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Abstract

Epigenetic control of gene expression is highly cell-type- and context-specific. Yet,
despite its complexity, gene regulatory logic can be broken down into modular
components consisting of a transcription factor (TF) activating or repressing the
expression of a target gene through its binding to a cis-regulatory region. Recent
advances in joint profiling of transcription and chromatin accessibility with single-cell
resolution offer unprecedented opportunities to interrogate such regulatory logic. Here,
we propose a nonparametric approach, TRIPOD, to detect and characterize three-way
relationships between a TF, its target gene, and the accessibility of the TF’s binding site,
using single-cell RNA and ATAC multiomic data. We apply TRIPOD to interrogate cell-
type-specific regulatory logic in peripheral blood mononuclear cells and contrast our
results to detections from enhancer databases, cis-eQTL studies, ChIP-seq experiments,
and TF knockdown/knockout studies. We then apply TRIPOD to mouse embryonic brain
data during neurogenesis and gliogenesis and identified known and novel putative
regulatory relationships, validated by ChlP-seq and PLAC-seq. Finally, we demonstrate
TRIPOD on SHARE-seq data of differentiating mouse hair follicle cells and identify
lineage-specific regulation supported by histone marks for gene activation and super-

enhancer annotations.

Keywords: single-cell multiomics, transcriptional regulation, transcription factor,

chromatin accessibility.
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Context-specific regulation of gene transcription is central to cell identity and
function in eukaryotes. Precision of transcriptional control is achieved through multitudes
of transcription factors (TFs) that bind to the cis-regulatory regions of their target genes,
dynamically modulating chromatin accessibility and recruiting transcription complexes in
response to developmental and environmental cues?!. Dissecting this regulatory logic is
fundamental to our understanding of biological systems and our study of diseases. Over
the past decades, molecular studies have elucidated the structure of TF complexes and
provided mechanistic models into their function?. Methods based on high-throughput
sequencing have enabled the genome-wide profiling of gene expression3, TF binding?,
chromatin accessibility®>, and 3D genome structure®. TF knockdown/knockout studies
have also identified, en masse, their species-, tissue-, and context-specific target genes’.
Concurrently, novel statistical approaches have allowed for more precise identification
and modeling of TF binding sites®, and expression quantitative trait loci (eQTLS)
databases now include associations that are tissue-specific® and will soon be cell-type
specifict®. Yet, despite this tremendous progress, our understanding of gene regulatory
logic is still rudimentary. When a TF activates or represses the expression of a gene
through binding to a regulatory element in cis to the gene, we call such a relationship a
regulatory trio. Despite its complexity, gene regulatory logic can be broken down into
modular components consisting of such peak-TF-gene trios. In this paper, we focus on
the identification of regulatory trios using multiomic experiments that jointly profile gene
expression and chromatin accessibility at single-cell resolution.

Single-cell RNA sequencing (scRNA-seq) and single-cell assay of transposase-
accessible chromatin sequencing (scATAC-seq), performed separately, have already
generated detailed cell-type-specific profiles of gene expression and chromatin
accessibility. When the two modalities are not measured in the same cells, the cells can
be aligned by computational methods?!, followed by association analyses of gene
expression and peak accessibility. While these methods have been shown to align well-
differentiated cell types correctly, they often fail for cell populations consisting of transient
and closely similar cell states. Additionally, the alignment of cells between scRNA-seq
and scATAC-seq necessarily assumes a peak-gene relationship which is usually learned

from other datasets. Then, the post-alignment association analysis is plagued by logical
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circularity, as it is difficult to disentangle new findings from prior assumptions that underlie
the initial cell alignment.

Single-cell multiomic experiments that sequence the RNA and ATAC from the
same cells directly enable joint modeling of a cell’s RNA expression and chromatin state,
yet methods for the analysis of such data are still in their infancy. Almost all existing
methods for detecting and characterizing regulatory relationships between TF, regulatory
region, and target gene rely only on marginal relationships, i.e., associations between two
of the three entities without conditioning on the third. For example, Signac'? and Ma et
al.®3 use marginal associations between peaks and genes to identify putative enhancer
regions, while Signac'? and Seurat V4 link differentially expressed TFs to differentially
accessible motifs across cell types. Such pairwise marginal associations are sometimes
examined manually using low-dimensional embedding. One exception is PECA?®®, which
uses a parametric model to characterize the joint four-way relationship between TF
expression, regulatory site accessibility, chromatin remodeler expression, and target
gene expression. Although PECA was designed to be applied to matched bulk
transcriptomic and epigenomic data, such joint modeling concepts could potentially be
very powerful for single-cell multiomic data. In this paper, we propose a nonparametric
approach as an alternative to PECA'’s parametric model, thus allowing for robustness and
computational scalability.

