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Abstract

We present a novel unsupervised deep learning approach called BindVAE,
based on Dirichlet variational autoencoders, for jointly decoding multiple TF
binding signals from open chromatin regions. BindVAE can disentangle an in-
put DNA sequence into distinct latent factors that encode cell-type specific in
vivo binding signals for individual TFs, composite patterns for TFs involved in
cooperative binding, and genomic context surrounding the binding sites. For
the task of retrieving motifs of expressed TF's for a given cell type, we find that
BindVAE has a higher precision, albeit lower recall, compared to other motif
discovery approaches.

Keywords: ATAC-seq, transcription factor, dirichlet, variational autoencoders, VAE,
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Background

The advent of the assay for transposase-accessible chromatin using sequencing (ATAC-
seq)Y and, more recently, its single-cell counterpart, scATAC-seq?, have brought about
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the current ubiquity of chromatin accessibility data across numerous cell types from
diverse organisms, tissue samples, and disease states. Chromatin accessibility maps
various kinds of genomic elements, including regulatory elements such as gene promot-
ers and intronic and intergenic enhancers that are occupied by transcription factors
(TFs) as well as structural elements such as CTCF and cohesin binding sites that may
anchor 3D chromatin loops. The DNA sequence signals underlying regions of open
chromatin are therefore complex: while a single assay allows us to create an atlas of
tens of thousands of accessible “peaks” in a given cell type, we expect that dozens of
TFs occupy overlapping subsets of these peaks due to the presence of their cognate
binding sites or those of cofactors. A key problem in regulatory genomics is interpret-
ing the regulatory information encoded in all chromatin accessible peaks, namely TF
binding sites and the TF-specific “regulatory grammars” that allow TFs to bind at
different locations within the same peak.

Traditional methods for identifying TF binding sites in chromatin accessible regions
involve performing searches and enrichment analyses with a library of known TF motifs,
each encoded as a position-specific weight matrix (PWMs). These standard approaches
are useful in finding strong signals but are confounded by the problem of redundant or
missing motifs, the near-identity of motifs for closely related factors, and the inherent
limitation of using weight matrices to define binding sites when more subtle binding
sequence signals may be present. De novo motif discovery can be underpowered when
the sequence signal is complex; for example, if an important TF binds a small fraction of
accessible sites, enrichment-based motif discovery may fail to identify the corresponding
binding motif.

To address the limitations of PWMs, a range of supervised machine learning meth-
ods using k-mer representations have been used to train sequence models to predict or
decipher chromatin accessibility. The first such methods were k-mer based SVMs®4,
which accurately discriminate between accessible sites and negative (flanking or ran-
dom genomic) sequences but are more difficult to interpret in terms of constituent TF
signals; feature attribution methods have recently been introduced to extract explana-
tory sequence patterns from gapped k-mer SVM models®. Other approaches include
SeqGLY, which trains a group lasso logistic regression model on ATAC-seq data, where
k-mer groups correspond to TF binding patterns; BindSpace”, a latent semantic em-
bedding method for TF SELEX-seq data that enables multi-class identification of the
TF signals in genomic sequences; and a topic model approach based on discovering
combinatorial binding of TFs from ChIP-seq data®.

In parallel work, a range of deep learning models have been applied to chromatin
accessibility and other epigenomic data sets. Popular methods use a one-hot encod-
ing of DNA sequence and train convolutional neural networks (CNNs)®1% to predict
epigenomic signals. While these methods have made impressive strides, there is still
an interpretability issue, especially for chromatin accessibility data, which contains
numerous binding patterns for distinct motifs, as opposed to TF binding data (e.g.
ChIP-seq, ChIP-nexus, CUT&RUN), where one might hope to identify a smaller num-
ber of binding patterns for the targeted TF as well as its cofactors. Even in this latter
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setting, a complex process of extracting sequence patterns through feature attribution
and aggregating them into motifs may be required for interpretation,

Broadly speaking, the regulatory genomics field uses chromatin accessibility as mea-
sured by ATAC-seq to map candidate gene regulatory elements, including enhancer
elements for genes. We note that not all accessible elements are enhancers, and not all
elements involved in gene regulation are accessible (e.g. repressive elements may not
be associated with open chromatin). Acknowledging these caveats, the next steps in
decoding gene regulatory programs are to (i) associate ATAC-seq peaks with target
genes and (ii) identify the TFs that might be binding peak regions and therefore regu-
lating target genes. Problem (i) is not addressed here but is the subject of a wide range
of current research activities, including the use of chromosome conformation capture
assays to map 3D promoter-enhancer interactions and of single-cell multiomic data
to enable correlation of peak accessibility and gene expression across individual cells.
Problem (ii) is what we address here, by decoding the TF binding signals in specific
candidate regulatory elements (peaks). Solving both problems will lead to mechanis-
tic insight into the TF networks that regulate individual genes and gene expression
programs.

In this work, we develop a deep learning approach based on Dirichlet variational
autoencoders (VAE) for modeling chromatin accessibility data, using a k-mer repre-
sentation of genomic sequences as input (Figure [1a). VAEs are a family of machine
learning models that learn probability distributions with latent variables. Similar to
autoencoders, they learn representations of the input data by compressing the input
via a ‘bottleneck’ layer in the neural network. A VAE achieves this compression in
a probabilistic manner, whereby the encoder transforms the input x into parameters
describing a probability distribution, which it samples from to get the latent represen-
tation z. The decoder then reconstructs the input from the latent representation z,
with the goal of making the output 2’ as close as possible to the input z by minimizing
the reconstruction error. In the Dirichlet VAE or ‘topic model” setting, we assume
that the input bag of k-mers from a peak is generated by multiple ‘topics’ (we refer
to individual components of the latent space as ‘latent dimension’, ‘topic’ or ‘latent
factor’), which can correspond to binding signatures of TFs or other sequence signals
in the data. The VAE formulation of latent variable models uses advances in neural
network learning and enables efficient training on large data sets using backpropagation
of gradients.

Here we show that the Dirichlet VAE model captures a useful representation of
chromatin accessible elements, where the k-mer distributions encoded in the latent
space can often be interpreted as binding patterns for TFs. We further present an
algorithm to interpret the latent space that uses HT-SELEX probes. We show that
our model learns cooperative binding signals for pairs of TFs, and we find that our
model learns different TF's for distinct cell types, consistent with whether a TF is
expressed or not.
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Results

BindVAE: a Dirichlet variational autoencoder to deconvolve
sequence signals

Each input example to BindVAE is the bag of DNA k-mers in one chromatin acces-
sible region as shown in Figure [Th. We describe our k-mer representation in detail
in Methods. The generative model underlying the VAE is based on the observation
that each peak is a combination of DNA sequence patterns from the following cate-
gories: (a) binding sites for one or more TFs; (b) low complexity regions; (¢) genomic
background; and (d) cleavage bias from the enzyme used in DNA fragmentation (or tag-
mentation). We thus surmise that the representation z, learned for each peak, should
have latent dimensions (topics) that correspond to these categories, and in particular
we are interested in topics that correspond to the binding signals of individual TFs.
We assume that the membership of the peak in these categories follows a Dirichlet
distribution. That is, z; ~ Dirichlet(a). Each category (topic) in turn is represented
as a multinomial distribution over k-mers. Therefore, we can think of a TF-related
topic as representing a more general model of the TF’s binding preferences, with the
highest probability k-mers in the multinomial corresponding to the preferred binding
signals. In Figure , the latent dimension topic 1 (red color), parameterized by 6,
contributes k-mers that capture the binding preferences of T'Fi, while the blue-colored
topic 2 might contribute k-mers representative of the genomic background. Note that
the k-mer occurrences in a given DNA sequence are not independent, due to the overlap
in the k-mers at successive locations of the input DNA sequence — the true generative
process is thus not exactly multinomial. However, multinomial distributions have been
successfully used in language models too, where the words that appear in a sentence
are usually not independent of each other.

