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 1

Abstract 25 

Disease tolerance describes an infected host’s ability to maintain health independently of the 26 
ability to clear microbe loads. The Jak/Stat pathway plays a pivotal role in humoral innate 27 
immunity by detecting tissue damage and triggering cellular renewal, making it a candidate 28 
tolerance mechanism. Here, we find that in Drosophila melanogaster infected with Pseudomonas 29 
entomophila disrupting ROS-producing dual oxidase (duox) or the negative regulator of Jak/Stat 30 
Socs36E, render male flies less tolerant. Another negative regulator of Jak/Stat, G9a - which has 31 
previously been associated with variable tolerance of viral infections – did not affect the rate of 32 
mortality with increasing microbe loads compared to flies with functional G9a, suggesting it does 33 
not affect tolerance of bacterial infection as in viral infection. Our findings highlight that ROS 34 
production and Jak/Stat signalling influence the ability of flies to tolerate bacterial infection sex-35 
specifically and may therefore contribute to sexually dimorphic infection outcomes in Drosophila. 36 

 37 

  38 
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 39 
1. Introduction 40 

When organisms experience infection, they face two major challenges to return to a 41 
healthy state. The first challenge is to identify and clear the source of the infection. Individuals 42 
capable of dealing with the first challenge exhibit low microbe loads because their immune 43 
clearance mechanisms are very effective, and are typically labelled ‘resistant’(Boon et al., 2009; 44 
Ganz and Ebert, 2010; Lazzaro et al., 2006; Wang et al., 2017). The mechanisms underlying 45 
host resistance have been well characterized empirically and often involve the detection of 46 
pathogen-derived molecular patterns such as peptidoglycans, and triggering signalling cascades 47 
including the immune deficiency (IMD) and Toll pathways, resulting in the downstream 48 
expression of antimicrobial peptides (AMPs) that directly kill pathogens (Kleino and Silverman, 49 
2014; Myllymäki et al., 2014; Myllymäki and Rämet, 2014; Palmer et al., 2018; Valanne et al., 50 
2011).  51 

While crucial, pathogen clearance alone will not result in a healthy host, because after 52 
pathogen elimination what is left is the tissue damage caused by pathogen growth and as a side-53 
effect of immunopathology. The second challenge to return to healthy state is therefore to repair 54 
and regenerate damaged tissues (Martins et al., 2019; Medzhitov et al., 2012; Prakash et al., 55 
2022; Schneider and Ayres, 2008; Soares et al., 2017, 2014). Effective mechanisms of damage 56 
signalling and repair may explain why some individuals are tolerant of infection, and are able to 57 
experience relatively high health even if their pathogen loads remain high or are not completely 58 
cleared (Martins et al., 2019; Soares et al., 2014).  59 

Compared to well-described pathogen clearance mechanisms, we are only beginning to 60 
unravel the mechanistic basis of disease tolerance (Martins et al., 2019; Medzhitov et al., 2012; 61 
Prakash et al., 2022; Soares et al., 2017, 2014). Likely candidate mechanisms underlying 62 
effective tolerance of infection include those that regulate inflammation to reduce 63 
immunopathology (Adelman et al., 2013; Cornet et al., 2014; Prakash et al., 2021; Sears et al., 64 
2011); detoxification of host or pathogen derived metabolites (Ferreira et al., 2011; Soares et al., 65 
2017; Vale et al., 2014); or tissue protection and regeneration (Jamieson et al., 2013; Prakash et 66 
al., 2022; Soares et al., 2017, 2014). However, the few disease tolerance candidate genes 67 
arising from genome-wide association or transcriptomic studies - such as ghd (grainyhead), dsb 68 
(debris buster), crebA (cyclic response element binding protein) and, dfoxo (forkhead box, sub-69 
group O) -  do not appear to be directly associated with classical immune pathways (Dionne et 70 
al., 2006; Howick and Lazzaro, 2014; Lissner and Schneider, 2018; Troha et al., 2018).  71 

