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Abstract

In a typical text, readers look much longer at some words than at others and fixate some words multiple times, while

skipping others altogether. Historically, researchers explained this variation via low-level visual or oculomotor factors,

but today it is primarily explained in terms of cognitive factors, such as how well word identity can be predicted

from context or discerned from parafoveal preview. While the existence of these effects has been well established

in experiments, the relative importance of prediction, preview and low-level factors for eye movement variation in

natural reading is unclear. Here, we address this question in three large datasets (n=104, 1.5 million words), using

a deep neural network and Bayesian ideal observer to model linguistic prediction and parafoveal preview from

moment to moment in natural reading. Strikingly, neither prediction nor preview was important for explaining word

skipping – the vast majority of skipping was explained by a simple oculomotor model. For reading times, by contrast,

we found strong but independent contributions of both prediction and preview, with effect sizes matching those

from controlled experiments. Together, these results challenge dominant models of eye movements in reading by

showing that linguistic prediction and parafoveal preview are not important determinants of word skipping.

INTRODUCTION

When reading a text, readers move their eyes across

the page to bring new information to the centre of the vi-

sual field, where perceptual sensitivity is highest. While

it may subjectively feel as if the eyes smoothly slide

along the text, they in fact traverse the words with rapid

jerky movements called saccades, followed by brief sta-

tionary periods called fixations. Across a text, saccades

and fixations are highly variable and seemingly erratic:

Some fixations last less than 100 ms, others more than

400; and while some words are fixated multiple times,

many other words are skipped altogether [1, 2]. What

explains this striking variation?

Historically, researchers have pointed to low-level

non-linguistic factors like word length, oculomotor

noise, or the relative position where the eyes happen

to land [2–5]. Such explanations were motivated by the

idea that oculomotor control was largely autonomous.

In this view, readers can adjust saccade lengths and fixa-

tion durations to global characteristics like text difficulty

or reading strategy, but not to subtle word-by-word

differences in language processing [2–4, 6].

As reading was studied in more detail, however, it

became clear that the link between eye movements

and cognition was more direct. For instance, it was

found that fixation durations were shorter for words

with higher frequency [7, 8]. Eye movements were even

shown to depend on how well a word’s identity could be

inferred before fixation. Specifically, researchers found

that words are read faster and skipped more often if

they are predictable from linguistic context [9, 10] or if

they are identifiable from a parafoveal preview [11–13].

These demonstrations of a direct link between eye

movements and language processing overturned the
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autonomous view, replacing it by cognitive accounts

describing eye movements during reading as largely,

if not entirely, controlled by linguistic processing [14,

15]. Today, many studies still build on the powerful

techniques like gaze-contingent displays that helped

overturn the autonomous view, but now askmuchmore

detailed questions, like whether word identification is

a distributed or sequential process [16, 17]; how many

words can be processed in the parafovea [18]; at which

level they are analysed [19, 20], and how this may differ

between writing systems or orthographies [21, 22].

Here, we ask a different, perhaps more elemental

question: how much of the variation in eye movements

do linguistic prediction, parafoveal preview, and non-

linguistic factors each explain? That is, how important

are these factors for determining how the eyes move

during reading? Dominant, cognitive models explain

eye movement variation primarily as a function of on-

going processing. Skipping, for instance, is modelled

as the probability that a word is identified before fixa-

tion [14, 23, 24]. Some, however, have questioned this

purely cognitive view, suggesting that low-level features

like word eccentricity or length might be more impor-

tant [25–27]. Similarly, one may ask what drives next-

word identification: is identifying the next word mostly

driven by linguistic predictions [28] or by parafoveal per-

ception? Remarkably, while it is well-established that

both linguistic and oculomotor, and both predictive and

parafoveal processing, all affect eye-movements [13, 25,

29, 30], a comprehensive picture of the their relative ex-

planatory power is currently missing, perhaps because

they are seldom studied all at the same time.

To arrive at such a comprehensive picture we focus

on natural reading, analysing three large datasets of

participants reading passages, long articles, and even

an entire novel – together encompassing 1.5 million

(un)fixated words, across 108 individuals [31–33]. In-

stead of manipulating word predictability or perturb-

ing parafoveal perceptibility, we combine deep neural

language modelling [34] and Bayesian ideal observer

analysis [35] to quantify how much information is con-

veyed by both factors, on a moment-by-moment basis.

This way, we can probe the effect of both prediction

and preview on each word during natural reading. Such

a broad-coverage approach has been applied to the

effects of predictability on reading before [30, 36–39],

but either without considering preview or only through

coarse heuristics such as using frequency as a proxy for

parafoveal identifiability [17, 40, 41] (cf. [35]). By con-

trast, here we explicitly model both, in addition to low-

level explanations like autonomous oculomotor control.

To assess explanatory power, we use set theory to de-

rive the unique and shared variation in eye movements

explained by each model.

To preview the results, this revealed a striking dis-

sociation between skipping and reading times. For

word skipping, the overwhelming majority of variation

could be explained – mostly uniquely explained – by a

non-linguistic oculomotor model. For reading times,

by contrast, we found strong effects of both predic-

tion and preview, tightly matching effect sizes from

controlled designs. Interestingly, linguistic prediction

and parafoveal preview seem to operate independently:

we found strong evidence against Bayes-optimal inte-

gration of the two. Together, these results challenge

dominant cognitive models of reading, and show that

skipping (or the decision of where to fixate) and reading

times (i.e. how long to fixate) are governed by different

principles.

RESULTS

We analysed eye movements from three large

datasets of participants reading texts ranging from iso-

lated paragraphs to an entire novel. Specifically, we

considered three datasets: Dundee [33] (N=10, 51.502

words per participant), Geco [32] (N=14, 54.364 words

per participant) and Provo [31] (N=84, 2.689 words per

participant). In each corpus, we analysed both skipping

and reading times (indexed by gaze duration), as they

are thought to reflect separate processes: the decision

of where vs how long to fixate, respectively [14, 25]. For

more descriptive details about the data across partici-
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Figure 1: Quantifying two types of context during natural reading

a) Readers can infer the identity of the next word before fixation either by predicting it from context or by discerning it

from the parafovea. Both can be cast as a probabilistic inference about the next word, either given the preceding words

(prediction, blue) or given a parafoveal percept (preview, orange). b) To model prediction, we use GPT-2, one of the most

powerful publicly available language models [34]. For preview, we use an ideal observer [35] based on well-established

‘Bayesian Reader‘ models [42–44]. Importantly, we do not use either model as a cognitive model per se, but rather as a tool

to quantify how much information is in principle available from prediction or preview on a moment-by-moment basis.

pants and datasets, see Methods and Figures S5-S7.

To estimate the effect of linguistic prediction and

parafoveal preview, we quantified the amount of in-

formation conveyed by both factors for each word in

the corpus (for preview, this was tailored to each in-

dividual participant, since each word was previewed

at a different eccentricity by each participant). To this

end, we formalised both processes as a probabilistic

belief about the identity of the next word, given either

the preceding words (prediction) or a noisy parafoveal

percept (preview; see Figure 1a). As such, we could

describe these disparate cognitive processes using a

common information-theoretic currency. To compute

the probability distributions, we used GPT-2 for predic-

tion [34] and a Bayesian ideal observer for preview [35]

(see Figure 1b and Methods).

Prediction and preview increase skipping rates and

reduce reading times

We first asked whether our formalisations allowed

us to observe the expected effects of prediction and

preview, while statistically controlling for oculomotor

and lexical variables in a multiple regression model. Be-

cause the decisions of whether to skip and how long to

fixate a word are made at different moments, we mod-

eled each separately with a different set of explanatory

variables; but for both, we considered the full model

(detailed below).

As expected, we found in all datasets that words

were more likely to be skipped if there was more in-

formation available from the linguistic prediction (Boot-

strap: Dundee, p = 0.023; GECO, p = 0.034; Provo

p < 10−5) and/or the parafoveal preview (Bootstrap:

Dundee, p = 4×10−5; GECO, p < 10−5; Provo p < 10−5).

