
FAIRly big: A framework for computationally reproducible
processing of large-scale data

Adina S. Wagner1†*, Laura K. Waite1†, Małgorzata Wierzba1,2†, Felix Hoffstaedter1,
Alexander Q. Waite1, Benjamin Poldrack1, Simon B. Eickhoff1,3, Michael Hanke1,3

January 31, 2022

1. Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich,
Jülich, Germany
2. Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sci-
ences, Warsaw, Poland
3. Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düs-
seldorf, Germany

* corresponding author: adina.wagner@t-online.de
† these authors contributed equally and are listed in alphabetical order

Abstract

Large-scale datasets present unique opportunities to perform scientific investigationswith un-
precedented breadth. However, they also pose considerable challenges for the findability, acces-
sibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure limita-
tions, data usage constraints, or software license restrictions. Herewe introduce aDataLad-based,
domain-agnostic framework suitable for reproducible data processing in compliance with open
sciencemandates. The framework attempts tominimize platform idiosyncrasies andperformance-
related complexities. It affords the capture of machine-actionable computational provenance
records that can be used to retrace and verify the origins of research outcomes, as well as be
re-executed independent of the original computing infrastructure. We demonstrate the frame-
work’s performance using two showcases: one highlighting data sharing and transparency (using
the studyforrest.org dataset) and another highlighting scalability (using the largest public brain
imaging dataset available: the UK Biobank dataset).

Keywords

research data management, reproducibility, reusability, FAIR, high performance computing, high
throughput computing, version control

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

The amount of data available to researchers has steadily grown, but over the past decade, a fo-
cus on diverse, representative samples has resulted in datasets of unprecedented size. The Wind
Integration National Dataset (WIND) Toolkit1, CERN data (opendata.cern.ch), or NASA Earth data
(earthdata.nasa.gov) are only some of the prominent examples of large, openly shared datasets across
scientific disciplines. This development is accompanied by a growing awareness of the importance to
make the data more findable, accessible, interoperable, and reusable (FAIR)2, and increasing avail-
ability of research standards and tools that facilitate data sharing and management3.

Though large-scale datasets present unique research opportunities, they also constitute immense
challenges. Storage and computational demands strain the capabilities of even well-endowed re-
search institutions’ high-performance compute (HPC) infrastructure — rendering the analysis of
these datasets unaffordable using methods common in fields accustomed to smaller datasets (e.g.
multiple copies of the data, computationally inefficient processing). With the growing complexity
of handling large scale datasets, the trustworthiness of derivative data can be at stake as large-scale
computations are more difficult to reproduce, comprehend, and verify. Yet especially in the case of
large scale datasets, sharing and reusing data derivatives emerges as the most — or sometimes the
only — viable way to extend previous work4. It minimizes duplicate efforts to perform resource-
heavy, costly computations that also have considerable environmental impact5, and it can open up
research on large data to scholars who do not have access to adequate computational resources. In
such contexts, data should thus not only be as FAIR as possible, but also handled in a sustainable
manner that places data sharing and reuse as a priority.

d) RIA store dataset representation

branches/...
config
refs/...
objects/...
...
annex/

5X/Xg/MD5E-s2796822--bd9938c...4b514af.tar.gz

objects/
...

...

bv/r4/MD5E-s2873442--45fea23...fb983ca.tar.gz
QV/45/MD5E-s2643567--ac54321...345eeed.tar.gz
Z3/cx/MD5E-s2931364--d23cfa3...d2f11e2.tar.gz

/data/store/

sub-...

sub-...

sub-...

sub-...

Results893/8de76-0302-45b5-9825-3c6ce3f3fffe/

Pipeline993/00fb0-ea39-4fd2-b36d-2afc1e9ab7b2/...

archives/archive.7z
...

sub-10...800/467ae-d521-11ea-8bf7-ac1f6bbc444e/

Inputs14a/5e5b6-d30d-11ea-8836-b4969157768c/...

efd/ab9ca-d51c-11ea-aa6b-ac1f6bbc4742/...
...

InputsPipeline

Results

sub-100123Dedicated ephemeral
 workspace for each
 compute job

Dataset
created

with unique
identifier

Link
input
data

Link
processing
pipeline

Develop
workflow

Workflow
execution

Result
consolidation/

merge

a) User-facing dataset view

.datalad/...

.git/...

README.md

code/

...

/home/me/

inputs/

job.sh
submit.spec

pipeline/
container.sif

Pipeline

sub-100123/...

sub-.../...

...

results/Results

Inputs

sub-10...

sub-...

sub-...

sub-...

sub-.../inforoi.tar.gz ...

sub-100100/inforoi.tar.gz
MD5E-s2796822--bd9938c...4b514af.tar.gz

Dataset with file
content present
Dataset with file
content absent

Content identity and
metadata availability

File
content

b) Processing flowchart

c) Ephemeral workspace

 native.tar.gz
MD5E-s2873442--45fea23...fb983ca.tar.gz

 surface.tar.gz
MD5E-s2643567--ac54321...345eeed.tar.gz vbm.tar.gz
MD5E-s2931364--d23cfa3...d2f11e2.tar.gz

ses-2/anat/sub-100123_ses-2_T1w.nii.gz

Figure 1: Schematic overview of the processing framework. a) The user-facing representation of the results on
a file system after completed processing: A lean DataLad dataset that tracks the computed results, links input
data and pipeline, and contains actionable process provenance and location information, allowing on-demand
file retrieval or recomputation. Depicted files are from the UK Biobank showcase. b) Process-flowchart:
First, a DataLad dataset links required processing components (e.g., input data, processing pipeline, addi-
tional scripts). Next, compute jobs are executed, if possible in parallel. Afterwards, results and provenance
are aggregated (merged). c) An ephemeral (short-lived) compute workspace: Each compute job creates a
temporary, lean clone, which retrieves only relevant subsets of data, and captures the processing execution as
provenance. After completion, results and provenance are pushed into permanent storage (see d), and the
ephemeral workspace is purged. d) The internal dataset representation in a RIA store: The store receives
results and can contain input data, optionally using compressed archives (for reduced disk space/inode con-
sumption) or encryption during storage and transport. It is the only place where results take up permanent
disk space. If inputs are available from other infrastructure (external, web-accessible servers, cloud infrastruc-
ture), jobs can obtain them from registered sources, removing the need for duplicate storage of input data.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

The challenges of big data are particularly relevant to the life sciences, such as neuroscience or
genetics, where datasets scale to millions of files, hundreds of terabytes6,7, acquired from tens of
thousands of participants. Well known examples, such as the Human Connectome Project8, the
Adolescent Brain Cognitive Development Study (ABCD)9, or the UK Biobank (UKB) project10, con-
tain diverse data ranging from brain imaging to genetics to clinical and non-clinical measures.

In addition, computational processing of biomedical datasets is rarely fully transparent. Often,
datasets contain personal data, which imposes usage constraints and prohibits the open distribu-
tion of data. Thus, handling these datasets can only be as open as the responsible use of sensitive
data permits. Moreover, common processing pipelines possess considerable analytical flexibility, and
many tools commonly used in biomedical research rely on proprietary software11, which cannot be
easily shared or accessed by others. This threatens the reproducibility of results12, and their digi-
tal provenance— information about how tools, data, and actors were involved in the generation of
a file — is often incomplete. As data processing results often multiply storage demands, the just-
keep-everything data management approach is rendered increasingly prohibitive. This fact further
impedes the possibility to retrace and verify the origin and provenance of research outcomes fully
and transparently13, and hence limits the trustworthiness of the research process and its outcomes2.

Here, we present a portable, free and open source framework — built on DataLad14 and con-
tainerization software15 — to reproducibly process large-scale datasets. It empowers independent
consumers to verify or reproduce the results based onmachine-actionable (i.e., machine-readable, au-
tomatically re-executable) records of computational provenance, in an infrastructure-agnostic fash-
ion. The framework capitalizes on established technology, used in conjunction with workflows from
software development and workload management. Two use cases demonstrate different framework
features and its scalability: 1) an application of a MATLAB-based, containerized, neuroimaging pro-
cessing pipeline on big data from the UKB project16 (comprising 76 TB in 43million files under strict
usage constraints), and 2) a showcase implementation with openly available processing pipeline
and data that illustrates the framework’s potential for transparent sharing and reuse of reproducible
derivatives. While one can apply the framework by following the description in this work, a boot-
strapping script for each use case is provided that — given input dataset and processing pipeline —
performs the necessary setup from scratch.

Results

The proposed framework employs a range of software tools for data, code, and computation man-
agement to apply workflows from software engineering — in particular distributed development —
to computational research. Specifically, it orchestrates arbitrary data processing via a lean network
of interconnected, but self-sufficient workspaces while optimizing for portability, scalability, and au-
tomatic computational reproducibility.

To achieve this, our framework combines a range of open source software tools — distributed
version control systems, containerization software, job scheduling tools, and storage solutions with
optional encryption and compression— into a sequential workflow. A complete, schematic overview
is depicted in Figure 1 and basic DataLad concepts are summarized in Box 1. Three key features of
this data management solution are central to the framework:

• Comprehensive data structure to track all elements of digital processing
• Computation in automatically bootstrapped ephemeral workspaces
• Process provenance capture in machine-actionable records

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

DataLad concepts

DataLad dataset DataLad’s core data structure is the dataset. On a technical level, it is a joint Git/git-annex 17
repository. Conceptually, it is an overlay data structure that is particularly suited to address data integra-
tion challenges. It enables users to version control files of any size or type, track and transport files in a
distributed network of dataset clones, as well as record and re-execute actionable process provenance on
the genesis of file content. DataLad datasets have the ability to retrieve or drop registered, remote file con-
tent on demand with single file granularity. This is possible based on a lean record of file identity and file
availability (checksum and URLs) irrespective of the true file size. A user does not need to be aware of
the actual download source of a file’s content, as precise file identity is automatically verified regardless
of a particular retrieval method, and the specification of redundant sources is supported. These technical
features enable the implementation of infrastructure-agnostic data retrieval and deposition logic in user
code.

A clone (Git concept) is a copy of a DataLad dataset that is linked to its origin dataset and its history. The clones
are lightweight and can typically be obtained within seconds, as they are primarily comprised of file iden-
tity and availability records. DataLad enables synchronization of content between clones and, hence, the
propagation of updates.

A branch (Git concept) is an independent segment of a DataLad dataset’s history. It enables the separation of
parallel developments based on a common starting point. Branches can encompass arbitrarily different
modifications of a dataset. In a typical collaborative development or parallel processing routine, changes
are initially introduced in branches and are later consolidated by merging them into a mainline branch.

