

1 Complete pan-plastome sequences enable high

2 resolution phylogenetic classification of sugar

3 beet and closely related crop wild relatives

4 Katharina Sielemann^{1,2}, Boas Pucker^{1,3,4}, Nicola Schmidt⁵, Prisca Viehöver¹, Bernd
5 Weisshaar¹, Tony Heitkam^{5*}, Daniela Holtgräwe^{1*}

6 ¹Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of
7 Biology, Bielefeld University, 33615 Bielefeld, Germany

8 ²Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld
9 University, 33615 Bielefeld, Germany

10 ³Evolution and Diversity, Department of Plant Sciences, University of Cambridge,
11 Cambridge CB2 3EA, United Kingdom

12 ⁴Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany

13 ⁵Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069 Dresden,
14 Germany

15 *** Correspondence (These authors share senior authorship.):**

16 Tony Heitkam, Daniela Holtgräwe
17 tony.heitkam@tu-dresden.de, dholtgra@cebitec.uni-bielefeld.de

18

19 **Keywords:** sugar beet, *Beta vulgaris*, *Beta*, *Corollinae*, *Patellifolia*, chloroplast,
20 plastome assembly, phylogeny, phylogenomics

21 **Short title:** Pan-plastome of cultivated and wild beets

22

23

24

25

26 **Abstract**

27 **Background**

28 As the major source of sugar in moderate climates, sugar-producing beets (*Beta vulgaris*
29 subsp. *vulgaris*) have a high economic value. However, the low genetic diversity within
30 cultivated beets requires introduction of new traits, for example to increase their tolerance
31 and resistance attributes – traits that often reside in the crop wild relatives. For this, genetic
32 information of wild beet relatives and their phylogenetic placements to each other are
33 crucial. To answer this need, we sequenced and assembled the complete plastome
34 sequences from a broad species spectrum across the beet genera *Beta* and *Patellifolia*,
35 both embedded in the Betoideae (order Caryophyllales). This pan-plastome dataset was
36 then used to determine the wild beet phylogeny in high-resolution.

37 **Results**

38 We sequenced the plastomes of 18 closely related accessions representing 11 species of
39 the Betoideae subfamily and provided high-quality plastome assemblies which represent an
40 important resource for further studies of beet wild relatives and the diverse plant order
41 Caryophyllales. Their assembly sizes range from 149,723 bp (*Beta vulgaris* subsp. *vulgaris*)
42 to 152,816 bp (*Beta nana*), with most variability in the intergenic sequences. Combining
43 plastome-derived phylogenies with read-based treatments based on mitochondrial
44 information, we were able to suggest a unified and highly confident phylogenetic placement
45 of the investigated Betoideae species.

46 Our results show that the genus *Beta* can be divided into the two clearly separated sections
47 *Beta* and *Corollinae*. Our analysis confirms the affiliation of *B. nana* with the other
48 *Corollinae* species, and we argue against a separate placement in the *Nanae* section.
49 Within the *Patellifolia* genus, the two diploid species *Patellifolia procumbens* and *Patellifolia*
50 *webbiana* are, regarding the plastome sequences, genetically more similar to each other
51 than to the tetraploid *Patellifolia patellaris*. Nevertheless, all three *Patellifolia* species are
52 clearly separated.

53 **Conclusion**

54 In conclusion, our wild beet plastome assemblies represent a new resource to understand
55 the molecular base of the beet germplasm. Despite large differences on the phenotypic

56 level, our pan-plastome dataset is highly conserved. For the first time in beets, our whole
57 plastome sequences overcome the low sequence variation in individual genes and provide
58 the molecular backbone for highly resolved beet phylogenomics. Hence, our plastome
59 sequencing strategy can also guide genomic approaches to unravel other closely related
60 taxa.

61

62 **Background**

63 As the crop plant *Beta vulgaris* (sugar beet) has a high economic value (1), continuous crop
64 development is essential to enhance stress tolerances and resistances against pathogens.
65 The White Silesian Beet provided the germplasm for sugar beet (2) and is a derivative of
66 wild sea beet (*B. vulgaris* subsp. *maritima*). This leaves, similar to the situation in many
67 domesticated crops, only a narrow genetic base for sugar beet breeding (3). Additionally,
68 early sugar beet breeding has focused mainly on increasing yield. This caused strong
69 domestication bottle necks and removed many useful traits that may benefit plant fitness
70 (3,4). The higher genetic variation in crop wild relatives of sugar beet offers potential that
71 might be harnessed to introduce desired traits. Thus, giving insight into the genomic basis
72 of wild beets is progressively moving into the focus of beet breeding research (5,6).

73 Phylogenetically, wild beets belong to the Betoideae (order Caryophyllales) and are
74 separated in the genera *Beta* and *Patellifolia* (7,8), with all cultivated beets belonging to the
75 genus *Beta* (9). The genus *Beta* is then further subdivided into at least two sections, *Beta*
76 and *Corollinae*. In general, the section *Beta* is widespread across Western Europe, whereas
77 *Corollinae* species are generally distributed across the eastern Mediterranean area and
78 South-West Asia (1,8) (Additional file S1A). Despite the long history of different systematic
79 treatments (1,7–12), the phylogenetic relationships of *Beta* and *Patellifolia* species are still a
80 matter of ongoing debate (as reviewed in (7)). Especially the subdivision of the genus *Beta*
81 into three sections (*Beta*, *Corollinae*, and *Nanae*) is discussed, with the pending suggestion
82 to integrate *B. nana* into the section *Corollinae*, hence disbanding the section *Nanae*
83 (7,8,13). Similarly, as the *Beta* section *Corollinae* harbors a highly variable polyploid/hybrid
84 complex, including di-, tri-, tetra-, penta-, and hexaploid forms, the species boundaries are
85 far from resolved. Regarding the sister genus, there is still an ongoing discussion on
86 whether the morphologically variable *Patellifolia* comprise three distinct species (*P.*

87 *patellaris*, *P. procumbens*, and *P. webbiana*) or only two or even one (8,10,12). Resolving
88 the unclear wild beet relationships may inform beet improvement programs and contribute
89 to the development of new, better equipped beets.

90 The plastome is well-suited for the reconstruction of phylogenies due to high structural
91 conservation, a conserved evolutionary rate, uniparental inheritance, and high abundance
92 of DNA across all species (14,15). Historically, systematic information was obtained from
93 plastome sequence restriction site variants, inversions, single nucleotide variants (SNVs), or
94 spacers in single genes. Although this has led to a range of wild beet phylogenies resolving
95 relationships on the level of genera and sections, these are often based on only a few
96 species and contain collapsed branches due to low genetic variation. In contrast, the
97 investigation of whole plastome sequences may enhance the resolution of phylogenetic
98 relationships (14,16–18). As gene sequences and intergenic regions can be included and
99 combined, whole plastome sequence analyses enable the detection of well-supported
100 phylogenetic relations on the species- and even on the accession level. Thus, plastid
101 genomics may offer a route to clarify many of the pending questions regarding the wild beet
102 phylogeny.

103 The plastome sequence of most angiosperms comprises a total of 79 protein-coding genes,
104 4 rRNA genes, and 30 tRNA genes (19). The quadripartite structure is characteristic for
105 plastome sequences comprising a large (LSC) and a small single-copy region (SSC) as well
106 as two inverted repeats (IRs) (20,21), all contributing to a total length of 120 kb to 210 kb
107 (20). This difference in size can be mainly attributed to the IRs that range from 6 kb to 76 kb
108 in length (21–23). The relative orientation of the SSC between the IRs differentiates two
109 structural variants which occur simultaneously in a single cell and might have been
110 previously mistakenly annotated as differences between species (24).

111 The Caryophyllales, including *B. vulgaris*, contain canonical plastomes, harboring all
112 hallmarks typical for angiosperm plastome sequences as described above (25,26). For the
113 wild beet species, until now, no plastome assembly is available, and of our investigated
114 species, only the plastome sequence of *B. vulgaris* subsp. *vulgaris* was published
115 previously (27). A detailed, plastome- and mitogenome-based evolutionary positioning of
116 species outside of the section *Beta* is still missing but needed to answer some of the
117 unresolved issues in beet systematics.

118 Here, we resolve the phylogenetic relationships within the Betoideae at high resolution
119 through genome-wide comparison based on complete plastome assemblies and reads from
120 both, the plastome and the mitogenome. Eleven different *Beta* and *Patellifolia* members,
121 spanning the previously neglected plastome sequences of the *Corollinae* section and the
122 *Patellifolia* genus, are included in our analyses. For this, whole plastome sequences of up to
123 two accessions per species are sequenced, assembled, and compared. This novel
124 contribution to the Betoideae pan-plastome intends to clarify the phylogenetic relationships
125 of wild beets on a species-level and provides an important resource for further studies of
126 beet wild relatives.

127

128 **Results**

129 Our pan-plastome dataset comprises 18 different accessions, including a biological
130 replicate of *B. corolliflora*, which leads to 19 plastome assemblies in total (see Methods,
131 Table 2). To provide a basis for comparative plastome analysis, all plastome sequences
132 were fully assembled. Out of those, 17 were split into three scaffolds (LSC, SSC, and IR),
133 apart from Bmar1 (four scaffolds) and Bnan2 (six scaffolds). Collapsed IR regions were
134 confidently identified in all plastome assemblies based on a doubled average read coverage
135 in comparison to the single copy regions as well as a gene content that is characteristic and
136 expected for the IR region. Average read coverage and assembly length are shown in Table
137 1. The distribution of these values is shown in Additional file S1B. Circular and linear plots
138 of a representative selection of plastome assembly sequences are provided in Additional file
139 S1C.

140 **Table 1: Plastome assembly statistics.** Average read coverage values and assembly
141 lengths (in bp) for each region and the complete assemblies are shown. Abbreviations: LSC
142 = Long single copy region; SSC = Short single copy region; IR = Inverted repeats.

