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Abstract

In a typical text, readers look much longer at some words than at others and fixate some words multiple times, while
skipping others altogether. Historically, researchers explained this variation via low-level visual or oculomotor factors,
but today it is primarily explained in terms of cognitive factors, such as how well word identity can be predicted
from context or discerned from parafoveal preview. While the existence of these effects has been well established
in experiments, the relative importance of prediction, preview and low-level factors for eye movement variation in
natural reading is unclear. Here, we address this question in three large datasets (n=104, 1.5 million words), using
a deep neural network and Bayesian ideal observer to model linguistic prediction and parafoveal preview from
moment to moment in natural reading. Strikingly, neither prediction nor preview was important for explaining word
skipping - the vast majority of skipping was explained by a simple oculomotor model. For reading times, by contrast,
we found strong but independent contributions of both prediction and preview, with effect sizes matching those
from controlled experiments. Together, these results challenge dominant models of eye movements in reading by
showing that linguistic prediction and parafoveal preview are not important determinants of word skipping.

INTRODUCTION

When reading a text, readers move their eyes across
the page to bring new information to the centre of the vi-
sual field, where perceptual sensitivity is highest. While
it may subjectively feel as if the eyes smoothly slide
along the text, they in fact traverse the words with rapid
jerky movements called saccades, followed by brief sta-
tionary periods called fixations. Across a text, saccades
and fixations are highly variable and seemingly erratic:
Some fixations last less than 100 ms, others more than
400; and while some words are fixated multiple times,
many other words are skipped altogether [1}|2]. What
explains this striking variation?

Historically, researchers have pointed to low-level
non-linguistic factors like word length, oculomotor
noise, or the relative position where the eyes happen
to land [2H5]. Such explanations were motivated by the

idea that oculomotor control was largely autonomous.
In this view, readers can adjust saccade lengths and fixa-
tion durations to global characteristics like text difficulty
or reading strategy, but not to subtle word-by-word
differences in language processing [2-4} |6].

As reading was studied in more detail, however, it
became clear that the link between eye movements
and cognition was more direct. For instance, it was
found that fixation durations were shorter for words
with higher frequency [7}[8]. Eye movements were even
shown to depend on how well a word’s identity could be
inferred before fixation. Specifically, researchers found
that words are read faster and skipped more often if
they are predictable from linguistic context [9,|10] or if
they are identifiable from a parafoveal preview [11413].

These demonstrations of a direct link between eye
movements and language processing overturned the
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autonomous view, replacing it by cognitive accounts
describing eye movements during reading as largely,
if not entirely, controlled by linguistic processing [14,
15]. Today, many studies still build on the powerful
techniques like gaze-contingent displays that helped
overturn the autonomous view, but now ask much more
detailed questions, like whether word identification is
a distributed or sequential process [16}|17]; how many
words can be processed in the parafovea [18]]; at which
level they are analysed [19}20], and how this may differ
between writing systems or orthographies [21}22].

Here, we ask a different, perhaps more elemental
question: how much of the variation in eye movements
do linguistic prediction, parafoveal preview, and non-
linguistic factors each explain? That is, how important
are these factors for determining how the eyes move
during reading? Dominant, cognitive models explain
eye movement variation primarily as a function of on-
going processing. Skipping, for instance, is modelled
as the probability that a word is identified before fixa-
tion [14}|23,24]. Some, however, have questioned this
purely cognitive view, suggesting that low-level features
like word eccentricity or length might be more impor-
tant [25H27]. Similarly, one may ask what drives next-
word identification: is identifying the next word mostly
driven by linguistic predictions [28] or by parafoveal per-
ception? Remarkably, while it is well-established that
both linguistic and oculomotor, and both predictive and
parafoveal processing, all affect eye-movements 13,25,
29,130], a comprehensive picture of the their relative ex-
planatory power is currently missing, perhaps because
they are seldom studied all at the same time.

To arrive at such a comprehensive picture we focus
on natural reading, analysing three large datasets of
participants reading passages, long articles, and even
an entire novel - together encompassing 1.5 million
(un)fixated words, across 108 individuals [31H33]]. In-
stead of manipulating word predictability or perturb-
ing parafoveal perceptibility, we combine deep neural
language modelling [34] and Bayesian ideal observer
analysis [35] to quantify how much information is con-

veyed by both factors, on a moment-by-moment basis.
This way, we can probe the effect of both prediction
and preview on each word during natural reading. Such
a broad-coverage approach has been applied to the
effects of predictability on reading before [30,|36-39],
but either without considering preview or only through
coarse heuristics such as using frequency as a proxy for
parafoveal identifiability [[17} 40, 141] (cf. [35])). By con-
trast, here we explicitly model both, in addition to low-
level explanations like autonomous oculomotor control.
To assess explanatory power, we use set theory to de-
rive the unique and shared variation in eye movements
explained by each model.

To preview the results, this revealed a striking dis-
sociation between skipping and reading times. For
word skipping, the overwhelming majority of variation
could be explained - mostly uniquely explained - by a
non-linguistic oculomotor model. For reading times,
by contrast, we found strong effects of both predic-
tion and preview, tightly matching effect sizes from
controlled designs. Interestingly, linguistic prediction
and parafoveal preview seem to operate independently:
we found strong evidence against Bayes-optimal inte-
gration of the two. Together, these results challenge
dominant cognitive models of reading, and show that
skipping (or the decision of where to fixate) and reading
times (i.e. how long to fixate) are governed by different
principles.

RESULTS

We analysed eye movements from three large
datasets of participants reading texts ranging from iso-
lated paragraphs to an entire novel. Specifically, we
considered three datasets: Dundee [33] (N=10, 51.502
words per participant), Geco [32]] (N=14, 54.364 words
per participant) and Provo [31] (N=84, 2.689 words per
participant). In each corpus, we analysed both skipping
and reading times (indexed by gaze duration), as they
are thought to reflect separate processes: the decision
of where vs how long to fixate, respectively [14}[25]. For
more descriptive details about the data across partici-
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Figure 1: Quantifying two types of context during natural reading

a) Readers can infer the identity of the next word before fixation either by predicting it from context or by discerning it

from the parafovea. Both can be cast as a probabilistic inference about the next word, either given the preceding words
(prediction, blue) or given a parafoveal percept (preview, orange). b) To model prediction, we use GPT-2, one of the most

powerful publicly available language models [34]. For preview, we use an ideal observer [35] based on well-established

‘Bayesian Reader' models [42H44]. Importantly, we do not use either model as a cognitive model per se, but rather as a tool

to quantify how much information is in principle available from prediction or preview on a moment-by-moment basis.

pants and datasets, see Methods and Figures

To estimate the effect of linguistic prediction and
parafoveal preview, we quantified the amount of in-
formation conveyed by both factors for each word in
the corpus (for preview, this was tailored to each in-
dividual participant, since each word was previewed
at a different eccentricity by each participant). To this
end, we formalised both processes as a probabilistic
belief about the identity of the next word, given either
the preceding words (prediction) or a noisy parafoveal
percept (preview; see Figure [Th). As such, we could
describe these disparate cognitive processes using a
common information-theoretic currency. To compute
the probability distributions, we used GPT-2 for predic-
tion [34] and a Bayesian ideal observer for preview [35]
(see Figure[Tb and Methods).

Prediction and preview increase skipping rates and
reduce reading times

We first asked whether our formalisations allowed
us to observe the expected effects of prediction and
preview, while statistically controlling for oculomotor
and lexical variables in a multiple regression model. Be-
cause the decisions of whether to skip and how long to
fixate a word are made at different moments, we mod-
eled each separately with a different set of explanatory
variables; but for both, we considered the full model
(detailed below).

