome re-sequencing or discovery SNP calling. GBS = genotyping by sequencing of biallelic SNP markers. GC =
204 genotyping chip; CR = Red List Critically Endangered. VU= Red List Vulnerable. CA = included in the California Endangered Species Act.
205 Decline = population decline reported in the Red List.

206

207

208 Although we expect species-specific traits related to dispersibility or gene flow to affect zyuz
209  (e.g. migration rate and environmental selection in population genetic simulations significantly
210  influences zmur, Table S2), no significant association was found between ziuz and different
211  ecologically-relevant traits, mating systems, home continents, etc., for the 20 species analysed. Perhaps
212 this is simply that there are still too few species that have large population genomic data to find such a
213 signal (Table 1, Table S12-13). Nevertheless, the relative consistency of ziur across largely different
214  species may be promising for conservation purposes, as an average zyur ~0.3 (IQR £0.15 , Table 1,
215  Table S11) could be predictive of large-scale trends of genetic diversity loss in many range-reduced
216  species that lack genomic information. Further, although species will naturally have different starting
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217 levels of total genetic diversity prior to range reductions, for instance, due to genome size, structure, or
218  mating system differences (26), the application of zyr provides relative estimates of genetic diversity
219 loss. For instance, assuming zyuz ~0.3, we would predict that an area reduction of ~50% creates an
220  approximate loss of ~20% of genetic diversity relative to the total genetic diversity of a given species.

221

222 Finally, we used MAR to estimate the average global genetic diversity loss caused by pre-21*
223 century land transformations. Although accurate species-specific geographic area reduction data in the
224 last centuries are scarce, we leveraged global land cover transformations from primary ecosystems to
225  urban or cropland systems (3, 27) (Table S14-15). Using the average scaled z's4z (Table S18) and
226  several global averages of Earth’s land and coastal transformations for present day (38% global area
227  transformation from (27), 34% from (28), and 43-50% from (29)), we estimate a 10-16% global genetic
228  diversity loss on average across species (Fig. 3A). While these estimates may correctly approximate
229  central values across species in an ecosystem, we expect a substantial variation in the extent of loss
230  across species, ranging theoretically from 0 to 100% (Fig. 3, Fig. S26). One cause of this variation is
231  the heterogeneity in land cover transformations across ecosystems; for example, more pristine high-
232 altitude systems have only lost 0.3% of their area, while highly managed temperate forests and
233 woodlands have lost 67% (Fig. 3B, Table S14-15).

234

235 Another cause for the variability in genetic loss among species (even within the same
236  ecosystem) may be their differential geographic ranges and abundances, life histories, or species-
237  specific threats. We gathered data from species red-listed by the International Union for Conservation
238  of Nature (IUCN) (1), which evaluates recent population or geographic range area reduction over +10
239  years / £3 generations to place assessed species in different threat categories using several thresholds
240  (guidelines for assessments and thresholds available at www.iucn.org). Again, assuming that with the
241  average zyur ~0.3 we can capture general patterns, we translate these category thresholds into genetic
242 diversity loss (Fig. 3C, see SM V, Table S17). Vulnerable species, having lost at least 30% of their
243 geographic distribution, may have experienced >9% of genetic diversity loss, endangered species,
244  which have lost over 50% of their geographic distribution, should have incurred >16% of genetic
245  diversity loss, and critically endangered species, with over 80% area reduction, likely suffered >33%
246 of genetic diversity loss (Fig. 3B). This clearly showcases that even species in no imminent risk of
247  extinction (e.g. least concern, near threatened, vulnerable), such as the majority of species for which
248  population genomic data exists, may already be losing substantial genetic diversity (Fig. 3A).

249

250
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251
252  Fig. 3 | The parameter space of genetic diversity loss mapping pre-21* century ecosystem

253  transformations and species threat categories against possible values of the mutations-area
254  relationship. (A) Possible values of two key parameters, the mutations-area relationship scaling
255  parameter (MAR) and % of area reduction of a species geographic range (as a proxy of entire ecosystem
256  transformation). The theoretical % of genetic diversity loss is represented as filled grey colour, with
257  isolines in white. Estimates of scaled z .z from Table 1 per species are in orange with their 95%
258  confidence intervals (for unscaled zyuz see Fig. S23). Although exact area losses per species are
259  unknown, species are plotted based on their [IUCN Red list (C) status, using the broad ranges of
260  minimum and maximum recent population or area decline per category. The global average is calculated
261  with the average zyur across species and % of the Earth transformed from IPBES. (B) Percentage of
262  transformed ecosystem area from the Millennium Ecosystem Assessment (MEA) (27) are represented
263 Dby light blue arrows, from the Intergovernmental Science-Policy Panel for Biodiversity and Ecosystem
264  Services (IPBES) (28) for 2010 and 2050 are dark blue arrows, and from the Land Use Harmonization
265 2 (LUH2) dataset (29) are in dark purple. (C) The minimum criterion value of population or geographic
266  area loss to be classified in each category of the [UCN Red List are indicated with pink arrows (the near
267  threatened category does not have a range of values, instead we used 30% +10%). The number of plant
268  species (for which population abundance loss approximates area loss) included in each category is
269  shown as box sizes (/). The IUCN ranges were used to place ranges of estimates in (A) per species.
270

271 The ultimate challenge is to understand how genetic diversity loss relates to loss of adaptive
272 capacity of a species. To this end, we leveraged the extensive knowledge of the effect of mutations in
273 ecologically relevant traits in 4. thaliana from Genome-Wide Associations (GWA) (Fig. 2C, SM III).
274  We again conducted spatial warm edge extinction simulations, this time tracking metrics of adaptive
275  capacity, including the total sum of effects estimated from GWA of remaining mutations (3}; a; for
276  i=1...10,000 variants of putative a; effect), the additive genetic variance (Va= Y, pi(I-p)a’ , which
277  accounts for each variant’s population frequency p;), and the loss of nonsynonymous mutations (SM
278  1IL5). Although determining the effect of mutations through GWA is technically challenging even in
279  model species (30, 37), and variants may even be either deleterious or advantageous depending on
280  genomic backgrounds (32) or environments (33), our simulations suggest putatively functional
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281  mutations may be lost more slowly (z<0.3, Fig. 2C) than neutral genetic diversity (Fig. 2A). In fact,
282  the additive variance Va parameter, often equated to the rate of adaptation, appears rather stable (34)
283  until just before the extinction event when it sharply collapses (Fig. S21; see also Fig. 2C, and SM
284  11.3.4 for simulations that replicate this pattern). This is analogous to the famous “rivet popper”
285  metaphor where ecosystem structure and function may suddenly collapse as species are inadvertently
286  lost (35). Projections of the MAR using genome-wide variation may crucially serve as early
287  conservation tool in non-threatened species (36, 37), before species reach accelerating collapsing
288  extinction dynamics—an acceleration that we expect to be even more dramatic due to elevated drift and
289  accumulation of deleterious mutations of small critically-endangered populations (38, 39).

290

291 To achieve the recently published United Nations target to protect “at least 90% of genetic
292  diversity within all species”(/3), it will be necessary to aggressively protect as many populations as
293  possible for each species. Here, we have discovered the existence of a mutations-area relationship
294  (MAR) and provided a mathematical framework to forecast genetic diversity loss with shrinking
295  geographic species ranges. The MAR contrasts with existing studies on the risk of losing entire species
296 by focusing on quantifying the magnitude and dynamics of genetic diversity loss likely ongoing in most
297  species. This framework demonstrates that even with conservative estimates, substantial area protection
298  will be needed to meet the UN Sustainable Development Goals. For vulnerable or endangered species,
299  we may have likely already failed.

300
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120 SUPPLEMENTAL METHODS

121

122 1. Background on species biodiversity and biogeography

123 I.1 Theoretical models of biodiversity

124

125  Studies in biogeography have modelled the species-area relationship with several functions.
126  Below we summarise the different approaches using an example of richness of S = 100

127  species, with variable abundance or area, A.

128

129 We may visualise the different areas or abundances of species as a frequency

130  histogram (Fig. S1, Preston plot), with x-axis: logarithm of abundance bins (historically log2
131  as arough approximation to the natural logarithm), and y-axis: number of species at given
132 abundance. Alternatively, as a rank-abundance diagram (Fig. S1, Whittaker plot): x-axis:
133 species list, ranked in order of descending abundance (i.e. from common to rare), and y-axis:
134 logarithm of % relative abundance.

135
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138 Fig. S1 | Example of typical plots used for species abundance curve studies

139 Due to their strong skew, Species Abundance Curves are often plotted using the Preston plot (left) where the x axis

140 represents bins of log2 abundances (also referred to as octaves), or using the Whittaker plot (right) where the x axis is the
141 rank of each species in a dataset and y axis the species' relative abundance.

142

143
144
145  I.1.2.Niche apportionment approaches

146

147 A series of theoretical deterministic and stochastic "niche apportionment models" have been
148  put forward (summarised in (/) or (2, 3)).

149

150 The Motomura (4) geometric series suggests that each species that arrives takes half
151  the area. The first would take 50%, the second 50% of 50%, and so forth, which can be

152 expressed as:

153

154 P =05

155

156  Similarly, one can imagine that as a species colonises a habitat, it takes up a fraction different
157  than 50%. This gives a geometric series with parameters k£ which can be written as

158
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159 Pi=k@1-k)

160

161  Other geometric series-related models include stochasticity, where & instead of being a fixed
162  parameter is a random uniform variable and there is a k; each time i a new species arrives to
163 the ecosystem. The "dominance preemption" model draws from 50-100% at any new arrival
164  of a species, the random fraction model draws from 0-100%. Then the abundance of a species
165  depends on the stochastic process of previous f' = I...i-1 species arriving first:

166

i—1
E[B|PL, ..., Py, k] = ki x (1 - pr)

167 f=1
168
169  Another approach is the broken stick by MacArthur (5), which theorised a habitat is broken
170  into S-/ places at random, which creates S fractions of an area. Then the relative area of a
171  species is:
172

1.1
EP]=(5)) —
173 S Z—:w
174

175
176 I.1.2. Niche statistical approaches of species sampling

177

178  Differently from niche partitioning functions, statistical approaches such as the log-series
179  from Fisher (6) and log-normal from Preston (7) are probability distributions, and approach
180  modelling in a conceptually different way: they model the sampling process of species

181  collections given an underlying relative abundance (see below).

182

183

184 Statistical-based derivations probably began with Fisher (6), with the log-series

185  distribution. It assumes that species abundances in the community are independent identically
186  distributed variables, sampling is a Poisson process, sampling is done with replacement, or
187  the fraction sampled is small enough to approximate a sample with replacement. Here,

188

189 Sn= %"
190
191 where z is a constant Z € [0, 1] related to the sample dataset (typically close to 1),

192 *= MLN, and « is a new constant term (ecosystem-specific) that is used as a measure of
193  biodiversity. Fisher proposed the number of species could be estimated as:

194

195 S:axlog(l—l-%).

196

197 Finally, Preston (&) posed that the skewness of previous proposals is due to lack of
198  sampling. With little data, common species are collected sooner, but with more abundant
199  sampling, the rarest species are also well-sampled and have abundances well above 0. Preston
200  then proposed that the octaves (bins of doubling abundance) follow a normal distribution,
201  making the raw abundance log-normal distributed. Given So is the number of species in the
202  model octave of abundance and a variance composite of the log-Normal o2 the number of
203  species per abundance (octave) bin R (=log(n)) is:

204
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205 Sk = Spe /2"

206

207 The Unified Neutral Theory of Biodiversity (UNTB) by Hubbell (/) takes a stochastic
208  approach of a community with immigrants, extinctions, and speciation in continuous

209  dynamics. Interestingly, the UNTB's key parameter, 6, coincides with Fisher's a, as the log-
210  series is a limiting case of UNTB. Hubbell's discovery was that a=2.J,,v, where Jm is the size
211  of the external metacommunity that provides migrants of species to the focal community, and
212 wis the speciation rate. Alonso and McKane (9) derived the so-called Metacommunity Zero-
213 Sum Multinomial (MZSM) distribution from the UNTB. In practice, both distributions have
214  almost-identical fits (lines completely overlapping in Fig. S2 below).

215
216
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218 Fig. S2 | Summary of theoretical models of Species Abundance Curves.
219 Five niche partitioning or statistical models shown in a Whittaker plot. The different models expect different levels of
220 evenness in abundance across the species in the community, from the lowest (geometric series) to the highest (log-normal).

221
222

223 1.2 Metric of species diversity
224
225  Although a number of metrics exist to measure species diversity, such as the Shannon index,

26 H'=- >0y PilogP; (with Pi the relative proportions of species abundances) or Fisher's non-
227  dimensional « parameter, the study of species abundances and area relationships has focused
228  on species richness S, that is, the total number of species in a given location or area. Below
229  we therefore focus on species richness.

230

231

232 1.3 Biogeography of species and extinction.

233

234 SAD and SAR connection

235

236  Due to many species being rare, it is expected that as researchers sample an area, the most
237  common species will be sampled first, and as the area studied increases, more and more

238  species will be discovered. This is thought to happen following a power law relationship,
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where the number of species in that area S, increases with the sampled area A, with scaling z
(slope in a log-log plot), and with a constant c:

SAR(A) = cA”

Preston (7) derived theoretically that from a log-normal series, one would expect
z=0.27, under a number of assumptions (Fig. S3). This has been empirically shown to be
close to reality (7, 10), although there is some variation across ecosystems and spatial scales.
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Fig. S3 | Example of a Species-Area Relationship in Galapagos Islands
Classic species richness dataset from the Galapagos Islands (Preston, 1962). It depicts species richness as a function of
island area in a log-log plot.

