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Abstract

Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at
great cost for the individual and community. By examining the developing brain and its relation to
developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested
in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if
cortical structural covariance at birth, indexing coordinated development, is related to later infant
behaviour. We included 193 healthy term-born infants from the Developing Human Connectome
Project (dHCP). An individual cortica connectivity matrix derived from morphologica and
microstructural features was computed for each subject (morphometric similarity networks, MSNS)
and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based
Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance.
Predictive edges were distributed between and within known functional cortical divisions with a
specific important role for primary and posterior cortical regions. These results reveal that multi-
modal neonatal cortical profiles showing coordinated maturation are related to developmental
outcomes and that network organization at birth provides an early infrastructure for future functional

skills.
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1. Introduction

Developmental delays occur in around 13% of infants in the US population (Rosenberg et al. 2008).
Delays can be observed in motor, cognitive, language and communicative domains, and when they
persist, they are termed developmental disabilities. These can place a great emotional and financial
burden on the individual, their family, and the general community (Shahat & Greco, 2021; Stabile &
Allin, 2012). While some infants catch up with their peers, others will continue to present difficulties
(Rivaet al. 2021). Behavioural delays are associated with ahigher likelihood of autism spectrum
conditions (ASC), attention deficit hyperactivity disorder (ADHD) and schizophrenia (Gurevitz et al.
2014; Landa & Garrett-Mayer, 2006; Sorensen et a. 2010). Within the general population,
developmental milestones are related to cognitive functions both in childhood and adulthood

(Flensborg-Madsen & Mortensen, 2018; Murray et al. 2007), reiterating their importance over the

lifespan.

Risk factors for poor neurodevelopmental outcomes include familial history of neurodevelopmental
conditions (Ozonoff et al. 2011; Shiverset a. 2019; Stromswold, 1998) and inherited or de novo
genetic changes (Cooper et al. 2011; Marshall et al. 2008), in addition to preterm birth, low birth
weight (Aylward, 2014, Pascal et al. 2018) and other perinatal complications (Mwaniki et al. 2012).
However, most infants will have no recognized predisposing factor. Adding to this complexity, the
pace of motor and language development in the first years of life is variable within and between
individuals even within the ‘normal’ range (Fenson et al. 1994; Piek, 2002). Identifying individuals at
potentially greater likelihood for difficulties allows for early interventions which have been found to
improve outcome (Dawson et al. 2010; Jeong et al. 2021). Specifically, by being able to recognize
babies in the general population who might need extra support, we can begin to address difficulties or
potential difficulties very early on, while brain development is ill in its early sensitive period (Reh et

al. 2020).
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Prospectively profiling the developing brain and investigating its relationship with adaptive and
maladaptive behaviours, promotes our understanding of innate and external factors contributing to
variability, vulnerability, and resilience to adverse outcomes. MRI studies have concluded that
structural and functional brain networks start to develop in the fetal period and continue to fine-tune
during childhood (Batalle et a. 2018). However how (and when) this emerging brain architecture
relates to behavioural outcomes in infanthood is yet to be determined. The mgority of early
developmental studies have focused on brain-behaviour relationships in preterm neonates, a group
that on average has a greater likelihood of delayed or atypical development (Van't Hooft et al. 2015).
More recently, a conceptual shift attempts to move from association to prediction (Rosenberg et al.
2018), with more studies examining brain sructure in the term-born neonatal population with no
apparent risks for poorer developmental outcomes (Girault et al. 2019b; Wee et a. 2017). Most
attention has been given to the predictive ability of white matter connectivity (Ball et al. 2015; Girault

et al.2019b; Keunen et al. 2017; Wee et a. 2017).

Morphometric similarity networks (MSNs) (Seidlitz et al. 2018) are based on dructural covariance
between brain regions whereby similarity is thought to reflect synchronized maturation and
relatedness (Alexander-Bloch et al. 2013a, 2013b). The origins of this coordinated development may
be the result of sharing an early progenitor, or from exposure to similar early signalling, in a process
that can be modulated by genetic and environmental exposures (Alexander-Bloch et al. 2013a).
Accordingly, related regions likely reflect a joint functional purpose, with a similar transcriptomic
profile (Yee et al. 2018). It has been hypothesized that abnormal patterns of brain covariance may
result from atypicality in the establishment of the first connections innervating the cortical plate,
starting at mid-gestation (Bullmore et al. 1998). This has implications for efficient information
transfer and functionality and therefore could potentially serve as an early marker for the development

of mental and motor abilities.