As we will show through examples, context-specific gene regulation, such as cell-
type-specific regulation, may be masked in marginal associations. For example,
associations between a TF and its target gene may be apparent only conditional on the
accessibility of its binding site. Or, associations between the accessibility of an enhancer
and its target gene may be apparent only after accounting for the expression of certain
transcription factors involved in, but not sufficient for, the remodeling of the enhancer
region. The identification and characterization of such context-specific relationships are
relevant, for example, in the interpretation of GWAS results, where marginal pairwise
associations between ATAC peaks and gene expression have had limited success in
linking disease-associated SNPs to genes?®.

We explore in this paper the use of higher-order models that interrogate conditional

and three-way interaction relationships for the identification of regulatory trios. First, as
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84  proof of principle, we show that a simple model that integrates TF expression with cis-
85 peak accessibility significantly improves gene expression prediction, as compared to a
86 comparable model that utilizes peak accessibility alone. We present TRIPOD, a
87 computational framework for transcription regulation interrogation through nonparametric
88 partial association analysis of single-cell multiomic sequencing data. TRIPOD detects two
89 types of trio relationships, which we call conditional level 1 and conditional level 2, through
90 robust nonparametric tests that are easy to diagnose. TRIPOD’s nonparametric approach
91 for the identification of conditional associations avoids assumptions of linearity of
92 relationships and normality of errors, allowing for better adjustment for confounding. Thus,
93 given a multiome experiment that measures RNA expression and chromatin accessibility
94 for the same cells at single-cell resolution, TRIPOD outputs, for a list of transcription
95 factors, their putative regulatory gene targets and the cis regions where they putatively
96 bind to regulate each gene. This allows the prioritization of regulatory relationships for
97 downstream analyses. We also develop a novel influence measure that allows the
98 detection and visualization of cell states driving these regulatory relationships, applicable
99 to data consisting of discrete cell types as well as continuous cell trajectories.
100 We first apply TRIPOD to single-cell multiomic data of human peripheral blood
101  mononuclear cells (PBMCs) and compare the regulatory trios detected to relationships
102 detected through marginal associations. We show that the detections are coherent with
103 the vast amounts of existing knowledge from enhancer databases, bulk cell-type-specific
104  chromatin immunoprecipitation followed by sequencing (ChlP-seq) experiments, tissue-
105 specific TF knockdown/knockout studies, and cis-eQTL studies, but that conditional and
106  marginal models identify different sets of relationships. We next apply TRIPOD to the
107 interrogation of lineage-specific regulation in the developing mouse brain, where
108 relationships detected by TRIPOD are compared against those derived from existing
109 ChlIP-seq and proximity ligation-assisted ChIiP-seq (PLAC-seq) data. Here, TRIPOD
110 identifies known trio relationships, as well as putative novel regulatory crosstalk between
111  neuronal TFs and glial-lineage genes. We also apply TRIPOD to SHARE-seq data on
112  mouse hair follicle cell differentiation to illustrate trio detection and influence analysis in

113 data collected from different protocols. Through these analyses, we demonstrate how to
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114 harness single-cell multiomic technologies in the study of gene regulation and how the
115 data from these technologies corroborate and complement existing data.