Here we take advantage of the detailed knowledge of Drosophila immunity to investigate 72 
the role of damage signalling plays in disease tolerance during systemic bacterial infection. In 73 
response to mechanical injury, oxidative stress, and infection, the Jak/Stat pathway is activated 74 
by cytokine-like ligands of the unpaired family namely upd-1, upd-2 and upd-3 (Agaisse et al., 75 
2003; Chakrabarti et al., 2016; Dostert et al., 2005; Ekengren et al., 2001; Ekengren and 76 
Hultmark, 2001; Gilbert et al., 2005; Harrison et al., 1998). Upd-3 is produced during damage 77 
caused by reactive oxygen species (ROS), which in turn are produced by dual oxidase (duox) 78 
(Babior, 1995; Klebanoff, 1974; Lee and Kim, 2014). The extracellular binding of upd-3 to 79 
Domeless (dome), leads to the phosphorylation of Hopscotch (hop). This then leads to the 80 
phosphorylation of Stat92E, and its translocation to the nucleus (Myllymäki and Rämet, 2014). In 81 
the nucleus, in addition to the production of factors that are necessary for repairing cellar 82 
damage, Stat92E also induces the expression of Socs36E, a negative regulator of Hopscotch 83 
(Kiu and Nicholson, 2012). Recent work has also highlighted the role of the histone H3 lysine 9 84 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2023. ; https://doi.org/10.1101/2021.09.23.461578doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461578
http://creativecommons.org/licenses/by/4.0/


 3

methyltransferase (also called G9a) in negatively regulating the expression of the Jak/Stat 85 
pathway during infection (Merkling et al., 2015). 86 

Focusing on its role in immunity, there is substantial evidence that Jak/Stat signalling 87 
plays a key role in wound healing, gut immunity, and downstream AMP production (Chakrabarti 88 
et al., 2016; Kemp et al., 2013; Lamiable and Imler, 2014; Tafesh-Edwards and Eleftherianos, 89 
2020). For instance, during enteric bacterial infection in Drosophila, the Jak/Stat pathway 90 
contributes to intestinal immunity by regulating intestinal stem cell (ISC) proliferation and 91 
epithelial cell renewal via epidermal growth factor (EGFR) signalling (Buchon et al., 2010; 92 
Chakrabarti et al., 2016; Ohlstein and Spradling, 2006). The absence of epithelial renewal leads 93 
to a loss of structural integrity and increased susceptibility to bacterial infections (Buchon et al., 94 
2009). In cellular immunity, Jak/Stat signalling is central to the production, differentiation and 95 
maintenance of blood cells in insects (Banerjee et al., 2019; Meister and Lagueux, 2003). The 96 
Jak/Stat pathway is also important in humoral immunity to viral infection (Dostert et al., 2005), 97 
where a loss of regulation of Jak/Stat by the epigenetic negative regulators G9a results in 98 
reduced tolerance of Drosophila C virus infections due to increased immunopathology (Merkling 99 
et al., 2015). This specific result motivated us to question whether the effects of G9a-mediated 100 
Jak/Stat regulation on tolerance were specific to viral infection, or if the regulation of Jak/Stat 101 
also affects disease tolerance during bacterial infection.  102 

We investigated the tolerance response of Drosophila during septic infection with the 103 
bacterial pathogen P. entomophila, using transgenic flies lacking various components of Jak/Stat 104 
signalling and regulation. Further motivated by the widespread observation of sexually dimorphic 105 
immunity reviewed in (Belmonte et al., 2020; Klein and Flanagan, 2016) and particularly that the 106 
effects of G9a on tolerance of DCV infection are more pronounced in female flies (Gupta and 107 
Vale, 2017; Merkling et al., 2015), we also focused on assessing sex differences in how Jak/Stat 108 
signalling affects tolerance of P.entomophila infection.    109 

