

Systematic Transmission Electron Microscopy-Based Identification and 3D Reconstruction of Cellular Degradation Machinery

1 **Kit Neikirk^{1,2†}, Zer Vue^{2†}, Prasanna Katti^{3†}, Ben I. Rodriguez², Salem A. Omer², Jianqiang
2 Shao⁴, Trace Christensen⁵, Edgar Garza Lopez², Andrea Marshall², Caroline B. Palavicino-
3 Maggio⁶, Jessica Ponce⁷, Ahmad Alghanem⁸, Larry Vang², Taylor Barongan², Heather K.
4 Beasley^{2,9}, Taylor Rodman², Margaret Mungai¹⁰, Marcelo Correia¹¹, Vernat Exil¹², Sandra A.
5 Murray¹³, Jeffrey L. Salisbury⁵, Brian Glancy^{14,15}, Renata O. Pereira^{11,16#}, E. Dale Abel^{11,16#},
6 and Antenor O. Hinton Jr.^{2#}**

7 ¹ Department of Biology, University of Hawaii at Hilo, Hilo, HI

8 ² Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN

9 ³ National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD

10 ⁴ Central Microscopy Research Facility, University of Iowa, Iowa City, IA

11 ⁵ Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN

12 ⁶ Department of Neurobiology, Harvard Medical School, Boston, MA

13 ⁷ School of Medicine, University of Utah, Salt Lake City, UT

14 ⁸ Eastern Region, King Abdullah International Medical Research Center, King Saud bin Abdulaziz
15 University for Health Sciences, Al Hasa, Saudi Arabia

16 ⁹ Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of
17 Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA

18 ¹⁰ Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA

19 ¹¹ Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA

20 ¹² Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA

21 ¹³ Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA

22 ¹⁴ National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of
23 Health, Bethesda, MD

24 ¹⁵ National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD

25 ¹⁶ Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA

26 [†]These authors share first authorship.

27 [#]These authors share senior authorship.

28 * Correspondence:

29 Antenor O. Hinton, Jr

30 antenor.o.hinton.jr@Vanderbilt.Edu

31 **Keywords: autophagosomes, lysosomes, transmission electron microscopy, autophagy, 3D**
32 **Reconstruction, DRP-1, MFN-2.**

33 **Abstract**

34 Many interconnected degradation machineries including autophagosomes, lysosomes, and
35 endosomes work in tandem to conduct autophagy, an intracellular degradation system that is crucial
36 for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases,
37 including cancers and metabolic diseases. Although many studies have investigated autophagy to
38 elucidate disease pathogenesis, identification of specific components of the autophagy machinery has
39 been challenging. The goal of this paper is to describe an approach to reproducibly identify and
40 distinguish subcellular structures involved in macro autophagy. We provide methods that help avoid
41 common pitfalls, including a detailed explanation for distinguishing lysosomes and lipid droplets and
42 discuss differences between autophagosomes and inclusion bodies. These methods are based on
43 using transmission electron microscopy (TEM), capable of generating nanometer-scale micrographs
44 of cellular degradation components in a fixed sample. We also utilize serial block face-scanning
45 electron microscopy (SBF-SEM) to offer a protocol for visualizing 3D morphology of degradation
46 machinery. In addition to TEM and 3D reconstruction, we discuss other imaging techniques, such as
47 immunofluorescence and immunogold labeling that can be utilized to reliably and accurately classify
48 cellular organelles. Our results show how these methods may be used to accurately quantify the
49 cellular degradation machinery under various conditions, such as treatment with the endoplasmic
50 reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.

51 **1 Introduction**

52 Macroautophagy, the mechanism by which intracellular components or damaged organelles are
53 removed and degraded to maintain cellular homeostasis [1], has much relevance in the fields of
54 disease research and drug development. Although poorly understood, autophagy regulation is broadly
55 implicated in disease pathogenesis, with both overactive and underactive autophagy having negative
56 consequences, including malignant transformation and cellular proliferation in cancer or
57 accumulation of ineffective cells in neurodegenerative diseases [2,3]. Autophagic processes differ
58 depending on their activation pathways, being either non-selective or selective for specific cellular
59 organelles or proteins [1,2]. Growing interest in neurodegenerative and other diseases with autophagy
60 implications has highlighted its consequential roles in key biological processes [1,4].

61 The complex, regulated macro autophagic process involves structures that also contribute to the
62 cellular recycling machinery specifically, autophagosomes and lysosomes (Figure 1A). The main
63 stages of autophagy include initiation, elongation, autophagosome formation, autophagosome
64 recruitment and maturation, fusion, and degradation [1–3]. In the initiation stage, often triggered by
65 amino acid starvation, sack-like autophagosome precursors, called phagophores, assemble adjacently
66 to the endoplasmic reticulum, typically at mitochondria-associated endoplasmic reticulum (ER)
67 membrane (MAM) (Figure 1B) [5]. The phagophore resides proximal to the ER as an empty,
68 unclosed membrane. As materials are delivered to the phagophore, the membrane closes to seal the
69 organelle, transforming the phagophore into an autophagosome, which carries cytoplasmic
70 components, cargo proteins or organelles designated for degradation. In many cases, the

71 autophagosome then ultimately fuses with a lysosome, containing hydrolases and permeases, to form
72 an autolysosome and initiate degradation (Figure 1B). In some cases, the autophagosome may mature
73 through an intermediate prior to lysosome fusion known as an amphisome [6]. Importantly, this
74 endosome fusion event may occur to allow for retrograde transport motility, so amphisomes can
75 move to lysosome dense areas [6,7]. In either case, after autolysosome formation, the resulting
76 macromolecules are released through permeases and the ultimate fate of autolysosomes following
77 this process is still unclear [8]. Some autolysosome components can be used to reform lysosomes or
78 become part of new phagophore membranes. Macromolecules released into the cytosol are recycled
79 for use in other biological functions [1–3,9].

80 Transmission electron microscopy (TEM) has advanced autophagy research by enabling the study of
81 subcellular components at high resolution [4]. By transmitting electrons through ultrathin sections of
82 fixed and embedded samples, TEM generates nanometer-scale micrographs that allow study of
83 autophagic processes [10–12]. For example, past studies have utilized TEM to show autophagosome
84 formation at MAMs and have delineated the maturation process described above [10,12]. Our
85 method uses the free, open-source ImageJ software platform to analyze TEM micrographs of
86 autophagic components [13], enabling image quantitation and statistical analysis [11]. Here we
87 applied this established TEM method recently described by Lam et al. [11] to analyze mitochondria
88 and ER.

89 While TEM is powerful for identification, it only allows for two-dimensional (2D) visualization of
90 organelles. This may not always be an accurate representation since organelles are three-dimensional
91 (3D) objects. Therefore, we also included reconstructions from serial block face-scanning electron
92 microscopy (SBF-SEM) [14], which functions by slicing a sample in the z-axis to obtain orthoslices
93 [15]. These orthoslices can then be hand-segmented, one-by-one, to allow for the 3D renderings of
94 an organelle to be evaluated [16]. While this allows for more accurate representation, there is a much
95 larger time and cost associated with it than TEM quantification. Here we also utilized an established
96 SBF-SEM method recently described by Garza-Lopez et al. [16], to perform 3D reconstruction of
97 recycling machinery organelle alongside TEM quantifications.

98 The success of our modified protocol depends on proper identification of cellular degradation
99 components. In Figure 1, we showcase how typical organelles should appear conventionally:
100 lysosomes (Figure 1C, red arrows), autolysosomes (Figure 1C-D, blue arrows), golgi (Figure 1C-D,
101 dark blue arrow), autophagosome (Figure 1D, green arrow), early endosome (Figure 1D, black
102 arrow), late endosome (Figure 1D, black outlined white arrow) and lipid droplets (Figure 1E, orange
103 arrow). However, identification is complicated by diverse morphologies with recycling machinery
104 sometimes not presenting typical presentation. For example, lysosomes are usually depicted as
105 spherical, typically ranging from 0.2 to 0.5 micrometers in diameter, although they can also
106 commonly present from 0.05 to 1 micrometers (Figure 2A–D; Table 1) [17–19]. Lysosomes are
107 typically transported by microtubules to the region around the microtubule-organizing center [20];
108 however, intracellular conditions, such as raised pH, cause lysosomes to migrate toward the cell
109 membrane [21]. Lysosomes are classified as primary, secondary, or tertiary, depending on their
110 digestive activities and their formation process. Lysosome identification is further complicated by
111 their tendency to feature multiple membranes [22]. In quantifying lysosomes, researchers must avoid
112 misidentifying them as multilamellar vesicles, also identified as late endosomes or multilamellar
113 bodies (MLBs; Figure 2E–F; Table 1), which contain lipids within a central compartment surrounded
114 by many membrane bilayers [23]. Lysosomes should not be mistaken for multi-inclusion bodies and
115 multivesicular bodies (MVBs), also known as pre-vacuolar compartments, that are an intermediary
116 structure between vacuoles and the *trans*-Golgi network (Table 1) [24]. Although these structures are

117 related to autophagy, they differ from lysosomes and autophagosomes and should be excluded from
118 both their quantifications [25]. Lysosomal membranes have highly organized inner folds and
119 lysosomal enzymes have a distinct, darker, and more consistent appearance than the lipids found in
120 MLBs (Figure 2A–F; Table 1). MLB lipids can also appear as dots that speckle the MLB interior,
121 which can be used to differentiate MLBs from lysosomes, although these dots can also be mistaken
122 for cargo in secondary lysosomes (Figure 1A-C; Table 1). Despite these considerations, accurate and
123 reproducible lysosome identification based solely on TEM imaging may be inconsistent,
124 necessitating use of imaging techniques, such as fluorescent staining. Not only do we need to
125 positively identify lysosomes, but autophagosomes must be identified, characterized, and
126 distinguished from lysosomes and other structures.

127 Autophagosome appearance can also vary depending on the cargo, further complicating their
128 identification (Figure 2G-H; Table 1). Autophagosomes typically have clear double-limiting
129 membranes that appear darker than the rest of the TEM image, separated by a small electron lucent
130 space. However, autophagosomes may also appear with a single membrane or with several separate
131 membranes due to fixation techniques (Figure 2G-H; Table 1) [26]. These diverse membrane
132 presentations can cause misidentification of malformed mitochondria or ring-shaped ER as
133 autophagosomes. Because MVBs and MLBs only display a single membrane (Figure 2E-F; Table 1),
134 presence of a second membrane, in addition to inner recycled ribosomes, more circular shapes
135 representing cargo, or more internal lipids, all characterize autophagosomes (Figure 2G-H). [23,26].
136 However, improper fixation techniques may cause one of autophagosome limiting membranes to be
137 invisible [26]. MVBs are also generally smaller than autophagosomes and lysosomes, whereas MLBs
138 are larger, sometimes up to ten times the size of typical lysosomes [17,23]. During identification,
139 certain autophagosome types can be included or excluded. For example, if structures appear empty or
140 lacking material, they are likely not involved in degradation and may be excluded. For example, in
141 some disease states, autophagosomes may dysfunction in cargo recruitment and are known as
142 “empty” autophagosomes [27]. Therefore, a key trait of autophagosomes is the presence of cargo.
143 However, it is important to avoid classifying empty autophagosomes as lipid droplets (LDs; Figure
144 2I–K; Table 1). Similarly, if the body of a phagophore that has not yet closed (Figure 1B) to form an
145 autophagosome, it should not be mistaken as an autophagosome [4,26]. Autophagosomes that are in
146 the process of fusing with a lysosome, also known as lipofuscin granules (Figure 2C, 2E-D), but are
147 not yet considered autolysosomes, can be classified as autophagosome-lysosome fusions, and be
148 considered autolysosomes if their inclusion is consistent [1,2,28]. Since they, physiologically, are
149 similar to autolysosomes, our criteria includes them in autolysosome quantifications [29]. These
150 intermediate structures are identified by their much larger appearance, and contents of the lysosome
151 and the autophagosome often appear to be interacting (Figure 2C, 2E-D).

152 Autophagosomes that contain limited cargo volumes (Table 1) can mimic large, irregularly-shaped
153 lysosomes (Figure 2A; Table 1) [1,17]. Although autophagosomes can mainly be identified by two
154 limiting membranes, because lipids are not reliably preserved during sample preparation, limiting
155 membranes may vary in appearance, furthering potential for confusion [26]. Another key to
156 identifying autophagosomes formed from non-selective phagophores is recognizing nearby
157 cytoplasmic content inside of them; often autophagosomes can be identified by presenting cargo
158 originating from cytoplasmic content nearby the organelle [30,31]. Furthermore, autolysosomes can
159 differ in their presentation (Figure 2B-C, 2J-O), especially lipofuscin granule autolysosomes (Figure
160 2C, E-D; Table 1) which may be mistaken for LDs (Figure 2I-J; Table 1) or lysosomes (Figure 2A–
161 D; Table 1). Careful consideration of these features is essential to properly identify these organelles.

162 Ultrastructural characteristics of organelles can be used to distinguish them from autophagic
163 components. For example, the presence of regularly-spaced ribosomes, which typically appear as
164 small black dots, or a thinner width wrapped around organelles such as mitochondria, strongly
165 indicate that the structure is ER. Similarly, evidence of mitochondrial cristae or inner membrane
166 folds can be used to identify mitochondrial structures. However, exact identification of specific
167 organelles can be complicated. For example, partially degraded ribosomes can aggregate in
168 autophagosomes, forming electron dense clumps as they degrade [26]. However, the presence of
169 ribosomes alone does not confirm an object is an autophagosome, as it is possible to mistake circular
170 cisterns of rough ER for autophagosomes [26]. Autophagosomes may be distinguished by their more
171 circular presentation and higher-degree of clumped ribosomes [12,26].

172 Although basic processes of autophagosome formation are understood, specific pathways and
173 degradation machinery require further study, such as lipid mobilization from LDs to provide energy.
174 Like all organelles, LDs are targeted by autophagy for recycling and interestingly, macromolecules
175 released by autophagy can be stored in new LDs, even under starvation conditions [32]. Thus, a
176 consequence of autophagy is increased LDs within a cell. These lipid droplets can protect against ER
177 stress and may protect against mitochondrial autophagy, known as mitophagy, by forming close
178 mitochondria-to-lipid contacts [33]. Autophagy impacts nearly every cellular organelle due to its role
179 in organelle degradation. For example, ER stress can initiate autophagy to recycle damaged ER
180 membranes, contributing to healthy ER [34]. Similarly, impaired mitochondrial fission or other 1
181 dysfunctions due, for example, to impaired function of critical regulatory proteins, such as mitofusin
182 1 (MFN1), can trigger mitophagy to clear ineffective mitochondria [35,36]. Because all organelles
183 interact with the cellular degradation machinery, understanding the dynamics between primary
184 recycling organelles—lysosomes, autophagosomes, and autolysosomes—and other organelles is
185 critical to fully appreciate the contributions and drivers of autophagy. Careful and accurate
186 identification of components of the autophagy machinery are needed to advance our understanding of
187 therapeutic effectiveness, whose mechanisms of action may involve autophagy. This effort may
188 elucidate additional pathways that induce autophagy and clarify how autophagy contributes to
189 disease prevention and progression [37]. Accurate characterization and quantitation of autophagy
190 components requires proper identification of these degradation organelles and other subcellular
191 structures involved in autophagic processes.

192 Although many studies have identified components of autophagosome and lysosome machinery,
193 developing next-generation methods to rigorously identify and quantify these organelles is essential
194 to establish standardized protocols, allowing data comparison [10,26,38–40]. Many of these
195 structures are similar, but can differ from cell to cell and are easily misidentified. A basic
196 understanding of the potential and common appearances of lysosomes and autophagosomes is critical
197 for TEM analysis. Here, we describe characteristics that should be assessed to properly identify
198 autophagic organelles and provide recommendations for effective classification (Supplementary
199 Figure 1).

200 Our ultimate goal was to identify and quantify difficult-to-measure autophagic machinery in clear
201 terms and present a novel approach to measure all cellular degradation machinery using free, open-
202 source software. These techniques can be used to reproducibly quantify and characterize changes in
203 the organelles associated with autophagy. Furthermore, for researchers who wish to perform more
204 complex calculations and resource-intensive imaging, we also offer a protocol for 3D reconstruction
205 of recycling machinery.

206 **2 Methods and Materials**

207 2.1. Mouse Care & Maintenance

208 Mouse husbandry was performed based on prior protocols [41] according to with protocols approved
209 by the University of Iowa Animal Care and Use Committee (IACUC). Male C57Bl/6J mice were
210 housed at 22 °C with a 12-h light, 12-h dark cycle, and free access to water and standard chow. Mice
211 with a tamoxifen-inducible knockout of DRP1 in skeletal muscle were generated by crossing mice
212 carrying a homozygous floxed allele of DRP1 with mice carrying a tamoxifen-inducible Cre
213 recombinase under control of the myogenin promoter (Jackson Lab) in skeletal muscle as previously
214 described [42,43]. Myotubes were isolated from these mice, using protocols described below.

215 2.2. Fly Strains and Genetics:

216 A mitochondrial assembly regulatory factor (Marf) knockdown fly was generated according to
217 previous protocols [44]. Genetic crosses were performed on yeast corn medium at 22 °C. W1118
218 flies were used as genetic background controls. Mef2- Gal4 (III) was used to drive muscle-specific
219 Marf RNAi (BS# 55189) to achieve gene knockdown. Mef2-Gal4 (BS# 27390) stocks were obtained
220 from the Vienna Drosophila Stock Center and Bloomington Drosophila Stock Center. All
221 chromosomes and gene symbols are as mentioned in Flybase (<http://flybase.org>).

222 2.3. Isolation of Satellite Cells & Differentiation

223 When adopting this protocol, an individual who was blinded to the mouse genotype or treatment
224 conducted the experiment, including isolation, differentiation, and fixation of murine and human
225 cells. This individual did not perform later analyses to mitigate bias. Satellite cell isolation and
226 differentiation for thapsigargin treatment and DRP-1 ablation were performed as described
227 previously, with minor modifications [11,41,45]. When C57B1/J1 mice reached 8–10 weeks of age,
228 mice were anesthetized using isoflurane. Skeletal muscles of the gastrocnemius and quadriceps were
229 excised and washed twice with 1× phosphate-buffered saline (PBS) supplemented with 1%
230 penicillin-streptomycin and 0.3% fungizone (300 µL/100 mL). Dulbecco's modified Eagle's medium
231 (DMEM)-F12 media with 0.2% collagenase II (2 mg/mL), 1% penicillin-streptomycin, and 0.3%
232 fungizone (300 µL/100 mL) was added to the muscles and shaken for 90 min at 37 °C. This media
233 was removed, muscle was washed with PBS x4 times, and media replaced with DMEM-F12 media
234 containing 0.05% collagenase II (0.5 mg/mL), 1% penicillin-streptomycin, and 0.3% fungizone (300
235 µL/100 mL), before shaking for 30 min at 37 °C. Tissue was then ground until all cells were
236 dislodged from the tissue matrix and were passed through a fine, 70-µm cell strainer. Isolated cells
237 were centrifuged, resuspended, and plated on BD Matrigel-coated dishes. Adherent cells were
238 differentiated into myotubes by adding DMEM-F12, 20% fetal bovine serum (FBS), 0.004% (40
239 ng/mL) basic fibroblast growth factor (R&D Systems, 233-FB/CF), 1× non-essential amino acids,
240 0.14 mM β-mercaptoethanol, 1× penicillin/streptomycin, and 0.3% fungizone (300 µL/100mL).
241 Myotubes were maintained in medium containing 0.001% (10 ng/mL) growth factor until reaching
242 85% confluence, then were differentiated in DMEM-F12, 2% FBS, and 1× insulin–transferrin–
243 selenium.

244 2.4. Human Myotubes

245 GIBCO® Human Skeletal Myoblasts from ThermoFisher Scientific (A1255) were thawed and plated
246 in HG DMEM containing 1% penicillin/streptomycin, 1% fungizone, and 2% horse serum. Cells
247 were differentiated after 48 h, and myotubes were extracted.

248 Fibroblasts grown *in vitro* to the third passage were plated in 6-well tissue culture plates (5×10^5
249 cells per well) in DMEM (Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum,
250 100 U/ml penicillin, 100 μ g/ml streptomycin, 0.25 μ g/ml fungizone, 1 mm sodium pyruvate, and 10
251 mm HEPES at 37 °C in a humidified incubator with 10% CO₂. Cells were infected with Ad-Cre and
252 Ad-GFP was a control.

