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Abstract 

Large-scale single-cell 'omics profiling is revolutionising our understanding of cell types in complex 

organs like the brain, where it is being used to define a complete catalogue of cell types, something that 

traditional methods struggle with due to the diversity and complexity of the brain.  But this poses a 
problem. How do we organise such a catalogue - providing a standard way to refer to the cell types 

discovered, linking their classification and properties to supporting data? Cell ontologies provide a 

solution to recording definitions, classifications, and properties of cell types and provide standard 

identifiers for annotation, but they currently do not support the data driven cell type definitions and 

classifications needed for multi-modal single cell 'omics profiling.  

 

Here we describe the construction and application of a semi-automated, data-linked extension to the 

Cell Ontology that represents cell types in the Primary Motor Cortex of humans, mice and marmosets.  
The methods and resulting ontology are designed to be scalable and applicable to similar whole brain 

atlases currently in preparation. 
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Introduction 

The large-scale application of omics profiling techniques at the single-cell level is producing enormous 

volumes of data. Cell ontologies are poised to play a critical role in making these data searchable and 

integratable 1. At the same time, the application of these profiling techniques is revolutionising our 

understanding of cell types and cellular heterogeneity 2,3. The impact of this revolution is especially 

dramatic for the brain.  Due to the complex cellular architecture of the brain, traditional qualitative, 

categorical methods of classifying neurons based on location, morphology, marker expression and 
function have not achieved a coherent, unified view of granular brain cell types and their classifications. 

This has begun to change with the application of massively parallel single-cell or nucleus RNA 

sequencing (sc/snRNAseq) methods to the brain, combined with multimodal transcriptomic techniques 

such as Patch-seq 4.  The BRAIN Initiative Cell Census Network (BICCN) recently completed a 

comprehensive, multimodal cell census and atlas of the primary motor cortex across multiple species 
5–7. This takes the approach of treating consensus clustering of similar cells from single nucleus RNA-

seq data from multiple experiments as a ground truth for defining cell types and their classification.. The 

resulting cell type hierarchies serve as anchors for alignment of data from other modalities, allowing 
spatial localization, morphology, electrical properties, chromatin accessibility, and other features of cell 

types to be recorded and compared across species. Evidence from systems in which a more 

comprehensive classification of cell types has been achieved by classical methods than has been 

possible in the brain suggests that the classifications resulting from sc/snRNAseq analysis align closely 

with classically defined types 8.  

 

This poses challenges for standard approaches to ontology development. How are we to integrate cell 

types defined with reference to clusters of transcriptomically similar cells into cell ontologies in which 
cell type/classes are defined using simple, categorical assertions about their morphological and 

functional properties, location and marker expression? How can we do this in a way that is transparent 

about the origins and evidence for these classifications? How can we enable ontology users to leverage 

the data used to define and classify reference cell types in the ontology to classify cell types represented 

in their own data? 

 

Here we describe a solution to these challenges in the form of a template-driven ontology generation 
pipeline and an ontology of cell types defined in the BICCN mini-atlas, Brain Data Standards Ontology 

(BDSO), that forms part of the Provisional Cell Ontology 3, which extends the Cell Ontology 9 with 

potential new cell types from single cell analysis. Ontologies should serve as both an easily searchable 

source of terms for annotation and a data structure supporting organisation, search and navigation of 

annotated data. We demonstrate the utility of our ontology for this via its application to the organisation, 

search and navigation of data about cells in the mini-atlas on the Allen Cell Type Explorer web app. 
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Results 

Brain Data Standards Ontology Design 
One of the outputs of the BICCN mini-atlas 10 is a standardized representation of cell clusters (CCN) 

and the hierarchical relationships between them that constitute the ground-truth for cell-types defined 

in the atlas. The clusters and their hierarchical arrangement derive from unsupervised, hierarchical 

clusterings of single-cell transcriptomic and epigenetic profiles of the primary motor cortex in mouse, 

human, and marmoset 10,11. Each individual hierarchical clustering (referred to here as a taxonomy) is 
either created from a single data set (e.g., in marmoset) or through a consensus of two (human) or 

many (mouse) data sets. Using mouse transcriptomics clusterings as an anchor, morphological and 

electrophysiological profiles of single-cells are mapped to omics-based types using Patch-seq data 7.  