MSNs incorporate multiple MRI modalities into the estimated dructural covariance, both
microstructural and morphological, to overcome the limitations of using individual features with
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particular spatio-temporal trajectories. These provide a more comprehensive description of the brain,
improving the predictive ability of clinica symptoms and behaviour from brain data (Liu et al. 2015;
Tulay et al. 2019). Correspondingly, covariance networks based on multiple MRI measures are better
a capturing the underlying cellular composition compared to structural covariance networks based on
a single measure (Seidlitz et al. 2018). In adults, MSNs are related to cognitive abilities and the
expression of genes associated with neurodevelopmental conditions (Morgan et al. 2019; Seidlitz et

al. 2018,2020).

In our previous work, we used this method to characterize the developing brain at the neonatal
timepoint using structural and diffusion indices (Fenchel et a. 2020), reporting a community structure
largely aligned with known functional digtinctions and network temporal trajectories, and showing
close similarity with cytoarchitectural features (Ball et a. 2020). In this current study, we were
interested in furthering our understanding of how this neonatal cortical organization relates to infant
developmental outcomes. Therefore, here we asked whether cortical profiles at term-birth, derived
from MSNs, are associated with- and predictive of- motor, cognitive, language and social-emotional
abilities at 18 months. We attempted to predict infant behaviour from neonatal MSNs using
connectome-based predictive modelling (CPM), a data-driven linear approach to predict continuous
measures of behaviours from individual connectivity matrices (Shen et al. 2017). Following CPM, we
examined if network-strength summary measures at the whole cortex level and within cortical
functional clusters were able to capture the same brain-behaviour patterns observed at the single-

edges level.
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2. Methods

2.1 Subjects

This study included a sample of term-born healthy neonates participating in the Developing Human
Connectome Project (dHCP); (http://www.developingconnectome.org/), scanned at the Newborn
Imaging Centre at Evelina London Children’s Hospital, London, UK. Images are openly available on
the project website. This project has received ethical approval (14/L0/1169) and written informed
consent was obtained from parents. As part of the dHCP project, subjects are invited for a follow-up
visit to assess infant development at 18 months. This assessment includes The Bayley Scales of Infant
and Toddler Development (Bayley-l11) (BSID) (Bayley, 2006) exploring overall developmental
aspects, as well as the Quantitative Checklist for Autism in Toddlers (Q-CHAT) (Allison et al., 2008)
for assessment of social-emotional development. Out of the 241 subjects included in the initial
analysis and for which M SNs were constructed (Fenchel et al., 2020), n=204 completed the Bayley-11I
assessment and n=198 completed the Q-CHAT assessment. Only subjects with information on a
proxy of socio-economic satus, the Index of Multiple Deprivation (IMD)
(https://tools.npeu.ox.ac.uk/imd/), were included to control for its possible confounding effect. This

resulted in a sample size of n=193 with Bayley-I11 dataand n=187 with Q-CHAT data.

2.2 Image acquisition and processing

Neonatal MR brain images were acquired on a 3T Philips Achieva scanner without sedation, using a
dedicated 32-channels head coil system (Hughes et al., 2017). Acquisition, recongruction and
processing of structural and diffusion images followed optimized protocols for the neonatal brain
implemented as part of the dHCP pipeline and have been previously described in Fenchel et al. 2020.
T2-weighted (T2w) images were obtained using a turbo spin-echo (TSE) sequence, acquired in
sagittal and axial planes with TR=12s, TE=156ms, SENSE factor 2.11 (axial) and 2.58 (sagittal) with
overlapping slices (resolution 0.8x0.8x1.6mm). T1-weighted (T1w) images were acquired using an
Inversion Recovery TSE sequence with the same resolution using TR=4.8s, TE=8.7ms, SENSE factor

2.26 (axial) and 2.66 (sagittal). Structural images were reconstructed to a final resolution of
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0.5x0.5%x0.5mm, using dlice-to-volume registration (Cordero-Grande et a. 2018). Structural
processing followed the pipeline described in (Makropoulos et al., 2018): Motion- and bias-corrected
T2w images were brain extracted and segmented. White, pial and midthickness surfaces were
generated, inflated and projected onto a sphere. Brains were aligned to the 40-week dHCP surface
template (Bozek et al., 2018) using Multimodal Surface Matching (MSM) (Robinson et al. 2013,
2014). Cortical features including cortical thickness (CT), pial surface area (SA), mean curvature
(MC), and the TAw/T2w ratio indicative of myelin content (MI) were extracted for each subject

(Makropoulos et al., 2018).