116

117 Results

118 A simpleinteraction model between TF expression and peak accessibility improves
119 RNA prediction. To motivate our methods, we start with a simple prediction-based
120 analysis, comparable to that done by existing methods't. We benchmarked against: (i)
121  Signac'? and Cicero?’, which predict gene expression by the gene activity matrix derived
122 from the sum of the ATAC reads in gene bodies and promoter regions; (i) MAESTRO?,
123 which predicts gene expression using a regulatory potential model that sums ATAC reads
124  weighted based on existing gene annotations; and (iii) sci-CAR*®, which predicts gene
125 expression by a regularized regression on coverage of individual peaks nearby. We
126  compared the predictions derived from these methods to that of a regularized regression
127  model, where for predictors, peak accessibilities are replaced by products between peak
128 accessibilities and TF expressions. Only peaks within a certain range of the gene’s
129 transcription start site (TSS) and only interactions between TFs and peaks containing
130  high-scoring binding motifs for the TFs are considered. We refer to this model as the
131 peak-TF LASSO model. Since this model is prediction-based, we do not expect the peak-
132  TF pairs selected by LASSO to necessarily have a causal regulatory relationship to the
133 gene. Comparing this model to (i)-(iii) allows us to assess whether the peak-TF interaction
134  terms are informative for gene expression. To avoid overfitting, we performed out-of-fold
135 prediction and adopted independent training and testing sets. See Methods for detalils.
136 We analyzed single-cell multiomic datasets from different human and mouse
137  tissues generated by different platforms — PBMC by 10X Genomics, embryonic mouse
138  brain by 10X Genomics, mouse skin by SHARE-seq*?, and adult mouse brain by SNARE-
139  seq?°. Data summaries are included in Supplementary Table 1; reduced dimensions via
140  uniform manifold approximation and projection (UMAP)?! are shown in Fig. 1la and
141  Supplementary Fig. 1, 2a. To mitigate the undesirable consequences of sparsity and
142  stochasticity in the single-cell data, we clustered cells to form metacells* and pooled

143 gene expression and chromatin accessibility measurements within each metacell.
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144 Our results show that, across window sizes, the peak-TF LASSO model
145  significantly improves prediction accuracy across the transcriptome (Fig.1b), with
146  examples of specific genes shown in Fig. 1c. This improvement in prediction accuracy
147  holds true when an independent dataset is used for validation (Supplementary Fig. 3).
148  For the SNARE-seq data??, sequencing depth is substantially shallower (Supplementary
149  Fig. 4), thus the improvement of the peak-TF LASSO model is diminished but still evident
150 (Supplementary Fig. 2b). This demonstrates that the product of TF expression and peak
151  accessibility significantly improves RNA prediction accuracy beyond simply using peak
152  accessibility, offering strong empirical evidence of three-way interaction relationships
153 between TF expression, peak accessibility, and target gene expression that can be
154  extracted from such multiomic experiments. However, we will not rely on coefficients from
155 the LASSO model to screen for such trios, as their significance is difficult to compute due
156 to the hazards of post-selection inference??. Additionally, accessibility of peaks and
157  expression of TF affecting the same gene are often highly correlated, in which case
158 LASSO tends to select the few with the highest associations and ignore the rest. In such
159 cases, we believe it is more desirable to report all trios.

160

161 TRIPOD for the detection of peak-TF-gene trio regulatory relationships by single-
162  cell multiomic data. We propose TRIPOD, a nonparametric method that screens single-
163 cell RNA and ATAC multiomic data for conditional associations and three-way
164 interactions between the expression of a TF t, the accessibility of a peak region
165 p containing the TF’s motif, and the expression of a putative target gene g within a pre-
166 fixed distance of peak p (Fig. 2a). Existing methods'?14 screen for marginal associations
167 either between the TF and the peak or between the peak and the target gene. However,
168 three-way relationships may be complex: When a TF binds to a cis-regulatory region to
169 affect the expression of a gene, it can do so in multiple ways, leading to different patterns
170 in the data. The TF could be directly responsible for opening the chromatin of the
171  enhancer region, facilitating the binding of other TFs that recruit the RNA polymerase. In
172  such cases, expression of the TF is likely to be marginally correlated with the accessibility
173  of the enhancer region, but its correlation with the expression of the target gene may be

174  masked due to confounding of other involved TFs. Alternatively, the TF may not be
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175 directly responsible for chromatin remodeling but may bind to already accessible
176  chromatin in recruiting other TFs or the RNA polymerase. In such cases, expression of
177  the TF may not be highly correlated with the accessibility of the enhancer region or with
178 the expression of the target gene. When marginal associations are masked, evidence for
179 binding of the TF at the peak in the regulation of a gene can be inferred from partial
180 associations: (i) with the peak open at a fixed accessibility, whether cells with higher TF
181 expression have higher gene expression; and (ii) with the TF expression fixed at a value
182 above a threshold, whether cells with higher peak accessibility have higher gene
183 expression. To identify such conditional associations without making linearity
184  assumptions on the marginal relationships, TRIPOD matches metacells by either their TF
185 expressions or peak accessibilities (Fig. 2b): for each matched metacell pair, the variable
186 being matched is controlled for, and differences between the pair in the other two
187 variables are computed. Then, across pairs, the nonparametric Spearman’s test is used
188 to assess the association between the difference in target gene expression AY; and
189  difference in the unmatched variable (i.e., AY; if the cells were matched by X,,, or AX,, if
190 the cells were matched by Y;). We call this the “conditional level 1 test.”