Similarly, reading times were reduced for words that

were more predictable (all p′s < 3.2 × 10−4) or more
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identifiable from the parafovea (all p′s < 4× 10−5).

Together this confirms that our model-based ap-

proach can capture the expected effects of both pre-

diction [15] and preview [13] in natural reading, while

statistically controlling for other variables.

Skipping can be largely explained by non-linguistic

oculomotor factors

After confirming that prediction and preview had

a statistically significant influence on word skipping

and reading times, we went on to assess their rela-

tive explanatory power. That is, we asked the question

how important these factors were, by examining how

much variance was explained by each. To this end, we

grouped the variables from the full regression model

into different types of explanations, and assessed how

well each type accounted for the data.

For skipping, we considered three explanations. First,

a word might be skipped purely because it could be

predicted from context – i.e. purely as a function of

the amount of information conveyed by the prediction.

Secondly, a word might be skipped because its iden-

tity could be gleaned from a parafoveal preview – that

is, purely as a function of the informativeness of the

preview. Finally, a word might be skipped simply be-

cause it is so short or so close to the prior fixation

location that an autonomously generated saccade will

likely overshoot it, irrespective of its linguistic proper-

ties – in other words, purely as a function of length

and eccentricity. Note that we did not include often-

used lexical attributes like frequency to predict skip-

ping, because using attributes of wordn+1 already pre-

supposes parafoveal identification. Moreover, to the

extent that a lexical attribute like frequency might in-

fluence a words parafoveal identifiability, this should

already be captured by the parafoveal entropy (see Fig-

ure S3 and Methods for more details).

For each word, we thus modelled the probability of

skipping either as a function of prediction, preview, or

oculomotor information, or by any combination of the

three. Then we partitioned the unique and shared cross-

validated variation explained by each account. Strik-

ingly, this revealed that the overwhelming majority of

explained skipping variation (94 %) could be accounted

for by the non-linguistic baseline (Figure 2). Moreover,

the majority of the variation was only explained by the

baseline, which explained 10 times more unique varia-

tion than prediction and preview combined. There was

a large degree of overlap between preview and the ocu-

lomotor baseline, which is unsurprising since a word’s

identifiability decreases as a function of its eccentricity

and length. Interestingly, there was even more overlap

between the prediction and baseline model: almost all

skipping variation that could be explained by contex-

tual constraint could be equally well explained by the

oculomotor baseline factors.

Importantly, while the contribution of prediction and

preview was small, it was significant both for prediction

(bootstrap: Dundee, p = 0.015; Geco, p = 0.0001; Provo,

p < 10−5) and preview (all p′s < 5× 10−5), confirming

that both factors do affect skipping. Crucially however,

the vast majority of skipping that could be explained by

either prediction or preview was equally well explained

by the more parsimonious oculomotor model – which

also explained much more of the skipping data over-

all. This challenges the idea that word identification is

the driver behind skiping, instead pointing to a simpler

strategy, primarily based on length and eccentricity.

What might this simpler strategy be? One possibility

is a ‘blind‘ random walk: generating saccades of some

average length, plus oculomotor noise. However, we

find that saccades are tailored to word length and ex-

hibit a well-known preferred landing position, slightly

left to a word’s center (see Figure S8; compare [45, 46]).

This suggests the decision of where to look next is not

‘blind’ but based on a coarse low-level visual analysis of

the parafovea, for instance conveying just the location

of the next word ‘blob’within a preferred range (i.e. skip-

ping words too close or short; c.f. [25, 26, 47]). Presum-

ably, such a simple strategy would on average sample

visual input conveniently, yielding saccades just large
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Figure 2: Variation in skipping explained by predictive, parafoveal and autonomous oculomotor processing

a) Proportions of cross-validated variation explained by prediction (blue), preview (orange) oculomotor baseline (grey) and

their overlap; averaged across datasets (each dataset weighted equally). b) Variation partitions for each individual dataset,

including statistical significance of variation uniquely explained by predictive, parafoveal or oculomotor processing. Stars

indicate significance-levels of the cross-validated unique variation explained (bootstrap t-test against zero): p < 0.05 (*),

p < 0.05 (**), p < 0.001 (***) For results of individual participants, and their consistency, see Figure S9.

enough for comprehension to keep track. However, if

such an ‘autopilot’ is indeed independent, one would

expect it occasionally go out of step, such that a skipped

word cannot be recognised or guessed, derailing com-

prehension. In line with this, we find evidence for a

compensation strategy. The probability that initially

skipped word are subsequently (regressively) fixated is

strongly, inversely related to its parafoveal identifiabil-

ity before skipping (see Figure S10; logistic regression

bootstrap test, all p’s < 10−5). Together, this suggests

that initial skipping decisions are primarily driven by

a low-level oculomotor ‘autopilot’, but one that is kept

in line with online language comprehension by directly

correcting saccades that outrun recognition.

Reading times are strongly modulated by predic-

tion and preview

For reading times (operationalised through gaze du-

rations, so considering foveal ‘reading’ only), we also

considered three explanatory factors. First, a word
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Figure 3: Variation in reading times explained by predictive, parafoveal and non-contextual information

a)Grand average of partitions of cross-validated variance in reading times (indexed by gaze durations) across datasets (each

dataset weighted equally) explained by non-contextual factors (grey), parafoveal preview (orange), and linguistic prediction

(blue). b) Variance partitions for each individual dataset, including statistical significance of the cross-validated variance

explained uniquely by the predictive, parafoveal or non-contextual explanatory variables. Stars indicate significance-levels

of the cross-validated unique variance explained (bootstrap t-test against zero): p < 0.05 (**), p < 0.001 (***). Note that

the non-contextual model here included both lexical attributes (e.g. frequency) and oculomotor factors (relative viewing or

landing position); assessing these separately reveals that reading time variation uniquely explained by oculomotor factors

was small (see Fig S12). For results of individual participants, see Figure S11.

might be read faster because it was predictable from

the preceding context, which we formalised via linguis-

tic surprise. Second, a word might be read faster if it

could already be partly identified from the parafoveal

preview (before fixation). This informativeness of the

preview was again formalised via the parafoveal pre-

view entropy. Finally, a word might be read faster due

to attributes of the word itself, such as lexical frequency.

This last explanatory factor functioned as a baseline

that captured key non-contextual word attributes, both

linguistic and non-linguistic (see Methods).

In all datasets, prediction (all p′s < 7.7 × 10−3), pre-

view (all p′s < 1.2 × 10−4) and non-contextual woord

attributes (all p′s < 1.8× 10−4) again all explained sig-

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2021.10.06.463362doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463362
http://creativecommons.org/licenses/by/4.0/


Parafoveal preview and linguistic prediction in natural reading • February 2022 • preprint

Figure 4: Simulated preview and predictability benefits match those reported in experimental literature

Preview (left) and predictability benefits (right) inferred from our analysis of each dataset, and observed in a sample of

studies (see Table S1). In this analysis, preview benefit was simulated as the expected difference in gaze duration after a

preview of average informativeness versus after no preview at all. Predictability benefit was defined as the difference in

gaze duration for high versus low probability words; ‘high’ and ‘low’ were defined by subdividing the cloze probabilities

from provo into equal thirds of ‘low’, ‘medium’ and ‘high’ probability (see Methods). In each plot, small dots with dark edges

represent either individual subjects within one dataset or individual studies in the sample of the literature; larger dots with

error bars represent the mean effect across individuals or studies, plus the bootstrapped 99% confidence interval.

nificant unique variation. The non-contextual baseline

explained the most variance, which shows – perhaps

unsurprisingly – that properties of the word itself are

more important than contextual factors in determining

how long a word is fixated. Critically however, com-

pared to skipping the unique contribution of prediction

and preview was more than three times higher (see Fig

3). Specifically, while prediction and preview could only

uniquely account for 6% of explained word skipping

variation, they uniquely accounted for more than 18 %

of explained variation in reading times. Importantly, the

non-contextual baseline used to predict reading times

included both linguistic (e.g. lexical frequency) and non-

linguistic information (viewing position) of the current

word. When we analysed these separately, we found

that the unique contribution of non-linguistic factors

was small (see Figure S12). This shows that contrary to

skipping, variation in reading time is heavily influenced

by online linguistic processing.