1.4 Estimating extinction of species from the species area relationship

The first estimates of species extinction used the SAR relationship. Given a reduction of
ecosystem area, 4, by an area of a (11, 12). If these areas, as well as the SAR scaling, z, are
known, then one can predict the number of species in the future as:

Snow — Stut = CAﬁow - CAfut,

However, we are normally interested in the fraction of species that will go extinct Xy so we
can take the ratio:

— Snow_sfut — _ CAfut — _ Afut o
XS - Show - 1 CAIZIOW - 1 now

I1. Population genetics models and the site frequency spectrum.
I1.1 The Wright-Fisher model and the site frequency spectrum

Statisticians and population geneticists from the 20" century, Wright and Fisher, built a
simple statistical model of evolution of a population. It assumes that each generation a
population of N monoecious (hermaphrodite) individuals mate randomly to create a new
generation of N individuals and then immediately die so that only N individuals remain in the
population at any given time. This random sampling process causes the frequency of a variant


https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.13.464000; this version posted April 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

276  in one generation to possibly differ from its frequency in the previous generation—a process
277  known as genetic drift.

278

279 When a nucleotide mutation or variant (e.g. ACGAA - ACGTA ) emerges by a

280  random process of, for instance, DNA replication error, it will first be in 1/N individuals (if
281  we consider these diploid, 1/2N chromosomes). Through random sampling that T mutation
282  may be lost, stay at the same frequency, or randomly move to higher frequency. Although
283  rarely, just by chance, the mutation may reach 100% frequency. This results in a

284  “commonness of rarity” when looking at mutations in a population, as we have seen in

285  previous sections for species. Since these genetic drift dynamics affect all mutations genome-
286  wide, we therefore expect the majority of mutations to be absent, or rare, and only a much
287  smaller proportion of variants to be at moderate or high frequencies.

288

289 The site frequency spectrum (SFS) refers to the distribution of frequencies of variants
290  in a population. This is the number of sites at which we observe a variant at frequency ¢ in a
291  sample of n individuals. To derive the expected SFS distribution, we turn to Kingman’s

292 Coalescent (/3). Both models describe the same ideal population of random mating, constant
293  population size, and mutations emerging at a low rate and drifting in frequency. But while the
294  Wright-Fisher model describes the dynamics of a whole population forward-in-time, the

295  Kingman’s Coalescent describes the genealogy of a sample of individuals from a population,
296  going backward in time. By building a model around the individuals that are sampled or that
297  survived, rather than of an entire population, the Coalescent provides a simpler way to derive
298  expectations in small populations or in cases, for example here, where a limited sample of
299  genomes are sequenced. Using the Coalescent (see (/4) for details), one obtains that the

300  expected number of mutations of a given abundance, n, is inversely related to their frequency,

301 g
302 1
303 Mn=cy
304

305  for some constant c that depends on the mutation rate and the population size. This SFS from
306  population genetics theory is remarkably similar to the Species Abundance Relationship. In
307  fact, Fisher himself (/5) derived an expression similar to the above.

308

309 Rearranging terms, one can see this is a constrained version of the log-series

310  Probability Mass Function (PMF), which Fisher also proposed for the distribution of species
311  abundances (6). Below, one can graphically see the similarities (Fig. S4):

312
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314 Fig. S4 | Similarity between the Species Abundance Distribution and the Site Frequency Spectrum
315  Leftis the Probability Mass Function of the log-series (p=0.999), center is the SFS (N=100, c=1), and right is
316  the log-series-based abundance of species (alpha=100, N=10000).

317
318 Keeping the abundance, n, constant (and low), when the number of individuals

_ _N
319 N — oo, we know that the constant x from Fisher's SAD approaches 1, ¥ = N+a 1 Then,
320  we can rewrite the number of species at any given abundance (S») as:

321
N _\n
322 Snzoz(’”é\[) :a%:c%ZMn
323
- k) = sy %
324 So both have the same form as the log series PMF: in(1-p) & when » = 1. In

325  the next section we will see that the constants of the SAD and the SFS are proportional to
326  species and mutation diversity, although the Site Frequency Spectrum (SFS) is a specific case
327  of SAD. One can also see that because the constant in the SFS is the population scaled

328  mutation rate, ¢ = ¢ = Nep, and Fisher's o ~ 6 for large N.

329

330  IL.2 Metrics of genetic diversity

331

332 In population genetics, multiple measurements of genetic diversity have been put forward.
333 The most straightforward is the allelic richness, also number of mutations, or also called the
334  number of segregating sites. Segregating sites, M, is the direct equivalent of the species

335  richness, S, and it depends on the number of samples used and length of DNA sequence

336  explored (Note: we use the non-standard notation, M, as the standard in population genetics is
337 S [for segregating sites] but this is already in use for species richness. We then use M for

338  mutations and S for species). This metric can also be thought of as the area under the curve of
339  the SFS. Two other metrics that describe the SFS but that aim to be sequence-length- and

340  individual independent are Watterson's Theta, fw, and Nucleotide diversity, =, (also called 0~
341 ). These two metrics of diversity are identical at population equilibrium and are estimates of
342 4N (when the SFS follows a 1/q relationship), with effective population size N. and per-
343  generation mutation rate 4, whereas they differ in non-equilibrium demographics, under

344  natural selection, or under other behaviors not considered in the Wright-Fisher neutral model,
345  such as different mating systems (/6).

346

347  First, 7 is described as:

348
o St i(n—i)M;
349 n(n—1)/2

350
351  andfw as:
352 B
Oy = Z=
353 2y 1/1,
354 :
355 where 2_i—1 1/%is the n-1" Harmonic number, which serves to scale the segregating

356  sites based on the assumption that the abundance of mutations follows a 1/q SFS. The

357  diversity metrics m and fw are both functions of the SFS, as opposed to Fisher's a from the
358  Species Abundance Distribution, which is a parameter that changes the shape of the

359  distribution.

360
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361 Although often nucleotide diversity = is reported as a typical measure of genetic

362  diversity of a species, since it can be calculated for a single genome and it captures the

363  process of inbreeding of a population (/7), classic literature relating germplasm management
364  for conservation and breeding has advocated for allelic richness (/8).

365

366

367 I1.3 Spatial genetics and the mutations-area relationship (MAR)

368

369  Since its inception, a number of concepts in population genetics have dealt with genetic

370  variation in populations of different sizes, or populations separated in space. For instance, one
371  classic result in population genetics is the relationship of 7 = 4N, x, which relates genetic
372 diversity = with the effective population size N. and the mutation rate of the species x. A

373  relationship which is still studied nowadays in an effort to reconcile data with theory (/7).
374 In 1943, Sewall Wright turned to study the genetics of multiple populations within a
375  species. He proposed that populations sampled further apart geographically must differ more
376  in allele frequency due to more independent drift (/9), leading to the commonly used

377  correlation between geographic distance and the metric of differentiation Fs7. Most

378  prominently, the use of correlation in the accumulation of mutations of populations that are
379  geographically close or share evolutionary history has been uncovered using dimensionality
380  reduction approaches such as PCA (20).

381 Despite these enormous advances in understanding spatial genetic structures,

382  surprisingly little quantitative work has been done to parametrize the loss of genetic diversity
383 by direct loss of habitat.

384 Because of the abundance of rare mutations in populations, it is straightforward to
385  think that the more area and individuals sampled, the more segregating sites will be found.
386  Analogous to the Species Area Relationship (SAR), S=c4?, we should thus be able to

387  estimate the equivalent scaling for a mutations-area relationship (MAR):

388

389 M=c4,
390
391 with a scaling z = zu4r, which corresponds to the slope of best fit in a log-log-plot of

392 A4 and M for a given species. (Other functions are often fit empirically for SAR datasets,

393  which we explore later in section II1.3. We work with the power law because of its historical
394  use, mathematical convenience, and because other more complicated functions only

395  improved fitting marginally, see Table S4).

396

397 This differs from other efforts to understand the number of segregating sites or

398  heterozygosity differences across species that differ in their total census size or geographic
399  distribution (21, 22). The MAR instead is built within a species, as its ultimate aim is to relate
400  the number of mutations left in a species as it loses spatial populations.

401

402 Below we derive what are the expectations of MAR taking two opposite scenarios of
403  neutral population evolution, and study how many segregating sites or mutations M are

404  discovered with increasing area in the simulations. We further test the scenario of meta-

405  populations in space with varying migration rates and neutral or natural selection processes.
406

407  113.1 Panmictic population

408

409  The expected number of mutations, M, is a constant that depends on the mutation rate, u, and
410  the expected total branch length of the population genealogy, L, with M=uL. Under the
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411  coalescent, the total branch length is equal to the number of lineages or individuals sampled
412  from the population, n, times the time of the genealogy during which there are such lineages,
413 T, plus n-1 times the time in the genealogy with such number of lineages, and so forth:

414

415 L:nTn—l—(n—l)Tn_l—l—...—i—QTg_

416

417  Under the coalescent,

418 -

419 Bl =56,

420

421  and thus:

422

43 Bl :nn(zn—l\fl)—l—(n—l)%—i—...’
424

425  which simplifies to

426

427 EILl=2Nc(Giy + 5ig + o+ 1) =2NcHpy,
428

429 where H,.; is the (n-1)th harmonic number. This is of course related to one of the

430  diversity metrics (section I1.2), where Watterson’s ©w scales the number of segregating sites
431 (M) by the harmonic number of sampled individuals. This is based on the expectation that as
432 more individuals are sampled, we expect to discover more mutations proportional to the

433 above harmonic number. Because such number is not so easy to work with to create an

434 expectation for za4r, we further simplify this expectation following the Taylor expansion
435  approximation of the harmonic number:

436

437 Hp=7+1og(n)+ 5=+ O(%) ~ v+ log(n) + %’

438

439 which we can further approximate as:

440

441 FE[L] =2N.log(n—1)+c,

442

443 Therefore, assuming a constant mutation rate and effective population size (N.) under

444  panmixia, M grows following /og(n). In such a case, a log-log plot (typical power law plot)
445  does not display a linear relationship, and the slope is asymptotic to z - 0 for N = eo. On the
446  other hand, with low values of x (area or individuals sampled close to 0), the slope zuuz will
447  be incorrectly high. We can show this effect trivially by studying the local derivative of the
448  function logio(M) = logio(log(N)). The local slope of that function is an approximation of our
449  zuar parameter. This can be locally estimated at any given point N by taking the derivative:
450

dlog,,(log(N)) _ 1
451 d(log,o(N))  log;(V)log(10) |
452
453 The implication of this nonlinear function is that if we sampled only few individuals

454  or areas of a species (e.g., n=100), even if this species was completely panmictic we would
455  expect a non-zero zuur, a value that will change with sampling effort. We can roughly approximate
456  zuar by the local slope of the number in the midpoint of the graph, e.g., for n=100 we look at
457  the slope at n=50, and obtain 1/(log:o(50) x log(10)) = 0.256. Therefore, with small sample
458  sizes, this parameter will not be helpful to understand whether a species behaves
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459  panmictically or is limited by migration, which may be problematic for estimates of genetic
460  diversity loss later. We can visualise our expectation of the zusz under panmixia plotting the
461  first derivative above (Fig. S5). Because—as we will show below—we do expect a power
462  law relationship under a migration-limited scenario, zuz should theoretically not change with
463  sample size. The graphical study of the (non-)linearity of the log-log plots between the

464  number of mutations and area sampled should be diagnostic to this problem (We see for

465  instance that Pinus contorta has a highly nonlinear relationship, likely due to the use of

466  ascertained intermediate frequency markers instead of genome-wide data, Fig. S22).

467

468 Finally, we used msprime (23) to corroborate this finding (zmar being constant with
469  respect to sample size) with simulations, simulating 1600 demes in a 40x40 grid of demes or
470  populations of N=N.=1000 that are completely panmictic (universal gene flow or dispersal,
471  so this is equivalent to a single panmictic deme). We observed the zuuz for t=100...10,000
472  generations in log;p increments. After this time, we sample n=1.../00 individuals in

473  increasingly large groups of adjacent demes. The range of estimates of zuuz in these

474  simulations was 0.07-0.15.

475

476 Fig. S5 indicates that the minimum average zu4r even under panmixia would

477  continuously increase with lower numbers of individuals of a species sampled. This is due to
478  the fact that the site frequency spectrum is not fully sampled with small numbers of

479  individuals. Therefore, we devised an approach to rescale zazzr.

480
481
482
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484 Fig. S5 | Expected ranges of 7 yar given sample sizes.

485 For increasing numbers of individuals sampled, we plot the expected mean zy4r under two theoretical trends of a migration-
486 limited (green) and a panmictic (purple) species (Purple dots indicate averages from SLiM simulations under panmixia to
487 confirm the theoretical trend based on the derivative approach above). In black, zvar and 95% Confidence Interval of

488 species analyzed in section IV are plotted (see section for details).

489

490

491  1L.3.2 Scaling zwar for low sampling and low census size

492

493 Let zpan-n = E[zmar | n, panmixia], be the expected value of zy4r of a panmictic

494  species given that we only have small sampling of n. Although theoretically zy4r should
495  approach 0, with small samples it can be upwardly biased. In order to force the possible
496  values of zuur to range 0-1 despite small sample sizes, we can scale it as:

497

498 Znaive scaled = (ZMAR - Zpan—n) / (]'Zpan—n)-

499

500 In words, this moves the purple line in Fig. S5 to zero, stretching the space above it
501  accordingly.

502

503 Most species have census sizes so large that za4r should indeed approach 0 under

504  panmixia, so we should correct the sample estimate zyz4z to range 0-1. However, some

505  species have such low census size N that even if we sample all individuals of a species, the
506  sample size will still be small. In those cases, we should not scale za4r to range 0-1, but
507  rather scale it from zpan-n - 1, Where zpan-v = E[zmar | N, panmixia] is the expected value of
508  zmur given a census size N (plants or animals living in the wild). The updated scaling

509  approach for both census and sample size would then be:

510

511 Z*scaled = (]'Zpan—N) (ZMAR - Zpan—n) / (I'Zpan—n) + Zpan-N.

512

513

514 Note that this scaled estimate must be conservative because while we adjust the

515  minimum z for the average value expected for low sample sizes, we do not adjust for the

516  maximum possible z, which only under very extraordinary theoretical conditions can be z=1,
517  namely under an unrealistic complete disconnection of populations by gene flow (see below).
518  Because deriving the maximum z would require more biological knowledge of the species’
519  demography, landscape connectivity, genome structure, etc., and because we rather create
520  conservative estimates, we do not create further scaling approaches.