In general we find that the topics learned are not distributed mixtures of different
signals: rather each latent component tends to capture a coherent pattern of k-mers
for a single TF. This is a key advantage since, given an input DNA sequence, our
model can disentangle it into dimensions containing TF-specific binding patterns
and dimensions containing other types of content surrounding the binding sites.

We use k-mers with wildcards in our representation, meaning that we extend the
alphabet of nucleotides with a wildcard character that matches all bases. This model-
ing choice is motivated by our previous k-mer based machine learning works including
BindSpace”, SeqGLY, and our early string kernel work for epigenomic data® that an-
ticipated the widely-used gkm-SVM method"®. All these approaches use short k-mers
(e.g. k=8) with some kind of inexact matching, such as matching to wildcards. Be-
cause TF binding signals are degenerate, the use of wildcards that capture a larger
number of binding instances has consistently proven useful in machine learning models
of regulatory sequences.

The dimension of our latent space or the width of the bottleneck layer, which we
call ‘M’, is 100. In this way, the model encodes 100 topics, each corresponding to
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the binding signal of a TF or another enriched sequence pattern. For downstream
quantitative evaluation and analysis, we mainly consider the 100-dimensional latent
representations of inputs and the learned decoder parameters #, which guide the re-
construction of the input from the latent vector z. Details on VAEs, Dirichlet VAEs,
the training approach we use, and hyper-parameter tuning are provided in Methods.

In the following sections, we present qualitative and quantitative analysis of the
VAE models learned on ATAC-seq peaks from: GM12878, a human B lymphoblas-
toid cell line; A549, a lung epithelial cell line; and three other cell types discussed
in Additional file 1: Table S1. We show the sequence motifs learned for TFs by
summarizing the various dimensions of the latent space, project DNA sequences from
other assays into the latent space for interpretation, locate cooperative binding signals,
and correlate learned TFs to expression data.

BindVAE learns diverse k-mer binding patterns

To summarize the DNA sequence patterns captured by BindVAE, we visualize the
learned weights of the top 20 k-mers for each latent dimension. These weights are
obtained from the decoder parameters of BindVAE: § € RM*P where M is the size of
the latent representation and D is the number of k-mers in our input representation.
Figure [1b shows this visualization where the x-axis has a total of 1068 k-mers and the
y-axis shows the latent dimensions i € [0, 100]. The set of 1068 k-mers was constructed
by first selecting the top 20 8-mers for each latent dimension and then computing
the union of the selected 8-mers. The (i,7)" entry of the matrix is 6;;. Based on
the diagonal-heavy structure of the matrix, we can say that the model learns diverse
patterns. The off-diagonal blocks show that similar k-mer importance patterns are
learned for some of the dimensions. We find that these correspond to TFs from the
same family.

Overall, we see two types of latent factors: ones that capture unique patterns such
as dimension #0 and #72 (see enlarged inset below Figure ) and ones that capture
redundant patterns such as #69 and #83. The latent factors of the former type can
be thought of as forming a basis, with each axis roughly corresponding to a different
binding signature. Redundant dimensions are groups of dimensions that capture very
similar k-mer distributions, i.e. have high weights for very similar k-mers, possibly due
to binding sites of paralogous TFs.

Motifs discovered de novo by our model

While Figure shows that diverse patterns are learned, we asked if these patterns
represent coherent TF binding patterns. To answer this, we summarized the patterns
learned by the model by doing a motif analysis for each latent dimension. Ideally,
we would like to obtain motifs directly from the parameters of our model, i.e. using
the distribution «9; for a latent factor m. However, the use of relatively short k-mers
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(8-mers) to represent the input, and the use of wildcards, limit the length and the
accuracy of PWMs directly obtained from Orm.

Given the caveats above, we adopted a postprocessing procedure that can use
higher-order k-mers to get more accurate binding patterns. First, we generate the
set of all possible 10-mer DNA sequences, S'19m¢s (total of 524,800 10-mers without
wildcards). The model trained on the ATAC-seq peaks is applied on S'¢s  where
the input for each 10-mer example is the 8-mer counts vector of size D. The latent rep-
resentation vector Z for the I 10-mer is its latent score vector. For a given latent
dimension k, we can rank all the 10-mers based on the latent scores: 2y, V [ € S10mers,
Let the top 200 10-mer sequences in this ranking be S?%° = {l;,15...1500}. We then
construct a PWM from the DNA sequences in S?%° using MEME™ and render it us-
ing SeqLogo™® for consistent coloring. These results are tabulated in Figure for
GM12878, with the third column showing the learned motifs. The second column
shows the name of the TF assigned to the latent dimension by our procedure described
in Algorithm [1] (discussed in the next section) and the fourth column shows the corre-
sponding CIS-BP™ motif. For brevity, we show the top few motifs in Figure [1lc, that
were selected based on the p-values assigned by Algorithm [1}

We observe that the motifs learned by BindVAE are similar to the motifs from
CIS-BP, which are based on in vitro and in vivo studies of individual TF binding.
Since our input representation relies on 8-mers, the model is biased towards learning
shorter motifs more accurately. We also find that TFs with long motifs are split across
multiple dimensions, for instance RUNX3 is split across dimensions #60 and #39, and
CTCF is split across dimensions #11 and #4.

Overall BindVAE finds motifs between 6 and 10 in width (average width 7.4). Our
results illustrate that our VAE-based model learns binding preferences of representative
TFs de novo.

Mapping the TFs to dimensions

So far we showed that BindVAE is able to learn k-mer patterns of TF binding motifs.
In order to validate that these learned motifs (Figure [Ic) are indeed meaningful to
TF binding, we incorporated in vitro TF binding information derived from the HT-
SELEX (high-throughput systematic evolution of ligands by exponential enrichment)
study by Jolma et al.®® In each TF experiment the HT-SELEX assay produces, at
the end of several cycles of TF-bound oligonucleotide selection, oligomers that have a
high affinity to bind the specific TF. The enriched probes thus represent TF binding
preferences outside the cellular context. The HT-SELEX experiments in Jolma et al.*®
span hundreds of TFs from various TF families, out of which we use 296 TF's.

We use the oligomer probes that were enriched in each TF’s HT-SELEX experi-
ment to map the individual latent dimensions ¢ € [1... M] from the bottleneck layer
of BindVAE to TFs thereby making them amenable to biological understanding and
facilitating further analyses. We project enriched probes into the latent space gener-
ated by the ATAC-seq peaks; i.e. we do inference on the probes using the BindVAE
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model trained on GM12878 peaks. Next, we use the procedure outlined in Algorithm
(please refer to Methods), where we compare the set of latent score vectors {z}
of one TF’s HT-SELEX probes to those of the probes from all other TFs. A TF ¢ is
mapped to a dimension m, generating the mapping m — t, if m ranks ¢’s probes higher
than the probes from all other TFs.

We find that our algorithm produces all types of mappings between TFs and di-
mensions: one-to-one, one-to-many, many-to-one, and many-to-many. Homologous
proteins or multiple members of a subfamily are mapped to the same dimension due to
the similarity of their binding preferences. For instance, in the GM12878 model, the
T-box family of TFs are assigned to the same latent dimension. Some TFs might be
assigned to several dimensions for two reasons: (1) they have a long motif or (2) some
homolog of that TF appears in the data but does not exist in our set of 296 TF's, which
is limited by the HT-SELEX experiments. Another consequence of this limitation is
that some latent dimensions are not assigned to any TF even if there is an enrichment
in the DNA sequence pattern that they capture.

Mapping peaks to TF's

We next ‘assign’ each ATAC-seq peak in the input data to the top 3 TFs for downstream
analysis and visualization. Given the M-dimensional latent score vector z; of the
i"" peak, and the mapping F from dimensions to TFs, the assigned TFs are given
by: F(arg MAaXge(y... ] Zia), 1.e., the 3 TFs corresponding to the highest latent scores.
In general, we find that each peak’s representation is spread across multiple latent
dimensions. For example, a 30bp region of a peak from our GM12878 dataset in
Figure contains TFs from two different families: ETS1 and another unmapped TF
from latent factor #93.