Finally, comparison of clusters across species is used to generate cross-species mappings and 

groupings of clusters which represent putative homology groupings 10,11. All of this information is 

available in a standard format (common cell type nomenclature taxonomy files, here referred to as CCN 

taxonomy files) developed by the BICCN to represent mammalian brain cell type taxonomies and the 

relationships between them 12. 
 

To produce a set of definitional characteristics of the cell types identified in these taxonomies, a 

minimum set of markers that can be used to distinguish cells in that cluster from those in other clusters 

in the same taxonomy was produced using the NS-Forest algorithm 13.  Taking the clusters as ground 

truth for all cell types present in the primary motor cortex, the combined expression of each marker set 

should be necessary and sufficient to identify the corresponding cell type in the context of the primary 

motor cortex. 

 
The BDSO is built as a faithful representation of the BICCN mini-atlas cell type taxonomies (Figure 1). 
In order to achieve this, we first devised a schema to represent taxonomies in Web Ontology Language, 

OWL2 14, the formal language we use for constructing ontologies.  OWL2 makes a distinction between 

individuals, e.g., an individual neuron depicted in a micrograph, and classes, e.g.,  the class of all 

Chandelier neurons. Each taxonomy is represented in BDSO as a collection of OWL Individuals, with 

each Individual representing a cluster of single-cell transcriptomes and retaining all original metadata 

in the CCN taxonomy file from which it is derived. Hierarchical clustering is represented by relating 

these individuals to each other via a transitive subcluster_of relation.  

 
Each taxonomy has many more nodes than it would be reasonable to create classes for.  In order to 

select useful intermediate nodes for representation, taxonomy authors of the BICCN mini-atlas flagged 

nodes to generate a 3-level hierarchy with the most granular level consisting of all leaf nodes 10. We 

generated cell classes for all tagged clusters, apart from some high-level groupings (e.g. all cells, non-

neuronal, etc.) that would not make sense as a cell type term as they are overly generalised.  Each of 

these classes is linked formally to a cluster individual using a standard pattern in OWL that can be used 

by standard OWL reasoning software to automatically build a classification hierarchy for the BDSO 
classes (see Fig. 2 and the next section for more details). Lastly, we treated cross-species mappings 
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between cell types as putative homology mappings, by using the relation 

in_historical_homology_relationship_with 15 (imported from the OBO relations ontology) in a pairwise 

manner. 

 

To integrate the BDSO with existing ontologies, classes defined for intermediate nodes in the hierarchy 

are further classified using classes in CL, which we have extended as required (e.g., see 'L5 
extratelencephalic' class in Figure 2). These include classes that are defined by expression of classical 

marker genes (e.g., VIP-expressing GABAergic neurons), morphology (pyramidal) or projection pattern 

(extratelencephalic projecting), mapped based on co-collected transcriptomic profiles 10. The BDSO 

also reuses existing ontologies to represent species (NCBITaxon 16), brain region (UBERON 17), 

morphology (PATO), and marker genes (Ensembl/PRO 18,19). All relationships added use OBO standard 

relations from the OBO relations ontology and follow or extend standard schemas used by CL (Figure 

2).  In addition to tightly integrating these terms with CL, this approach maximises the potential for 

making data annotated with BDSO interoperable with the many other datasets annotated with these 
ontologies.  