Nesting A DataLad dataset can also contain other DataLad datasets. Analog to file content, this linkage is im-
plemented using a lightweight dataset identity and availability record (based on Git’s submodules). This
nesting enables flexible (re-)use of datasets in a different context. For example, it allows for the composi-
tion of a project directory from precisely versioned, modular units that unambiguously link all inputs of
a project to its outcomes. Nesting offers actionable dataset linkage at virtually no disk space cost, while
providing the same on-demand retrieval and deposition convenience as for file content operations because
DataLad can work with a hierarchy of nested datasets as if they are a single monolithic repository. When a
DataLad dataset B is nested inside DataLad dataset A, we also refer to A as the superdataset and to B as a
subdataset. A superdataset can link any number of subdatasets, and datasets can simultaneously be both
super- and subdataset.

RIA store A file-system based store for DataLad datasets with minimal server-side software requirements (in
particular no DataLad, no git-annex, and Git only for specific optional features) 18. These stores offer inode
minimization (using indexed 7-zip archives). A dataset of arbitrary size and number of files can be hosted
while consuming fewer than 25 inodes, while nevertheless offering random read access to individual files
at a low and constant latency independent of the actual archive size. Combined with optional file content
encryption and compression, RIA ("Remote Indexed Archive") stores are particularly suited for staging
large-scale, sensitive data to process on HPC resources.

DataLad extension The core DataLad software is extensible via independently developed Python packages.
We developed a custom extension, datalad-ukbiobank 19 (docs.datalad.org/projects/ukbiobank),
to use the UK Biobank (UKB) as a data source for reproducible research. This extension equips Data-
Lad with a set of commands to obtain, monitor, and restructure the UKB imaging data release. UKB
data are tracked in DataLad datasets that can be updated whenever the UKB updates or adjusts its of-
ferings. Using a multi-branch approach, the DataLad datasets provide a BIDS-structured representation
in addition to the UKB-native data organization, without storage duplication and with full provenance
capture of the BIDS transformation. We also employed the datalad-container 20 extension, which inte-
grates container-based command execution with DataLad’s process provenance capture capabilities (see
docs.datalad.org/projects/container for more information).

Box 1: Main concepts about the design and function of the framework, DataLad, and its underlying tech-
nical components. DataLad, integral to the processing framework, is a domain agnostic data management
solution based on Git (git-scm.com) and git-annex17. It provides standard interfaces for arbitrary data trans-
port methods, comprehensive process provenance capture for computational reproducibility, and the means
to apply proven workflows from collaborative software development to the domain of data processing. More
information on DataLad is available at datalad.org and handbook.datalad.org21.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

http://docs.datalad.org/projects/ukbiobank
docs.datalad.org/projects/ukbiobank
http://docs.datalad.org/projects/container
docs.datalad.org/projects/container
http://datalad.org
datalad.org
http://handbook.datalad.org
handbook.datalad.org
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

Comprehensive data structure to track all elements of digital processing

All files involved in processing are contained in DataLad datasets, a Git-repository-based data repre-
sentation that streamlines data management, sharing, and reuse22. In our framework, such datasets
have a common representation (a regular directory tree) familiar to users, and also have a storage
representation (a RIA store) that facilitates programmatic data management and reduces storage de-
mands (Figure 1a, d).

DataLad datasets can version control files regardless of file size, and can link other DataLad
datasets at precise versions in modular superdataset-subdataset relationships. Based on this fea-
ture, all processing components, such as data, code, and computational environments in the form
of software container images, can be uniquely and transparently identified with single file granular-
ity across a hierarchy of linked DataLad datasets. Unlike purely Git-based tracking, version control
and file identification are based on a cryptographic hash of the file content, a feature provided by
the software git-annex17. More precisely, each file’s content is translated into a checksum, and this
checksum is saved (committed) as a file content identifier into the revision history—a detailed record
of all changes in a DataLad dataset, including their date, time, and author. Exemplary shortened
identifiers can be found in Figure 1. This checksum is irreversible, i.e., one cannot infer the file
content based on the identifier, but one can verify the content of files that are present on disk. Be-
cause file content is not stored in the revision history, the potential to leak sensitive information is
significantly reduced, while the data representation still allows for thorough tracking and content
verification.

Computation in automatically bootstrapped ephemeral workspaces

DataLaddatasets can be distributed across local or remote infrastructure as lightweight, linked clones.
They share their origin dataset’s revision history and can extend it. File content transport across this
network is possible via versatile transport logistics that allow for local or remote data hosting. This
can enable data transports on systemswith too little available disk space formultiple copies, allow re-
dundant storage to be configured, interoperatewith hosting services to publish results, or reconfigure
data access when remote hosting locations change—without needing to alter the data representation
in the dataset.

With these technical features, how and where data are stored (e.g., local, encrypted storage; re-
mote, cloud-based hosting) becomes orthogonal to how andwhere computations are performed (e.g.,
on-site compute cluster; remote cloud-computing service). This allows our framework to bootstrap
ephemeral (short-lived) workspaces for individual computational jobs, retrieve only relevant process-
ing elements (e.g., subsets of input data), and extend the DataLad datasets’ revision history with their
results and process provenance (Figure 1c). This, in turn, opens the possibility for parallel and ver-
sion controlled analysis progression, using a distributed network of temporary clones. Results and
revision histories can be merged to form a full processing history, in a similar way to how code is
collaboratively developed with distributed version control tools23. Importantly, DataLad itself is not
a workflow engine, but can be employed for individual nodes and segments of a processing graph
defined by other solutions like HTCondor DAGMan24, or snakemake25.

Process provenance capture in machine-actionable records

Process provenance—how code and commands created results from input data in a particular com-
putational environment—of any processing routine can be captured and stored inmachine-readable,
automatically re-executable records (Figure 2). These records are created by a datalad run com-
mand for the execution of a shell command, or a container invocation by datalad containers-run.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

Users need to supply the command, a software environment, input data, and optionally which re-
sults should be saved as parameters. DataLad’s execution wrappers retrieve inputs, initiate com-
mand execution, and save results together with a provenance record. Through the use of ephemeral
workspaces during provenance capture, the validity and completeness of provenance records is au-
tomatically tested: only declared inputs are retrieved, only declared outputs are saved and deposited
on permanent storage.

A resulting process provenance record is identified with one unique, hash-based identifier in the
revision history, and can subsequently be used by authorized actors to automatically retrieve required
components and re-execute the processing, irrespective of whether the original compute infrastruc-
ture is available26. This potential for full computational reproducibility of arbitrary processing steps
not only increases the trustworthiness of the research process per se, but permits structured investi-
gations of result variability, and furthermore provides the means to rerun any analysis on new data
or a updated analysis components.

Basic commit metadata
Author, Agent, Date, Time,
and Commit Message

Transformations
Command call/
Container parametrization

Software container image
Origin: http://containers.ds.inm7.de/..
Version: dfa6d975ea8888ed33bf714c67

Input data
Origin: http://ukb.ds.inm7.de/.../bids
Version: 0c7f0b45140dde1d7291b1572

Captured output data
Path, Content hash

Expected output data/folder

a)
perform and capture a computational execution
$ datalad containers-run \
 -m "Compute subject ${subid}" \
 -n cat \
 --input "inputs/${subid}/*T1w.nii.gz" \
 --output "${subid}" \
 "<arguments for container invocation>"

commit e035f896s45c9fac70cn7cc4dbd0dad43907755p
Author: Jane Doe <j.doe@fz-juelich.de>
AuthorDate: Wed Feb 10 18:05:30 2021 +0100
Commit: Jane Doe <j.doe@fz-juelich.de>
CommitDate: Wed Feb 10 18:05:30 2021 +0100

[DATALAD RUNCMD] Compute sub-6025043/ses-2

 === Do not change lines below ===
 {
 "chain": [],
 "cmd": "singularity exec -B {pwd} --cleanenv code/pipeline/.datalad/

environments/cat/image sh -e -u -x -c [...]'
 "dsid": "8938de76-0302-45b5-9825-3c6ce3f3fffe",
 "exit": 0,
 "extra_inputs": [
 "code/pipeline/.datalad/environments/cat/image"
],
 "inputs": [
 "inputs/ukb/sub-6025043/ses-2/anat/sub-6025043_ses-2_T1w.nii.gz",
 "code/cat_standalone_batch.txt",
 "code/finalize_job_outputs.sh"
],
 "outputs": [
 "sub-6025043/ses-2"
],
 "pwd": "."
 }
 ^^^ Do not change lines above ^^^

 sub-6025043/ses-2/inforoi.tar.gz | 1 +
 sub-6025043/ses-2/native.tar.gz | 1 +
 sub-6025043/ses-2/surface.tar.gz | 1 +
 sub-6025043/ses-2/vbm.tar.gz | 1 +
 4 files changed, 4 insertions(+)

d)

c)

b)

InputsPipeline

Results

sub-100123

A datalad containers-run
call in each compute job
performs file retrieval,
computation, and
provenance capture.
A datalad rerun call
can reproduce it exactly.

recompute a previous computation
$ datalad rerun e035f896s45c9

Figure 2: Process provenance of an individual job, its generation, and re-execution. a) Actionable process
provenance is generated with a datalad containers-run command. This example contains a container
name specification (cat), a container parametrization or command, a commit message, and an input and out-
put data specification. The provenance is stored as a structured, JSON-formatted record linked to a Git com-
mit. b) To re-execute a process, the datalad rerun command only needs to be parameterized with a revision
identifier, such as a Git tag, a “commit shasum” (e035f896s45c9fa[...] in this example), or a revision range
containing one or more commits with associated provenance records. c) The datalad containers-run call
is at the center of each individual job. As the core execution command (see Listing 1, line 33-39), it performs
data retrieval, container execution, and result capture, and generates the actionable provenance that a subse-
quent datalad rerun command (b) can re-execute. With complete provenance, a re-execution is supported
on the original hardware, or on different infrastructure. d) The machine-readable, re-executable provenance
record stored alongside computed results in the revision history. A legend (right) highlights the most im-
portant pieces of recorded provenance. While automatic re-execution requires the tool DataLad, sufficient
information to repeat a computation using other means can also be inferred from the structured JSON records
by other software or even humans. This information forms the basis for standardized provenance reporting,
for example using the PROV data model27.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

Showcases

TheseDataLad features offer great flexibility for transparently conducting reproducible, high-performance
data processing in awide variety of computational environments. In two concrete showcases we next
highlight 1) the scalability of this approach, and 2) complete transparency and reproducibility of this
data processing method, when combined with open data and open source tools.