191 For illustration, consider the metacell denoted by the black point in Fig. 2b: If we
192 were to match by peak accessibility, this metacell would be matched to the metacell
193  colored in red. We would then compute AY;, the difference between TF t expressions of
194  the matched pair. If we were to match by TF expression, the black dot would be matched
195  tothe metacell in green, and we would compute AX,,, the difference in peak p accessibility
196  for this pair. In either case, we would compute AY,, the difference in gene g expressions
197 between the pair. We would then mask those metacell-pairs whose values, for the
198 variable being matched, are too low (i.e., those pairs where the TF is off or the peak is
199  closed). Then, AX,, or AY;, together with AY,, would be submitted for level 1 test. We call
200 such a triplet of TF, peak, and target gene a “regulatory trio.”

201 Even stronger evidence for a regulatory trio could be claimed if the degree of
202 association between the pairwise differences depends on the matched variable. For
203 example, we would tend to believe that TF t binds to peak p to regulate gene g if, in cells
204  with high expression of TF t, an increase in peak p accessibility yields a much larger

205 increase in gene g expression, as compared to in cells with low expression of TF t. One
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206  could screen for such interactions by matching by either TF t or peak p accessibility.
207  TRIPOD screens for such interaction effects through a “conditional level 2 test”, which
208  assesses the association between AY, and the product of the matched variable with the
209 difference in the unmatched variable, after taking partial residuals on the difference in the
210 unmatched variable. In summary, TRIPOD categorizes each identified trio relationship as
211 supported by marginal association, association between peak and gene conditioned on
212 TF expression, and/or association between TF and gene conditioned on peak
213 accessibility. The conditional relationships are further categorized to level 1 or level 2,
214  with level 2 indicative of a stronger relationship exhibiting multiplicative interaction effects
215 between TF expression and peak accessibility.

216 For significant trios, TRIPOD further carries out a sampling-based influence
217  analysis, where phenotypically contiguous sets of metacells are held out to measure their
218 influence on the estimated coefficients. The corresponding cell types/states that lead to
219  significant deviations from the null upon their removal have high influence scores, which
220 can be used to identify cell types/states that drive a regulatory relationship.

221 To highlight the differences between TRIPOD and existing methods based on
222  marginal associations, we show two canonical examples (Supplementary Fig. 5) where
223 the two approaches disagree. Fig. 2c outlines a significant trio detected by TRIPOD’s
224 level 2 testing, yet the marginal peak-gene and TF-gene associations were insignificant.
225 It turns out that a subset of cells with high peak accessibility {X,,} have close-to-zero TF
226  expressions {Y;}, and, meanwhile, another subset of cells with high TF expressions {Y;}
227  have close-to-zero peak accessibilities {X,}. In these cells, either the peak is closed, or
228 the TF is not expressed, and this leads to the target gene not being expressed, which
229  masks the marginal associations. The high peak accessibility and TF expression in these
230 cells, which act through other regulatory trios, cancel out when we consider the interaction
231 {X, X Y.}, leading to a significant interaction term detected by TRIPOD. Conversely, Fig.
232  2d outlines another trio, whose marginal associations were significant, yet TRIPOD did
233 not detect significant conditional associations from either level 1 or level 2 testing. In this
234  case, with almost constant TF expression, the large difference in peak accessibility leads
235 to a small difference in target gene expression. Meanwhile, the cells that drive the

236  significantly positive correlation between {Y,} and {Y,} have almost zero values for {X,}.

9
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237  Both observations suggest that this peak has little to do with the regulation of the target
238 gene FGL2 by this specific TF MAFK. Notably, we do not claim that the significantly linked
239 peaks and TFs through marginal association are false positives, but rather this specific
240 trioisinsignificant (i.e., the peak and TF may act through other TF and peak, respectively).
241  In summary, TRIPOD puts peak-TF-gene trios into one unified model, complementing
242  existing methods based on marginal associations and allowing for simultaneous
243 identification of all three factors and prioritization of a different set of regulatory
244  relationships.