 

Designing an automated pipeline 
 

Manually building an ontology to represent the huge amount of data from the BICCN mini-atlas is 

impractical, error-prone, and unscalable. It was therefore imperative to harness automated tools to build 

the BDSO. To build the BDSO, we use CCN taxonomy files, NS-Forest marker gene mappings and 
reference gene lists as input to a semi-automated pipeline. The pipeline takes advantage of the schema 

described in Figure 3 to build a hierarchy that mirrors the cluster hierarchy (see L5 ET in Figures 1 and 

3 for example implementation). The BDSO is built using the Ontology Development Kit 20 and uses 

standard ontology term templating systems 21,22 to generate labels, definitions and synonyms for BDSO 

terms and to add CL classifications and relationships1 recording location (using Uberon terms 17), 

species (using NCBI taxonomy terms 16), markers, projection patterns and morphologies (see Figure 4 

for examples). The results of NS-Forest analysis, ingested via standardised TSV files, are automatically 

consumed by the pipeline and integrated into the ontology (see section below). Manual curation such 
as mapping to CL terms, adding cell properties (morphology, projections, etc.) were kept to a minimum 

and done via templates to ensure consistency and scalability.  

 

Representing data and analysis results 
The BDSO uses the direct results of data analyses as evidence for the existence of cell type classes. 

To reflect this, and to allow users direct access to the data that justifies the categorical assertions that 

we make, we link the ontology clusters to datasets (expression matrices) available on Nemo 
(https://assets.nemoarchive.org/dat-ch1nqb7), and we include the quantitative data that support 

categorical assertions made in the ontology, where this data is available.  Currently, we include a 

measure of the accuracy of classification using NS-Forest marker F-Beta scores and we plan to 

 
1 More strictly, existential restrictions in Web Ontology Language (OWL). 
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incorporate measures of transcriptomic similarity to support homology assertions.  CCN taxonomy files 

include a measure of confidence in the division into (sibling) subclusters, plotted as height in 

dendrogram views. We retain this measure, along with all other metadata, attached to individual 

clusters. 

 

Each set of NS-Forest markers should theoretically be necessary and sufficient for identifying a cell 
type with high precision within the  dataset used to define them.  In the case of the mini-atlas, the 

datasets correspond to all cells with a soma located in the primary motor cortex of some specified 

species and so should be necessary and sufficient for identifying the cell type within that anatomical 

context more generally. We also have evidence that they are useful for detecting the same cell type in 

other brain regions: In many cases, the markers identified by NS-Forest in the primary motor cortex, 

are  expressed in equivalent cell types found in another cortical brain region (middle temporal gyrus) 23 

however the NS-Forest algorithm typically finds other sets of makers in these cases. 

 
We record this context as a restriction on the class using a has_soma_location to the brain region and 

represent NS-Forest markers through an NS-Forest set class, ‘S’ in the example below, with marker 

genes as parts (See Figures 1 and 3): 

 
{C} has_characterizing_marker_set some {S}; 

{S} has_part some gene 1; 

{S} has_part some gene 2 

 

This approach allows us to record multiple marker sets for each cell type, which may be essential in 

future, given the many competing methods available for defining cell type markers.  The intermediate 

node allows for clear grouping of marker sets in knowledge graphs (see Figure 2). We also use the 

node to record Fβ scores for each set - recording the accuracy of classification using the markers on 

the reference transcriptomic datasets. We do this through a custom annotation property 
`fbeta_confidence_score` that is annotated on the marker set class. 

 

We rejected an alternative approach, of using an EquivalentClass axiom with clauses to restrict for 

location and NS-Forest markers to formally specify necessary and sufficient conditions, as having two 

equivalence axioms to define a cell type can potentially lead to competing classifications.   

 

Ontology content summary   
The latest release (2022-04-27 Release) of the BDSO component (which PCL imports) contains 913 
individuals, out of which 890 are taxonomy nodes (individuals also include datasets), and 112447 

classes (including genes and NS-Forest sets), out of which 1384 have the PCL namespace and 555 

are cell types. The remaining terms are imported from OBO ontologies into PCL. All object properties 

used are imported from RO as per OBO foundry guidelines.  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2021.10.10.463703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

 

Application 
A key function of the BDSO is to support organisation, navigation and searching of data in a community-

accessible view of the cell types defined in the BICCN mini-atlas of the mammalian primary motor cortex 
10 through a web-based application (web-app) that integrates cell type descriptions and related data, 

known as the "Cell Type Knowledge Explorer" (Figure 5).  Each page in this web-app corresponds to a 
cell type defined with reference to a cluster in one of the BICCN taxonomies represented in the BDSO, 

and features a wide range of data and analysis from multiple cross integrated datasets. The aim of the 

ontology-driven search and navigation tools is to support access to these pages in the web-app.  