Naturalistic prediction and preview benefit effect

match experimental effect sizes

The previous result confirms that reading times (in-

dexed via gaze durations) are highly sensitive to linguis-

tic and parafoveal context, in line with decades of re-

search on eye movements in reading [48]. But how well

do our results compare exactly to established findings

from the experimental literature?

To directly address this question, we simulated, for

each participant the effect size of two well-established

effects that would be expected to be obtained if we

would conduct a well-controlled factorial experiment.

Specifically, because we estimated howmuch additional

information from either prediction or preview (in bits)

reduced reading times (in milliseconds) we could pre-

dict reading times for words that are expected vs unex-

pected (predictability benefit [29, 49]) or have valid vs

invalid preview (i.e. preview benefit [13]).

The simulated effects tightly corresponded to those
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from experimental studies (see Fig 4). This shows that

our analysis does not underfit or otherwise underesti-

mate the effect of prediction or preview. Moreover, it

shows that the effect sizes, which are well-established

in controlled designs, generalise to natural reading. This

is especially interesting for the preview benefit, because

it implies that the effect can be largely explained in

terms of parafoveal lexical identification [20, 48], and

that other factors such as low-level visual ‘preprocess-

ing’, or interference between the (invalid) parafoveal

percept and foveal percept, may only play a minor role

[c.f. 13, 14].

No integration of prediction and preview

So far, we have treated prediction and preview as be-

ing independent. However, it might be that these pro-

cesses, while using different information, are integrated

– such that a word is parafoveally more identifiable

when it is also more predictable in context. Bayesian

probability theory proposes an elegant and mathemat-

ically optimal way to integrate these sources of infor-

mation: the prediction of the next word could be in-

corporated as a prior in perceptual inference. Such a

contextual prior fits into hierarchical Bayesian models

of vision [50], and has been observed in speech percep-

tion, where a contextual prior guides the recognition of

words from a partial sequence of phonemes [51]. Does

such a prior also guide word recognition in reading,

based on a partial parafoveal percept?

To test this, we recomputed the parafoveal identifia-

bility of each word for each participant, but now with

an ideal observer using the prediction from GPT-2 as

a prior. As expected, bayesian integration enhanced

perceptual inference: on average, the observer using

linguistic prediction as a prior extracted more informa-

tion from the preview (± 6.25 bits) than the observer

not taking the prediction into account (± 4.30 bits;

T1.39×106 = 1.35× 1011, p ≈ 0). Interestingly however, it

provided a worse fit to the human reading data. This

was established by comparing two versions of the full

regression model: one with parafoveal entropy from

Figure 5: Evidence against bayesian integration of lin-

guistic prediction and parafoveal preview

Cross-validated prediction performance of the full

reading times (top) and skipping (bottom) model

(including all variables), equipped with parafoveal

preview information either from the contextual ob-

server or from the non-contextual observer. Dots

with connecting lines indicate participants; stars in-

dicate significance: p < 0.001 (***).

the (theoretically superior) contextual ideal observer

and one from the non-contextual ideal observer. In

all datasets both skipping and reading times were bet-

ter explained by a model including parafoveal identifi-

ability from the non-contextual observer (skipping: all

p′s < 10−5; reading times: p′s < 10−5; see Figure 5).

Together, this suggests linguistic prediction and

parafoveal preview are not integrated, but instead oper-

ate independently – thereby highlighting a remarkable

sub-optimality in reading.

DISCUSSION

Eye movements during reading are highly variable.

Across three large datasets, we have assessed the rel-

ative importance of two major cognitive explanations

for this variability – linguistic prediction and parafoveal

preview – compared to alternative non-linguistic and
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non-contextual explanations. This revealed a stark dis-

sociation between skipping and reading times. For word

skipping, neither prediction nor preview was especially

important, as the overwhelming majority of variation

could be explained – mostly uniquely explained – by

an oculomotor baseline model using just word length

and eccentricity. For reading times, by contrast, we

observed clear contributions of both prediction and

preview (in addition to non-contextual features like fre-

quency) and effect sizes matching those obtained in

controlled experiments. Interestingly, preview effects

were best captured by a non-contextual observer, sug-

gesting that while readers use both linguistic prediction

and preview, these do not appear to be integrated on-

line. Together, the results underscore the dissociation

between skipping and reading times, and show that for

word skipping, the link between eye movements and

cognition is less direct than commonly thought.

Our results on skipping align well with earlier findings

by Brysbaert and colleagues [25]. They analysed effect

sizes from studies on skipping and found a dispropor-

tionately large effect of length, compared to proxies of

processing-difficulty like frequency and predictability.

We significantly extend their findings by modelling skip-

ping itself (rather than effect sizes from studies) and

making a direct link to processing mechanisms. For in-

stance, based on their analysis it was unclear howmuch

of the length effect could be attributed to the lower vis-

ibility of longer words – i.e. how much of the length

effect may be an identifiability effect [25, p. 19]. We

show that length and eccentricity alone explained three

times as much variation as parafoveal identifiability –

and that most of the variation explained by identifiabil-

ity was equally well explained by length and eccentricity.

This demonstrates that length and eccentricity them-

selves – not just to the extent they reduce identifiability

– are key drivers of skipping.

This conclusion challenges dominant, cognitive mod-

els of eye movements, which describe lexical identifi-

cation as the primary driver behind skipping [14, 23,

24]. Importantly, our results do not challenge predic-

tive or parafoveal word identification itself. Rather,

they challenge the notion that moment-to-moment de-

cisions of whether to skip individual words are primarily

driven by the recognition of those words. Instead, our

results suggest a simpler strategy in which a coarse

(e.g. dorsal stream) visual representation is used to

reflexively select the next saccade target following the

simple heuristic to move forward to the next word ‘blob’

within a certain range (see also [25, 26, 47]). On a neu-

ral level, this may imply that saccade target selection

is largely independent of word identification in occip-

itotemporal cortex, and instead relies primarily on a

dorsal-frontoparietal visual selection circuit. This cir-

cuit can operate separately from higher-order visual

analysis, as demonstrated by the fact that visual selec-

tion in the frontal eye fields (FEF) can precede object

identification in inferior temporal cortex (IT) [52, 53].

During reading, this low-level selection circuit may be

the primary determiner of saccadic targets. Influences

of identification and comprehension on target selection

could then be limited to special cases, such as when the

forward drive in FEF is inhibited to make a corrective,

backwards saccade.

When conceptualising reading as a process of infor-

mation sampling [44], such a low-level heuristic for tar-

get selection may appear at odds with other accounts

of sampling, describing saccade targeting via a drive to

reduce uncertainty. These accounts are supported by

evidence that saccades are guided to the most informa-

tive stimuli [54–56] and that parietal neurons involved

in oculomotor decisions encode information gain ex-

pected from a saccade, prior to its execution [57, 58].

However, we do not believe that the accounts are strictly

at odds, as reading may pose a special case that is quite

different from other forms of saccadic sampling. Read-

ing is an over-trained skill in which the space of po-

tential next saccade targets is highly constrained, such

that a simple oculomotor strategy may suffice. That

said, we do find that the amount of word-identifying

information conveyed by preview explains some unique

skipping variation [see also 35]. Therefore, it may be
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that identification-based and oculomotor policies oper-

ate at the same time, in a constant competition that the

oculomotor heuristic overwhelmingly wins.