245

246  TRIPOD identifies three-way regulatory relationships in PBMCs with orthogonal
247 validations. We first applied TRIPOD to identify regulatory trios in the 10k PBMC dataset.
248  Cell-type labels for this dataset were transferred from a recently released CITE-seq
249 reference of 162,000 PBMC cells measured with 228 antibodies!4. After quality control,
250 we kept 7790 cells from 14 cell types pooled into 80 metacells, 103,755 peaks, 14,508
251 genes, and 342 TFs; the UMAP reduced dimensions are shown in Supplementary Fig.
252  la. Distribution of the number of peaks 100kb/200kb upstream and downstream of the
253 TSS per gene, as well as distribution of the number of motifs per peak, are shown in
254  Supplementary Fig. 6.

255 As a proof of concept, we first illustrate two trios where the frameworks agree,
256 identified by level 1 conditional testing (regulation of CCR7 by LEF1; Fig. 3a) and level 2
257 interaction testing (regulation of GNLY by TBX21; Fig. 3b). From the influence analyses,
258 TRIPOD identified B and T cells as the cell types where LEF1 regulates CCR7, and
259 natural killer (NK) cells as the cell types where TBX21 regulates GNLY. These cell type-
260  specific regulatory relationships are corroborated by motif's deviation scores using
261 chromVAR? (Fig. 3) and the enrichment of Tn5 integration events in the flanking regions
262  using DNA footprinting analyses®? (Supplementary Fig. 7e). Unlike chromVar and DNA
263  footprinting analyses, which only give genome-wide average enrichments, TRIPOD
264  significantly enhances the resolution by identifying the specific cis-regulatory regions that
265 the TFs bind for the regulation of target genes.

266 Results from TRIPOD and marginal association tests overlap but, as expected,

267  exhibit substantial differences (Supplementary Fig. 8). The previous section showed

10
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268 example trios where the two frameworks disagree. Additionally, results from TRIPOD’s
269  matching scheme and those from random matching also overlap but exhibit substantial
270 differences, both on the global scale (Supplementary Fig. 9) and for each gene
271  (Supplementary Fig. 10). Notably, for the two counterexamples discussed in the previous
272  section, random matching could not identify the masked positive trio in Fig. 2c, yet it
273  retained significance for the negative trio shown in Fig. 2d, in a similar fashion to marginal
274  testing (Supplementary Fig. 11). Genome-wide p-value distributions from TRIPOD’s two
275 levels of testing under the null with permuted peak accessibility and TF expression are
276  shown in Supplementary Fig. 12, indicating that TRIPOD’s framework has good type |
277  error control. A master output of significant associations with Bonferroni correction is
278  shown in Supplementary Table 2, with scatterplots and pairwise correlations of genome-
279  wide p-values from different testing schemes shown in Supplementary Fig. 13.

280 To our best knowledge, no experimental technique can directly validate three-way
281  regulatory relationships at high resolution with high throughput. Therefore, we performed
282 validation and benchmarking by harnessing existing databases and orthogonal
283 sequencing experiments that interrogate each pairwise relationship among the three
284  factors (Table 1). The rationale is that true regulatory relationships should show
285 enrichment in all three marginal relationships. Fig. 4a illustrates the extensive validation
286  strategies that were undertaken.

287 First, to validate the cis-linkage between peak region and target gene, we used the
288 enhancer databases of blood and non-cancerous cells from FANTOM52 (from HACER?),
289 4DGenome?® (from HACER?®), and EnhancerAtlas 2.0%7, as well as cis-eQTLs in the
290 whole blood reported by the GTEx consortium®. We collapsed TRIPOD'’s trio calls into
291 peak-gene relationships and benchmarked against Signac’s LinkPeaks?!? on single cells
292 and marginal association testing on metacells; for each target gene, we performed a
293 hypergeometric test for enrichment of the peak-gene linkages in the regulatory databases
294  and annotations (see Methods for details). For all four databases, TRIPOD’s p-values for
295 enrichment are substantially significant (Fig. 4b). When stratified by the different levels of
296 testing, TRIPOD’s level 1 and level 2 conditional testing returns more significant
297 enrichment compared to linkPeaks and marginal associations; the most significant

298 enrichment is from level 1 testing matching by TF expression, which is expected since
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299 the “gold-standard” peak-gene relationship is directly captured by the level 1 testing
300 without TF interaction (Supplementary Fig. 14a). Additionally, the unique sets of trio
301 regulatory relationships identified by TRIPOD but not by random matching (which results
302 in only marginally associated linkages) have significant enrichment, demonstrating the
303 effectiveness of TRIPOD in identifying true trio relationships that complement existing
304 methods based on marginal association testing (Supplementary Fig. 14b).