PUBLISH

PUBLISH

Paper
B

Results

Analysis
A

Paper
A

Analysis
B

Tailored
results A

Pipeline

Tailored
results B

Public
cloud

storage

Authorized researchers

UK Biobank
servers

Data

42,000 BIDS-structured
participant datasets

Input data

Containerized
pipeline

Processing with the proposed workflow Further use of the results

Institutional
storage

Public access

 Anonymous
results

Metadata access Data accessAccess restriction

Figure 3: Overview of DataLad dataset linkage through processing and reuse. Any DataLad dataset may com-
prise other DataLad datasets as subdatasets via lightweight but actionable and versioned links. This connects
a dataset to the content and provenance of a different modular unit of data, such as the outcomes of a the
preceding processing step. The genesis of an analysis output (Analysis A/B) based on intermediate processing
outcomes (Tailored results A/B) can thus be traced back all the way to the original raw data. Access control
and storage choices are independent across individual components in this network of linked data modules.
Aggregated data and analysis results can be shared with larger audiences or publicly on a variety of platforms,
while raw and derived data may underlie particular access restrictions, or require particular hosting solutions
due to their size.

Use case: large-scale medical imaging data processing

Todemonstrate the framework’s scalability, we conducted containerized analyses on one of the largest
brain imaging datasets, the UKB imaging data. The strain that this dataset places on computational
hardware is considerable both in terms of disk space usage (i.e., the amount of data that a hard drive
can store) and inode usage (i.e., the number of files that a file system can index). To show how the
framework can mitigate hardware limitations, we processed the dataset on two different infrastruc-
tures, an HPC system with inode constraints that preclude storage of the full number of files, and a
high throughput computing (HTC) systemwith disk space limitations that preclude data duplication.
In doing so, we assessed if the framework can be used across different infrastructures, investigated
result variability between two recomputations of the pipeline, and probed the framework’s features
under distribution restrictions of both the data and theMATLAB-based software component. Finally,
in order to demonstrate that the framework can capture and re-execute complete process provenance,
we also recomputed individual results on a personal laptop.

As a first step, we prepared input data and computational pipeline. We created a Singularity
container with a pipeline to perform voxel-based morphometry (VBM)28 on individual T1-weighted
MRI images based on the Computational AnatomyToolbox (CAT)29. We storedUKBdata in archives

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

in a DataLad RIA store18 (Figure 1d) tomitigate disk-space and inode limitations on the two different
systems. The store comprised 42,715 BIDS-structured30 DataLad datasets, one per study participant,
that were jointly tracked by a single additional superdataset (UKB-BIDS; "Data" in Figure 3). In total,
the domain-agnostic data representation in the store hosted 76 TB of version-controlled data with 43
million individually accessible files while consuming less than 940k inodes.

Next, we assembled a single DataLad dataset to capture all processing inputs and outputs ("Re-
sults" in Figure 3). It initially tracked: 1) the UKB-BIDS DataLad dataset; 2) a DataLad dataset pro-
viding the containerized CAT pipeline; 3) the compute job implementation responsible for boot-
strapping a temporary workspace, performing a parameterized execution of the pipeline, capturing
its outputs, and depositing results in the RIA store (see Listing 1 for a simplified version); and 4) the
job scheduling specifications for SLURM31 (used on the HPC system) and HTCondor24 (used on the
HTC system). Despite the total size of all tracked components, the pre-execution state of this dataset
was extremely lean, as only availability (a URL) and joint identity (single checksum) information on
the linked datasets is stored, and all other information is contained in the linked datasets themselves.
This also implies that the DataLad dataset tracking the computational outputs is not automatically
encumbered with sensitive information, even though it precisely identifies the medical imaging in-
put data.

The compute job implementation minimized the number of output files using tar archives to
reduce the strain on the technical infrastructure, and removed undesired sources of result variability
(time stamps, file order differences in archives, etc.) to allow comparisons between recomputations.
Later, these archives were partially extracted into tailored result datasets for easy consumption (see
Methods, "(Re)use"). To maximize practical reproducibility of computational outcomes, a compute
job implementation does not reference any system-specifics, such as absolute paths, or programs
and services not tracked and provided by the DataLad dataset itself. This means that any system
with DataLad installed, the ability to execute Singularity container images, and a basic UNIX shell
environment is capable of recomputing captured outputs. Any performance-related adaptations to
the particular systems used for our computations were strictly limited to the job scheduling layer,
which is clearly separated from the processing pipeline. Computation and recomputation on systems
with different batch scheduling software is then possible by providing alternative job specifications,
without changes to the pipeline implementation.

Weperformedprocessing on theHPCandHTC infrastructure starting from the exact samedataset
version state, but with job orchestration tuned to the respective job scheduling system1. Provenance
for each execution of the CAT pipeline on an individual image was captured in a dedicated com-
mit, and recorded on a participant-specific Git branch. Recorded outputs and provenance records
were pushed to the RIA store on job completion, yielding a total of 995.6GB of computed derivatives
in 163,212 files. The second computation added matching commits and branches to the DataLad
dataset that enabled straightforward comparison and visualization of results using standard Git tools
and workflows. To confirm the practicality of computational reproducibility solely based on the cap-
tured computational provenance information, we performed automatic recomputation of individual
results on a consumer-grade, personal laptop without job scheduling. This type of spot-checking re-
sults resembles the scenario of an interested reader or reviewer of a scientific publication with access
to (parts of) the data, but no access to adequate large-scale computing resources.

With the exception of execution time, the number of jobs, proportion of successful jobs, and size
and structure of the results were identical between the two systems. Specifically, with the exception
of one output flavor (projections of computed estimates to the cortical surface) more than 50% of
all output files were identical across the two computations. Outcome variability for non-identical
results was largely attributable to minor numerical differences, as illustrated by the mean squared
error (MSE) over recomputations for a range of key VBM estimates: total surface area (𝜇 = 1891,

1A visualization of the different processing speeds can be found at https://www.youtube.com/watch?v=UsW6xN2f2jc.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

𝑀𝑆𝐸 = 0.315), cerebro-spinal fluid (𝜇 = 365, 𝑀𝑆𝐸 = 0.052), total intracranial volume (𝜇 = 1508,
𝑀𝑆𝐸 = 0.052), white matter (𝜇 = 519, 𝑀𝑆𝐸 = 0.004), and gray matter (𝜇 = 621, 𝑀𝑆𝐸 = 0.001).
We also computed correlations over different brain parcellations included in the CAT toolbox. The
lowest observed correlation across recomputations for VBM estimate distribution across different
brain parcellations were Pearson’s 𝜌 > 0.998 for the Destrieux 2009 surface parcellation32 for all
brain regions. Quality control metrics depicted in Figure 4 exhibit 𝜌 > 0.99999 for computation and
recomputation.

The complete implementation of this showcase cannot be shared due to imposed data usage and
software license restrictions. However, we provide a bootstrapping script that implements all re-
quired setup steps at github.com/psychoinformatics-de/fairly-big-processing-workflow,
and share a detailed description and full recipe of the container together with instructions on how
to build and use it at github.com/m-wierzba/cat-container.

Use case: Open tutorial

As strict software license restrictions and data usage agreements prevent fully open sharing of com-
puted results and a public demonstration of their process provenance records, we set up an open
tutorial analysis using free and open source fmriprep software33 and open data from the studyfor-
rest.org project34. We confirmed that process provenance was sufficient to enable automatic recom-
putations on an HTC system, a personal work station running Debian, and aMac, and published the
resulting DataLad dataset to public GitHub (github.com/psychoinformatics-de/fairly-big-
processing-workflow-tutorial) andGin (gin.g-node.org/adswa/processing-workflow-tutorial)
repositories. This demonstrator allows for in-depth inspection, retrieval (datalad get) of any and
all data processing inputs and outputs, as well as automatic recomputation (datalad rerun) of all
captured results.

Discussion

The proposed framework aims to make the results of any processing as open and reusable as the
given limits of individual components allow. It streamlines computation, re-computation, and shar-
ing with appropriate audiences for datasets and on compute infrastructure of any size. To this end,
proven procedures from software development and a set of open source software tools are assem-
bled into a scalable and portable framework with a variety of features: The basis for transparency
is laid with version control for all involved files, including software environments. Distributed data
transport and storage logistics offer flexibility to adapt to particular computing infrastructure. Re-
producible results are enabled via comprehensive capture ofmachine-actionable process provenance
records, capitalizing on portable containerized environments. Combining distributed computing
with ephemeralworkspaces that resembleworkflows fromcollaborative software development yields
efficient processing, and ensures the validity of provenance information.

The framework shares features and goals with a number of related systems, some of which we
want to highlight in order to illustrate how the proposedworkflow and itsmain building blocks relate
to other solutions. The proposed Pan-Neuro35 is an alternative solution for neuroscientific comput-
ing on large-scale data, but is more geared towards interactive processing, and represents a central-
ized, cloud-based platform for computing and data hosting. IPFS, the InterPlanetary File System
(https://ipfs.io), is a distributed system for data transport that employs an approach to content
addressing that is based on cryptographic hashes of file content. This concept is identical to the one
employed by git-annex, except for differences in the hash or key composition details. Consequently,
these systems are interoperable, and the proposed framework could directly employ IPFS-based data
sources via the git-annex integration (https://git-annex.branchable.com/special_remotes/

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://github.com/psychoinformatics-de/fairly-big-processing-workflow
github.com/psychoinformatics-de/fairly-big-processing-workflow
https://github.com/m-wierzba/cat-container
github.com/m-wierzba/cat-container
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://gin.g-node.org/adswa/processing-workflow-tutorial
gin.g-node.org/adswa/processing-workflow-tutorial
https://ipfs.io
https://git-annex.branchable.com/special_remotes/ipfs/
https://git-annex.branchable.com/special_remotes/ipfs/
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

ipfs/). DVC 36 is a version control system and workflow manager also built on Git. It employs dis-
tributed version control for individual large files or collections of files, and captures provenance of
language-agnostic machine-learning pipelines that connect multiple steps of building an ML model
into a directed acyclic graph (DAG).Major differences lie inDVC’s specific focus onmachine learning
models in workflowmanagement, and less emphasis on portability and reproducible environments.
Snakemake25 is a feature-rich and domain-agnosticworkflowengine, with support for including soft-
ware environments in the form of conda-environments or software containers, portable workflows
that allow execution on remote resources such as cloud services or batch systems on compute clus-
ters, and provenance capture. DataLad can enhance snakemake workflows by retrieving versioned
input data files (http://docs.datalad.org/projects/mihextras/generated/man/datalad-x-
snakemake.html), and snakemake-based compute job orchestration could be employed as an alter-
native to the custom implementations for SLURM and HTCondor used in the work presented here.
Parsl37 is a Python-based parallel scripting library that is designed to enable compositional program-
ming for a variety of scientific use cases. It features workflow management, a mix-and-match style
portability with provider interfaces to configure resource-specific requirements across tools or infras-
tructures, and data management that can perform data transfers to and from resources via several
protocols. Similar to snakemake, it provides an alternative workflow definition and orchestration
solution, and could employ the provenance capture approach proposed here. Unlike the framework
proposed here, Parsl does not build on a version-controlled core data structure, but on a specifica-
tion of interconnected apps and the data flow between them. However, like snakemake files, these
specifications could be tracked within DataLad datasets in order to combine the capabilities of these
systems. Apache Spark38 and Dask39 are both feature-rich, distributed computing solutions target-
ing different software ecosystems. Unlike the proposed framework or the aforementioned solutions
they require the deployment of dedicated services across a distributed computing resource, and can
perform large-scale computations via internal parallelization, where a comparable compute-node
local provenance capture step is not performed or possibly even meaningful.