Given that readers use both prediction and preview,

why would they strongly affect reading times but hardly

word skipping? We suggest this is because these dif-

ferent decisions – of where versus how long to fixate –

are largely independent at made at different moments

[52, 59, 60]. Specifically, the decision of where to fixate

– and hence whether to skip the next word – is made

early in saccade programming, which can take 100-150

ms [25, 59, 61]. Although the exact sequence of opera-

tions leading to a saccade remains debated, given that

readers on average only look some 250 ms at a word, it

is clear that skipping decisions are made under strong

time constraints, especially given the lower processing

rate of parafoveal information. We suggest that the

brain meets this constraint by resorting to a computa-

tionally frugal ‘move forward’ policy. How long to fixate,

by contrast, depends on saccade initiation. This process

is separate from target selection, as indicated by physi-

ological evidence that variation in target selection time

only weakly explains variation in initiation times, which

are affected by more factors and can be until adjusted

later [52, 60]. This can allow initiation to be informed

by foveal information, which is processed more rapidly

and may thus more directly influence the decision to

either keep dwelling or execute the saccade.

A distinctive feature of our approach is that we focus

on a limited number of computationally explicit expla-

nations, rather than using lexical attributes as proxies

for explanations (e.g. a word’s frequency as a proxy for

its identifiability). For instance, we model preview using

a single variable that should capture all effects of vari-

ables like frequency on parafoveal identifiability (see

Figure S3 and Methods). A limitation of this approach is

that a model imperfection may prevent one from fully

capturing the effect of preview, resulting in an underes-

timation. However, a key advantage of the approach is

that it can avoid confound-related overestimations. For

instance, frequency is correlated with length, so when

using frequency as a proxy for parafoveal identifiabil-

ity, one may find apparent preview effects which are in

fact length effects, and strongly overestimate preview

importance [62]. Therefore, we only used independent

variables that explicitly formalise a cognitive explana-

tion. Based on the effect sizes for gaze duration (Fig 4)

we do not believe that this model-based approach sig-

nificantly underestimates either prediction or preview,

and we are optimistic the results provide the compre-

hensive, interpretable picture we aimed for.

When comparing Figures 2, 3 and 5, the numerical

R2 values of the reading times regression may seem

rather small. This could indicate a poor fit, which might

undermine our claim that reading times are to a large

degree explained by cognitive factors. However, we

do not believe this is the case, since our R2 ’s for gaze

durations are not lower than R2 ’s reported by other

regression analyses of gaze durations in natural reading

[e.g. 17]; and because we find effect sizes in line with

the experimental literature (Fig 4). Therefore, we do

not believe we overfit or underfit the gaze durations.

Instead, what the relatively low R2 values indicate, we

suggest, is that gaze durations are inherently noisy; i.e.

that only a limited amount of the variation is systematic

variation. While this noisiness might be interesting in

itself, it is not of interest in this study, which focusses on

the relative importance of different explanations, and

hence only on systematic variation. Therefore, what

matters is not the absolute R2 values, but rather the

relative importance of different explanations – in other

words, the relative size of the circles in Figures 2, 3

and S12, their overlap, and the explanations each circle

represents. It is on this level of analysis that we find

the stark dissociation – that for skipping (but not for

reading times) a simple low-level heuristic can account

for almost all of the explained variation – and not on

the level of absolute values of variation explained.

A final notable finding is that preview was best ex-

plained by a non-contextual observer. This replicates

the only other study that compared contextual and non-

contextual models of preview [35]. That study focussed
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on skipping; the fact that we obtain the same result

for reading times and in different datasets strength-

ens the conclusion that prior context does not inform

preview. However, this conclusion seems to contradict

experiments finding an interaction between context

and preview [e.g. 9, 63–65]. One explanation for this

discrepancy stems from how the effect is measured.

Experimental studies looked at the effect of context

on the difference in reading time after valid versus in-

valid preview [64, 65]. This may reveal a context effect

not on recognition, but at a later stage (e.g. priming

between context, preview and foveal word). Arguably,

these options yield different predictions. If context af-

fects recognition it may allow identification of otherwise

unidentifiable words. But if the interaction occurs later

it may only amplify processing of recognisable words.

Constructing a model that formally reconciles this dis-

crepancy is an interesting challenge for future work.

Given that readers use both prediction and preview,

why doesn’t contextual prediction inform preview? One

explanation may be the time constraints imposed by

eye movements. Given that readers on average only

look some 250 ms at a word in which they have to

recognise the foveal word and process the parafoveal

percept, this perhaps leaves too little time to fully let

the foveal word and context inform parafoveal preview.

On the other hand, word recognition based on partial

input also occurs in speech perception under signifi-

cant time-constraints. But despite those constraints,

sentence context does influence auditory word recogni-

tion [66, 67], a process best modelled by a contextual

prior [51, 68]; i.e. the opposite of what we find here.

Therefore, rather than being related to time-constraints

per se, it might be additionally related to the underlying

circuitry. More precisely, to the fact that contrary to

auditory word recognition, visual word recognition is a

laboriously acquired skill that occurs throughout areas

in the visual system that are repurposed (rather than

evolved) for reading [69, 70]. Therefore, the global sen-

tence context might be able to dynamically influence

the recognition of speech sounds in temporal cortex,

but not that of words in visual cortex; there, context

effects might be confined to simpler, more local context,

like lexical context effects on letter perception [71–74].

In conclusion, we have found that two important con-

textual sources of information in reading, linguistic pre-

diction and parafoveal preview, strongly drive variation

in reading times, but hardly affect word skipping, which

is largely based on low-level factors. Our results show

that as readers, we do not always use all information

available to us; and that we are, in a sense, of twominds:

consulting complex inferences to decide how long to

look at a word, while employing semi-mindless scan-

ning routines to decide where to look next. It is striking

that these disparate strategies operate mostly in har-

mony. Only occasionally they go out of step – then we

notice that our eyes have moved too far and we have to

look back, back to where our eyes left cognition behind.

METHODS

We analysed eye-tracking data from three, big, naturalistic

reading corpora, in which native English speakers read texts

while eye-movement data was recorded [32, 33, 39].

Stimulus materials

We considered the English-native portions of the Dundee,

Geco and Provo corpora. The Dundee corpus comprises eye-

movements from 10 native speakers from the UK ([33]), who

read a total of 56.212 words across 20 long articles from

The Independent newspaper. Secondly, the English portion

of the Ghent Eye-tracking Corpus (Geco) [32] is a collection

of eye movement data from 14 UK English speakers who

each read Agathe Cristie’s The Mysterious Affair at Styles in

full (54.364 words per participant). Lastly, the Provo corpus

([31]) is a collection of eye movement data from 84 US English

speakers, who each read a total of 55 paragraphs (extracted

from diverse sources) for a total of 2.689 words.

Eye tracking apparatus and procedure

In all datasets, eye movements were recorded monocularly,

by recording the right eye. In Geco and Provo, recordings were

made using an EyeLink 1000 (SR Research, Canada) with a
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spatial resolution of 0.01◦ and a temporal resolution of a 1000

Hz. For Dundee, a Dr. Bouis oculometer (Dr. Bouis, Kalsruhe,

Germany), with a spatial resolution of < 0.1◦ and a temporal

resolution of 1000 Hz was used. To minimize head movement,

the participant’s heads were stabilised with a chinrest (Geco,

Provo) or a bite bar (Dundee). In each experiment, texts were

presented in ‘screens’ with either five lines (Dundee) or one

paragraph per screen (Geco and Provo), presented using a

font size of 0.33◦ per character. Each screen began with a

fixation mark (gaze trigger) that was replaced by the initial

word when stable fixation was achieved. In all datasets, a

9-point calibration was performed prior to the recording. In

the longer experiments, a recalibration was performed every

three screens (Dundee) or either every 10 minutes or when-

ever the drift correction exceeded 0.5◦ (Geco) For Dundee and

Provo, the order of different texts were randomized across

participants. In Geco, the entire novel was read start to finish

with breaks between each chapter, during which participants

answered comprehension questions.

For each corpus the x,y-values per fixation position were

converted into a word-by-word format. In Dundee, raw

x, y−values were smoothed by rounding to single character

precision. In Geco and Provo, raw x, y−values for each within-
word- or within-letter fixation were preserved and available

for each word. Across the three data sets we redefined the

bounding boxes around each word, such that they subtended

the area between the first to the last character of the word,

with the boundary set halfway to the neighboring character

(e.g. halfway the before and after the word). Punctuation

before or after the word were left out, and words for which

the bounding box was inconsistently defined were ignored.