521

522 11.3.3 Meta-populations in space

523

524 A more realistic simulation than a panmictic population is that of the same 40x40 deme grid
525  where migration can happen between adjacent demes. This migration rate can be changed to
526  understand the effect of population structure and migration on zz. Under no migration (or
527  very low migration), we expect the mutations in two distinct populations (and thus their SFS)
528  to be (almost) completely independent. Hence, when explored demes are doubled (Ve

529  doubles), we discover twice as many mutations. In this case, the number of mutations should
530  scale linearly with the area, so we expect the following to be true: M=A4, log(M) = log(A),
531  and zue=1. Our analyses under different sampling schemes, and with different numbers of
532 “burn-in generations” (generations since a single deme colonised the full 40x40 space)

533 confirm that zyzapproaches 1 in the limit of low migration (see Table S1 and Fig. S6).

534  Different from the panmictic situation, as we increase the sampled area, we not only increase
535  n, which would lead to a log(4) in mutations, but also increase Ne..
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Fig. S6 | msprime 2D deme simulations and the mutations-area relationship
Simulations with different burn-in and migration rates under neutrality, and their corresponding zmar.

Table S1 | msprime population genetic simulations in 2D

Simulations summarised by grouping ranges of the resulting zuaw parameters. The average parameters of the simulations
with similar zusr EW provided. (Acronyms: Nemt = product of effective population size, migration rate, and simulated
generations).

IMAR Samples/deme Generations Migration rate Nemt

0.2 +/-0.05 2.4 50001.7 0.0271675 5000044.23
0.3 +/-0.05 20.25 70003 0.0561655 7000075.77
0.4 +/- 0.05 26.5714286 13057.4286 0.04450857 1305497.96
0.5 +/-0.05 12.9230769 121759.462 0.04017769 752221.743
0.6 +/-0.05 15.6111111 3218.77778 0.045735 321174.768
0.7 +/-0.05 35.6842105 35034.8421 0.03395895 143791.614
0.8 +/-0.05 35.030303 15655.1212 0.03055818 58023.5539
0.9 +/-0.05 36.5806452 3057.12903 0.0253029 15290.4081

1+/-0.05 42.0140845 13625.4085 0.00861178 1798.36141

These simulations corroborated that we can recover zy4r values ranging between 0-1
just varying migration and burn-in generation parameters. We found that it was both the time
of the system to reach an equilibrium as well as the migration rate that determined za4z. In
the future, it will be interesting to study different non-equilibrium scenarios to better
understand how genetic drift, gene flow, and different landscape structures may shape the
ZMAR -

I1.3.4 Metapopulations in space with local adaptation

In order to simulate local adaptation, we use the individual-based simulation software SLiM
(24) following the approach of (25). These simulations were set up for 196 demes arranged in
a 14 x 14 grid. Each grid cell contains a population of N=/000 and has an environment
attribute, e, which varied spatially from the lower-left to the upper-right corners (approx. -7 <
e < 7). 12 locations in the genome were allowed to be under directional natural selection. The
selection coefficient was fixed for a simulation, and grid runs were conducted with
0<s<0.05, but this selection would vary based on the environmental selection value of a grid
cell, according to e X s. Therefore, these alleles are antagonistic pleiotropic. Selected
mutations across the 12 loci in the genome behaved additively (e.g. if an individual in grid
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cell 7 had two of the selected mutations, fitness would be w=1+2s x ¢;). The migration rate
varied from one individual in a billion (1 x10°), to one individual every ten (1 x10"). Finally,

the mutation rate was set to 10-® mutations/bp/generation and the recombination rate to 107
crossovers/bp/generation.
A . ° ° . N
0.6 .
N 04y, .
0.2 . . o . 0.2 ]
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m

Fig. S7| SLiM population genetic simulations in 2D with selection and local adaptation

Simulations were carried out with different combinations of migration rates and strength of antagonistic
pleiotropic selection at 12 QTLs. (4) Marginal relationship between zuar with the strength of spatially-varying
selection s. (B) Marginal relationship between zyar with the migration rate m.

These results, together with individual-based simulations, corroborate what we had
observed with coalescent simulations, i.e. that za4r is lowest with a high migration rate. The
simulations also appear to show a negative effect of selection on za4z . Generating a linear
model fitting migration rate and selection and their interaction to understand what factors
explain the scaling coefficient: zayur ~ logio(m) + s + logio(m) s; we confirm that both had a
significant effect, and that selection significantly reduces za4r (Fig. S7, see below summary
Table S2). This may seem counterintuitive, as one may expect that locally-adaptive mutations
are rare and will be localised only to where they are adaptive. More work is necessary to
understand the signatures that spatially-varying natural selection (and its different types)
create on za4r, but we can think that under migration limited scenarios (where z approaches
1) adaptive alleles and their linked mutations permeate faster to similar neighbour

environments than neutral alleles.
Table S2 | Linear model explaining zy4r by migration rate and natural selection
Summary table of the linear model Tyar ~ mig + s + mig:s
Estimate SE t-value P-value
intercept 0.3385022 0.0469174 7.214859 0.0000001
mig -0.0419733 0.0085804 -4.891792 0.0000407
s -4.693492 1.6290184 -2.881178 0.0076725
mig s -0.4998393 0.2426463 -2.059950 0.0491621

I1.3.5. Metapopulations in space with purifying selection

To understand the effect of purifying selection on zy4r we also ran 2D simulations with a
fraction of the genome allowed to be globally-deleterious (i.e. independent of the spatially-
varying environment). We simulated an increasingly strong purifying selection (|s| range
from 0.0 to 0.1), simulating roughly that 29% of the genome of Arabidopsis is coding
(arabidopsis.org) and mutations can be deleterious. We also varied the degree of
recombination. Following our expectation, with stronger purifying selection deleterious
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606  mutations are pushed to lower allele frequencies, stopping their geographic spread, which
607  increases zu4r. Recombination rate appears to have a minor role on zyur (Fig. S8).
608
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611 Fig. S8 | SLiM population genetic simulations in 2D with purifying selection
612 Simulations were carried out with varying strengths of purifying selection (|s| range from 0.0 to 0.1) at coding positions,

613 representing about 29% of the genome. Different values of recombination rate were also used in all pairwise combinations
614  with Is|.

615

616  11.3.6 Continuous-space non-Wright-Fisher models

617

618  In order to confirm zy4r generality in highly realistic conditions and its behavior through the
619  population extinction process (I1.4), we set up SLiM simulations in continuous space using
620  non-Wright-Fisher dynamics (24). Spatial population structure in these simulations was

621  established through individual dispersal, local mate choice and spatial competition, which we
622  chose to lead to realistic values of Fsracross space. Spatial competition also acted as

623  population control, by keeping the total population size below a target carrying capacity

624  through direct effects on individual fitness. In addition to competition, fitness was also

625 affected by individual age as well as by a polygenic trait under stabilising selection. A subset
626  of variants (final proportion ~10%) directly affected this trait with effect sizes drawn from a
627  Gaussian distribution with mean = 0.0 and standard deviation = 0.1, and a fitness penalty was
628  incurred by deviating from the optimal trait value using a Gaussian fitness function centered
629  at the optimum and with a standard deviation = 5.0. We initialised functional variation for
630  SLiM using neutral coalescent simulations with msprime (23) to reduce the computational
631  burden of burn-in, and loaded the resulting tree sequences into SLiM (26, 27). We drew

632  functional effect sizes for these variants, placed individuals into continuous space, and ran
633  simulations forward-in-time for 5,000 generations. After that, the geographic distribution of
634  the species experienced impacts as expected during global change: every generation, 0.001 of
635  one edge of the species distribution got its carrying capacity reduced to 0. This meant that
636  over 1,000 generations the whole species would disappear (note that this is a reasonable

637  fraction of area reduction given the estimates of yearly deforestation and habitat change in
638  section V). We subsequently overlayed neutral mutations on the tree sequence using

639  msprime, and analysed genomes sampled throughout the extinction process (by tracking them
640 in the tree sequence output) and extracted using tskit.

641

642
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645 Fig. 89 | Continuous space SLiM population genetic simulations

646 At 19 timepoints leading up to extinction, 1,000 individuals were sampled randomly in continuous space to quantify diversity
647 loss (black line). The prediction of MAR (dashed line) using the starting zwiar seemed to follow the real trend better than the
648 baseline of just loss of individuals(dashed line). This suggests that even if Zviar varies during the population extinction

649 process, it is relevant to understand genetic loss by area reduction. We also tracked metrics of population structure (zvar,

650 Fst) and a proxy of adaptive capacity (Va), which showed qualitatively similar patterns as the GWA-based trends (Fig S21).
651

652

653  11.3.7 Connection of zm4r with the isolation-by-distance pattern

654

655  Ultimately, zu4r is a complex integrator of evolutionary forces acting in space (mutation,

656  migration, drift, selection) and captures how structured the distribution of a species'

657  mutations is. Although the isolation-by-distance pattern conceptually resembles zuaz, we have
658  found no obvious analytical expression that relates both. Note that Fsr is defined based on
659  heterozygosity or , instead of the number of segregating sites (i.e., mutations M). For

660 instance, using Hudson's estimator (28) to compute Fisr across a set of populations we

661  calculate Fsr = I- (m. / ms), where m, is the diversity or heterozygosity within a population
662  and 7 is the same parameter calculated for the meta-population. Plotting Fsr of a

663  metapopulation by the distance of the farthest demes shows the typical non-linear trend of
664  isolation-by-distance, which shows that very close populations have similar allele frequencies
665  whereas populations further away drift apart. A challenge of Fsr is that it requires pre-

666  defining discrete populations, which is straightforward in stepping-stone simulations but hard
667  inreal data. Comparing average Fsr of our 14x14 spatial demes and zu4r, we see that the two
668  parameters correlate (Fig. S10C). However, it appears that for low values of Fisr, zuar captures
669  more variation across the simulations (Fig. S10). These patterns were also confirmed in

670  continuous space simulations (not shown).

671
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673 Fig. S10| SLiM population genetic simulations in 2D comparing Fsr and zyr
674 Neutral SLiM simulations with different degrees of migration. (4) Hudson's Fsr across populations with different area
675 subsamples. Following the expectation of the isolation-by-distance pattern, as the distance between the farthest demes in the

676 subsample increases, Fsr becomes larger and saturates at large distances. (B) The mutations-area relationship. (C)
677 Comparison between Fsr and zuyr .

678

679

680  I1.4 The loss of mutations (genetic diversity) in space

681

682  The aim is to predict the fraction of genetic diversity loss, xus, from shrinking of an ecosystem
683 by an area a. To define all terms, we then have a past area 4..; and a present reduced area

684  A,=A:;-a,and a fraction of area extinct x=a/A;

685

686 We first think of the loss of genetic diversity xas through the basic process of losing
687  individuals. From the population genetics’s coalescent theory derivation of the number of
688  mutations or segregating sites from individuals we got the approximation M~log(N).

689  Assuming the loss of area is simply the loss of individuals (4=N), we can derive the fraction
690  of genetic diversity loss as:

691
ey = 1— M, - log(Ny) L log(N;_1(1 — x)): _log(Ni—1) +log(1 — )
692 M;_y log(N;-1) log(N¢-1) log(N¢—1)
_ log(1 —x)
693 log(Ni-1)
694
695 The loss of mutations is then in the scale of: log(1-x); which is very slow, as we

696  expected from having derived the trend that under panmixia zyuz & 0. A substantial loss of
697  genetic diversity in this case only happens when population extinction is almost complete.
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Species do not typically behave perfectly panmictic given different zu4z values. Under
population structure, we can use our relationship to project the number of mutations (genetic
diversity) lost as the geographic distribution due to habitat loss or climate change following
equation:

ey 1 M MAR(A) A :1_( A,

= 1- = —1-(1-a)
M1 MAR(A_,) ) AH) (1=2)*

In the most extreme scenario of zyur = 1, the fraction loss of geographic area directly
translates to the same fraction loss of genetic diversity.

Reality should be in between the panmictic and fully-migration-limited cases. With
combinations of environmental selection, non-equilibrium demography, and long-range
dispersal, we may get intermediate zu4z values, and it will be empirical estimates that can
inform us how much may be lost (Section III).

I1.5 Recovery of genetic diversity after a bottleneck or local extinction

A B
§10001 ¢, o o oo g 19007::
S . o o A Iog10.gen. 3 ...,..-0“ Iog10_gen.
o) oo S O burn-in o 0®®’ oo0*® burn-in
o 3009, ¢ o o 5 o 1004s°, eo° 4 6
; ° ¢ '.o°. -;‘J ° oses o 5
c ° ® % 4 c ° oocco -
o [ ) [ ] o [ ] 000000 L]
= 100' Y ... — 4
© o% 3 © 10 | @ e 00 00000000000000000
() . o.o. (0] 3
c ) [
% 30 {eee %
(X} 1-H{eeee
20 40 60 80 100 20 40 60 80 100
% area extinct % area extinct

Fig. S11 | 2D stepping-stone msprime simulations with extinction and recovery

(A) Recovery of genetic diversity (number mutations) after loss of a fraction of the population. (B) Recovery of genetic
diversity after instantaneous loss of a fraction of the population and consecutive repopulation.

*Simulations with number of generations until recovery that are exceedingly large are assigned a value of 1,500, as none
are realistic for current conservation timelines.