Latent factors capturing non-TF related patterns

In addition to TF-specific patterns being learned, some latent dimensions capture infor-
mation pertaining to low complexity regions, genomic background, or Tnb transposase
cleavage bias. In Additional file 1: Fig. S1 we show how the top k-mers from latent
factor #37 encode genomic background regions with GC-rich patterns, and in Addi-
tional file 1: Fig. S2 we show peaks with low complexity regions being assigned to
the same topic. In Additional file 1: Fig. S3 we show peaks of two types, demon-
strating the disentanglement done by BindVAE on peaks with low-complexity regions
and TFBS. Further details of these experiments are in Additional file 1: Section 1.

Projecting HT-SELEX probes into the latent space

From the previous sections we can conclude that BindVAE learns diverse and coherent
patterns that map to TF binding preferences. In the following sections we explore
what this entails for input DNA sequences of various lengths and types.
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Just as in the previous section, we project the HT-SELEX probes into the latent
space generated by the ATAC-seq peaks and visualize the results. Since HT-SELEX
experiments use short probes that are 20bp long and capture in vitro binding affinities,
they have very distinct patterns across different TFs. The heatmap in Figure
shows the latent space for 10,000 probes, one probe per row, with the rows grouped by
the TF that each probe was enriched for. There are 200 enriched probes (and hence
rows) per TF experiment. We show 42 dimensions, out of the 100-dimensional latent
space (M = 100), chosen based on whether a dimension contains any signal over the
10,000 probes. We see that a block diagonal structure emerges in this matrix, which
indicates that several latent dimensions are orthogonal to each other and show distinct
binding patterns. Note that each red square block corresponds to 200 probes.

Further, TFs from a family share the same latent space due to the similarity in their
DNA binding sites. For instance dimension #67 shows signal for several forkhead box
(FOX) proteins: FOXJ2, FOXL1, FOX04. Similarly, dimension #30 contains DNA binding
preferences for T-box TFs TBR1, TBX19, TBX20, TBX21, and EOMES. In addition to T-
box proteins, we see that dimension #30 also captures binding preferences for ZSCAN4,
which is a C2H2 zinc finger. Dimension #21 encodes bHLH (basic helix-loop-helix)
binding preferences for TCF3 and TCF4. In order to further understand the model’s
grouping of similar TFs into a single latent factor, we compare their CIS-BP motifs in
Additional file 1: Fig. S4. We observe that the TF binding PWMSs are very similar
for each group and hence binding sites for these TFs get projected into the same region
of the latent space by our model.

Top 8-mers learned for NFKB1 and TFAP4

We illustrate the quality of the learned posterior distribution pg, which is defined by
the encoder parameters # € RM*P by sorting the decoder parameters 6, for each
latent dimension m and showing the top 50 corresponding 8-mers. Figure shows
the 8-mers from dimension m = 72 which is mapped to NFKB1 by Algorithm [1] For
ease of interpretation, we align the 50 8-mers using Clustal Omega” and also show the
CIS-BP motif corresponding to the mapped TF. NFKB1 is a palindromic motif of length
~13 and TFAP4 has a motif of length 10. For TFAP4, we see that the top 8-mers learned
by our model can be partitioned into two groups based on their distinct patterns, with
one group matching the beginning of the motif (pattern TCAGC) and the other matching
the end (AGCTGT), as shown in Figure . In general, we observe that a single latent
factor can capture the binding signature of TFs with motif length < 10. TFs with
longer dimer motifs are also captured by a single latent factor, for instance NFKB1 in
Figure [2c and VDR in Additional file 1: Fig. S5. When the TF motif is longer than
10, we typically find the binding signature to be split across two latent factors — with
one capturing the beginning and the other capturing the end of the motif, as seen for
CTCF in Additional file 1: Fig. S5.
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Cell-type specific TF patterns

We find cell-type specific differences in the TFs whose binding signals are recovered by
BindVAE, consistent with the different TFs expressed in these cell types (see Figure
3d). There is some evidence that we also find differences in motifs for the same TFs
between two cell lines, in cases where these TF's are expressed in both. We show some
examples in Additional file 1: Table S2 for the two cell lines GM12878 and A549.
We also compare all the k-mer distributions learned for both cell types by visualizing
them together in the PCA plot shown in Additional file 1: Fig. S6. We apply PCA
to the decoder parameters 6 € R00x112800 where each row is one k-mer distribution.

Cooperative binding signals in GM12878

We find that multiple latent dimensions show k-mer patterns from diverse TF families,
possibly indicating the presence of cooperative binding sites in the ATAC-seq peaks.
Since the co-occurrence of multiple binding patterns might merely suggest that binding
sites of two different TF's are present in a peak and not necessarily binding coopera-
tively, we use CAP-SELEX dataY to validate this hypothesis. Jolma et al.?? developed
CAP-SELEX, an in vitro assay for studying interactions between pairs of DNA-bound
TF's, using DNA sequences of length 40bp.

We analyze two latent dimensions: #60 in Figure and #67 in Figure [3pb,
which show cooperative binding signals for MYBL1-MAX and FOXJ3-TBX21 respectively.
In order to show the presence of cooperative binding patterns, we compare the latent
scores of enriched CAP-SELEX probes from pairwise TF experiments to the latent
scores of enriched HT-SELEX probes from individual TF experiments. We show the
distribution of the latent scores along the y-axis, and the x-axis shows the source
TF (or TF pair) experiment for each distribution. We also show the distribution of
latent scores for probes from all other TFs, which shows that the pairwise signals
are significantly higher than average. This is also indicated by the p-value (shown in
brackets below each TF label) assigned by Algorithm (1, For example, the p-value of
mapping dimension #67 to the TF pair FOXJ3-TBX21 is 2¢ 2, while that for all ‘other
TFs™ is 1.0.

We further analyze the motif captured by dimension #67 for the TF pair FOXJ3-TBX21
in Figure by constructing a PWM from 15-mers ranked high by this dimension.
Since the number of all possible 15-mers is prohibitively large, we sample 10% of them
and run inference on these. We show the motif obtained by this process on the right
side of Figure [3c. On the left, we show the motif published by Jolma et al.?” (using
their algorithm) for FOXJ3-TBX21 cooperative binding. We show the motif learned
for MYBL1-MAX in Additional file 1: Table S3, where we also show the 13 other
TF pair motifs found by BindVAE. Note that combinations of TFs with a successful
CAP-SELEX experiment are limited after filtering for quality metrics as described in
BindSpace”. Composite motifs that differ from the concatenation of individual motifs
are found for ~ 70 pairs of TFs, for which we can assess enrichment in the latent
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dimensions. Given the sparsity of CAP-SELEX data, we are unable to present a more
comprehensive analysis of cooperative binding.

We further examine the results to understand if there is any intrinsic source of bias
in CAP-SELEX probes or motif patterns. All examples of cooperative motifs that
we find involve TFs with distinct binding motifs, i.e. the same nucleotide pattern is
not repeated for each TF in the pair, which could confound cooperative motif analysis.
Next, in Figure 3a and Additional file 1: Fig. S7 (top) we see that the cooperative
binding motif is enriched, while the individual TF motifs are not. Conversely, in
Additional file 1: Fig. S7 (bottom) we show an example where the individual
motif is enriched, while the cooperative motif is not. This shows that CAP-SELEX
probes do not intrinsically achieve higher latent scores on account of either of the
individual motifs being present.