For distributions of saccade and fixation data, see Figures

S5-S7.

Language model

Contextual predictions were formalised using a language

model – amodel computing the probability of each word given

the preceding words. Here, we used GPT-2 (XL) – currently

among the best publicly released English language models.

GPT-2 is a transformer-based model, that in a single pass

turns a sequence of tokens (representing either whole words

or word-parts) U = (u1, . . . , uk) into a sequence of condi-

tional probabilities, (p(u1), p(u2|u1), . . . , p(uk | u1, ..., uk−1)).

Roughly, this happens in three steps: first, an embedding

step encodes the sequence of symbolic tokens as a sequence

of vectors, which can be seen as the first hidden state ho.

Then, a stack of n transformer blocks each apply a series of

operations resulting in a new set of hidden states hl, for each

block l. Finally, a (log-)softmax layer is applied to compute (log-

)probabilities over target tokens. In other words, the model

can be summarised as follows:

h0 = UWe +Wp (1)

hl = transformer_block (hl−1) ∀i ∈ [1, n] (2)

P (u) = softmax
(

hnW
T
e

)

, (3)

whereWe is the token embedding andWp is the position

embedding.

The key component of the transformer-block is masked

multi-headed self-attention (Fig S1). This transforms a se-

quence of input vectors (x1,x2, . . .xk) into a sequence of

output vectors (y1,y2, . . . ,yk). Fundamentally, each out-

put vector yi is simply a weighted average of the input vec-

tors: yi =
∑k
j=1 wijxj . Critically, the weight wi,j is not a

parameter, but is derived from a dot product between the

input vectors x
T
i xj , passed through a softmax and scaled

by a constant determined by the dimensionality dk: wij =

(expx
T
i xj/

∑k
j=1

expx
T
i xj)

1√
dk
. Because this is done for each

position, each input vector xi is used in three ways: first, to

derive the weights for its own output, yi (as the query); sec-

ond, to derive the weight for any other output yj (as the key);

finally, in it used in the weighted sum (as the value). Differ-

ent linear transformations are applied to the vectors in each

cases, resulting in Query, Key and Value matrices (Q,K, V ).

Putting this all together, we obtain:

self_attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V. (4)

To be used as a language model, two elements are added.

First, to make the operation position-sensitive, a position

embedding Wp is added during the embedding step – see

Equation (1). Second, to enforce that the model only uses

information from the past, attention from future vectors is

masked out. To give the model more flexibility, each trans-

former block contains multiple instances (‘heads’) of the self-

attention mechanisms from Equation (4).

In total, GPT-2 (XL) contains n = 48 blocks, with 12 heads

each; a dimensionality of d = 1600 and a context window of
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k = 1024, yielding a total 1.5 × 109 parameters. We used

the PyTorch implementation of GPT-2 provided by Hugging-

Face’s Transformers package [75]. For words spanningmultiple

tokens, we computed their joint probability.

Ideal observer

To compute parafoveal identifiability, we implemented an

ideal observer based on the formalism by Duan & Bicknell [35].

This model formalises parafoveal word identification using

Bayesian inference and builds on previous well-established

’Bayesian Reader’ models [42–44]. It computes the probability

of the next word given a noisy percept by combining a prior

over possible words with a likelihood of the noisy percept,

given a word identity:

p(w | I) ∝ p(w)p(I|w), (5)

where I represents the noisy visual input, andw represents

a word identity. We considered two priors (see Fig 5): a non-

contextual prior (the the overall probability of words in English

based on their frequency in Subtlex ([76]), and a contextual

prior based on GPT2 (see below). Below we describe how

visual information is represented and perceptual inference is

performed. For a graphical schematic of the model, see Fig

S2; for some distinctive simulations showing how the model

captures key effects of linguistic and visual characteristics on

word recognition, see Fig S3.

Sampling visual information

Like in other Bayesian Readers [42–44], noisy visual input is

accumulated by sampling from a multivariate Gaussian which

is centered on a one-hot ’true’ letter vector – here represented

in an uncased 26-dimensional encoding – with a diagional

covariance matrix Σ(ε) = λ(ǫ)−
1/2I . The shape of Σ is thus

scaled by the sensory quality λ(ε) for a letter at eccentricity ε.

Sensory quality is computed as a function of the perceptual

span: this uses using a Gaussian integral based follows the

perceptual span or processing rate function from the SWIFT

model [23]. Specifically, for a letter at eccentricity ε, λ is given

by the integral within the bounding box of the letter:

λ(ε) =

∫ ε+.5

ε−.5

1√
2πσ2

exp

(

− x2

2σ2

)

dx, (6)

which, following [35, 44], is scaled by a scaling factor Λ. Unlike

SWIFT, the Gaussian in Equation 6 is symmetric, since we only

perform inference on information about the next word. By

using one-hot encoding and a diagonal covariance matrix, the

ideal observer ignores similarity structure between letters.

This is clearly a simplification, but one with significant com-

putational benefits; moreover, it is a simplification shared

by all Bayesian Reader-like models [35, 42, 44], which can

nonetheless capture many important aspects of visual word

recognition and reading. To determine parameters Λ and σ,

we performed a grid search on a subset of Dundee and Geco

(see Fig S4), resulting in Λ = 1 and σ = 3. Note that this

σ value is close to the average σ value of SWIFT and (3.075)

and corresponds well to prior literature on the size of the

perceptual span (±15 characters; [13, 23, 44]).

Perceptual inference

Inference is performed over the full vocabulary. This is

represented as a matrix which can be seen as a stack of word

vectors, y1, y2, . . . , yv, obtained by concatenating the letter

vectors. The vocabulary is thus a V × d matrix, with V the

number of words in the vocabulary and d the dimensionality

of the word vectors (determined by the length of the longest

word: d = 26× lmax).

To perform inference, we use the belief-updating scheme

from [35], in which the posterior at sample t is expressed as

a (V − 1) dimensional log-odds vector x(t), in which each

entry x(t)
i

represents the log-odds of yi relative to the final

word yv. In this formulation, the initial value of x is thus

simply the prior log odds, x(0)
i

= log p(wi) − log p(wv), and

updating is done by summing prior log-odds and the log-odds

likelihood. This procedure is repeated for T samples, each

time taking the posterior of the previous timestep as the prior

in the current timestep. Note that using log odds in this way

avoids renormalization:

x
(t)
i = log

p
(

wi | I(0,...,t)
)

p (wv | I(0,...,t))

= log
p
(

wi | I(0,...,t−1)
)

p
(

I(t) | wi
)

p (wv | I(0,...,t−1)) p (I(t) | wv)

= log
p
(

wi | I(0,...,t−1)
)

p (wv | I(0,...,t−1))
+ log

p
(

I(t) | wi
)

p (I(t) | wv)
= x

(t−1)
i +∆x

(t)
i .

(7)

In other words, as visual sample I(t) comes in, beliefs are

updated by summing the prior log odds x(t−1) and the log-

odds likelihood of the new information x
(t).
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For a given word wi, the log-odds likelihood of each new

sample is the difference of two multivariate Gaussian log

likelihoods, one centred on yi and one on the last vector yv .

This can be formulated as a linear transformation of I:

∆xi = log p (I | wi)− log p (I | wv)
= log p (I | N (yi,Σ))− log p (I | N (yv,Σ))

=

[

−1

2
(I − yi)

T Σ−1 (I − yi)

]

−
[

−1

2
(I − yv)

T Σ−1 (I − yv)

]

=
y
T
v Σ

−1
yv − y

T
i Σ

−1
yi

2
+ (yi − yv)

T Σ−1I,

(8)

which implies that updating can be implemented by sam-

pling from a multivariate normal. To perform inference on

a given word, we performed this sampling scheme until con-

vergence (using T = 50), and then transformed the posterior

log-odds into the log posterior, from which we computed the

Shannon entropy as a metric of parafoveal identifiability.