Overall, our framework is a general-purpose solution that is compatible with any data that can
be represented as files of any size, and any computation that can be performed via a command line
call. It is built on a collection of portable, free and open-source tools that can be deployed without
special privileges or administrative coordination on standard HTC/HPC infrastructure, or personal
computing equipment.

While it is an explicit aim for the framework to yield FAIR outputs, this aspirational goal is not
fully reached. Metadata used andproduced by the frameworkdoes not conform to explicit annotation
standards. Instead, it encodes essential metadata, such as author, date, time, and description in
locations that are provided by the version control system Git. Other metadata are put into plain-
text, key-value data structures that conform to no particular formal ontology or vocabulary. This
shortcoming limits the findability and accessibility of its outputs severely. Questions like "which
outcomes were computed with a specific version of a particular software?" cannot be reasonably
answered without additional standardization and annotation effort.

That being said, themain contribution of the proposed computational approach is the association
of process provenance with captured outcomes (FAIR R1.2), with precise linkage of any data inputs
within and across individual datasets (FAIR I3), using unique, content-hash based identifiers for all
components (FAIR F1). These metadata are tracked in a dedicated overlay data structure that can
ensure their accessibility, evenwhen the underlying data are no longer available or a particular entity
has no permission to access them (FAIR A2).

What the framework provides today is a technical system that, despite its ignorance regarding
formal metadata standards affords practical, automatic recomputation of arbitrary data processing
results. This ability dramatically elevates the starting point for future FAIRification efforts of com-
putational outcomes. Reproducibility can be programmatically verified, thereby providing a con-

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://git-annex.branchable.com/special_remotes/ipfs/
https://git-annex.branchable.com/special_remotes/ipfs/
https://git-annex.branchable.com/special_remotes/ipfs/
http://docs.datalad.org/projects/mihextras/generated/man/datalad-x-snakemake.html
http://docs.datalad.org/projects/mihextras/generated/man/datalad-x-snakemake.html
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

firmation of the comprehensiveness of data and essential process metadata encoded in a DataLad
dataset. Subsequent annotations of precisely versioned data, or tracked computational environments
can retroactivily boost findability and accessibility of outcomes. For example, an added annotation
of the composition of an employed containerized pipeline can help answer the question posed above.
Neither metadata format nor terminology are constrained by the proposed framework. Importantly,
the ability to recompute outcomes provides a strong incentive for researchers to produce compu-
tational outcomes with verifiably complete (meta)data. This is an important half-step towards a
FAIRer future that boosts the availability of research outputs that can receive continuous updates to
co-evolve with further developments of metadata standards and requirements of future metadata-
driven applications. To this end, a DataLad dataset can also be exported to different formats used in
frameworks with a similar aim, such as BagIt40.

The use of containerized software environments plays a key role in the proposed framework.
They represent the most practical solution to portable computational environments today. However,
their long-term, universal accessibility is all but guaranteed. Even today the singularity software
does not support all major operating systems. Ten years ago, the popular docker software did not
yet exist, and it is unclear whether its container images will be executable in ten years from now.
Providing the build instructions for a container image, rather than (or in addition to) the readily
executable image, may improve the longevity of their accessibility, and also mitigate the problem
of license-imposed sharing restriction. However, it is not guaranteed that executing a recipe twice
results in identical software containers. Reproducible builds, the practice of creating identical con-
tainer images from a recipe41, for example, require the specification and availability of software and
system libraries at precise versions. For the same reason of long-term accessibility, it will also be nec-
essary to incorporate DataLad’s own idiosyncratic provenance metadata into such a comprehensive
provenance report — then matching a format and standardization desirable for a particular scope
or application. A promising effort towards portability and longevity of container technology is the
Open Container Initiative (OCI; opencontainers.org), which aims to create open, vendor-neutral,
and portable industry standards around containers formats and runtimes.

Based on process provenance and version control, structured analyses of variability between
(re)computations on the same or different infrastructure are facilitated13,42. Bit-identical recompu-
tation of a result are trivially verifiable. The comprehensive capture of input data version, computa-
tional environments and process parameterization enable deep inspection of other sources of result
variability. Building on this foundation, more standardized process descriptions43 and reproducible
computational environments41 can further enhance these types of analyses. Nevertheless, compu-
tational results that do not reproduce exactly are a challenge for content checksum based version
control systems like Git. If irreproducibility is solely caused by issues of numerical precision and
reproducibility of basic floating point operations, it may be possible to nevertheless achieve bitwise
identical result by reducing the precision of stored outcomes to empirically meaningful levels of de-
tail, like we did here for the aggregated brain structure scores in the UKB use case. However, in
general data type specific and research focus specific implementations of "identity" operators would
be required, and while Git offers means for their integration (so-called diff drivers), there are no
generally applicable off-the-shelf solutions available for this problem.

The approach to reproducible computation proposed here is applicable to a wide range of use
cases. Different datasets, different processing pipelines, and different containerization technologies,
such as Docker, can be employed by simply replacing the respective components, and utilizing fea-
tures already built into DataLad. These possibilities are illustrated in the extensive DataLad Hand-
book21 at handbook.datalad.org. Combining this frameworkwithmore capableworkflow engines
for defining and orchestrating compute jobs and their interdependencies in the future, would open
up the possibility for implementing other types of data processing that go beyond the parallel ex-
ecution of mutually independent compute jobs that make up the use case illustrated in this work.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://opencontainers.org/
http://www.handbook.datalad.org
handbook.datalad.org
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

Such an implementation would need to fulfill three general requirements that were implemented
here: 1) The execution of a compute job must take place in a workspace that is defined by a recorded
state in a DataLad dataset. 2) Execution via Datalad captures process provenance in a new, incre-
mental dataset state. 3) Advanced dataset states after any parallel processing stage are consolidated
into a merged mainline. When these conditions are met, the structure of a processing DAG would
be reflected in the version-control history of a DataLad dataset hierarchy that comprises all inputs
and outputs of a computational project, with each recorded step being associated with machine-
actionable provenance records that enable deep inspection large-scale computing outcomes.

The presented showcases provide two concrete examples for the adoption of the proposed frame-
work that deal with typical obstacles for transparent, reproducible science. The UKB’s data size
exceeds the capacity of most infrastructure. We demonstrated the scalability of our framework by
processing these data on systems with hardware limitations that would typically render even storage
of inputs and outputs difficult or impossible. As the proposed framework enables selective recompu-
tation even on commodity hardware, consumers can investigate results without having to rely on the
original authors, and without access to the original computational infrastructure. Even though the
raw data may be too large to allow users a complete recomputation, the process provenance entails a
trail of processing steps that permits automatic recomputation of individual results. A one-time com-
putation on larger infrastructure can thus build a verifiable, trustworthy foundation for numerous
subsequent analyses by other researchers.

Finally, over and above everything else, the framework makes research as open as desired. The
medical imaging showcase featured a processing pipeline based onproprietary software andpseudon-
omized personal data under usage constraints. Data and computational environment are not publicly
shareable. But if data usage agreements and software licensing permit, as it is the case in the second
showcase, processing results can be shared publicly that are independently and automatically repro-
ducible by any interested party. This level of transparency dramatically improves the accessibility of
scientific outcomes.

Methods

The proposed framework aids the reproducible execution of a containerized pipeline on input data,
by associating computational outcomes with machine-actionable provenance records in a version
control system. We illustrate the technical details of this process with two use cases that differ in
scale as well as data access and processing requirements, but follow a common pattern in general
setup and composition.

Framework setup

The technical nature of the framework components, in particular its foundation, the version control
software Git, enables distributed computational workflows that utilize and extend established proce-
dures from collaborative software development to data processing. The framework is bootstrapped
in two steps that could be performed by a tailored shell script for a particular application.

Self-contained processing specification as a DataLad dataset

The first step is the creation of a new DataLad dataset that will eventually track the processing re-
sults (dataset labeled "Results" in Figure 3). Input data, images of containerized pipelines, or custom
code are added to this dataset. While the use of software containers to provide processing pipelines
is not strictly required, they are a practical method to provide stable and portable computational

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

environments. Because such containers can be stored in image files, they can be tracked and pre-
cisely versioned like any other component of a DataLad dataset. The datalad-container extension
provides a convenience interface for registering containers and for executing commands in such en-
vironments.

All processing components, such as processing-specific, customized scripts and applications or
data, can be added directly to the dataset as individual files. More typically, however, individual pro-
cessing components, for example input data or containerized pipelines, are placed in separate Data-
Lad datasets and linked as subdatasets (Figure 3). This more modular structure enables (re)use of
independently maintained components, while strictly separating access modalities to each of them.
In this way, access-restricted input data does not impair sharing of less sensitive outcomes and the
versioned link between superdataset and subdatasets guarantees precise identification of processing
components, regardless of whether a particular dataset consumer has access to a given component.

The resulting dataset is the entry point to a self-contained directory structure, potentially com-
prising other nested DataLad datasets, that jointly define identity and location of all data processing
inputs in the exact form needed for a particular computation.

Environment and performance optimized orchestration

The second step is the preparation of the computational environment and processing orchestration.
This relates to what is computed as well as how it is computed. The compute job orchestration, the
how-to-compute, could be as simple as direct, sequential executions of required processing steps in a
shell script for-loop. However, large-scale computations typically require some form of paralleliza-
tion. The compute job orchestration is thus likely to be implemented using the job scheduling system
of a given compute infrastructure. As such, how-to-compute is highly infrastructure-specific, and
must determine an optimum balance of resource demands, such as run time, memory and storage
requirements, in order to achieve optimal throughput.