The intuition that rapid recovery of genetic diversity may be possible is likely flawed.
While genetic recovery may be faster than speciation rates, which are on the order of millions
of years, the time for a set of populations that went through a simulation burn-in of 1,000
generations (not yet in diversity equilibrium), and that suffer an instantaneous 5% reduction
of area and an instantaneous recovery (e.g., through reforestation) would range from 20-90
generations. This number of generations for long-lived species would translate into centuries
or millennia of recovery without further impacts. About 49% of simulations — including every
simulation that reached equilibrium (burn-in generations >10,000) — have a recovery time of
more than a thousand generations (Fig. S11).
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735 SUPPLEMENTAL RESULTS

736

737  III. The mutations-area relationship with the 1001 Arabidopsis Genomes

738

739  We begin testing the idea of a general mutations-area relationship using the extensive

740  sampling of the model plant species Arabidopsis thaliana and the 1001 Arabidopsis Genomes
741  Project (29). This section will serve as a case study to explore different approaches and biases
742  when building MAR to then apply the learned lessons across species (section IV).

743

744

745 1111 The Site Frequency Spectrum of the 1001 Arabidopsis Genomes

746

747  We began analyzing the frequency distribution of 11,769,920 biallelic genetic variants (i.e.,
748  mutations), which is typically called the Site Frequency Spectrum (SFS) in population

749  genetics.

750
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753 Fig. S12 | Mutation abundance study in A. thaliana
754 (A) Site Frequency Spectrum (SFS). (B) Preston plot of mutation abundances. (C) Whittaker plot of mutation rank
755 abundances.

756

757 To showcase the similarities to the Species Abundance Distributions (SAD), we use
758  the Whittaker plot of mutation rank abundance (Fig. S12) that suggests a log-normal of S-
759  shape may be the best fitting model (Table S3). For a review listing many popular models,
760  see (30), and for implementation details of 13 SAD models see the thorough manual of R
761  package SADS (31). As we shall see later, the log-normal distribution seems to be the best fit
762  across species.

763

764
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766 Fig. S13 | Fit of mutation abundance study in A. thaliana with different SAD models

767 Representative models from Table S3 are plotted along with the observed frequency of 11,769,920 mutations.

768

769  Although model AIC captures best the fit of a curve accounting for the difference in

770  parameter complexity of each model and the statistical distributions behind, we often are
771  interested in the variance explained. We then calculated a proxy of predictive accuracy using
772 apseudo-R’ approach of the difference between the model fit and the observed data as:

773 R?=1- %Zot For A. thaliana, we used 10,000 SNPs sampled at random to an accuracy of
774 over R?>0.999 for both the top log-Normal model and the bottom log-Series model,

775  indicating that all “commonness of rarity” models must have a pretty good fit of mutation
776  frequency data.

777

778 Table S3 | AIC values for model fit of common species distribution curves.
779 For each SAD model, the degrees of freedom and the delta AIC compared to the top model are reported.

780

Model dAIC df
log-Normal 0 2
Poisson 7204.37509 2
Geometric 44267.5475 1
Weibull 45872.3678 2
Gamma 48805.6065 2
Broken Stick 49076.4368 0
UNTB (MTZSM) 168434.181 1
log-Series 168434.726 1
781
782

783  The typical SFS from population genetics is of course not implemented in current packages for Species
784  Abundance Distributions like R sads. For comparison, in the main text we also calculate the log
785  likelihood and AIC of this following the standard population genetics likelihood:

786

1

logL = Z log(N—) —log(H,(N — 1))
787 i di
788
789  where N represents the number of individuals in a sample, and ¢.is the minor allele frequency of a
790  SNP in the sample, in the main text calculated for /=1...10000 random SNPs (see main text). As
791  before, H, is the harmonic number function.
792
793

b
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794

795  1I1.2 Building the Mutations-Area Relationship

796

797  In the following, we explain how the area was estimated that was used to compute zu4r on
798  real world data. In short, we used a grid on the world map, with samples placed on the map
799  based on their geo-coordinates of origin (Fig. 1). We first create square spatial subsamples of
800  the Arabidopsis thaliana geographic distribution (Fig. 1, Fig. S15) and quantify diversity M
801 as the total segregating sites. Excluding zeros, these two variables are fed to the sars_power
802  function from the R SARS package (32).

803

804 Although the power law mutations-area relationship was already theoretically

805  motivated (II.3), here we also fit different types of functions typically applied to the Species-
806  Area Relationship. Doing this, we reach the conclusion that multiple models perform very
807  similarly, and the classic power law is among the top models, see Table S4. Although small
808  marginal fitting accuracy could be achieved with other models, for mathematical convenience
809  and historical continuity, we use the power law for later sections and the study of MAR

810  across species (Sections IV and V).

811

812

813 Table S4 | Different SAR curves fit to mutations.
814 We fit 20 different functions and calculated the variance explained (R2), Pearson's r, and Spearman's rho.

815

Model R2 r rho
Asymptotic regression 0.21825683 0.46717965 0.53510077
Beta-P cumulative 0.22012799 0.46917799 0.53374757
Chapman Richards 0 NA NA
Cumulative Weibull 3 par. 0.21929646 0.468291 0.53374757
Cumulative Weibull 4 par. 0.21930145 0.46829633 0.53374757
Extended Power model 1 0.21833611 0.46726449 0.53026812
Extended Power model 2 0.21682584 0.46564561 0.53462775
Gompertz 0.16393078 0.40488366 0.45964364
Heleg(Logistic) 0.21929721 0.4682918 0.53531975
Kobayashi 0.22228406 0.47147011 0.53526975
Linear model 0.19579007 0.44248171 0.53510077
Logarithmic 0.20280401 0.45033767 0.53430311
Logistic(Standard) 0.22536996 0.47473146 0.53549765
Monod 0.22500999 0.47435217 0.53579276
Negative exponential 0.22801633 0.47751055 0.53447179
Persistence function 1 0.21929612 0.46829063 0.53501182
Persistence function 2 0.21760028 0.46647645 0.53409266
Power 0.21929556 0.46829004 0.53543785
PowerR 0.21753225 0.46640353 0.53493321
Rational function 0.22072491 0.46981369 0.53451874

816

817

818 Because in the species literature it is recommended to only quantify richness of

819  endemic species (33), we also count segregating sites that are private to the area subsample,
820  creating the equivalent endemic-mutations-area relationship (EMAR) (33). The MAR slope
821  and 95% Confidence Interval was z = 0.324 (0.238 - 0.41) (Table S5, Fig. S14 A), while the
822 EMAR was z = 1.241 (1.208 - 1.274) (Table S6, Fig. S14 B). Interestingly, the endemics-area
823  relationship of z = I resembles that of endemic species, whereas the total mutation

824  relationship with area is above that of species relationships, which typically follows the

825  canonical z= 0.2 —0.4.

826
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827 We must note that EMAR, the genetic analogy of the Endemic-(species)-Area

828  Relationship (EAR) may not be that meaningful when analyzing genomic data (we did not
829  find a way to theoretically motivate it in section II), and later we see it overestimates loss in
830  our simulations (Fig. S18)

831

832 Table S5 | The mutations-area relationship (MAR).
833 Fitted values in a log-log power function between area sampled and mutations discovered.

Estimate  Std. Error t value P 2.5% 97.5% nls.Est. nls.2.5% nls.97.5%

c 494.565432 135.6314588 3.646392 0.0003138 223.3025141 765.8283493 494.5531270 278.1107276 822.829918
z 0.323727  0.0430277 7.523681 0.0000000 0.2376715 0.4097824 0.3237367 0.2430303 0.413162

834
835

836 Table S6 | The endemic-mutations-area relationship (EMAR).
837 Fitted values in a log-log power function between area sampled and endemic mutations discovered.

Estimate  Std. Error t value P 2.5% 97.5% nls.Est. nls.2.5% nls.97.5%

¢ 0.0001001 0.0000231 4.337758 1.98e-05 0.0000539 0.0001463 0.0001001 0.0000635 0.0001555
z 1.2411831 0.0165268 75.101442 0.00e+00 1.2081296 1.2742366 1.2412125 1.2096087 1.2737927
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841
842 Fig. S14 | The mutations-area and endemic-mutations-area relationships in A. thaliana.

843 Dividing A. thaliana native geographic distribution into a 1 degree lat/long grid, square areas with 1 degree side-length to
844 36 degrees side-length were randomly placed (n=100 for each size) across the distribution, and genetic diversity metrics
845 were computed to produce the (4) Mutations-Area Relationship and (B) Endemic-Mutations Area relationship.

846

847

848  II1.3 Testing for potential numerical artefacts

849

850  We wondered whether MAR estimates may be affected by some numerical artefacts in our
851  software pipeline (available at https://github.com/moiexpositoalonsolab/mar). For instance,
852  real world data may have uneven sampling in space, the spatial resolution of georeferenced
853  samples may vary, projection of samples into gridded maps may have limited resolution,
854  software pipelines may produce biased estimates, etc. To test this, we conducted several

855  experiments:
856
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857 Lower bound of the method for zy4r. Our first experiment when building the MAR
858  aimed to make sure that spatial sampling, or some unknown bias in genome sequencing, or
859  the number of samples used, are not creating artificially large zy4r. We then simulated a mock
860  dataset of A. thaliana with the same number of mutations, samples, and using the original

861  geographic locations. The number of SNPs were also sampled in a way that we created a

862  canonical 1/q SFS for the whole species. Under no biases, we then expect the MAR to follow
863  the theoretical derivation under panmixia with a z~0. This exercise confirmed we get a value
864  approaching zero: z=0.033, (-0.095 - 0.162).

865
866 Table S7 | MAR built with different area calculations and grid sizes
867
Grid resolution Zmar [C195%|) Zmar|CI195%)
(deg.) (cell area) (total area)
A=N 0.431 (0.423 - 0.439) NA
0.1 0.435 (0.424 - 0.446) 0.367 (0.281 - 0.454)
0.25 0.454 (0.449 - 0.459) 0.422 (0.376 - 0.467)
0.5 0.488 (0.465-0.511)  0.352(0.152 - 0.551)
1 0.543 (0.529-0.558)  0.389 (0.295 - 0.483)
2.5 0.644 (0.6 - 0.688) 0.388 (0.251 - 0.526)
5 0.617 (0.205 - 1.029) 0.403 (-0.204 - 1.011)
868
869
870
871 Grid sizes, area calculations, and non-random spatial sampling. In order to

872  streamline geospatial operations, we implemented the MAR relationship calculations in this
873  project using R raster objects (34). This required projecting the collected samples of a species
874  and the observations of any given mutation into a world map (i.e., each mutation's geographic
875  distribution). Necessarily, in order to be able to assign areas to sets of samples or mutations
876  on the map, the projection requires the choice of a grid size. The larger the grid size (e.g.,

877  lower spatial resolution), the faster the spatial operations can be performed. Further, for larger
878  grid sizes, we expect the slope of MAR to be more influenced by larger-scale patterns, while
879  for smaller grid sizes, the MAR will be influenced by smaller-scale patterns. To test this, we
880  repeated the subsampling of A. thaliana distribution with grid sizes ranging 0.1 degrees

881 latitude/longitude (roughly 10km side-length in temperate regions) to 10 degrees (roughly
882 1,000 km side-length). The estimates were roughly consistent between 0.4-0.6, but increases
883  in value at larger grid sizes (row in Table S7 for large grid size values), a scale-dependent
884  pattern that resembles results of SAR of species in ecosystems fitted at different scales (70).
885

886 Because we often have sparse samples of individuals in space, we devised two

887  strategies to calculate areas during the subsampling of MAR (see cartoon in Fig. S15): (A)
888 the total square area of the minimum and maximum latitude/longitude values of all the

889  samples analyzed. That is, simply the area of the red box in the figure. (B) the sum of areas of
890  grid cells that contain at least one sample. That is, the sum of the grey squares within the red
891  box in the figure. In addition, we also calculated the MAR relationship assuming the total
892 area is equal to the number of individuals (4=N) (which should be theoretically equivalent to
893  a grid of very high resolution where we end up with a maximum of one individual sampled at
894  any grid cell).

895

896 Table S7 values suggest there is a dependency of zuy4r with the grid size when areas
897  are calculated as the sum of grid cells with at least one sample. Our intuition for this pattern
898 is that lower resolution grids (e.g., 5 degrees side) lead to some grid cells having many

899  samples, which would increase the number of mutations discovered when discovering the
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900  area. On the other hand, the calculation of zy4r using the total area does not seem to affect the
901  zumur estimate; however, because large areas often do not have samples (limiting the potential
902  to find new mutations), it creates a higher variance in the estimate of za4r (see confidence
903 intervals in Table S7 and Fig. S16). Here, we favored consistency of z at the expense of

904  broader, more conservative confidence intervals. All the estimates reported below and in the
905  main text therefore use the total area approach.
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910 Fig. S15 | Cartoon of raster sampling to build the MAR

911 Map of mock samples of a species projected into a raster. Grey scale indicates the number of samples per grid cell. Red
912 boxes exemplify the process of spatial subsampling of increasing area to build the MAR relationship. Two example grid sizes
913 were created for illustrative purposes: (4) Small grid size or high spatial resolution. (B) Large grid size or low spatial

914 resolution.
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918 Fig. S16 | MAR comparison with different area calculations.
919 (A) Using total area, (B) using grid cell sum with at least one sample. For 1 degree latitude/longitude grid cell.

920

921 Geographic subsampling strategy (inwards, outwards, random). It has been

922  indicated that the way the Species-Area Relationship (SAR) and Endemics-Area Relationship
923  (EAR) are created may create differences in the scaling parameter z. The plots and estimates
924 above were produced by randomly placing boxes of different size or area across the

925  distribution of the species. Often, however, either discovery of species or extinction happen
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926  in certain patterns. For instance, we often imagine sampling an ecosystem concentrically

927  outwards from a focal point, whereas we may think of the extinction process of species area
928  reductions being concentrically inwards (33). Because these patterns seem of importance, we
929  also calculated the MAR and EMAR outwards from the latitude and longitude median of all
930  the samples in the map, moving outwardly until the map is filled (Fig. S17, Table S8).