To compute the parafoveal entropy for each word in the

corpus, we make the simplifying assumption that parafoveal

preview only occurs during the last fixation prior to a sac-

cade, thus computing the entropy as a function of the word

itself and its distance to the last fixation location within the

previously fixated word (which is not always the previous

word). Because this distance is different for each participant,

it was computed separately for each word, for each partic-

ipant. Moreover, because the inference scheme is based

on sampling, we repeated it 3 times, and averaged these to

compute the posterior entropy of the word. The amount of

information obtained from the preview is then simply the

difference between prior and posterior entropy.

The ideal observer was implemented in custom Python

code, and can be found in the data sharing collection (see

below).

Contextual vs non-contextual prior

We considered two observers: one with a non-contextual

prior capturing the overall probability of a word in a language,

and with a contextual prior, capturing the contextual probabil-

ity of a word in a specific context. For the non-contextual prior,

we simply used lexical frequencies from which we computed

the (log)-odds prior used in equation (7). For the contextual

prior, we derived the contextual prior from log-probabilities

from GPT-2. This effectively involves constructing a new

Bayesian model for each word, for each participant, in each

dataset. To simplify this process, we did not take the full pre-

dicted distribution of GPT-2, but only the ‘nucleus‘ of the top

k predicted words with a cumulative probability of 0.95, and

truncated the (less reliable) tail of the distribution. Further,

we simply assumed that the rest of the tail was ‘flat’ and had a

uniform probability. Since the prior odds can be derived from

relative frequencies, we can think of the probabilities in the

flat tail as having a ‘pseudocount’ of 1. If we similarly express

the prior probabilities in the nucleus as implied ‘pseudofre-

quencies’, the cumulative implied nucleus frequency is then

complementary to the the length of the tail, which is simply

the difference between the vocabulary size and nucleus size

(V − k). As such, for word i in the text, we can express the

nucleus as implied frequencies as follows:

freqsψ = Ptr(w
(i)|context) V − k

1−∑k
j=1 P (w

(i)
j |context)

, (9)

where Ptr(w(i)|context) is the trunctated lexical prediction,
and P (w

(i)
j |context) is predicted probability that word i in the

text is word j in the sorted vocabulary. Note that using this

flat tail not only simplifies the computation, but also deals

with the fact that the vocabulary of GPT-2 is smaller than of

the ideal observer – using this tail we can still use the full

vocabulary (e.g. to capture orthographic uniqueness effects),

while using 95% of the density from GPT-2.

Data selection

In all our analyses, we focus strictly on first-pass reading,

analysing only those fixations or skips when none of the sub-

sequent words have been fixated before. We extensively

preprocessed the corpora so that we could include as many

words as possible. However, we had to impose some addi-

tional restrictions. Specifically we did not include words if

they a) contained non-alphabetic characters; b) if they were

adjacent to blinks; c) if the distance to the prior fixation loca-

tion was more than 24 characters (±8◦); moreover, for the

gaze duration we excluded d) words with implausibly short

(< 70ms) or long (> 900ms) gaze durations. Criterion c) was

chosen because some participants occasionally skipped long

sequences of words, up to entire lines or more. Such ‘skipping’

– indicated by saccades much larger than the the perceptual

span – is clearly different from the skipping of words during
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normal reading, and was therefore excluded. Note that these

criteria are comparatively mild (cf. [35, 36]), and leave approx-

imately 1.1 million observations for the skipping analysis, and

593.000 reading times observations.

Regression models: skipping

Skipping was modelled via logistic regression in scikit-learn

[77], with three sets of explanatory variables (or ’models’) each

formalising a different explanation for why a word might be

skipped.

First, a word might be skipped because it could be con-

fidently predicted from context. We formalise this via lin-

guistic entropy, quantifying the information conveyed by the

prediction from GPT-2. We used entropy, not (log) probabil-

ity, because using the next word’s probability directly would

presuppose that the word is identified, undermining the dis-

sociation of prediction and preview. By contrast, prior entropy

specifically probes the information available from prediction

only.

Secondly, a word might be skipped because it could be

identified from a parafoveal preview. This was formalised

via parafoveal entropy, which quantifies the parafoveal pre-

view uncertainty (or, inversely, the amount of information

conveyed by the preview). This is a complex function integrat-

ing low-level visual (e.g. decreasing visibility as a function of

eccentricity) and higher-level information (e.g. frequency or

orthographic effects) and their interaction (see Fig S3). Here,

too we did not use lexical features (e.g. frequency) of the next

word to model skipping directly, as this presupposes that the

word is identified; and to the extent that these factors are

expected to influence identifiability, this is already captured

by the parafoveal entropy (Fig S3).

Finally, a word might be skipped simply because it is too

short and/or too close to the prior fixation location, such that

a fixation of average length would overshoot the word. This

autonomous oculomotor account was formalised by mod-

elling skipping probability purely as a function of a word’s

length and its distance to the previous fixation location.

Note that these explanations are not mutually exclusive, so

we also evaluated their combinations (see below).

Regression models: reading time

As an index of reading time, we analysed first-pass gaze

duration, the sum of a word’s first-pass fixation durations. We

analyse gaze durations as they arguably most comprehen-

sively reflect how long a word is looked at, and are the focus

of similar model-based analyses of contextual effects in read-

ing [36, 38]. For reading times, we used linear regression, and

again considered three sets of explanatory variables, each

formalising a different kind of explanation.

First, a word may be read more slowly because it is unex-

pected in context. We formalised this using surprisal− log(p),

a metric of a word’s unexpectedness – or how much infor-

mation is conveyed by a word’s identity in light of a prior

expectation about the identity. To capture spillover (R; regpa-

per; smith) we included not just the surprisal of the current

word, but also that of the previous two words.

Secondly, a word might be read more slowly because it

was difficult to discern from the parafoveal preview. This was

formalised using the parafoveal entropy (see above).

Finally, a word might be read more slowly because of non-

contextual factors of the word itself. This is an aggregate base-

line explanation, aimed to capture all relevant non-contextual

word attributes, which we contrast to the two major contex-

tual sources of information about a word identity that might

affect reading times (prediction and preview). We included

word class, length, log-frequency, and the relative landing po-

sition (quantified as the distance to word centre in characters.

For log-frequency we used the UK or US version of SUBTLEX

depending on the corpus and included the log-frequency of

the past two words to capture spillover effects.

Note that, while for skipping, we used a non-linguistic base-

line, for reading times we use a non-contextual baseline. This is

because for skipping the most interesting contrast is between

the role of non-linguistic oculomotor control vs an account

that explains skipping via ease of next-word identification (ei-

ther through prediction or preview). For reading times, by

contrast, the most interesting comparison is between prop-

erties of the word itself versus contextual cues, as a purely

non-linguistic account for gaze duration variation seemed less

plausible (indeed, see Figure S12 for a supplementary analysis

confirming that the limited relative importance of a purely

non-linguistic account for reading time variation).

Model evaluation

We compared the ability of each model to account for the

variation in the data by probing prediction performance in a

10-fold cross-validation scheme, in which we quantified how
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much of the observed variation in skipping rates and gaze

durations could be explained.

For reading times, we did this using the coefficient of de-

termination, defined via the ratio of residual and total sum

of squares: R2 = 1− SSres

SStot
. The ratio SSres

SStot
relates the error

of the model (SSres) to the error of a ’null’ model predict-

ing just the mean (SStot), and gives the variance explained.

For skipping, we use a tightly related metric, the McFadden

R2. Like the R2 it is computed by comparing the error of

the model to the error of a null model with only an intercept:

R2
McF = 1− LM

Lnull
, where L indicates the loss.

While R2 and R2
McF are not identical, they are formally

tightly related – critically, both are zero when the prediction

is constant (no variation explained) and go towards one pro-

portionally as the error decreases to zero (i.e. towards all

variation explained). Note that in a cross-validated setting,

both metrics can become negative when prediction of the

model is worse than the prediction of a constant null-model.

Variation partitioning

To assess relative explanatory power, we used variation

partitioning to estimate how much of the explained variation

could be attributed to each set of explanatory variables. This

is also known as variance partitioning, as it is originally based

on partitioning sums of squares in regression analysis; here

we use the more general term ’variation’ following [78].