Total coverage	LSC coverage	SSC coverage	IR coverage	Total length	LSC length	SSC length	IR length

396	261	265	662	150,519	83,496	17,845	24,588
±	±	±	±	±	±	±	±
73	81	98	100	892	621	257	307

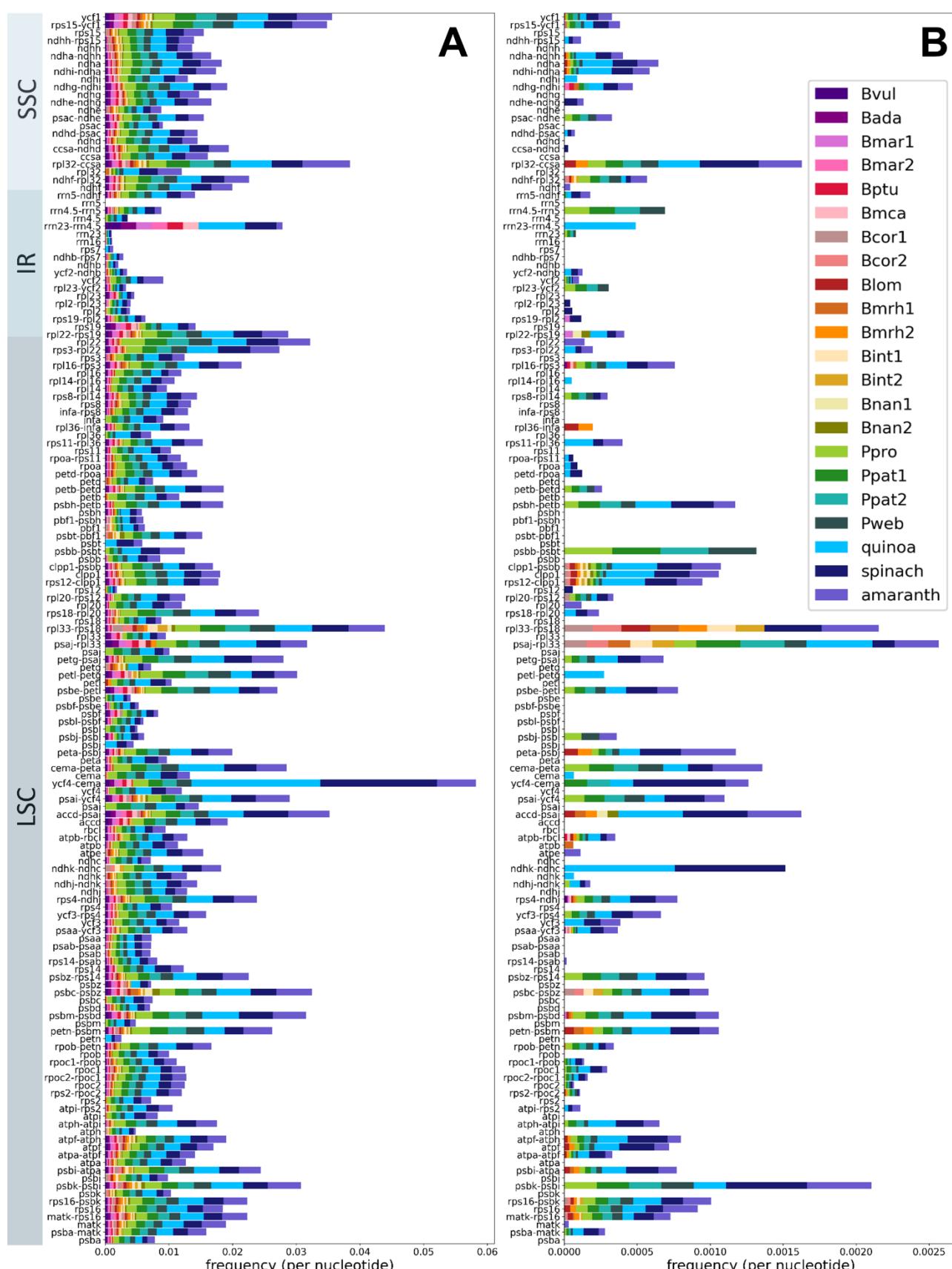
143

144 Comparing the plastome assemblies of all *Beta* vs. *Patellifolia* species, the average length
145 of the four *Patellifolia* plastome sequences (avg. 151,621 bp) is higher than for the 15 *Beta*
146 plastome sequences (avg. 150,225 bp). This length difference can be mainly assigned to
147 the LSC (avg. *Beta* 83,401 bp; avg. *Patellifolia* 83,853 bp) and to the IRs (avg. *Beta* 24,435
148 bp; avg. *Patellifolia* 25,166 bp). However, the SSC is longer in *Beta* plastome sequences
149 (avg. 17,954 bp) when compared to the plastome sequences of all *Patellifolia* accessions
150 (avg. 17,437 bp).

151 Interestingly, plastome assemblies of *B. section Corollinae* (avg. 36.67 %) show a higher
152 GC content when compared to *B. section Beta* plastome sequences (avg. 35.81 %). The
153 total length of *B. section Corollinae* plastome sequences (avg. 150,504 bp from nine
154 species) is higher in comparison to *B. section Beta* plastome assemblies (avg. 149,808 bp
155 from six species). This length difference is visible for all regions of the plastome sequence
156 (LSC, SSC and IRs).

157 The final plastome assemblies were subsequently annotated and the alignment identity of
158 all regions included in the phylogenetic analysis was assessed for gene regions and
159 intergenic regions, respectively (Figure 1). The alignment identity is significantly higher for
160 gene sequences when compared to intergenic regions. This significant difference was
161 obtained when amaranth, quinoa, and spinach were included as outgroups (Additional file
162 S2A) (avg. gene/intergenic regions 90.73/83.55 %; Mann-Whitney-U test; p 2e-10) as well
163 as without outgroup reference sequences (Additional file S2B) (avg. gene/intergenic regions
164 97.26/94.93 %; Mann-Whitney-U test; p ≈ 1e-09). *Rrn* genes show high similarity among all
165 plastome genes, whereas *ycf1* and *rpl22* show the greatest variance between all
166 investigated accessions. The intergenic region between the genes *ycf4* and *cema*
167 contributes most to the differences in the alignment.

168

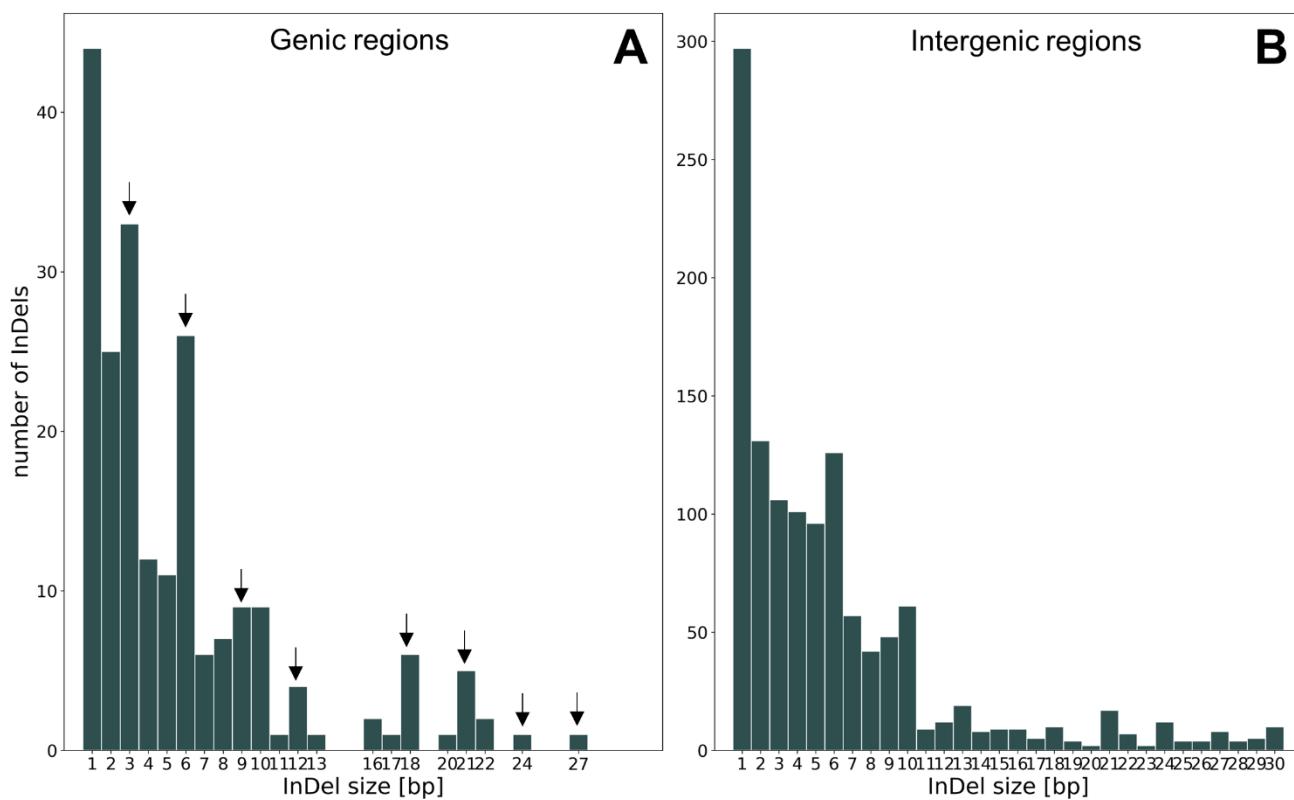

169

170 **Figure 1: Alignment identities of gene sequences (A) and intergenic regions (B).** The
171 sequences (x-axis) are ordered based on the alignment identity represented by the y-axis.
172 The alignment identity including amaranth, quinoa, and spinach as outgroup (light blue) as
173 well as the alignment identity without the reference plastome sequences (dark blue) are
174 shown.

175 The distributions of SNVs (Figure 2A) and InDels (Figure 2B) throughout the plastome
176 sequences were further investigated. InDels are mostly absent from gene regions and
177 SNVs are in general more frequent than InDels. Further, some clear hotspots of SNVs and

178 InDels can be detected in the intergenic regions *psbK-psbI*, *ycf4-cema*, *rpl33-rps18*, *psaI*-
179 *rpl33* and *rpl32-ccsa*.