The what-to-compute, the computational instructions, pipelines, or scripts, need to be indepen-
dent computational units that can be executed in parallel. A common example is the parallelized
execution of a processing pipeline on different, independent parts of input data. As parallelization
often corresponds to the granularity at which a recomputation will be possible in our framework,
relevant considerations are, for example: "What is the smallest unit for which a recomputation is
desirable?", or "For which unit size is a recomputation still feasible on commodity hardware?". To
ensure reproducibility for an audience that does not have access to the original infrastructure, what-
to-compute needs to be infrastructure-agnostic, without references to system-specifics such as abso-
lute paths, or programs and services not tracked and provided by the DataLad dataset itself. Then,
computation and recomputation of what-to-compute are possible on different systems, with any po-
tential adjustments only relating to the job orchestration layer in how-to-compute.

Execution and result consolidation workflow

After the two preparatory steps are completed the actual data processing can be executed by submit-
ting the compute jobs to the job scheduling system. Each compute job will clone the DataLad dataset
with the processing specification to a temporary location, bootstrap an ephemeral workspace that is
populated with all inputs required for the given job with a job-specific parameterization, execute
the desired computing pipeline, and capture a precise provenance record of this execution, compris-
ing all inputs, parameters and generated outcomes. Lastly, it pushes this provenance metadata and
result file content to permanent storage. This workflow resembles a standard distributed develop-
ment workflow in software projects (obtain a development snapshot, implement a new feature, and
integrate the contribution with the mainline development and other simultaneously executed devel-
opments) but applies it to processing of data of any size. Specific details of this workflow are outlined

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

in sequential order in the following paragraphs. Where applicable, they annotate and rationalize the
generic compute job implementation in Listing 1.

Dataset clone source and update push target can be separated in an initial setup step to im-
prove performance. When all compute jobs deposit their outcomes at the same DataLad dataset
location that later compute jobs also clone from, version history in this dataset accumulates and pro-
gressively slows the bootstrapping of work environments of compute jobs, becausemore information
needs to be transferred. Moreover, result deposition in a DataLad dataset is a write operation that
must be protected against concurrent read and write access for technical reasons, and hence intro-
duces a throughput bottleneck. Both problems are addressed by placing an additional clone of the
pre-computation state of the processing specification dataset in a RIA store before job submission
(Figure 1d). This clone is used for result deposition only (Listing 1, lines 17 and 49). Dataset clones
performed by jobs are done from the original location that is never updated, hence also never grows.
In order to avoid unintentional modifications during long computations, the dataset clone source
for jobs may not be the dataset location used for preparation (Figure 1a), but yet another, separate
clone in a different RIA store. The clone source and push target locations are provided as parame-
ters to compute jobs (Listing 1, lines 5-6). All dataset locations are not confined to exist on the same
hardware as long as they are accessible via supported data transport mechanisms over the network.

Job-specific ephemeral workspaces are the centerpiece of the computation, and the location
where the actual data processing takes place (Figure 1c). Critically, these workspaces are boot-
strapped using information from the specification DataLad dataset only. This is achieved by cloning
this dataset into theworkspace first (Listing 1, line 11), and subsequently performing all operations in
the context of the clone. After computation and result deposition the clone and the entire workspace
are purged. This ensures that all information required to perform a computation is encoded in this
portable specification, that it is actionable enough to create a suitable computing environment, and
that all desired outcomes are properly registered with the DataLad dataset to achieve deposition on
permanent storage.

Containerized execution and provenance capture happens within the ephemeral workspace
on a uniquely identified branch per job (Figure 1b, “workflow execution”; Listing 1, line 21). Prior
computation, the state of this branch is identical for all jobs. It comprehensively and precisely iden-
tifies all processing inputs, and links them to author identities, time stamps, and human readable
descriptions encoded in the Git revision history of the dataset (Figure 2d, top).

Based on this initial state, a computational pipeline is then executed, and all relevant computa-
tional outcomes are saved to the DataLad dataset to form an updated state (Listing 1, line 33-39). For
this execution, all required input files are specified by their relative path in the DataLad dataset (po-
tentially pointing into linked subdatasets). Importantly, only these job-specific inputs will be trans-
ferred to the compute job’s environment. Likewise to be saved outcomes are selected by providing
path specifications. Given the execution of the computation in an isolated, ephemeral workspace
that is unique for each individual job, two guarantees can be derived regarding the provenance of
the computational outcomes: 1) All dataset modifications can be causally attributed to the initiated
computation; 2) only declared inputs were required to produce the outcomes.

DataLad commands like run (for command line execution) or containers-run (for execution
in containerized environments) yield machine-readable provenance records that express what com-
mand was executed, with which exact parameters, based on which inputs, to generate a set of output
files (Figure 2d). Such a record is embedded in the Git commit message of the newly saved dataset
state as structured data. The record itself is lean and free off explicit version information for indi-

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

vidual inputs, because the dataset state as a whole jointly identifies all versions of all dataset compo-
nents, such that individual versions are readily retrievable on a (later) inspection of this state.

The captured provenance record ismachine-actionable. Using the dataset and information in the
provenance record in a dataset state’s commit message, the DataLad command rerun can reobtain
necessary inputs and run the exact same command again, given availability of data and environ-
ments. Importantly, this re-execution does not strictly depend on the original compute infrastruc-
ture, but benefits from DataLad’s ability to retrieve file content from multiple redundant locations.

Result deposition takes place after successful completion of each job. The file content of compu-
tational outcomes, along with their provenance, are pushed to permanent storage (Figure 1b, blue
arrow). Two different components of result deposition have to be distinguished.

Transfer of file content (Listing 1, line 44) is an operation that is independent across compute jobs,
and can be performed concurrently. This enables simultaneous transfer of (large) files. Importantly,
only file content blobs (i.e., git-annex keys) are transferred at this point.

Additionally, critical metadata must be deposited too. All essential metadata is encoded in the
new dataset state commit, recorded on the job-specific Git branch. Consequently, it is deposited
using a git push call (Listing 1, line 49). This push operation is not concurrency-safe, hence must
be protected by a global lock that ensures only one push is performed at a time across all compute
jobs (using the tool flock). Therefore this step represents a central bottleneck that can influence
computational throughput. However, when file-content is only tracked by checksumwith git-annex,
the changes encoded in the Git branch are metadata only, and a transfer is typically fast.

After successful completion of all computations, theDataLad dataset on permanent storage holds
the provenance records of all results in separate job-specific branches, and the content of all output
files in a single git-annex object tree.

Result consolidation is the final workflow step. After processing, the result DataLad dataset con-
tains as many branches as successfully completed jobs. These branches must be consolidated into a
new state of the mainline branch that jointly represents the outcomes of a individual computations
(Figure 1b, “result consolidation/merge”).

How exactly this merging operationmust be conducted depends on the nature of the changes. In
the simplest case, all compute jobs produced non-intersecting outputs, i.e., no single file was written
to by more than one compute job. In this case, all branches can be merged at once using a so-called
octopus-merge:
octopus -merge all "job" branches at once
git merge -m "Merge results" $(git branch -al | grep ’job -’)

Depending on the number of result branches, it may be necessary tomerge branches in batches to
circumvent operating system or shell limits regarding a maximum command line length. If compu-
tational outcomes are not independent across jobs (i.e., order of computation/modification matters),
a merge strategy has to be employed that appropriately acknowledges such dependencies. If the de-
position dataset is hosted in a RIA store (as suggested above for performance reasons) this operation
is performed in a temporary clone.

As a final step, valid metadata on output file content availability must be generated. File content
resides in the result dataset at the deposition site already, but the required metadata was not pushed
to its internal git-annex branch from all compute jobs, in order to avoid a consolidation bottleneck.
Instead, these metadata are generated only now, by probing the availability of the required file con-
tent blobs for all files present in the mainline branch after merging all compute job branches.
discover/confirm result file availability
git annex fsck --fast -f output -storage

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

1 #!/bin/bash
2 # fail on any issue , show commands
3 set -e -u -x
4 # name arguments for readability
5 dssource="$1"
6 pushgitremote="$2"
7 subid="$3"
8

9 # obtain the analysis dataset , which
10 # also tracks the required inputs
11 datalad clone "${dssource}" ds
12 cd ds
13

14 # register location for result
15 # deposition , separate from the input
16 # source for performance reasons only
17 git remote add outputstore
→ "$pushgitremote"

18

19 # all job results will be put into
20 # a job -specific , dedicated branch
21 git checkout -b "job -$JOBID"
22

23 # START OF APPLICATION -SPECIFIC CODE
24 # pull down input data manually ,
25 # only needed for wildcard -based file
26 # selection in the next command
27 datalad get -n "inputs/ukb/${subid}"

28 # datalad containers -run executes
29 # the "cat" computational pipeline.
30 # specified inputs are auto -obtained ,
31 # specified outputs are saved with
32 # provenance record
33 datalad containers -run \
34 -m "Compute subject ${subid}" \
35 -n cat \
36 --explicit \
37 --output "${subid}" \
38 --input
→ "inputs/ukb/${subid }/*T1w.nii.gz"

39 "<container invokation arguments >"
40 # END OF APPLICATION -SPECIFIC CODE
41

42 # push result file content to the
43 # configured "storage -remote"
44 datalad push --to storage -remote
45

46 # push branch with provenance records
47 # needs a global lock to prevent
48 # write conflicts
49 flock "$DSLOCKFILE" git push
→ outputstore

50

51 # log entry to mark non -error exit
52 echo SUCCESS

Listing 1: Complete compute job implementation as a bash script. A batch system invokes the job-
script in a temporary working directory with three parameters: a URL of a DataLad dataset tracking all
code and input data, a URL to deposit job-results at, and an identifier to select a sample for processing.
Apart from performance-related optimizations, the job implementation conducts three main steps: 1) clone
a DataLad dataset with all information to bootstrap an ephemeral computing environment for each job;
2) containers-run a containerized pipeline with a comprehensive specification of to-be-retrieved inputs and
to-be-captured outputs; 3) push captured outputs and process provenance records to a permanent storage loca-
tion. Preparation, computation, provenance record creation, and file content deposition on permanent storage
are fully independent across jobs, and are executed in parallel. Only the git push of the provenance record
to a central repository must be protected against concurrent write-access for technical reasons. Additional job
parametrization (DSLOCKFILE and JOBID environment variables) are defined at job-submission using batch
system specific means. The job script can be adjusted to a different processing pipeline by replacing the con-
tainer invocation (see APPLICATION-SPECIFIC CODEmarkers).