Accessibility patterns in different and similar cell types

In Figure we show the proportion of binding sites that we predict across various
TF's in the two cell types in our study. Each bar represents one TF (or latent dimension
m) and the height of the bar, which we call the ‘accessibility score’ is obtained by

summing the latent scores (or topic proportions) z;, for all peaks i: Z Zim, TOT

i€all peaks
each topic m. We only plot the latent dimensions m that were successfully mapped to

TFs using Algorithm[I] The bars are colored by cell type, blue for GM12878 and orange
for Ab49, overlapping areas appearing in grey. The bars are sorted in increasing order
with respect to accessibility scores of TFs from GM12878. We see different accessibility
patterns in these two cell types, and Gene Ontology (GO) term enrichment using
PANTHER of the distinct TFs found for each cell type shows biological processes that
are specific to each. For instance, we find ‘myoblast fate commitment’ and ‘calcineurin-
NFAT signaling cascade’ being enriched in the TFs found for A549, whereas ‘regulation
of CD8&-positive, alpha-beta T cell differentiation’ and ‘intracellular steroid hormone
receptor signaling pathway’ are enriched for GM12878.

We also illustrate the difference in activation patterns for similar cell types by
training separate models on samples coming from the same cell type, but different
donors: one male donor and one female donor for naive B cells. We plot the accessibility
scores for TFs found by both models (Additional file 1: Fig. S8) and find that for
similar cell types or replicates, there is overlap in the TF patterns.

Since BindVAE is a probabilistic model that optimizes the likelihood of the data,
there is some variance/uncertainty across experimental runs. This is unlike autoen-
coders since the latent vector here is sampled from the Dirichlet posterior distribution.
In addition, there is the variance from the randomized initialization of model param-
eters. We quantify this uncertainty by training models 5 times using identical hyper-
parameters, on data from only the female donor sample of naive B cells. We plot the
accessibility scores for the union of all TFs found, along with the standard deviation
across the 5 repeat runs. While there is variance in the exact TFs found across the
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repeat runs, if we visualize the k-mer distributions for two of the replicate experiments
in Additional file 1: Fig. S6 (top right), we see that they are quite similar. Compare
this to the k-mer distributions learned for two distinct cell types in Additional file
1: Fig. S6 (bottom left) or for the same cell-type but samples coming from different
donors in Additional file 1: Fig. S6 (top left).

Comparison with de novo motif discovery methods

We compare BindVAE with three other motif discovery approaches: HOMER%!, MEME"?,
and GADEM“?, The last two only produce motifs and are hence run in conjunction
with a motif-matching approach, Tomtom™® to find the matching TFs. We find that
BindVAE has a higher precision but often worse recall and F1 score (Additional file
1: Table S4a, S4b), while BindVAE+Tomtom, where we replace Algorithm [1| with
Tomtom, has a higher recall and F1. We find that Algorithm [I] trades off precision
for lower recall (see details in Additional file 1: Section 2, where we also compare
run-times of the approaches). We find that BindVAE is one of the faster methods,
particularly since the prior motif discovery approaches do not scale well to large-scale
NGS datasets and the efficiency is dependent on the e-value / p-value threshold used.
Here, we briefly present our observations with HOMER on the GM12878 dataset.

HOMER?' is an unsupervised motif discovery algorithm that uses differential en-
richment to find motifs. It compares peaks to background DNA sequences and tries
to identify patterns with mismatches and gaps that are specifically enriched in the
peaks relative to the background. We compare our unsupervised VAE-based method
to HOMER on de novo motif detection in GM12878. Figure |3 shows the overlap in
the TFs found by both approaches and how many of these are expressed in GM12878.
Since the TFs detected by BindVAE are restricted by our post-processing algorithm
that relies on HT-SELEX data, we present the HOMER results in a similar configura-
tion for a fair comparison: ‘SELEX restricted’, where we use the HT-SELEX PWMs
published by Jolma et al.’® for the 296 TFs that we consider.

We find that HOMER finds a total of 99 motifs that are mapped to known TFs
within our HT-SELEX set of 296 TFs. BindVAE finds 122 motifs from latent dimen-
sions mapped by Algorithm . Looking at expressed TFs, 60/99 (= 60%) found by
HOMER and 73/122 (=~ 60%) found by BindVAE are expressed. Therefore HOMER
finds fewer TFs overall than BindVAE, and a similar proportion are expressed in
GM12878 for both methods. We provide a table of the learned and expressed TFs
in the Additional file 1: Table S5. We also present a detailed comparison with
HOMER for varying p-value and e-value cut-offs in Additional file 1: Table S4b.

Projecting ChIP-seq peaks into the latent space

In Figure [4a,b, we show a two-dimensional projection using Uniform Manifold Ap-
proximation and Projection (UMAP)?* of the learned representations for ChIP-seq
peaks from GM12878 for three transcription factors with distinct binding preferences.
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There are 1000 peaks from each ChIP-seq experiment, and each peak is colored by
the TF. Figure shows proteins from different families: CTCF, a C2H2 zinc finger,
MAFK a bZIP TF, and ELK1 that contains an ETS domain. Here we see that our model
learns distinct embeddings for TFs that have different binding preferences. However,
embeddings of CTCF peaks are more distributed due to the ability of its zinc finger
domains to bind to heterogenous DNA sequences. Figure shows FOS a bZIP TF,
IRF4 an IRF family transcription factor and SPI1 that contains an ETS domain. We
find that embeddings of peaks from FOS are distinctly clustered while those from IRF4
and SPI1 largely overlap despite a low overlap in the genomic regions of the peaks
(34 out of 1000 peaks overlap). This is possibly because IRF4 binds DNA weakly but
cooperative binding with factors such as SPIB in B cells increases binding affinity”.
We notice a similar pattern of overlap with BATF and JUND which are both bZIP TFs
that form heterodimers while binding DNA*®.

To analyze whether our model learns meaningful representations, we use ChIP-seq
as a source of ground truth and verify whether known binding sites for a given TF are
transformed to the same latent dimension by our model. We look at the intersection of
the TFs in our HT-SELEX set (296 TFs) and those for which we have reliable ChIP-seq
data, which gives us 11 TFs. For each of these TFs, we find all ATAC-seq peaks that
have an overlap of at least 50bp with any ChIP-seq peak and plot the latent dimension
that was assigned to that TF. In Table (1] we show the number of overlapping peaks
between the ChlP-seq experiment and our GM12878 dataset. We show the resultant
matrix for these 11 TFs by depicting it as a heatmap in Figure [4c. The heatmap
shows a centered log ratio (CLR) transform of the latent representations, with rows
representing peaks and columns representing TFs. Our approach gives us a total of
~38,496 peaks across the 11 TFs which we sort by their membership, with peaks that
belong to RUNX3 being shown at the top of the heatmap as it has the largest number
of mapped peaks.

We show the TF ChIP-seq experiment connected with each row of Figure {4c, in
a second heatmap in Additional file 1: Figure S14, that indicates the ChIP-seq
ground truth label assigned to the ATAC-seq peak via overlap (i.e. a minimum of
50bp overlap between a ChIP-seq and ATAC-seq peak to assign the TF label) in the
same order as Figure [dc. We see that some of the co-binding relationships found by
BindVAE: such as NRF1 and MAX are explained by the overlap in ChIP-seq peaks.