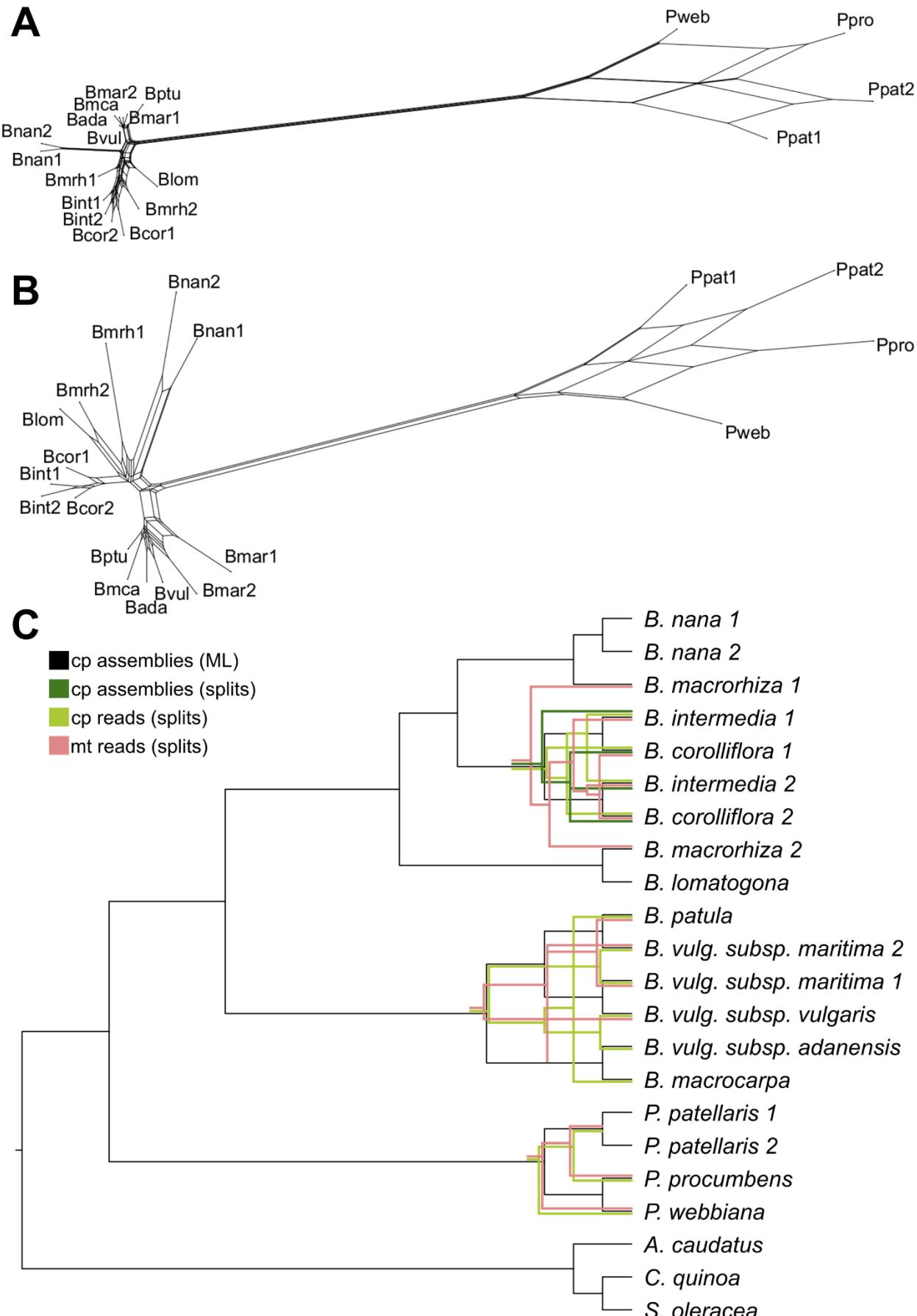
180



181

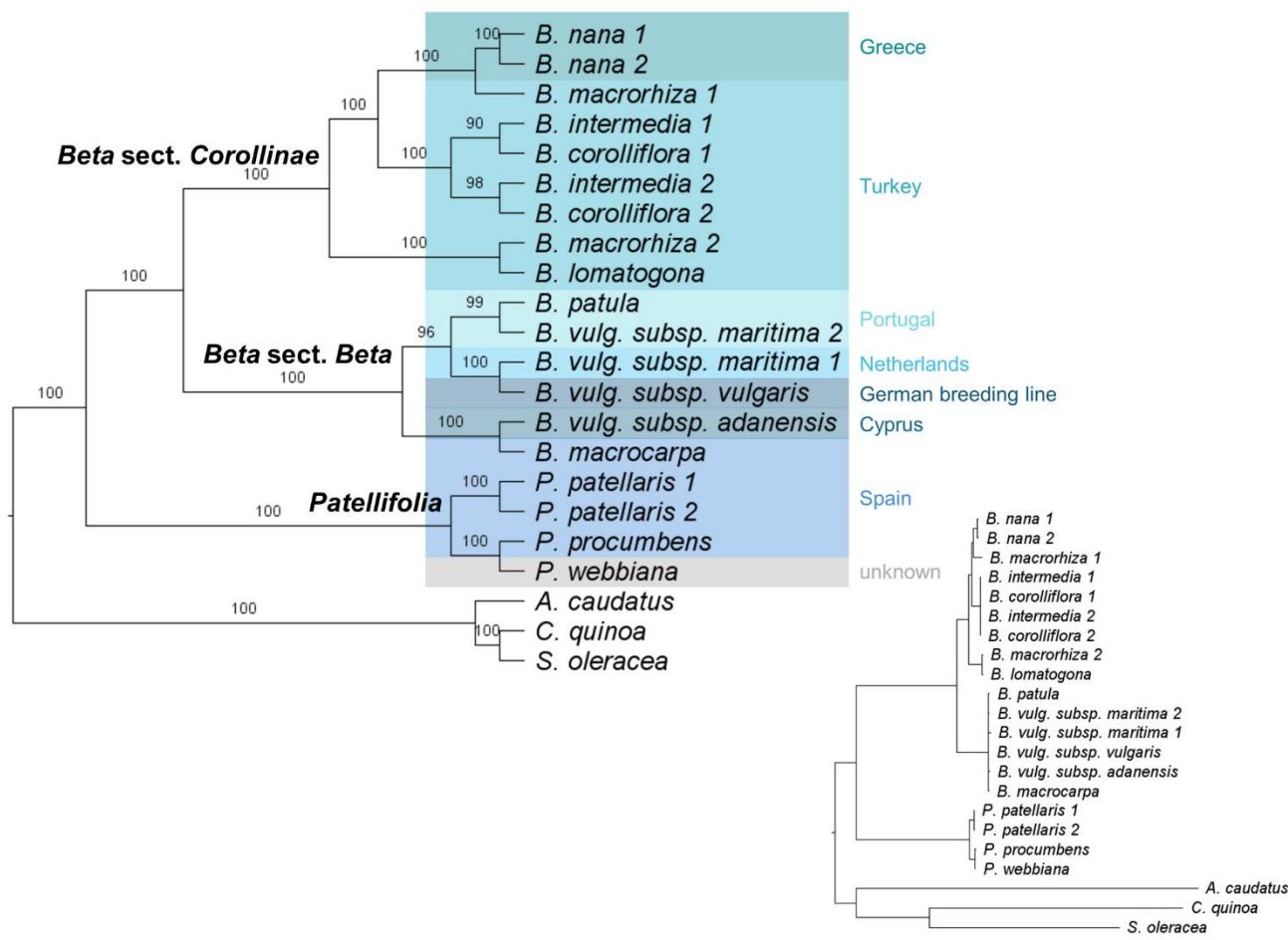
182 **Figure 2: Number of SNVs and InDels in the assembled plastome sequences.** Number
183 of SNVs (A) and number of InDels (B) in the sequence alignments normalised by the length
184 of the respective gene sequence/intergenic region and by the number of
185 species/accessions. The gene names and intergenic regions on the x-axis are ordered
186 based on the arrangement in the plastome assembly. Amaranth, quinoa, and spinach were
187 included as outgroup.

188 As InDels with a length, which is a multiple of three, do not influence the reading frame (28),
189 we expected that the proportion of these InDels (which are multiples of three) is higher in
190 gene regions compared to the proportion in intergenic regions. Indeed, we observed that
191 43.4 % of the InDels in gene regions were a multiple of three, whereas this applies to only
192 29.6 % of the InDels in intergenic regions (Fisher's exact test; $p \approx 3e-8$; Figure 3 [arrows]).


193

194

195 **Figure 3: Number of InDels based on size in gene sequences (A) and intergenic**
196 **regions (B).** The arrows represent InDels with a size of a multiple of three. Please mind the
197 variable y-axis.


198 Phylogenetic relations of the Betoideae subfamily were inferred from colored de Bruijn
199 graph-based splits (Figure 4) as well as by an alignment-based maximum likelihood (ML)
200 analysis (Figure 5). Mitochondrial and plastid read derived kmers were used to calculate
201 phylogenetic splits, and annotated gene sequences as well as intergenic regions derived
202 from the plastome assemblies were used for the ML analysis. A clear separation of
203 *Patellifolia*, *B.* section *Beta* and *B.* section *Corollinae* samples is visible in all four
204 phylogenetic trees. In comparison to the ML tree based on fully assembled plastome
205 sequences (Figure 4C, black), the tree based on splits derived from the same dataset (fully
206 assembled plastome sequences) (Figure 4C, dark green) shows only one difference among
207 the *B. intermedia* and *B. corolliflora* accessions. The phylogenetic relationships derived from
208 kmers show a few additional differences (Figure 4C, light green and pink). These
209 differences comprise for example the assignment of the four *Patellifolia* accessions/species
210 to a clade consisting of both *P. patellaris* accessions and a separate clade formed by *P.*
211 *procumbens* and *P. webbiana* for the assembly-based phylogenies (Figure 4C, black and
212 dark green), whereas the kmer based phylogenies show a separate clade for *P. webbiana*
213 and a second clade comprising the other three *Patellifolia* accessions/species (Figure 4C,
214 light green and pink). The calculation of the weighted F1 score, the weighted symmetric set
215 distance and the Robinsons-Foulds distance shows that there is a high identity between all
216 splitstree results (based on cp_reads, mt_reads and cp_assemblies) (Additional file S1D).
217 The usage of different input data formats (reads vs. assemblies) has a larger impact than
218 the usage of different datasets (chloroplasts vs. mitochondria) meaning that these splitstree
219 results show a higher divergence.

221 **Figure 4: Phylogenetic relationships of 18 different *Beta/Patellifolia* accessions**
222 **derived from different strategies and datasets.** Kmer-based trees were constructed
223 using raw sequencing reads (A: mitochondrial reads, B: chloroplastic reads) as well as the
224 final chloroplast assemblies as input (not shown as only used for comparison). The
225 splitstree results (green and pink) were then compared to the ML analysis (black) (C).
226 Discordance between the phylogenetic trees is shown in the respective color.
227 (Abbreviations: cp=chloroplast; mt=mitochondria).

228 For the ML-based tree (Alignment sites / patterns: 216442 / 2441; Gaps: 0.44 %; Invariant
229 sites: 86.73 %), the phylogenetic relationships on the species level are highly supported
230 (high bootstrap values) (Figure 5). A phylogenetic tree based on the diagnostic set of 53
231 gene sequences and intergenic regions matches this phylogeny (Additional file S1E).

232

233

234 **Figure 5: Plastome phylogeny for Betoideae.** The tree can be divided into three groups:
235 *B.* section *Corollinae* (8 accessions), *B.* section *Beta* (6 accessions), and *Patellifolia* (3
236 accessions). The plastome sequences of three Caryophyllales species (amaranth, quinoa,
237 and spinach) were used as outgroup. Bootstrap support values are shown above each
238 branch. The resulting phylogeny is based on the variation in 83 genes and 76 intergenic
239 regions from the plastid genomes of 18 accessions and species (plus outgroup). Different
240 background colors represent the sampling location and the origin of the breeding line (Bvul),
241 respectively. Inset: Actual branch lengths based on the ML analysis.