 110 
 111 
2. Materials and methods 112 
2.1 Fly strains and maintenance 113 
We used several D. melanogaster transgenic lines with TE mobilization using a P-element 114 
construct and subsequent loss-of-function for Duox - P{SUPor-P}DuoxKG07745 (Hurd et al., 2015) , 115 
Domeless - P{SUPor-P}KG08434, Hopscotch - P{SUPor-P}hopKG01990(Bellen et al., 2004), Socs36E 116 
- P{EPgy2}Socs36EEY06665 (Monahan and Starz-Gaiano, 2013). All lines were on the yw 117 
background (Eleftherianos et al., 2014) which served as a control genotype (detailed information 118 
is presented in Fig S1 and S2 and Table S1). We also used G9a mutant flies (that is, G9a-/-, also 119 
known as G9aDD2 generated previously by mobilization of the P-element KG01242 located in the 120 
5’ UTR of the gene(Kramer et al., 2011)) and control G9a+/+ (Merkling et al., 2015). We 121 
maintained all the fly lines in a 12ml plastic vials on a standard cornmeal diet see (Siva-Jothy et 122 
al., 2018), at 25°C (±2°C). We used 3-5-day-old adult flies for all our experiments (see below). 123 
First, we housed 2 males and 5 females for egg laying (48 hours) in a vial containing fresh food. 124 
We then removed the adults and the vials containing the eggs were kept in 25°C incubator for 14 125 
days, or until pupation. We placed the newly eclosed individuals (males and females separately) 126 
in fresh food vials until the experimental day (3 days).  127 

 128 
2.2 Bacterial culture preparation 129 
We used P. entomophila cultured overnight in Luria broth (LB) at 37°C under constant agitation 130 
that is, 120 revolutions per minute (rpm). P. entomophila is a gram-negative bacterium naturally 131 
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found in soil and aquatic environments, known to be highly pathogenetic for D. melanogaster 132 
(Dieppois et al., 2015; Vodovar et al., 2005). Upon reaching 0.75 OD600 we pelleted the culture 133 
by centrifuging during 5 minutes at 5000rpm at 4°C, and then removed the supernatant. We 134 
resuspended the bacteria in 1xPBS (phosphate buffer saline) and prepared the final infection 135 
inoculum of OD600 of 0.05 for all our infection assays.  136 
 137 
2.3 Systemic infection assay 138 
We used a split-vial experimental design (see Fig. S3), where, after infection, each vial 139 
containing 25 flies (of each sex and fly line combination) were divided into 2 vials for measuring 140 
(A) survival following infection (n= 15 vials of 15-17 flies/vial/infection treatment/sex/fly line) and 141 
(B) internal bacterial load (n= 15 vials of 8-10 flies/vial/infection treatment/sex/fly line). With this 142 
split-vial design we were able to use replicate-matched data for both survival and bacterial load 143 
to estimate disease tolerance for each fly line (that is, for each replicate group, mean fly survival 144 
with respect to mean internal bacterial load). We infected 3-5-day old male and female adult flies 145 
using a 0.14mm insect minutein needles bent at 90° angle to avoid damaging the internal tissues 146 
by dipping in P. entomophila bacterial inoculum of OD600 of 0.05, resulting in 50-70 bacterial 147 
cells/fly.  For mock controls we substituted bacterial solution with sterile 1xPBS. After stabbed 148 
the flies in the sternopleural region of the thorax (Khalil et al., 2015). We then placed males and 149 
females separately onto fresh food vials and incubated at 25°C. We scored the flies (both 150 
infected and control) every 2-3 hours for the first 48-hours following infection, then 2-3 times 151 
each day for the next 6 days (150 hours).  152 
 153 

2.4 Measuring bacterial load 154 
To quantify internal bacterial load after 24-hours following systemic P. entomophila infection first, 155 
we thoroughly washed each fly with 70% ethanol for 30 sec to surface sterilize and then rinsed 156 
twice with autoclaved distilled water. We plated the second wash on LB agar plates and 157 
confirmed that the surface bacteria were successfully removed after sterilization. We then 158 
transferred individual fly onto 1.5ml micro centrifuge tubes and homogenized using a motorized 159 
pestle for approximately 30-60 seconds in 100µl LB broth (n=30 fly homogenates/sex/infection 160 
treatment/ fly line). We performed serial dilution of each fly homogenate up to 10-6 fold and 161 
added 4μL aliquot on a LB agar plate. We incubated the plate overnight for 18h at 30°C and 162 
counted the resultant bacterial colonies manually (Siva-Jothy et al., 2018). We note that mock-163 
infected control fly homogenates did not produce any colonies on LB agar plates.  164 