Discussion

Supervised deep learning methods for the prediction of TF occupancy data and chro-
matin accessibility are numerous, ranging from early deep convolutional neural network
based models such as DeepSEA™Y and Basset” to more recent approaches usually mir-
roring advances in deep learning methods for natural language processing, such as the
LSTM-based DanQ*", Basenji using dilated CNNs*, DeepSite“®, and DNA-BERT*.
Naturally, it is possible to train discriminative deep learning models on sequence data
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TF-name Peaks overlapping | Peaks from column 1 that are | Precision | Recall
with ATAC-seq data mapped to TF by Bind-VAE
TCF3 9703 5107 0.17 0.53
MAFK 782 436 0.15 0.56
ELK1 4484 3773 0.15 0.84
NRF1 4322 3874 0.21 0.90
RFX5 3226 1506 0.11 0.47
NR2C2 410 158 0.15 0.39
TBX21 14820 5865 0.25 0.40
POU2F2 14972 4593 0.16 0.31
SPI1 16177 10496 0.33 0.65
RUNX3 33873 25403 0.51 0.75
MAX 9110 6793 0.21 0.75
ETS1 7285 5373 0.28 0.74

Table 1: Statistics of ChIP-seq data used to plot Figure showing the number of overlapping
peaks.

to predict chromatin accessibility either as a binary label (open/closed) or in the re-
gression setting, as many authors have done (e.g. the Basset and Basenji models™).
While these models have produced highly accurate predictions of TF occupancy, inter-
preting supervised models requires attribution of the learned parameters to the output
labels — which is often not a robust process as many works in the broader deep learning
literature have shown. For example, in medical image analysis, image features that are
irrelevant for clinical analysis of the specimen can be used by the model to improve
the prediction accuracy based objective function. In regulatory genomics, methods
to interpret the sequence information captured by deep discriminative sequence mod-
els (e.g. DeepLIFT"Y) require detailed feature attribution over a large input window
(such as 500bp to 1Mbp), and in general these methods do not generalize across cell
types. Other approaches to improve the interpretability of these models (e.g. use of a
Fourier prior in training®!) are still in their infancy. Interpretation of supervised deep
sequence models has been more successful where models are trained on high-resolution
TF occupancy data’?, since the underlying motif grammar is less complex than that
for chromatin accessibility data.

Motif-matching methods such as FIMO®? have been popular in biological studies
due to the wide range of TFs, ease of application, and inherent unsupervised nature
where the available PWMs can be applied on any DNA sequence. However, these
approaches may return hundreds of motif hits for genomic regions of the size used in
ATAC-seq analysis, i.e. 100bp to 200bp regions under peak summits.

Given the limitations of supervised models for interpreting chromatin accessibility,
we explored an unsupervised deep learning model that learns binding patterns given
open chromatin regions derived from ATAC-seq and is thus complementary to existing
work. There are currently ~1500 DNase-seq and ATAC-seq datasets spanning hundreds
of cell and tissue types on the ENCODE portal, whereas datasets on TF binding
experiments such as ChIP-seq are restricted to a few TFs per cell type, with the
exception of a few highly profiled ENCODE cell lines. Hence, unsupervised or semi-
supervised approaches may be desirable for decoding the TF binding landscape on less
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studied cell types.

Generative models, such as VAEs, are also more interpretable by design. For ex-
ample, BindVAE seeks to capture individual TF binding signals as latent dimensions
in the model, as well as disentangling other sequence signals like low-complexity k-mer
signatures. More broadly, generative models learn universal representations of the data
that can then be used in downstream task-specific applications. We propose that such
methods are the next step in the evolution of machine learning modeling on genomics
data since supervised models are typically not transferable to other prediction tasks.
Further, unlike recent language-based deep learning models, our VAE based model
is easily scalable for training on data from several cell types and can also be run in
a multi-processor computational environment without GPU support, albeit at lower
efficiency.

The input to BindVAE uses 8-mers with wildcards, which allows us to interpret the
learned latent factors. There is a rich literature on the use of k-mers for representing
DNA and protein sequences, from early works using oligonucleotide frequencies® and
k-mer based string kernels using support vector machines®**, We rely on the results
from these prior works that show the robustness of this representation.

While we lose the exact positional information due to our choice of bag-of-words
as input, we do not lose any context information as the surrounding DNA sequences
are still part of the input representation; for this broader sequence context, the exact
position of a specific k-mer in the 200bp peak may not be important for a successful
encoding. Secondly, the bag-of-words representation actually gives us flexibility — the
input DNA sequence can be of arbitrary size, and we can apply the same model on
inputs of varying size from diverse in vivo and in vitro data. This is not true for a one-
hot-encoding based input representation used by other deep learning models, which
requires the DNA sequence inputs to be of a fixed constant size. We find that there is
a trade-off between the complexity of the input representation and the interpretability
of the resulting model. Our choice of a bag-of-words input makes the model readily
interpretable by giving us an easy way to map components of the latent space to distri-
butions over k-mers. Lastly, it would be straightforward to add positional information
in our model the way transformers do, by adding position encodings.

Our model also does not use the real-valued peak accessibility as an input and
therefore does not capture the relative frequency of binding patterns that are in less
accessible regions vs. more accessible regions. However, we note that many compu-
tational methods for finding TF binding signals in bulk ATAC-seq make the same
simplifying assumption of treating reproducible peaks as positive examples — without
retaining accessibility values — and perhaps using inaccessible regions or shuffled ge-
nomic sequences as a negative background. For example, virtually all PWM-based
motif finders (HOMER, MEME) are blind to real-valued accessibility information, and
even the widely-used discriminative model gkm-SVM trains with binary rather than
real-valued labels. That said, one straightforward extension to include accessibility
information in BindVAE’s k-mer count based input would be to scale the counts based
on accessibility of the region that each k-mer comes from.
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We found that our VAE based model can learn distinct binding patterns from
ATAC-seq peaks without any TF labels. Of the 102 distinct patterns learned over the
latent dimensions, we found specific patterns for some TFs and were able to map the
latent factors to unique TFs. In contrast, for others, we found a coarser pattern that
corresponds to one of several TFs from a family, such as T-box proteins. Paralogous
TF's are difficult to learn as separate factors due to the highly similar patterns in their
binding sites, which cannot be captured uniquely by a distribution over 8-mers with
wildcards in an unsupervised fashion. Our model also learns combinations of patterns
for TFs that co-occur within peaks and that are involved in cooperative binding, and
analyzing these patterns produced composite motifs. Using higher-order k-mers in our
model can improve the coverage over longer motifs. However, this would increase the
input dimension of BindVAE significantly and thereby increase computation overhead
substantially.

Methods

We begin this section by introducing some terminology and notation used throughout
the paper. We use z to refer to the latent variable, x to refer to the input variable, Z or
Z; to refer to an instantiation of the latent variable, i.e. to a latent vector corresponding
to an input 7;, and Zj, to refer to a component of the latent vector. M is the size of
the latent space or the number of latent dimensions, i.e. the size of the bottleneck layer
of the VAE. D is the size of the input and — since our model is an autoencoder — also
the size of the output space.

Variational autoencoders

Variational autoencoders (VAEs)®* are latent variable models that combine ideas
from approximate Bayesian inference (variational inference) and deep neural networks,
resulting in a framework that can use backpropagation-based training.

Let x represent the data and z be the latent variable. VAEs express the joint dis-
tribution p(x,z) = p(z)p(x|z) where p(z) is a prior distribution over z, i.e z ~ p(z),
and py(x|z) is the likelihood function. In the context of neural networks, py(x|z) is
the probabilistic decoder that generates data x given latent variables z, with the goal
of reproducing X that is close to x. Since estimating the true posterior distribution
pe(z]x) is often intractable, an approximate posterior distribution (also known as the
variational distribution) g4(z|x) is used, which is formulated by the probabilistic en-
coder in the neural network model. The encoder outputs z ~ g4(z|x) = ¢4(z|n) where
n = M LP(x) is computed from the observation x by a multi-layer perceptron (MLP).
Figure [1a shows a neural network depiction of this model.

Loss function: VAEs optimize the parameters ¢ and 6 of the encoder and decoder
jointly by maximizing the evidence lower bound (ELBO) using stochastic gradient
descent. The ELBO is the variational lower bound on the marginal log-likelihood of
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the data log pg(x) and is given by:

N
log po(x) = Y _ log pa(:)
=1

> Y gy aifen 108 po(wil )] — K L(gs(zili) |p(=:)) (1)

i=1

The first term is the reconstruction loss, i.e. the error in reconstructing = using z,
and the second term is the Kullback-Leibler (KL) divergence between the posterior
distribution g4(z|x) and the prior distribution p(z). The likelihood term log py(x;|2;)
tries to maximize the probability of reconstructing the input x; from z; and is for-
mulated as a multinomial distribution, with the decoder parameters 6 containing the
probability vectors for each component of the distribution. The reconstruction term
tries to improve the quality of the reconstruction without regard to the properties of
the latent space, while the KL term acts like a regularizer and constrains the latent
representations within the space imposed by the prior distribution.