242 To investigate the contribution of different regions to the phylogeny, in addition to the whole
243 plastome sequences (genic and intergenic regions combined), sequence matrices for (I) all
244 gene regions, (II) all intergenic regions, (III) whole coding sequences, (IV) first and second
245 codon position and (V) third codon position only were constructed and used for the
246 inference of phylogenetic relationships. Even though the topology of the phylogeny derived
247 from whole coding sequences is highly similar (Additional file S1F), especially for the codon
248 position-based matrices, alternative branches can be observed. However, substantially
249 more nodes are only poorly supported with bootstrap values up to below 20.

250 The alignment of the 18s rRNA gene sequence for *B. corolliflora* (Bcor1) as representative
251 for the *Corollinae* and *B. vulgaris* subs. *vulgaris* as member of the section *Beta* revealed not
252 a single genomic difference and therefore no signal which could be used to resolve their
253 phylogenetic relations.

254 The results presented here show that especially for closely related species of the same
255 subfamily, a higher number of gene sequences and more variable intergenic regions
256 provides greater phylogenetic resolution.

257

258 **Discussion**

259 **Our proposed beet whole-plastome phylogeny is superior to single gene phylogenies**

260 Here, we present the plastome sequence assemblies of 18 accessions covering most of the
261 species' diversity within the beet genera *Beta* and *Patellifolia* and representing an important
262 resource for future studies. All newly generated plastome sequences are highly similar
263 including 79 protein coding genes and four rRNA genes distributed across a mean length of

264 150,519 bp (\pm 892bp). A previously published *B. vulgaris* subsp. *vulgaris* (KR230391)
265 plastome sequence comprises a length of 149,722 bp (27). This is almost identical to our
266 Bvul assembly which differs by only 1 bp in length (149,723 bp). This difference occurs in a
267 stretch of five or six guanines in the IR region between the genes *rrn23* and *rrn16* – either a
268 sequencing error or a biological difference. As expected, all Betoideae assemblies show
269 high similarity as all angiosperm plastomes are highly conserved and the species
270 investigated here are closely related, while most differences are located in intergenic
271 regions.

272 Between the cultivated beet and wild beet accessions, most chloroplast genes are highly
273 conserved, one example being *rpl2* with only a low number of polymorphisms (Figure 1)
274 (22). The intergenic regions are significantly less conserved containing more InDels and are
275 therefore more suitable for phylogenies on a lower taxonomic level (22). Among the beet
276 plastomes, *ycf1* is the most informative genic region (Figure 1A), which was also detected in
277 other plant groups, such as the Tropaeolaceae, the orchids, and the Malvales (29–31).
278 Additionally, the *rpl22*, *mathk*, *clpP1*, *ycf2*, *psaC* and *ndhF* genes were reported to be highly
279 divergent (29,31,32), which is mainly consistent with our findings. Here, the *rrn*-genes, *ndhB*
280 (already classified as gene with low divergence (29,31)), *rps12* and *rps7* can be found
281 among the gene loci with lower variance among the investigated species.

282 Plastomes in general show very similar sequences with most differences occurring in non-
283 coding regions (33). For beet and wild beets, the most informative intergenic regions are
284 *ycf4-cema*, *accd-psai* and *rpl32-ccsa* (Figure 1B). However, for *ycf4-cema* the high
285 difference between ‘reference’ and ‘without reference plastome-’ alignment identity should
286 be noticed. For the Malvales, the regions *psaB-psaA*, *psbF-psbE*, *rpl2-rpl23* and *ndhH-ndhA*
287 were identified as lowly divergent regions (31). We confirmed these for beets, except for the
288 latter (*ndhH-ndhA*) that showed higher divergence among the wild beet plastomes. In
289 contrast, the intergenic regions with the highest divergence in the Malvales (*ndhD-ccsA* and
290 *rps19-rpl2*) (31) accounted for less differences among the wild beets. Nevertheless, the
291 percent identity values among all intergenic regions are relatively similar in beets, especially
292 when excluding the polymorphisms in the outgroup reference genomes.

293 As high variability among the investigated sequences is required to resolve phylogenetic
294 relations of closely related species (34), the retrieved plastome sequences from beets and

295 wild beets provide an excellent resource to approach systematic treatment of the Betoideae.
296 To further increase sequence variability, we also integrated the more diverged intergenic
297 regions into the analysis.

298 In addition to the plastome-inferred ML-based phylogeny, a mitogenome- and plastome-
299 inferred read-based phylogenetic tree was constructed based on phylogenetic splits. The
300 resulting trees can be considered reliable due to three distinct, robust properties: (I) all splits
301 networks show a tree-like appearance (Figure 4A, 4B), (II) the usage of different kmers
302 leads to the same tree and (III) the usage of the geometric mean leads to the removal of
303 samples in case no kmer occurs in the sample and both, geom and geom2 lead to the same
304 results (with the exception of k=11, which results in a cloud-shaped network).

305 Differences between the phylogenetic trees derived from different strategies and datasets
306 (Figure 4C) may be explained by chance and/or by the use of the method (all splitstree
307 results show high identities as indicated by all comparison metrics (Additional file S1D)
308 while differences are larger when using different strategies [reads vs assemblies] in
309 comparison to different datasets [chloroplasts vs. mitochondria]) or by real differences in the
310 biological nature of mitochondria and chloroplasts. Mitochondrial DNA shows a low
311 nucleotide substitution rate when compared to chloroplast DNA (25,35). Reasons for this
312 may be recent species hybridization or incomplete lineage sorting (36,37). Therefore, the
313 mitogenome seems to be mostly useful at higher taxonomic levels (25) and might not be the
314 most suitable system for the beet and wild beet accessions investigated in this study. In
315 summary, the trees based on plastome assemblies (ML and splits) are likely the most
316 reliable as the same phylogenetic relations are the outcome of different established
317 strategies including the widely used ML method.

318 Compared to our pan-plastome assembly, the information derived from individual genic and
319 intergenic regions are insufficient to fully resolve the beet phylogeny, highlighting the power
320 of our plastome approach:

321 I) Investigation of specific regions of the plastome sequence (genic and intergenic regions,
322 coding sequences, codon positions) revealed a few alternative branches for the codon
323 position-based sequence matrix (Additional file S1F). These are marked by short internal
324 branch lengths due to the close relationships of the species within this subfamily.
325 Nevertheless, these conflicting relationships are only weakly supported. This is explained by

326 the lower genetic diversity and therefore insufficient phylogenetic signal when using a
327 smaller amount of sequences and total sequence length.

328 II) An approach based on high-quality single-copy nuclear genes would require a minimum
329 coverage of about 10x (25). Moreover, nuclear genes are often part of gene families and
330 influenced by whole genome duplication events (14). Using our available data, nrDNA
331 sequences were selected for the phylogenetic reconstruction. Especially the ITS and ETS
332 regions were previously used for the investigation of phylogenetic relationships, but entire
333 nrDNA repeats (18S-ITS1-5.8S-ITS2-26/28S) were also already assembled for multiple
334 phylogenetic studies (15,38). Unfortunately, the assembled nrDNA sequences constructed
335 here are not useful to infer confident phylogenetic relationships as the coverage is very low
336 (1.9x - 8.5x) and intragenomic polymorphisms of different nrDNA repeat sequences might
337 limit the reliability of the phylogeny (15). The low bootstrap values and the low coverage
338 make this phylogenetic tree unreliable. Therefore, we do not show these results here.
339 Another possible explanation, apart from the low coverages, is that the biparental nature of
340 the nuclear genome may be problematic for the inference of phylogenetic relationships (14).
341 Previous studies already suggest that phylogenies based on nrDNA and few selected
342 plastid sequences only weakly support relationships (30). The 18s rRNA gene sequences of
343 representatives of the sections *Corollinae* and *Beta* are completely identical containing no
344 phylogenetic signal to separate them.

345 Summarizing, our plastome-derived phylogeny benefits from the incorporation of genic and
346 intergenic regions as well as the 'nature' of the plastome itself (as described in the
347 Background section). Despite the low available read coverage and the low genetic diversity
348 within our beet dataset, this leads to a highly confident phylogenetic tree. Further, the use of
349 higher alignment lengths and the use of nucleotides instead of amino acids are favored to
350 construct well supported phylogenies (39). Therefore, we conclude that for resolving the
351 relationships of cultivated and wild beets, our whole-plastome-based approach is the most
352 reliable.

353 **Implications for the systematic placements within the Betoideae subfamily**

354 With efforts tracing back half a century, resolving the phylogeny of the subfamily Betoideae
355 has been already a major undertaking (1,8–11,40). However, in most cases only few

356 selected sequence regions were targeted, leading to unresolved relations at shallower
357 taxonomic levels or with focus on specific species or sections, i.e.:

358 I) In a study by Hohmann et al. (2006), the *Beta* species *B. vulgaris*, *B. corolliflora*, *B. nana*
359 and *B. trigyna* were investigated using ITS, *trnL-trnF* spacer and *ndhF* sequences (10).
360 Kadereit et al. (2006) provide a comprehensive analysis of a high number of different
361 Betoideae species, finding that, *B.* section *Beta* was clearly separated from *B.* section
362 *Corollinae*, which contained *B. nana*, *B. trigyna*, *B. macrorhiza*, *B. corolliflora* and *B.*
363 *lomatogona*. As the analysis was based on ITS sequences comprising only 251 characters
364 of which 147 were invariable, relations between species in both sections could not be
365 resolved (8). Our study confirms the deep separation of the sections *Beta* and *Corollinae*
366 and refines the resolution on the species level.

367 II) A recent comprehensive study by Romeiras et al. (2016) of phylogenetic relationships in
368 the Betoideae is based on ITS and *matK*, *trnH-psbA*, *trnL* intron and *rbcL* sequences and
369 investigates a high number of different species leading to the following main result: *Beta*
370 and *Patellifolia* species are two clearly separated monophyletic groups (1). In total, three
371 monophyletic lineages were identified: *B.* section *Beta* (*B. vulgaris* subsp. *vulgaris*, *B.*
372 *vulgaris* subsp. *maritima*, *B. macrocarpa*, *B. patula*), *B.* section *Corollinae* (*B. nana*, *B.*
373 *corolliflora*, *B. trigyna*) and *Patellifolia* (*P. patellifolia*, *P. procumbens* and *P. webbiana*).
374 Exact relations within the Betoideae on a lower taxonomic level remain unclear as the
375 branches are not well supported and collapsed. We also identify the three monophyletic
376 groups as proposed and manage to resolve many of the previously collapsed branches.

377 III) Recently, Touzet et al. (2018) investigated the relationship of a wide range of *B. vulgaris*
378 subsp. *maritima*, *B. macrocarpa* and *B. vulgaris* subsp. *adanensis* accessions based on a
379 3,742 bp alignment of plastome sequences and a 1,715 bp alignment of selected nuclear
380 sequences (11). They find, based on a representative geographical sampling, that *B.*
381 *macrocarpa* is a distinct lineage from the two investigated *B. vulgaris* subspecies. Despite
382 this interesting finding, the suggested phylogeny did not focus on other important species
383 and accessions of the Betoideae subfamily and might be further improved by the analysis of
384 sequences with higher diversity to reach higher bootstrap values, which we achieved using
385 intergenic and genic regions of the whole plastome sequences.