253 2.5 Immunogold Labeling

254 Immunogold labeling was performed as previously described [46]. Ultrathin cryosections were
255 prepared, and single- or double-immunogold labeling was performed using antibodies and protein A
256 coupled to gold. After labeling, sections were imaged via TEM. Specifically, primary skeletal
257 myotubes were fixed for 1 h in 4% paraformaldehyde (PFA) and 0.1% glutaraldehyde in 0.1 M
258 phosphate buffer. From there, vibratoming of 40-50 μ m section into 0.1M phosphate buffer was
259 performed. Each section was washed 3 times for 10 minutes each with the same 0.1 M phosphate
260 buffer. For the first blocking step, 0.1% NaBH4 in 0.1 M phosphate buffer was applied for 15
261 minutes. After blocking, phosphate buffer was used for washing 4 times for 10 minutes each time. To
262 permeabilize, 0.05% Triton X-100 in 0.1M phosphate buffer was applied and incubated for 15 mins
263 at 30 °C. After this, phosphate buffer was used for washing 3 times for 10 minutes each time. For the
264 second blocking, Aurion Blocking Solution was added and the solution was incubated at room
265 temperature for one hour. Incubation buffer was used to wash after blocking, again in triplicates of 10
266 minutes.

267 From there, 1-5 μ g/ml of the primary antibody in incubation buffer was applied and incubation at 4
268 °C occurred overnight. For mitofusin-1, Anti-Mitofusin 1 antibody was used (Abcam; ab126575); for
269 CAV-1, caveolin-1 antibody was used (Cell Signaling Technology; 3238); and for LC3, LC3B (D11)
270 XP® Rabbit mAb was used (Cell Signaling Technology; 3868). After overnight, the incubation
271 buffer was used to rinse 6 times over, incubating for 10 minutes each time. From there, secondary
272 antibody incubation occurred with 1:100 ultrasmall gold conjugated secondary antibody in
273 incubation buffer overnight at 4 °C. After overnight, again the incubation buffer was used to rinse 6
274 times over, incubating for 10 minutes each time. Furthermore, 3 washes, each 10 minutes, of PBS
275 were also used. From there, post-fixation occurred through incubation in 2% Glutaraldehyde in 0.1M
276 phosphate buffer for 2 hours. After time elapsed, phosphate buffer was utilized for washing across 4
277 times, 10 minutes each time. It was quickly rinsed with distilled H₂O for 15 seconds, three times. For
278 silver enhancement, AURION SE-EM silver enhancement solution was applied, and sample
279 incubated for 45 minutes at room temperature. From there, it was quickly rinsed with distilled H₂O
280 for 15 seconds, three times. Phosphate buffer was also utilized for washing across 4 times, 10
281 minutes each time. Once washed, to perform osmification, 0.5% OsO₄ in 0.1M phosphate buffer was
282 added for 15 mins. After this, the sample was finally washed in the same phosphate buffer for 10
283 minutes twice.

284 From there, dehydration and embedding in resin was performed. To do so, first the sample was again
285 placed in 4% PFA and 0.1% Glutaraldehyde for 1 h. From there, they were washed with phosphate
286 buffer three times for 20 minutes. Following this, a graded ethanol wash was performed at 15
287 minutes each progressing from 25% to 50% to 75% ethanol. 95% ethanol was finally used for wash
288 for 30 minutes. From there, the mixture was washed and replaced with an 1:1 mixture of 95% ethanol
289 and LR white resin for 1 hr. Finally, a pure 100% LR white resin solution was added. After an hour,
290 it was replaced with a new 100% LR white resin which again incubated at room temperature for 1 hr.
291 This sample was cured under UV overnight with a vacuum to remove any excess liquid. 90 nm
292 ultrathin sections were obtained and imaging occurred as described for TEM samples below.

293

294 2.6 Lysotracker

295 The protocol was performed as previously described [47]. LysoTracker™ Red DND-99
296 (ThermoFisher Scientific, L7528) was diluted to a final concentration of 1 mM with dimethyl
297 sulfoxide (DMSO) to create a stock solution, which was then mixed with warm growth media at a
298 1:2000 dilution. Growth media was aspirated from cells and replaced with the working
299 LysoTracker™ Red DND-99 solution. Cells were imaged live using an SP-8 confocal inverted
300 microscope with a visible light laser at a 577 nm excitation wavelength and a 590 nm \pm 10 nm
301 emission wavelength, which allowed a yellowish pseudo coloration to be observed. To stain fixed
302 cells, cells were grown in culture media on a #1.5 cover glass, either embedded into a petri dish or
303 divided by plastic-walled growth chambers to optimize microscope optics. Cells were incubated for
304 30 min with a LysoTracker™ Red DND-99 working solution. The staining solution was then
305 aspirated from the plate, rinsed, and subsequently fixed in 4% PFA. Confocal image stacks were
306 captured with a Zeiss LSM-5, Pascal 5 Axiovert 200 microscope, using LSM 5 version 3.2 image
307 capture and analysis software and a Plan-APOCHROMAT 40x/1.4 Oil DIC objective. Images were
308 deconvoluted with National Institutes of Health (NIH) ImageJ software and BITPLANE-Imaris
309 software. Imaris software analysis was used to measure lysosome number, volume, and area.
310 Experiments were conducted in triplicate, at minimum, and 10–20 cells per condition were
311 quantified.

312 2.7. Immunofluorescence

313 Immunofluorescence was performed as previously described [41,48]. For, live-cell imaging, live cells
314 were plated and imaged in MatTek 35 mm glass-bottom culture dishes and grown on Matrigel. After
315 growth, the cells were fixed with 4% (w/v) PFA in PBS for 30 min, then permeabilized with 0.25%
316 Triton X-100 in PBS for 10 min at room temperature. Fixed cells were then blocked with 10% bovine
317 serum albumin in PBS and incubated with rabbit anti-lysosomal associated membrane protein
318 (LAMP-1; Cell Signal: D2D11) antibody in 1% BSA in PBST (PBS + 0.1% Tween 20) at a 1:25
319 dilution at 4 °C overnight. After three PBS washes, each 5 minutes long, Alexa Fluor 488-conjugated
320 goat-rabbit mouse IgG (Life Technologies: A-11008) secondary antibodies were added at 1:1000
321 dilution in 1% BSA and incubated at room temperature for 45 minutes in the dark. After another
322 three PBS washes, coverslips were mounted onto glass slides with ProLong Diamond Antifade with
323 4',6-diamidino-2-phenylindole (DAPI) and allowed to dry overnight. Confocal image stacks were
324 captured with a Zeiss LSM-5, Pascal 5 Axiovert 200 microscope, using LSM 5 version 3.2 image
325 capture and analysis software and a Plan-APOCHROMAT 40x/1.4 Oil DIC objective. Imaris
326 software analysis was used to measure lysosome intensity, length, and sphericity. Experiments were
327 performed in triplicate, at minimum, and 10–20 cells per condition were quantified.

328 2.8. Thapsigargin Treatment

329 Fibroblasts, human myotubes, and mouse myotubes were treated with thapsigargin (2 μ g mL $^{-1}$;
330 Sigma) for 10 h, followed by crosslinking with Trump's fixative [49] with 4% PFA and 1%
331 glutaraldehyde for 10 min as previously described [11,50].

332 2.9. TEM Processing of Myoblasts, Fibroblasts, and Myotubes

333 The cell types followed a near identical procedure. Myoblasts and fibroblasts were isolated according
334 to the above methods and placed in six-well poly-D-lysine-coated plates for TEM processing.

335 Myotubes were cultured on Matrigel coated plates. For 1h, cells were incubated at 37 °C with 2.5%
336 glutaraldehyde in 0.1 M sodium cacodylate buffer. This resulted in cell fixation. From there, after
337 rinsing twice with 0.1 M sodium cacodylate buffer, secondary fixation at room temperature for 30
338 minutes to one hour occurred using 1% osmium tetroxide and 1.5% potassium ferrocyanide in 0.1 M
339 sodium cacodylate buffer.

340 After secondary fixation, a five-minute washing with 0.1 M sodium cacodylate buffer (7.3 pH)
341 occurred. From there, two washings of five minutes with diH₂O ensured the plates were cleaned.
342 While keeping all solutions and plates at room temperature, the plates had 2.5% uranyl acetate,
343 diluted with H₂O, added and were incubated overnight at 4° C. Following this, dehydration was
344 performed through an ethanol gradient series. After dehydration, the ethanol was replaced with
345 Eponate 12TM mixed with 100% ethanol in a 1:1 solution. The cells were allowed to incubate, again
346 at room temperature, for 30 minutes. This was repeated three times, for an hour each time using
347 100% Eponate 12TM. The plates were finally placed in new media and placed in an oven overnight at
348 70 °C.

349 The plates were cracked upon hardening, and the cells were separated by submerging the plate in
350 liquid nitrogen. An 80nm thickness jeweler's saw was used to cut the block to fit in a Leica UC6
351 ultramicrotome sample holder. From there, the section was placed on formvar-coated copper grids.
352 These grids were counterstained in 2% uranyl acetate for 2 minutes. Then these grids were
353 counterstained by Reynold's lead citrate for 2 minutes. Images were acquired by TEM on either a
354 JEOL JEM-1230, operating at 120 kV, or a JEOL 1400, operating at 80kV.

355 2.10. Systematic ImageJ Parameters and Measurement

356 Using documented parameters and quantification methods [11], a unique individual imaged the entire
357 cell at low magnification. Obtained images were uploaded to ImageJ in an acceptable format, such as
358 TIFF. The cell was then divided into quadrants using the ImageJ quadrant picking plugin
359 (<https://imagej.nih.gov/ij/plugins/quadrant-picking/index.html>, accessed August 21, 2021) to ensure
360 random and unbiased quadrant selection for quantification. After sectioning the image into four
361 quadrants, two quadrants were randomly selected for complete analysis. Three independent, blinded
362 individuals quantified these quadrants as described below. Their collective findings were averaged to
363 decrease individual subjective bias. To ensure accurate and reproducible values, measurements were
364 repeated on a minimum of 10 cells each. In the future, if significant variability is observed among the
365 individuals performing the analysis, increasing the sample number (n) by expanding the number of
366 cells quantified was found to decrease variability.

367 All analysis methods were developed using NIH ImageJ software. Necessary measures should be set
368 on ImageJ prior to analysis (Analyze > Set Measurements: Area, Mean gray value, Min & Max gray
369 value, Shape descriptors, integrated density, Perimeter, Fit ellipse, Feret's Diameter). Lysosomes,
370 autolysosomes, LDs, and autophagosomes, were measured, including area, circularity, and length
371 using the Multi-Measure region of interest (ROI) tool in ImageJ based on established measurements
372 [11,51]. Using the freehand tool in NIH ImageJ 1.49, we manually traced the cellular degradation
373 machinery membrane to determine area or volume. A 19 × 23 cm rectangular grid was overlaid on
374 each image to quantify cellular degradation structures and the numbers were presented per 10 µm² of
375 cytoplasm.

376 2.11. Statistical Analysis

377 Results are presented as the mean \pm standard error of the mean. Data were analyzed using unpaired
378 Student's T-tests. If more than two groups were compared, one-way analysis of variance (ANOVA)
379 was performed, and significance was assessed using Fisher's protected least significance difference
380 test. For T-tests and ANOVA, the GraphPad and Statplus software packages were used (SAS
381 Institute, Cary, NC). For all statistical analyses, significant differences were accepted when $p < 0.05$.

382 2.12 3D reconstruction of cellular degradation components using Amira

383 Following isolation of myotubes in a flex fixative, serial block face-scanning electron microscopy was
384 performed according to established protocols [16]. Once isolated, *Amira* 3D reconstruction
385 (ThermoFisher Scientific; Waltham, Massachusetts) software was utilized to perform 3D
386 reconstruction of machinery according to the protocol found in Section 3. All videos were created in
387 the *Amira* software program according to Garza-Lopez et al. 2022 [16].

388 **3 Protocol**

389 TEM PROTOCOL:

390 3.1. Downloading and Preparing ImageJ Software for Analysis

391 3.1.1. Download ImageJ software from the official NIH website
392 (<https://imagej.nih.gov/ij/download.html>).

393 3.1.2. Install and open the ImageJ software.

394 3.1.3. Select Analyze ▶ Tools ▶ ROI Manager to open the ROI Manager, which is used to record and
395 track measurements.

396 3.1.4. Click on Analyze ▶ Set Measurements to input the measurements for ImageJ to perform, such
397 as area, circularity, and perimeter.

398 3.1.4.1. For the current protocol, area and count were the focus; however, all available measurements
399 may be used, depending on the study aims.

400 3.1.5. Import image to be analyzed directly into ImageJ. A TIFF or DM3 file is recommended to
401 provide high-quality.

402 3.1.5.1. Alternatively, click File ▶ Open to open the selected image.

403 3.1.6. Considerations

404 3.1.6.1. For accuracy and reproducibility, ensure that each image contains a scale bar, bar length, and
405 image magnification. The scale bar and bar length are important for setting the appropriate units in
406 the ImageJ settings.

407 3.1.6.2 Quantification of samples should be performed by three individuals in a randomized and
408 blinded manner to ensure an unbiased approach.

409 3.1.6.3. To save time, images may be divided into quadrants, and same quadrants should be analyzed
410 across all images.

- 411 3.2. Analyzing Lysosomes, Autophagosomes, and Autolysosomes (Supplementary Figure 2A–C)
- 412 3.2.1. Click on Freehand Selections to access the Freehand tool.
- 413 3.2.2. Trace the outline of the entire cell.
- 414 3.2.3. Click Add on the ROI Manager. This ROI will be used to normalize later measurements.
- 415 3.2.4. To obtain length and width, use the Straight-Line tool to draw a line down the major and minor
416 axes of each organelle (Supplementary Figure 2A–C, Step 1).
- 417 3.2.5. Trace the membrane of each lysosome, autophagosome, or autolysosome. Add the shape to the
418 ROI Manager (Supplementary Figure 2A–C, Step 2).
- 419 3.2.6. Click Measure in the ROI Manager to obtain the area measurements.
- 420 3.2.7. Add the measurements to the ROI Manager and use the Measure function to obtain numerical
421 values for each measurement.
- 422 3.2.8. Considerations
- 423 3.2.8.1. Ensure that autophagosomes, lysosomes, and autolysosomes are measured separately because
424 the ROI Manager will group all functions for statistical analysis.
- 425 3.2.8.2. The number of autophagosomes, lysosomes, or autolysosomes counted in the cell should be
426 normalized against the total cell area.
- 427 3.3. Analyzing Lipid Droplets
- 428 3.3.1. Repeat Steps 2.1–2.5 for LDs to obtain basic measurements needed for analysis
429 (Supplementary Figure 2D).
- 430 3.3.2. For each cell, calculate total area of all LDs. The amount of lipid coverage is the total area of
431 all LDs divided by total cell area.
- 432 3.3.2.1. This process can be used to determine the percent coverage of other subcellular structures,
433 including mitochondria and recycling machinery.
- 434 3.3.3. Contact sites between organelles can be measured by first using the Freehand tool to trace the
435 outer membranes of both subcellular structures being analyzed, as described in Step 2.4
436 (Supplementary Figure 2D, Step 1).
- 437 3.3.4. To determine the contact site length, click on the Straight, Segmented, or Freehand Lines tool
438 on the toolbar, and select Freehand Line. Draw a line spanning the length of the contact site, add the
439 measurement to the ROI Manager, and use the Measure function to determine the contact length
440 (Supplementary Figure 2D, Step 2).
- 441 3.3.5. Contact distance may be similarly measured using the Freehand Line tool to draw a line
442 between two objects being measured.

443 3.3.6. Calculate percent coverage by dividing the cumulative contact lengths by the percent coverage
444 of one of the two subcellular features in question, as determined in Step 3.2. Multiply the value by
445 100 to obtain a percentage.

446 3D RECONSTRUCTION PROTOCOL (UTILIZING WACOM TABLET):

447 3.A. Download Amira software from <https://www.thermofisher.com/us/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html> (accessed on 4 August 2022) and open.

450
451 3.B. Transfer all orthoslices to be analyzed from **Project View > Open Data**. Ensure all are
452 transferred by selecting **Read Complete Volume into Memory**.

453 3.C. Navigate between the **Project** subsection, to select images to analyze and the
454 the **Segmentation** subsection, to alter segmentation tools. We recommend the **Brush** tool with a size
455 of 2.

456 3.D. Calibrate the Wacom Pen and open Amira on the Wacom tablet in accordance with prior
457 protocols [16].

458
459 3.E. Using arrow keys, scroll through orthoslices until desired recycling machinery is found. It is
460 recommended to verify its identity by looking at additional orthoslices. For each organelle, outline
461 with a material and press F to segment area. Alter material for each organelle to pseudo color
462 organelles.

463 3.F. Repeat this process for each ortho slice that organelle appears on, making sure that all
464 independent organelles consistently use the same material color. Later on, aspects of these materials,
465 such as color and visibility, can be altered on the **Materials** menu.

466 3.G. Once all are segmented, on the **Project Menu**, click on **Selection Labels > Generate Surface**
467 and select **Apply**.

468 3.H. In the workplace area of Amira, rename the newly generated box with the “.surf” suffix and
469 click **Surface View**. Toggle orthoslice and 3D reconstruction materials on and off to switch between
470 isolated and overlay view.

471 3.I. Make scale bars by right-clicking in the gray area under the **Project** subsection and selecting the
472 option **Scalebars**. Adjust scale bars as necessary, with a readable width and font, as well as only
473 leaving x-axis, unless y-axis scale is also necessary.

474 3.J. Previously [16], mitochondrial quantifications performed has included volume, 3D area, and
475 length. Furthermore, mitochondrial complexity index is measured by $SA^3/16\pi l^2V^2$ while
476 mitochondrial branching index measures transverse branching divided by longitudinal branching
477 [52]. While created for mitochondria, these same quantifications can be used as parameters for
478 recycling machinery. Additionally, recycling machinery has other quantifications that may be applied
479 including mitochondrial-lysosome or lipid droplet-mitochondrial interactions distances and surface
480 area interactions.

481
482

483 4 Result

484 This protocol describes a method to obtain reproducible measurements and identify structures
485 involved in autophagy. Below, we show the results obtained using this TEM image analysis
486 approach.

487 4.1. Identification of organelle compartments by immunogold labeling

488 With the pitfalls associated with correctly identifying organelles by TEM morphology alone, other
489 methods may be required to confirm organelle identity. One of the most effective alternatives is
490 immunogold labeling used in electron microscopy to analyze organelle marker proteins. As a
491 positive-control, it is useful to perform immunogold labeling on a easily identifiable organelle. For
492 example, mitochondrial GTPase proteins, mitofusin 1 and 2 (MFN1 and MFN2), function in
493 mitochondrial fusion reactions [35,36,53–56] and MFN1 is used to identify mitochondria in tissues
494 as MFN1-positive puncta (Figure 2P–Q).

495 Immunogold labeling can also be used to identify organelles associated with autophagy. Many novel
496 yeast genes that are essential for autophagy (autophagy-related, or ATG genes) have been
497 characterized, and most of their mammalian homologs have been identified [57]. Microtubule-
498 associated protein 1 light chain 3 (LC3), the mammalian homolog of Atg8 [58], is a reliable marker
499 for mammalian autophagosomes, which can be identified by the formation of LC3 labeling along the
500 limited membrane (Figure 2R–S). LC3 expression in autophagosomes (Figure 1, blue arrows) and
501 phagophores (not shown) may vary due to LC3 degradation by lysosomal hydrolases, making it a
502 challenge to identify late-stage autophagic materials [59]. Moreso, since autophagosomes are three-
503 dimensional organelles and are being imaged in two-dimensions. However, identifying LC3-positive
504 puncta is still valuable to identify autophagosomes. Immunogold labeling has also been performed
505 with caveolin-1 (CAV-1), a marker protein for specialized membrane domains known as caveolae,
506 which ultimately accumulate in caveosomes that mature into MVBs upon endocytosis [60].
507 Therefore, CAV-1 immunogold labeling can be used to identify vesicles (Figure 2T–U) and the
508 presence of CAV-1 puncta in an ROI excludes those vesicles from classification as autophagosomes,
509 indicating instead a vesicle such as, multivesicular or multi-inclusion body. After testing
510 immunogold labeling, we examined changes in cellular degradation machinery under other
511 conditions.