As expected, we found in all datasets that words
were more likely to be skipped if there was more in-
formation available from the linguistic prediction (Boot-
strap: Dundee, p = 0.023; GECO, p = 0.034; Provo
p < 107°) and/or the parafoveal preview (Bootstrap:
Dundee, p = 4 x 107°%; GECO, p < 1072; Provo p < 107°).
Similarly, reading times were reduced for words that
were more predictable (all p's < 3.2 x 10~%) or more
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identifiable from the parafovea (all p’s < 4 x 107°).

Together this confirms that our model-based ap-
proach can capture the expected effects of both pre-
diction [[15] and preview [13]] in natural reading, while
statistically controlling for other variables.

Skipping can be largely explained by non-linguistic
oculomotor factors

After confirming that prediction and preview had
a statistically significant influence on word skipping
and reading times, we went on to assess their rela-
tive explanatory power. That is, we asked the question
how important these factors were, by examining how
much variance was explained by each. To this end, we
grouped the variables from the full regression model
into different types of explanations, and assessed how
well each type accounted for the data.

For skipping, we considered three explanations. First,
a word might be skipped purely because it could be
predicted from context - i.e. purely as a function of
the amount of information conveyed by the prediction.
Secondly, a word might be skipped because its iden-
tity could be gleaned from a parafoveal preview - that
is, purely as a function of the informativeness of the
preview. Finally, a word might be skipped simply be-
cause it is so short or so close to the prior fixation
location that an autonomously generated saccade will
likely overshoot it, irrespective of its linguistic proper-
ties - in other words, purely as a function of length
and eccentricity. Note that we did not include often-
used lexical attributes like frequency to predict skip-
ping, because using attributes of word,,.; already pre-
supposes parafoveal identification. Moreover, to the
extent that a lexical attribute like frequency might in-
fluence a words parafoveal identifiability, this should
already be captured by the parafoveal entropy (see Fig-
ure[S3]and Methods for more details).

For each word, we thus modelled the probability of
skipping either as a function of prediction, preview, or
oculomotor information, or by any combination of the

three. Then we partitioned the unique and shared cross-
validated variation explained by each account. Strik-
ingly, this revealed that the overwhelming majority of
explained skipping variation (94 %) could be accounted
for by the non-linguistic baseline (Figure[2). Moreover,
the majority of the variation was only explained by the
baseline, which explained 10 times more unique varia-
tion than prediction and preview combined. There was
a large degree of overlap between preview and the ocu-
lomotor baseline, which is unsurprising since a word's
identifiability decreases as a function of its eccentricity
and length. Interestingly, there was even more overlap
between the prediction and baseline model: almost all
skipping variation that could be explained by contex-
tual constraint could be equally well explained by the
oculomotor baseline factors.

Importantly, while the contribution of prediction and
preview was small, it was significant both for prediction
(bootstrap: Dundee, p = 0.015; Geco, p = 0.0001; Provo,
p < 107°) and preview (all p’s < 5 x 1075), confirming
that both factors do affect skipping. Crucially however,
the vast majority of skipping that could be explained by
either prediction or preview was equally well explained
by the more parsimonious oculomotor model - which
also explained much more of the skipping data over-
all. This challenges the idea that word identification is
the driver behind skiping, instead pointing to a simpler
strategy, primarily based on length and eccentricity.

What might this simpler strategy be? One possibility
is a ‘blind’ random walk: generating saccades of some
average length, plus oculomotor noise. However, we
find that saccades are tailored to word length and ex-
hibit a well-known preferred landing position, slightly
left to a word’s center (see Figure compare [45, 46]).
This suggests the decision of where to look next is not
‘blind’ but based on a coarse low-level visual analysis of
the parafovea, for instance conveying just the location
of the next word ‘blob’ within a preferred range (i.e. skip-
ping words too close or short; c.f. [25| 26} 47]). Presum-
ably, such a simple strategy would on average sample
visual input conveniently, yielding saccades just large
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Figure 2: Variation in skipping explained by predictive, parafoveal and autonomous oculomotor processing
a) Proportions of cross-validated variation explained by prediction (blue), preview (orange) oculomotor baseline (grey) and
their overlap; averaged across datasets (each dataset weighted equally). b) Variation partitions for each individual dataset,
including statistical significance of variation uniquely explained by predictive, parafoveal or oculomotor processing. Stars
indicate significance-levels of the cross-validated unique variation explained (bootstrap t-test against zero): p < 0.05 (*),
p < 0.05 (**), p < 0.001 (***) For results of individual participants, and their consistency, see Figure@

enough for comprehension to keep track. However, if
such an ‘autopilot’ is indeed independent, one would
expect it occasionally go out of step, such that a skipped
word cannot be recognised or guessed, derailing com-
prehension. In line with this, we find evidence for a
compensation strategy. The probability that initially
skipped word are subsequently (regressively) fixated is
strongly, inversely related to its parafoveal identifiabil-
ity before skipping (see Figure[STG} logistic regression
bootstrap test, all p's < 10~°). Together, this suggests

that initial skipping decisions are primarily driven by
a low-level oculomotor ‘autopilot’, but one that is kept
in line with online language comprehension by directly
correcting saccades that outrun recognition.

Reading times are strongly modulated by predic-
tion and preview

For reading times (operationalised through gaze du-
rations, so considering foveal reading’ only), we also
considered three explanatory factors. First, a word
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Figure 3: Variation in reading times explained by predictive, parafoveal and non-contextual information

a) Grand average of partitions of cross-validated variance in reading times (indexed by gaze durations) across datasets (each
dataset weighted equally) explained by non-contextual factors (grey), parafoveal preview (orange), and linguistic prediction
(blue). b) Variance partitions for each individual dataset, including statistical significance of the cross-validated variance
explained uniquely by the predictive, parafoveal or non-contextual explanatory variables. Stars indicate significance-levels
of the cross-validated unique variance explained (bootstrap t-test against zero): p < 0.05 (**), p < 0.001 (***). Note that
the non-contextual model here included both lexical attributes (e.g. frequency) and oculomotor factors (relative viewing or
landing position); assessing these separately reveals that reading time variation uniquely explained by oculomotor factors
was small (see Fig. For results of individual participants, see Figure

might be read faster because it was predictable from
the preceding context, which we formalised via linguis-
tic surprise. Second, a word might be read faster if it
could already be partly identified from the parafoveal
preview (before fixation). This informativeness of the
preview was again formalised via the parafoveal pre-
view entropy. Finally, a word might be read faster due

to attributes of the word itself, such as lexical frequency.
This last explanatory factor functioned as a baseline
that captured key non-contextual word attributes, both
linguistic and non-linguistic (see Methods).

In all datasets, prediction (all p’s < 7.7 x 1073), pre-
view (all p’s < 1.2 x 10~%) and non-contextual woord
attributes (all p’s < 1.8 x 10~*) again all explained sig-
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Figure 4: Simulated preview and predictability benefits match those reported in experimental literature

Preview (left) and predictability benefits (right) inferred from our analysis of each dataset, and observed in a sample of
studies (see Table[G1). In this analysis, preview benefit was simulated as the expected difference in gaze duration after a
preview of average informativeness versus after no preview at all. Predictability benefit was defined as the difference in
gaze duration for high versus low probability words; ‘high’ and ‘low’ were defined by subdividing the cloze probabilities
from provo into equal thirds of ‘low’, ‘medium’ and ‘high’ probability (see Methods). In each plot, small dots with dark edges
represent either individual subjects within one dataset or individual studies in the sample of the literature; larger dots with
error bars represent the mean effect across individuals or studies, plus the bootstrapped 99% confidence interval.

nificant unique variation. The non-contextual baseline
explained the most variance, which shows - perhaps
unsurprisingly - that properties of the word itself are
more important than contextual factors in determining
how long a word is fixated. Critically however, com-
pared to skipping the unique contribution of prediction
and preview was more than three times higher (see Fig
B). Specifically, while prediction and preview could only
uniquely account for 6% of explained word skipping
variation, they uniquely accounted for more than 18 %
of explained variation in reading times. Importantly, the
non-contextual baseline used to predict reading times
included both linguistic (e.g. lexical frequency) and non-
linguistic information (viewing position) of the current
word. When we analysed these separately, we found
that the unique contribution of non-linguistic factors
was small (see Figure[S12). This shows that contrary to
skipping, variation in reading time is heavily influenced
by online linguistic processing.