 165 

2.5 Statistical analyses 166 

2.5.1 Survival: We analysed the survival data with a Cox mixed effects model using the R 167 
package ‘coxme’ (Therneau 2015) for different treatment groups (P. entomophila systemic 168 
infection and mock controls) across males and females. We specified the model as: survival ~ fly 169 
line * treatment * sex * (1|vials/block), with ‘fly line’, ‘treatment’ and ‘sex’ and their interactions as 170 
fixed effects, and ‘vials’ nested within a ‘block’ as a random effect. 171 
2.5.2 Bacterial load: We found that the bacterial load data were not normally distributed (tested 172 
with Shapiro–Wilks’s test for normality).  We therefore used a non-parametric one-way ANOVA 173 
Kruskal-Wallis test to test the effects of each fly line and sex on internal bacterial load. 174 
2.5.3 Measuring disease tolerance: We analysed disease tolerance as the linear relationship 175 
between fly survival against bacterial load (Ayres and Schneider, 2012; Louie et al., 2016; 176 
Oliveira et al., 2020; Raberg et al., 2007). To this end, we employed ANCOVA by fitting ‘fly line’ 177 
and ‘sex’ as categorical fixed effects and ‘bacterial load’ as a continuous covariate, and their 178 
interactions as fixed effects.  Since we were interested in identifying how each transgenic line 179 
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differed from the control line, we compared the estimates of the model slope using pairwise 180 
comparison (f-test; yw vs. different transgenic lines) to test the extent to which each transgenic 181 
line significantly differed from the control in tolerating bacterial infections.  182 
 183 

3. Results and Discussion 184 
 185 
3.1. Following systemic bacterial infection, disruption of Duox or different components of 186 
Jak/Stat pathway result in variable survival outcomes  187 

Overall, we found that disruption of Duox or the Jak/Stat pathway (either by disrupting the 188 
positive regulators upd3 and domeless, or overactivation by disrupting the negative regulator 189 
socs36E) affected fly survival during bacterial P. entomophila infections (Fig. 1A and B, Table 1 190 
and SI-2). Both male and female flies lacking duox (ROS producing dual oxidase) were more 191 
susceptible to P. entomophila infections compared to the control line (yw) (Fig. 1A and B, Table 192 
1 and SI-2). However, other transgenic lines showed slightly improved survival relative to the 193 
functional control line. These included male and female flies lacking the transmembrane receptor 194 
domeless, and males lacking the negative regulator Soc36E (see hazard ratio in Fig. 1B, Table 1 195 
and SI-2).  196 

  197 
1. 3.2 Control yw and Duox / Jak/Stat transgenic deletion lines exhibit similar bacterial loads  198 

We investigated whether the variation we observed between transgenic lines in mortality 199 
could be explained by differences in their bacterial load. Given that most mortality occurred just 200 
after 24 hours for most of our fly genotypes (Fig. 1A) we quantified bacterial load at 24 hours 201 
following infection. Both control and transgenic lines exhibited similar levels of bacterial load 24 202 
hours following infection with P. entomophila (Fig. 1C, Table SI-3). Therefore, despite no 203 
substantial difference in microbe loads at 24-hours post infection, transgenic lines showed 204 
variable survival. This would fit the functional definition of disease tolerance as for the same 205 
bacterial load some lines appear to be more tolerant (survive longer, such as domeless) while 206 
others are less tolerant (e.g., duox). 207 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2023. ; https://doi.org/10.1101/2021.09.23.461578doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461578
http://creativecommons.org/licenses/by/4.0/


 6

 208 

Figure 1. (A) Survival curves for control yw flies and flies lacking Jak/Stat pathway components 209 
for females and males exposed to systemic P. entomophila of infection dose OD600=0.05 (n= 15 210 
vials with 15-17 flies each vial/fly line/treatment/sex/infection dose). [‘*’ indicates that the Jak/Stat 211 
transgenic lines are significantly different from yw flies]. (B) Estimated hazard ratios calculated 212 
from the survival curves for males and female flies (yw and with flies lacking components of 213 
Jak/Stat signalling and duox). A greater hazard ratio (>1) indicates higher susceptibility of 214 
Jak/Stat mutants than control while (<1) indicates transgenic lines have better survival than 215 
control flies to systemic bacterial infection (p=<0.05). (C) Bacterial load (mean log10) measured 216 
24 hours following infection (n= 15 vials with 8-10 flies each vial/fly line/treatment/sex/infection 217 
dose). [significantly different fly lines are connected by different letters using Tukey’s HSD as a 218 
post hoc analysis of pairwise comparisons].  219 