386 With our pan-plastome-informed datasets, we have been able to confirm many of the
387 observations before and added an unprecedented resolution at the species-level. More in
388 detail, we conclude that:

389 I) Among the section *Beta*, the plastome sequences of *B. patula*, *B. vulgaris* subsp. *vulgaris*
390 and *B. vulgaris* subsp. *maritima* are highly similar as indicated by the slightly lower
391 bootstrap values (96/100) for these three beets. As this section harbors wild beets in
392 relatively close geographical proximity across the coastal Mediterranean area, the detected
393 similarity can be explained by (natural) crossing and gene flow due to close geographical
394 proximity or accidental cross-pollination during cultivation as wild beet and cultivated beet
395 groups are easily cross-compatible (3). Further, *B. vulgaris* subsp. *vulgaris* and some *B.*
396 subsp. *maritima* accessions are even phenotypically highly similar (41). The
397 phylogenetic relationships among species can also be influenced by the geographical
398 distribution, mating systems and polyploidization (11). Allogamy and self-incompatibility are
399 characteristics of *B. vulgaris* subsp. *maritima*, whereas *B. macrocarpa* and *B. vulgaris*
400 subsp. *adanensis* are self-compatible leading to lower divergence and higher homozygosity.
401 Cross-compatibility can lead to hybridization by facilitating gene flow between individual
402 species (40), especially between *B. patula* and *B. vulgaris* subsp. *maritima*, which may
403 explain the lower bootstrap support and the more unclear relations in the phylogenetic tree
404 presented here. Although previous studies found low divergence between *B. vulgaris*
405 subspecies (11), *B. vulgaris* subsp. *adanensis* seems to be clearly separated from the other
406 subspecies in our analysis, possibly explained by the geographical distance to the other
407 investigated samples.

408 II) We confidently assigned specific species, including *B. nana*, to the section *Corollinae*: *B.*
409 *corolliflora*, *B. intermedia*, *B. macrorhiza*, *B. lomatogona* and *B. nana* cluster together and
410 form this section (also suggested by (8)). Here, we particularly focused on the *B.* section
411 *Corollinae* by analysing the plastome sequences of eight accessions from five different
412 species plus a biological replicate of the eponymous species *B. corolliflora*. *B. nana*, which
413 is endemic to Greece (1,8,42), was previously considered a separate *B.* section *Nanae*. Our
414 results, however, combined with multiple other studies, clearly show that *B. nana* falls within
415 the *B.* section *Corollinae*, which is distinct from *B.* section *Beta* (8,10,13). In addition to our
416 plastome-based phylogenetic analysis, further genomic evidence points to high genomic
417 similarities between *B. nana* and other *Corollinae*: For example, these species are marked

418 by similar repeat accumulation profiles as shown for many individual transposable element
419 types (43–46). Regarding plant characteristics, frost tolerance and seed hardness are
420 useful traits in the section *Corollinae*, including *B. nana*, but do not occur in any species of
421 the section *Beta* (47). Thus, frost tolerance is specific to the *Corollinae* when compared to
422 the *Beta* and *Patellifolia* species. These points lead to the classification of *B. nana* as a
423 member of the *Corollinae*. Considering the highly variable polyploid/hybrid status complexes
424 within the *Corollinae*, our plant set encompassed three diploids (*B. macrorhiza*, *B.*
425 *lomatogona*, and *B. nana*), a tetraploid (*B. corolliflora*), as well as a pentaploid (*B.*
426 *intermedia*). Although the hybrid status and parental contributions of the polyploids remain
427 unresolved (1,40), we present convincing evidence that *B. intermedia* and *B. corolliflora* are
428 closely related. Thus, our plastome sequence analysis brings new evidence supporting the
429 hypothesis that *B. corolliflora* and *B. intermedia* belong to a highly variable polyploid hybrid
430 complex (summarised by (7); Figure 5). The investigation of the whole genome sequences
431 of these polyploid species may help to resolve these parental contributions.

432 III) Among the *Patellifolia* members, *P. procumbens* and *P. webbiana* can be
433 phylogenetically distinguished: *Patellifolia* was previously classified as *B.* section
434 *Procumbentes* and there is still an ongoing taxonomic debate whether *P. patellaris*, *P.*
435 *procumbens* and *P. webbiana* can be considered as separate species. However, due to
436 molecular and morphological traits, *Patellifolia* are now mostly considered a separate genus
437 which is divided into three distinct species (8,10,12). The relationships among the
438 *Patellifolia* species could not be resolved in previous studies (1). In the phylogenetic tree
439 presented here, *P. procumbens* and *P. webbiana* seem to be closely related (however still
440 distinguished with high support) and clearly separated from the two *P. patellaris* accessions.
441 The branch lengths distinguishing *B. patula* and the *B. vulgaris* subsp. *vulgaris/maritima*,
442 which are both considered separate species, are highly similar (0.0001). The same branch
443 length separates *P. procumbens* and *P. webbiana*. Therefore, our phylogenetic analysis
444 indicates that the three *Patellifolia* species are distinguishable on a molecular level.

445 Comparing the results presented here with earlier studies, the previous investigation of
446 Betoideae was substantially extended and refined. The phylogenetic relationships were
447 resolved in more detail and not only based on the monophyletic groups. This is especially
448 important for the species of the *B.* section *Corollinae* which were investigated in depth.
449 Using the whole plastome sequences, including intergenic regions, it was possible to further

450 resolve the phylogenetic relationships with higher bootstrap support due to the extraction of
451 higher sequence variance and phylogenetic signal within the subfamily.

452

453 **Conclusions**

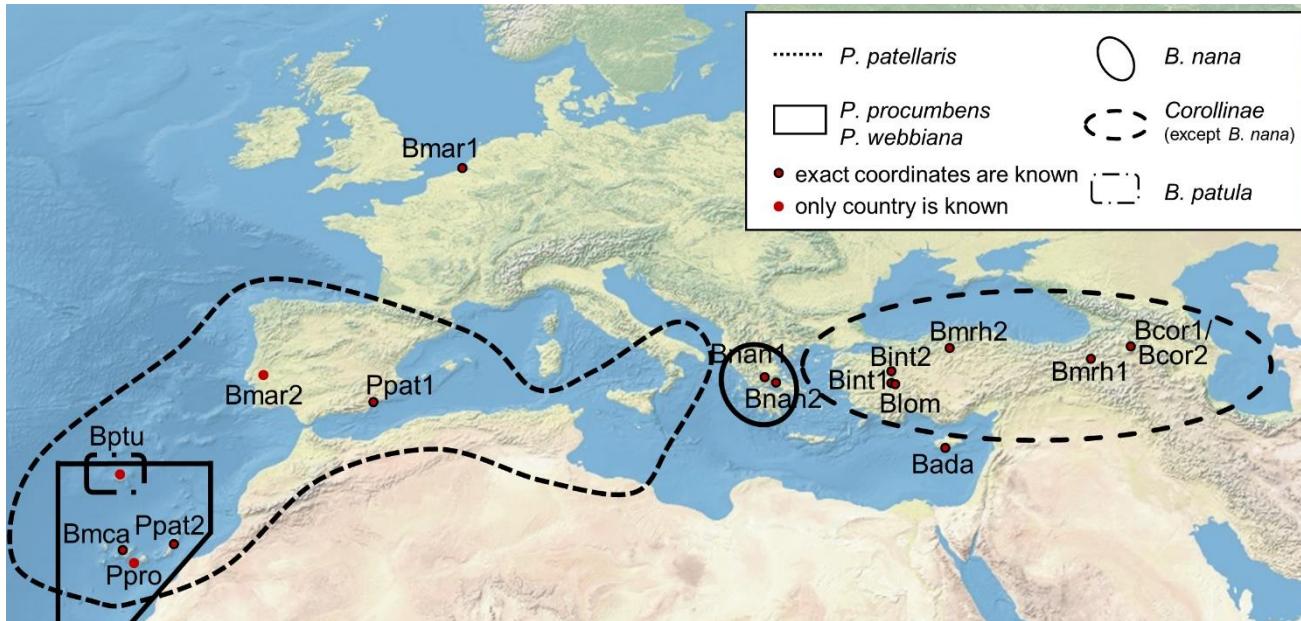
454 We provide 19 plastome assemblies for 18 different beet and wild beet accessions, which
455 can also be re-used for future investigations of beets and other Caryophyllales species, and
456 harnessed these to revisit systematic issues within the genera *Beta* and *Patellifolia*. This
457 analysis advanced our understanding of the phylogenetic relationships of the subfamily
458 Betoideae in four ways: I) Analysing sequences of intergenic regions of the whole plastome
459 assemblies made it possible to reveal the phylogeny of closely related species with high
460 reliability. Our phylogenetic tree shows a clear separation of the wild beet genera *Beta* and
461 *Patellifolia*, as well as of the two sections *Beta* and *Corollinae*. II) *B. vulgaris* subsp.
462 *adanensis* and *B. macrocarpa* can be clearly distinguished from *B. vulgaris* subsp. *vulgaris*,
463 *B. vulgaris* subsp. *maritima* and *B. patula*. A clear split of *B. patula* from the two *B. vulgaris*
464 subsp. (*B. vulgaris* subsp. *vulgaris* and *B. vulgaris* subsp. *maritima*) was not observed, likely
465 due to the high sequence identity possibly explained by the close geographical proximity
466 and the fact that these species are easily cross-compatible. III) All three *Patellifolia* species
467 are clearly separated in our phylogenetic analysis, while *P. procumbens* and *P. webbiana*
468 are more closely related to each other than to *P. patellaris*. These results, including the
469 investigation of the branch lengths, point to a molecular separation within the *Patellifolia*
470 species. IV) Finally, the taxonomic classification of *B. nana* as a member of the *Corollinae*
471 was further supported.

472

473 **Methods**

474 **Plant material, genomic DNA extraction, and DNA sequencing**

475 Seeds of Betoideae species were obtained from KWS Saat SE, Einbeck, Germany (*B.*
476 *vulgaris* subsp. *vulgaris* genotype KWS 2320) and from the Leibniz Institute of Plant
477 Genetics and Crop Plant Research Gatersleben (IPK), Germany (all other accessions with
478 accession numbers listed in Table 2 and Additional file 2). The material of the KWS Saat


479 SE, Einbeck and IPK Gatersleben was transferred under the regulations of the standard
480 material transfer agreement (SMTA) of the International Treaty.

481 Apart from *B. vulgaris* subsp. *vulgaris*, 17 other *Beta* and *Patellifolia* accessions shown in
482 Figure 6 were analysed. The exact sampling location of the investigated accessions was
483 extracted from the GBIS/I (Genebank information system; IPK) (48) (Figure 6).