Naturalistic prediction and preview benefit effect
match experimental effect sizes

The previous result confirms that reading times (in-
dexed via gaze durations) are highly sensitive to linguis-
tic and parafoveal context, in line with decades of re-
search on eye movements in reading [48]. But how well
do our results compare exactly to established findings
from the experimental literature?

To directly address this question, we simulated, for
each participant the effect size of two well-established
effects that would be expected to be obtained if we
would conduct a well-controlled factorial experiment.
Specifically, because we estimated how much additional
information from either prediction or preview (in bits)
reduced reading times (in milliseconds) we could pre-
dict reading times for words that are expected vs unex-
pected (predictability benefit [29,49]) or have valid vs
invalid preview (i.e. preview benefit [13]).

The simulated effects tightly corresponded to those
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from experimental studies (see Fig[4). This shows that
our analysis does not underfit or otherwise underesti-
mate the effect of prediction or preview. Moreover, it
shows that the effect sizes, which are well-established
in controlled designs, generalise to natural reading. This
is especially interesting for the preview benefit, because
it implies that the effect can be largely explained in
terms of parafoveal lexical identification [20} 48], and
that other factors such as low-level visual ‘preprocess-
ing’, or interference between the (invalid) parafoveal
percept and foveal percept, may only play a minor role
[c.f.[13][14].

No integration of prediction and preview

So far, we have treated prediction and preview as be-
ing independent. However, it might be that these pro-
cesses, while using different information, are integrated
- such that a word is parafoveally more identifiable
when it is also more predictable in context. Bayesian
probability theory proposes an elegant and mathemat-
ically optimal way to integrate these sources of infor-
mation: the prediction of the next word could be in-
corporated as a prior in perceptual inference. Such a
contextual prior fits into hierarchical Bayesian models
of vision [50], and has been observed in speech percep-
tion, where a contextual prior guides the recognition of
words from a partial sequence of phonemes [51]. Does
such a prior also guide word recognition in reading,
based on a partial parafoveal percept?

To test this, we recomputed the parafoveal identifia-
bility of each word for each participant, but now with
an ideal observer using the prediction from GPT-2 as
a prior. As expected, bayesian integration enhanced
perceptual inference: on average, the observer using
linguistic prediction as a prior extracted more informa-
tion from the preview (4 6.25 bits) than the observer
not taking the prediction into account (+ 4.30 bits;
Ty 39x106 = 1.35 x 1011, p = 0). Interestingly however, it
provided a worse fit to the human reading data. This
was established by comparing two versions of the full
regression model: one with parafoveal entropy from
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Figure 5: Evidence against bayesian integration of lin-
guistic prediction and parafoveal preview
Cross-validated prediction performance of the full
reading times (top) and skipping (bottom) model
(including all variables), equipped with parafoveal
preview information either from the contextual ob-
server or from the non-contextual observer. Dots
with connecting lines indicate participants; stars in-
dicate significance: p < 0.001 (**%*).

the (theoretically superior) contextual ideal observer
and one from the non-contextual ideal observer. In
all datasets both skipping and reading times were bet-
ter explained by a model including parafoveal identifi-
ability from the non-contextual observer (skipping: all
p's < 1075 reading times: p's < 10~?; see Figure[5).

Together, this suggests linguistic prediction and
parafoveal preview are not integrated, but instead oper-
ate independently - thereby highlighting a remarkable
sub-optimality in reading.

DiscuUsSION

Eye movements during reading are highly variable.
Across three large datasets, we have assessed the rel-
ative importance of two major cognitive explanations
for this variability - linguistic prediction and parafoveal
preview - compared to alternative non-linguistic and
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non-contextual explanations. This revealed a stark dis-
sociation between skipping and reading times. For word
skipping, neither prediction nor preview was especially
important, as the overwhelming majority of variation
could be explained - mostly uniquely explained - by
an oculomotor baseline model using just word length
and eccentricity. For reading times, by contrast, we
observed clear contributions of both prediction and
preview (in addition to non-contextual features like fre-
guency) and effect sizes matching those obtained in
controlled experiments. Interestingly, preview effects
were best captured by a non-contextual observer, sug-
gesting that while readers use both linguistic prediction
and preview, these do not appear to be integrated on-
line. Together, the results underscore the dissociation
between skipping and reading times, and show that for
word skipping, the link between eye movements and
cognition is less direct than commonly thought.

Our results on skipping align well with earlier findings
by Brysbaert and colleagues [25]. They analysed effect
sizes from studies on skipping and found a dispropor-
tionately large effect of length, compared to proxies of
processing-difficulty like frequency and predictability.
We significantly extend their findings by modelling skip-
ping itself (rather than effect sizes from studies) and
making a direct link to processing mechanisms. For in-
stance, based on their analysis it was unclear how much
of the length effect could be attributed to the lower vis-
ibility of longer words - i.e. how much of the length
effect may be an identifiability effect [25, p. 19]. We
show that length and eccentricity alone explained three
times as much variation as parafoveal identifiability -
and that most of the variation explained by identifiabil-
ity was equally well explained by length and eccentricity.
This demonstrates that length and eccentricity them-
selves - not just to the extent they reduce identifiability
- are key drivers of skipping.

This conclusion challenges dominant, cognitive mod-
els of eye movements, which describe lexical identifi-
cation as the primary driver behind skipping [14} |23,
24]. Importantly, our results do not challenge predic-

tive or parafoveal word identification itself. Rather,
they challenge the notion that moment-to-moment de-
cisions of whether to skip individual words are primarily
driven by the recognition of those words. Instead, our
results suggest a simpler strategy in which a coarse
(e.g. dorsal stream) visual representation is used to
reflexively select the next saccade target following the
simple heuristic to move forward to the next word ‘blob’
within a certain range (see also [25} |26} 47]). On a neu-
ral level, this may imply that saccade target selection
is largely independent of word identification in occip-
itotemporal cortex, and instead relies primarily on a
dorsal-frontoparietal visual selection circuit. This cir-
cuit can operate separately from higher-order visual
analysis, as demonstrated by the fact that visual selec-
tion in the frontal eye fields (FEF) can precede object
identification in inferior temporal cortex (IT) [52} [53].
During reading, this low-level selection circuit may be
the primary determiner of saccadic targets. Influences
of identification and comprehension on target selection
could then be limited to special cases, such as when the
forward drive in FEF is inhibited to make a corrective,
backwards saccade.

When conceptualising reading as a process of infor-
mation sampling [44], such a low-level heuristic for tar-
get selection may appear at odds with other accounts
of sampling, describing saccade targeting via a drive to
reduce uncertainty. These accounts are supported by
evidence that saccades are guided to the most informa-
tive stimuli [54H56] and that parietal neurons involved
in oculomotor decisions encode information gain ex-
pected from a saccade, prior to its execution [57, |58].
However, we do not believe that the accounts are strictly
at odds, as reading may pose a special case that is quite
different from other forms of saccadic sampling. Read-
ing is an over-trained skill in which the space of po-
tential next saccade targets is highly constrained, such
that a simple oculomotor strategy may suffice. That
said, we do find that the amount of word-identifying
information conveyed by preview explains some unique
skipping variation [see also|35]. Therefore, it may be
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that identification-based and oculomotor policies oper-
ate at the same time, in a constant competition that the
oculomotor heuristic overwhelmingly wins.