512 4.2. Thapsigargin treatment alters lysosome, autolysosome, and autophagosome morphology

513 Thapsigargin is a sarcoplasmic-ER Ca^{2+} -ATPase (SERCA) inhibitor, that decreases the length of
514 mitochondria–ER contacts in treated cells, while also inducing ER stress [11,61]. We investigated
515 morphological changes in lysosomes, autolysosomes, and autophagosomes in response to
516 thapsigargin (Figure 3) using our TEM image analysis protocol. We found that mean lysosomal area
517 and the number of lysosomes per square micron significantly increased in response to thapsigargin
518 treatment in primary mouse skeletal myotubes (Figure 3E–F). The mean area of autolysosomes and
519 the number of autolysosomes per square micron had an even greater increase than seen in lysosomes
520 (Figure 3G–H). The mean autophagosomal area and number of autophagosomes per square micron
521 also significantly increased in thapsigargin-treated cells (Figure 3I–J). Similar results were seen in
522 mouse fibroblasts (Figure 3K–T) and human myotubes (Figure 3U–AD). Human myotubes displayed
523 the largest increases in autophagy recycling machinery of all assessed components. These
524 quantifications are shown with representative images for each cell type (Figure 3A–D, K–N, and U–
525 X). The ability of thapsigargin to inhibit ER function and promote cell stress support a model in
526 which cell-stress-induced organellar damage increases lysosome and autophagosome degradation of

527 damaged organelles. Thus, morphological changes detected and quantified using our TEM method
528 are consistent with the expected effects of thapsigargin treatment.

529 4.3. DRP-1 ablation results in increased degradation machinery

530 Dynamin-related protein (DRP-1) is a crucial regulator of mitochondrial fission [43,62]. Previous
531 studies found that impaired mitochondrial fission can have downstream effects on organellar
532 morphology and function throughout the cell [63]. In the absence of DRP1, mitochondria undergo
533 fission less frequently, resulting in longer mitochondria that can trigger downstream effects,
534 including apoptosis [62]. To test our method, we generated a skeletal muscle-specific *Drp1* knockout
535 mouse and noted changes in the degradation machinery. Specifically, our study focused on
536 lysosomes, autophagosomes, and LDs, which are all closely linked to the autophagy process. *Drp1*
537 ablation in a skeletal myotube-specific knockout model (DRP-1smKO), resulted in significantly more
538 lysosomes than in wild-type controls (Figure 4A–F, red arrows). We also found increased lysosome
539 numbers per square micron and lysosomal area per square micron, although the change in lysosomal
540 area was not as great as the change in lysosome number (Figure 4G–H). Similarly, DRP-1smKO also
541 showed a significant and large increase in autophagosome number over wild-type controls (Figure
542 4I–L, red arrows). We also observed increased autophagosome number per square micron and
543 autophagosome area per square micron, although the change in area was less than the change in
544 number (Figure 4M–N). Based on changes in percentage and degree of significance, the
545 autophagosome increase was greater than the lysosome increase, suggesting that reduced
546 mitochondrial fission may cause larger shifts in cargo vessel formation than in lysosome formation,
547 although both organelle types increased significantly. Autophagosome-lysosome fusion events may
548 also contribute to this disparity, as intermediate fusion phase structures more closely resemble
549 autophagosomes than lysosomes.

550 To validate these results, we used the fluorescent dye, LysoTracker, to image lysosomes in DRP-
551 1smKO myotubes because its ability to label and track acidic organelles in live cells allows it to
552 effectively identify highly acidic lysosomes. Similar to TEM data, the LysoTracker assay showed
553 significantly more lysosomes in DRP-1smKO myotubes than in wild-type controls (Figure 4O–P).
554 Increased lysosome number, calculated lysosome volume, and lysosomal area were also observed in
555 DRP-1 knockout mice (Figure 4Q–S). These key quantitations are similar to those determined by
556 TEM analysis; however, LysoTracker provided better certainty of lysosome identity and allowed use
557 of traditional statistical analyses to determine lysosome area and numbers. Lysosomes can also be
558 identified by LAMP1 immunostaining (Figure 4T–U) [64], which correlates with the number and
559 size of active lysosomes (Figure 4V). While relative intensity can estimate LAMP1 expression,
560 lysosome area measurements are not reliable by LAMP staining. Other metrics, including length and
561 sphericity, can be determined using these fluorescent dyes, suggesting that lysosomal dysfunction
562 occurs as length increases and sphericity decreases (Figure 4W–X).

563 To further validate these results and see if the 3D structures of recycling machinery showed
564 significant differences upon loss of DRP-1, we also provide representative 3D reconstruction of both
565 lysosomes (Figure 4Y-AB''; SV1-4) and autophagosomes (Figure 4AC-AF''; SV 5-8). The top
566 image shows a representative orthoslice of the region of interest (Figure 4Y-AF). Once segmentation
567 was performed, organelle 3D reconstructions were overlaid on the orthoslice (Figure 4Y'-AF'). To
568 allow for better visualization, we also show isolated 3D reconstruction on the X- by Z- plane to allow
569 for their depth to better be visualized (Figure 4Y''-AF''). However, static images of 3D
570 reconstruction may not capture the scope of 3D reconstruction; therefore, we also provide associated
571 videos showing organelles for all representative images (SV 1-8). Our study shows that lysosomes

572 appear larger in DRP-1 smKO (Figure 4AB''). Additionally, upon loss of DRP-1 lysosomes appear
573 to be closer together in 3-dimensional spatial orientation (Figure 4AA''-AB''). Autophagosomes
574 appear to have a less significant alteration, but they do appear to be more elongated in the z-axis upon
575 DRP-1 smKO (Figure 4AC''-AF''), a detail that would otherwise not be observed in TEM.

576 4.4. DRP-1 ablation results in increased lipid droplets

577 We also measured LDs in skeletal muscle from DRP-1smKO mice, which had significantly more
578 LDs than WT controls (Figure 5A-B, red arrows). We observed a large increase in lipid area and
579 number of LDs per square micron (Figure 5C-D). Based on percent change, the LD increase was
580 larger than the observed increases in both lysosomes and autophagosomes following DRP-1 ablation
581 (Figures 4 and 5). To see if spatial relationships of LDs changed upon DRP-1 loss, we also looked at
582 SBF-SEM 3D reconstruction of LDs. For both WT and DRP-1smKO mice we show a representative
583 x- by y-plane orthoslice (Figure 5E-H), 3D reconstruction overlaid on orthoslice (Figure 5E'-H'),
584 isolated 3D reconstruction showed on a slightly different plane, the X- by Z-plane, to allow for depth
585 to better be visualized (Figure 5E''-H''), and video of isolated 3D reconstruction (SV 9-12). We
586 observed that after DRP-1 loss, LDs were much more clumped, both on the x- and y- axis, but also
587 on the z-axis, and lipid droplets appeared to be larger sizes (Figure 5G''-H'').

588 4.5. Knockdown of Marf resulted in more abundant lysosomes

589 In addition to DRP-1, we sought to quantify lysosomal changes in response to knockdown of other
590 key mitochondrial proteins. Mfn2 is an important regulator of mitochondrial fusion [65,66] and Mfn2
591 deficiency has been associated with disrupted ER morphology and mitochondria-ER contacts,
592 resulting in dysfunctional calcium signaling [65,66]. Loss of Mfn2 was also recently shown to
593 influence autophagic pathways [65-68] by stalling autophagy at the lysosome and autophagosome
594 stages, causing a buildup of both autophagosomes and lysosomes by inhibiting their fusion [68]. The
595 *Drosophila* homolog of Mfn2 is Marf, and knockout of genes upstream of Marf had downstream
596 effects on autophagy [67]. Given this emerging link between autophagy and Marf/Mfn2, we
597 examined the effects of Marf knockdown in *Drosophila* tissue, which produced a significant and
598 large increase in lysosome number compared with WT controls (Figure 6A-B, D). We also observed
599 an increase in average lysosomal area (Figure 6C). These findings indicate a potential upregulation of
600 autophagy, which may represent an autophagic response to ER and mitochondrial stress caused by
601 loss of Marf [65-68]. Further research into changes in other cellular degradation machinery
602 following loss of Mfn2/Marf could better elucidate the effects of Mfn2/Marf on autophagy.

603 5 Discussion

604 The method we have described involves measuring organelles in each image or image quadrant by
605 defining the area of interest using digital tools, rather than the often-used method of point counting.
606 Point counting can be used to determine the cellular area by laying a grid over the cellular area and
607 determining the distance between gridlines and the number of grid intersections, or points, within the
608 cell. Cellular area may then be estimated using the equation $P \times d^2$, where p is the number of points
609 and d is the grid distance [40]. Smaller grids can be used to repeat the process for estimating
610 organelle area, and these two values can then be used to determine the percent coverage of
611 organelles. Past studies have used point counting to successfully streamline the process of calculating
612 organelle coverage; however, this method only provides estimations [40]. Even with smaller grid
613 distances, which can increase the calculation accuracy, this approach still requires estimation. The
614 method we described uses ImageJ to more precisely calculate the structure areas. Although using

615 ImageJ is more time-consuming, the results are highly reproducible, generating high-quality data that
616 may be further analyzed using ImageJ. Both analyses require human evaluation and proper
617 identification of the recycling machinery. Both point counting and ImageJ-based measurements are
618 viable ways to measure the frequency of recycling or other types of organelles; however, we believe
619 the accuracy of measurements with ImageJ analysis is worth the increased time commitment [23,24].

620 An important consideration in the use of TEM is the magnification and scope of cellular degradation
621 machinery components to be considered in these analyses. Significant size heterogeneity is seen
622 among components of the degradation machinery, even within the same classification group, which
623 can vary according to the amount of cargo they carry (Figure 1). For TEM imaging, various organelle
624 types and sizes may require different magnifications (Supplemental Figure 1). Additionally, the
625 purpose of the analysis must be considered when deciding which types of recycling machinery to
626 evaluate, and appropriate statistical analyses should be used (Supplemental Figure 1). For example,
627 the total number of LDs may not be as important as their total cell coverage due to varying LD sizes
628 and proper magnification should be determined based on the necessary measurements to be
629 performed (Supplemental Figure 1). A limitation of our method is that for key measurements, such as
630 area, the total organelle must be visualized to obtain accurate results. Point counting can be used to
631 evaluate images in which the entire organelle is not visible because it relies on estimation [40]. When
632 using ImageJ, the entire organelle is outlined, and magnification that is too high may limit the
633 amount of data that can be collected. However, images of a single cell at varying magnifications may
634 be used by normalizing to a consistent scale across all images.

635 Although this protocol focuses primarily on evaluation of the degradation machinery, these
636 organelles must not be viewed in a vacuum. Autophagy can target any cell, and many factors can
637 alter autophagy processes in different cells, as seen in cancer, metabolic diseases, or
638 neurodegenerative diseases [1,4,12]. Many organelles are closely associated with the overall
639 autophagy process. Recent research found that omegasomes and autophagosomes primarily form at
640 mitochondria-ER contact sites [39], which may be because the ER phospholipid,
641 phosphatidylinositol 3-phosphate, is needed to activate and form autophagosomes [1-3].
642 Mitochondrial-derived vesicles can also influence autophagic pathways by transporting proteins and
643 lipids associated with the mitochondria to MVBs [69]. This previously unknown pathway indicates
644 that mitochondria that are not sufficiently damaged to trigger mitophagy can still produce endocytic
645 bundles that are transported to the MVB for recycling via the autophagic pathway. Because cellular
646 degradation machinery can have important effects on organelles, and the inverse is also true, a
647 holistic view is needed to understand the nuances that influence autophagy.

648 The protocol described here is optimized for statistical analyses; however, it is important to ensure
649 that correct subcellular features of lysosomes, autophagosomes, and LDs are identified and measured.
650 Although organelles can be accurately identified by TEM alone, methods, such as
651 immunofluorescent staining, are recommended in tandem with TEM to achieve clear results,
652 particularly when analyzing lysosomes, autophagosomes, and autolysosomes, which are easily
653 misidentified (Figures 1-2 and 4). Because examining organellar morphology using TEM alone may
654 lead to inaccurate conclusions, we suggest coupling TEM with methods such as immuno-TEM with
655 gold labeling, Lysotracker with correlative light and electron microscopy, and
656 immunohistochemistry or immunofluorescence (Figure 2 and 4) to verify the identity of each
657 structure [5,57,70].

658 Given the acidity and multitude of proteins associated with lysosomes, there are various ways to
659 identify lysosomes using immunogold labeling, Lysotracker to identify acidic organelles,

660 immunofluorescent dyes to label lysosome-associated proteins such as LAMP1 (Figure 4T–U) [64],
661 and indirect immunofluorescence using secondary antibodies bound to a lysosome-associated
662 primary antibody [71,72]. When combining confocal fluorescence imaging and TEM, fluorescence
663 can be used to identify specific proteins and confirm the identities of autophagic organelles (Figure
664 4O–X), and TEM can be used to measure finer details, including area, average number, and percent
665 coverage (Figure 4A–N). SBF-SEM can from there allow for 3D visualizations and to see details
666 that may not be seen in the 2D plane (Figure 4Y''-AF''; Figure 5E''-H''; SV 1-12). 3D
667 reconstruction can importantly allow for visualization of how organelles exist in relation to each
668 other in a 3D spatial orientation as well as if there are alterations in specifically transverse or
669 longitudinal organelle volumes [16].

670 Current options to identify and classify autophagosomes are limited. Immunogold labeling can be
671 used to detect LC3, which is currently a commonly used autophagosomal marker that proved
672 effective for our research [57,70,73]. LC3 puncta are not always detectable in autophagosomes;
673 however, immunogold labeling can be used to identify organelles to be excluded from
674 autophagosomes analysis. For example, CAV-1 staining (Figure 2T–U), which is associated with
675 caveolae typically found in MVBs, can identify MVBs that might be mistaken for autophagosomes
676 (Figure 2) [60]. Similarly, perilipin 2, a commonly expressed protein associated principally with
677 LDs, can be used to identify LDs [74]. Future studies that explore new improved immunogold or
678 immunofluorescence labeling options for autophagosomes will be important. Due to the potential
679 ambiguity associated with identifying the cellular degradation machinery, we recommend using at
680 least one additional complementary technique to verify lysosome and autophagosome identity when
681 measuring TEM images. Future studies may also perform quantifications of 3D reconstruction to
682 determine more detailed changes beyond those only shown by TEM.

683 Using the method outlined here, we have quantified the changes associated with macro autophagy
684 upon treatment with thapsigargin, loss of DRP-1, or knockdown of MARF. Thapsigargin treatment,
685 this is known to cause ER stress and past research has shown that such ER stress promotes
686 lipotoxicity and the formation of lipid droplets [75,76]. Given these previous findings, we believed
687 that autophagy may increase upon thapsigargin treatment in addition to lipid droplets, as previously
688 established for lipid droplets. Specifically, this hypothesized this would come across given that past
689 literature has found that macro autophagy can serve as a protective mechanism for ER stress [77,78].
690 Our results support the autophagic response to ER stress, as autolysosome, autophagosome, and
691 lysosomes all increased in quantity in three different models (Figure 3). Critically, we also examined
692 size of these organelles, as past literature has also suggested that the size of these organelles relates to
693 their efficiency and function [37,79,80]. In combination, our results show in all three models a large
694 increase in autophagy machinery. ER stress is typically caused by dysregulation of protein folding,
695 causing dysregulation of ER homeostasis [77]. In response, the unfolded protein response is
696 activated, which can have a downstream effect of increasing autophagy to remove defective organelle
697 and macromolecules [81]. Similarly, loss of DRP-1 also was demonstrated to cause an increase in
698 autophagy as seen by increases in size and quantity of organelles and increased LAMP1 expression
699 (Figure 4), and autophagy likely increases through a similar mechanism. Increased LDs have
700 previously been described as a downstream effect of autophagy, consistent with the conclusion that
701 autophagy occurs more frequently following DRP-1 ablation [32]. Increased autophagy may be due
702 to dysfunctional regulation of mitochondrial length, which is seen in response to loss of DRP-1
703 regulated fission [32,62]. These results suggest that DRP-1 ablation and the resulting lack of
704 mitochondrial fission increase autophagy in cells, demonstrated by upregulation of the cellular
705 degradation machinery. In past studies, mice lacking DRP-1 have had increased accumulation of
706 damaged mitochondria [63], which may induce increased mitophagy and relevant recycling

707 machinery. While DRP-1 is typically associated for regulation of mitochondrial fission [43], past
708 literature has also implicated the loss of DRP-1 with ER stress [82]. Specifically, this may come as a
709 result of loss of calcium homeostasis between the dysfunctional mitochondria and ER. Therefore, this
710 is a possible reason for why loss of DRP-1 mimics the changes seen upon thapsigargin treatment.
711 Similarly, past research has also shown that MFN-2 increases ER stress [83]. found that loss of
712 MARF, the fly homolog of MFN2, increased autophagic organelles, further showing a potential
713 increase in autophagy due to ER stress due to the unfolded protein response. Future research may
714 consider studying specifically ER-phagy with this method to better understand how ER-stress
715 activates autophagy, and verify that DRP-1 and MARF loss increase autophagy as a downstream
716 effect of ER stress.

717 Although limitations of this TEM analysis and SBF-SEM visualization method exist, when combined
718 with other techniques, reliable identification and quantitation of cellular degradation machinery
719 components may be possible. On a broader scale, this method using ImageJ and/or Amira may be
720 applied to other fields with a focus on organelle structure. For example, mitochondria play key roles
721 in many complex diseases, including type II diabetes, cardiomyopathy, and Alzheimer's disease
722 [35,36,53–56] and autophagy may contribute to these diseases, given its role in mitophagy to clear
723 dysfunctional mitochondria. Use of TEM and ImageJ to study other organelles in conjunction with
724 the precise methodology outlined here to study key autophagic organelles will improve our
725 understanding of the physiology associated with key organelles and their contributions to disease.

726 6 Perspective on Staining

727 Lysosome stages may look different when using different EM staining procedures, depending on the
728 material used for preparation (e.g., osmium tetroxide) and the type and amount of additives used
729 (e.g., uranyl acetate, lead citrate, and ruthenium red). Depending on the stain used, lysosomal
730 membrane contrast may be altered, affecting the appearance of lysosome-related structures. All EM
731 images shown here used a grid-based staining technique in all procedures (Table 2). The general
732 TEM sample preparation protocol used glutaraldehyde and 1% osmium tetroxide as fixatives [84–
733 87]. Post staining on TEM ultrathin sections used 5% uranyl acetate for 6 min to increase membrane
734 contrast and Reynold's Lead Citrate for 3 min to improve resolution of cellular structures [88–90].
735 Other stains may be used to optimize the experimental purpose, and staining time should be adjusted
736 according to the sample type. Other viable alternatives exist; for example, ruthenium tetroxide is
737 particularly useful when preparing kidney, liver, and prostate tissue [91,92]. Ammoniated ruthenium
738 oxychloride, commonly referred to as ruthenium red, is frequently used as a polycationic dye to stain
739 negatively charged molecules, including polysaccharides, in tissue sections [93–95]. Although
740 ruthenium red is commonly used for fungal staining, when used with osmium tetroxide, a chemical
741 reaction occurs that may increase the contrast of TEM micrographs [93–95]. Regardless of the stain
742 used, the foremost concern should be maintaining consistency in tissue staining. Different staining in
743 the same organism for example, staining separately for lysosomes, should be avoided. Ideally, the
744 same staining solution should be used for all samples, even at different stages, making it possible to
745 compare different times or stages. If staining protocols different from those described here are used,
746 lysosome appearance may vary.