931 Likewise, the inward pattern is conducted in an inverse manner.
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936 Fig. S17| MAR and EMAR in Arabidopsis thaliana using outward and inward sampling.

937 Dividing A. thaliana native distribution in 1 degree lat/long grid, a square area of 1 degree was placed at the median of the
938 sampling range and was expanded iteratively by 1 degree lat/long until all the area of the distribution was covered. (A-B)
939 MAR and EMAR using a typical outward sampling. (C-D) MAR and EMAR using an inward sampling. The latter may not be
940 a common process of sample collection, but it is common for extinction progress.

941

942 Table S8 | Outward and inward MAR and EMAR
943 The MAR and EMAR relationship computed with inward or outward nested subsampling, calculating area only as those
944 cells with samples.

945
Relationship z
MAR outwards 0.444 (0.412 - 0.476)
EMAR outwards 1.086 (0.982 - 1.189)
MAR inwards 0.561 (0.524 - 0.597)
EMAR inwards 1.295 (1.192 - 1.399)
946

947
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948 Incomplete sampling of the species. To check whether the relationship holds with
949  few individuals of a species or limited geographic distributions, we compared the species-
950  wide MAR with that of subset populations. Downsampling the native distribution of 4.

951  thaliana to a region within North-East Spain (-2.00—4.25 degrees East, 36.52—42.97 degrees
952  North), or to a region within Germany (2.69—13.73 degrees East, 50.0-52.0 degrees North),
953  and using only 1,000 SNPs, we recovered zuy4r= 0.423(0.233-0.614) for Spain and

954  0.525(0.242-0.807) for Germany, which were close to the estimate based on the whole

955  distribution (Table 1). This result is reassuring in that if migratory patterns are relatively

956  homogeneous, one may be able to estimate this parameter from a subset of the species

957  distribution. For heterogeneous population structure cases, we expect incomplete sampling to
958  produce unreliable estimates.

959

960 Number of genome-wide SNPs used. To check whether different numbers of SNPs
961  used for the analyses would lead to different zy4r, we conducted analyses with random

962  subsets consisting of 100, 1,000, and 10,000 SNPs, replicated 3 times. Estimates had a

963  coefficient of variation of 4.7%, which is way below the standard error of typical estimates
964  (Table 1).

965

966 Locally-adaptive variants. We then aimed to understand the effect of utilizing SNPs
967  that appear to be related to adaptation. To study this, we utilized an outdoor climate-

968  manipulated experiment that recorded fitness data (survivorship and reproduction output of
969  seeds) for 515 Arabidopsis thaliana ecotypes part of the 1001 Genomes set in 8 environments
970  (Exposito-Alonso, 2019). We devised two sets of alleles: 10,000 that were negatively

971  correlated with fitness in a Genome-Wide Association across 8 different environments, and
972 10,000 alleles that were associated positively with fitness in one environment but negatively
973  in another (antagonistic pleiotropic). The MAR relationship was computed as before and
974  compared to the original random (putatively neutral) set of alleles from the previous sections
975  (Table S9). Although we see a trend that locally-adaptive alleles have a slightly higher z,
976  estimates overlap. The effects seen here of having smaller z for adaptive alleles than neutral
977  variation could, however, be due to top GWA SNPs often being ascertained to higher

978  frequency than background SNPS.

979

980

981 Table S9 | MAR for putatively neutral, deleterious, and_locally _adaptive alleles in _Arabidopsis _thaliana

982

SNP set z
neutral 0.324 (0.238 - 0.41)
globally deleterious 0.209 (0.13 - 0.288)
locally adaptive 0.291 (0.217 - 0.365)
globally positive 0.234 (0.137 - 0.332)
983
984
985  II1.4 Local population extinction in Arabidopsis
986

987  Using the MAR framework, we can make projections of loss of mutations (or its inverse, the
988  remaining genetic diversity. By doing this, the known intuition is that with z >/ (as from
989  EMAR) the decrease of diversity is much faster than the decrease of habitat, but with z < /
990  (as from MAR), there is a (desirable) slower dynamics of genetic loss. In the latter, despite
991 habitats disappearing, reservoirs of mutations distributed across different locations enable
992  conservation of certain variation. To study which one is more likely and to observe the
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stochastic nature of genetic diversity loss, we simulated in silico population extinctions of
map cells from the Arabidopsis map (Fig. 1) and directly estimated from the genome matrix
of remaining individuals the remaining genetic diversity. These simulations were
implemented to capture different hypothesised patterns of extinction (see main text). All,
however, agree with the more hopeful estimate of zy4r = 0.3.
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Fig. S18 | Loss of mutations with habitat loss in A. thaliana.
Predictions based on MAR and EMAR functions and in silico extinction stochastic simulations in A. thaliana.

To study the fit of the genetic loss predictions based on MAR relationships and the

results from computer simulations, we calculated a pseudo-R? based on the squared
. . . . 2 — 1 _ SSres
differences between the predicted line and the “observed” genetic loss as: RE=1-7454%

This results in a high fit R°=0.872 of the MAR, built from random samples of distribution
areas, while the EMAR had a poor fit due to overestimation of genetic loss: R?=-0.710
(negative values indicate predictions are worse than the mean of the data).

I11.5 Potential impacts of genetic loss in adaptability

Although likely imperfect, Genome-Wide Associations could help to understand the
relevance of mutations in different frequency classes in model organisms such as Arabidopsis
thaliana. Fig. S19 shows the site frequency spectrum and a metric of the "total accumulated
effect in fitness" of the alleles in every bin. Effect sizes were retrieved from GWA on lifetime
fitness of 515 ecotypes in outdoor experiments (35). The average effect size across 8 fitness
GWA from 8 experimental combinations were used: high/low precipitation, high/low latitude
of outdoor stations, and high/low plant density. This exercise showcases the phenomenon that
low frequency variants often have strong effect sizes, which is expected under a stabilising
selection quantitative model (36). Because low frequency alleles will be the first to be lost
during a bottleneck (as would happen with the rapid extinction of populations of a species),
we may expect to lose variants that are related to fitness and thus potentially lose diversity
that could be advantageous in some environments. Alternatively, deleterious mutations are
also expected to be at low frequency, in which case would also make them more easily lost.


https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/

1028
1029

1030

1031
1032
1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.13.464000; this version posted April 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

1.00 o L 1.00
w
(@)
o
» 0.75 L0.75
5 3
wn 0]
5 2
0501 * 0.50 =5
= ho
8 . g
S . =
50251 | ‘e, L0.25 8
.....- 'c_
o e 5

'® ...

0.001 L0.00
0.0 0.2 0.4 0.6

allele frequency

Fig. S19 | Bias of low frequency mutations and effect size for fitness traits in A. thaliana.
Grey bars represent the site frequency spectrum (scaled for visualisation purposes). The black dots represent the mean
absolute effects of alleles as estimated from GWAs with 515 accessions scored for fitness traits in 8 outdoor experiments.

To further build intuition on the progress of extinction in relation to loss of genetic
diversity that is not neutral, we repeated warm edge extinction simulations with several
subsets of alleles: randomly selected SNPs, SNPs that were associated positively in 2
environments (low precipitation Spain and high precipitation Germany) (labelled globally
positive), and SNPs that were associated positively in one environment and negatively in the
other (labelled antagonistic pleiotropic or putatively locally-adaptive). This (Fig. S20)
supports our intuition that although putatively functional alleles (or alleles tightly linked to
such functional ones) may have slower loss dynamics than neutral variants due to a high
frequency and zuur , certain population extinction patterns may actually lead to rapid loss of
potentially-adaptive genetic diversity. The complexity of these patterns, together with the
evolutionary feedback created by lowering genetic standing variation that affects fitness,
make the inference of adaptive capacity loss even more difficult than just inferring the loss of
genetic diversity itself.
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1051 Fig. $20 | Simulations illustrating the potential loss of locally-adaptive mutations in A. thaliana.
1052 Simulations of extinction using multiple patterns of population losses with different subsets of alleles ascertained to show
1053 positive associations in fitness GWA in two outdoor experiments (green), positive associations in one environment (e.g. low
1054 precipitation) but negative in a second environment (e.g. high precipitation) or vice versa (green). These were compared to
1055 a random set (grey).
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1059 Fig. S21| Extinction simulations showing proxies of adaptive capacity of A. thaliana.

1060 Using estimated allele effect sizes from 10,000 SNPs in the 1% P-value tails of several Genome-Wide Associations, we show
1061 (A) Percentage of change of Va as a proxy of adaptive potential and (B) raw square sum of allele effects to showcase the
1062 inflating effect of intermediate frequency alleles. Grey background shape indicates the minimum and maximum boundaries
1063 of trajectories created by replicated frequency-matched non-effect sets of SNPs (one per GWA). The trajectories of some
1064 effect alleles appear to show faster loss than the non-effect background trajectories.

1065

1066

1067  II1.6 Case study of a massive natural bottleneck

1068

1069 A recent colonisation of North America by Arabidopsis thaliana can help us understand the
1070  recovery of genetic variation. Whole-genome sequencing of 100 specimens of North

1071  American 4. thaliana indicates that it migrated from its native range of Europe to North
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1072 America in the 17th century, and began spreading across the continent from a genetically-
1073  homogeneous population (37). Despite ideal conditions to re-gain genetic diversity—a

1074  continental population expansion aided by human travel (38, 39)—only ~8,000 new

1075  mutations were detected through spontaneous accumulation, equivalent to only ~0.067% of
1076  the species-wide native genetic diversity. Because most of these mutations are at very low
1077  frequency, as expected during population expansion, the scaling of genetic diversity with area
1078  is approximately 1 ( zaur = 1.025 [C195%: 0.878 - 1.173]).

1079

1080

1081
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1082 IV. The mutations-area relationship in diverse species

1083

1084  Every dataset was retrieved online either from the published article in the form of VCF or
1085  fastq files, or provided by the study authors upon request. All datasets were first transformed
1086  into PLINK files using PLINK v1.9 (40). For computational efficiency, and since we showed
1087  random subsampling does not appear to affect calculations of zu4r (Section I11.3), we

1088  conducted all analyses with up to 10,000 randomly selected SNPs for each species sampled
1089  genome-wide, or in the largest chromosome for those species with large genomes. We aim to
1090  use mostly unfiltered SNP datasets to avoid ascertainment biased toward intermediate

1091  frequency SNPs, and therefore we did not apply a MAF filter for any analyses. By default,
1092  PLINK transforms SNP matrices into biallelic (if multiallelic, it takes the two most common
1093 alleles). Although the preservation of structural genetic variation may also be relevant and
1094  may have important consequences in adaptation (47), we do not expect dramatic differences
1095  in their scaling relationship compared to biallelic SNPs, as their SFS are relatively similar
1096  (Structural variants may show a skew to lower frequency, resulting in steeper za4r. By

1097  excluding those, our analyses may be conservative). In order to properly characterise the
1098  geographic distribution of a mutation using all available geo-tagged individuals, we filtered
1099  for genotyping rate (plink --geno), and the final value is reported per dataset.

1100

1101  Details for dataset processing or homogenization are described below.

1102

1103 - The 1001 Arabidopsis Genomes Consortium (29) generated a WGS Illumina

1104 sequencing dataset of Arabidopsis thaliana comprising 1,135 individuals and

1105 11,769,920 SNPs. The VCF with the data is available at: https://1001 genomes.org.
1106 The raw sequencing data is available at

1107 https://www.ncbi.nlm.nih.gov/bioproject/PRINA273563. These included recently
1108 colonised regions such as North America or Japan. Analyses of za4zr were calculated
1109 only for the native range, which comprises most of the species diversity (>99%) and
1110 1001 individuals. For computational efficiency, we conducted analyses using

1111 randomly sampled SNPs from chromosome 1, as we did not observe any difference
1112 when sampling from other chromosomes. A number of MAR approaches were tested
1113 in this species (section III). For homogeneity, the final reported estimate (Table 1)
1114 was conducted following the same procedures as other species with a random sample
1115 of 10,000 SNPs.

1116

1117 - Lucek & Willi (42) recently published a dataset of WGS Illumina sequencing 108
1118 Arabidopsis lyrata individuals from North America, which the authors directly shared
1119 as a VCF. The raw data is available at

1120 https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB30473. We retrieved the

1121 latitude/longitude data from the supplemental material. We applied a genotyping rate
1122 filter ending with a dataset of 0.955431 genotyping rate. 10,000 SNPs were subsetted
1123 at random from the genome-wide data.

1124

1125 - Kreiner et al. (43) WGS Illumina sequenced 165 individuals of Amaranthus

1126 tuberculatus. The raw data is available in the link

1127 https://www.ebi.ac.uk/ena/browser/view/PRJEB31711. The authors provided a VCF.
1128 Overall, 155 individuals contained latitude and longitude information and were kept
1129 for the analyses. The genotyping rate was 0.98162 and we subsetted randomly 10,000
1130 SNPs.

1131
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Supple et al. (44) generated a dataset of Eucalyptus melliodora of 275 individuals
from 36 broadly distributed populations. The dataset was produced by Illumina
sequence Genotyping-by-Sequencing (GBS) libraries digested with ApeKI as in
Elshire et al. (2011). The raw data is available at
https://www.ncbi.nlm.nih.gov/bioproject/PRINA413429/. The authors provided the
dataset in PLINK format. Genotyping rate was 0.769807 but we did not apply a
further filter to avoid reducing the total number of variants. We conducted analyses
with all 9378 SNPs. The genotyping rate in this dataset is likely not problematic as the
total number of GPS locations is 36, with multiple individuals sampled closely. This
sampling scheme probably allows to characterise an allele's distribution correctly
despite the lower genotyping rate.