Given that readers use both prediction and preview,
why would they strongly affect reading times but hardly
word skipping? We suggest this is because these dif-
ferent decisions - of where versus how long to fixate -
are largely independent at made at different moments
[52}[59,160]. Specifically, the decision of where to fixate
- and hence whether to skip the next word - is made
early in saccade programming, which can take 100-150
ms [25}|59, 61]. Although the exact sequence of opera-
tions leading to a saccade remains debated, given that
readers on average only look some 250 ms at a word, it
is clear that skipping decisions are made under strong
time constraints, especially given the lower processing
rate of parafoveal information. We suggest that the
brain meets this constraint by resorting to a computa-
tionally frugal ‘move forward' policy. How long to fixate,
by contrast, depends on saccade initiation. This process
is separate from target selection, as indicated by physi-
ological evidence that variation in target selection time
only weakly explains variation in initiation times, which
are affected by more factors and can be until adjusted
later [52} 60]. This can allow initiation to be informed
by foveal information, which is processed more rapidly
and may thus more directly influence the decision to
either keep dwelling or execute the saccade.

A distinctive feature of our approach is that we focus
on a limited number of computationally explicit expla-
nations, rather than using lexical attributes as proxies
for explanations (e.g. a word's frequency as a proxy for
its identifiability). For instance, we model preview using
a single variable that should capture all effects of vari-
ables like frequency on parafoveal identifiability (see
Figure[S3]and Methods). A limitation of this approach is
that a model imperfection may prevent one from fully
capturing the effect of preview, resulting in an underes-
timation. However, a key advantage of the approach is
that it can avoid confound-related overestimations. For
instance, frequency is correlated with length, so when
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using frequency as a proxy for parafoveal identifiabil-
ity, one may find apparent preview effects which are in
fact length effects, and strongly overestimate preview
importance [62]. Therefore, we only used independent
variables that explicitly formalise a cognitive explana-
tion. Based on the effect sizes for gaze duration (Fig[4)
we do not believe that this model-based approach sig-
nificantly underestimates either prediction or preview,
and we are optimistic the results provide the compre-
hensive, interpretable picture we aimed for.

When comparing Figures 2] B|and [5} the numerical
R? values of the reading times regression may seem
rather small. This could indicate a poor fit, which might
undermine our claim that reading times are to a large
degree explained by cognitive factors. However, we
do not believe this is the case, since our R?'s for gaze
durations are not lower than R*s reported by other
regression analyses of gaze durations in natural reading
[e.g.[17]; and because we find effect sizes in line with
the experimental literature (Fig[4). Therefore, we do
not believe we overfit or underfit the gaze durations.
Instead, what the relatively low R? values indicate, we
suggest, is that gaze durations are inherently noisy; i.e.
that only a limited amount of the variation is systematic
variation. While this noisiness might be interesting in
itself, it is not of interest in this study, which focusses on
the relative importance of different explanations, and
hence only on systematic variation. Therefore, what
matters is not the absolute R? values, but rather the
relative importance of different explanations - in other
words, the relative size of the circles in Figures [2}
and[S12] their overlap, and the explanations each circle
represents. It is on this level of analysis that we find
the stark dissociation - that for skipping (but not for
reading times) a simple low-level heuristic can account
for almost all of the explained variation - and not on
the level of absolute values of variation explained.

A final notable finding is that preview was best ex-
plained by a non-contextual observer. This replicates
the only other study that compared contextual and non-
contextual models of preview [35]. That study focussed
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on skipping; the fact that we obtain the same result
for reading times and in different datasets strength-
ens the conclusion that prior context does not inform
preview. However, this conclusion seems to contradict
experiments finding an interaction between context
and preview [e.g. 9] 163H65]. One explanation for this
discrepancy stems from how the effect is measured.
Experimental studies looked at the effect of context
on the difference in reading time after valid versus in-
valid preview [64; 65]. This may reveal a context effect
not on recognition, but at a later stage (e.g. priming
between context, preview and foveal word). Arguably,
these options yield different predictions. If context af-
fects recognition it may allow identification of otherwise
unidentifiable words. But if the interaction occurs later
it may only amplify processing of recognisable words.
Constructing a model that formally reconciles this dis-
crepancy is an interesting challenge for future work.

Given that readers use both prediction and preview,
why doesn’t contextual prediction inform preview? One
explanation may be the time constraints imposed by
eye movements. Given that readers on average only
look some 250 ms at a word in which they have to
recognise the foveal word and process the parafoveal
percept, this perhaps leaves too little time to fully let
the foveal word and context inform parafoveal preview.
On the other hand, word recognition based on partial
input also occurs in speech perception under signifi-
cant time-constraints. But despite those constraints,
sentence context does influence auditory word recogni-
tion [66,|67], a process best modelled by a contextual
prior [51} |68]; i.e. the opposite of what we find here.
Therefore, rather than being related to time-constraints
per se, it might be additionally related to the underlying
circuitry. More precisely, to the fact that contrary to
auditory word recognition, visual word recognition is a
laboriously acquired skill that occurs throughout areas
in the visual system that are repurposed (rather than
evolved) for reading [69,|70]. Therefore, the global sen-
tence context might be able to dynamically influence
the recognition of speech sounds in temporal cortex,

but not that of words in visual cortex; there, context
effects might be confined to simpler, more local context,
like lexical context effects on letter perception [[71H74].

In conclusion, we have found that two important con-
textual sources of information in reading, linguistic pre-
diction and parafoveal preview, strongly drive variation
in reading times, but hardly affect word skipping, which
is largely based on low-level factors. Our results show
that as readers, we do not always use all information
available to us; and that we are, in a sense, of two minds:
consulting complex inferences to decide how long to
look at a word, while employing semi-mindless scan-
ning routines to decide where to look next. It is striking
that these disparate strategies operate mostly in har-
mony. Only occasionally they go out of step - then we
notice that our eyes have moved too far and we have to
look back, back to where our eyes left cognition behind.

METHODS

We analysed eye-tracking data from three, big, naturalistic
reading corpora, in which native English speakers read texts
while eye-movement data was recorded [32}|33}/39].

Stimulus materials

We considered the English-native portions of the Dundee,
Geco and Provo corpora. The Dundee corpus comprises eye-
movements from 10 native speakers from the UK ([33]), who
read a total of 56.212 words across 20 long articles from
The Independent newspaper. Secondly, the English portion
of the Ghent Eye-tracking Corpus (Geco) [32] is a collection
of eye movement data from 14 UK English speakers who
each read Agathe Cristie's The Mysterious Affair at Styles in
full (54.364 words per participant). Lastly, the Provo corpus
([31]) is a collection of eye movement data from 84 US English
speakers, who each read a total of 55 paragraphs (extracted
from diverse sources) for a total of 2.689 words.

Eye tracking apparatus and procedure

In all datasets, eye movements were recorded monocularly,
by recording the right eye. In Geco and Provo, recordings were
made using an EyeLink 1000 (SR Research, Canada) with a
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spatial resolution of 0.01° and a temporal resolution of a 1000
Hz. For Dundee, a Dr. Bouis oculometer (Dr. Bouis, Kalsruhe,
Germany), with a spatial resolution of < 0.1° and a temporal
resolution of 1000 Hz was used. To minimize head movement,
the participant’s heads were stabilised with a chinrest (Geco,
Provo) or a bite bar (Dundee). In each experiment, texts were
presented in ‘screens’ with either five lines (Dundee) or one
paragraph per screen (Geco and Provo), presented using a
font size of 0.33° per character. Each screen began with a
fixation mark (gaze trigger) that was replaced by the initial
word when stable fixation was achieved. In all datasets, a
9-point calibration was performed prior to the recording. In
the longer experiments, a recalibration was performed every
three screens (Dundee) or either every 10 minutes or when-
ever the drift correction exceeded 0.5° (Geco) For Dundee and
Provo, the order of different texts were randomized across
participants. In Geco, the entire novel was read start to finish
with breaks between each chapter, during which participants
answered comprehension questions.