484 **Table 2: Abbreviation, species name, accession number, genus, and section of the**
485 **investigated accessions of the Betoideae subfamily.**

Abbreviation	Species name	Accession number	Genus	Section
Bmar1	<i>Beta vulgaris</i> subsp. <i>maritima</i>	BETA 1101	<i>Beta</i>	<i>Beta</i>
Bada	<i>Beta vulgaris</i> subsp. <i>adanensis</i>	BETA 1233	<i>Beta</i>	<i>Beta</i>
Bmar2	<i>Beta vulgaris</i> subsp. <i>maritima</i>	BETA 2322	<i>Beta</i>	<i>Beta</i>
Bvul	<i>Beta vulgaris</i> subsp. <i>vulgaris</i>	KWS 2320	<i>Beta</i>	<i>Beta</i>
Bptu	<i>Beta patula</i>	BETA 548	<i>Beta</i>	<i>Beta</i>
Bmca	<i>Beta macrocarpa</i>	BETA 881	<i>Beta</i>	<i>Beta</i>
Bnan1	<i>Beta nana</i>	BETA 546	<i>Beta</i>	<i>Corollinae</i> , formerly <i>Nanae</i>
Bnan2	<i>Beta nana</i>	BETA 570	<i>Beta</i>	<i>Corollinae</i> , formerly <i>Nanae</i>
Bint1	<i>Beta intermedia</i>	BETA 431	<i>Beta</i>	<i>Corollinae</i>
Bint2	<i>Beta intermedia</i>	BETA 923	<i>Beta</i>	<i>Corollinae</i>
Bcor1	<i>Beta corolliflora</i>	BETA 408	<i>Beta</i>	<i>Corollinae</i>
Bcor2	<i>Beta corolliflora</i>	BETA 408	<i>Beta</i>	<i>Corollinae</i>
Bmrh1	<i>Beta macrorhiza</i>	BETA 830	<i>Beta</i>	<i>Corollinae</i>
Bmrh2	<i>Beta macrorhiza</i>	BETA 576	<i>Beta</i>	<i>Corollinae</i>
Blom	<i>Beta lomatogona</i>	BETA 674	<i>Beta</i>	<i>Corollinae</i>
Pweb	<i>Patellifolia webbiana</i>	BETA 526	<i>Patellifolia</i>	-
Ppro	<i>Patellifolia procumbens</i>	BETA 951	<i>Patellifolia</i>	-
Ppat1	<i>Patellifolia patellaris</i>	BETA 534	<i>Patellifolia</i>	-
Ppat2	<i>Patellifolia patellaris</i>	BETA 892	<i>Patellifolia</i>	-

487

489 **Figure 6:** Geographic distribution of the *Beta* and *Patellifolia* species. The exact sampling
490 locations of the investigated species are shown. The black lines represent the distribution
491 area of the respective species and sections (see legend). The distribution areas of *B.*
492 *vulgaris* subsp. *maritima*, *B. vulgaris* subsp. *adanensis*, and *B. macrocarpa* are not shown
493 as these species occur along the whole coastline of Western Eurasia (1,10,11,49).

494 The plants were grown under long day conditions in a greenhouse and were obtained and
495 grown in accordance with German legislation. Genomic DNA was isolated from young
496 leaves using the NucleoSpin® Plant II protocols from Macherey & Nagel. Each high-quality
497 gDNA (200 ng) was fragmented by sonication using a Bioruptor (Fa. Diagenode) and
498 subsequently used for library preparation with the TruSeq Nano DNA library preparation kit
499 (Fa. Illumina). End repaired fragments were size selected by AmpureXp Beads (Fa.
500 Beckmann-Coulther) to an average size of around 700 bp. After end repair, A-tailing and
501 ligation of barcoded adapters, fragments were enriched by eight cycles of PCR. The final
502 libraries were quantified using PicoGreen (Fa. Quant-iT) on a FLUOstar plate reader (Fa.
503 BMG labtech) and quality checked by HS-Chip on a 2100 Bioanalyzer (Fa. Agilent
504 Technologies). Before sequencing all libraries were pooled depending on the genome size
505 and ploidy of each accession and sequenced 2 x 250 nt on a HiSeq1500 in rapid mode over
506 two lanes using onboard cluster generation. Processing and demultiplexing of raw data was
507 performed by bcl2fastq-v2.19.1 to generate FASTQ files for each accession.

508 **Plastome assemblies and annotation**

509 Trimmomatic (v0.39) (50) was applied to remove adapter sequences
510 (ILLUMINACLIP:adapters.fa:2:30:10:2:keepBothReads) and to ensure high quality of the
511 reads (SLIDINGWINDOW:4:15 MINLEN:50 TOPHRED33). FastQC (v0.11.9) (51) was used
512 for quality checks. The trimmed reads were subjected to GetOrganelle (v1.7.0) (52) to
513 generate plastome assemblies as suggested for Embryophyta plant plastome sequences (-
514 R 15; -F embplant_pt). The SPAdes (53) kmer settings were set to -k 21, 45, 65, 85, or 105.
515 The contig coverage information and other graph characteristics are used by GetOrganelle
516 to construct the final assembly graphs, which were plotted and visually assessed using
517 Bandage (v0.8.1) (54). The assemblies suggested a circular sequence, however, circular
518 plastome molecules might only comprise a small proportion of all molecules in the cell,
519 whereas other plastome molecules may occur in branched or linear configurations (55–57).
520 The assemblies were submitted in the FASTA format, retaining the possibility to reuse the
521 submitted assemblies as circular or linear sequences. The complex assembly graph of
522 Bmar1 was not automatically resolved. Therefore, single contigs of Bmar1 were sorted
523 manually based on the structure of the other assemblies to enable comparative analyses as
524 described in the following section.

525 Structural annotation of all plastome assemblies was performed with GeSeq (v2.01) (58).
526 The BLAT (59) search parameters ‘Annotate plastid trans-spliced rps12’ and ‘Ignore genes
527 annotated as locus tags’ were used together with a ‘Protein search identity’ of 25 and a
528 ‘rRNA, tRNA, DNA search identity’ of 85. For HMMER profile search ‘Embryophyta
529 chloroplast (CDS+rRNA)’ was selected and ‘MPI-MP chloroplast references (Embryophyta
530 CDS + rRNA)’ was chosen as reference. The resulting annotation files in the gff format were
531 directly used for further analyses. To avoid confusion, we want to make aware of the fact
532 that *psbN* and *pbf1* are two different names for the same gene.

533 **Construction of phylogenetic trees**

534 The workflow for the alignment-based phylogenetic analysis is available in Additional file
535 S1G. The position of each gene was extracted from the GFF files obtained through GeSeq.
536 Next, adjacent genes with conserved microsynteny across all investigated samples
537 (including amaranth, quinoa, and spinach as outgroup) were identified and the interleaved

538 intergenic regions of these neighbouring genes were extracted. For overlapping genes, the
539 extraction of an intergenic region was not possible.

540 Using the gene sequences and intergenic regions of all samples, gene/region specific
541 alignments were performed using MAFFT (v7.299b) (60). High accuracy was ensured using
542 the L-INS-I method. To align sequences with different orientations, the parameter '--
543 adjustdirection' was used. The alignments were trimmed using trimAI (v1.4.rev22) (61). The
544 gap threshold was set to '-gt 0.8', whereas the threshold for the minimum average similarity
545 was set to '-st 0.001'. Then, the single alignments were concatenated and the resulting
546 alignment matrix was inspected using SeaView (62). Manual adjustment was not
547 necessary.

548 RAxML-NG (v1.0.0) (63) was used for ML analysis together with bootstrapping (Model:
549 GTR+FC+G8m). The substitution matrix GTR (for DNA) was applied together with the
550 model parameter 'G8' and 'F'. The parsimony-based randomised stepwise addition
551 algorithm was selected for the starting tree (--tree pars{10}). The number of replicate trees
552 for bootstrapping was set to 200. The resulting tree was visualised using FigTree (v1.4.4)
553 (64).

554 Location-based clustering of the clades in the tree was performed manually based on the
555 sampling locations (Additional file S2C).

556 To identify a reduced set of gene sequences and intergenic regions for the construction of a
557 phylogenetic tree distinguishing all accessions, the sequences were iteratively added with
558 increasing alignment identities until all species were separated by informative positions.

559 To investigate the region dependent phylogeny different additional data matrices were
560 constructed for (I) all gene regions, (II) all intergenic regions, (III) complete coding
561 sequences, (IV) first and second codon position and (V) third codon position only.
562 Therefore, coding sequences for all 79 protein coding genes were extracted from the
563 Genbank annotation files of our plastome assemblies. Start and stop codons were removed
564 and extracted sequences were processed as described above for ML analysis.

565 To extract the 18s rRNA gene sequence from *B. corolliflora* (Bcor1) as representative of the
566 Corollinae, SOAPdenovo2 assemblies were generated using the trimmed reads as input.
567 SOAPdenovo2 (v2.04) (65) was tested with different kmer sizes ranging from 67-127 in

568 steps of 10. The resulting assembly with the highest N50 length was used for further
569 investigations. The reference 18s rRNA gene sequence for *B. vulgaris* subsp. *vulgaris* was
570 retrieved from the NCBI (GeneID=809573). The 18s rRNA gene sequence for Bcor1 was
571 identified via BLAST and then extracted from the SOAPdenovo2 assembly, consecutively
572 adding the following overlapping BLAST hit with the smallest e-value. Next, these extracted
573 sequences were combined for a 18s gene sequence reconstruction. The assembled 18s
574 rRNA gene sequence and the corresponding reference gene sequence were aligned via
575 MAFFT and inspected using SeaView.

576 **Mitogenome and plastome phylogeny based on kmer-derived phylogenetic splits**

577 SANS serif (v2.1_04B) (66,67), a method based on colored de Bruijn graphs, was selected
578 for the reconstruction of additional phylogenies using variable input data (mitochondrial
579 reads, chloroplastic reads, and full plastome assemblies). This method does not require
580 prior assembly of the reads and is therefore especially suitable for the mitochondrial
581 sequences which could not be fully assembled using GetOrganelle due to the relatively low
582 available sequencing depth and also higher complexity of the mitogenome in comparison to
583 the plastome.

584 Reads were assigned to the plastome or the mitogenome, respectively, after mapping with
585 BWA-MEM (v0.7.13) (68) against the sugar beet reference genome sequence, including the
586 respective sugar beet chloroplast (KR230391.1) and sugar beet mitochondrial sequence
587 (BA000009.3), which were published independently from this study. This enabled the
588 extraction of reads mapping with higher confidence to the chloroplast/mitochondrial
589 sequence in contrast to mapping to the nucleome (with e.g. a few mismatches) and *vice*
590 *versa*. Therefore, ‘samtools view’, with the -b and -h options, was used after indexing the
591 BAM file. The resulting BAM file was then further processed using ‘samtools collate’ and
592 converted to the FASTQ format to extract the corresponding reads (chloroplast or
593 mitochondria, respectively) using ‘samtools fastq’. After that, for the read-derived
594 phylogenetic analyses, a colored de Bruijn graph was constructed using Bifrost (v1.0.5) (69)
595 to filter kmers which only occur once in the dataset. This graph was then used as input for
596 SANS serif. In addition, a phylogeny was reconstructed using the newly constructed
597 plastome assemblies as direct input for SANS serif.