Vallejo-Marin et al. (45) generated a GBS dataset of 521 Mimulus plants, with 286
samples being Mimulus guttatus from its native distribution. Libraries for
Genotyping-By-Sequencing were prepared with Pstl enzyme as described in Twyford
& Friedman (2015) and sequenced using Illumina. The VCF of this dataset is
available at http://hdl.handle.net/11667/168 and was also directly shared by the
authors. After applying a filtering for missingness, we ended up with a genotyping
rate of 0.904192 and 1,498 SNPs, which were used for the analyses.

Lovell & MacQueen (46) generated a WGS Illumina sequencing dataset of
Switchgrass, Panicum virgatum, of a collection of 732 individuals and 33,905,044
variants. The raw data is available at:
https://www.ncbi.nlm.nih.gov/bioproject/PRINA622568. The authors provided a
VCF file and latitude/longitude tables. 576 individuals were from natural collections.
The dataset contains also other collections such as cultivars, which were not used to
build the MAR. The genotyping rate was 0.976393 and analyses were conducted with
10,000 SNPs drawn from the largest chromosome.

MacLachlan et al. (47) generated a SNP chip dataset of Pinus contorta comprising
929 trees with latitude and longitude information and 32,449 SNPs. Genotyping was
conducted with the AdapTree lodgepole pine Affymetrix Axiom 50,298 SNP array
and data was provided in the supplemental material of the paper along with custom
scripts to parse the data. The database is available at
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ncjsxkstp. The genome matrix
was transformed into PLINK. The genotyping rate was 0.959146, and analyses were
conducted with 10,000 randomly drawn SNPs. The fact that this dataset was created
with ascertained SNPs likely generates a frequency bias. In Fig. S22, one can see that
this may be a problem to calculate zu4r, as the mutations~area graph appears
nonlinear and rapidly saturates. This confirms the expectation that SNPs are
ascertained to be common, as they are discovered immediately with very few samples.

Tuskan et al. (48) WGS Illumina sequenced 882 Populus trichocarpa trees. The
dataset includes 28,342,826 SNPs. The data is available under this DOI
https://doi.ccs.ornl.gov/ui/doi/55 which redirects to a globus data sharing platform.
The authors provided the dataset as a VCF along with latitude/longitude coordinates.
This dataset was downsampled to the first chromosome. The genotyping rate was
0.921191, and 10,000 SNPs were randomly sampled for analyses.
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1181 - The Anopheles gambiae 1000 Genomes Consortium (49) (Phase 2) produced Whole-
1182 Genome Illumina sequencing data for 1142 wild-caught mosquitoes of Anopheles
1183 gambiae. All raw and processed data are available through

1184 https://www.malariagen.net/data. We downloaded a VCF and latitude/longitude

1185 coordinate files. The VCF was filtered for genotyping rate ending up at a 0.998895
1186 rate. For efficiency, 10,000 randomly-selected SNPs from the VCF of the largest

1187 chromosome 2L were used for analyses downstream.

1188

1189 - Fuller et al. (50) WGS Illumina sequenced 253 coral individuals of Acropora

1190 millepora in 12 reefs. The dataset was downloaded as fastq files from the published
1191 online material from https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA593014,
1192 and SNPs were called as described in the supplemental material ending with

1193 17,931,448, which were filtered to achieve a genotyping rate of 0.935709 for a total of
1194 2,512 SNPs, which were used in the analyses.

1195

1196 - Ruegg et al. (57) generated a dataset of 219 birds Empidonax traillii, for which 199
1197 could be matched with geographic coordinates. SNPs were ascertained from several
1198 publications using RAD seq and Fluidigm 96.96 IFC described and available in their
1199 repository https://github.com/erigande/ruegg-et-al-wifl-genoscape. A total of 349,014
1200 SNPs were parsed using their custom scripts and we transformed them into PLINK
1201 files. A genotyping rate filter was applied ending with a 0.96061 rate and 195,700
1202 SNPs. 10,000 SNPs were selected at random for downstream analyses. Similarly, as
1203 with the Pinus contorta, the incorporation of some ascertained SNPs in the dataset
1204 based on Fluidigm technology could lead to quick saturation of the MAR curve (Fig.
1205 S22).

1206

1207 - Bayetal. (52) generated a dataset of 199 Setophaga petechia birds using a Restriction
1208 site—associated DNA sequencing (RAD-Seq). The raw data is available at

1209 https://www.ncbi.nlm.nih.gov/bioproject/421926. The authors shared a VCF file, with
1210 a genotyping rate of 0.962419 and a total of 104,711 SNPs. 10,000 SNPs were

1211 selected at random for downstream analyses.

1212

1213 - Kingsley et al. (53) produced a dataset of 80 Peromyscus maniculatus deermice, for
1214 which 78 could be matched with geographic locations. The SNP dataset was produced
1215 using MY-select capture followed by Illumina sequencing. The VCF and PLINK files
1216 are available via Figshare at https://doi.org/10.6084/m9.figshare.1541235. The dataset
1217 included a total of 14,076 variants which were filtered to achieve a genotyping rate of
1218 0.940411 for 2,946 SNPs, which were used in subsequent analyses.

1219

1220 - We identified two published datasets for wolves. Smeds et al. (54) produced a WGS
1221 Illumina sequencing dataset and combined it with pre-existing datasets for a total of
1222 349 local dog breeds and wolves, of which 230 were Canis lupus from natural

1223 populations. However, these samples did not have GPS locations assigned. The

1224 second dataset we identified was from Schweizer et al. (55), which contained 107
1225 geo-tagged grey wolves from North America using a capture and resequencing

1226 approach for 1040 genes. The raw data is available at

1227 https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP065570, and meta-data along
1228 with a VCF area available at https://doi.org/10.1111/mec.13467. This data contained
1229 13,092 SNPs at 0.993061 calling rate, and a better geographic resolution. We report

1230 data for the second dataset.
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1231

1232 - The 1000 Genome Consortium (56) created WGS Illumina sequencing for over 2,504
1233 humans and 24 unique geographic locations. We downloaded chromosome 1 from
1234 http://ftp.1000genomes.ebi.ac.uk/voll/ftp/datacollections/

1235 1000G2504highcoverage/working/20190425NY GCGATK/ and gathered the

1236 population locations from https://www.internationalgenome.org/data-

1237 portal/population. To conduct analyses, we subsampled 10,000 SNPs at genotping
1238 rate 0.991069.

1239

1240 - Palacio-Mejia (57) used WGS for 591 Panicum hallii individuals to sequence at low
1241 coverage. The raw data is available at

1242 https://www.ncbi.nlm.nih.gov/bioproject/PRINA390994. The authors shared an

1243 unfiltered VCF of 45,589 SNPs. Because of the low-coverage, stringent filters of
1244 calling rates as used for other species would lead to removing all SNPs, and we settled
1245 on a genotyping rate of 0.825824 for 242 variants, all of which were used for

1246 downstream analyses.

1247

1248 - Royer et al. (58) produced a SNP dataset using RAD-Seq based Genotyping-By-

1249 Sequencing of 290 Yucca brevifolia (Joshua Tree) individuals. A total of 10,695 SNPs
1250 with a genotyping rate of 0.897501 wre used for the analyses. The data was available
1251 at Dryad https://datadryad.org/stash/dataset/d0i%253A10.5061%252Fdryad.7pj4t.
1252

1253 - Kapun et al. (59) produced a WGS dataset of pooled Drosophila melanogaster,

1254 sequencing ~80 pooled individuals from each of 271 populations as part of the

1255 European "Drosophila Evolution over Space and Time" (DEST) project. A total of
1256 5,019 shared SNPs with a genotyping rate of 0.937697 were used for analyses. The
1257 dataset, both raw and processed, is available through https://dest.bio.

1258

1259 - Di Santo et al. (60) studied the highly-threatened species Pinus torreyana. They used
1260 Genotyping-by-Sequencing of 242 individuals of the last remaining populations. The
1261 dataset is not yet available through NCBI but the authors kindly shared a VCF directly
1262 with us. From a total set of 166,564 SNPs with a genotyping rate of 0.964632, 10,000
1263 were randomly selected for our analyses.

1264

1265 - von Seth et al. (67) studied the highly-threatened species Dicerorhinus sumatrensis.
1266 They used Illumina WGS of 16 individuals of the last remaining populations. The raw
1267 data is available at https://www.ebi.ac.uk/ena/browser/view/PRJEB35511. The

1268 authors shared a VCF. In total, this comprises a set of 8,870,513 SNPs, with a

1269 genotyping rate of 0.854862, which we did not further filter due to the small number
1270 of individuals. For computational efficiency we selected 10,000 SNPs from the largest
1271 chromosome.

1272

1273 Information and results per species are gathered in Table 1 and its extended version, Table
1274 S10, and the average zuur across species are provided in Table S11.

1275

1276
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For each species we plot (left) the map of sample density in space and (vight) the mutations-area relationship. (The locations
of 16 Dicerorhinus sumatrensis are unknown so only Sumatra is shown. Pinus torreyana was only found in two extant

populations.)

Table S10 | The mutations-area relationship across species. Extended Table 1

The Mutations-Area Relationship (MAR) fitted with Area = Individuals and the scaled version. In the main text areas to
protect 90% of genetic diversity per species are provided given the scaled z*. Here, we also provide the average estimated
area based on % of grid cells per species to be transformed from 2015 to 2050 using the LUEP dataset, the area where at
least 10% of grid cells will be transformed, and the genetic loss corresponding to those area transformations (see section

V.2).
Species (study) SFS MAR (A=N) MAR scaled LUH? LUH? LUH* LUH?
mod [4AIC] zn [C195%)] z* [CI95%)] change >10% extinct >10%
‘50 change ‘50 extinct
‘50 ‘50
Arabidopsis thaliana (29) logN (85.8) 0.431 (0.423 - 0.439) 0.312(0.305-0.32)  4.58 13.54 1.12 3.43
Arabidopsis lyrata (42) logN (9592.4)  0.254 (0.238-0.27)  0.15(0.136-0.165)  0.79 2.64 0.19 0.64
Amaranthus tuberculatus (43) 1ogN (7317.5)  0.244 (0.237 - 0.251) 0.142 (0.135-0.148)  4.86 11.13 1.19 2.79
Eucalyptus melliodora (44) logN (157.5) 0.531 (0.526 - 0.536) 0.402 (0.397-0.406) 3.82 7.77 0.93 1.92
Yucca brevifolia (58) logN(33300) 0.141 (0.128 - 0.155)  0.049 (0.037-0.062)  0.74 0 0.18 0
Mimulus guttatus (45) logN (580.8) 0.342 (0.331 - 0.353) 0.231(0.221-0.241) 3.78 NA 0.92 NA
Panicum virgatum (46) logN (8345.2)  0.226 (0.215-0.237) 0.126 (0.116-0.136)  8.07 27.65 2 7.47
Panicum hallii (57) logN (86) 0.983 (0.907 - 1.059) 0.814 (0.745 - 0.883) 3.78 11.36 0.92 2.85
Pinus contorta (47) Wei (19413.7)  0.019 (0.018 - 0.02) - 1.95 5.54 0.47 1.36
Pinus torreyana (60) logN(766156)  0.239 (0.232 - 0.245) 0.105 (0.099-0.11)  25.4 NA 6.79 NA
Populus trichocarpa (48) logS (0) 0.268 (0.257-0.28)  0.164 (0.154-0.175) 4.68 17.28 1.14 4.45
Anopheles gambiae (49) logS (0) 0.221 (0.209 - 0.233) 0.121(0.11-0.132)  9.95 21.96 2.48 5.78
Acropora millepora (50) logN (452.3) 0.403 (0.395-0.41)  0.287 (0.28-0.293) 72.73 84.69 26.79  36.26
Drosophila melanogaster (59) 10gN(33300) 0.445 (0.433 - 0.458) 0.324(0.313-0.336) 0.95 NA 0.23 NA
Empidonax traillii (51) Wei (640401.9) 0.169 (0.139 -0.199) 0.074 (0.047-0.101)  5.55 15.14 1.36 3.86
Setophaga petechia (52) In (67138.5) 0.251 (0.236 - 0.267) 0.149 (0.135-0.163) 2.83 7.54 0.69 1.86
Peromyscus maniculatus (53) 1ogN (1449.7)  0.844 (0.769 - 0.919) 0.68 (0.613-0.748) 5.61 13.68 1.38 3.47
Dicerorhinus sumatrensis (61) w (107864.2)  0.474 (0.449 - 0.498) 0.123 (0.106-0.14)  0.25 NA 0.06 NA
Canis lupus (55) logN (85.8) 0.29 (0.28 - 0.301) 0.183 (0.174-0.193)  0.23 NA 0.06 NA
Homo sapiens (56) logN (9592.4)  0.395(0.339-0.451) 0.28 (0.229-0.331)  28.81 40.13 7.83 11.58

Extended acronyms:

logN: log Normal distribution. logS: log Series distribution. Wei: Weibull distribution.

IV.1 Exclusion of species from global averages
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1294  To avoid contaminating across-species averages of zy4r with estimates of species whose data
1295  we do not fully trust, we conducted global averages excluding species for which we are not
1296  confident zu4r reflects the correct species diversity-area relationships.

1297

1298  Pinus contorta showed a lower zuy4r than what is expected in a theoretical baseline from
1299  individual sampling (section II). This is most likely due to this being the only species for
1300  which SNPs were previously ascertained to be intermediate frequency (i.e. the genome

1301  technology was a SNP chip). This alters SFS, so we are not confident the zuy4r is the true
1302  parameter of the species.

1303

1304  Yucca brevifolia was a dense sampling of several local populations within a constrained area
1305  that is a hybrid zone. Since this species was not sampled range-wide we do not feel confident
1306  to include it in downstream analyses. The species also has a lower z than expected (Fig. S5)
1307

1308  Pinus torreyana only has two wild populations left, and therefore the MAR is based on two
1309  area sizes (Fig. S22). Because this is such a threatened species with already most of its range
1310  loss, we do not have confidence in the z parameter.