Since our goal is to incorporate k-mer distributions in the model, we use a Dirichlet
distribution as a prior on the latent variables instead of the more prevalent normal
distribution used in Gaussian VAEs, which are difficult to interpret as the bottleneck
layer z and can take arbitrary values. On the other hand, a Dirichlet distribution
will only allow non-negative latent variables; therefore the value taken by each latent
dimension m given a particular x can be considered a ‘membership’, with larger values
indicating stronger membership.

However, VAEs with a Dirichlet prior cannot be trained using the explicit repa-
rameterization trick®?, where a Gaussian variable z ~ N(u,0?) is reparameterized as
z = p+ eo with e ~ N(0, 1), thus allowing the gradient to be backpropagated through
the latent variable z. This is because no such simple variable transformation is possible
for the Dirichlet distribution. We thus use the implicit reparameterization gradients-
based approach developed by Figurnov et al.®” which provides unbiased estimators for
continuous distributions that have numerically tractable cumulative distribution func-
tions (CDFs). To incorporate a Dirichlet distribution, they use the property that it
can be rewritten as a composition of several univariate Gamma variables. We refer
interested readers to Table 1 from Figurnov et al.®*” for the equations that show the
computation of implicit gradients for backward propagation through a node with a
Gamma distribution.

Layers: Our encoder has 3 fully connected layers with 300 hidden units in each layer.
The decoder simply maps from the bottleneck layer to the output reconstruction layer
via pg.

Latent score vector: We let z; € R™ denote the latent representation vector for the
i'" input DNA sequence, obtained upon inference via the BindVAE model as its latent
score vector. We will often refer to latent scores w.r.t certain latent dimension k, which
will simply be the value Zj.
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Vocabulary or input space

Unlike several other deep learning models that use a one-hot encoding of the raw DNA
sequence, we use k-mer features to capture sequence preferences. We use a window of
200 bp around the peak summit and assume that the TF binding site can be present
at any location in this window. Inspired by prior work®" and the wildcard kernel=®,
we use all k-mers of length 8 with up to two consecutive wildcards allowed per k-
mer to define the input space. We consider exact-matching k-mers and k-mers with
wildcards as distinct features: for example, TATTACGT, TANTACGT, TNNTACGT are all
counted separately. Further, an 8-mer and its reverse complement are treated as a
single feature that combines the counts of both the 8-mer and its reverse complement.
This results in a vocabulary or input space of size D = 112800.

Parameter tuning and model selection

The hyperparameters of our model are the following: the dimension M of the latent
space/bottleneck layer, the number of layers and the width for the MLP of the encoder,
the Dirichlet prior hyperparameter o that controls the prior distribution @ of topics,
and the vocabulary size for the k-mer representation. We tried the following values
for M: 10, 50, 100, 200, 500, 1000. For a we tried: le~3,1e72 0.1, 1, 10, 20, 30, 50, 100.
Note that @ = a1'*M,

We found that increasing «, which controls the prior of the Dirichlet distribution,
increases the extent of overlap between the basis vectors defining the latent space
(i.e. more sharing between the topics). In the extreme, this can lead to the so-called
‘averaging affect’ that variational autoencoders are known to suffer from, where the
model learns an ‘average’ representation of the data. Further, very large values such
as 30, 50, 100 lead to convergence issues during optimization since the non-negativity
constraints on 6 are not met. Small values of o such as 1le72,1e73, due to the nature
of the Dirichlet distribution, lead to a peaky prior distribution that tries to enforce
each peak to have only one ‘active’ latent dimension. However, this leads to a lower
likelihood as it does not capture the heterogeneous nature of peaks. We find that
a € [10, 20] results in models with a good trade-off between the diversity of the posterior
and the likelihood (i.e. the loss function). We also find that as «a changes, the learned
topic distributions vary and result in different TFs being learned based on the prior.
We keep « fixed for the initial several epochs (we set a burn-in of 150,000 steps,
which is also a tunable parameter) and then optimize over @ by backpropagating the
corresponding gradients.

Increasing the dimension of the latent space from M = 10, as expected, leads to the
bottleneck layer learning more diverse patterns up to M = 100. For higher values such
as M = 200,500,1000 the redundancy across dimensions increases substantially, i.e.
several 6;s will be similar to each other. We tried various batch sizes and found 128 to
be optimal. We used the Adam optimizer with a learning rate of 3e~* and terminating
optimization upon a maximum of 300,000 steps.
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We select the final model based on the number of TFs mapped, i.e. the number of
TF's that satisfy the p-value threshold of 0.05, in the procedure outlined in Algorithm
[[l Given our observation about complementary sets of TFs being learned as we change
the prior through o, we decided to use an ensemble model. We pick the three best
models, where we rank the models based on the number of learned TF's, and aggregate
the non-redundant TFs from them to get the set of all learned meaningful dimensions.
Model training time: All experiments were run on Microsoft Azure Virtual Ma-
chines. With a single GPU, our code takes 4 to 5 hours to train for 300,000 epochs.
Inference on 50,000 test examples takes &~ 1 minute.

Mapping latent dimensions to TFs

We describe the algorithm used for mapping latent dimensions to TFs. If the probes of
TF ¢ have an enriched presence in latent dimension m as compared to that of all other
probes, the label ¢ is assigned to dimension m. The significance of enrichment computed
by the Mann-Whitney U test. Note that this procedure can lead to a many-to-many
mapping between dimensions m € {1... M} and TFst € T.

Algorithm 1: Map latent dimensions to TF's
Input: M < number of latent dimensions
{1... M} « set of latent dimensions
N = 65,000 (number of HT-SELEX probes)
T the set of 296 TF's
7 € RV: labels vector, where y; = ¢ if probe i comes from TF ¢
z € RV*M: latent representation of all HT-SELEX probes
Output: Mapping F : {1... M} —>T
1 foreach t € T do
2 z¢ < rows of z for which y; =t
3 Z_¢ < remaining rows of z, for which y; # ¢
4 foreach m € {1... M} do
5 Let a.,, be the m™ column vector of z
6
7
8
9

Let b.,, be the m*™ column vector of z_;
Pim < p-value of Mann-Whitney U test (a.,, > top 5% of b.,,,)
if p;, < 0.05 then
| FU(m,t)
end

end
end
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Datasets
ATAC-seq data from cell lines

We downloaded the publicly available GM12878 ATAC-seq dataset from the GEO
database (accession GSE47753ED. We took only samples generated using 50,000 cells.
Since replicate 1 has much higher sequencing depth than the other replicates, we com-
bined replicates 2, 3, and 4 to obtain a second replicate (renamed replicate 2). We fol-
lowed the ENCODE ATAC-seq processing pipeline (https://www.encodeproject.org/atac-
seq/) for pre-processing. Raw fastq files were adapter-trimmed using Trimmomatic and
aligned to hgl9 genome using Bowtie2 with default settings. PCR duplicates were then
removed using Picard MarkDuplicates and Tnb shifts are adjusted for. Peak calling was
performed for each replicate using macs2 with -nomodel -shift -37 -extsize 73. Finally,
IDR was performed with the idr package and reproducible peaks were called with an
IDR cutoff of 0.05. We identified a total of 76,218 reproducible peaks in the GM12878
ATAC-seq dataset. We downloaded the publicly available A549 ATAC-seq dataset
from the ENCODE portal (accession ENCFF548PSNED. The details of the three other
datasets used are in Additional file 1: Table S1.