 220 

2. 3.3 Disrupted expression of Duox or Jak-Stat signalling leads to differences in disease 221 
tolerance phenotypes 222 

While the results above are indicative of variable tolerance depending on the Jak/Stat 223 
disruption, we carried out a formal analysis of disease tolerance using the slope of the linear 224 
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reaction norm between fly survival and microbe load, where each data point is the matched 225 
survival / CFU data for one replicate vial (see methods and Fig. S3 for description of split-vial 226 
design). Here, the differences in tolerance between Jak/Stat deletion and the control fly line are 227 
indicated by a significant interaction between the bacterial load and the fly line for survival, which 228 
reflects the overall rate at which fly health (survival) changes with bacterial load between fly lines. 229 
Overall, we found that the transgenic lines showed differences in disease tolerance phenotypes 230 
compared to control in both males and females, and this effect was driven mainly the Duox-231 
deficient lines, which showed a much steeper decline in survival with increasing P. entomophila 232 
bacterial loads (Fig. 2A and 2B, Tables 2 and 3). Given the role of duox in producing ROS, one 233 
possible explanation for decreased tolerance in the duox transgenic line is flies require 234 
intracellular ROS (oxidative burst) such as H2O2 (hydrogen peroxide) for the activation of cellular 235 
reponses during wounding and injury, in addition to Toll and Jak/Stat activation (Chakrabarti and 236 
Visweswariah, 2020). In other work, wild type (wDahomey) males showed higher levels of duox 237 
expression and ROS following Ecc (Erwinia catovora) infection (Regan et al., 2016), which may 238 
suggest that loss of function of duox might impact males more than females, as observed in this 239 
experiment (Fig. 2B). 240 

An unexpected observation was that flies lacking domeless showed slightly increased 241 
survival relative to the yw control (Fig 1) (and a trend for increased tolerance, though not 242 
statistically significant, Fig 2). Given the role of domeless as an activator of Jak-Stat signalling , 243 
this might suggest that Jak/Stat activation may be costly to flies. While immune deployment and 244 
regulation is highly energy demanding across most species (McKean et al., 2008; Nystrand and 245 
Dowling, 2020; Schwenke et al., 2016; Vale et al., 2015), the physiological costs of specific 246 
individual immune components and pathways remains understudied and an open question for 247 
future research.  248 
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   249 

Figure 2. (A). The relationship between fly survival (measured as mean lifespan) and mean 250 
bacterial load (as mean CFUs - Colony Forming Units) analysed using linear models for female 251 
and male flies. Each point shows data for median lifespan and mean CFUs of 15 vials (with each 252 
vial containing 25 flies/sex/fly line combination after 24 hours post systemic bacterial exposure. 253 
The data shown here are for the infection doses (OD600=0.05). (B). Represents estimates of 254 
negative slope of the linear reaction norm extracted from the linear models. [Maroon asterisks ‘*’ 255 
on the lower side of the panel B indicates that transgenic lines are significantly different from 256 
control yw, analysed using the F-test pairwise comparisons of estimates of the linear reaction 257 
norm for both males and females separately (see Table-3)]. Grey asterisks ‘*’ on the upper side 258 
of the panel B indicates sex differences within the fly line that is, males and females significantly 259 
differ in tolerance to systemic bacterial P. entomophila infection.  260 