 

While expressiveness of ontology formats such as OWL is an advantage for semantic data processing, 

OWL is complicated to develop applications with and has limited tooling. Graph databases like neo4j, 

and indexed document stores such as SOLR and ElasticSearch, provide a more tractable, fast way to 

drive web applications. For this purpose, we extended a library, neo4j2owl 24, developed for the Virtual 
Fly Brain project 25,26,  that ensures logical projection of OWL ontologies into labelled property graphs.  

Neo4j2owl imports OWL ontologies into Neo4j in a way that preserves entailments and annotations, but 

not the syntactic complexities of OWL. It also supports the addition of semantic tags, in the form of 

simple strings attached to classes and individuals, driven by OWL DL or SPARQL queries. We use this 

semantic tag system to provide an application-specific, gross classification that provides additional 

information about classes in a useful form to users and can be used to drive faceted search. For 

example, we can tag all classes corresponding to subclasses of GABAergic neuron, or all classes 
fulfilling an OWL DL query for classes of neuron with pyramidal morphology (see Figure 5f).  The full 

Knowledge Graph can be accessed at http://purl.obolibrary.org/obo/pcl/bds/kg/. 

 

An illustration of the resulting property graph is shown in Figure 2. These property graphs allow 

applications such as the cell type knowledge explorer to use the ontology data to populate parts of the 

application and enable full-text and faceted search functions.  

 

Ontology-based navigation and search functions are provided through two mechanisms - autocomplete 
(which takes advantage of curation of synonyms in the ontology) and faceted search (Figure 5). 

Autocomplete allows users to search for cell-type ontology terms, displaying a list of lexical matches for 

users to choose from (Figure 5b). Faceted search of Cell Type Knowledge Explorer works via a set of 

tags corresponding to gross classifications (e.g. GABAergic), intrinsic properties (e.g. pyramidal 

morphology) and extrinsic properties (brain region location, species) of cell types, added to cell type 

neo4j nodes via OWL DL queries of the underlying ontologies. Currently, implementation of this works 

through automatically adding the term to the search bar and allowing the free-text search to complete 

the search (Figure 5F,G). However, this approach is unlikely to scale as the content of cell type explorer 
grows.  There are plans to allow users to take better advantage of faceted browsing using semantic 

tags via a results page that can be refined via combinations of semantic tags combined with lexical 
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search, allowing users to find neurons by any combination of location, morphology, species, 

neurotransmitter and name/synonym substring.  

Discussion 

The BDSO is a faithful representation of the data-driven, consensus cell type classification that includes 

the BICCN mini-atlas of the mammalian motor cortex 10. By using a schema that defines classes 

logically via links to an OWL representation of data and analyses, we can use OWL to directly leverage 

the data-driven taxonomy of the miniatlas to classify cell types in BDSO using OWL reasoning. As a 

result, classes retain direct links to the data and analyses that define them and the origins of this 

classification are transparent and insulated from the manual editing process that might alter or 

obfuscate them. Using templated specification of ontology classes, the BDSO build process is scalable 
and extensible and allows a flexible mix of automation and manual curation. It also makes it possible to 

update as new, improved versions of data-driven classifications of the same cell types are released. 

The linked data can potentially be used to replicate analyses and to map cell types defined in BDSO to 

other datasets (e.g., using Azimuth 27, FR-match 23). The addition of NS-Forest markers 13, representing 

minimal markers for distinguishing, with high confidence, cell types from other cell types defined in the 

analysis, provides a simple mechanism for mapping cell types from third-party transcriptomics data to 

the BDSO.  