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

push consolidated provenance records and file availability
metadata to permanent storage
datalad push --data nothing

The git-annex fsck commandprobes the configured output-storage sitewhether it possesses
a given annex key (i.e., a file content blob corresponding to a particular checksum), and generates
an appropriate availability metadata record. The final datalad push command (Listing 1, line 44)
transferred these verified metadata records to permanent storage.

The outcomeof this consolidation process is a self-containedDataLaddataset, with valid,machine-
actionable provenance information for every single result file of the performed data processing. As
such, it is a modular unit of data, suitable as input for further processing and analysis. It translates
the advantages of comprehensive and precise linkage of all its components across any number of
other data modules to any consumer.

Balance of reproducibility and performance

Taken together the described approach to reproducible, large-scale computation implements a three
layer strategy. From bottom to top, these layers feature different trade-offs regarding portability/re-
producibility vs. flexibility for performance adaptations to particular computational environments:
The lowest layer is the (containers-)run command, comprising an environment specification and
instructions to compute the desired outcomes from inputs in this environment. Using suitable tech-
nologies, such as computational containers, this layer offers a maximum of portability, but also a
minimum of flexibility, as this exact environment must be provided in order to reproduce results.
Consequently, the proposed framework captures process provenance at this layer (Figure 2). The
middle layer describes how a self-contained, ephemeral workspace can be generated that is suitable
for executing the specification of the previous layer (Listing 1). Here, general infrastructural choices
can be made. For example, a limitation to a POSIX-compatible environment that is common for
HPC/HTC systems, or the granularity with which provenance records are captured (and therefore
the granularity at which reproducibility is supported). This layer plays a key role in ensuring that
process provenance records are valid and complete. The topmost layer is concerned with maximiz-
ing performance on a particular infrastructure via tailored job orchestration, and composition. This
layer is poorly portable as it references infrastructure-specific elements, such as job scheduling sys-
tems, absolute paths, user names or resource identifiers. While the implementation of all three layers
should be provided within the DataLad dataset for a computational project, only the lowest layer is
strictly required for reproducing results.

Software requirements

The software and their minimum version requirements for executing the framework are datalad
v0.14.2, Git v2.24, git-annex v8.202003, and datalad-container v1.1.2 (not required for recom-
putation). Optional requirements are job scheduling systems as well as containerization software
(e.g., Singularity v2.6.).

In principle, the framework could also be used without a software container. But despite their
problems, containers represent the contemporary optimum for encapsulating computational envi-
ronments that can be shared and reused across different systems. Here we have used Singularity15,
one of the most widely used container solutions for both single- and multi-user environments, suit-
able forHPC/HTC architectures. This choice limits the target platform onwhich a provenance-based
recomputation can be attempted, and for example rules out theWindows operating system for which
this software is not available. Other technologies, such as Docker, offer a different set of supported
environments.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

UK Biobank computing use case

To demonstrate the framework’s scalability and its ability to create reusable derivatives for subse-
quent analyses, we applied it to data from the brain imaging component of the UKB project16. We
performed a containerized analysis for voxel-based morphometry (VBM)28 based on the Computa-
tional Anatomy Toolbox29, a commonmethod for anatomical brain imaging data. This choice of data
and processing pipeline posed particular challenges for openness, transparency, and reproducibility.
The UKB imaging project is one of the largest studies of this kind. The data underlie strict usage
constraints to ensure the responsible use of participants’ personal data. Moreover, the chosen pro-
cessing pipeline is based onMATLAB, at present still the most prevalent programming environment
in biomedical research11, enforcing rigid redistribution limits due to its proprietary, closed-source
license. The setup steps were implemented in a bootstrap script available at https://github.com/
psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_ukb_cat.sh.

Self-contained processing specification as a DataLad dataset

The UKB provides imaging data in ZIP archives, with one archive containing all files for a single
modality of a single participant in one format. Direct downloads via versioned perma-URLs are not
possible, but ukbfetch, a custom binary-only downloader application, must be used.

We implemented datalad-ukbiobank19, a DataLad extension (see Box 1) that aids retrieval, in-
dexing, and versioning of UKB data offerings in the form of DataLad datasets. Such a dataset repre-
sents data in three variants (using dedicated Git branches): the downloaded ZIP files, extracted ZIP
file context using UKB-native filenames, and an alternative data organization following the BIDS
standard.

Using datalad-ukbiobank, we retrieved MRI bulk data for all participants in NIFTI format.
Each participant’s data were represented as an individual DataLad dataset, yielding 42,715 datasets
in total. The BIDS-structured branches of all these datasets were jointly tracked by a single UKB
superdataset ("Data" in Figure 3). This UKB superdataset is installable within seconds. On a filesys-
tem, it takes up about 40MB of space, but can retrieve any of the registered file content in the entire
DataLad dataset hierarchy, comprising 76 TB across 43 million files, on demand.

As processing pipeline, we chose CAT’s default segmentation of structural T1-weighted images
using geodesic shooting44, including calculation of total gray matter (GM), white matter (WM), and
intracranial volume (TIV), as well as extraction of regional GM estimates from several brain parcella-
tions. To this end, we built a Singularity container for the MATLAB-based Computational Anatomy
Toolbox (CAT; version: CAT12.7-RC2, r1720)29, which is an extension to the Statistical Parametric
Mapping software (SPM; version: SPM12, r7771; www.fil.ion.ucl.ac.uk/spm/software). AsMATLAB
requires a commercial, non-transferable license, we used a compiled version of the CAT toolbox pro-
vided by the authors, which does not require the availability of a MATLAB license at runtime. Due
to software license restrictions (the MATLAB Compiler Runtime in the container is subject to the
MATLAB Runtime license), we cannot redistribute the container image, but we share a detailed de-
scription and full recipe of the container together with instructions on how to build and use it at
github.com/m-wierzba/cat-container.

We added two custom code files to the dataset. First, a batch script, with a comprehensive spec-
ification and parameterization of all processing steps to be performed by CAT in an input image.
This script allowed us to bundle up all relevant analysis steps into single command that also defines
the smallest unit for recomputation. Second, a utility script to post-process all relevant outputs (≈30
individual files) into four tar archives per computation in order to minimize disk space usage and
number of resulting files. Controlling the total number of output files was important due to the
amount of computational outcomes to be tracked in this particular result dataset. Only four files per

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_ukb_cat.sh
https://github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_ukb_cat.sh
https://github.com/m-wierzba/cat-container
github.com/m-wierzba/cat-container
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

computation translate to more than 160,000 files in total. Such large datasets require substantial file
system operations, even when only a subset of file content is retrieved for a particular use case.

The resulting tar archives are organized according to envisioned consumption scenarios (vbm
containing modulated gray matter density and partial volume estimates in template space, native
with atlas projections and partial volumes in individual space, surface with surface projection and
thickness, and inforoi containing regional volume and thickness estimates of several atlases/par-
cellations; Figure 1a). tar was parameterized to create archived with a normalized file order, cre-
ation time, and file permissions in order to not introduce artificial variation between recomputa-
tions. Likewise, all result files were carefully stripped of timestamps and other non-deterministic
log file content. The resulting reproducible tarballs allow to attribute file content variability across
re-computations to actual result variability.

Environment and performance optimized orchestration

Data were processed on an HPC cluster and a high-throughput computing (HTC) cluster, each im-
posing a different set of resource constraints. The HPC system is a modular supercomputer with
1,872 nodes, currently among the 500 fastest compute infrastructures in the world45. While avail-
able disk space was abundant, storage was constrained by an inode quota of 4.4 million files – less
than the total number of files of the raw dataset. In contrast, the HTC cluster is a mid-sized compu-
tational cluster with 31 nodes with only about 400 TB storage capacity, preventing the existence of
more than one copy of the raw dataset, and limiting the size of derivatives that could be stored.

To reduce the disk space and inode demands, all DataLad datasets were stored in a RIA store.
In this "backend" representation (Figure 1d), a single participant dataset encompasses 25 inodes and
about 4GB of disk space. When cloned into a workspace (Figure 1a), it expands to several hundreds
of files. In total, the employed RIA store hosts 42,715 datasets comprising the full UKB data, and
consumes 75.6 TB of disk space with less than 940k inodes.

The ability to extract subsets of otherwise compressed inputs only when needed in ephemeral
workspaces allowed us to adjust the parallel job load to the available resources. This enabled compu-
tations when disk space or inode availability were insufficient for the full dataset. With this setup, we
were able to complete data processing for a one-hour-per-image pipeline on the HPC system within
10.5 hours, using 25 dedicated compute nodes, each executing 125 jobs in parallel on RAMdisks with
GNU Parallel46. On the HTC system in turn, HTCondor scheduled jobs dynamically across several
weeks for available compute slots in an otherwise busy system used for unrelated computations by
other researchers.

In order to validate different aspects of reproducibility all data processing was performed twice,
once on each computing platform, and also a third time for a small subset of the data on a personal
laptop. For the two main computing platforms dedicated job submission scripts were implemented
for SLURM and HTCondor respectively. In contrast, the partial recomputation on a laptop solely
relied on the local availability of the Singularity container technology, but was otherwise fully auto-
matic, based on the captured provenance record, to confirm practical reproducibility for an indepen-
dent consumer.

Because of the large number of participants in the dataset and the aim to be able to rerun the
data processing on a future, even larger release, one compute job per participant was generated. A
compute job serially processed either two images, only a single image, or none, depending on the
actual data availability. A dedicated provenance record was captured for each pipeline execution on
an individual input image, yielding a total of 41,180 records.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

Execution and result consolidation workflow

Data processing was executed based on two variants of the same DataLad dataset, each containing a
common computational environment, and the same input data, but a different, optimized job sub-
mission implementation. Result consolidationwas first performed separately on each computational
infrastructure, following the steps described in the framework setup. Lastly, the two complete sets
of computational outcomes were integrated in the same dataset, as two different branches, for com-
parison.

Result verification

As prior manual data inspection was infeasible due to the amount of data, we included basic checks
to ensure availability of T1-weighted images during processing. Subsequent quality control analyses
were derived from the computed results. Figure 4 shows the distribution of quality control metrics
for T1-weighted images47 across the sample. In addition, we assessed result replicability between
recomputations by comparing binary identity of result files between analysis repetitions. To better
estimate the amount of dissimilarity between recomputations, we also calculatedmean squared error
(MSE) over recomputations for a range of key VBM estimates, and the correlations between the brain
atlasses included in the CAT toolbox.