For each corpus the x,y-values per fixation position were
converted into a word-by-word format. In Dundee, raw
x,y—Vvalues were smoothed by rounding to single character
precision. In Geco and Provo, raw z, y—values for each within-
word- or within-letter fixation were preserved and available
for each word. Across the three data sets we redefined the
bounding boxes around each word, such that they subtended
the area between the first to the last character of the word,
with the boundary set halfway to the neighboring character
(e.g. halfway the before and after the word). Punctuation
before or after the word were left out, and words for which
the bounding box was inconsistently defined were ignored.
For distributions of saccade and fixation data, see Figures
SolST]

Language model

Contextual predictions were formalised using a language
model - a model computing the probability of each word given
the preceding words. Here, we used GPT-2 (XL) - currently
among the best publicly released English language models.
GPT-2 is a transformer-based model, that in a single pass
turns a sequence of tokens (representing either whole words
or word-parts) U = (u1,...,ux) into a sequence of condi-
tional probabilities, (p(u1), p(uzlu1), ..., p(uk | u1, ..., uk—1)).

Roughly, this happens in three steps: first, an embedding
step encodes the sequence of symbolic tokens as a sequence
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of vectors, which can be seen as the first hidden state h,.
Then, a stack of n transformer blocks each apply a series of
operations resulting in a new set of hidden states h;, for each
block l. Finally, a (log-)softmax layer is applied to compute (log-
Jprobabilities over target tokens. In other words, the model
can be summarised as follows:

hO =UW, + Wp (1)
h; = transformer_block (h;—1) Vi € [1,n] (2)
P(u) = softmax (hnWET) , 3)

where W, is the token embedding and W), is the position
embedding.

The key component of the transformer-block is masked
multi-headed self-attention (Fig . This transforms a se-
quence of input vectors (x1, Xz, ...Xx) into a sequence of
output vectors (y1,y2,-.-.,¥%). Fundamentally, each out-
put vector y; is simply a weighted average of the input vec-
tors: y; = Zle w;;x;. Critically, the weight w; ; is not a
parameter, but is derived from a dot product between the
input vectors x7 x;, passed through a softmax and scaled
by a constant determined by the dimensionality di: w;; =
(Cpr?x.i/E;?:lexpx?Xj)ﬁk. Because this is done for each
position, each input vector x; is used in three ways: first, to
derive the weights for its own output, y; (as the query); sec-
ond, to derive the weight for any other output y; (as the key);
finally, in it used in the weighted sum (as the value). Differ-
ent linear transformations are applied to the vectors in each
cases, resulting in Query, Key and Value matrices (Q, K, V).
Putting this all together, we obtain:

QK"
Vi

To be used as a language model, two elements are added.
First, to make the operation position-sensitive, a position
embedding W, is added during the embedding step - see
Equation (T). Second, to enforce that the model only uses

self_attention(Q, K, V') = softmax < ) V. (4)

information from the past, attention from future vectors is
masked out. To give the model more flexibility, each trans-
former block contains multiple instances (‘heads’) of the self-
attention mechanisms from Equation ().

In total, GPT-2 (XL) contains n = 48 blocks, with 12 heads
each; a dimensionality of d = 1600 and a context window of
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k = 1024, yielding a total 1.5 x 10° parameters. We used
the PyTorch implementation of GPT-2 provided by Hugging-
Face's Transformers package [[75]. For words spanning multiple
tokens, we computed their joint probability.

Ideal observer

To compute parafoveal identifiability, we implemented an
ideal observer based on the formalism by Duan & Bicknell [35].
This model formalises parafoveal word identification using
Bayesian inference and builds on previous well-established
'‘Bayesian Reader’ models [42H44]. It computes the probability
of the next word given a noisy percept by combining a prior
over possible words with a likelihood of the noisy percept,
given a word identity:

p(w | ) o< p(w)p(Zlw), (5)

where 7 represents the noisy visual input, and w represents
a word identity. We considered two priors (see Fig[5): a non-
contextual prior (the the overall probability of words in English
based on their frequency in Subtlex ([76]), and a contextual
prior based on GPT2 (see below). Below we describe how
visual information is represented and perceptual inference is
performed. For a graphical schematic of the model, see Fig
for some distinctive simulations showing how the model
captures key effects of linguistic and visual characteristics on
word recognition, see Fig[53]

Sampling visual information

Like in other Bayesian Readers [42H44], noisy visual input is
accumulated by sampling from a multivariate Gaussian which
is centered on a one-hot 'true’ letter vector - here represented
in an uncased 26-dimensional encoding - with a diagional
covariance matrix X(g) = A(e)~/?I. The shape of ¥ is thus
scaled by the sensory quality A(¢) for a letter at eccentricity e.
Sensory quality is computed as a function of the perceptual
span: this uses using a Gaussian integral based follows the
perceptual span or processing rate function from the SWIFT
model [23]. Specifically, for a letter at eccentricity €, A is given
by the integral within the bounding box of the letter:

e+.5 1 .132
Ae) = ———exp | —z— | dz, (6)
© e—5 V2mo? P ( 202)

which, following [35}/44], is scaled by a scaling factor A. Unlike
SWIFT, the Gaussian in Equation[f]is symmetric, since we only

perform inference on information about the next word. By
using one-hot encoding and a diagonal covariance matrix, the
ideal observer ignores similarity structure between letters.
This is clearly a simplification, but one with significant com-
putational benefits; moreover, it is a simplification shared
by all Bayesian Reader-like models [35} 42, |44], which can
nonetheless capture many important aspects of visual word
recognition and reading. To determine parameters A and o,
we performed a grid search on a subset of Dundee and Geco
(see Fig, resulting in A = 1 and o = 3. Note that this
o value is close to the average o value of SWIFT and (3.075)
and corresponds well to prior literature on the size of the
perceptual span (+£15 characters; [13,23| 44]).

Perceptual inference

Inference is performed over the full vocabulary. This is
represented as a matrix which can be seen as a stack of word
vectors, y1, y2, - .., ¥v, Obtained by concatenating the letter
vectors. The vocabulary is thus a V' x d matrix, with V' the
number of words in the vocabulary and d the dimensionality
of the word vectors (determined by the length of the longest
word: d = 26 X lmaz).

To perform inference, we use the belief-updating scheme
from [35], in which the posterior at sample ¢ is expressed as
a (V — 1) dimensional log-odds vector x*, in which each
entry xi(t) represents the log-odds of y; relative to the final
word yy. In this formulation, the initial value of x is thus
simply the prior log odds, x\*) = log p(w;) — log p(w,), and
updating is done by summing prior log-odds and the log-odds
likelihood. This procedure is repeated for T' samples, each
time taking the posterior of the previous timestep as the prior
in the current timestep. Note that using log odds in this way
avoids renormalization:

x = log - (i 12)
3 p (wy | ZO-1)
) (w | 2Ot (I“) | ’LUi)
= 108 (ay [ 200 p (70 ) 7
P (wi | T ’H)) P (T [ )
= log p(wy | ZO-t-D) + log (Z® | wy)

In other words, as visual sample Z) comes in, beliefs are
updated by summing the prior log odds x*~%) and the log-
odds likelihood of the new information x*.
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For a given word w;, the log-odds likelihood of each new
sample is the difference of two multivariate Gaussian log
likelihoods, one centred on y; and one on the last vector y,.
This can be formulated as a linear transformation of Z:

Ax; =logp (T | wi) —logp (T | ww)
=logp(Z | N (y:,%)) —logp(Z | N (ys, X))

= [_%(I—yi)T s (I—yi)} - (8)

1 _
5@y s @)
_veE Ty —yi Sy

+ (yl - y’U)T 27117

2

which implies that updating can be implemented by sam-
pling from a multivariate normal. To perform inference on
a given word, we performed this sampling scheme until con-
vergence (using T' = 50), and then transformed the posterior
log-odds into the log posterior, from which we computed the
Shannon entropy as a metric of parafoveal identifiability.