Diffusion images were obtained using parameters TR=3.8s, TE=90ms, SENSE factor=1.2,
multiband=4, partial Fourier factor=0.86, resolution 1.5x1.5x3.0mm with 1.5mm overlap (Hutter et
a. 2018). Diffusion gradient encoding included images collected at b=0s/mm? (20 repeats),
b=400/mm? (64 directions), b=1000s/mm? (88 directions), b=26005/mm? (128 directions) (Tournier
et al. 2020). Diffusion images were denoised (Veraart et al. 2016), Gibbs-ringing suppressed (Kellner
et a. 2016), and the field map was estimated (Andersson et al. 2003). Images were corrected for
subject motion and image digtortion with slice-to-volume reconstruction using multi-shell spherical
harmonics and radial decomposition (SHARD) and were reconstructed to a final resolution of
1.5%1.5x1.5mm (Christiaens et al. 2021). A tensor model was fitted using a single shell
(b=1000s'mm?), and fractional anisotropy (FA) and mean diffusivity (MD) maps were generated
using MRtrix3 (Tournier et a. 2019). Neurite density index (NDI) and orientation dispersion index
(ODI) maps were calculated using the default NODDI toolbox implementation with default values
(Zhang et al. 2012). Diffusion maps were registered onto individual T2w images using FSL's epi_reg
(FLIRT) and then projected onto the cortical surface using Connectome Workbench. All images were
visually inspected for motion or image artefacts and data excluded accordingly (Fenchel et a. 2020),

and images were checked for registration errors.
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2.3 M SNscongruction

MSN congruction for this cohort was described previously in Fenchel et al. 2020 and is summarized
in Figure 1. Briefly, the cortical surface was parcellated into 75 bilateral equal-sized regions with
Voronoi decomposition. Seven of these regions were excluded due to diffusion signal dropout. Each
region was then characterized by an eight-feature vector of mean normalized values of four structural
features: CT, MC, Ml and SA and four diffusion features. FA, MD, NDI and ODI. Pearson's
correlation between the eight-feature vector for every pair of regions was calculated, resulting in a
143 x 143 similarity-based connectivity matrix for each subject. Values were Fisher’ s-z-transformed

before analysis.

2.4 Behavioural developmental assessment

Mean age at developmental assessment was 18.69+1.04 months (range 17.16-24.46 months), mean
corrected age for gestational age (GA) at birth was 18.68+1.00 months (range 17.30-24.33 months),
the latter used for Bayley-111 score calculation. The Bayley-111 (Bayley, 2006) is a commonly used
tool for tracking infants development, targeting to identify possible developmental delays.
Standardized scores are divided into a motor composite score, derived from gross and fine motor
scaled sub-scales, a language composite score derived from expressive and receptive language scaled
sub-scales and a cognitive composite score. Bayley-l11 assessments were completed by trained
practitioners. A higher score on these scales reflects better performance.

Social-emotional development was determined by the Q-CHAT (Allison et al. 2008), a parent-based
report of 25 items including joint attention, pretend play, language development, repetitive
behaviours, and social communication. A higher summary score suggests more social-emotional