747 7 Conflict of Interest

748 *The authors declare that the research was conducted in the absence of any commercial or financial*
749 *relationships that could be construed as a potential conflict of interest.*

750 **8 Author Contributions**

751 Conceptualization, E.G.-L., Z.V., P.K., J.S. (Jianqiang Shao), R.O.P., E.D.A. and A.H.J.;
752 Methodology, E.G.-L., Z.V., P.K., L.V., J.S. (Jianqiang Shao), S.A., M.M., M.B., S.A.M., J.L.,
753 T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.; software, E.G.-L., Z.V., P.K., L.V., T.A.C., J.L.S., R.O.P.,
754 E.D.A. and A.H.J.;
755 Validation, E.G.-L., Z.V., P.K., K.N., L.V., T.A.C., J.L.S., J.S. (Jianqiang Shao), R.O.P., E.D.A. and
756 A.H.J.;
757 Formal analysis, E.G.-L., Z.V., P.K., K.N., L.V., J.S. (Jianqiang Shao), T.A.C., J.L.S., R.O.P.,
758 E.D.A. and A.H.J.;
759 Investigation, E.G.-L., Z.V., P.K., L.V., J.S. (Jianqiang Shao), H.K.B., A.G.M., T.A.R., T.A.C.,
760 J.L.S., B.G., J.S. (Jennifer Streeter), R.O.P., E.D.A. and A.H.J.;
761 Resources, E.G.-L., Z.V., P.K., S.A.M., T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.;
762 Data curation, E.G.-L., Z.V., P.K., J.S. (Jennifer Streeter), H.K.B., A.G.M., T.A.R., R.O.P., E.D.A.
763 and A.H.J.;
764 Writing—original draft preparation, E.G.-L., Z.V., P.K., K.N., H.K.B., A.G.M., T.A.R., M.B.,
765 S.A.M., B.G., T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.;
766 Writing—review and editing, E.G.-L., Z.V., P.K., K.N., H.K.B., A.G.M., T.A.R., S.A.M., B.G.,
767 T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.;
768 Visualization, E.G.-L., Z.V., P.K., K.N., B.G., T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.;
769 Supervision, E.G.-L., Z.V., P.K., B.G., T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.;
770 Project administration, E.G.-L., Z.V., P.K., T.A.C., J.L.S., R.O.P., E.D.A. and A.H.J.;
771 Funding acquisition, E.D.A. and A.H.J.
772 All authors have read and agreed to the published version of the manuscript.

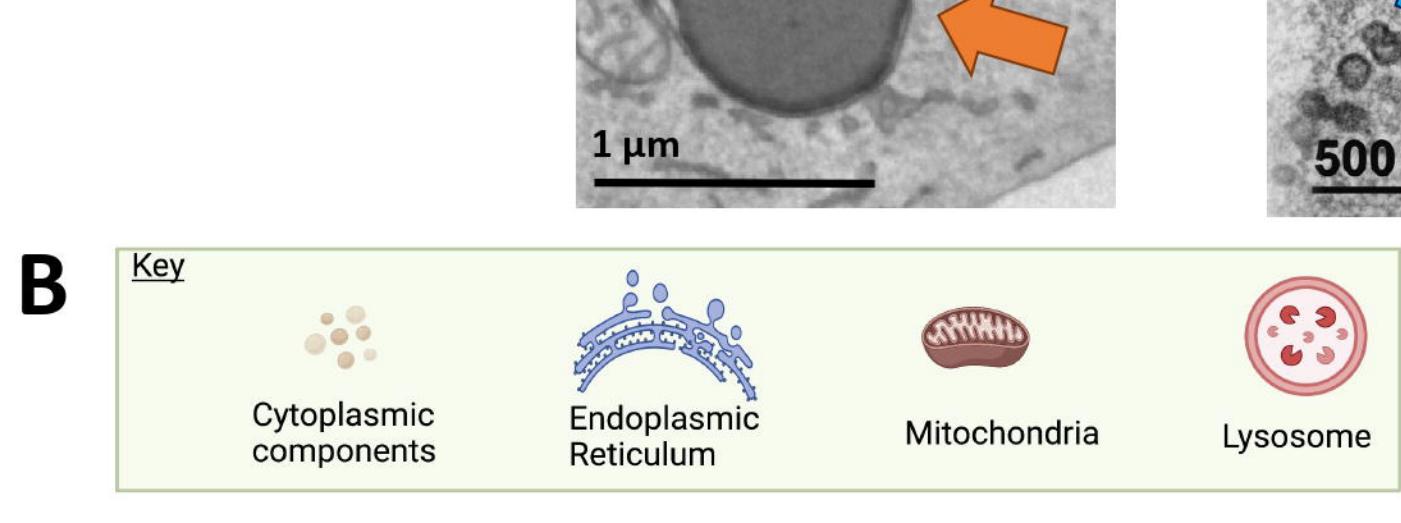
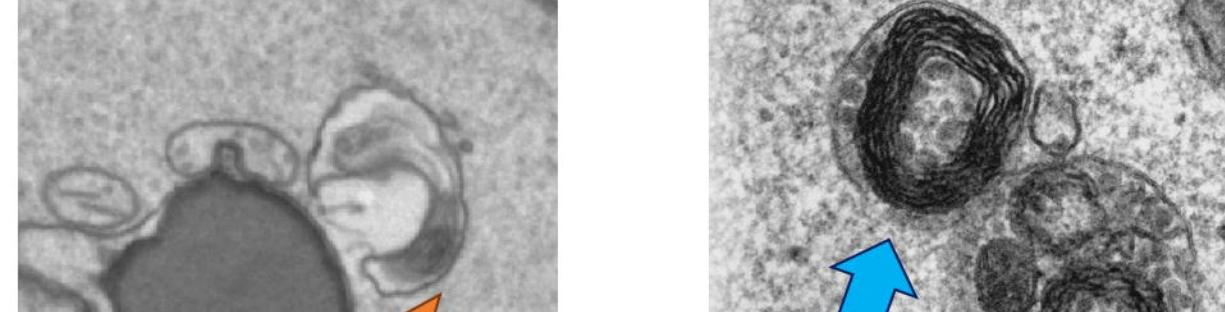
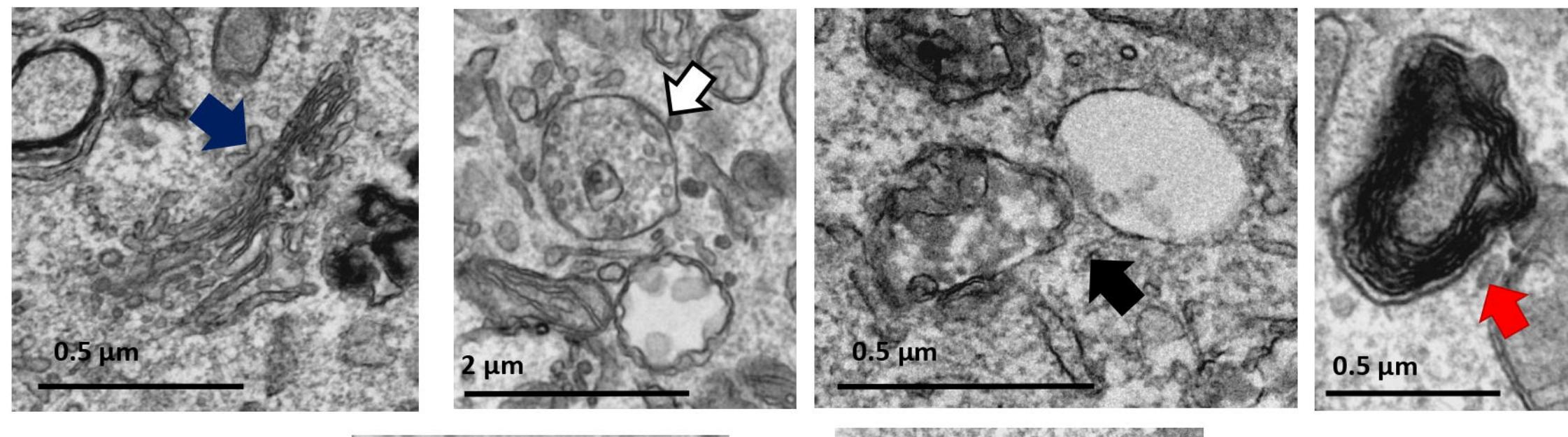
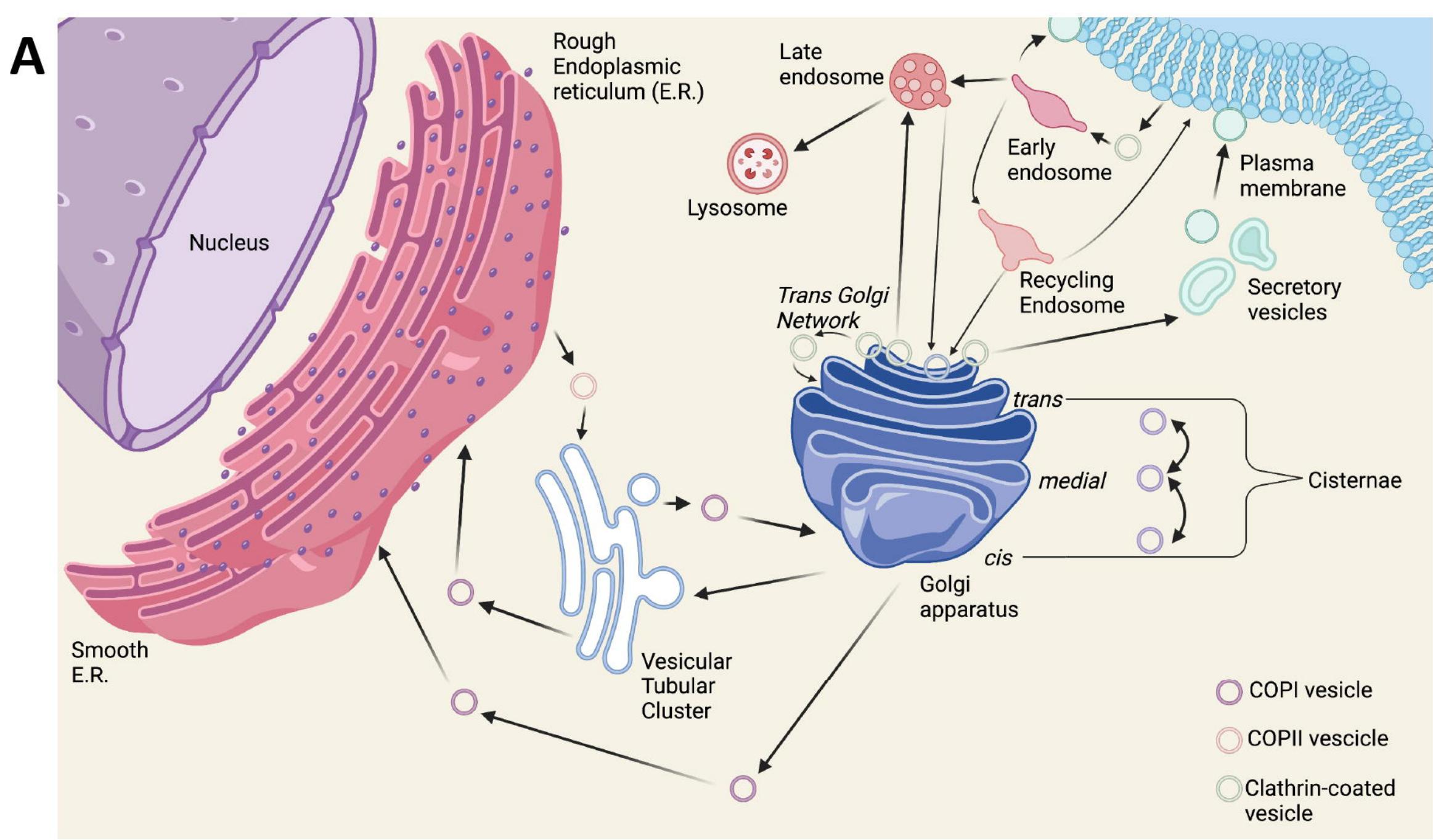
773 **9 Funding**

774 This work was supported by NIH grants, R01HL108379 and R01DK092065 to E.D.A. UNCF/BMS
775 EE United Negro College Fund/Bristol–Myers Squibb EE Just Postgraduate Fellowship in the Life
776 Sciences Fellowship to H.K.B., the United Negro College Fund/Bristol–Myers Squibb EE Just
777 Faculty Fund, Burroughs Wellcome Fund Career Awards at the Scientific Interface Award,
778 Burroughs Wellcome Fund Ad-hoc Award, the National Institutes of Health Small Research Pilot
779 Subaward 5R25HL106365-12 from the National Institutes of Health PRIDE Program, DK020593,
780 the Vanderbilt Diabetes and Research Training Center for DRTC Alzheimer's Disease Pilot &
781 Feasibility Program to A.H.J. The NSF grant MCB 2011577I and NIH T32 5T32GM133353 to
782 S.A.M. Acknowledgments

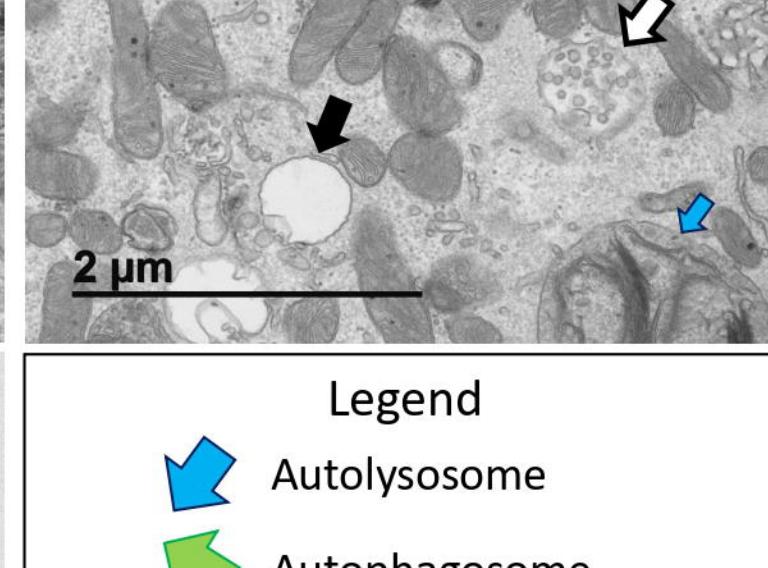
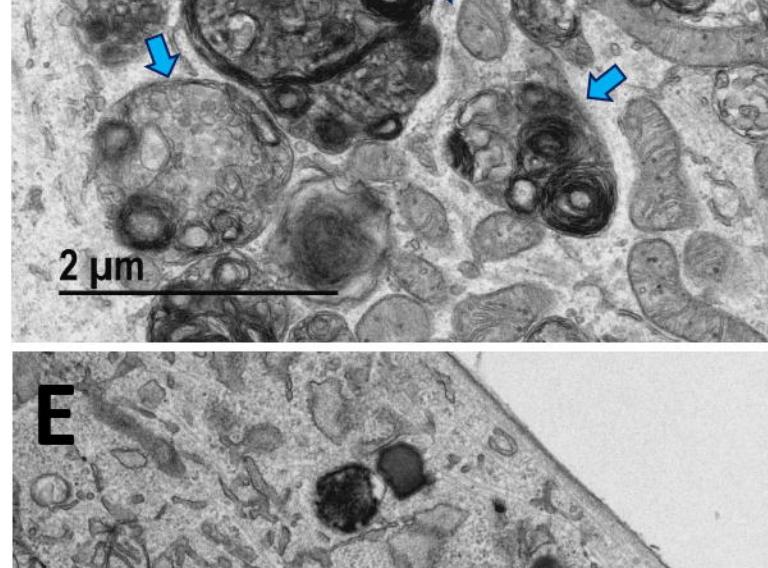
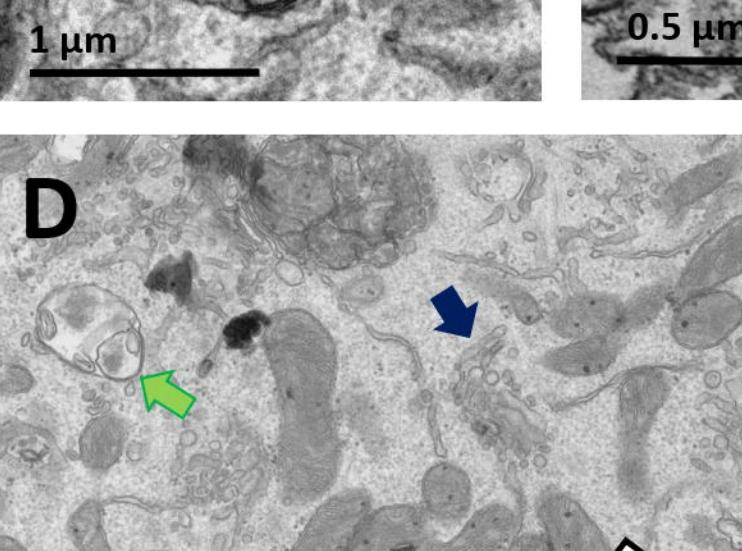
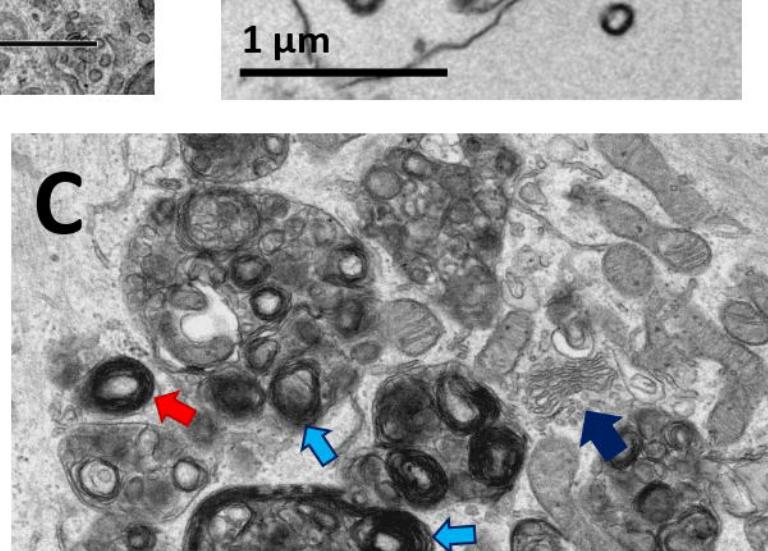
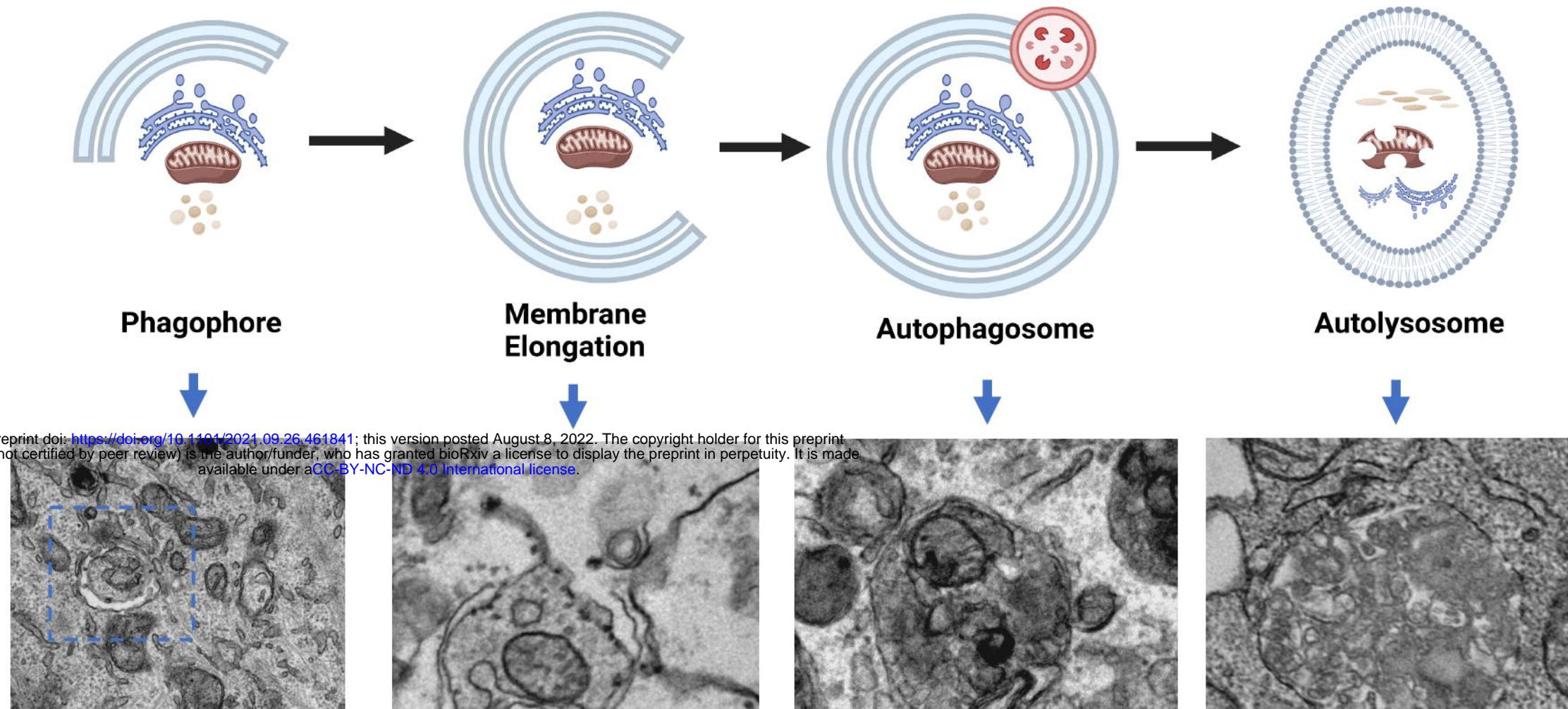
783 We would also like to thank our undergraduate colleagues Benjamin Kirk and Innes Hicsasmaz for
784 helping to optimize the analysis technique. y