To compute the parafoveal entropy for each word in the
corpus, we make the simplifying assumption that parafoveal
preview only occurs during the last fixation prior to a sac-
cade, thus computing the entropy as a function of the word
itself and its distance to the last fixation location within the
previously fixated word (which is not always the previous
word). Because this distance is different for each participant,
it was computed separately for each word, for each partic-
ipant. Moreover, because the inference scheme is based
on sampling, we repeated it 3 times, and averaged these to
compute the posterior entropy of the word. The amount of
information obtained from the preview is then simply the
difference between prior and posterior entropy.

The ideal observer was implemented in custom Python
code, and can be found in the data sharing collection (see
below).

Contextual vs non-contextual prior

We considered two observers: one with a non-contextual
prior capturing the overall probability of a word in a language,
and with a contextual prior, capturing the contextual probabil-
ity of a word in a specific context. For the non-contextual prior,
we simply used lexical frequencies from which we computed
the (log)-odds prior used in equation (7). For the contextual
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prior, we derived the contextual prior from log-probabilities
from GPT-2. This effectively involves constructing a new
Bayesian model for each word, for each participant, in each
dataset. To simplify this process, we did not take the full pre-
dicted distribution of GPT-2, but only the ‘nucleus’ of the top
k predicted words with a cumulative probability of 0.95, and
truncated the (less reliable) tail of the distribution. Further,
we simply assumed that the rest of the tail was ‘flat’ and had a
uniform probability. Since the prior odds can be derived from
relative frequencies, we can think of the probabilities in the
flat tail as having a ‘pseudocount’ of 1. If we similarly express
the prior probabilities in the nucleus as implied ‘pseudofre-
quencies’, the cumulative implied nucleus frequency is then
complementary to the the length of the tail, which is simply
the difference between the vocabulary size and nucleus size
(V' — k). As such, for word i in the text, we can express the
nucleus as implied frequencies as follows:
V—k
1—- 3% P(w”|context)’

fregs,, = Pir(w|context)

where P,,.(w”|context) is the trunctated lexical prediction,
and P(w](.i) |context) is predicted probability that word ¢ in the
text is word j in the sorted vocabulary. Note that using this
flat tail not only simplifies the computation, but also deals
with the fact that the vocabulary of GPT-2 is smaller than of
the ideal observer - using this tail we can still use the full
vocabulary (e.g. to capture orthographic uniqueness effects),
while using 95% of the density from GPT-2.

Data selection

In all our analyses, we focus strictly on first-pass reading,
analysing only those fixations or skips when none of the sub-
sequent words have been fixated before. We extensively
preprocessed the corpora so that we could include as many
words as possible. However, we had to impose some addi-
tional restrictions. Specifically we did not include words if
they a) contained non-alphabetic characters; b) if they were
adjacent to blinks; c) if the distance to the prior fixation loca-
tion was more than 24 characters (£8°); moreover, for the
gaze duration we excluded d) words with implausibly short
(< 70ms) or long (> 900ms) gaze durations. Criterion c) was
chosen because some participants occasionally skipped long
sequences of words, up to entire lines or more. Such ‘skipping’
- indicated by saccades much larger than the the perceptual
span - is clearly different from the skipping of words during
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normal reading, and was therefore excluded. Note that these
criteria are comparatively mild (cf. [35}/36]), and leave approx-
imately 1.1 million observations for the skipping analysis, and
593.000 reading times observations.

Regression models: skipping

Skipping was modelled via logistic regression in scikit-learn
[77], with three sets of explanatory variables (or 'models’) each
formalising a different explanation for why a word might be
skipped.

First, a word might be skipped because it could be con-
fidently predicted from context. We formalise this via /in-
guistic entropy, quantifying the information conveyed by the
prediction from GPT-2. We used entropy, not (log) probabil-
ity, because using the next word's probability directly would
presuppose that the word is identified, undermining the dis-
sociation of prediction and preview. By contrast, prior entropy
specifically probes the information available from prediction
only.

Secondly, a word might be skipped because it could be
identified from a parafoveal preview. This was formalised
via parafoveal entropy, which quantifies the parafoveal pre-
view uncertainty (or, inversely, the amount of information
conveyed by the preview). This is a complex function integrat-
ing low-level visual (e.g. decreasing visibility as a function of
eccentricity) and higher-level information (e.g. frequency or
orthographic effects) and their interaction (see Fig[S3). Here,
too we did not use lexical features (e.g. frequency) of the next
word to model skipping directly, as this presupposes that the
word is identified; and to the extent that these factors are
expected to influence identifiability, this is already captured
by the parafoveal entropy (Fig[S3).

Finally, a word might be skipped simply because it is too
short and/or too close to the prior fixation location, such that
a fixation of average length would overshoot the word. This
autonomous oculomotor account was formalised by mod-
elling skipping probability purely as a function of a word'’s
length and its distance to the previous fixation location.

Note that these explanations are not mutually exclusive, so
we also evaluated their combinations (see below).

Regression models: reading time

As an index of reading time, we analysed first-pass gaze
duration, the sum of a word’s first-pass fixation durations. We

analyse gaze durations as they arguably most comprehen-
sively reflect how long a word is looked at, and are the focus
of similar model-based analyses of contextual effects in read-
ing [36}38].. For reading times, we used linear regression, and
again considered three sets of explanatory variables, each
formalising a different kind of explanation.

First, a word may be read more slowly because it is unex-
pected in context. We formalised this using surprisal — log(p),
a metric of a word's unexpectedness - or how much infor-
mation is conveyed by a word’s identity in light of a prior
expectation about the identity. To capture spillover (R; regpa-
per; smith) we included not just the surprisal of the current
word, but also that of the previous two words.

Secondly, a word might be read more slowly because it
was difficult to discern from the parafoveal preview. This was
formalised using the parafoveal entropy (see above).

Finally, a word might be read more slowly because of non-
contextual factors of the word itself. This is an aggregate base-
line explanation, aimed to capture all relevant non-contextual
word attributes, which we contrast to the two major contex-
tual sources of information about a word identity that might
affect reading times (prediction and preview). We included
word class, length, log-frequency, and the relative landing po-
sition (quantified as the distance to word centre in characters.
For log-frequency we used the UK or US version of SUBTLEX
depending on the corpus and included the log-frequency of
the past two words to capture spillover effects.

Note that, while for skipping, we used a non-linguistic base-
line, for reading times we use a non-contextual baseline. This is
because for skipping the most interesting contrast is between
the role of non-linguistic oculomotor control vs an account
that explains skipping via ease of next-word identification (ei-
ther through prediction or preview). For reading times, by
contrast, the most interesting comparison is between prop-
erties of the word itself versus contextual cues, as a purely
non-linguistic account for gaze duration variation seemed less
plausible (indeed, see Figure[ST2|for a supplementary analysis
confirming that the limited relative importance of a purely
non-linguistic account for reading time variation).

Model evaluation

We compared the ability of each model to account for the
variation in the data by probing prediction performance in a
10-fold cross-validation scheme, in which we quantified how
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much of the observed variation in skipping rates and gaze
durations could be explained.

For reading times, we did this using the coefficient of de-
termination, defined via the ratio of residual and total sum
of squares: R* = 1 — %= The ratio 3= relates the error
of the model (SS;.s) to the error of a 'null’ model predict-
ing just the mean (SS:,:), and gives the variance explained.
For skipping, we use a tightly related metric, the McFadden
R?. Like the R? it is computed by comparing the error of
the model to the error of a null model with only an intercept:

Rijep =1 — -2, where L indicates the loss.

While R? and R3,.r are not identical, they are formally
tightly related - critically, both are zero when the prediction

is constant (no variation explained) and go towards one pro-
portionally as the error decreases to zero (i.e. towards all
variation explained). Note that in a cross-validated setting,
both metrics can become negative when prediction of the
model is worse than the prediction of a constant null-model.

Variation partitioning

To assess relative explanatory power, we used variation
partitioning to estimate how much of the explained variation
could be attributed to each set of explanatory variables. This
is also known as variance partitioning, as it is originally based
on partitioning sums of squares in regression analysis; here
we use the more general term ‘variation’ following [78].