difficulties, possibly indicating early autistic traits

2.5 Prediction of developmental outcomes from M SNs

We utilized Connectome-based Predictive Modeling (CPM) (Shen et al. 2017) to explore the
predictive ability of neonatal MSNs for four developmental outcomes measures, the three Bayley-II|
composite scores (cognitive, language and motor) and the Q-CHAT score. The model is trained each
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time on n-1 subjects and is tested on the left-out subject for calculation of the predicted behavioural
scores (leave-one-out cross-validation, LOOCV). Each individual edge was partially correlated
(Spearman’s r) with the behavioural measure, controlling for postmenstrual age (PMA) at scan, sex,
total intracranial volume (ICV), IMD and time from birth to scan. Positive edges (associated with
higher behavioural scores) and negative edges (associated with lower behavioural scores) with p<0.05
were then selected. For each subject in the training set, these edges are summed separately to create a
positive network sum and a negative network sum. Linear regression with no intercept (Rosenberg et
al. 2018; Shen et al. 2017) linking the positive and negative sums was then performed. The predicted
behaviour for the left-out subject is calculated by fitting this subject’s sum of positive and negative
edges identified in the training set, adjusted for covariates, with the beta coefficients derived from the
training model. Model performance was assessed by computing Spearman’s r between the observed
and predicted behaviours and the root mean square error (RMSE). This performance was assessed by
generating a null digtribution of r values from N=999 random permutations of the behavioural data.
The resulting p-value is calculated as the number of r values equal or larger to the origina r value
divided by N+1. Successful models using LOOCV were further examined for robustness using 10-
fold cross-validation for 100 iterations. In each iteration, subjects are randomly assigned to each of 10
groups, where each time a different group serves asthe test set and the remaining nine groups serve as
the training set. Spearman’s r, associated p-value, and RMSE were calculated for each iteration and
then averaged.

Predictive networks were determined as significant if passed both cross-validation methods. These
were defined by taking edges appearing in at least 90% of testing runsin the LOOCV. For clarity and
ease of interpretation, predictive edges were examined in the context of the seven clusters reported
before in Fenchel et al. (2020): occipital & parietal, limbic, anterior frontal, insular & medial frontal,
fronto-temporal, cingulate and somatosensory & auditory. For each cluster, we (1) summed separately
the number of predictive positive and negative edges within the cluster and divided that by the
number of all possible edges within that cluster to control for cluster size and (2) summed separately
the number of positive and negative edges between each pair of clusters and divided that by the

number of all possible edges between those pairs.
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2.6 Association between M SNs summary measur es and developmental measures

The association between whole-network average strength (across the entire cortex) and the eight
developmental measures was examined by averaging a symmetric triangle of the connectivity matrix,
excluding self-connections. This was entered together with PMA at scan, sex, ICV, IMD and time
from birth to scan into a general linear model where the developmental measure was the dependent
variable. Partial R? for the brain network measure was calculated as (SSE reduced model-SSE fulll
model)/SSE reduced model. Although PMA a scan, ICV and time from birth to scan were
significantly correlated (r=0.71, p<0.001), no variance inflation factor (VIF) exceeded 5 (Craney &

Surles, 2002) and therefore we retained all covariatesfor all analyses.

Parcellate cortex into approx. equally sized regions . Extract average morphological and microstructural
measures per reglon and subject

) {voranel)

Anatomical Surface Metrics Tensor Metrics NODDI Metrics
cT SA Mi MC FA MD NDI oDI
C. Calculate Inter-regional similarity (Paarson’s ) d. Link with 18-month behavioural data
Individual morphometric similarity matrlx Connectome-Based
Aeglon 3 Predictive Modeling

Rt =3

=L 5 Irdividusl edges Whole network
09 [l 0.5 average strength

Figurel. Pipeline M orphometric Similarity Networks constr uction and behavioural analysis.

a. Regions are defined using Voronoi tessellation of the cortical surface; b. A feature vector of averaged
normalized values of cortical thickness (CT), mean curvature (MC), myelin index (MI), surface area (SA),
fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI) and orientation dispersion index
(ODI) is derived for each region; c. Each pair of regions is correlated using Pearson's r, resulting in an
individual similarity-based connectivity matrix. d. Network strength at a whole-network level and single-edges
level isrelated to behavioural measures by means of association and prediction respectively.
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3. Reaults

3.1 Demographics and behavioural scores

Demographics of the sample and mean behavioural scores are presented in Table 1. All Bayley-IlI
items were positively correlated with each other and negatively correlated with the Q-CHAT
(Supplementary Table 1). Corrected age at assessment was not associated with either the Bayley-I111

scores or the Q-CHAT score.