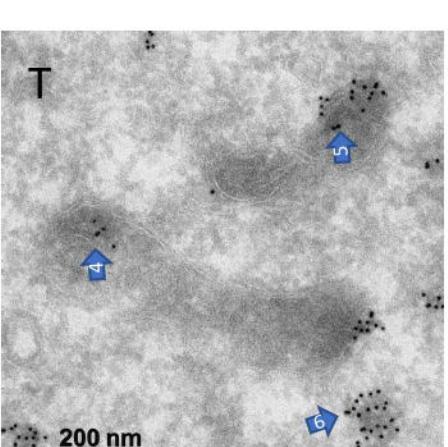
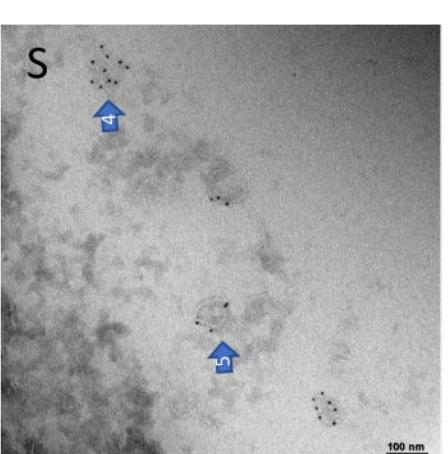
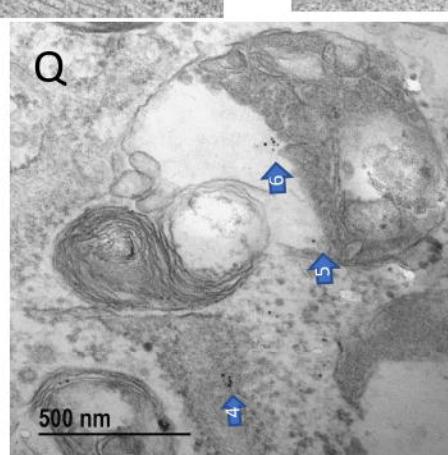
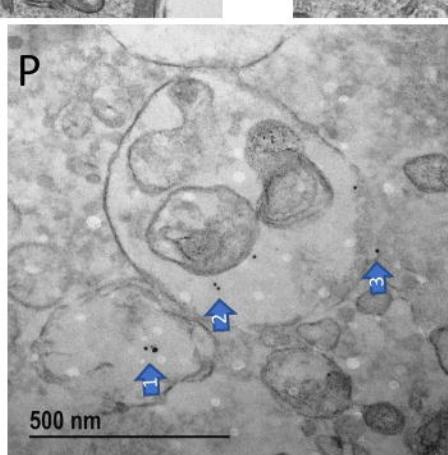
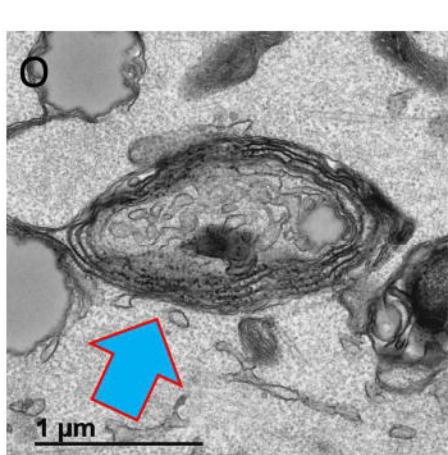
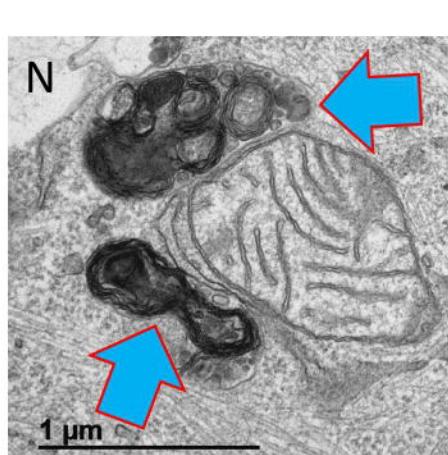
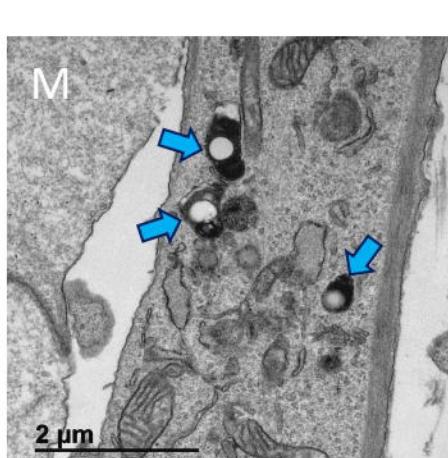
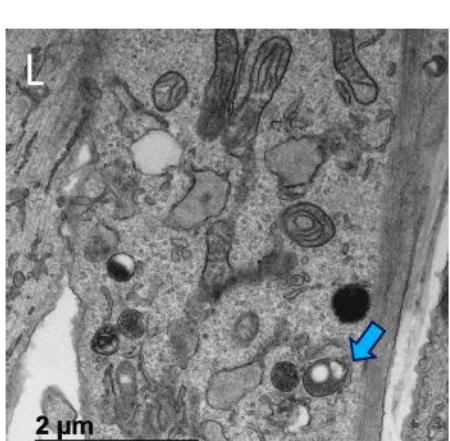
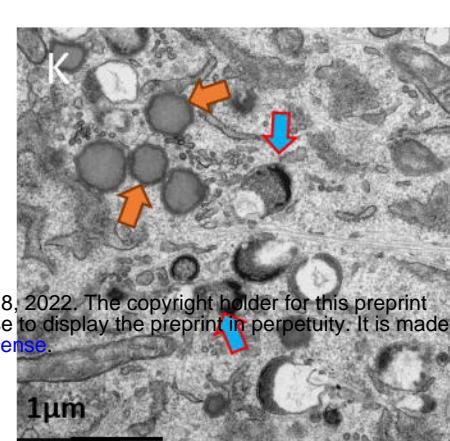
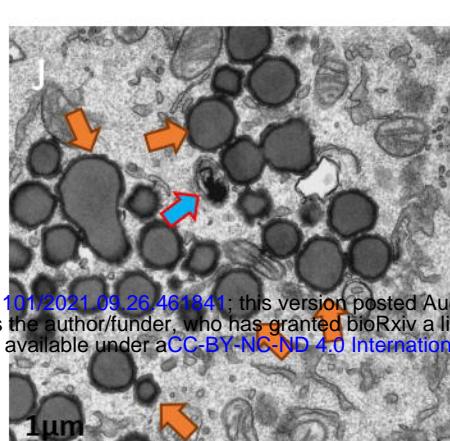
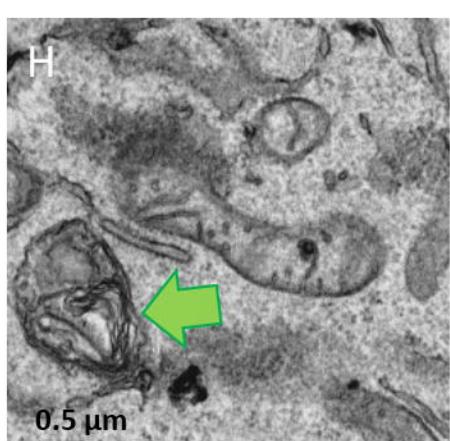
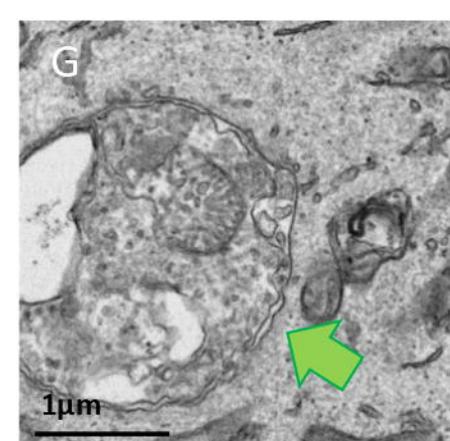
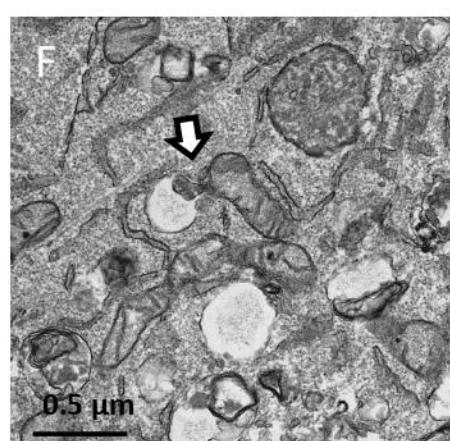
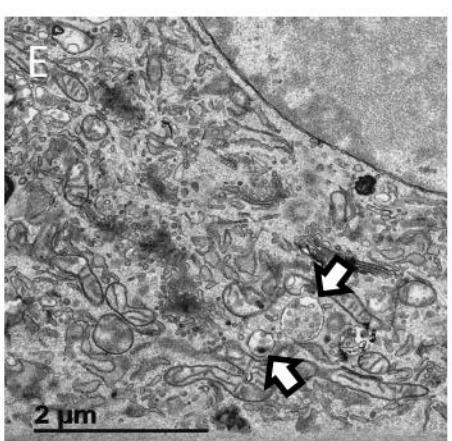
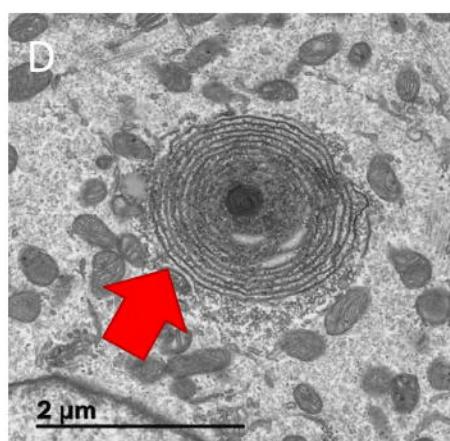
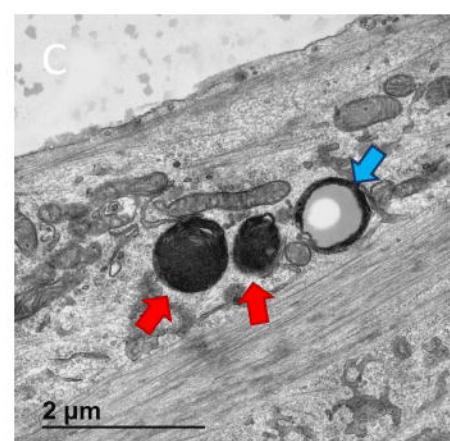
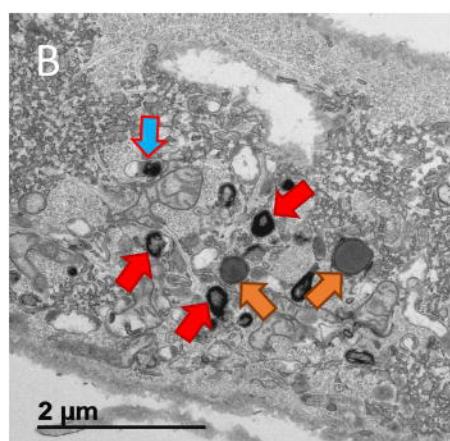
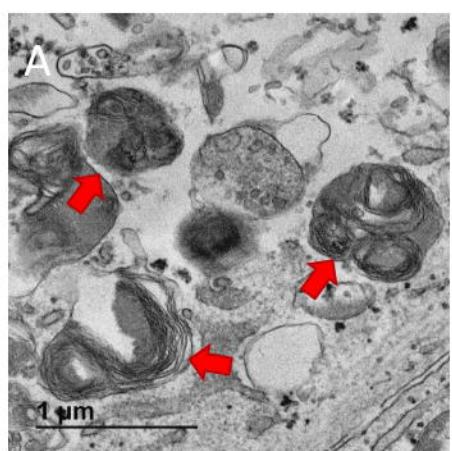
785 **References**

- 786 1 Ryter, S.W. *et al.* (2019) Autophagy: a lysosome-dependent process with implications in cellular
787 redox homeostasis and human disease. *Antioxidants & redox signaling* 30, 138–159
- 788 2 Yin, Z. *et al.* (2016) Autophagy: machinery and regulation. *Microbial cell* 3, 588
- 789 3 Levy, J.M.M. and Thorburn, A. (2020) Autophagy in cancer: moving from understanding
790 mechanism to improving therapy responses in patients. *Cell Death & Differentiation* 27, 843–857