Variation partitioning builds on the insight that when two
(groups of) explanatory variables (A and B) both explain some
variation in the data y, and A and B are independent, then
variation explained by combining A and B will be approxi-
mately additive. By contrast, when A and B are fully redun-
dant - e.g. when B only has an apparent effect on y through
its correlation with A - then a model combining A and B will
not explain more than the two alone.

Following [79], we generalise this logic to three (groups
of) explanatory variables, by testing each individually and
all combinations, and use set theory notation and graphical
representation for its simplicity and clarity. For three groups
of explanatory variables (A, B and C), we first evaluate each
separately and all combinations, resulting in 7 models:

A,B,C,AUB,AUC,BUC,AUBUC.

From these 7 models we obtain 7 ‘empirical’ scores (ex-
pressing variation explained), from which we derive the 7
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‘theoretical’ variation partitions: 4 overlap partitions and 3
unique partitions. The first overlap partition is the variation
explained by all models, which we can derive as:

ANBNC = AUBUC+A+B+C—-AUB—-AUC—-BUC. (10)

The next three overlap partitions contain all pairwise inter-
sections of models that did not include the other model:

(ANB)\C=A+B-AUB-AnBNC
(ANC)\B=A+C—-AUC-ANnBNC (11)
(BNC)\A=B+C—-BUC—-ANnBNC.

The last three partitions are those explained exclusively by
each model. This is the relative complement: the partition
unique to A is the relative complement of BC: BC®C. For
simplicity we also use a star notation, indicating the unique
partition of A as A*. These are derived as follows:

A*=BC"° = AUBUC-BUC
B*= ACR° = AUBUC - AUC (12)
C*=ABR® = AUBUC - AU B.

Note that, in the cross-validated setting, the results can be-
come paradoxical and depart from what is possible in classical
statistical theory, such as partitioning sums of squares. For
instance, due to over-fitting, a model that combines multiple
EVs could explain less variance than all of the EVs alone, in
which case some partitions would become negative. How-
ever, following [[79], we believe that the advantages of using
cross-validation outweigh the risk of potentially paradoxical
results in some subjects. Partitioning was carried out for each
subject, allowing to statistically assess whether the additional
variation explained by a given model was significant. On aver-
age, none of the partitions were paradoxical.

Simulating effect sizes

Preview benefits were simulated as the expected diikAer-
ence in gaze duration after a preview of average informa-
tiveness versus after no preview at all (...). This this best
corresponds to an experiment in which the preceding pre-
view was masked (e.g. XXXX) rather than invalid (see Discus-
sion). To compute this we compared the took the difference in
parafoveal entropy between an average preview and the prior


https://doi.org/10.1101/2021.10.06.463362
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.06.463362; this version posted February 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parafoveal preview and linguistic prediction in natural reading e February 2022 e preprint

entropy. Because we standardised our explanatory variables,
this was transformed to subject-specific z-scores and then
multiplied by the regression weights to obtain an expected
effect size.

For the predictability benefit, we computed the expected
difference in gaze duration between ‘high’ and ‘low’ probability
words. ‘High' and ‘low' was empirically defined based on the
human-normed cloze probabilities in provo, which we divided
into thirds using percentiles. The resulting cutoff points (low
< 0.02; high >0.25) were log-transformed, applied to the sur-
prisal values from GPT-2, and multiplied by the weights to
predict effect sizes. Note that these definitions of ‘low’ and
‘high’ may appear low compared to those in literature - how-
ever, most studies collect cloze only for specific ‘target’ words
in relatively predictable contexts, which biases the definition
of ‘low’ vs ‘high’ probability. By contrast, we analysed cloze
probabilities for all words, yielding these values.

Statistical testing

Statistical testing was performed across participants within
each dataset. Because two of the three corpora had a low
number of participants (10 and 14 respectively) we used non-
parametric bootstrap t-tests, by creating resampling a null-
distribution with zero mean counting how likely a t-value at
least as extreme as the true t-value was to occur. Each test
used at least 10* bootstraps; p-values were computed without
assuming symmetry (equal-tail bootstrap).

Data and code availability

The Provo and Geco corpora are freely available ([31}/32]).
All additional data and code needed to reproduce these re-
sults will be made public at the Donders Data Repository.
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Figure S1 — GPT-2 Architecture. Note that this panel is based on the original GPT schematic, with some operations
modified and re-arranged to reflect the slightly different architecture of GPT-2. The most important
and distinctive step of each transformer block is masked multi-headed self-attention (see Methods). Not

visualised here is the initial tokenisation, mapping a sequence of characters into a sequence of tokens.
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Figure S2 — Encoding and inference scheme of the ideal observer analysis. Visualisation of the Ideal Observer,
following formulation in [35]. A word at a given eccentricity is converted into a noisy visual percept, after
which a posterior probability of the identity of the word given the noisy percept was computed using
Bayesian inference. The uncertainty of this posterior (expressed in terms of Shannon entropy) was then
used to quantify the expected uncertainty in the parafoveal percept — or, inversely, a word’s parafoveal
identifiability. In this scheme, words are represented as a concatenation of one-hot encoded letter vectors.
Visual information (Z) is sampled from a multivariate Gaussian centred on the word vector y,, with a
diagonal covariance matrix ¥, the values of which (02) are inversely related to the integral under the
visual acuity function around each letter. The posterior is then computed by comining the likelihood of
the visual information Z given a particular word, with a prior probability of that word p(w) (e.g. derived
from lexical frequency). This computation was performed using a log-odds formulation that exploits the

proportionality in Bayes’ rule to perform belief-updating without renormalisation (see Methods).
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Figure S3 — Modulation of parafoveal identifiability by visual and linguistic features, and their interac-
tion. The parafoveal entropy for a given word (Fig is a complex function that integrates linguistic
and visual characteristics, and which can account for various known effects, such as the effect of lexical
frequency and orthographic neighbourhood on visual word recognition. To illustrate this, we simulated
some characteristic effects of eccentricity, frequency (a,b) and orthographic distinctiveness (c¢,d).

For frequency (a), we randomly sampled 20 ‘rare’ and ‘frequent’ 5-letter words (based on a quartile split),
and computed the parafoveal identifiability (quantified via posterior entropy) at increasing eccentricities.
As can be seen, the percept becomes uncertain at increasing eccentricities more quickly for low-frequency
words, showing that lexical frequency boosts parafoveal identifiability.

For orthography (c), we similarly sampled 20 7-letter words that were classified as orthographically common
or uncommon based on the first three letters. Here, commonality was again defined using a quartile
split but now on the number of alternative words starting with the same three letters. For instance, the
letters ‘awk‘ in the word ‘awkward‘ are highly uncommon and allow to identify the entire word with
high confidence based on just those three letters. As can be seen, the model predicts that orthographic
uniqueness boosts parafoveal identifiability — as observed in experiments (see [13]).