598 Different parameters were applied to test the robustness of the results. These arguments
599 include different mean weight functions (-m; geom vs. geom2), the number of splits in the
600 output list (-t; all vs. 10n) as well as various kmer sizes (11, 21, 31 and 61). The SANS serif
601 output file was then converted to the nexus format (sans2nexus.py) and subsequently
602 visualised using Splitstree5 (70). To analyse the discrepancies between trees derived from
603 different methods, SANS serif was used with the option 'strict' to generate an output file in
604 the newick format which was then visualised using FigTree (64). Further, the SANS serif
605 script 'comp.py' was used to calculate weighted (length of the edges/size of the splits is
606 taken into account) precision and recall (combined in F1 scores) while using each tree as
607 reference/ground truth in an 'all vs. all' comparison. In this use case, precision means 'the
608 total weight of all correctly predicted splits divided by the total weight of all predicted splits'.
609 Further, weighted symmetric set distances and Robinsons-Foulds distances were
610 calculated for each comparison. Details can be found in Additional file S1D. For this
611 analysis, the trees constructed with different input data (cp_reads, mt_reads, and
612 cp_assemblies) and the fixed parameters '-m geom2, -t 10n, -k 31' were compared.

613 **Investigation of alignment identities**

614 The alignment identities for each plastome gene sequence or intergenic region were
615 calculated to infer the phylogenetic information of all sequences. The events (SNV or InDel)
616 were detected by iteration over each position in the sequence. The identity score (percent
617 identity) was calculated by division of conserved positions (number of residues [position in
618 alignment] with the same nucleotide in all accessions) by the number of residues in the
619 alignment ('sequence length'). Alignment identities were calculated (i) for all accessions and
620 (ii) for all accessions including outgroup reference plastome sequences (amaranth, quinoa,
621 and spinach). Visualisation of the results was performed using matplotlib (71). Next,
622 potential hotspots for SNVs and InDels in the plastome sequences were investigated.

623

624 **Declarations**

625 **Ethics approval and consent to participate**

626 The material of the KWS Saat SE, Einbeck, and IPK Gatersleben was transferred under the
627 regulations of the standard material transfer agreement (SMTA) of the International Treaty.
628 Plants were grown in accordance with German legislation

629

630

631 **Consent for publication**

632 Not applicable.

633 **Availability of data and materials**

634 Sequence reads have been submitted to the European Nucleotide Archive (ENA; Additional
635 file S2D). The plastome assemblies and the corresponding annotations are available at
636 ENA/GenBank (PRJEB45680). Additional information used in phylogenetic analyses are
637 included in the supplementary files.

638 **Competing interests**

639 The authors declare that the research was conducted in the absence of any commercial or
640 financial relationships that could be construed as a potential conflict of interest.

641 **Funding**

642 Open Access funding enabled and organized by Projekt DEAL. KS is funded by Bielefeld
643 University through the Graduate School DILS (Digital Infrastructure for the Life Sciences).

644 **Authors' contributions**

645 BP, BW, TH and DH designed the study. NS selected and cultivated the plants and
646 performed DNA extraction. PV designed the layout for sequencing. BP and KS developed
647 and implemented the bioinformatic methodology. KS analysed the data and prepared the
648 figures and tables. KS, BP, NS and TH wrote the manuscript. All authors read and approved
649 the final manuscript.

650 **Acknowledgements**

651 We acknowledge support for the Article Processing Charge by the Deutsche
652 Forschungsgemeinschaft (German Research Foundation) and the Open Access Publication

653 Fund of Bielefeld University. We thank the CeBiTec Bioinformatic Resource Facility team for
654 great technical support and Dr. Roland Wittler for great support with the SANS serif
655 software.

656

657 **References**

- 658 1. Romeiras MM, Vieira A, Silva DN, Moura M, Santos-Guerra A, Batista D, et al. Evolutionary
659 and Biogeographic Insights on the Macaronesian Beta-Patellifolia Species (Amaranthaceae)
660 from a Time-Scaled Molecular Phylogeny. Robillard T, editor. PLoS ONE. 2016 Mar
661 31;11(3):e0152456.
- 662 2. Fischer HE. Origin of the ‘Weisse Schlesische Rübe’ (white Silesian beet) and resynthesis of
663 sugar beet. Euphytica. 1989 Apr;41(1–2):75–80.
- 664 3. Panella L, Lewellen RT. Broadening the genetic base of sugar beet: introgression from wild
665 relatives. Euphytica. 2007 Mar 7;154(3):383–400.
- 666 4. Biancardi E, Lewellen RT. History and Current Importance. In: Biancardi E, Panella LW,
667 McGrath JM, editors. Beta maritima [Internet]. Cham: Springer International Publishing; 2020
668 [cited 2021 Jul 28]. p. 1–48. Available from: http://link.springer.com/10.1007/978-3-030-28748-1_1
- 669 5. Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, et al.
670 Crop wild relative populations of *Beta vulgaris* allow direct mapping of agronomically
671 important genes. Nat Commun. 2017 Aug;8(1):15708.
- 672 6. Rodríguez del Río Á, Minoche AE, Zwickl NF, Friedrich A, Liedtke S, Schmidt T, et al.
673 Genomes of the wild beets *Beta patula* and *Beta vulgaris* ssp. *maritima*. Plant J. 2019
674 Sep;99(6):1242–53.
- 675 7. Frese L, Ford-Lloyd B. Taxonomy, Phylogeny, and the Genepool. In: Biancardi E, Panella LW,
676 McGrath JM, editors. Beta maritima [Internet]. Cham: Springer International Publishing; 2020
677 [cited 2021 Jul 28]. p. 121–51. Available from: http://link.springer.com/10.1007/978-3-030-28748-1_6
- 678 8. Kadereit G, Hohmann S, Kadereit JW. A Synopsis of Chenopodiaceae Subfam. Betoideae and
679 Notes on the Taxonomy of Beta. Willdenowia. 2006 Apr 20;Bd. 36, H. 1(Special Issue:
680 Festschrift Werner Greuter):9–19.
- 681 9. Ford-Lloyd BV, Williams JT. A revision of Beta section Vulgares (Chenopodiaceae), with new
682 light on the origin of cultivated beets. Botanical Journal of the Linnean Society. 1975
683 Sep;71(2):89–102.
- 684 10. Hohmann S, Kadereit JW, Kadereit G. Understanding Mediterranean-Californian disjunctions:
685 molecular evidence from Chenopodiaceae-Betoideae. Taxon. 2006 Feb;55(1):67–78.

688 11. Touzet P, Villain S, Buret L, Martin H, Holl A-C, Poux C, et al. Chloroplastic and nuclear
689 diversity of wild beets at a large geographical scale: Insights into the evolutionary history of the
690 *Beta* section. *Ecol Evol*. 2018 Mar;8(5):2890–900.

691 12. Frese L, Nachtigall M, Iriondo JM, Rubio Teso ML, Duarte MC, Pinheiro de Carvalho MÂA.
692 Genetic diversity and differentiation in *Patellifolia* (Amaranthaceae) in the Macaronesian
693 archipelagos and the Iberian Peninsula and implications for genetic conservation programmes.
694 *Genet Resour Crop Evol*. 2019 Jan;66(1):225–41.

695 13. Shen Y, Ford-lloyd BV, Newbury HJ. Genetic relationships within the genus *Beta* determined
696 using both PCR-based marker and DNA sequencing techniques. *Heredity*. 1998
697 May;80(5):624–32.

698 14. Gitzendanner MA, Soltis PS, Yi T-S, Li D-Z, Soltis DE. Plastome Phylogenetics: 30 Years of
699 Inferences Into Plant Evolution. In: *Advances in Botanical Research* [Internet]. Elsevier; 2018
700 [cited 2021 Jul 28]. p. 293–313. Available from:
701 <https://linkinghub.elsevier.com/retrieve/pii/S0065229617300885>

702 15. Liu B-B, Ma Z-Y, Ren C, Hodel RGJ, Sun M, Liu X-Q, et al. Capturing single-copy nuclear
703 genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for
704 plant phylogenetics: A case study in Vitaceae [Internet]. *Evolutionary Biology*; 2021 Feb [cited
705 2021 Jul 28]. Available from: <http://biorxiv.org/lookup/doi/10.1101/2021.02.25.432805>

706 16. Palmer JD, Zamir D. Chloroplast DNA evolution and phylogenetic relationships in
707 *Lycopersicon*. *Proceedings of the National Academy of Sciences*. 1982 Aug 1;79(16):5006–10.

708 17. Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, et al. Orchid phylogenomics
709 and multiple drivers of their extraordinary diversification. *Proc R Soc B*. 2015 Sep
710 7;282(1814):20151553.

711 18. Orton LM, Burke SV, Duvall MR. Plastome phylogenomics and characterization of rare
712 genomic changes as taxonomic markers in plastome groups 1 and 2 Poeae (Pooideae; Poaceae).
713 *PeerJ*. 2019 Jun 3;7:e6959.

714 19. Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, et al. Plastome phylogeny and early
715 diversification of Brassicaceae. *BMC Genomics*. 2017 Dec;18(1):176.

716 20. Singh BP, Kumar A, Kaur H, Singh H, Nagpal AK. CpGDB : A Comprehensive Database of
717 Chloroplast Genomes. *Bioinformation*. 2020 Feb 29;16(2):171–5.

718 21. Wang M, Wang X, Sun J, Wang Y, Ge Y, Dong W, et al. Phylogenomic and evolutionary
719 dynamics of inverted repeats across *Angelica* plastomes. *BMC Plant Biol*. 2021 Dec;21(1):26.

720 22. Zurawski G, Clegg M. Evolution of higher-plant chloroplast DNA-encoded genes: implications
721 for structure-function and phylogenetic studies. *Annual review of plant physiology*.
722 1987;38:391–418.

723 23. Sugiura M. The chloroplast genome. *Plant Molecular Biology (Netherlands)*. 1992;

724 24. Wang W, Lanfear R. Long-reads reveal that the chloroplast genome exists in two distinct
725 versions in most plants. Gaut B, editor. *Genome Biology and Evolution*. 2019 Nov 21;evz256.

726 25. Chen Y, Yang Z. Characterization of the complete plastome of *Dysphania botrys*, a candidate
727 plant for cancer treatment. *Mitochondrial DNA Part B*. 2018 Jul 3;3(2):1214–5.

728 26. Yao G, Jin J-J, Li H-T, Yang J-B, Mandala VS, Croley M, et al. Plastid phylogenomic insights
729 into the evolution of Caryophyllales. *Molecular Phylogenetics and Evolution*. 2019
730 May;134:74–86.