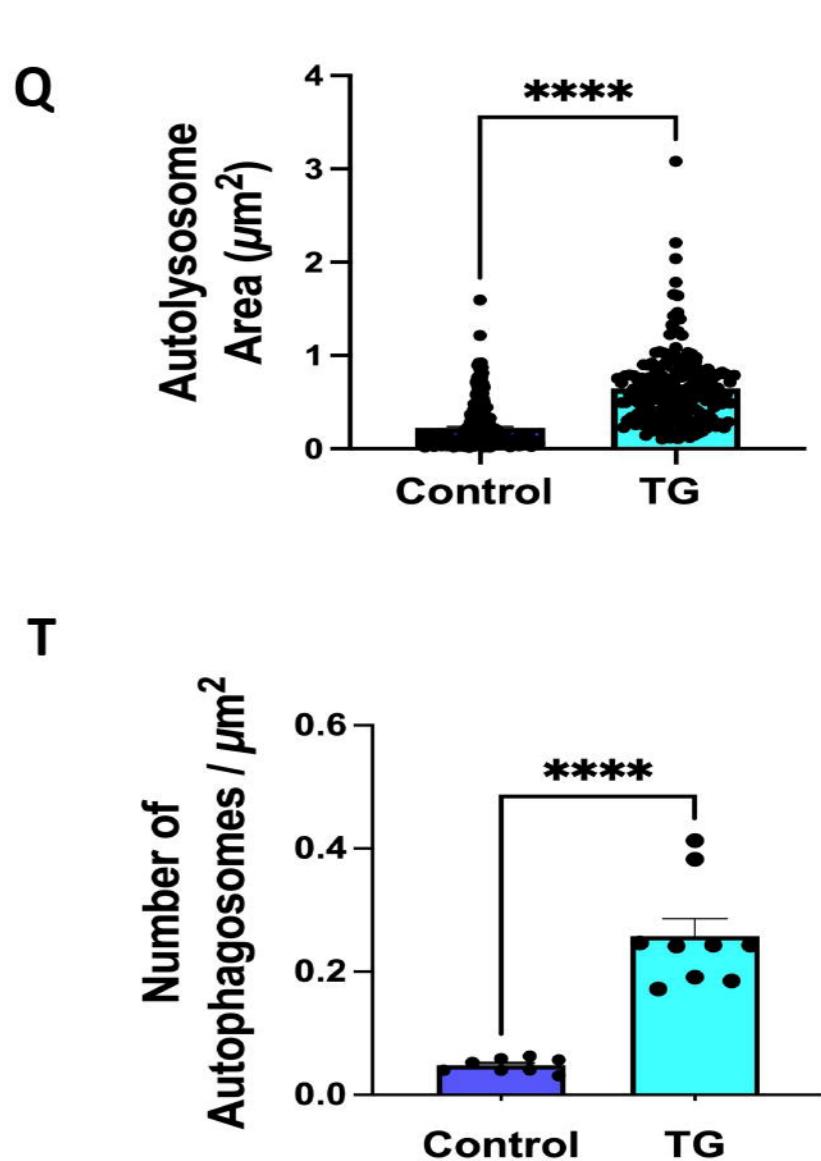
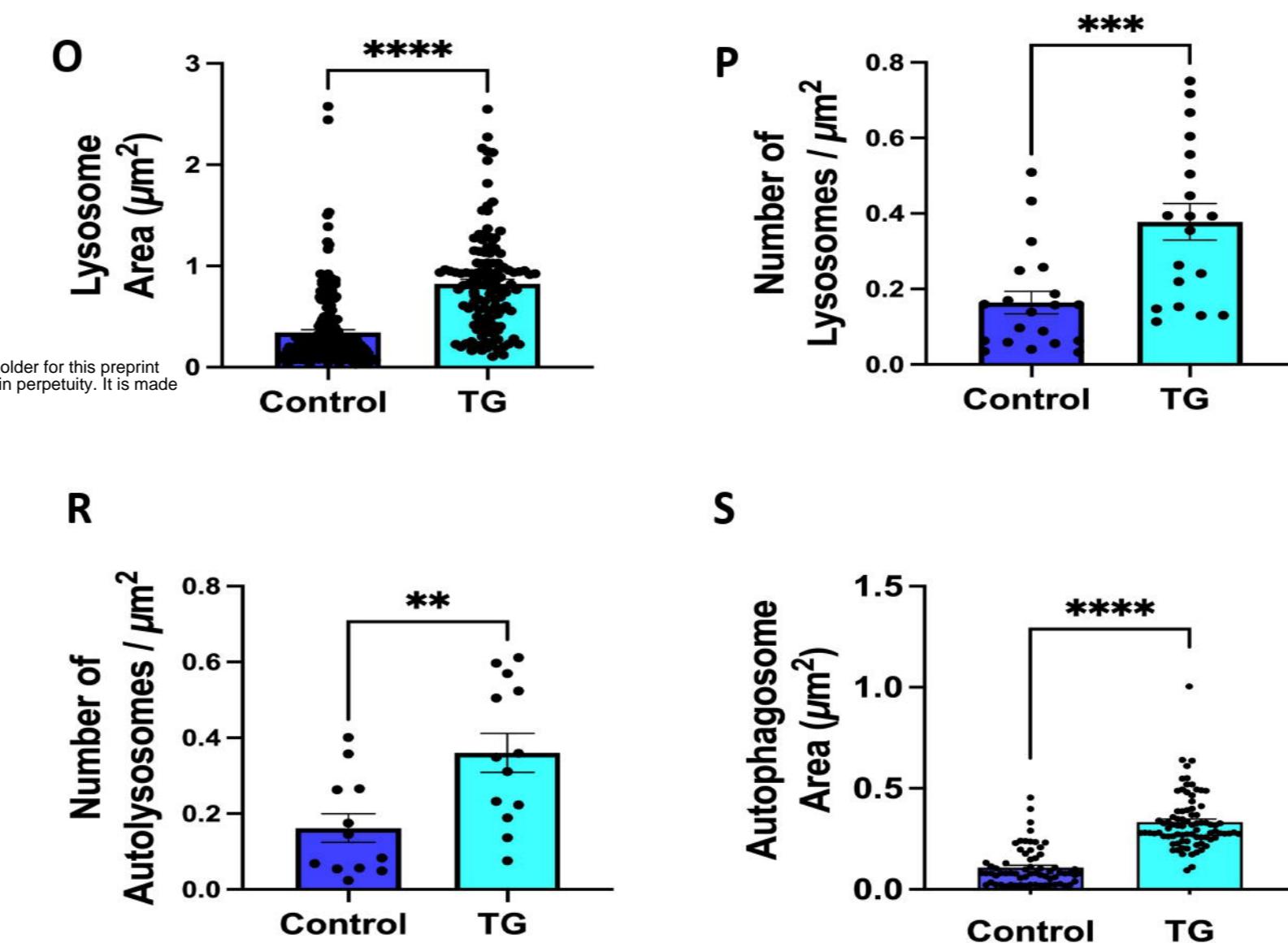
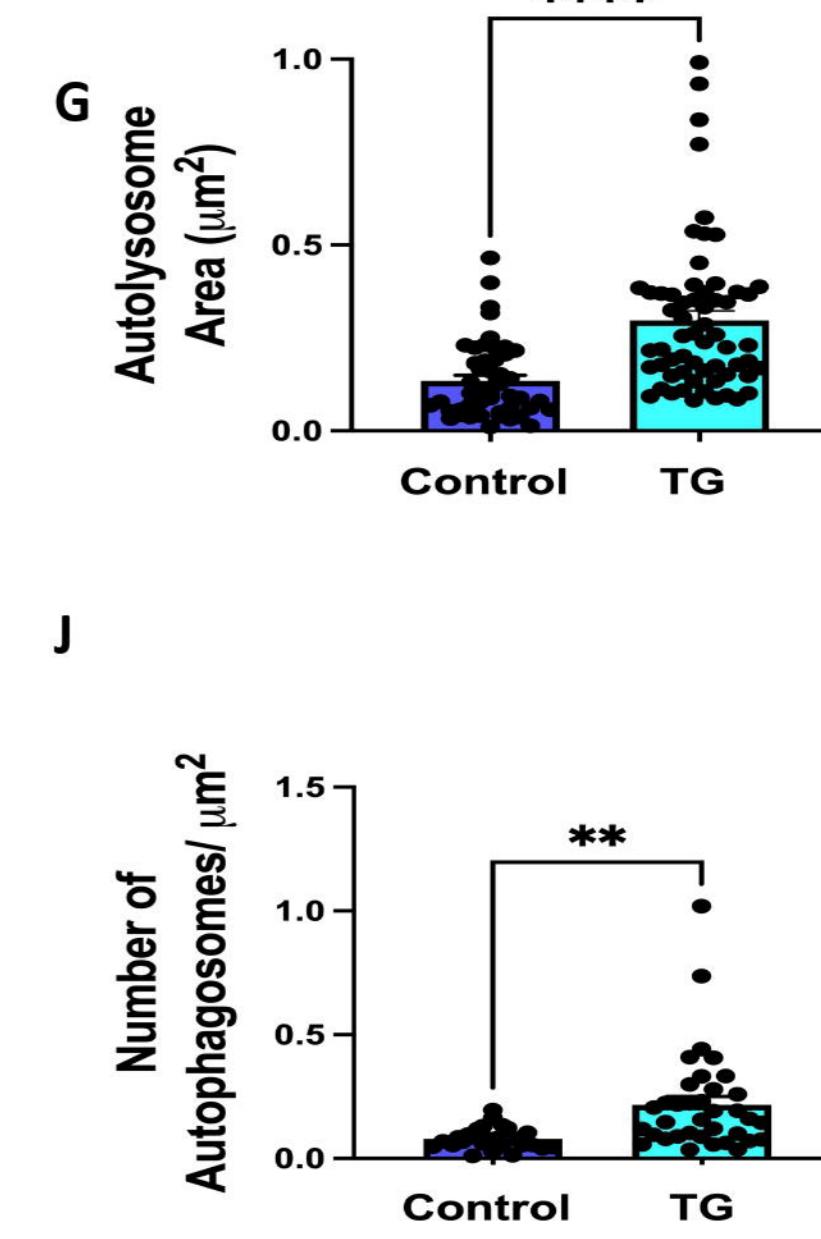
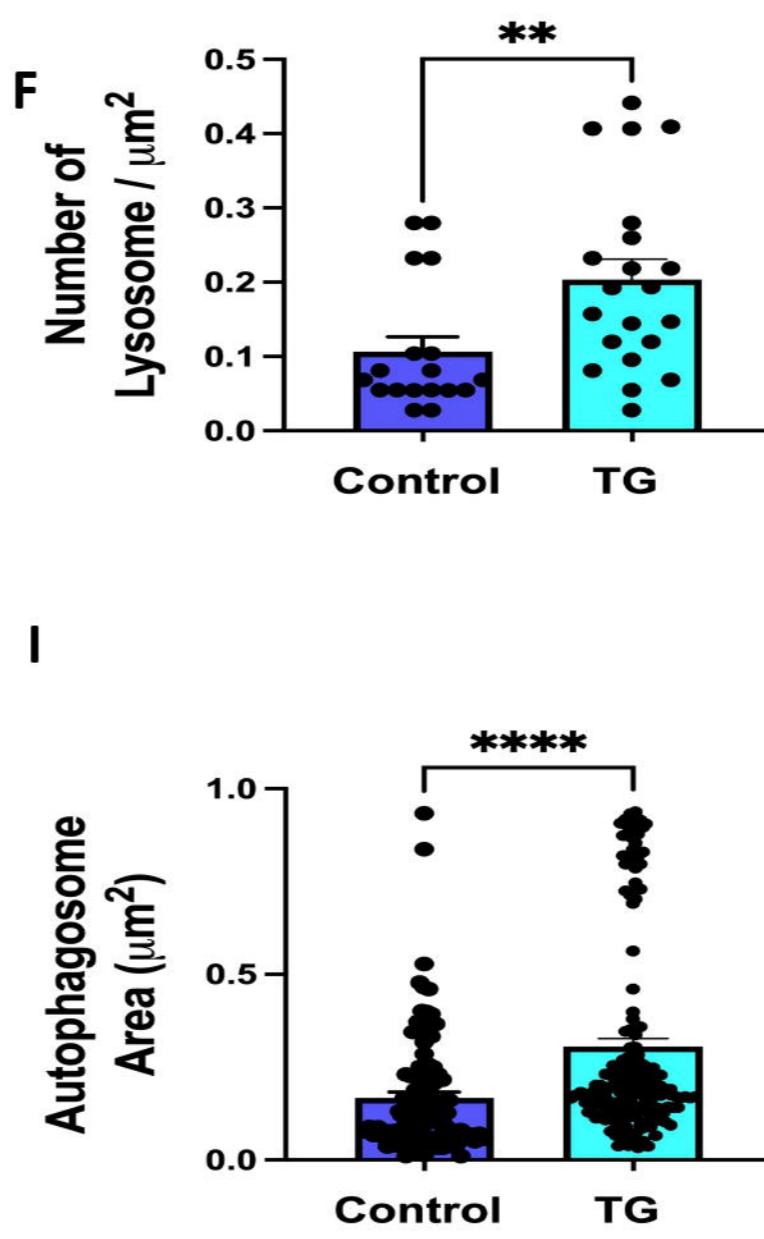
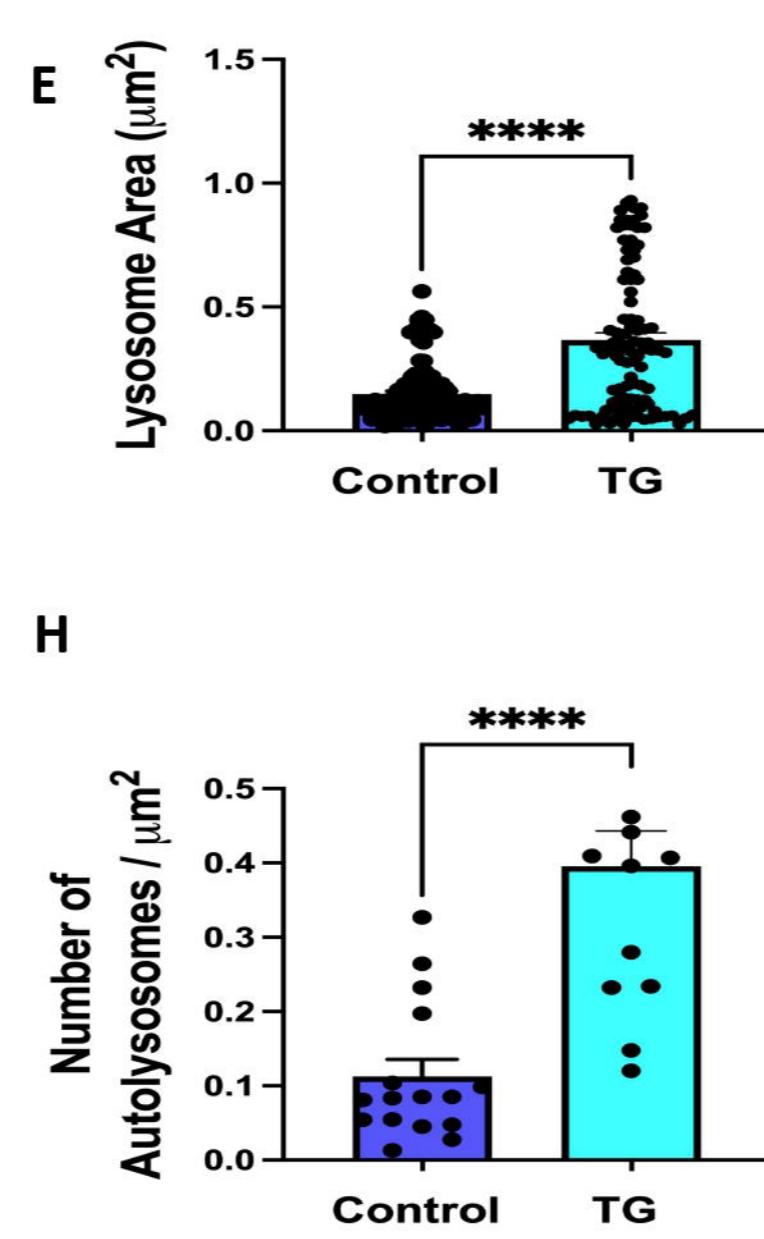
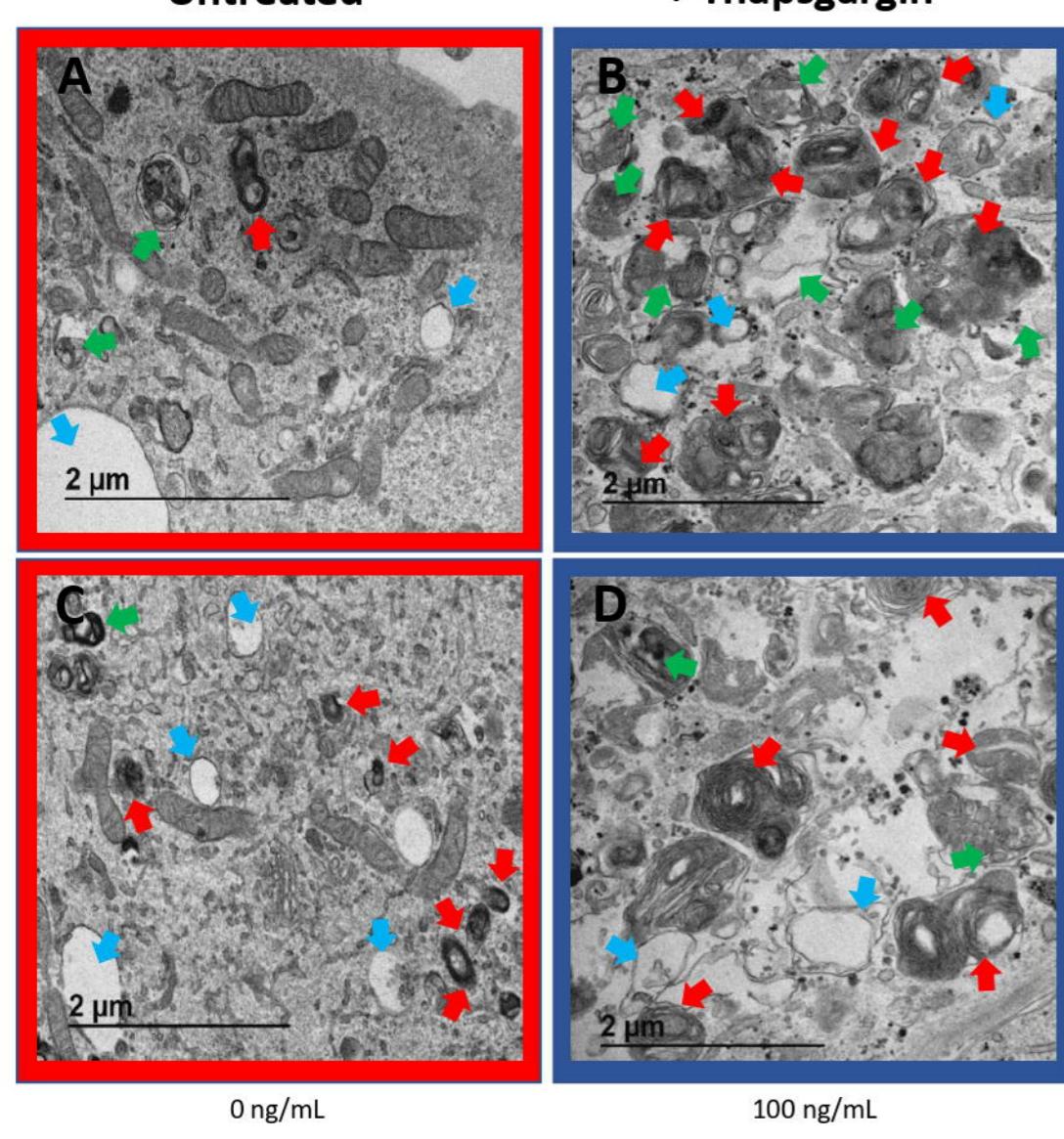




- 791 4 Eskelinan, E.-L. (2005) Maturation of autophagic vacuoles in mammalian cells. *Autophagy* 1, 1–
792 10
- 793 5 Bernard, A. and Klionsky, D.J. (2013) Autophagosome formation: tracing the source. *Developmental cell* 25, 116–117
- 795 6 Ganesan, D. and Cai, Q. (2021) Understanding amphisomes. *Biochemical Journal* 478, 1959–
796 1976
- 797 7 (2013) Amphisomes: out of the autophagosome shadow? *The EMBO Journal* 32, 3116–3118
- 798 8 Yu, L. *et al.* (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. *Nature* 465, 942–946
- 800 9 Yu, L. *et al.* (2018) Autophagy pathway: cellular and molecular mechanisms. *Autophagy* 14,
801 207–215
- 802 10 Jung, M. *et al.* (2019) The autophagy research in electron microscopy. *Applied Microscopy* 49,
803 1–7
- 804 11 Lam, J. *et al.* (2021) A Universal Approach to Analyzing Transmission Electron Microscopy
805 with ImageJ. *bioRxiv*
- 806 12 Eskelinan, E.-L. *et al.* (2011) Seeing is believing: the impact of electron microscopy on
807 autophagy research. *Autophagy* 7, 935–956
- 808 13 Rasband, W.S. (2011) Imagej, us national institutes of health, bethesda, maryland, usa.
809 <http://imagej.nih.gov/ij/>
- 810 14 Cocks, E. *et al.* (2018) A guide to analysis and reconstruction of serial block face scanning
811 electron microscopy data. *Journal of microscopy* 270, 217–234
- 812 15 Hughes, L. *et al.* (2014) Serial block face scanning electron microscopy—the future of cell
813 ultrastructure imaging. *Protoplasma* 251, 395–401
- 814 16 Garza-Lopez, E. *et al.* (2022) Protocols for Generating Surfaces and Measuring 3D Organelle
815 Morphology Using Amira. *Cells* 11, 65
- 816 17 Trivedi, P.C. *et al.* (2020) Lysosomal biology and function: modern view of cellular debris bin.
817 *Cells* 9, 1131
- 818 18 Klionsky, D.J. and Eskelinan, E.-L. (2014) The vacuole vs. the lysosome: When size matters. *Autophagy* 10, 185–187
- 820 19 Bandyopadhyay, D. *et al.* (2014) Lysosome transport as a function of lysosome diameter. *PloS
821 one* 9, e86847
- 822 20 Matteoni, R. and Kreis, T.E. (1987) Translocation and clustering of endosomes and lysosomes
823 depends on microtubules. *Journal of Cell Biology* 105, 1253–1265
- 824 21 Heuser, J. (1989) Changes in lysosome shape and distribution correlated with changes in
825 cytoplasmic pH. *Journal of Cell Biology* 108, 855–864
- 826 22 Cuervo, A.M. and Dice, J.F. (2000) When lysosomes get old☆. *Experimental gerontology* 35,
827 119–131
- 828 23 Talsma, H. *et al.* (1987) Multilamellar or multivesicular vesicles? *International journal of
829 pharmaceutics* 37, 171–173

- 830 24 Cui, Y. *et al.* (2018) The multivesicular body and autophagosome pathways in plants. *Frontiers*
831 *in plant science* 9, 1837
- 832 25 Fader, C. and Colombo, M. (2009) Autophagy and multivesicular bodies: two closely related
833 partners. *Cell Death & Differentiation* 16, 70–78
- 834 26 Eskelinen, E.-L. (2008) To be or not to be? Examples of incorrect identification of autophagic
835 compartments in conventional transmission electron microscopy of mammalian cells. *Autophagy*
836 4, 257–260
- 837 27 Ray, K. (2010) “Empty” autophagosomes fail to carry their cargo in Huntington disease. *Nat Rev*
838 *Neurol* 6, 298–298
- 839 28 Clokey, G.V. and Jacobson, L.A. (1986) The autofluorescent “lipofuscin granules” in the
840 intestinal cells of *Caenorhabditis elegans* are secondary lysosomes. *Mechanisms of ageing and*
841 *development* 35, 79–94
- 842 29 Wang, H. *et al.* (2016) TFEB overexpression in the P301S model of tauopathy mitigates
843 increased PHF1 levels and lipofuscin puncta and rescues memory deficits. *eneuro* 3,
- 844 30 Suzuki, K. *et al.* (2014) Proteomic profiling of autophagosome cargo in *Saccharomyces*
845 *cerevisiae*. *PLoS One* 9, e91651
- 846 31 Gatica, D. *et al.* (2018) Cargo recognition and degradation by selective autophagy. *Nature cell*
847 *biology* 20, 233–242
- 848 32 Nguyen, T.B. and Olzmann, J.A. (2017) Lipid droplets and lipotoxicity during autophagy.
849 *Autophagy* 13, 2002–2003
- 850 33 Olzmann, J.A. and Carvalho, P. (2019) Dynamics and functions of lipid droplets. *Nature reviews*
851 *Molecular cell biology* 20, 137–155
- 852 34 Qi, Z. and Chen, L. (2019) Endoplasmic reticulum stress and autophagy. *Autophagy: Biology and*
853 *Diseases*
- 854 35 Eura, Y. *et al.* (2003) Two mitofusin proteins, mammalian homologues of FZO, with distinct
855 functions are both required for mitochondrial fusion. *Journal of biochemistry* 134, 333–344
- 856 36 Hales, K.G. and Fuller, M.T. (1997) Developmentally regulated mitochondrial fusion mediated
857 by a conserved, novel, predicted GTPase. *Cell* 90, 121–129
- 858 37 Kim, S. *et al.* (2020) Quantitative and qualitative analysis of autophagy flux using imaging. *BMB*
859 *reports* 53, 241
- 860 38 Arai, R. and Waguri, S. (2019) Improved electron microscopy fixation methods for tracking
861 autophagy-associated membranes in cultured mammalian cells. In *Autophagy* pp. 211–221,
862 Springer
- 863 39 Hamasaki, M. *et al.* (2013) Autophagosomes form at ER–mitochondria contact sites. *Nature* 495,
864 389–393
- 865 40 Ylä-Anttila, P. *et al.* (2009) Monitoring autophagy by electron microscopy in Mammalian cells.
866 *Methods in enzymology* 452, 143–164
- 867 41 Pereira, R.O. *et al.* (2017) OPA 1 deficiency promotes secretion of FGF 21 from muscle that
868 prevents obesity and insulin resistance. *The EMBO journal* 36, 2126–2145
- 869 42 Southard, S. *et al.* (2014) A series of Cre-ERT2 drivers for manipulation of the skeletal muscle
870 lineage. *genesis* 52, 759–770