 261 
 262 

3. 3.4 Disruption of G9a does not affect tolerance of P.entomophila 263 

The negative regulator of Jak/Stat, G9a, was previously identified as being important for 264 
tolerating Drosophila C Virus (DCV) infections (Merkling et al., 2015). Subsequent work exploring 265 
sex differences in this response found that G9a+/+ (control) females had higher tolerance than 266 
G9a−/− females, when measured across a range of viral DCV doses (Gupta and Vale, 2017). We 267 
wanted to test whether the loss of function of G9a also affects fly survival and disease tolerance 268 
in response to bacterial infections. Overall, we found that loss of G9a makes both males and 269 
females more susceptible to P. entomophila infections, (Fig. 3A for survival and Fig. 3B for 270 
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hazard ratio, Table 4 and Table SI-4). To test if this increased mortality in G9a-/- flies was 271 
associated with higher bacterial replication we measured bacterial load following 24 hours P. 272 
entomophila systemic infection. We found that G9a-/- females exhibited higher bacterial load than 273 
G9a+/+ (control) flies, while males showed similar bacterial load as G9a+/+ flies (Fig. 3C, Table SI-274 
5). However, the overall ability to tolerate P. entomophila bacterial infections (that is, measured 275 
as G9a fly’s survival relative to its bacterial load) remained similar across both males and 276 
females G9a flies that is, both G9a-/- and G9a+/+ controls (Fig. 3D, Table 5, and Table 6 for 277 
comparison between estimates of tolerance slope). Thus, despite the previously identified role of 278 
this negative regulator of Jak/Stat in tolerating viral infections by reducing immunopathology 279 
(Gupta and Vale, 2017; Merkling et al., 2015), G9a does not appear to affect bacterial disease 280 
tolerance in either sex. 281 

 282 

Figure 3. (A) Survival curves for control G9a+/+  flies and G9a-/-  flies lacking G9a the epigenetic 283 
regulator of Jak/Stat for female and male flies exposed to systemic P. entomophila of infection 284 
dose OD600=0.05 [n=15 vials with 15-17 flies in each vial/fly line/treatment/sex]. (B) Estimated 285 
hazard ratios calculated from the survival curves for males and female flies (control yw and flies 286 
without G9a). A greater hazard ratio (>1) indicates higher susceptibility of G9a-/- to bacterial 287 
infection relative to control flies. [‘*’ indicates that the G9a-/- flies are significantly different from 288 
G9a+/+ flies]. (C) Bacterial load (mean log10) measured 24 hours following infection (n=15 vials 289 
with 8-10 flies in each vial/fly line/ treatment and sex combination). [Significantly different fly lines 290 
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are connected by different letters using Tukey’s HSD as a post hoc analysis of pairwise 291 
comparisons]. (D) Linear tolerance to P. entomophila infection – the relationship between G9a fly 292 
survival (measured as mean lifespan) and bacterial load (as mean CFUs - Colony Forming Units) 293 
analysed using linear models for female and male flies (both G9a-/- and G9a+/+). 294 

 295 
4. Concluding remarks 296 

Tissue damage signalling and repair mechanisms such as Jak/Stat are important from a 297 
therapeutic perspective because they have the potential to boost host tolerance by minimising 298 
disease severity (Soares et al., 2014; Vale et al., 2016). Our data show that loss of Jak/Stat 299 
pathway components reduces overall survival following P.entomophila infection and that this is 300 
not caused by impaired pathogen clearance but due to lower disease tolerance. These 301 
observations have parallels in human infection. For instance, dysregulation of cytokines and 302 
interferons (JAK signalling - Tyrosinekinase2) result in immunodeficiency while defective STAT 303 
increases the risk of autoimmunity (O’Shea et al., 2014, 2013). Drugs that inhibit JAK have been 304 
shown to be effective in treating several autoimmune diseases by targeting cytokine-dependent 305 
pathways, while STAT inhibitors have been promising candidates in the context of cancer 306 
(Miklossy et al., 2013; Pérez-Jeldres et al., 2019; Salas et al., 2020). It may therefore be possible 307 
to repurpose these existing drugs to improve host tolerance of infection. In summary, our work 308 
highlights that Jak/Stat directly impacts the ability to tolerate bacterial infection and that this 309 
response differs between males and females. Jak/Stat mediated disease tolerance may be a 310 
potential source of sexually dimorphic response to infection in Drosophila. 311 

 312 
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Tables 536 

Table 1: Summary of estimated hazard ratio from the cox proportional model. A greater hazard 537 
ratio estimates (>1) indicates that Jak/Stat mutant flies are more susceptible to P. entomophila 538 
infection than yw control flies while lower ratio (<1) indicates that transgenic lines have better 539 
survival than yw control. 540 
 541 