Table 1. Demographics and behavioural scores

N(% )/M edian(r ange)
Sex (male) 101 (52.3%)
GA @t hirth (weeks) 40.14 (37.29-42.14)
Demogr aphics PMA at scan (weeks) 40.86 (37.43-44.43)
Time from birth to scan (weeks) 0.29 (0-5.28)
IMD 26.12 (1.55-61.37)
M ean+SD
Cognitive composite 99.95+10.19
Language composite 96.39+15.41
Expressive language 8.81+2.58
Bayley-I11 Receptive language 9.90+3.14
Motor composite 101.41+9.70
Fine motor 11.39+£2.20
Gross motor 9.02+1.92
Q-CHAT 30.65+9.19

GA- gedtational age, PMA- postmenstrual age, IMD- Index of Multiple Deprivation, Bayley-
I11- Bayley Scales of Infant and Toddler Development, Q-CHAT- Quantitative Checklist for
Autism in Toddlers
3.2 Single edges prediction- CPM
Neonatal MSNs successfully predicted the Q-CHAT score (rs=0.196, p=0.007, p permute=0.019,

RMSE=9.53) and the language composite score (rs=0.182, p=0.011, p permute=0.024, RM SE=16.30)
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(Figure 2, Supplementary Figure 1). However, only the Q-CHAT network remained significant
following 10-fold cross-validation (Q-CHAT rs =0.188, p=0.015, RMSE=9.60; language rs =0.116,

p=0.163, RM SE=16.80) and was therefore retained as the only robust predictive model.
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Figure 2. Prediction of Q-CHAT scoresfrom neonatal M SNsusing CPM- CPM.
Plots of significant correlation between predicted and observed Q-CHAT scores (left) and results of null r values
with permutation testing (right) using Connectome-based Predictive Modeling (CPM).

The positive and negative predictive networks for the Q-CHAT included 1.6% and 2.8% of all
possible connections, respectively. The proportion of edges within each of the seven clusters included
in the predictive networks is presented in Figure 3. For Q-CHAT, the highest proportion of positive
predictive edges was within the anterior frontal and occipital and parietal clusters, while the cingulate
did not show any within-cluster predictive edges. For the negative predictive network however, the
highest proportion of edges was observed in the cingulate cluster. Limbic edges were not part of the

negative or positive networks (Figure 3).
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Figure 3. Proportion of within-cluster edgesinvolved in social-emotional networks.
Proportion of edges included in successful prediction model of social-emotional outcomes connecting nodes
within each of the seven clusters.

The proportion of predictive edges connecting between clusters is presented in Figures 4. While the
relationship emerging between clusters is complex, the highest proportion of predictive edges was
observed for the occipital and parietal cluster. Interestingly, although we do not consider the language
network as a robust enough predictor, the observed patterns of the language network seem to be
closely related to the Q-CHAT network (Supplementary Figure 2): the positive network of the Q-
CHAT was similar to the negative network of the language composite, and the negative network of
the Q-CHAT was similar to the positive network of the language composite (Figure 4, Supplementary
Figure 2). Therefore we looked at the overlap between these networks and found that 16.6% of edges
in the negative language network overlapped with the positive Q-CHAT network and 26.8% of edges
in the positive language network overlapped with the negative Q-CHAT network. No overlapping

edges were found between the two positive networks or the two negative networks.
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Figure 4. Proportion of between-cluster edgesinvolved in social-emotional networks.
Proportion of edges included in Q-CHAT prediction model connecting nodes between clusters. On the left the
positive network is shown and, on the right, the negative network.

3.3 Whole-networ k average strength

There were significant positive associations between whole-network average strength and language
composite and expressive language sub-scores, and a negative significant association with the Q-
CHAT scores. No associations were found for the motor composite and associated sub-scales or the
cognitive composite (Figure 5, Table 2). Variance explained by the full model was 7% for expressive
language, 10% for language composite, and 14% for Q-CHAT, with specific contribution of network

strength estimated at 4%, 3% and 4% respectively (partial R?) (Table 2).
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Figure 5. Scatterplots of whole-networ k aver age and behaviour.
Plots of average MSN strength across the cortex against language, motor, cognitive and social-emotional
measurements 18 months.