(Re)use

After successful completion, results comprise a collection of different VBM-related measures for all
images in the sample, represented in archives. For easier consumption, and as researchers are rarely
interested in the full set of measures, the output DataLad dataset was subsampled into smaller “spe-
cial purpose” datasets. These datasets contained a subset of the results in extracted, and optionally
aggregated form, tailored to different research questions, for easier and faster access. This process
relied on registering the main result DataLad dataset into a new tailored DataLad dataset via nesting
("Tailored results A/B" in Figure 3), extracting and transforming the required files with provenance-
tracking by datalad run, i.e., the same mechanism that captured provenance for the initial compu-
tation. This approach yields an transparently generated data view that can be updated by re-applying
this transformation in case of changed inputs via the datalad rerun command.

As a concrete example we generated a DataLad dataset with tissue volume statistics for regions of
interests in each parcellation and for all participants. We implemented a script that extracted aggre-
gated noise-to-contrast-ratio, inhomogeneity-to-contrast-ratio, image quality rating, total intracra-
nial volume, total gray matter volume, total white matter volume, total cerebral spinal fluid volume,
total white matter hyperintensities volume, and total surface area into one CSV file per brain par-
cellation. Importantly, we limited the numerical representation of the scores in these tables to an
empirically meaningful precision, thereby helping to suppress the undesirable impact of technical
side-effects of non-deterministic algorithm implementations and floating point operations on the ef-
fective reproducibility of results for any practical purpose. These results are a fraction of the size and
number of files of the total results, but sufficient for investigating VBM-related research questions.
Using the encoded, machine-actionable provenance information, each result can be traced to the
precise files they were generated from in a transparent and reproducible manner.

The direct computational output of the workflow on the UKB sample is therefore not a final
result, but an intermediate representation optimized for storage and handling. More tailored views
for concrete use cases can be optimized for access convenience. With this, we achieve a compromise
between the desires of a data consumer and the demands of the storage infrastructure and operators.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

Figure 4: Distribution of quality assurance measures, derived for 41,180 unprocessed T1-weighted images
from the UKB dataset. The quality measures were obtained retrospectively based on the preprocessing meth-
ods47,48. For both measures, lower values correspond to better quality. Abbreviations: IQR - image quality
rating, a weighted composite score based on noise, inhomogeneity, and image resolution (0.5-1.5 = “perfect”,
1.5-2.5 = “good”, 2.5-3.5 = “average”, 3.5-4.5 = “poor”, 4.5-5.5 = “critical”, >5.5 = “unacceptable”); ICR - inho-
mogeneity contrast ratio, estimated as the standard deviation within the white matter segment of the intensity
scaled image.

Open tutorial

As license restrictions prevent open sharing of data and container image used in the UKB showcase,
we implemented the processing framework for an additional use case, for which all components
can be publicly shared in readily usable form. The resulting, fully populated DataLad dataset is
publicly available at github.com/psychoinformatics-de/fairly-big-processing-workflow-
tutorial. It can serve as a functional reference implementation that affords reproducibility based
on machine-actionable provenance records. All setup steps were implemented in a bootstrap script
available at https://github.com/psychoinformatics-de/fairly-big-processing-workflow/
blob/main/bootstrap_forrest_fmriprep.sh

Self-contained processing specification as a DataLad dataset

As input data we employed a dataset with structural brain imaging data for 20 individuals49 from the
studyforrest.org project34, linked as a subdataset at inputs/data. This is a BIDS-structured dataset
published under the permissive PDDL license. It is publicly available as aDataLad dataset at github.
com/psychoinformatics-de/studyforrest-data-structural.

For data processing we use fMRIprep’s structural preprocessing pipeline33 (version v20.2.0) that

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_forrest_fmriprep.sh
https://github.com/psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_forrest_fmriprep.sh
https://github.com/psychoinformatics-de/studyforrest-data-structural
github.com/psychoinformatics-de/studyforrest-data-structural
https://github.com/psychoinformatics-de/studyforrest-data-structural
github.com/psychoinformatics-de/studyforrest-data-structural
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

is freely available as a Singularity container in the DataLad dataset of the public Repronim container
registry github.com/repronim/containers. With this pipeline, each T1-weighted MRI scan was
corrected for intensity non-uniformity using N4BiasFieldCorrection v2.1.050 and skull-stripped
using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization to the
ICBM 152 Nonlinear Asymmetrical template version 2009c51 was performed through nonlinear reg-
istration with the antsRegistration tool of ANTs v2.1.052, using brain-extracted versions of both
T1w volume and template. Brain tissue segmentation of CSF, WM, and GM was performed on the
brain-extracted T1w using FAST53 (FSL v5.0.9).

Environment and performance optimized orchestration

As both foundational DataLad datasets for input data and pipeline are available from public sources,
their file content did not need to be stored on local infrastructure at all. Instead, the processing spec-
ification superdataset linked the two components with their GitHub URL, and individual compute
jobs retrieved relevant input data from their associated web sources directly.

An example HTCondor-based job-scheduling setup for the HTC infrastructure used in the Open
Tutorial showcase is included in the shared resources.

Execution and result consolidation workflow

For demonstration purposes the same execution workflow as for the UKB showcase was used. How-
ever, due to the small number of compute jobs, and the long individual runtime of each job, imple-
mentation details like the separation of clone sources and push targets, or the distinction of result
file transfer and provenance metadata deposition only has negligible performance impact.

Data Availability

Data from the UK Biobank project were obtained from a third party, UK Biobank, upon application.
Interested parties can apply for data from UK Biobank directly, at www.ukbiobank.ac.uk.

Structural data from the Studyforrest project49 (doi.org/10.12751/g-node.zdwr8e) are avail-
able at github.com/psychoinformatics-de/studyforrest-data-structural. The studyforrest
derivatives computed by the tutorialworkfloware publicly available from github.com/psychoinformatics-
de/fairly-big-processing-workflow-tutorial.

Code Availability

All scripts used to process the data are publicly available at github.com/psychoinformatics-de/
sfairly-big-processing-workflow. The recipe used to build the CAT Singularity container is
publicly available at github.com/m-wierzba/cat-container.

Acknowledgements

The authors wish to thank Timo Dickscheid, Michał Szczepanik and Stephan Heunis for their feed-
back on earlier versions of this manuscript.

Thisworkwas supported byEuropeanUnion’sHorizon 2020 research and innovation programme
under grant agreements Human Brain Project (SGA3, H2020-EU.3.1.5.3, grant no. 945539) and Vir-
tualBrainCloud (H2020-EU.3.1.5.3, grant no. 826421). The development of the DataLad software
was supported by grants from the US National Science Foundation (NSF 1912266, 1429999) and the

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://github.com/repronim/containers
github.com/repronim/containers
http://www.ukbiobank.ac.uk
www.ukbiobank.ac.uk
doi.org/10.12751/g-node.zdwr8e
https://github.com/psychoinformatics-de/studyforrest-data-structural
github.com/psychoinformatics-de/studyforrest-data-structural
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
github.com/psychoinformatics-de/fairly-big-processing-workflow-tutorial
https://github.com/psychoinformatics-de/fairly-big-processing-workflow
github.com/psychoinformatics-de/sfairly-big-processing-workflow
https://github.com/psychoinformatics-de/fairly-big-processing-workflow
github.com/psychoinformatics-de/sfairly-big-processing-workflow
https://github.com/m-wierzba/cat-container
github.com/m-wierzba/cat-container
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

REFERENCES REFERENCES

German Federal Ministry of Education and Research (BMBF 01GQ1905, 01GQ1411). MW was sup-
ported by ETIUDA grant received from theNational Science Centre, Poland (2018/28/T/HS6/00507).

This research has been conducted using the UK Biobank Resource under application number
41655.

Author contributions

ASW, AQW, BP, FH, LKW, MH, and MW conceived the setup of the framework. ASW, LKW, and
MH piloted and documented an earlier version of this framework with a smaller dataset. BP, LKW,
and MHwrote the software to download and structure UK Biobank to BIDS. FH, MH, and MW con-
tainerized the CAT processing toolbox. MH implemented the HTCondor setup and bootstrapping.
FH implemented the SLURM setup and conducted QC analysis on the results. ASW, and MW im-
plemented the tutorial on studyforrest.org data. ASW wrote the first draft of the manuscript. ASW,
AQW, BP, FH, LKW, MH, MW, and SE contributed to the conceptualization, writing, and editing of
the manuscript. All authors read and approved the final draft.

Competing Interests

The authors declare no competing interests.

References
[1] Draxl, C., Clifton, A., Hodge, B.-M. &McCaa, J. TheWind Integration National Dataset (WIND) Toolkit.

Applied Energy 151, 355–366 (2015). URL https://www.sciencedirect.com/science/article/pii/
S0306261915004237.

[2] Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data 3, 160018 (2016). URL http://www.nature.com/articles/sdata201618.

[3] Wiener, M., Sommer, F., Ives, Z., Poldrack, R. & Litt, B. Enabling an Open Data Ecosystem for the Neuro-
sciences. Neuron 92, 617–621 (2016). URL http://www.sciencedirect.com/science/article/pii/
S0896627316307875.

[4] Craddock, C. et al. Frontiers | The Neuro Bureau Preprocessing Initiative: open sharing of prepro-
cessed neuroimaging data and derivatives (2013). URL https://www.frontiersin.org/10.3389/
conf.fninf.2013.09.00041/event_abstract.

[5] Portegies Zwart, S. The ecological impact of high-performance computing in astrophysics. NatureAstron-
omy 4, 819–822 (2020). URL https://www.nature.com/articles/s41550-020-1208-y. Number: 9
Publisher: Nature Publishing Group.

[6] Bzdok, D. & Yeo, B. T. T. Inference in the age of big data: Future perspectives on neuroscience. NeuroIm-
age 155, 549–564 (2017).

[7] Horien, C. et al. A hitchhiker’s guide to working with large, open-source neuroimaging datasets. Nature
HumanBehaviour 5, 185–193 (2021). URL https://www.nature.com/articles/s41562-020-01005-
4. Number: 2 Publisher: Nature Publishing Group.

[8] Van Essen, D. C. et al. TheWU-Minn Human Connectome Project: An Overview. NeuroImage 80, 62–79
(2013). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724347/.

[9] of Health, N. I. Adolescent Brain Cognitive Development Study (ABCD) .

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://www.sciencedirect.com/science/article/pii/S0306261915004237
https://www.sciencedirect.com/science/article/pii/S0306261915004237
http://www.nature.com/articles/sdata201618
http://www.sciencedirect.com/science/article/pii/S0896627316307875
http://www.sciencedirect.com/science/article/pii/S0896627316307875
https://www.frontiersin.org/10.3389/conf.fninf.2013.09.00041/event_abstract
https://www.frontiersin.org/10.3389/conf.fninf.2013.09.00041/event_abstract
https://www.nature.com/articles/s41550-020-1208-y
https://www.nature.com/articles/s41562-020-01005-4
https://www.nature.com/articles/s41562-020-01005-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724347/
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

REFERENCES REFERENCES

[10] Matthews, P. M. & Sudlow, C. The UK Biobank. Brain 138, 3463–3465 (2015). URL https://doi.org/
10.1093/brain/awv335.