HT-SELEX

HT-SELEX (High-Throughput Systematic Evolution of Ligands by EXponential en-
richment) is an in vitro experimental protocol that involves an iterative procedure that
starts with an initial library of random oligonucleotides (oligos) of fixed length of either
20 or 40bp. Since this binding happens outside a cellular environment, it represents a
TE’s intrinsic DNA-binding preferences. At every iteration of the procedure, the input
pool of oligos compete to bind to the TF. Oligos that do not bind at all or bind weakly
are washed out from the pool while the rest are amplified using PCR. A sample of the
amplified pool is sequenced to allow for computational analysis while the rest of the
pool is used as input for the subsequent selection round. In this way, at the end of each
round there are more high-affinity oligos in the pool than before, while non-binders and
weaker binders are gradually eliminated.

We used the filtered HT-SELEX probes from Yuan et al.” for training our models.
Briefly, this dataset contains HT-SELEX data sequenced in Jolma et al.™® (ENA ac-
cession ERP001824) and in Yang et al.*? (ENA accession ERP016411), which together
constitute 547 experiments for 461 human or mouse TFs. The experiments that were
filtered out were those showing: 1) poor consistency of 8-mer enrichment in consecu-
tive HT-SELEX cycles, 2) low number of enriched probes, or 3) low diversity of probe
enrichment. For each remaining experiment, the top 2,000 enriched 20-bp probes were
selected per experiment. The filtered dataset contains 325 high quality experiments
covering 296 TFs.

"https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47753
Zhttps://www.encodeproject.org/files/ENCFF548PSN/
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ChIP-seq data: GM12878

Conservative and optimal IDR (irreproducible discovery rate) thresholded ‘narrow-
peak’ files of ENCODE ChIP-seq data were downloaded from the ENCODE porta]ﬂ
for GM12878. We only downloaded ChIP-seq datasets which have a green ‘Audit cat-
egory‘. We excluded experiments with ‘Audit category’ = orange or red as these have
insufficient read length, insufficient read depth, poor library complexity, or partially
characterized antibody. This gave us 82 experiments.

CAP-SELEX

Consecutive affinity-purification systematic evolution of ligands by exponential enrich-
ment (CAP-SELEX)“ is an approach to identify TF pairs that bind cooperatively to
DNA. It is again an in vitro assay based on a consecutive affinity-purification protocol
coupled with enrichment of bound ligands. For a given pair of TFs, say T'F;, and T'F3,
we downloaded the probes from cycle 4 and selected candidate probes for cooperative
binding by picking frequent probes where the PWM model for the pair TF} and TF,
(see the supplementary material from Jolma et al.?”) was found. We used the MAST
algorithm“” for motif matching with a high e-value cut-off of 10, due to the relatively
short length of 40bp of the probes. We selected the top 1000 probes (or fewer, as found)
and ran inference on them to obtain their latent representations. Further details about
this dataset can be found in the Additional file 1.

RNA-seq expression data

For GM12878, we downloaded gene expression data from the ENCODE portal with
accession numbers: ENCFF906LSJ and ENCFF630BDD. We consider a gene to be
expressed if it has an average expression of 0.05 RPKM or higher over the two datasets.
For A549 we downloaded ENCFF203NNS, and for the T cell female donor sample
we downloaded ENCSR336VTK[} we used a RPKM/FPKM cut-off of 0.05 to decide
whether a gene is expressed or not.

HOMER motif analysis

We first processed the set of HT-SELEX PWMs from Jolma et al. into a database
format that is used as input. HOMER was then run in the de novo motif discovery
mode by invoking the perl script findMotifsGenome.pl in the following manner:
./findMotifsGenome.pl <peak-file.bed> hgl19/hg38 <output-dir> -S 1000 -p 10
-size given -len 6,8,10,12 -noknown -mset jolma -e 0.1

3https://www.encodeproject.org/
4https://www.encodeproject.org/experiments/ENCSR336 VTK/
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Availability of data and materials
Implementation

The source code, sample data and data processing scripts are available at: https:
//github.com/microsoft/BindVAE/

Data and model downloads: The source code, trained models, ATAC-seq datasets,
HT-SELEX probes after QC and processed features are available for download on Zen-
odo at DOI:10.5281/zenodo.6658242 here: https://zenodo.org/record/6658242.

Datasets

We downloaded and used the following publicly available datasets, which are explained
in detail in the Methods section.

ATAC-seq data:

o GM12878: GEO accession number GSE47753 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE47753

e Ab549: https://www.encodeproject.org/files/ENCFF548PSN/
o T cell female adult: https://www.encodeproject.org/experiments/ENCSRO77LVI/

e naive B cell female donor: https://www.encodeproject.org/experiments/
ENCSR6850FR/

e naive B cell male donor: https://www.encodeproject.org/experiments/ENCSRO03WVU/
e naive CD8+ T cells mouse: https://pubmed.ncbi.nlm.nih.gov/33891860/

e naive CD8+ T cells human: https://pubmed.ncbi.nlm.nih.gov/33891860/
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HT-SELEX data from Jolma et al.*® and Yang et al.??: ENA accession numbers
ERP001824 and ERPO001826 available at: https://www.ebi.ac.uk/ena/browser/
home.

CAP-SELEX data from Jolma et al.?%: Available at the ENA: http://www.ebi.
ac.uk/ena/data/view/PRJEB7934

ChIP-seq data: GM12878: The data downloaded from ENCODE https://www.
encodeproject.org/ is also available in the datasets/ folder of the github repository.

RNA-seq datasets:

e GM12878: https://www.encodeproject.org/files/ENCFFO06LSJ/, https://
www . encodeproject.org/files/ENCFF630BDD/

e A549: https://www.encodeproject.org/files/ENCFF203NNS/

e T cell female donor: https://www.encodeproject.org/experiments/ENCSR336VTK/
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Additional files

Additional file 1: This is the supplementary file providing additional results, figures
and tables that are referenced in the paper.

e Table S1: Details of the ATAC-seq datasets used in the analyses shown in the
supplementary material.

e Figure S1: The top 100 8-mers from the latent dimension #37, which captures
genomic background in the GM12878 model.

e Figure S2: The latent representation learned for top low complexity regions
(LCRs) are similar as shown in the heatmap, where most of them have a high
value for the same latent factor (#37).

e Figure S3: Latent projection of peaks with only repeat regions and peaks with
some low-complexity repeating patterns and TFBS for a TF. This shows the
disentanglement achieved by BindVAE.

e Figure S4: CIS-BP motifs for TFs from the same family or for paralogous TF's
are shown, to illustrate the difficulty of learning TF-specific patterns for these.
We show the TFs from the heatmap of Figure 2b (TFs in the boxes). Each
group of TF's gets projected to the same latent factor by our model as discussed
in the main paper.

e Figure S5: GM12878: Top 50 8-mers from some latent dimensions, aligned
using Clustal Omega to summarize the patterns found. The CIS-BP motif corre-
sponding to the TF that was assigned to each latent dimension (using Algorithm
1) is also shown. Since CTCF is assigned to multiple latent dimensions, the top
25 8-mers from each are shown.

e Figure S6: PCA performed on the decoder parameters § € RM*P that capture
the k-mer distributions, from models trained on various cell-types. Each dot
on a plot represents a TF binding pattern or k-mer distribution. (Top left)
k-mer distributions from two models trained on naive B cells from two human
donors, male and female. (Top right) k-mer distributions from two models
from two repeat experiments on female naive B cells. In both cases, there is not
much variance in the learned patterns, as these are biologically close samples.
(Bottom left) k-mer distributions from the two models trained on GM12878
and A549. Since these are distinct cell types, we see two distinct manifolds in
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the patterns being learned. There is also a cluster of latent dimensions at the
bottom of the plot that captures similar k-mer patterns. (Bottom right) k-mer
distributions from four models: GM12878, A549, mouse CD8 T cells, and human
CDS8 T cells.

e Table S2: Motifs constructed from latent factors learned for GM12878 and A549
for TFs learned by our model. HNF4A, NFIA, SRY have the same ‘accessibility score’
in both GM12878 and A549 trained models (see Figure 3d in the main paper).
ELF5 and OLIG3 are both expressed in both cell types.