 
In future, we plan to incorporate measures of transcriptomic similarity in support of homology assertions 

and a measure of confidence for data-driven taxonomy nodes. We will also incorporate contextual 

information about the nature of these measures. While the absolute values of these measures are 

inevitably specific to the datasets/analysis they come from, they are at least usable for intra-dataset 

comparisons.  

 

As a broader consensus and whole-brain datasets emerge, we expect NS-Forest F-Beta scores and 
taxonomy node confidence measures to be informative of which cell types we consider stable and 

replicable. 

 

While the approach described meets many of the requirements for a scalable approach to cell type 

representation, some challenges remain. The current representation lacks links to transcriptomic data 

from Patch-seq data used to map morphologically defined types. Using transcriptomic clustering as 

ground truth for an ontology also comes with its inherent challenges. Penetrance of marker expression 

and location to a specific cortical layer varies across clusters, so all/some quantified assertions of 
marker expression in OWL will always be an approximation and will always require either automated or 

qualitative assessment of thresholds. Finally, nomenclature issues frequently arise when data-driven 

classifications are mapped onto classically-defined classes. For example, the literature is full of 

references to VIP-expressing GABAergic neurons, identified using VIP as a marker, but clustering 

defines a broader group of related GABAergic neurons including some subtypes that do not express 

VIP, at least not at levels detectable by snRNAseq in the adult.  
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The transcriptomic approach potentially allows the definition of transcriptomically defined, species-

neutral grouping classes.  We decided against adding these because the resulting classifications are 

not likely to remain stable as more species are added to the analysis, although this may change in 

future with large-scale analyses using many species. It is also likely to be challenging to map these 

classes to the more traditionally defined species-neutral cell type ontology classes.   
 

Another challenge comes from working with nomenclature defined by researchers.  Terminology that 

makes sense in the limited local context of a dataset can be confusing to users viewing it in the broader, 

integrated context of an ontology.  In the primary motor cortex mini-atlas datasets used for this work, 

names given to cell types in human and marmoset were derived from the names of the mouse cell 

types, even where that name implies properties (e.g., marker expressions) that do not apply.  For 

example, the Sncg cluster in marmoset is aligned to that of mouse Scng cluster but contains many cell 

types that do not necessarily express Sncg (Figure 6). To make this clear we rename these terms 
following the pattern mouse {x} like, e.g., (Mouse Sncg)-like (Marmoset).   

 

Lastly, as efforts to expand scRNAseq cell typing to the entire brain, there is a crucial need for upstream 

standardisation and validation in order to efficiently scale up what we have presented in this paper. 

Tooling that allows biologists to annotate cell types with existing terms created through the BDSO, 

automated checks for quality control, and consensus on data formats, nomenclatures, and version 

control are all required if we are to effectively manage the huge input of data that is inevitable from such 
work. 

Conclusion 

The BDSO acts as a functional tool for managing data from the BICCN mini atlas  project, underlying 

the search and navigation of the Cell Type Knowledge Explorer web application, and provides a 
controlled vocabulary for future annotations. Beyond its practical function, it is also an example of how 

ontologies can harness automation to process the large amounts of data that is inevitable with the rise 

of sc/snRNAseq methods. Crucially, the work on the BDSO has highlighted the need for good tooling 

and integration into the early steps of the processes of sc/snRNAseq experiments. While questions on 

representation of confidence, nomenclature, and links to data still require addressing by both the 

ontology and neuroscience communities, the BDSO is a practical first step to ontologising taxonomies 

generated by sc/snRNAseq cell typing in the brain. 

Methods 

Data Source 
Input to the ontology was derived from data from the BICCN mini-atlas 10 and scRNAseq of the human 

middle temporal gyrus 28. NS-Forest analysis was done as previously described 13 using gene lists 

available from either NCBI gene 16 or Ensembl 18.  
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Development Strategy  
BDSO is developed based on the OBO Foundry 29,30 and FAIR 31 principles. Ontology terms were 

reused as much as possible (see results section) with all relationships used coming from the relations 

ontology and design patterns following or extending those used in the Cell Ontology. The BDSO is 

fully compliant with OBO Foundry standards and has been included as an ontology in the OBO 
Foundry.   