1311

1312 Dicerorhinus sumatrensis has only ~30 estimated adult individuals in the wild. Again we do
1313 not have confidence in the z parameter in such extinction-edge cases.

1314

1315  Homo sapiens. We exclude our own species.

1316

1317 Table S11 | Mean zyar _and other summary statistics across species.

1318 We selected those species that did not show artefacts in Fig. S22 or whose ZMAR overlapped with 0 to calculate a species-
1319 wide mean. See section IV.1.

1320
IMAR Zmar (A=N) Z*mar scaled
mean 0.31 0.39 0.27
mean se 0.038 0.053 0.048
median 0.25 0.29 0.18
IQR 0.15 0.19 0.17
1321
1322
1323 Although we could not see any obvious patterns relating zuz with certain groups of

1324 species (Table 1), we wondered whether any life history trait of the species analysed could
1325  explain the variation we observed (see Table S12 of traits). An ANOVA did not show any
1326  significant relationship. Because we know theoretically this parameter must be related to the
1327  degree of dispersal ability of genotypes of a species relative to the whole species geographic
1328  range, we expect traits involved in determining these to be good predictors. Future work will
1329  be necessary to validate this, as the sample size (n=19) may not permit enough power to
1330  detect these expected patterns.

1331
1332 Table S12 | Traits, life history, and other characteristics of the analyzed species.
Known

Species RedList Decline Kingdom Reproduction Pollination Mobility AreaRange
Arabidopsis thaliana NO NO Plantae Selfing Selfing Sessile 27337467.4
Arabidopsis lyrata NO NO Plantae Outcrossing Vector Sessile 2791301.4
Amaranthus tuberculatus LC NO Plantae Outcrossing Vector Sessile 804124.8
Eucalyptus melliodora VU NO Plantae Outcrossing Wind Sessile 948699.3
Yucca brevifolia LC YES Plantae Outcrossing Vector Sessile 1213454.4
Mimulus guttatus LC NO Plantae Outcrossing Vector Sessile 25138310.6

Panicum virgatum LC NO Plantae Outcrossing Wind Sessile 6291400.2
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Panicum hallii
Pinus contorta
Pinus torreyana

Populus trichocarpa

Drosophila melanogaster NO

Anopheles gambiae
Acropora millepora

Empidonax traillii
Setophaga petechia

Peromyscus maniculatus LC
Dicerorhinus sumatrensis CR

Canis lupus
Homo sapiens
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NO

YES
NO
NO
NO
YES
YES
NO
NO
YES

NA

Plantae
Plantae
Plantae
Plantae
Animalia
Animalia
Animalia
Animalia
Animalia
Animalia
Animalia
Animalia
NA

Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
Outcrossing
NA

Wind

Wind

Wind

Wind
Activemating
Activemating
Activemating
Activemating
Activemating
Activemating
Activemating
Activemating
NA

Table S13 | Association of traits, life history, and other characteristics with ZuAR.

Sessile
Sessile
Sessile
Sessile
Fly
Fly
Fly
Fly
Fly
Mobile
Mobile
Mobile
NA
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2188807.4
886182.2
30781.95
1119664.1
115208408
19959809.9
26725.9
7027395.2
15172431.15
22609152.6
3335605.58
19102403.5
80763121.8

Acronyms: NO=not assessed but likely non-threatened, LC=low concern, VU=vulnerable, CR=critically endangered

Df Sum Sq Mean Sq F value Pr(>F)

RedList 4 0.0952396 0.0238099 0.5580988 0.70404064
KnownDecline 1 0.0275537 0.0275537 0.6458527 0.4580865
Kingdom 1 0.0011684 0.0011684 0.0273876 0.8750400
Reproduction 1 0.0003238 0.0003238 0.0075890 0.9339612
Pollination 1 0.0375975 0.0375975 0.8812784 0.3909509
Mobility 1 0.1600627 0.1600627 3.7518370 0.1104995
AreaRange 1 0.0174745 0.0174745 0.4095989 0.5503439
Residuals 5 0.2133125 0.0426625 NA NA

While no association between life history and zy4z was found (Table S13), this may
be due to limited power, as the sample size of species analysed here is still small, n=20.
Further studies expanding the numbers of species will be necessary to confirm or reject this
expected association.
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V. An estimate of global genetic diversity loss

Using the approach described in section 11.4, we generated a number of estimates either per
ecosystem or per species. All estimates below tried to be conservative, and thus we always
used the scaled zy4r values (section 11.3.2.)

V.1 Estimates of ecosystem area losses

Table S14 | Millennium_Ecosystem Assessment land cover transformation.

Changes of ecosystem area pre-21*' century. Ecosystem names are repeated for ecosystem sub-classes.
Source: https://www.millenniumassessment.org

System Area (km* x10°) Earth % surface Protected areas (%) Area transformed (%)
MARINE 349.3 68.6 0.3 NA
COASTAL 17.2 4.1 7 NA
- TERRESTRIAL 6 4.1 4 11
- MARINE 11.2 2.2 9 NA
INLAND WATER 10.3 7 12 11
FOREST/WOODLAND 41.9 28.4 10 42
- TROPICAL 233 15.8 11 34
- TEMPERATE 6.2 4.2 16 67
- BOREAL 12.4 8.4 4 25
DRYLAND 59.9 40.6 7 18
- HYPERARID 9.6 6.5 11 1

- ARID 15.3 10.4 6 5

- SEMIARID 22.3 15.3 6 25
- SUBHUMID 12.7 8.6 7 35
ISLAND 7.1 4.8 17 17
- STATES 4.7 32 18 21
MOUNTAINS 35.8 24.3 14 12
-300-1000 13 8.8 11 13
-1000-2500 11.3 7.7 14 13
-2500-4500 9.6 6.5 18 6

- 4500+ 1.8 1.2 22 0.3
POLAR 23 15.6 42 0.38
CULTIVATED 353 23.9 6 47
- PASTURE 0.1 0.1 4 11
- CROPLAND 8.3 5.7 4 62
- MIXED 26.9 18.2 6 43
URBAN 3.6 2.4 0 100
GLOBAL 510 NA 4 38

Ecosystem transformation has been tracked over decades. We extracted ecosystem
transformations from the Millennium Ecosystem Assessment (62), which estimated
ecosystem transformations from presumably native systems to cultivated or urban areas by
GLC2000 land cover dataset (Table S14). The forest/woodland is calculated as percentage
change between potential vegetation from WWF ecoregions to the current actual
forest/woodland areas from GLC2000. These provide bulk ecosystem reductions, not for a
given species, but may be a good proxy for an average across species.

Table S15 | IPBES land cover transformation,

Source: https://ipbes.net

Region Area(Mkm2) MSA 2010 MSA 2050 SSP2 MSA 2050 SSP1 MSA 2050 SSP3
North America 20 65 56 NA NA

Central and South America 18 65 53 NA NA

Middle East and Northern Africa 11 81 77 NA NA

Sub-Saharan Africa 24 70 56 NA NA

Western and Central Europe 6 37 29 NA NA

Russian region and Central Asia 21 73 65 NA NA
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South Asia 5 44 35 NA NA
China region 11 56 49 NA NA
Southeast Asia 7 55 43 NA NA
Japan, Korea and Oceania 8 71 57 NA NA
Polar 2 96 91 NA NA
World 132 66 56 62 54

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES) recently used a PBL satellite product from the Netherlands Environmental
Assessment Agency (https://www.pbl.nl/en/nature-and-biodiversity) to study the % of area
ecosystem transformation in the world (Table S15). This provides an updated estimate to the
Millennium Assessment as well as projections under several Shared Socioeconomic
Pathways (1-3) for 2050. These were reported per region as of 2010, and for projections to
2050 (scenario SSP2). Instead of direct area, the metric is a composite of land use
information to predict Mean Species Abundance (MSA), a measure of the size of populations
of wild organisms as a percentage of their inferred abundance in their natural state (% MSA).

A global transformation metric can also be captured by the most updated land use
transformation data, the Land Use Harmonization 2 (release v2e for 2015-2011 and release
v2h for baseline 1850-2015) (63). Baseline transformation of primary ecosystems was
calculated subtracting the total area covered by primary forest (primf) and primary non-forest
(primn) variables between year 1850 layer (roughly pre-industrial baseline) and the present,
2015, as 1-Az015 / A1sso (Table S16). Analyses that use projections to mid-21% century were
conducted similarly as in (64), summing over all transitions from primary forest (primf),
primary non-forest (primn), secondary forest (secdf) and secondary non-forest (secdn) lands
to any other category for all years within the 2015-2050 period (see Table S10).

Table S16 | Land Use Harmonization 2 from 1850 to 2015

Source: https://luh.umd.edu/data.shtm!

Area %
Primary forest transformed 43
Primary non-forest transformed 50

Finally, we searched for timely estimates of forest reduction (based on vegetation
cover) reported in the Global Forest Watch website:
https://www.globalforestwatch.org/dashboards/global/ (accessed June 2021). From 2002 to
2020, there has been a global tree cover loss of 10%, with an annual tree cover loss of 0.6-
1.1%.

Although these are not direct area transformations, we also used the [IUCN Red List
resource (https://www.iucnredlist.org, Table S12 shows status of the species analysed here),
which includes guides to categorise species as vulnerable, endangered, critically endangered,
and extinct, and has conducted extensive assessments across thousands of species (Table
S17).

Table S17 | IUCN Red List categories of extinction risk and number of species.
Source: www.iucnredlist.org, January 2021

IUCN Red List Description Criterion of area or pop. # plant species
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Category reduction (>%)

EX Extinct 100 164
EW Extinct in the Wild 100

CR Critically Endangered 80 4674
EN Endangered 50 8593
VU Vulnerable 30 8459

No Concern, Low Risk, Near Threatened,

3223
Data Deficient, Least Concern, Other 7

NC, LR, NT, DD,LC

1417
1418

1419 V.2 A global estimate of genetic loss

1420

1421  Taking the estimates and standard error of zi.x across species, and the world's reduction of
1422 ecosystems we can calculate the fraction of genetic diversity reduction following the MAR
1423 equation (section I1.4), giving a range of estimates (Table S18).

1424
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1426 Fig. $23 | The parameter space of genetic diversity loss, extended
1427 (A) The theoretical space of genetic diversity loss. zyar values (using area, unscaled for samples, differently from Fig. 32)

1428 computed for species analyzed here are marked as orange vertical lines, with confidence intervals as orange shading. Blue
1429 horizontal lines correspond to ecosystem transformations from the Millennium Assessment (light blue) and IPBES

1430 Assessment (dark blue) (B) Density histogram of percentages of area transformed across ecosystems from the MA, with
1431 averages per ecosystem marked in the distribution as well as horizontal lines in (4). (C) The number of species of each of the

1432 IUCN categories and the most optimistic range of area or abundance reduction for each of the category brackets.

1433
1434

1435 Table S18 | Estimates of average expected genetic loss for different ecosystems.
1436 Assuming ecosystem transformation approximately translates into average species distribution reduction, and using the
1437 ranges of zuar from Table 1 of the main text, we project the average genetic loss using the Mutations Area Relationship.

1438

Area transformed Genetic loss Genetic loss Genetic loss

System (%) % (mean 7 based) % (min 7 based) % (max 7 based)
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COASTAL TERRESTRIAL 11 32 0.9 9
INLAND WATER 11 32 0.9 79.7
FOREST/WOODLAND 42 14.0 4 35.8
FOREST/WOODLAND 34
TROPICAL 10.5 3 28.7
FOREST/WOODLAND 57
TEMPERATE 26.5 7.9 59.4
FOREST/WOODLAND 25
BOREAL 7.7 2.1 209
DRYLAND 18 54 L5 14.9
DRYLAND HYPERARID 1 0.3 0.1 0.8
DRYLAND ARID 5 1.4 0.4 4.1
DRYLAND SEMIARID 25 7.7 2.1 209
DRYLAND SUBHUMID 35 11.3 32 296
ISLAND 17 5.0 1.4 14.1
MOUNTAINS 12 35 0.9 9.9
MOUNTAINS 300-1000 13 3.8 1 10.7
MOUNTAINS 1000-2500 13 3.8 1 10.7
MOUNTAINS 2500-4500 6 L7 0.5 4.9
MOUNTAINS 4500+ 0.3 0.1 0 0.2
POLAR 0.4 0.1 0 0.3

l439  CLOBAL 38 12.4 35 322

1440

1441 Assuming the average zuuz, and utilising tree cover from the Global Forest Watch

1442 (https://www.globalforestwatch.org), which estimates 0.6-1.1% of transformation per year
1443 across Canada, United States and Australia, we extrapolated genetic diversity loss in the next
1444 50 years for tree species to be 8-15% genetic diversity loss.

1445

1446 Assuming that the calculated zuur estimates (Table 1) are representative of plant

1447  species, we conducted an experiment to create a distribution of % of genetic diversity loss in
1448  threatened species. We used the number of species in each IUCN category (Table S17) for a
1449  total of 54,127 plant species. For plant species, one of the evaluation criteria of percentage of
1450  population loss likely translates faithfully to area reduction in the species. Thus, the

1451  proportion of species per category gives a discrete probability distribution of the ranges of
1452 percentage of area loss: P(0-29%)=0.596, P(30-49%)=0.156, P(50-79%)=0.159, P(80-

1453 99%)=0.086, P(99%-100%)=0.003. Using a simulation-based sampling approach, we drew
1454 350,000 random area reductions 4;/ A..; from the previous distribution and a zu4r from the
1455  mean and variance of our estimates from Table 1 for plants. These were plugged into the
1456  MAR equation (Section I1.4) to calculate the percentage of genetic diversity loss of these
1457 350,000 random draws. The resulting distribution had a median and interquartile range of
1458  17.53 % [7.51- 31.82]..