Table 2. Linear regression resultsfor whole-networ k aver age strength and behaviour

R full

Beta (95% CI) SE T-value ANOVA model
Cogpnitive composite 114.78 (-19.19-248.75) 67.91 1.69 0.07
Language composite 221.91 (23.14-420.67) 100.75 2.20* 0.10
Expressive language 45.58 (11.67-79.49) 17.90 2.65 ** 0.07
Receptive language 31.02 (-9.32-71.36) 20.45 152 0.11
Motor composite 39.97 (-91.57-171.51) 66.68 0.6 0.01
Fine motor 6.0 (-23.50-35.50) 14.95 0.4 0.03
Gross motor 7.19 (-18.73-33.10) 13.14 0.55 0.02
Q-CHAT -153.78 (-271.31-(-36.26)) | 59.56 -2.58 * 0.14

* p<0.05, ** p<0.01; SE-Standard error, Q-CHAT- Quantitative Checklist for Autismin Toddlers.
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To elucidate whether network strength is valuable in the context of the community structure (clusters)
of neonatal MSNs reported previoudy (Fenchel et al. 2020), we examined the average network
strength within each of the seven clusters. The network strength within the insular and medial frontal
cluster was related to scores on the language composite (B=25.82, 95% Cl=3.30-48.33, p<0.05, R?
full=0.11, R? partial=0.03), receptive language sub-scale (B=5.37, 95% CI=0.84-9.91, p<0.05, R?
full=0.13, R* partial=0.03), cognitive composite (B=15.44, 95% CI=0.30-30.58, p<0.05, R’ full =0.08,
R? partial=0.02), and Q-CHAT (p=-14.86, 95% Cl=-28.45-(-1.26), p<0.05, R? full=0.13, R?
partial=0.03). Further, network strength within the somatosensory and auditory cluster was associated
with language composite (p=18.94, 95% CI=1.39-36.50, p<0.05, R? full=0.10, R? partial=0.02) and
expressive language sub-scale (B=3.97, 95% Cl1=0.97-6.96, p<0.01, R? full=0.07, R? partial=0.04)

(Figure 6).
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Figure 6. Scatterplots of significant associations between within-cluser average network
srength and developmental outcomes.

Plots of significant associations between within-cluster average MSN strength and social-emotional, language
and cognitive measures at 18 months. Top: insular & medial frontal cluster, bottom: somatosensory & auditory
cluster.
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4. Discussion

In this study, we found that neonatal M SNs can successfully predict social-emotional behavioursat 18
monthsin alarge group of healthy term-born babies. We show that the pattern of cortical maturation
at birth already captures variability in infant development. This association between brain structure at
birth and infant developmental outcomes was not limited to information held in individual edges of
the network but was also evident in summary measures of network strength over the entire cortex,
specifically in somatosensory-auditory, insular and medial frontal areas. On aregiond level, the
predictive networks were complex and widespread across the cortex, albeit suggesting specific
important involvement of primary and posterior cortical regions. No consistent or significant results

were found for the cognitive or motor measures.

Both language and social-emotional development result from a combination of fetal and postnatal
brain programming, together with in- and ex-utero experiences. However exactly how these factors
come about and interact to create these complex behavioursis still under investigation. Our results
indicate that some of the neural foundations crucial for developmental capacities in infanthood,
observed through the pattern of structural covariance, originate during the fetal period and are already
present at birth. Social-emotional abilities were predicted by the individual edges comprising the
network and associated with the average whole-network strength (Figures 2,5) implying this

relationship is observed both at the micro and macro scale properties of the network.

Specifically, as apredictive network, neonatal MSNs reflect that optimal brain functioning is reliant
on adelicate equilibrium of positive and negative structural covariance, where the skeleton for future
infant development is established long before overt behaviours could be assessed. Our results suggest
that within functional cortical divisions (i.e., insular & medial frontal and somatosensory & auditory
clusters), greater sructural similarity at birth is associated with better language and social-emotional

skillsin infanthood. This was also observed on a whole-brain level. Thisisin agreement with the
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hypothesized basis of structural covariance in the brain, whereby regions participating in similar

functions show comparable structural signatures, implying joint developmental trajectories.

Predictive networks included 1%-3% of edges, consistent with other studies utilizing CPM (Cai et al.
2020; Rosenberg et al. 2016; Suo et a. 2020; Yip et a. 2019). The resulting predictive networks for
social-emotional features encompassed the entire cortex, with predictive edges observed both within
functional clugters and between functional clusters revealing both local and digtributed networks
(Figures 3-4). The predictive ability (correlation between predicted and observed values) was modest.
Variance explained by whole-network strength ranged between 2%-4%, similar to previous estimates
of the contribution of MRI features in explaining cognitive development in a mixed sample of term
and preterm neonates (Girault et al. 2019a), but lower than estimates reported in preterm infants only
(Ball et al. 2015). Combining with whole brain connectivity measures (e.g., fMRI) may provide a
pathway to increasing predictive values. This reinforces the importance of other postnatal factors such
as development, experience and environment (I1so et al. 2007; Koo et al. 2003) and variability in the

stage and recording of cognitive development at 18 months.