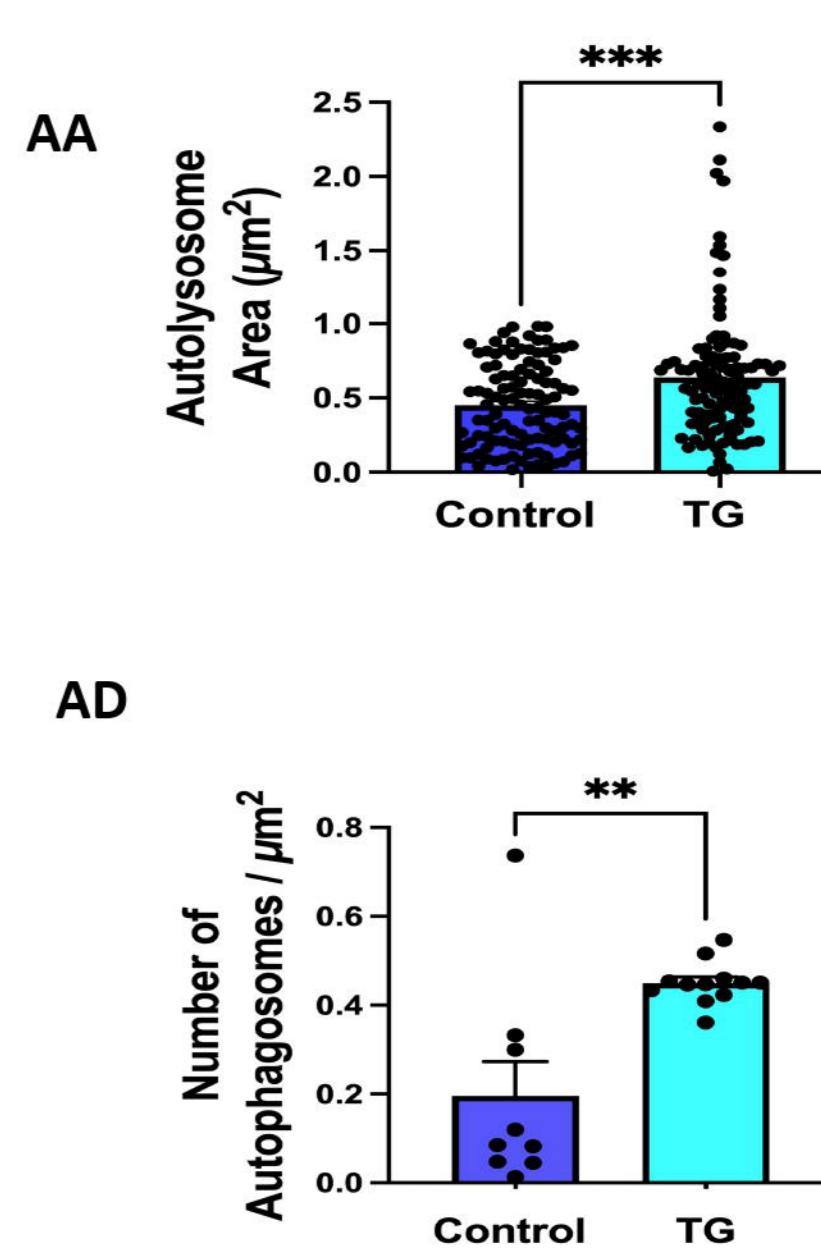
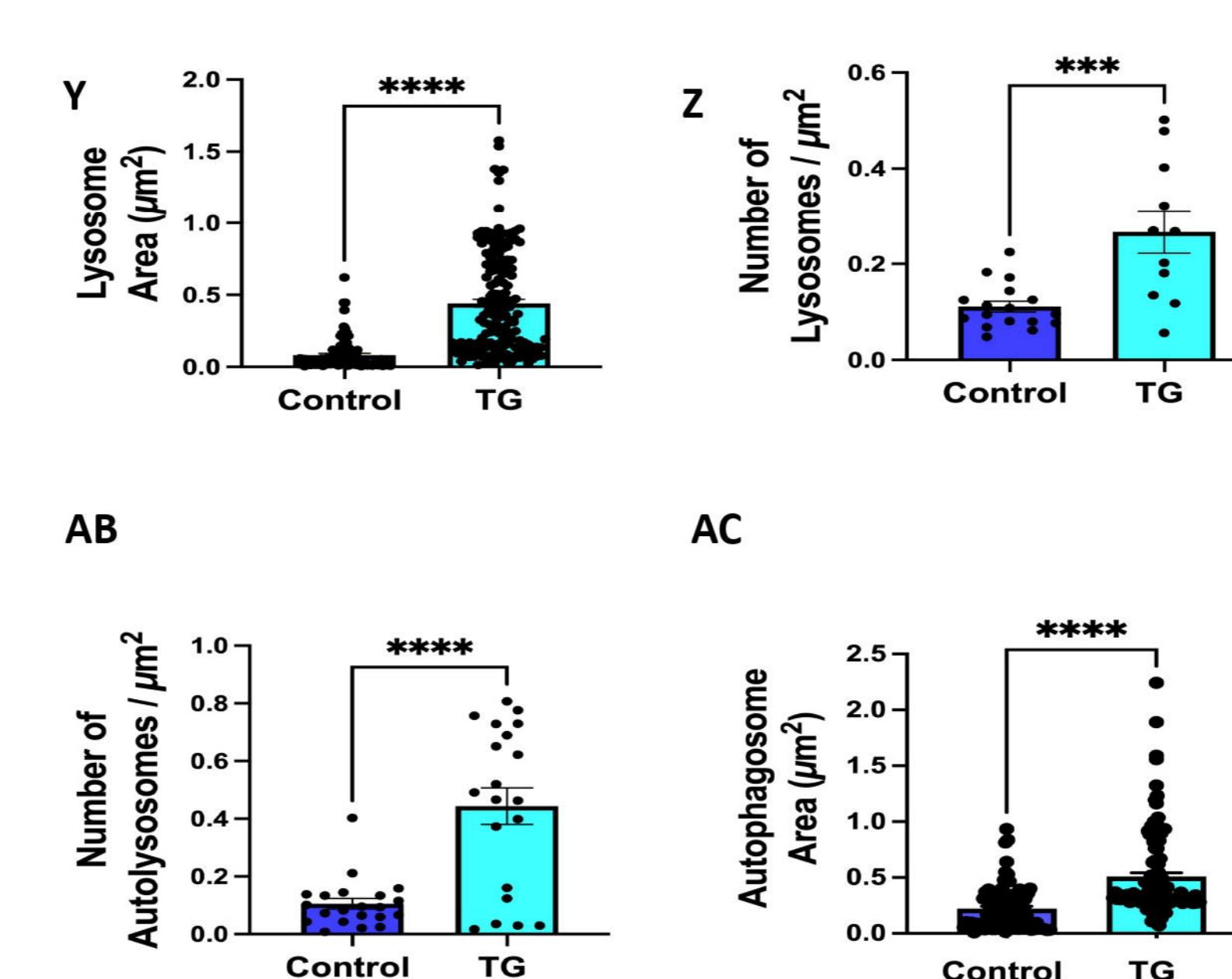
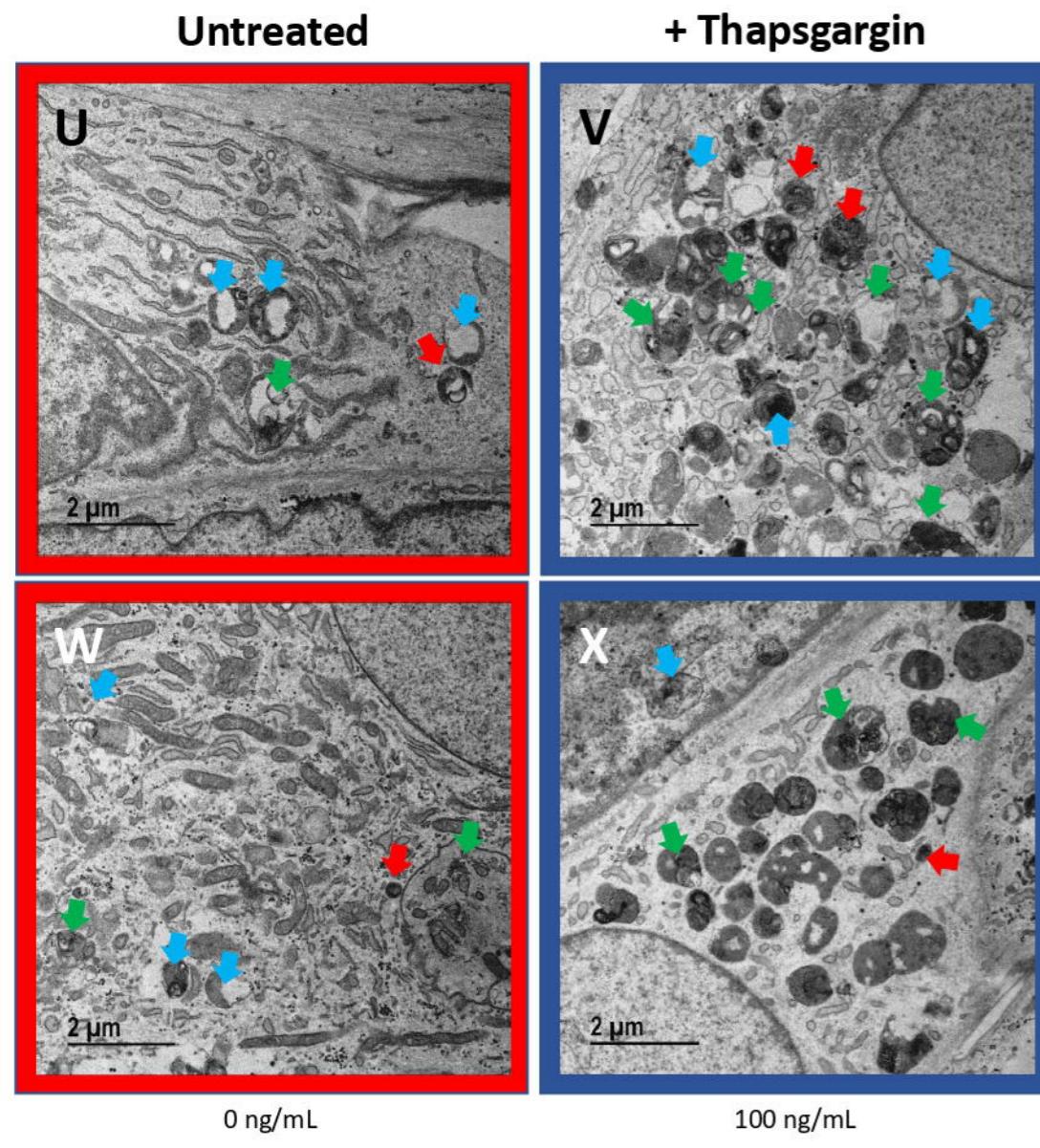





- 871 43 Favaro, G. *et al.* (2019) DRP1-mediated mitochondrial shape controls calcium homeostasis and
872 muscle mass. *Nature communications* 10, 1–17
- 873 44 Katti, P. *et al.* (2021) Marf-mediated mitochondrial fusion is imperative for the development and
874 functioning of indirect flight muscles (IFMs) in drosophila. *Experimental Cell Research* 399,
875 112486
- 876 45 Han, J. *et al.* (2013) ER-stress-induced transcriptional regulation increases protein synthesis
877 leading to cell death. *Nature cell biology* 15, 481–490
- 878 46 Galmes, R. *et al.* (2016) ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts
879 and are involved in mitochondrial function. *EMBO reports* 17, 800–810
- 880 47 Chazotte, B. (2011) Labeling lysosomes in live cells with Lysotracker. *Cold Spring Harbor
881 Protocols* 2011, pdb-prot5571
- 882 48 Delrue, R. *et al.* (2001) Identification of *Brucella* spp. genes involved in intracellular trafficking.
883 *Cellular microbiology* 3, 487–497
- 884 49 McDowell, E. and Trump, B. (1976) Histologic fixatives suitable for diagnostic light and electron
885 microscopy. *Archives of pathology & laboratory medicine* 100, 405–414
- 886 50 Parra, V. *et al.* (2014) Insulin stimulates mitochondrial fusion and function in cardiomyocytes via
887 the Akt-mTOR-NF κ B-Opa-1 signaling pathway. *Diabetes* 63, 75–88
- 888 51 Pasqua, T. *et al.* (2016) Impact of Chromogranin A deficiency on catecholamine storage,
889 catecholamine granule morphology and chromaffin cell energy metabolism in vivo. *Cell and
890 tissue research* 363, 693–712
- 891 52 Vincent, A.E. *et al.* (2019) Quantitative 3D mapping of the human skeletal muscle mitochondrial
892 network. *Cell reports* 26, 996–1009
- 893 53 Mozdy, A.D. and Shaw, J.M. (2003) A fuzzy mitochondrial fusion apparatus comes into focus.
894 *Nature reviews Molecular cell biology* 4, 468–478
- 895 54 Rojo, M. *et al.* (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous
896 mammalian homologs of the transmembrane GTPase Fzo. *Journal of cell science* 115, 1663–
897 1674
- 898 55 Santel, A. and Fuller, M.T. (2001) Control of mitochondrial morphology by a human mitofusin.
899 *Journal of cell science* 114, 867–874
- 900 56 Santel, A. *et al.* (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial
901 fusion in mammalian cells. *Journal of cell science* 116, 2763–2774
- 902 57 Klionsky, D.J. *et al.* (2008) Guidelines for the use and interpretation of assays for monitoring
903 autophagy in higher eukaryotes. *Autophagy* 4, 151–175
- 904 58 Kabeya, Y. *et al.* (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in
905 autophagosome membranes after processing. *The EMBO journal* 19, 5720–5728
- 906 59 Jager, S. *et al.* (2004) Role for Rab7 in maturation of late autophagic vacuoles. *Journal of cell
907 science* 117, 4837–4848
- 908 60 Botos, E. *et al.* (2008) Caveolin-1 is transported to multi-vesicular bodies after albumin-induced
909 endocytosis of caveolae in HepG2 cells. *Journal of cellular and molecular medicine* 12, 1632–
910 1639

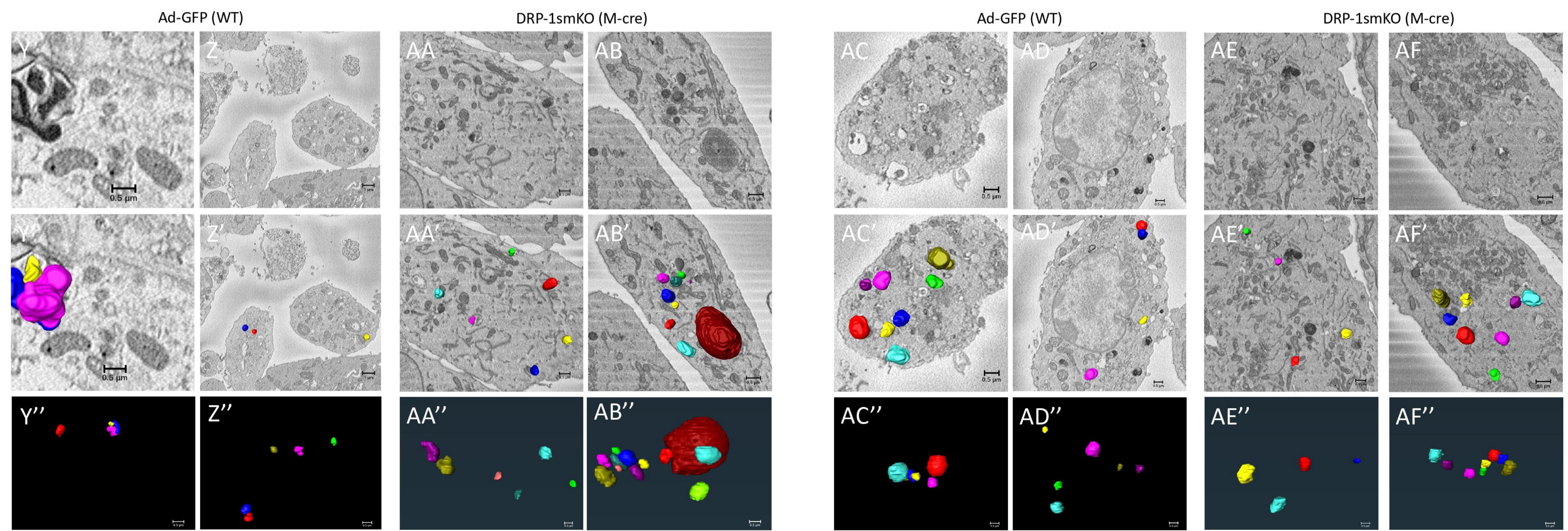
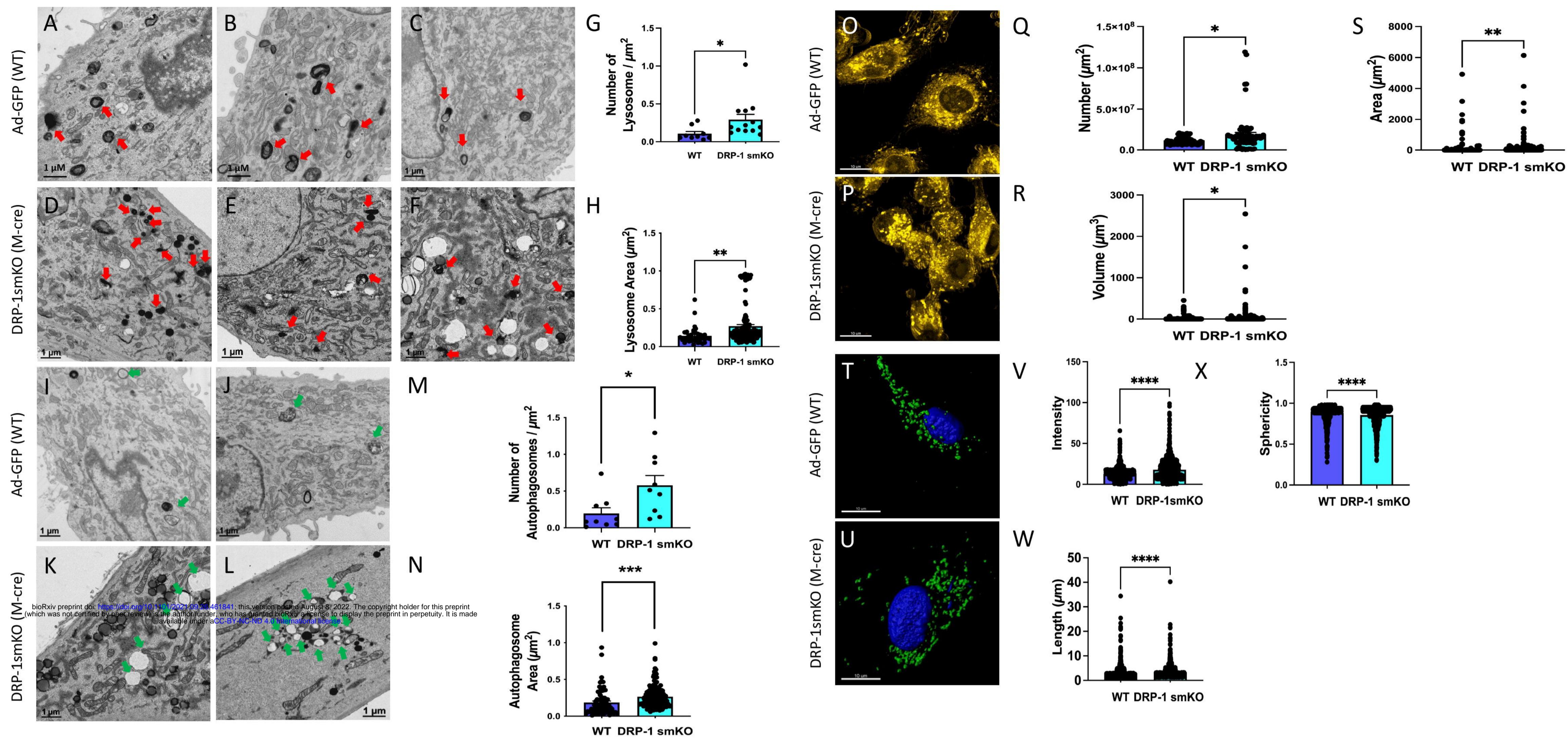



