Variation partitioning builds on the insight that when two

(groups of) explanatory variables (A andB) both explain some

variation in the data y, and A and B are independent, then

variation explained by combining A and B will be approxi-

mately additive. By contrast, when A and B are fully redun-

dant – e.g. when B only has an apparent effect on y through

its correlation with A – then a model combining A and B will

not explain more than the two alone.

Following [79], we generalise this logic to three (groups

of) explanatory variables, by testing each individually and

all combinations, and use set theory notation and graphical

representation for its simplicity and clarity. For three groups

of explanatory variables (A, B and C), we first evaluate each

separately and all combinations, resulting in 7 models:

A,B,C,A ∪B,A ∪ C,B ∪ C,A ∪B ∪ C.

From these 7 models we obtain 7 ‘empirical‘ scores (ex-

pressing variation explained), from which we derive the 7

‘theoretical‘ variation partitions: 4 overlap partitions and 3

unique partitions. The first overlap partition is the variation

explained by all models, which we can derive as:

A∩B∩C = A∪B∪C+A+B+C−A∪B−A∪C−B∪C. (10)

The next three overlap partitions contain all pairwise inter-

sections of models that did not include the other model:

(A ∩B) \ C = A+B −A ∪B −A ∩B ∩ C

(A ∩ C) \B = A+ C −A ∪ C −A ∩B ∩ C

(B ∩ C) \A = B + C −B ∪ C −A ∩B ∩ C.

(11)

The last three partitions are those explained exclusively by

each model. This is the relative complement: the partition

unique to A is the relative complement of BC: BCRC . For

simplicity we also use a star notation, indicating the unique

partition of A as A∗. These are derived as follows:

A∗ = BCRC = A ∪B ∪ C −B ∪ C

B∗ = ACRC = A ∪B ∪ C −A ∪ C

C∗ = ABRC = A ∪B ∪ C −A ∪B.

(12)

Note that, in the cross-validated setting, the results can be-

come paradoxical and depart fromwhat is possible in classical

statistical theory, such as partitioning sums of squares. For

instance, due to over-fitting, a model that combines multiple

EVs could explain less variance than all of the EVs alone, in

which case some partitions would become negative. How-

ever, following [79], we believe that the advantages of using

cross-validation outweigh the risk of potentially paradoxical

results in some subjects. Partitioning was carried out for each

subject, allowing to statistically assess whether the additional

variation explained by a given model was significant. On aver-

age, none of the partitions were paradoxical.

Simulating effect sizes

Preview benefits were simulated as the expected diïňĂer-

ence in gaze duration after a preview of average informa-

tiveness versus after no preview at all (. . . ). This this best

corresponds to an experiment in which the preceding pre-

view was masked (e.g. XXXX) rather than invalid (see Discus-

sion). To compute this we compared the took the difference in

parafoveal entropy between an average preview and the prior
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entropy. Because we standardised our explanatory variables,

this was transformed to subject-specific z-scores and then

multiplied by the regression weights to obtain an expected

effect size.

For the predictability benefit, we computed the expected

difference in gaze duration between ‘high‘ and ‘low‘ probability

words. ‘High‘ and ‘low‘ was empirically defined based on the

human-normed cloze probabilities in provo, which we divided

into thirds using percentiles. The resulting cutoff points (low

< 0.02; high >0.25) were log-transformed, applied to the sur-

prisal values from GPT-2, and multiplied by the weights to

predict effect sizes. Note that these definitions of ‘low‘ and

‘high‘ may appear low compared to those in literature – how-

ever, most studies collect cloze only for specific ‘target‘ words

in relatively predictable contexts, which biases the definition

of ‘low‘ vs ‘high’ probability. By contrast, we analysed cloze

probabilities for all words, yielding these values.

Statistical testing

Statistical testing was performed across participants within

each dataset. Because two of the three corpora had a low

number of participants (10 and 14 respectively) we used non-

parametric bootstrap t-tests, by creating resampling a null-

distribution with zero mean counting how likely a t-value at

least as extreme as the true t-value was to occur. Each test

used at least 104 bootstraps; p-values were computed without

assuming symmetry (equal-tail bootstrap).

Data and code availability

The Provo and Geco corpora are freely available ([31, 32]).

All additional data and code needed to reproduce these re-

sults will be made public at the Donders Data Repository.
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Supplementary materials

Figure S1 – GPT-2 Architecture. Note that this panel is based on the original GPT schematic, with some operations

modified and re-arranged to reflect the slightly different architecture of GPT-2. The most important

and distinctive step of each transformer block is masked multi-headed self-attention (see Methods). Not

visualised here is the initial tokenisation, mapping a sequence of characters into a sequence of tokens.
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Figure S2 – Encoding and inference scheme of the ideal observer analysis. Visualisation of the Ideal Observer,

following formulation in [35]. A word at a given eccentricity is converted into a noisy visual percept, after

which a posterior probability of the identity of the word given the noisy percept was computed using

Bayesian inference. The uncertainty of this posterior (expressed in terms of Shannon entropy) was then

used to quantify the expected uncertainty in the parafoveal percept – or, inversely, a word’s parafoveal

identifiability. In this scheme, words are represented as a concatenation of one-hot encoded letter vectors.

Visual information (I) is sampled from a multivariate Gaussian centred on the word vector yw with a

diagonal covariance matrix Σ, the values of which (σ2) are inversely related to the integral under the

visual acuity function around each letter. The posterior is then computed by comining the likelihood of

the visual information I given a particular word, with a prior probability of that word p(w) (e.g. derived

from lexical frequency). This computation was performed using a log-odds formulation that exploits the

proportionality in Bayes’ rule to perform belief-updating without renormalisation (see Methods).
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Figure S3 – Modulation of parafoveal identifiability by visual and linguistic features, and their interac-

tion. The parafoveal entropy for a given word (Fig S2) is a complex function that integrates linguistic

and visual characteristics, and which can account for various known effects, such as the effect of lexical

frequency and orthographic neighbourhood on visual word recognition. To illustrate this, we simulated

some characteristic effects of eccentricity, frequency (a,b) and orthographic distinctiveness (c,d).

For frequency (a), we randomly sampled 20 ‘rare’ and ‘frequent’ 5-letter words (based on a quartile split),

and computed the parafoveal identifiability (quantified via posterior entropy) at increasing eccentricities.

As can be seen, the percept becomes uncertain at increasing eccentricities more quickly for low-frequency

words, showing that lexical frequency boosts parafoveal identifiability.

For orthography (c), we similarly sampled 20 7-letter words that were classified as orthographically common

or uncommon based on the first three letters. Here, commonality was again defined using a quartile

split but now on the number of alternative words starting with the same three letters. For instance, the

letters ‘awk‘ in the word ‘awkward‘ are highly uncommon and allow to identify the entire word with

high confidence based on just those three letters. As can be seen, the model predicts that orthographic

uniqueness boosts parafoveal identifiability – as observed in experiments (see [13]).