The large variahility in brain phenotypes during early development was demonstrated with the
network predicting language abilities: While a significant predictive network emerged using LOOCV,
it could not be replicated using a 10-fold cross-validation. In this case, aremoval of only 10% of the
subjects diminished the predictive capacity of the model. Thisillustrates the need for large cohorts in
imaging studies of normative development in infanthood, which are now feasible through endeavours
such as the dHCP. Although not robust enough, the language network revealed interesting patterns:
There was some overlap between predictive networks for social-emotional and language scores. This
is not surprising as these measures are conceptually related (i.e., language is critical for social
communication) and correlated (r=-0.52). It isnot only that producing and understanding speech is
critical to communicating with others, but it is also postulated that social interaction and social
learning experiences are crucial for the proper development of language skills (Kuhl, 2007). The
overlap in the predictive networks of Q-CHAT and language scores reached a maximum of 26%,
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suggesting that while these scores are correlated, they also represent additional behavioural
phenotypes and mechanisms. The robustness of Q-CHAT predictions but not of language skills alone
may imply that utilizing a measure such asthe Q-CHAT, which combines additional behaviours
together with communication and language indices, may improve our ability to predict infant

outcomes from brain data.

A large Australian study (Reilly et al. 2007) found that risk factorsfor developmental language delays
such as gender, prematurity and birth weight, birth order, socioeconomic status, maternal mental
health and education, and family history of language difficulties explain a small amount of variability
in language abilities at age two (up to 7% of variance). Moreover, the authors found that the most
predictive factor of language performance at 12 months is language performance at 8 months and that
performance at 24 months is best predicted by abilities at 12 months (Reilly et al. 2006, 2007), thus
indicating early trait stability. These findings support our observations that the brain basis for early
capabilities beginsto shape in very early life, supporting a significant role for genetic and intrauterine
factorsthat are further influenced over post-natal development. Moreover, this shows how predicting

developmental outcomes from known risk factors has very little power.

Our results point to specific involvement of occipital-parietal, somatosensory-auditory and insular-
medial frontal regions. Thisresonates with established trgectories of brain development, whereby
synapses, dendritic growth and myelination are first established in primary cortical regions
(Huttenlocher & Dabholkar, 1997; Kinney et al. 1998), with cortical grey matter following a lower- to
higher-order regional developmental (Gogtay et al. 2004). All of the above-mentioned regions are
reguired for language, communication and social behaviours (Demonet et al. 2005; Porcelli et al.
2019). These larger cortical divisionsinclude specific brain regions traditionally associated with
language, such as Broca's area (within the insular and medial/inferior frontal cluster) and the
supramarginal gyrus (as part of the occipital and parietal cluster), which has been implicated in
studies of toddlers with developmental language disorders using MRI (Morgan et al. 2016).
Moreover, the contribution of the cortical primary motor areas complements the association between
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motor skills and language in both ASC and the general population (Bedford et al. 2016; Gonzalez et
a. 2019), whereby better motor development is related to better language development, revealing a

close relationship between these seemingly ‘independent’” domains.

Problems with social functioning and communication are associated with avariety of neurological and
psychiatric conditions, most notably ASC. Research on adolescents and adults suggests that socia
behaviour is reliant on the proper structure and function of stand-alone brain regions, as well as of
brain-wide networks (e.g., ‘amygdala network’, ‘empathy network’). Structures identified include but
are not limited to the temporo-parietal junction, prefrontal cortex, superior temporal gyrus, and
amygdaa (Kennedy & Adolphs, 2012). From a network perspective, in young children with ASC,
grey matter covariance showed patterns of decreased connectivity in the cortex, that also predicted
communication scores (He et al. 2021). Noda efficiency of tractography networksin infants who
were later diagnosed with ASC was also found to be reduced in primary somatosensory, auditory and
language areas (Lewis et al. 2017), where changes were detected as early as six months and related to

the level of autistic symptoms at 24 months.