- 911 61 Lindner, P. *et al.* (2020) Cell death induced by the ER stressor thapsigargin involves death
912 receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded
913 protein response components. *Cell Communication and Signaling* 18, 1–23
- 914 62 Ikeda, Y. *et al.* (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the
915 heart against energy stress. *Circulation research* 116, 264–278
- 916 63 Zuo, W. *et al.* (2014) Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1
917 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. *Neuropharmacology*
918 86, 103–115
- 919 64 Cheng, X.-T. *et al.* (2018) Revisiting LAMP1 as a marker for degradative autophagy-lysosomal
920 organelles in the nervous system. *Autophagy* 14, 1472–1474
- 921 65 Casellas-Díaz, S. *et al.* (2021) Mfn2 localization in the ER is necessary for its bioenergetic
922 function and neuritic development. *EMBO reports*
- 923 66 Muñoz, J.P. *et al.* (2013) Mfn2 modulates the UPR and mitochondrial function via repression of
924 PERK. *The EMBO journal* 32, 2348–2361
- 925 67 Shen, J.L. *et al.* (2021) Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to
926 regulate mitochondria and ER contact in development and disease. *Current Biology*
- 927 68 Zhao, T. *et al.* (2012) Central role of mitofusin 2 in autophagosome-lysosome fusion in
928 cardiomyocytes. *Journal of Biological Chemistry* 287, 23615–23625
- 929 69 Sugiura, A. *et al.* (2014) A new pathway for mitochondrial quality control: mitochondrial-derived
930 vesicles. *The EMBO journal* 33, 2142–2156
- 931 70 Martinet, W. *et al.* (2014) Methods to assess autophagy *in situ*—transmission electron
932 microscopy versus immunohistochemistry. *Methods in enzymology* 543, 89–114
- 933 71 Allaire, A. *et al.* (2015) Immunofluorescence to monitor the cellular uptake of human lactoferrin
934 and its associated antiviral activity against the hepatitis C virus. *Journal of visualized
935 experiments: JoVE*
- 936 72 Odell, I.D. and Cook, D. (2013) Immunofluorescence techniques. *The Journal of investigative
937 dermatology* 133, e4
- 938 73 Nair, U. *et al.* (2012) A role for Atg8–PE deconjugation in autophagosome biogenesis.
939 *Autophagy* 8, 780–793
- 940 74 Listenberger, L.L. *et al.* (2016) Fluorescent detection of lipid droplets and associated proteins.
941 *Current Protocols in Cell Biology* 71, 4–31
- 942 75 Han, J. and Kaufman, R.J. (2016) The role of ER stress in lipid metabolism and lipotoxicity.
943 *Journal of Lipid Research* 57, 1329–1338
- 944 76 Lee, J.-S. *et al.* (2012) Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet
945 formation. *Am J Transl Res* 4, 102–113
- 946 77 Rashid, H.-O. *et al.* (2015) ER stress: Autophagy induction, inhibition and selection. *Autophagy*
947 11, 1956–1977
- 948 78 Song, S. *et al.* (2017) Crosstalk of autophagy and apoptosis: Involvement of the dual role of
949 autophagy under ER stress. *Journal of Cellular Physiology* 232, 2977–2984
- 950 79 Backues, S.K. *et al.* (2014) Estimating the size and number of autophagic bodies by electron
951 microscopy. *Autophagy* 10, 155–164

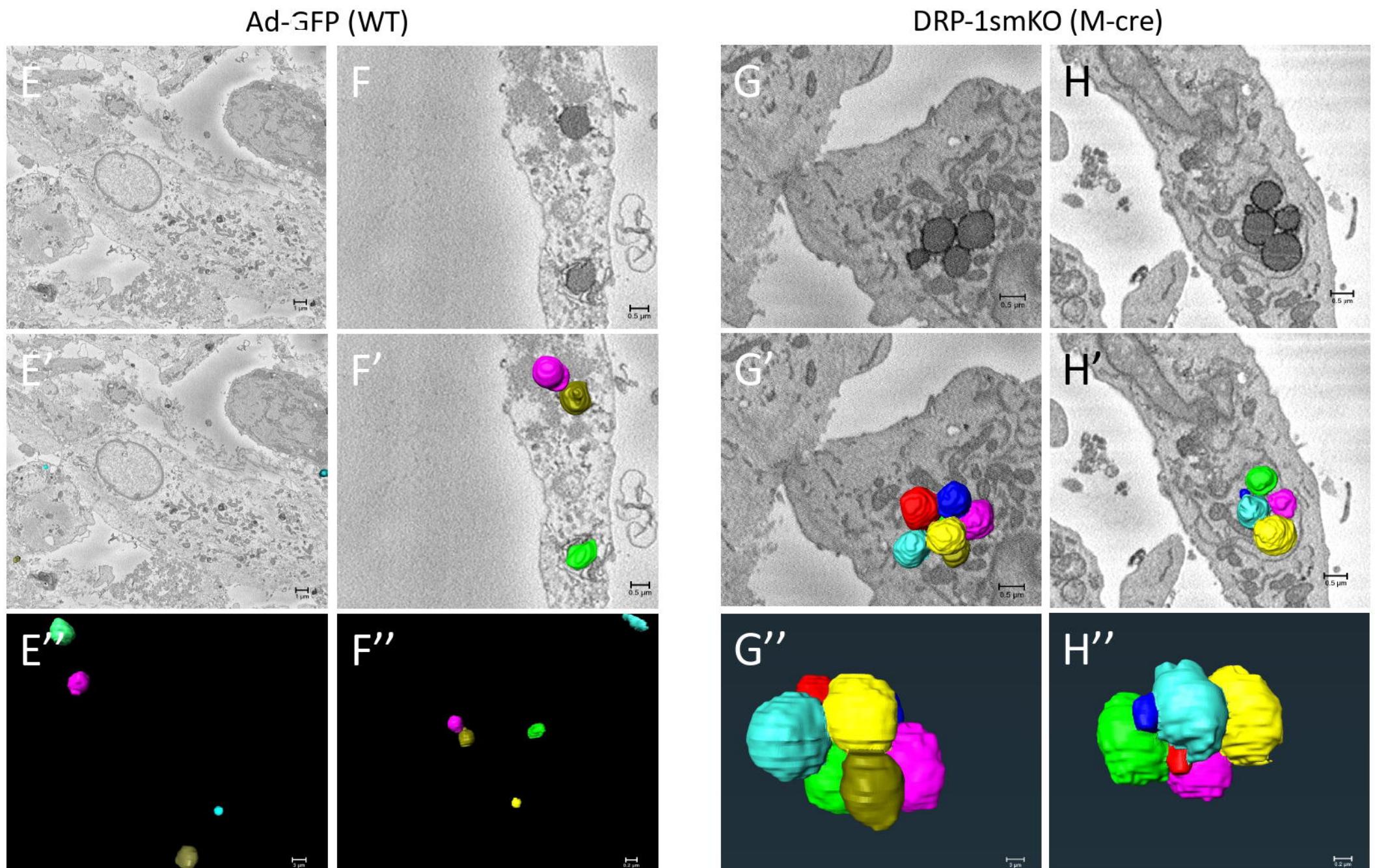
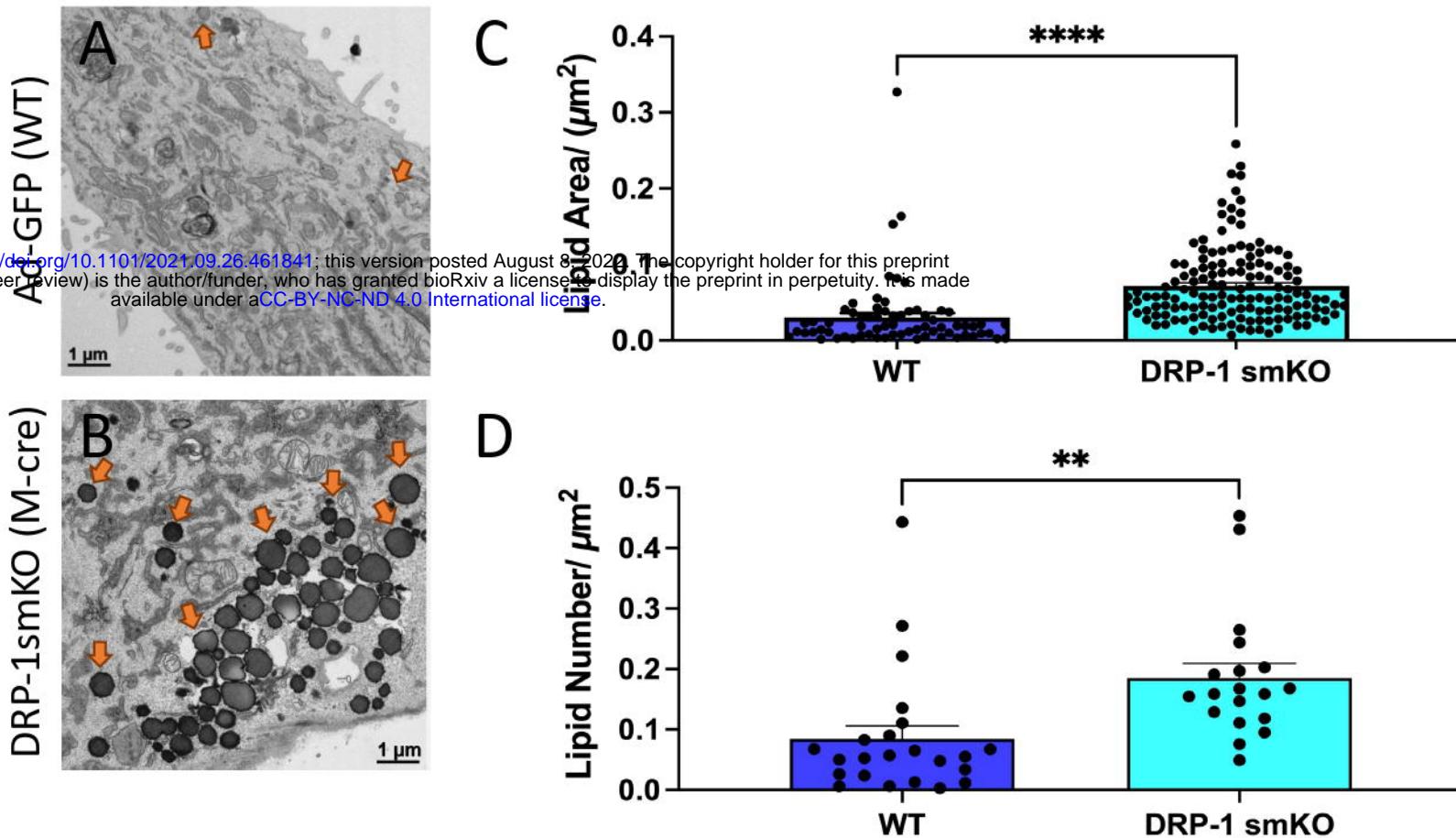
- 952 80 de Araujo, M.E.G. *et al.* (2020) Lysosomal size matters. *Traffic* 21, 60–75
- 953 81 Kabir, M.F. *et al.* (2018) *Endoplasmic Reticulum Stress and Autophagy*, IntechOpen.
- 954 82 Wang, L. *et al.* (2021) Dynamin-related protein 1 deficiency accelerates lipopolysaccharide-
955 induced acute liver injury and inflammation in mice. *Commun Biol* 4, 1–14
- 956 83 Ngoh, G.A. *et al.* (2012) Loss of mitofusin 2 promotes endoplasmic reticulum stress. *Journal of*
957 *Biological Chemistry* 287, 20321–20332
- 958 84 Franke, W. *et al.* (1969) Simultaneous Glutaraldehyde-Osmium Tetroxide Fixation With
959 Postosmication. An Improved Fixation Procedure for Electron Microscopy of Plant and Animal
960 Cells. *Histochemistry. Histochemie* 19, 162–164
- 961 85 Porter, K. and Kallman, F. (1953) The properties and effects of osmium tetroxide as a tissue
962 fixative with special reference to its use for electron microscopy. *Experimental Cell Research* 4,
963 127–141
- 964 86 Cope, G. and Williams, M. (1969) Quantitative studies on the preservation of choline and
965 ethanolamine phosphatides during tissue preparation for electron microscopy: I. Glutaraldehyde,
966 osmium tetroxide, araldite methods. *Journal of microscopy* 90, 31–46
- 967 87 White, D. *et al.* (1979) A chemical mechanism for tissue staining by osmium tetroxide-
968 ferrocyanide mixtures. *Journal of Histochemistry & Cytochemistry* 27, 1084–1091
- 969 88 Venable, J.H. and Coggeshall, R. (1965) A simplified lead citrate stain for use in electron
970 microscopy. *The Journal of cell biology* 25, 407–408
- 971 89 Derkisen, J. and Meekes, H. (1984) Selective staining of nucleic acid containing structures by
972 uranyl acetate-lead citrate. *Micron and microscopica acta* 15, 55–58
- 973 90 Yamaguchi, M. *et al.* (2005) Repeated use of uranyl acetate solution in section stainingin
974 transmission electron microscopy. *Plant Morphology* 17, 57–59
- 975 91 Gaylarde, P. and Sarkany, I. (1968) Ruthenium tetroxide for fixing and staining cytoplasmic
976 membranes. *Science* 161, 1157–1158
- 977 92 Headquarters, U.C. Ruthenium Tetroxide.
- 978 93 Linss, W. *et al.* (1979) A ruthenium red-osmium tetroxide section staining method (author's
979 transl). *Acta histochemica* 64, 206–212
- 980 94 Dierichs, R. (1979) Ruthenium red as a stain for electron microscopy. Some new aspects of its
981 application and mode of action. *Histochemistry* 64, 171–187
- 982 95 McKay, A. (1988) A plate assay method for the detection of fungal polygalacturonase secretion.
983 *FEMS Microbiology letters* 56, 355–358
- 984

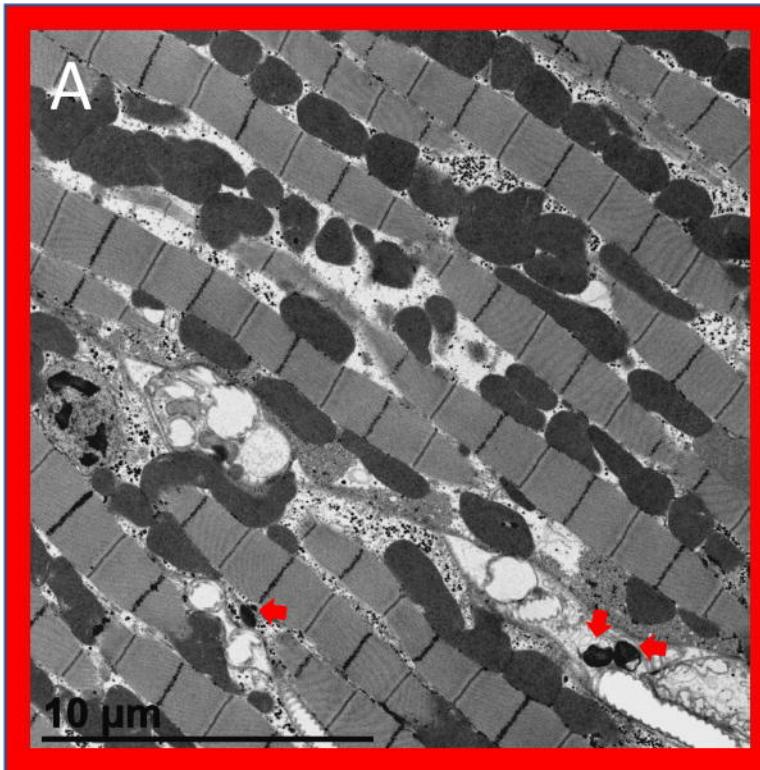







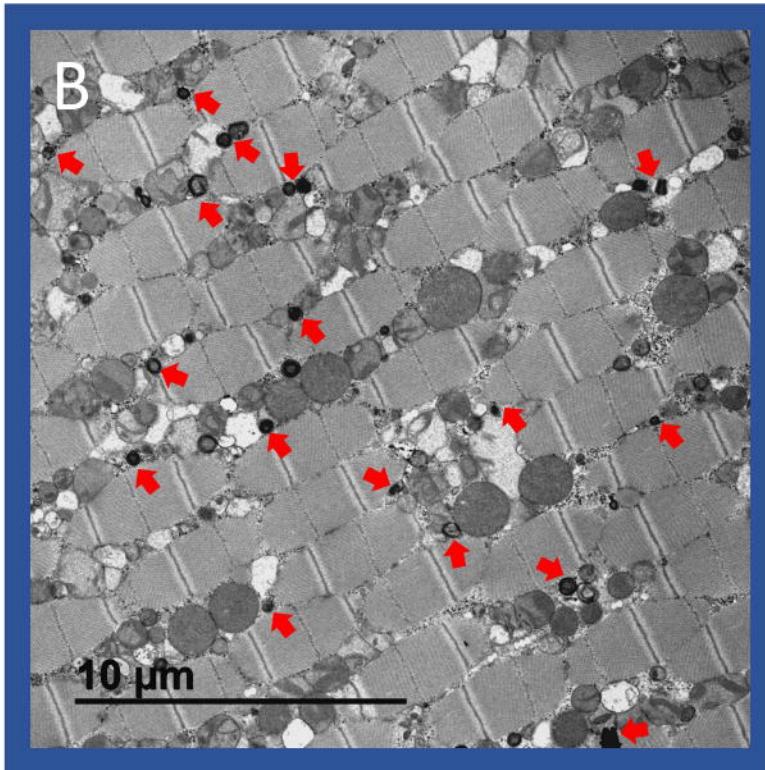
Macroautophagy

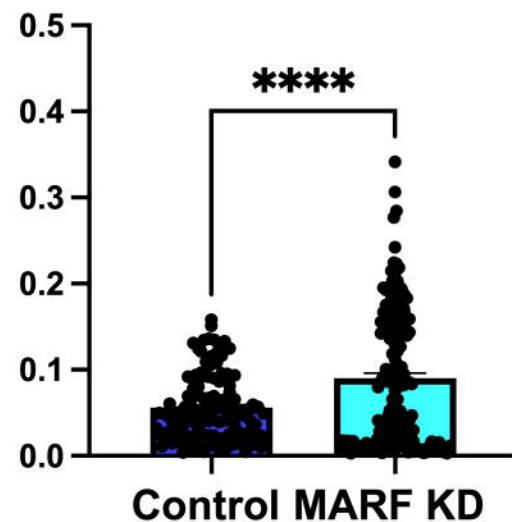




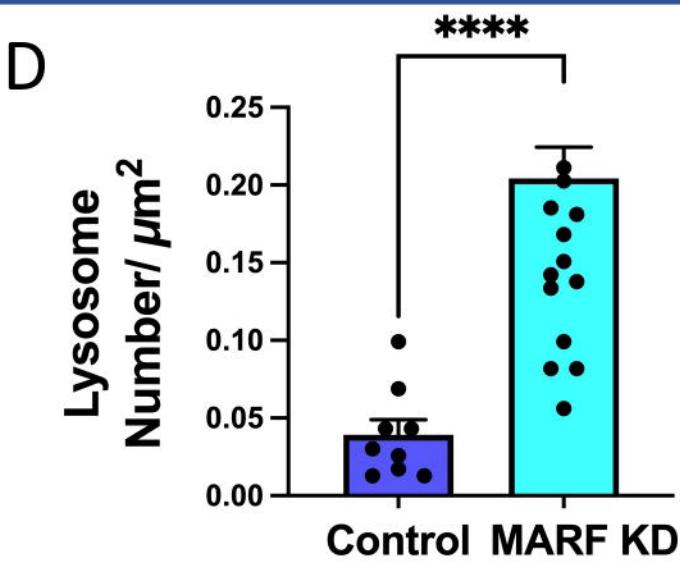





Murine Myotubes


Human Myotubes




Control


MARF KD

Lysosome
Area / (μm^2)

Lysosome
Number/ μm^2