[11] Poldrack, R. A., Gorgolewski, K. J. & Varoquaux, G. Computational and Informatic Advances
for Reproducible Data Analysis in Neuroimaging. Annual Review of Biomedical Data Science 2,
119–138 (2019). URL https://doi.org/10.1146/annurev-biodatasci-072018-021237. _eprint:
https://doi.org/10.1146/annurev-biodatasci-072018-021237.

[12] Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams.
Nature 582, 84–88 (2020).

[13] Kennedy, D. N. et al. Everything Matters: The ReproNim Perspective on Reproducible Neuroimaging.
Frontiers in Neuroinformatics 13 (2019). URL https://www.frontiersin.org/articles/10.3389/
fninf.2019.00001/full. Publisher: Frontiers.

[14] Halchenko, Y. O. et al. Datalad: distributed system for jointmanagement of code, data, and their relation-
ship. Journal of Open Source Software 6, 3262 (2021). URL https://doi.org/10.21105/joss.03262.

[15] Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: Scientific containers for mobility of compute.
PLOSONE 12, e0177459 (2017). URL https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0177459. Publisher: Public Library of Science.

[16] Miller, K. L. et al. Multimodal population brain imaging in the uk biobank prospective epidemiological
study. Nature neuroscience 19, 1523–1536 (2016).

[17] Hess, J. git-annex. URL https://git-annex.branchable.com/.

[18] Poldrack, B., Wagner, A., Waite, A., Waite, L. & Hanke, M. A model implementation of a scalable data
store for scientific computing with DataLad. F1000Research 10 (2021). URL https://f1000research.
com/posters/10-132.

[19] Hanke, M., Waite, L. K., Poline, J.-B. & Hutton, A. datalad/datalad-ukbiobank: drop fix (2021). URL
https://zenodo.org/record/4773629#.YKUvjyWxUUE.

[20] Meyer, K., Hanke, M., Halchenko, Y., Poldrack, B. & Wagner, A. datalad/datalad-container 1.1.2 (2021).
URL https://zenodo.org/record/4445141#.YBkZsSUo8UE.

[21] Wagner, A. S. et al. The DataLad Handbook (Zenodo, 2020). URL https://zenodo.org/record/
3905791#.X_Xm5yUo8UE. Version Number: v0.13.

[22] Hanke, M. et al. In defense of decentralized research data management. Neuroforum 27, 17–25 (2021).
URL https://www.degruyter.com/document/doi/10.1515/nf-2020-0037/html. Publisher: De
Gruyter Section: Neuroforum.

[23] Bryan, J. Excuse Me, Do You Have a Moment to Talk About Version Control? The American Statisti-
cian 72, 20–27 (2018). URL https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2017.
1399928. Publisher: Taylor & Francis.

[24] Thain, D., Tannenbaum, T. & Livny, M. Distributed computing in practice: the Con-
dor experience. Concurrency and Computation: Practice and Experience 17, 323–356
(2005). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.938.

[25] Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28,
2520–2522 (2012).

[26] De Smedt, K., Koureas, D. &Wittenburg, P. Fair digital objects for science: From data pieces to actionable
knowledge units. Publications 8 (2020). URL https://www.mdpi.com/2304-6775/8/2/21.

[27] Belhajjame, K. et al. PROV-DM: The PROV data model. W3C Recommendation 14, 15–16 (2013).

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://doi.org/10.1093/brain/awv335
https://doi.org/10.1093/brain/awv335
https://doi.org/10.1146/annurev-biodatasci-072018-021237
https://www.frontiersin.org/articles/10.3389/fninf.2019.00001/full
https://www.frontiersin.org/articles/10.3389/fninf.2019.00001/full
https://doi.org/10.21105/joss.03262
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459
https://git-annex.branchable.com/
https://f1000research.com/posters/10-132
https://f1000research.com/posters/10-132
https://zenodo.org/record/4773629#.YKUvjyWxUUE
https://zenodo.org/record/4445141#.YBkZsSUo8UE
https://zenodo.org/record/3905791#.X_Xm5yUo8UE
https://zenodo.org/record/3905791#.X_Xm5yUo8UE
https://www.degruyter.com/document/doi/10.1515/nf-2020-0037/html
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2017.1399928
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2017.1399928
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938
https://www.mdpi.com/2304-6775/8/2/21
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

REFERENCES REFERENCES

[28] Ashburner, J. & Friston, K. J. Voxel-BasedMorphometry—TheMethods. NeuroImage 11, 805–821 (2000).
URL https://www.sciencedirect.com/science/article/pii/S1053811900905822.

[29] Gaser, C. & Dahnke, R. Computational Anatomy Toolbox (CAT). URL http://www.neuro.uni-jena.
de/cat/.

[30] BIDS-contributors. The Brain Imaging Data Structure (BIDS) Specification (2020). URL https://
zenodo.org/record/4085321#.X-GnzSUo8UE. Publisher: Zenodo.

[31] Jette, M. A., Yoo, A. B. & Grondona, M. Slurm: Simple linux utility for resource management. In In
Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP)
2003, 44–60 (Springer-Verlag, 2002).

[32] Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and
sulci using standard anatomical nomenclature. NeuroImage 53, 1–15 (2010). URL https://www.
sciencedirect.com/science/article/pii/S1053811910008542.

[33] Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI (2020). URL https:
//zenodo.org/record/4252786#.YBlHdiUo8UE.

[34] Hanke, M. et al. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio
movie. Scientific Data 1, 140003 (2014). URL https://www.nature.com/articles/sdata20143/fig_
tab. Number: 1 Publisher: Nature Publishing Group.

[35] Rokem, A., Dichter, B., Holdgraf, C. & Ghosh, S. S. Pan-neuro: Interactive computing at scale with
BRAIN datasets. OSF Preprints (2021).

[36] Kuprieiev, R. et al. Dvc: Data version control - git for data & models (2021). URL https://doi.org/
10.5281/zenodo.5562238.

[37] Babuji, Y. et al. Parsl: Pervasive parallel programming in python. In Proceedings of the 28th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, HPDC ’19, 25–36 (Associa-
tion for ComputingMachinery, NewYork, NY,USA, 2019). URL https://doi.org/10.1145/3307681.
3325400.

[38] Zaharia, M. et al. Apache spark: A unified engine for big data processing. Commun. ACM 59, 56–65
(2016). URL https://doi.org/10.1145/2934664.

[39] Rocklin, M. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of
the 14th python in science conference, vol. 130, 136 (Citeseer, 2015).

[40] Madduri, R. et al. Reproducible big data science: A case study in continuous fairness. PloS one 14,
e0213013 (2019).

[41] Nüst, D. et al. Ten simple rules for writing dockerfiles for reproducible data science. PLoS Comput Biol
16, e1008316 (2020).

[42] Glatard, T. et al. Reproducibility of neuroimaging analyses across operating systems. Frontiers inNeuroin-
formatics 9 (2015). URL https://www.frontiersin.org/articles/10.3389/fninf.2015.00012/
full. Publisher: Frontiers.

[43] Glatard, T. et al. Boutiques: a flexible framework to integrate command-line applications in computing
platforms. GigaScience 7, giy016 (2018).

[44] Ashburner, J. & Friston, K. J. Diffeomorphic registration using geodesic shooting and gauss–newton
optimisation. NeuroImage 55, 954–967 (2011).

[45] Krause, D. & Thörnig, P. JURECA: Modular supercomputer at Jülich Supercomputing Centre. Journal
of large-scale research facilities JLSRF 4 (2018).

[46] Tange, O. Gnu parallel-the command-line power tool. The USENIX Magazine 36, 42–47 (2011).

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

https://www.sciencedirect.com/science/article/pii/S1053811900905822
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://zenodo.org/record/4085321#.X-GnzSUo8UE
https://zenodo.org/record/4085321#.X-GnzSUo8UE
https://www.sciencedirect.com/science/article/pii/S1053811910008542
https://www.sciencedirect.com/science/article/pii/S1053811910008542
https://zenodo.org/record/4252786#.YBlHdiUo8UE
https://zenodo.org/record/4252786#.YBlHdiUo8UE
https://www.nature.com/articles/sdata20143/fig_tab
https://www.nature.com/articles/sdata20143/fig_tab
https://doi.org/10.5281/zenodo.5562238
https://doi.org/10.5281/zenodo.5562238
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/2934664
https://www.frontiersin.org/articles/10.3389/fninf.2015.00012/full
https://www.frontiersin.org/articles/10.3389/fninf.2015.00012/full
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

REFERENCES REFERENCES

[47] Dahnke, R., Ziegler, G., Grosskreutz, J. & Gaser, C. Quality Assurance in Structural MRI (2015). URL
http://rgdoi.net/10.13140/RG.2.2.16267.44321. Publisher: Unpublished.

[48] Dahnke, R., Ziegler, G., Grosskreutz, J. &Gaser, C. RetrospectiveQualityAssurance ofMR Images (2013).

[49] Hanke, M., Wagner, A. S., Waite, L. K. & Mönch, C. Studyforrest structural mri scans. Gnode https:
//doi.org/10.12751/g-node.zdwr8e (2022). URL https://doi.org/10.12751/g-node.zdwr8e.

[50] Tustison, N. J. et al. N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging 29,
1310–1320 (2010). Conference Name: IEEE Transactions on Medical Imaging.

[51] Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-
appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009). URL https:
//www.sciencedirect.com/science/article/pii/S1053811909708845.

[52] Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration
with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medi-
cal Image Analysis 12, 26–41 (2008). URL https://www.sciencedirect.com/science/article/pii/
S1361841507000606.

[53] Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random
field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20,
45–57 (2001). Conference Name: IEEE Transactions on Medical Imaging.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2021.10.12.464122doi: bioRxiv preprint

http://rgdoi.net/10.13140/RG.2.2.16267.44321
https://doi.org/10.12751/g-node.zdwr8e
https://doi.org/10.12751/g-node.zdwr8e
https://doi.org/10.12751/g-node.zdwr8e
https://www.sciencedirect.com/science/article/pii/S1053811909708845
https://www.sciencedirect.com/science/article/pii/S1053811909708845
https://www.sciencedirect.com/science/article/pii/S1361841507000606
https://www.sciencedirect.com/science/article/pii/S1361841507000606
https://doi.org/10.1101/2021.10.12.464122
http://creativecommons.org/licenses/by/4.0/