1459

1460 Using the Land Use Harmonization 2 dataset, we also create per-species predictions
1461  based on the % transformation of each of the sampled regions per species (Table S14). As
1462  before, the land use transformations that merit be considered arca losses are all transitions
1463  from primary forest (primf), primary non-forest (primn), secondary forest (secdf) and

1464  secondary non-forest (secdn) lands to any other category. Taking all the locations where each
1465  species has been sampled, we extracted the predicted % of land use change per cell and

1466  summed over all cells where individuals had been sampled (we call this LUH? change ‘50,
1467  see column in Table S10). We also produced the alternative area loss estimate taking that at
1468  least 10% predicted habitat transformation for a grid cell renders the entire area of that grid
1469  cell as impacted or lost (we call this LUH? >10% change ‘50). These per-species area losses,
1470  in combination with the matched zuur, provided a range of potential loss estimates to 2050
1471  ranging 0-36% depending on the species (Table S10).

1472
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1473

1474 V.3 Community ecology simulations and MAR

1475

1476  To test whether intermediate levels of MAR would be expected across species in entire

1477  ecosystems, we conducted community assembly simulations of ~100-500 species following
1478  the Neutral Theory of Biodiversity (/, 4/) and coalescent simulations (23) using the software
1479  MESS (65). These simulations are computationally demanding and could not run in a

1480  complete 2D spatial grid. Instead, they were simulated in a mainland-island system, with
1481  islands of increasing areas. The community forms by species colonising an empty island
1482  according to Hubbell's Unified Neutral Theory of Biodiversity and Biogeography (UNTB),
1483  where all species are equally likely to colonise and persist in the local community. Continued
1484  colonisation and migration to the local community continues to bring in new species that may
1485  or may not survive, while also continuously bringing in individuals of species already in the
1486  local community. The community assembly process ends when the community has reached
1487  an equilibrium denoted as the balance between local extinction and new species dispersing
1488  into the area (Hubbell 2001). Once the forward-time process has ended, we simulate the
1489  coalescent history of each species backward in time. For this, MESS considers the population
1490  size, divergence time, and migration rates of the meta and local communities. These

1491  coalescent simulations provide us with genetic data and ultimately diversity estimates for
1492 each species in the community.

1493

1494 We simulated 100 MESS communities, and for each community the size of the local
1495  community was varied from 1K to 100K. We varied the size of communities to emulate
1496  variation in area occupied by a given community because we assume as the number of

1497  individuals in a community increases from 1,000 to 100,000, so does the area occupied. All
1498  other parameters were kept consistent across each of these community simulations, and most
1499  remained at their default value. The parameters changed were the length of the sequences
1500  simulated for the coalescent-based simulations, which was fixed at 10,000 bp, and the

1501  migration rate, which was fixed at 0.01.

1502

1503 The simulation output was used to then compute a single zs.z for the system as

1504  S=cA*R and one zuur for each species in the same way, M=cA4*4R_ This resulted in the
1505  distribution of zuar from Fig. S24. This confirmed that we can recover typical zsiz and zuuz
1506  values from completely stochastic neutral yet spatially structured systems such as species in
1507  communities and mutations in populations of a species.

1508

7.5

o0 |“|IIIII i i |
0.0 0.5 1.0

1509

1510 Fig. $24 | zyar calculated from MESS eco-evolutionary simulations
1511 Using the MESS framework of a mainland-island model with different island sizes, zyr per species is recovered. The
1512 stochastic nature of the simulations results in each species having different abundances and migration histories that change
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1513 the scaling value. Values were typically around 0.3. Rarely some species had values above 1, which appear could be noisy
1514 estimates from recently colonising species in the simulations.

1515

1516

1517

1518 V.4 The nested species extinction and genetic diversity loss processes
1519

1520  Finally, we worried that our estimates of V.2 would be mistaken as overestimates. In fact, we
1521  believe these may be underestimated. Recent policy proposals for the United Nations’

1522  Sustainability Goals emphasize that the target of protecting 90% of species genetic diversity
1523  for all species cannot leave the already-extinct species behind (66) (That is, one cannot

1524  protect 90% of species and leave 10% to become extinct to meet this goal). This clearly

1525  exemplifies a problem in conservation biology that what researchers can study is (most of the
1526  time) what has escaped extinction, and therefore if we do not account for extinct species in
1527  our overall estimates of genetic diversity loss we may naively think ecosystems have not
1528  suffered genetic diversity loss (i.e. in the extreme scenario, an ecosystem that has lost all but
1529  one abundant species may not really appear genetically eroded if such species is in good
1530  shape).

1531

1532 We then created spatial simulations in R where 1,000 species are distributed in

1533 100x100 grid cells following a UNTB abundance distribution and then proceeded with an
1534  edge extinction of the ecosystem (see Fig. S25 for a cartoon).

1535
1536
1537
speciesi2 spggies 2
species 1
mutation2.1
—— ) mutation2.2
§sa__ " :
= cspecies 3
ST g mutationt.q LI
a2 mutation1.2
1538 mutation3.1mutation3.2

1539 Fig. $25 | Cartoon of nested extinction of species and genetic diversity loss.
1540 An ecosystem with multiple species within it (left), distributed in space, with few species broadly distributed and many

1541 narrowly distributed. Moving one level of biological organization lower, mutations within species (right) are also spatially
1542 distributed with many narrowly distributed. As extinction happens (red line moving bottom to top), all species below the red
1543 line go extinct, but only the mutations within species 1 below the line are lost, while mutations above the line remain.

1544 Species 3 has already become extinct, and therefore also all the mutations within it.

1545

1546

1547 Two extreme types of distributions of species can be imagined: species are randomly

1548  placed in space, or species are found mostly in perfectly contiguous ranges (We ended up
1549  using as an example a simulation with 85% of the individuals of a species found in a core
1550  square continuous distribution and 15% found outside that core in fragmented observations,
1551  as this scenario produced the canonical SAR of z~0.3). Spatial structure interestingly creates
1552  two extreme distributions of area reductions across species (Fig. S26): random placement of
1553  cell habitats essentially show that the average area reduction per ecosystem is followed by
1554  most species, while autocorrelated placement of cell habitats create a U distribution in area
1555  reductions, where at the beginning of the extinction process most species have not
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1556  experienced any impact (Fig. S26B left) but at the end of ecosystem reduction virtually all
1557  species are already extinct (Note we may be at the beginning of S26B process given the data
1558  from IUCN, Fig 3C).

1559
1560
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1562 Fig. $26 | The distribution of per-species area lost and total ecosystem extinction with 1000 species

1563 Two ecosystems of 100x100 cells with 1000 species. Species are either randomly distributed in cells (4) or spatially

1564 autocorrelated with occupying mostly contiguous cells (B). As the extinction process wipes out part of the ecosystem

1565 (snapshots are provided at 5%, 50%, and 95%), the area loss per species (and hence genetic diversity lost) is tracked. In (4)
1566 the average area lost per species is roughly the total reduction of the ecosystem, whereas in (B) the distribution is U shaped
1567 (note the log-scaled y-axis). While in (B) the mean area lost in the distribution correctly captures the area loss of the

1568 ecosystem, per species losses are highly uneven.

1569

1570 To study the consequence of the above differential area loss and the effect of some
1571  species going extinct on the total ecosystem genetic diversity, we conducted the next

1572  analysis: For extant species, we assumed they would lose genetic diversity following the
1573  MAR relationship (section 11.4), with all species having za4r = 0.3 for simplicity (i.e. all
1574  species lose genetic diversity at the same rate). For extinct species (100% of their area

1575  reduced), we considered genetic diversity loss was 100%. The compound total genetic

1576  diversity loss would then just be the sum of those Xro = >2;20 Xi (Of course, in reality species
1577  may vary in their genome-wide diversity average, and we could for instance use Watterson’s
1578  ©w (see section I1.2) to scale the total loss of genetic diversity in the ecosystem accounting
1579 for different basal level of diversity per species: .21 ©w:Xi). Interestingly, if we calculate the
1580  z of the slope of compound genetic diversity across species in an ecosystem it is much larger
1581  than MAR or SAR alone: zcompundea = 0.6 (Fig. S27).

1582
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1584 Fig. $27 | Numeric simulation of nested species and genetic diversity loss.
1585 (A) Simulating the extinction of an ecosystem with 1,000 species that follow a log-normal species abundance curve.
1586 Extinction of the ecosystem creates a curve of species loss of z~0.3 (grey). Likewise, each species trajectory (light red, 15
1587 species drawn randomly) follows a simulated genetic diversity loss of zmar~0.3 as they lose area. Because species’
1588 geographic distributions are by construction smaller than the whole ecosystem area, those distributed closer to the start of
1589 the extinction front lose area first, while those distributed farthest from the extinction front only lose area when the
1590 ecosystem is almost completely destroyed. Because genetic diversity loss is both due to complete extinction of species as well
1591 as area reduction of extant species, the compound genetic diversity loss curve (red) follows the faster loss dynamics. (B)
1592 Holding zsar=0.3 constant, and varying zm4r in independent simulations shows that the compound genetic diversity across

1593 species is close to the sum of both z slopes (the SAR and the MAR), but it saturates at ca. 0.85 (grey dotted line shows zmar
1594 + Zs4R).
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VI. Limitations and outlook

In this last section we list some potential limitations of an inherently simple scaling law, and
what approaches could be used to address those and improve genetic diversity loss
projections.

V1.1 Reasons for overestimations

Many researchers have posited that SAR likely overestimates species extinction (33, 67). For
instance:

- Ignoring that a diversity-area relationship can be defined outwards, inwards, or
focusing on endemisms can have an impact (10, 33, 67). To address this, we
confirmed relative consistency between inward, outward, and random placement
MAR, and proposed that the EMAR may not be that appropriate to study genetic
diversity loss (or at least EMAR does not show predictability in our simulation).

- Species may persist in altered habitats, like some animals are known to do (68). We
have focused some of the estimates in this study on plants, for which area loss should
equate to population loss and vice versa, but further extensions could be applied in the
future as described by Pereira and Daily (66).

- SAR is not a mechanistic model (69). We have derived its ranges of possible values
and averages analytically and are beginning to understand how evolutionary forces
shape MAR. Realistic simulations can help understand in a process-based framework
how populations (and their MAR) react to partial population extinction (continuous
space simulations with progressive area reductions appear to fit well with the MAR
predictions calculated before the extinction process starts, section I11.2.6).

- There is a scale dependence in the SAR slope, with slight increase in the slope at large
scales (/0). Since power laws are typically fit with large-scale datasets and used to
predict local scale extinctions, predictions could be overestimated at local scales.

V1.2 Reasons for underestimations

While the simplicity of power laws to make predictions of species extinction may lead to
overestimations, there are also important reasons to believe MAR would underestimate
genetic loss.

- Perhaps even more so than in species list datasets and census, the discovery of low
frequency genetic variants is highly underpowered (70). These are highly prevalent,
but genomic pipelines, with the aim to be conservative, often filter out rare variants.
This would underestimate zy4r and therefore the degree of genetic diversity loss with
area shrinkage. This is clear in the pre-selected-only marker dataset of Pinus contorta.

- Related to the previous: Although sequencing methods have an error rate that
misreads true nucleotide sequences, this rate is typically extremely low (many
sequencing projects described here used [llumina HiSeq series, which has a 0.112%
error rate, or about 1 misread nucleotide in 1000). This could intuitively lead to
overestimates in mutations in space but in fact, the mis-reading of DNA ends up
causing an underestimation. This is because bioinformatic software that transforms
raw data into SNP variant tables errs towards the conservative direction, often not
calling mutations that have been observed very few times, and thus likely under-
representing rare mutations (717).

- The use of scaled zuur proposed in section 11.3.2. accounts for that the minimum zaz4r
is rarely exactly 0, especially when sample sizes are limited. We use this correction
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1648 scaling down zu4r to be conservative. However, zu4r could only in very exceptional
1649 circumstances be 1, but we do not correct for this, again, to have a conservatively low
1650 zuar. Hence, our conservative approach would generally lead to underestimates of
1651 genetic diversity loss.

1652 - When species shrink in area, the effective population size of the remaining population
1653 decreases, increasing drift and moving towards a lower diversity equilibrium. This
1654 reactive process is not captured by the phenomenological MAR relationship.

1655 - The nested extinction of species and genetic diversity loss (section V.3) would lead
1656 us, by the right of “survival bias”, to underestimate how much genetic diversity has
1657 been lost cumulative in an ecosystem.

1658

1659 VI3 Final notes

1660

1661  Ultimately, to make accurate predictions of genetic diversity loss and increased extinction
1662  risk of species, very detailed data and expert assessment per species will be required: census
1663  sizes, genome size, migration in metapopulations, mating system, detailed maps of genetic
1664  makeups, and finescale area transformations. This could enable mechanistic models projected
1665  forward-in-time such as discussed in section I1.3.6. The production of new genomic datasets
1666  across entire ecosystems should further help create maps of genetic diversity at high

1667  resolution to track losses (72—74).

1668

1669 Our philosophy in this work has been to err on the conservative side when projecting
1670  genetic diversity loss (e.g. using area calculations that produce lower za4z values, scaling
1671  them for low sample bias, using lower estimates of ecosystem transformation, etc.). However,
1672 this conservative approach can also lead us into under-estimating loss. As described in V.4.,
1673  the phenomenon of survival bias likely leads us to underestimate what has been lost given we
1674  do not observe it. A phenomenon also highlighted as a possible explanation for the relatively
1675  shy difference in genetic diversity between threatened and non-threatened species (73, 76)
1676

1677 Because to our knowledge, no other approaches exist to project genetic diversity, we
1678  believe that MAR is a quantitative and scalable first-approximation of genetic diversity that
1679  would just require accurate understanding of abundance or area reductions and minimal

1680  information about population structure or mating/dispersal/range relationships. Given that
1681  scaling relationships are already applied by conservation policy (77), and given that

1682  assumptions and limitations are understood, we expect MAR to become a relevant tool to
1683  project losses of a dimension of biodiversity so far mostly invisible or unaddressable in large
1684  conservation projections.

1685

1686

1687
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