Notably, when we consider the difference between the two classes of words (b,d), an inverted U shape is
apparent: the effects are strongest at intermediate visibility. This demonstrates the well-established fact
that the effects of prior (linguistic) knowledge is strongest at intermediate levels of perceptual uncertainty
(see [42] for discussion). (Note that, while both the orthography and frequency effects are effects of "prior
linguistic knowledge", only the frequency effect is technically an effect of the prior, since the orthography
effect is driven by the generative model.) In all plots, thick lines represent the mean entropy across words;

shaded regions indicate bootstrapped 95% confidence intervals.
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Figure S4 — Grid search to establish ideal observer parameters. Grid search result grand average (top) and
individual results for different corpora and analyses (bottom). To decide on the values for o and A, a
grid search was performed on a random subset of 25% of the Dundee and Geco corpus; we did not apply
it to PROVO because there was not enough data per participant. In both skipping and reading times,
we performed a 10-fold cross-validation with the full model, using parafoveal entropy as computed with
different visual acuity parameters o and A (Equation@. To avoid biasing the contextual vs non-contextual
model comparison (Figure , we used both the contextual and non-contextual prior and averaged the
results to obtain the results for each analysis in each corpus. To ensure that different analyses and corpora
are weighted equally in the grand average, the prediction scores (R? or R%, ;) were normalised by dividing

4 the prediction score of each parameter combination by the highest score (i.e. score of the best parameter
combination) for each subject, for each analysis. This resulted in ¢ = 3 and A = 1, which we have used in
all analyses. Note that o determines the perceptual span (see Figure and that o = 3 corresponds well
to what is known about the size of the perceptual span and is close to default parameters in other models
(see Methods).
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Figure S5 — Distributions of reading times (gaze durations). Kernel density estimate of the distribution of
reading times across all datasets, both on average (left column) and in individual participants (right

column).
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Figure S6 — Average skipping rate in each dataset. Average rate of skipping in all words included in the skipping
analysis (see Methods) in all datasets. Large dots with error bar show group mean plus bootstrapped 95%

confidence interval. Small dots show indidividual participants.
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Figure S7 — Distribution of (forward) saccade lengths in each datasets Kernel density estimate of the distri-
bution of saccade lengths (amplitudes) of first-pass, forward saccades in all datasets, both on average (left
column) and per individual participant (right column). Note that for this visualisation we only included
progressive, forward saccades within the same line (excluding saccades that cross lines), up to a maximum

amplitude of 24 characters (excluding saccades during periods participants were not actually reading).
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Figure S8 — Saccade lengths are tailored to word lengths and exhibit a preferred landing position.
Left column: Kernel density estimate of the saccade lengths, estimated separately for target words of
different lengths. Colours indicate word lengths, vertical lines indicate the mode of the distribution. Right
column: Kernel density estimate (plus mode) of the relative landing position, averaged across words with
different lengths. Saccades are longer for longer words, such that a systematic ‘preferred landing position’
is maintained, slightly left to the center of the word (indicated by the vertical dashed line); see .
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Figure S9 — Skipping variation partitioning for all participants. Explained cross-validated variation partition
for skipping (see Fig of each partition, for each participant, for the skipping analysis. Models for the
baseline, parafoveal preview and linguistic prediction are indicated by ‘base’, ‘para’, and ‘ling’, respectively.
Unions are indicated by U, intersections by N; for the relative complement we use the asterisk-notation: e.g.
‘para*’ indicates variation explained uniquely by parafoveal preview. Note that due to cross-validation,

the amount of variation explained can become negative in some partitions for individual participants (see

Methods).
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Figure S10 — Probability that a skipped word is regressed to depends on its prior identifiability.
Probability that an initially skipped word is subsequently fixated (i.e. regressed to), as a function of
the prior parafoveal entropy, before skipping. Dots with connecting lines show the average regression
probability for initially skipped words as a function of the binned prior parafoveal entropy. Error bars
show the (bootstrapped) 95% confidence interval around the mean (across participants). In all datasets,
the probability that a skipped word gets subsequently fixated depends on the amount of visual information
about word identity that was available before the word was was skipped, suggesting a compensation
mechanism. Note that the binning is done for visualisation purposes only. Statistical evaluation is
based on a subject-wise logistic regression on the word-by-word parafoveal entropy and regression values.

Statistical significance is established by a bootstrap test on the subjects’ coefficients, in each dataset.
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Figure S11 — Reading times variance partitioning. Explained cross-validated variation partition for skipping

10

(see Fig[3) of each partition, for each participant, for the skipping analysis. Models for the baseline,
parafoveal preview and linguistic prediction are indicated by ‘base’; ‘para’, and ‘ling’, respectively. Unions
are indicated by U, intersections by N; for the relative complement we use the asterisk-notation: e.g.
‘para*’ indicates variation explained uniquely by parafoveal preview (see Methods). Note that due to

cross-validation, the amount of variation explained can become negative in individual participants (see
Methods).
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Figure S12 — Reading times variance partitioning with and without non-linguistic factors Same as in Fig
but comparing the baseline with (a)) or without (b)) the primary non-linguistic explanatory factor

for reading time variation — viewing position . Including the viewing position adds 0.7% additional
variance explained. This demonstrates while that viewing position affect reading times, the amount of

variance uniquely explained by non-linguistic factors is much lower for reading times than for skipping.
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Table S1 — Literature sample for effect size ranges

Effect

Effect type Publication .
size

Inhoff, A. W. (1989). Lexical access during eye fixations
. in reading: Are word access codes used to integrate lexical
preview benefit . ) . . 51
information across interword fixations?. Journal of Memory
and Language, 28(4), 444-461.

Veldre, A., & Andrews, S. (2018). Parafoveal preview effects
. depend on both preview plausibility and target predictability.
preview benefit . . . . . 49
Lexical access during eye fixations in reading: Quarterly
Journal of Experimental Psychology, 71(1), 64-74.

Inhoff, A. W., & Rayner, K. (1986). Parafoveal word pro-
preview benefit cessing during eye fixations in reading: Effects of word | 40
frequency. Perception & psychophysics, 40(6), 431-439.
McDonald, S. A. (2006). Parafoveal preview benefit in
preview benefit reading is only obtained from the saccade goal. Vision | 35
Research, 46(26), 4416-4424.

Williams, C. C., Perea, M., Pollatsek, A., & Rayner, K.
(2006). Previewing the neighborhood: The role of ortho-
preview benefit graphic neighbors as parafoveal previews in reading. Journal | 26.7
of Experimental Psychology: Human Perception and Per-
formance, 32(4), 1072.

Kennison, S. M., & Clifton, C. (1995). Determinants of
parafoveal preview benefit in high and low working memory
preview benefit capacity readers: Implications for eye movement control. | 25.25
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 21(1), 68.

Blanchard, Harry E., Alexander Pollatsek, and Keith
preview benefit Rayner. "The acquisition of parafoveal word information in | 22.6
reading." Perception & Psychophysics 46.1 (1989): 85-94.
Schroyens, W., Vitu, F., Brysbaert, M., & d’Ydewalle, G.

(1999). Eye movement control during reading: Foveal load

preview benefit 14.6

and parafoveal processing. The Quarterly Journal of Exper-
imental Psychology Section A, 52(4), 1021-1046.

Ehrlich, S. F.; & Rayner, K. (1981). Contextual effects on
prediction benefit | word perception and eye movements during reading. Journal | 33
of verbal learning and verbal behavior, 20(6), 641-655.

Continued on next page
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Table S1 — Continued from previous page

Effect type
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Effect

size
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prediction benefit

prediction benefit

prediction benefit

prediction benefit

prediction benefit

Rayner, K., & Well, A. D. (1996). Effects of contextual con-
straint on eye movements in reading: A further examination.
Psychonomic Bulletin & Review, 3(4), 504-509.

RJ. Altarriba, J. Kroll, A. Sholl, K. Rayner. (1996) The
influence of lexical and conceptual constraints on reading
mixed-language sentences: Evidence from eye fixations and
naming times Memory & Cognition, 24 (1996), pp. 477-492.
Ashby, J., Rayner, K., & Clifton Jr, C. (2005). Eye move-
ments of highly skilled and average readers: Differential
effects of frequency and predictability. The Quarterly Jour-
nal of Experimental Psychology Section A, 58(6), 1065-1086.
Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004).
The effects of frequency and predictability on eye fixations
in reading: implications for the EZ Reader model. Jour-
nal of Experimental Psychology: Human Perception and
Performance, 30(4), 72

Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001).
Eye movement control in reading: Word predictability has
little influence on initial landing positions in words. Vision
Research, 41(7), 943-954.

Rayner, K., Slattery, T. J., Drieghe, D., & Liversedge, S. P.
(2011). Eye movements and word skipping during reading:
effects of word length and predictability. Vision Research,
41(7), 943-954.

Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C.
(2010). The frequency-predictability interaction in reading:
It depends where you’re coming from. Journal of Experi-
mental Psychology: Human Perception and Performance,
36(5), 1294aAS1313.
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