e Table S3: MYBL1:MAX motifs computed from the GM12878 model are shown
in the top row. The bottom table shows all cooperative binding pairs of TFs
found for GM12878 by our model using the CAP-SELEX data are shown.

e Figure S7: Examples of CAP-SELEX probes scoring higher and lower than in-
dividual TF probes. (Top) Example of cooperative binding CAP-SELEX probes
of TFAP4:FLI1 being enriched while the individual TF probes are not enriched
for TFAP4 or FLI1 (p = 1). (Bottom) Example where individual TF probes
from the SELEX experiment for EOMES are enriched, while CAP-SELEX probes
of cooperative binding between MYBL1:EOMES are not.

e Figure S8: Accessibility scores of TFs obtained by summing the latent represen-
tations over all ATAC-seq peaks showing the possible extent of accessibility for
each TF. The datasets used here are described in Table S1. (Left) TFs found
in naive B cells by our model and their ‘accessibility scores’ in the two human
donors: male donor (light blue) and female donor (orange).(Right) Averaged
relative accessibility scores in female donor over 5 runs.

e Table S4: Precision, recall, F1 achieved by the various de novo motif discovery
approaches in retrieving TFs from ATAC-seq peaks of the two cell types. Ex-
pressed TFs (from RNA-seq data) that intersect with our HT-SELEX set of TFs
are used as the gold-standard for retrieval. (a) Performance with default p-value
and e-value cut-offs for all methods. (b) For the two best approaches, HOMER
and BindVAE, performance upon varying the cut-offs is shown. The performance
of a naive match-every-motif classifier (label everything positive) is shown.

e Figure S9: Select latent dimensions (topics) from the GM12878 model that are
referred to in the main text. The shown matrix is a sub-matrix of § € RM*P,
Dimensions 69 and 83 are redundant, in that they both assign high weights to
the same k-mer features.

e Figure S10: Redundant dimensions: Latent dimensions with similar k-mer dis-
tributions are shown. In each plot, the two dimensions were mapped to the same
TF; for example: #69 and #83 are both mapped to HEY1. Along the x-axis is
the union of the top 1000 8-mers from both dimensions. The values in each row
are the decoder parameters learned by the model: 9_; for the i*" dimension.
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e Figure S11: GM12878 peaks projected onto the 10 noisy latent dimensions.

e Figure S12: Interpreting the models learned on random regions of the DNA.
(Top) Matrix showing the learned decoder parameter 6 (that shows the k-mer
distributions for each latent factor) for a model trained on 150,000 random regions
of naked DNA from mouse E16.5 sorted germ cells. (Bottom) Matrix showing
the learned decoder parameter # for a model trained on flanking genomic regions
from GM 12878 cells, where regions that are 10kb away from the ATAC-seq peaks
were chosen as training data.

e Table S5: TFs learned by the model trained on the GM12878 ATAC-seq data.
e Section 2: Description of latent factors capturing non-TF related patterns.

e Section 3: Details of the comparison to other baselines.

e Section 4: Further details on datasets.

e Figure S13: GM12878 peaks that contain sequences with the most repeats (top
5 are shown), as ranked by the Tandem Repeat Finder score (TRF algorithm*!).
We find that the highest-scoring topic for all of these sequences is the same. The
genomic coordinates correspond to the hgl9 assembly.

e Figure S14: A549: Heatmap showing the top 20 k-mers learned by our model
for each latent dimension.

e Figure S15: A549: Heatmap of the latent space obtained by our A549-trained
model, upon doing inference on 11,600 SELEX probes from 51 TF experiments.
Each row is the latent representation 2" of a HT-SELEX probe, with the rows
being colored by the TF experiment that the probe comes from. There are 200
enriched probes per TF/HT-SELEX experiment.

e Figure S16: PCA of the k-mer distributions in two isogenic replicates of T cells.

e Figure S17: Box-plots showing the distribution of topic scores for ATAC-seq
peaks that overlap with ChIP-seq peaks and those that do not, for several TFs.

e Figure S18: Box-plots showing the distribution of topic scores for ATAC-seq
peaks that overlap with ChIP-seq peaks and those that do not, for several TFs.
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Figure 1: (a) Generative model captured by BindVAE. (b) The decoder weights § € R100x112800
from the GM12878 model, where each row i contains the 8-mer distribution learned for the latent
dimension i. Since visualizing the weights of all 112800 8-mers is difficult, the weights for a subset of
the 8-mers are shown. This subset of 8-mers was picked to contain the the top 20 8-mers of each latent
dimension. See the text for details. (c) Motif analysis of each latent dimension shows that different
binding specificities are captured by each latent factor in GM12878. Column 2 shows the name of the
TF assigned by Algorithm [T} column 3 shows the CIS-BP motif corresponding to the TF, and the last
column shows the motif that was found by HOMER using de novo motif discovery for the TF.
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Figure 2: (a) TFs and the corresponding ‘latent scores’, assigned to a 30bp region of a random
peak from our GM12878 dataset. (b) Heatmap of the latent space obtained by our model upon
doing inference on /10,000 SELEX probes from 48 TF experiments. Each row is a SELEX probe,
with the probes being colored by their TF. There are 200 probes per SELEX experiment. The green
boxes highlight the FOX family of TFs and are showing the corresponding probes’ latent scores in
dimension 96 (X96). (c), (d) The top fifty 8-mers from two k-mer distributions learned by BindVAE
are shown. These were obtained by sorting the decoder parameters encoding the k-mer distributions,
namely 6, € R112800 for the following two topics/ dimensions m = 72 and m = 7. The 8-mers have
been aligned using multiple sequence alignment and the * symbols show the wildcards from our k-mer
representation. In (d) the 8-mers in the two red boxes correspond to roughly the prefix (top box) and
suffix (bottom box) of the motif.
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Figure 3: (a), (b) Analysis of cooperative binding signals learned by the model trained on GM12878
peaks by scoring HT-SELEX probes from individual TFs and CAP-SELEX probes from pairs of TFs.
The y-axis shows the distribution of latent scores of individual probes for the TF experiments shown
on the x-axis. In the brackets below each TF label, we show the p-value of assigning to the latent
dimension, that particular TF, using Algorithm [I] Cooperative binding motifs can be enriched while
the individual TF motif may not be enriched, as seen for MYBL1, MAX in (a) and TBX21 in (b) that
have a p-value of 1. (c) left: CAP-SELEX based motif for the TF pair binding from Jolma et al.20
and right: Motif learned by BindVAE for FOXJ3:TBX21 cooperative binding (d) TFs found in each
cell type by our model and their ‘accessibility scores’ obtained by summing over all ATAC-seq peaks
showing the possible extent of accessibility in the two cell lines: GM12878 (light blue) and A549
(orange). See text for details (e€) Venn diagram showing the overlap in the TFs found de novo by the
VAE and HOMER in GM12878 and the extent of their overlap with all expressed genes. We show
HOMER results run with the set of 296 motifs from Jolma et al.™® (selex restricted) where HOMER
only uses the TFs from our HT-SELEX set of 296 TF's.
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Figure 4: (a) UMAP projection of the latent representation for ChIP-seq peaks from CTCF, ELK1 and
MAFK (b) UMAP projection of the latent representation for ChIP-seq peaks from F0S, IRF4 and SPI1.
For each TF, 1000 peaks are shown. (c) Heatmap showing 38,496 ATAC-seq peaks from GM12878
cell line, that overlap with ChIP-seq peaks from 11 different TFs. For a TF ¢, the peaks have been
sorted by the latent score of the dimension that was mapped to t by Algorithm [1] (d) CIS-BP motifs
for TFs shown in (a) and (b) show distinct motifs for all TFs. (e) Matrix of GM12878 ATAC-seq
peaks ordered as per the matrix ranked by latent factor scores (topic scores) from Figure 4c. Rows
are peaks and columns are TFs. Each entry 4,7 in the i-th row and j-th column of the matrix is the
i-th peak’s ChIP-seq annotation for TF j.
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