 

Templating Systems 
The templating systems used in the automated pipeline are ROBOT 21 (used to generate individuals) 

and DOSDP 22. Briefly, information is extracted from the CCN taxonomy files and translated into 

template files that are processed either through ROBOT templates to generate individuals, or template 

files for classes where a curator manually curates additional information (e.g. mappings to CL cell types, 

morphology, etc.) which is then processed, together with NS-Forest markers, using DOSDP. These files 

are then merged as part of the pipeline for the final product. 
 

Provisional Cell Onotlogy 
We updated the Provisional Cell Ontology to follow OBO Foundry standards by using a pipeline based 

on the ontology development kit 20. Earlier, manually generated releases of PCL shared terms with the 

version described here, but used non-standard IDs and schema. In order to support mapping of data 

previously annotated with PCL and references to PCL terms in previous publications 3,11,28, we mapped 

all original IDs to current OBO standard persistent URLs, using OBO standard mappings for obsoleted 

terms. . 
 
Endpoints 
As well as being available for downloading from a persistent URL (http://purl.obolibrary.org/obo/pcl.owl) 

and available for browsing on widely used ontology platforms including the Ontology Lookup service 

and Ontobee, the BDSO can be searched and queried via a REST API 

(http://purl.obolibrary.org/obo/pcl/bds/api/). These endpoints encapsulate the representational 

complexities of the underlying knowledge and property graphs and serve the ontology in web-friendly 
formats such as JSON. Using these endpoints, users can search for ontology terms, access their details 

and navigate through the ontology using relationships between concepts. Solr is used at the backend 

to provide enhanced full-text search and reduced service response times. The created Solr indexes are 

published publicly (https://github.com/obophenotype/brain_data_standards_queries).  
 
BDSO analysis 
Statistics of metadata of BDSO were done using SPARQL queries with ROBOT 21 on the BDSO 

component. SPARQL queries used can be found in the repository 
(https://github.com/obophenotype/brain_data_standards_ontologies/tree/master/src/sparql). 
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Figures Generation 
Figure 1 ontology visualisation was generated by using the Ontology Access Kit 32 and dendrogram 

section was provided by the BICCN 10. Figures 4 & 6 uses screenshots from Protege 33. Figure 5 uses 

screenshots from the Cell Type Knowledge Explorer web app (https://knowledge.brain-

map.org/celltypes/). 

Code Availability 

The BDSO is generated using a dedicated ontology build pipeline, built as an extension to the Ontology 

Development Kit 20, but released as a component of the PCL, with all terms having PCL IDs. Previous 

releases of PCL 3,11,28 represented some of the same cell types as the current release but used a 

different, less formal schema and a different ID system 3,11,28.  We have obsoleted these terms and 
provided a mapping, within PCL,to replacement terms allowing continued support for previous work 

annotated using PCL terms. 

 

The BDSO’s code base is available at GitHub 

(https://github.com/obophenotype/brain_data_standards_ontologies) including documentation of the 

full technology stack and details of the approach. The latest release of the ontology is available for 

download from http://purl.obolibrary.org/obo/pcl/bds/bds.owl and is hosted on the EMBL-EBI ontology 

lookup service (OLS) 34 at https://www.ebi.ac.uk/ols/ontologies/pcl. OLS provides ontology search, 
browsing, visualisation capabilities and enables web services driven programmatic access to the BDSO. 

Acknowledgements 

This work was funded by NIMH:1RF1MH123220-01 - "A Community Framework for Data-driven Brain 
Transcriptomic Cell Type Definition, Ontology, and Nomenclature." We thank Maryann Martone and 

Carol Thompson for their invaluable contributions to discussions of the work described here. 

Data Availability Statement 

All data used in the BDSO is publicly available and can be found in the original papers as well as 
nemo archive links available in the ontology. Code and source data used to generate the ontology is 

publicly available at GitHub (https://github.com/obophenotype/brain_data_standards_ontologies and 

https://github.com/JCVenterInstitute/NSForest). Primary motor cortex taxonomies are also publicly 

available (https://github.com/AllenInstitute/MOp_taxonomies_ontology). 