Fly line sex estimate P lower 95% upper 95% 
Domeless Female 0.462 <0.001 0.391 0.548 

Male 0.383 <0.001 0.322 0.457 

Duox Female 2.017 <0.001 1.712 2.384 
Male 1.707 <0.001 1.455 2.009 

Hopscotch Female 0.830 0.03 0.701 0.986 
Male 0.694 <0.001 0.585 0.824 

Socs36e Female 0.990 0.91 0.843 1.167 
Male 0.795 0.006 0.676 0.937 

 542 

 543 
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Table 2. Summary of ANCOVA. To assess differences in infection tolerance (fly survival with 545 
increasing bacterial burden) following systemic P. entomophila infection with OD600=0.05 546 
infection dose, 24 hours following infection. We analysed ANCOVA and fitted ‘sex’ as categorical 547 
fixed effects, ‘mean bacterial load (log10)’ as a continuous covariate and their interactions as 548 
fixed effects for the transgenic lines. 549 
 550 

Fly line Source DF Sum of Sq. F ratio P 
Female Fly line 4 24817.1 15.27 <0.001 

 Bac. load 1 4482.9 11.03 0.0012 
 Fly line X bac. load 4 7642.8 4.7 0.0015 

Male Fly line 4 16964.8 9.22 <0.001 
 Bac. load 1 6122.6 13.32 0.0004 
 Fly line X bac. load 4 5737.5 3.12 0.017 

 551 
 552 
 553 
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Table 3: Summary of F-test pairwise comparisons of estimates of linear slopes (from the linear 555 
model) transgenic lines compared to the yw control. 556 
 557 

sex line SSE ddf slope diff std err F ratio p 

Female Duox 10018.68 30 -13.15 3.09 0.53 0.47 

Domeless 16075.94 45 1.83 2.25 8.38 0.0058 

 
Hopscotch 11897.99 34 -5.99 2.64 1.39 0.24 

Socs36E 27135.53 47 -3.77 2.28 1.48 0.22 

Male Duox 17512.77 34 -11.25 4.47 5.25 0.028 

Domeless 27106.63 49 -0.46 2.67 0.19 0.65 

Hopscotch 15019.55 36 -3.2 2.8 0.01 0.91 

Socs36E 22285.12 47 -6.17 2.75 0.54 0.46 
 558 
 559 
 560 
Table 4: Summary of estimated hazard ratio from the cox proportional model. A greater hazard 561 
ratio (>1) indicates that G9a-/- flies are more susceptible to P. entomophila infection than control 562 
(G9a+/+) flies. 563 
 564 

sex Fly line estimate p Std err 

Female G9a-/- 2.2 <0.001 0.75 

Male G9a-/- 1.41 <0.001 0.45 
 565 
 566 
  567 
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Table 5. Summary of ANCOVA. To assess differences in infection tolerance (fly survival with 568 
increasing bacterial burden) following systemic P. entomophila infection with OD600=0.05 569 
infection dose, 24 hours following infection. We analysed ANCOVA and fitted ‘sex’ as categorical 570 
fixed effects, ‘mean bacterial load (log10)’ as a continuous covariate and their interactions as 571 
fixed effects for each of the fly lines (G9a). 572 
 573 

 Fly line Source DF Sum of Sq. F ratio p 
G9a Female Fly line 1 6802.2 20.21 <0.001 

  Bac. load 1 53.19 0.158 0.69 
  Fly line X bac. load 1 1.610 0.004 0.94 
 Male Fly line 1 3042.5 8.685 0.005 
  Bac. load 1 533.13 1.521 0.22 
  Fly line X bac. load 1 166.21 0.474 0.49 

 574 
 575 

Table 6: Summary of F-test pairwise comparisons of estimates of the linear slopes (linear 576 
reaction norm) for G9a -/-relative to G9a +/+ control fly lines. 577 
 578 

Sex Fly line Fly line F Ratio p 
Female G9a -/- G9a +/+ 0.005 0.94 

Male G9a -/- G9a +/+ 0.474 0.49 
 579 
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