In previous work with smaller sample size and the inclusion of both term and preterm neonates,
cortical FA at birth was found to significantly predict cognitive and language scores at two years
using support vector regression (Ouyang et al. 2020), with language-related features including the
inferior frontal gyrus, insulaand post-centra gyrus, regions that were also identified in this current
work. A longitudinal study of 33 term-born infants examined the relationship between deformation-
based surface distance at neonatal timepoint and the Bayley-I11 scores at four different time pointsin
the first two years of life (Spann et al. 2014). The authors found significant associations between
neonatal volume changes and motor and cognitive scores at 6, 12, 18 and 24 months, an association
we were not able to replicate in this current work. In that study, associations with language scores
were also found across all time points, highlighting the cingulate and posterior parietal areas.

Interestingly, at 18 months this relationship was weaker compared to performance at 12 or 24 months.

21


https://doi.org/10.1101/2021.09.23.461464
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.461464; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

The ontogeny of different cortical regions, and of different behavioural skills is digtinct. Grossly
speaking, the first cortical regions to mature are the primary areas of motor, sensory, visual and
auditory functions, followed by their associative regions, and lastly maturing are the higher-order
(frontal) regions (Gogtay et al. 2004). Thisis the case for behavioural development as well; the infant
will first establish visual, somatosensory and auditory functions, before engaging in complex
activities requiring language and cognitive functions. Therefore, in the immediate postnatal period,
sensory, primary regions may have reached a maturational stage where enough variance is presented
to detect a linear relationship with outcome. On the other hand, other regions may have not reached
maturity at this point. Moreover, as the development of motor, language, cognitive, and social-
emotional abilities emerge and refine at different timepoints and timescales, at 18 months, the level of
expertise in these sKkills is different. This may indicate that certain relationships are only apparent
when pairing different ages at scan and outcome and is therefore a substantial challenge when
designing studies exploring early development. This was demonstrated by Hazlett et al. 2017,
reporting that differencesin brain volume in infants with ASC could be detected at 24 months, but not
before that. Lack of results for the motor domain may relate to a narrower spread of performance in
motor scores. As can be observed from Figure 5, the variability in motor scores, especially in the
composite motor scores, is smaller compared to other outcome measures and could influence the

ability to detect any meaningful differences.

4.1 Limitations

CPM hasitsown limitations asoutlined in (Shen et al. 2017), for example, modelling only a linear
relationship between variables. However, it does provide a clear data-driven framework for the
implementation and interpretation of behaviour prediction models based on connectivity. We were not
able to perform out-of-sample cross-validation for prediction results, only a within-sample validation
and as such it remainsto be confirmed whether the results generalise to a different neonatal sample.
Asallimitation we should also highlight that the brain-behaviour associations reported here exclude
subcortical structures and the cerebellum as structural features. In this work we focused on surface-
based measurements as developmental indices and therefore our analysis was limited to the cortex.
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Future work should examine the contribution of subcortical regions and the cerebellum, asthey are
likely to also be implicated in the development of social-emotional, cognitive, language and motor
abilities. Moreover, the cortical parcellation for generating the networks' nodes was based on 150
regions. While we are aware network analysisis highly reliant on parcellation scheme, we have
shown in a previous paper (see Supplementary Figure 1 in Fenchel et al. (2020)), that MSNs could be
replicated using random partitions of different sizes. Given that the neonatal brain is also substantially
smaller, in this current work we chose the n=150 parcellation as a middle ground between granularity

and interpretability, while not sampling very small patches.

When interpreting scores from developmental assessments, such as the ones used in this study, one
should understand their nature: One assessment at 18 monthsisonly atransient screenshot of infant
development and is not necessarily indicative of future difficulties at the individual level. Both
language delays and the appearance of social-emotional difficulties at an early age do not inevitably
mean the continuation of language difficulties or a later autism diagnosis. In addition, these features
or delays might not be evident at 18 months but only emerge at a later age. Therefore, any
interpretation of infant assessments in the context of future functionality should be done with caution
and preferably include follow-up at preschool and school-age (Duff et al. 2015; Fountain et al. 2012;

Waizbard-Bartov et al. 2021).

4.2 Conclusions

In this work, we showed that multi-feature multi-modal cortical similarity at birth represented by
MSNs are predictive of social-emotional abilitiesin alarge group of infants. Cortical regions involved
were widespread, with predictive features including connectivity within and across functional cortical
domains. Earlier developing cortical regions seemed to be specifically important in this context. These
results support the use of neonatal cortical profiles for means of early detection and support of

developmental difficulties.
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