Notably, when we consider the difference between the two classes of words (b,d), an inverted U shape is

apparent: the effects are strongest at intermediate visibility. This demonstrates the well-established fact

that the effects of prior (linguistic) knowledge is strongest at intermediate levels of perceptual uncertainty

(see [42] for discussion). (Note that, while both the orthography and frequency effects are effects of "prior

linguistic knowledge", only the frequency effect is technically an effect of the prior, since the orthography

effect is driven by the generative model.) In all plots, thick lines represent the mean entropy across words;

shaded regions indicate bootstrapped 95% confidence intervals.
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Figure S4 – Grid search to establish ideal observer parameters. Grid search result grand average (top) and

individual results for different corpora and analyses (bottom). To decide on the values for σ and Λ, a

grid search was performed on a random subset of 25% of the Dundee and Geco corpus; we did not apply

it to PROVO because there was not enough data per participant. In both skipping and reading times,

we performed a 10-fold cross-validation with the full model, using parafoveal entropy as computed with

different visual acuity parameters σ and Λ (Equation 6). To avoid biasing the contextual vs non-contextual

model comparison (Figure 5), we used both the contextual and non-contextual prior and averaged the

results to obtain the results for each analysis in each corpus. To ensure that different analyses and corpora

are weighted equally in the grand average, the prediction scores (R2 or R2
McF

) were normalised by dividing

the prediction score of each parameter combination by the highest score (i.e. score of the best parameter

combination) for each subject, for each analysis. This resulted in σ = 3 and Λ = 1, which we have used in

all analyses. Note that σ determines the perceptual span (see Figure S2) and that σ = 3 corresponds well

to what is known about the size of the perceptual span and is close to default parameters in other models

(see Methods).
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Figure S5 – Distributions of reading times (gaze durations). Kernel density estimate of the distribution of

reading times across all datasets, both on average (left column) and in individual participants (right

column).
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Figure S6 – Average skipping rate in each dataset. Average rate of skipping in all words included in the skipping

analysis (see Methods) in all datasets. Large dots with error bar show group mean plus bootstrapped 95%

confidence interval. Small dots show indidividual participants.
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Figure S7 – Distribution of (forward) saccade lengths in each datasets Kernel density estimate of the distri-

bution of saccade lengths (amplitudes) of first-pass, forward saccades in all datasets, both on average (left

column) and per individual participant (right column). Note that for this visualisation we only included

progressive, forward saccades within the same line (excluding saccades that cross lines), up to a maximum

amplitude of 24 characters (excluding saccades during periods participants were not actually reading).
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Figure S8 – Saccade lengths are tailored to word lengths and exhibit a preferred landing position.

Left column: Kernel density estimate of the saccade lengths, estimated separately for target words of

different lengths. Colours indicate word lengths, vertical lines indicate the mode of the distribution. Right

column: Kernel density estimate (plus mode) of the relative landing position, averaged across words with

different lengths. Saccades are longer for longer words, such that a systematic ‘preferred landing position’

is maintained, slightly left to the center of the word (indicated by the vertical dashed line); see [45, 46].
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Figure S9 – Skipping variation partitioning for all participants. Explained cross-validated variation partition

for skipping (see Fig 2) of each partition, for each participant, for the skipping analysis. Models for the

baseline, parafoveal preview and linguistic prediction are indicated by ‘base’, ‘para’, and ‘ling’, respectively.

Unions are indicated by ∪, intersections by ∩; for the relative complement we use the asterisk-notation: e.g.

‘para*’ indicates variation explained uniquely by parafoveal preview. Note that due to cross-validation,

the amount of variation explained can become negative in some partitions for individual participants (see

Methods).
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Figure S10 – Probability that a skipped word is regressed to depends on its prior identifiability.

Probability that an initially skipped word is subsequently fixated (i.e. regressed to), as a function of

the prior parafoveal entropy, before skipping. Dots with connecting lines show the average regression

probability for initially skipped words as a function of the binned prior parafoveal entropy. Error bars

show the (bootstrapped) 95% confidence interval around the mean (across participants). In all datasets,

the probability that a skipped word gets subsequently fixated depends on the amount of visual information

about word identity that was available before the word was was skipped, suggesting a compensation

mechanism. Note that the binning is done for visualisation purposes only. Statistical evaluation is

based on a subject-wise logistic regression on the word-by-word parafoveal entropy and regression values.

Statistical significance is established by a bootstrap test on the subjects’ coefficients, in each dataset.
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Figure S11 – Reading times variance partitioning. Explained cross-validated variation partition for skipping

(see Fig 3) of each partition, for each participant, for the skipping analysis. Models for the baseline,

parafoveal preview and linguistic prediction are indicated by ‘base’, ‘para’, and ‘ling’, respectively. Unions

are indicated by ∪, intersections by ∩; for the relative complement we use the asterisk-notation: e.g.

‘para*’ indicates variation explained uniquely by parafoveal preview (see Methods). Note that due to

cross-validation, the amount of variation explained can become negative in individual participants (see

Methods).
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Figure S12 – Reading times variance partitioning with and without non-linguistic factors Same as in Fig

3, but comparing the baseline with (a)) or without (b)) the primary non-linguistic explanatory factor

for reading time variation – viewing position [80]. Including the viewing position adds 0.7% additional

variance explained. This demonstrates while that viewing position affect reading times, the amount of

variance uniquely explained by non-linguistic factors is much lower for reading times than for skipping.
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Table S1 – Literature sample for effect size ranges

Effect type Publication
Effect

size

preview benefit

Inhoff, A. W. (1989). Lexical access during eye fixations

in reading: Are word access codes used to integrate lexical

information across interword fixations?. Journal of Memory

and Language, 28(4), 444-461.

51

preview benefit

Veldre, A., & Andrews, S. (2018). Parafoveal preview effects

depend on both preview plausibility and target predictability.

Lexical access during eye fixations in reading: Quarterly

Journal of Experimental Psychology, 71(1), 64-74.

49

preview benefit

Inhoff, A. W., & Rayner, K. (1986). Parafoveal word pro-

cessing during eye fixations in reading: Effects of word

frequency. Perception & psychophysics, 40(6), 431-439.

40

preview benefit

McDonald, S. A. (2006). Parafoveal preview benefit in

reading is only obtained from the saccade goal. Vision

Research, 46(26), 4416-4424.

35

preview benefit

Williams, C. C., Perea, M., Pollatsek, A., & Rayner, K.

(2006). Previewing the neighborhood: The role of ortho-

graphic neighbors as parafoveal previews in reading. Journal

of Experimental Psychology: Human Perception and Per-

formance, 32(4), 1072.

26.7

preview benefit

Kennison, S. M., & Clifton, C. (1995). Determinants of

parafoveal preview benefit in high and low working memory

capacity readers: Implications for eye movement control.

Journal of Experimental Psychology: Learning, Memory,

and Cognition, 21(1), 68.

25.25

preview benefit

Blanchard, Harry E., Alexander Pollatsek, and Keith

Rayner. "The acquisition of parafoveal word information in

reading." Perception & Psychophysics 46.1 (1989): 85-94.

22.6

preview benefit

Schroyens, W., Vitu, F., Brysbaert, M., & d’Ydewalle, G.

(1999). Eye movement control during reading: Foveal load

and parafoveal processing. The Quarterly Journal of Exper-

imental Psychology Section A, 52(4), 1021-1046.

14.6

prediction benefit

Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on

word perception and eye movements during reading. Journal

of verbal learning and verbal behavior, 20(6), 641-655.

33

Continued on next page
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Table S1 – Continued from previous page

Effect type Publication
Effect

size

prediction benefit

Rayner, K., & Well, A. D. (1996). Effects of contextual con-

straint on eye movements in reading: A further examination.

Psychonomic Bulletin & Review, 3(4), 504-509.

20

prediction benefit

RJ. Altarriba, J. Kroll, A. Sholl, K. Rayner. (1996) The

influence of lexical and conceptual constraints on reading

mixed-language sentences: Evidence from eye fixations and

naming times Memory & Cognition, 24 (1996), pp. 477-492.

21

prediction benefit

Ashby, J., Rayner, K., & Clifton Jr, C. (2005). Eye move-

ments of highly skilled and average readers: Differential

effects of frequency and predictability. The Quarterly Jour-

nal of Experimental Psychology Section A, 58(6), 1065-1086.

23.5

prediction benefit

Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004).

The effects of frequency and predictability on eye fixations

in reading: implications for the EZ Reader model. Jour-

nal of Experimental Psychology: Human Perception and

Performance, 30(4), 72

19

prediction benefit

Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001).

Eye movement control in reading: Word predictability has

little influence on initial landing positions in words. Vision

Research, 41(7), 943-954.

15

prediction benefit

Rayner, K., Slattery, T. J., Drieghe, D., & Liversedge, S. P.

(2011). Eye movements and word skipping during reading:

effects of word length and predictability. Vision Research,

41(7), 943-954.

18

prediction benefit

Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C.

(2010). The frequency-predictability interaction in reading:

It depends where you’re coming from. Journal of Experi-

mental Psychology: Human Perception and Performance,

36(5), 1294âĂŞ1313.
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