731 27. Stadermann KB, Weisshaar B, Holtgräwe D. SMRT sequencing only de novo assembly of the
732 sugar beet (*Beta vulgaris*) chloroplast genome. *BMC Bioinformatics*. 2015 Dec;16(1):295.

733 28. Williams LE, Wernegreen JJ. Sequence Context of Indel Mutations and Their Effect on Protein
734 Evolution in a Bacterial Endosymbiont. *Genome Biology and Evolution*. 2013 Mar;5(3):599–
735 605.

736 29. Gomes Pacheco T, Morais da Silva G, de Santana Lopes A, de Oliveira JD, Rogalski JM,
737 Balsanelli E, et al. Phylogenetic and evolutionary features of the plastome of *Tropaeolum*
738 *pentaphyllum* Lam. (Tropaeolaceae). *Planta*. 2020 Aug;252(2):17.

739 30. Serna-Sánchez MA, Pérez-Escobar OA, Bogarín D, Torres-Jimenez MF, Alvarez-Yela AC,
740 Arcila-Galvis JE, et al. Plastid phylogenomics resolves ambiguous relationships within the
741 orchid family and provides a solid timeframe for biogeography and macroevolution. *Sci Rep*.
742 2021 Dec;11(1):6858.

743 31. Wang J-H, Moore MJ, Wang H, Zhu Z-X, Wang H-F. Plastome evolution and phylogenetic
744 relationships among Malvaceae subfamilies. *Gene*. 2021 Jan;765:145103.

745 32. de Santana Lopes A, Pacheco TG, Santos KG dos, Vieira L do N, Guerra MP, Nodari RO, et al.
746 The *Linum usitatissimum* L. plastome reveals atypical structural evolution, new editing sites,
747 and the phylogenetic position of Linaceae within Malpighiales. *Plant Cell Rep*. 2018
748 Feb;37(2):307–28.

749 33. Qiu T, Cui S. Evolutionary analysis for *Phragmites* ecotypes based on full-length plastomes.
750 *Aquatic Botany*. 2021 Mar;170:103349.

751 34. Igea J, Juste J, Castresana J. Novel intron markers to study the phylogeny of closely related
752 mammalian species. *BMC Evol Biol*. 2010;10(1):369.

753 35. Palmer JD, Herbon LA. Plant mitochondrial DNA evolved rapidly in structure, but slowly in
754 sequence. *Journal of Molecular evolution*. 1988;28(1):87–97.

755 36. Heckenhauer J, Paun O, Chase MW, Ashton PS, Kamariah AS, Samuel R. Molecular
756 phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes. *Annals*
757 of Botany. 2019 May 20;123(5):857–65.

758 37. Olmstead RG, Bedoya AM. Whole genomes: the holy grail. A commentary on: ‘Molecular
759 phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes’. *Annals*
760 of Botany. 2019 May 20;123(5):iv–v.

761 38. Kim Y-K, Jo S, Cheon S-H, Joo M-J, Hong J-R, Kwak M, et al. Plastome Evolution and
762 Phylogeny of Orchidaceae, With 24 New Sequences. *Front Plant Sci.* 2020 Feb 21;11:22.

763 39. Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree
764 conflict in plastome-inferred phylogenies. *PeerJ.* 2019 Sep 24;7:e7747.

765 40. Coons GH. The wild species of Beta. *Proc Am Soc Sugar Beet Technol.* 1954;8(2).

766 41. Biancardi E, de Biaggi M. Morphology. In: Biancardi E, Panella LW, McGrath JM, editors.
767 Beta maritima [Internet]. Cham: Springer International Publishing; 2020 [cited 2021 Jul 29]. p.
768 61–86. Available from: http://link.springer.com/10.1007/978-3-030-28748-1_3

769 42. Frese L, de Carvalho MAP, Duarte C. Crop case study Beta L.(including Patellifolia AJ Scott et
770 al.). AEGRO project. Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut
771 für Züchtungsforschung an landwirtschaftlichen Kulturen; 2011.

772 43. Gao D, Schmidt T, Jung C. Molecular characterization and chromosomal distribution of
773 species-specific repetitive DNA sequences from *Beta corolliflora* , a wild relative of sugar beet.
774 *Genome.* 2000 Dec 1;43(6):1073–80.

775 44. Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, et al.
776 Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. *Plant*
777 *J.* 2014 Aug;79(3):385–97.

778 45. Maiwald S, Weber B, Seibt KM, Schmidt T, Heitkam T. The Cassandra retrotransposon
779 landscape in sugar beet (*Beta vulgaris*) and related Amaranthaceae: recombination and re-
780 shuffling lead to a high structural variability. *Annals of Botany.* 2021 Jan 1;127(1):91–109.

781 46. Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T. The Ty1-copia families SALIRE and
782 Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance,
783 chromosomal distribution, and age. *Chromosome Res.* 2010 Feb;18(2):247–63.

784 47. Panella LW, Stevanato P, Pavli O, Skaracis G. Source of Useful Traits. In: Biancardi E, Panella
785 LW, McGrath JM, editors. Beta maritima [Internet]. Cham: Springer International Publishing;
786 2020 [cited 2021 Jul 29]. p. 167–218. Available from: http://link.springer.com/10.1007/978-3-030-28748-1_8

788 48. Oppermann M, Weise S, Dittmann C, Knüpffer H. GBIS: the information system of the German
789 Genebank. Database [Internet]. 2015 Jan 1 [cited 2021 Jul 28];2015. Available from:
790 <https://academic.oup.com/database/article/doi/10.1093/database/bav021/2433153>

791 49. Castro S, Romeiras MM, Castro M, Duarte MC, Loureiro J. Hidden diversity in wild Beta taxa
792 from Portugal: Insights from genome size and ploidy level estimations using flow cytometry.
793 *Plant Science.* 2013 Jun;207:72–8.

794 50. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
795 *Bioinformatics.* 2014;30(15):2114–20.

796 51. Andrews S. FastQC: a quality control tool for high throughput sequence data. [Internet]. 2020.
797 Available from: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>

798 52. Jin J-J, Yu W-B, Yang J-B, Song Y, dePamphilis CW, Yi T-S, et al. GetOrganelle: a fast and
799 versatile toolkit for accurate *de novo* assembly of organelle genomes. *Genome Biol.* 2020
800 Dec;21(1):241.

801 53. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A
802 New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of*
803 *Computational Biology.* 2012 May;19(5):455–77.

804 54. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of *de novo* genome
805 assemblies: Fig. 1. *Bioinformatics.* 2015 Oct 15;31(20):3350–2.

806 55. Oldenburg DJ, Bendich AJ. Most Chloroplast DNA of Maize Seedlings in Linear Molecules
807 with Defined Ends and Branched Forms. *Journal of Molecular Biology.* 2004 Jan;335(4):953–
808 70.

809 56. Oldenburg DJ, Bendich AJ. DNA maintenance in plastids and mitochondria of plants. *Front*
810 *Plant Sci [Internet].* 2015 Oct 29 [cited 2021 Jul 28];6. Available from:
811 <http://journal.frontiersin.org/Article/10.3389/fpls.2015.00883/abstract>

812 57. Shaver JM, Oldenburg DJ, Bendich AJ. The Structure of Chloroplast DNA Molecules and the
813 Effects of Light on the Amount of Chloroplast DNA during Development in *Medicago*
814 *truncatula*. *Plant Physiology.* 2008 Mar 3;146(3):1064–74.

815 58. Tillich M, Lehwerk P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq –
816 versatile and accurate annotation of organelle genomes. *Nucleic Acids Research.* 2017 Jul
817 3;45(W1):W6–11.

818 59. Kent WJ. BLAT---The BLAST-Like Alignment Tool. *Genome Research.* 2002 Mar
819 20;12(4):656–64.

820 60. Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier
821 transform. *Nucleic Acids Research.* 2002 Jul 15;30(14):3059–66.

822 61. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment
823 trimming in large-scale phylogenetic analyses. *Bioinformatics.* 2009 Aug 1;25(15):1972–3.

824 62. Gouy M, Guindon S, Gascuel O. SeaView Version 4: A Multiplatform Graphical User Interface
825 for Sequence Alignment and Phylogenetic Tree Building. *Molecular Biology and Evolution.*
826 2010 Feb 1;27(2):221–4.

827 63. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and
828 user-friendly tool for maximum likelihood phylogenetic inference. Wren J, editor.
829 *Bioinformatics.* 2019 Nov 1;35(21):4453–5.

830 64. Rambaut A. FigTree [Internet]. 2009. Available from:
831 <http://evomics.org/resources/software/molecular-evolution-software/figtree/>

832 65. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. Erratum: SOAPdenovo2: an empirically
833 improved memory-efficient short-read *de novo* assembler. *GigaSci.* 2015 Dec;4(1):30.

834 66. Wittler R. Alignment- and reference-free phylogenomics with colored de Bruijn graphs.
835 Algorithms Mol Biol. 2020 Dec;15(1):4.

836 67. Rempel A, Wittler R. SANS serif: alignment-free, whole-genome-based phylogenetic
837 reconstruction. Schwartz R, editor. Bioinformatics. 2021 Jun 16;btab444.

838 68. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
839 arXiv:13033997 [q-bio] [Internet]. 2013 May 26 [cited 2021 Jul 28]; Available from:
840 <http://arxiv.org/abs/1303.3997>

841 69. Holley G, Melsted P. Bifrost: highly parallel construction and indexing of colored and
842 compacted de Bruijn graphs. Genome Biol. 2020 Dec;21(1):249.

843 70. Huson DH, Bryant D. Application of Phylogenetic Networks in Evolutionary Studies.
844 Molecular Biology and Evolution. 2006 Feb 1;23(2):254–67.

845 71. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9(3):90–5.

846

847 **Supplementary Material**

848 Additional file S1A: Geographic distribution of the Betoideae species as described in the
849 literature.

850 Additional file S1B: Distribution of coverage values and assembly length (in bp) for each
851 region and the total assemblies.

852 Additional file S1C: Circular and linear plots of selected plastome assembly sequences.

853 Additional file S1D: Distance metrics for the comparison of splitstree results.

854 Additional file S1E: Reduced phylogenetic tree based on 53 gene and intergenic regions.

855 Additional file S1F: Phylogenetic trees based on different sequence matrices.

856 Additional file S1G: Workflow for the construction of phylogenetic trees.

857 Additional file S2A: Sequence identities [%] of all investigated plastome gene sequences
858 and intergenic regions including outgroup reference sequences.

859 Additional file S2B: Sequence identities [%] of all investigated plastome gene sequences
860 and intergenic regions excluding outgroup reference sequences.

861 Additional file S2C: Accession IDs, taxonomy, read and assembly statistics and geographic
862 location of the investigated accessions of the Betoideae subfamily.

863 Additional file S2D: SRA-IDs of the processed read datasets.

864