Competing interests statement 

All authors declare no competing financial interests or potential conflicts of interest.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2021.10.10.463703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

Figures 

 

 
Figure 1 - Example of representing the BICCN mini-atlas cell type taxonomy in an ontology. 
Red boxes/lines show how terms in the taxonomy are mapped into an ontology format (visualised by 
the Ontology Access Kit). 
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Figure 2 -  Graph illustrating the BDSO schema. This graph shows the relationship of the BDSO 

classes (Brain Data Standards Ontology nodes, light blue circles) to OWL Individuals (Taxonomy 

nodes, brown circles) representing clusters in the data-driven taxonomy used as input and to the build 

process, to classes in the Cell Ontology (green circles) and from external ontologies (imported terms 

box) representing species (NCBITaxon), brain region (UBERON), morphology (PATO), and markers 
(Ensembl/PRO). NS-Forest marker combinations are represented through sets, with individual 

markers being part_of them. The right side of the figure shows links to potentially homologous cell 

type classes (Cross-species box) using the relation (OWL objectProperty) ‘in historical homology 

relationship with’ and cross-region terms (Cross-region box).  
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Figure 3 - Representative schema for data-driven classification. Blue nodes (i1-3) are OWL 

individuals representing clusters of single-cell transcriptomes, while tan nodes (c1, c2) are OWL classes 

representing cell types. Hierarchical clustering is represented using the transitive subcluster_of relation 

(objectProperty) to link individuals. Each class is defined by reference to a cluster individual (i), via the 

relation (objectProperty) as equivalent to (any) cell that has_examplar (value) i.  Reasoning via a chain 

of these two properties (bottom and right sides of the diagram above) is sufficient to infer that c3 
has_examplar value i1 and so, combined with the assertion that it is a (type of) cell, fulfils the conditions 

required to be a subclass of i1.  
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Figure 4 - Example of an automatically generated class displayed in the Protege ontology 
browser. In this example, we show L5 Extratelencephalic (ET), which is a grouping class. The label, 

definition, and set of synonyms are auto-generated from OWL templates using a Dead Simple OWL 

Design Patterns (DOSDP) system. Automatic axiomatisation includes brain region, species, NS-Forest 

markers, projection pattern, morphology, named markers, and has_exemplar_data link to taxonomy 

node (cluster), using a reification pattern. This results in the reasoner classifying this class under L5 

extratelencephalic projecting glutamatergic cortical neuron (based on automated axiomatisation of brain 
region and projection pattern), and primary motor cortex pyramidal cell (based on automated 

axiomatisation of morphology and brain region). has_characterzing_marker_set schema for NS-Forest 

is also shown.  
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Figure 5 - Screenshots of the alpha version of the Cell Type Knowledge Explorer web app, 
incorporating search and navigation functionality driven by the BDSO. (A) An overview of the 

web app with the ontology incorporated into it. Red arrows show zoomed in version and directional 

links. (B) An example of autocomplete search, which also allows search by synonyms. (C) Information 

about the cell type incorporates ontology identifiers, ontology symbols, and ontology names. (D) A list 
of synonyms generated by ontology annotations and extra curated synonyms. (E) A list of NS-Forest 

markers with links out to their identifiers.org pages. (F) Semantic tags of the cell type corresponding to 
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species, brain region, and cell properties such as morphology (pyramidal) and projection pattern 

(extratelencephalic).  Clicking on one of these panels drives faceted search through the search bar 

seen in (G).  
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Figure 6 - Example of a cell type name that is derived from the names of the mouse cell types. 
The Marmoset (Callithrix jacchus) cell type taxonomy is aligned to the mouse cell type taxonomy, 

resulting in a “sncg grouping” that contains cell types that do not necessarily express Sncg. To make 

this clear, the class was renamed (Mouse Sncg)-like.  
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