305 Second, to validate the TF-gene edge in the TRIPOD-identified trios, we referred
306 to knockTF’, a TF knockdown/knockout gene expression database, and hTFtarget®, a
307 database of known TF regulatory targets. Specifically, in knockTF, we found seven TF
308 knockdown/knockout RNA-seq experiments in the peripheral blood category. For these
309 TFs, we identified significantly linked genes by marginal association and by TRIPOD and
310 found TRIPOD'’s results to have significantly higher precision and recall (Fig. 4c); the
311 improvementis robust to varying FDR thresholds (Supplementary Table 3). For hTFtarget,
312 we obtained, for each highly variable gene, its blood-specific TFs, and calculated the
313 gene-specific precision-recall rates — TRIPOD is more sensitive compared to marginal
314  association testing, although both suffered from inflated “false positives,” which can also
315 be due to the low sensitivity in the in silico calls by hTFtarget (Fig. 4d). Precision and
316 recall rates with varying significance levels further confirm that TRIPOD has better
317 agreement with existing TF knockdown/knockout data, in comparison to marginal
318 association testing (Supplementary Fig. 15).

319 Third, to validate the TF-peak edge representing TF binding to peak regions, in
320 addition to the DNA footprinting analysis shown in Supplementary Fig. 7e, we
321 downloaded from the Cistrome portal®® non-cancerous ChlIP-seq data from sorted human
322  blood cells (B lymphocyte, T lymphocyte, and monocyte (Supplementary Table 4). The
323 peaks identified by TRIPOD had a substantially higher percentage of overlap with the
324  ChlIP-seq peaks compared to the genome-wide baseline; TRIPOD’s performance is better
325 than or on par with that from testing of marginal associations (Fig. 4e). Since ChlIP-seq
326  peaks reflect only TF binding, without consideration for the gene target of regulation, it is
327 expected that it agrees well with marginal association test results, which are capturing

328  such a universal relationship.
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329 In summary, existing databases and public data of different types from a wide
330 range of studies extensively support each of the three pairwise links in the trios reported
331 by TRIPOD, demonstrating its effectiveness in uncovering true regulatory relationships.
332

333 TRIPOD identifies known and novel putative regulatory relationships during mouse
334 embryonic brain development. We next applied TRIPOD to single-cell multiomic data
335 of 5k mouse embryonic brain cells at day 18 by 10X Genomics. The cell type labels were
336 transferred from an independent scRNA-seq reference® using SAVERCAT?3!. We kept
337 3,962 cells that had consistent transferred labels from seven major cell types: radial glia,
338 neuroblast, GABAergic neuron, glutamatergic neuron, glioblast, oligodendrocyte, and
339 Cajal-Retzius neuron (Supplementary Fig. 1b). We applied TRIPOD to 633 TFs, 1000
340 highly variable genes, and ATAC peaks 200kb up/downstream of the genes’ TSSs.

341 On the genome-wide scale, the union of TRIPOD’s level 1 and 2 tests gave a larger
342 number of unique peak-gene pairs and TF-gene pairs than LinkPeaks!? and marginal
343 association testing, respectively (Supplementary Fig. 16a). To evaluate these results, we
344  first examined whether the peak-gene links were enriched in previously reported
345 enhancer-promoter chromatin contacts using PLAC-seq data of mouse fetal brain3?
346 (Table 1, Supplementary Fig. 16b). We observed that the regulatory links detected by
347  both marginal association and TRIPOD showed significant enrichment in PLAC-seq
348 contacts (Supplementary Fig. 16b). Importantly, TRIPOD detected sets of peak-gene
349 pairs from trio relationships that were overlapping but distinct from the sets obtained by
350 marginal association, and a substantial fraction of the links identified by TRIPOD but not
351 by the marginal method were validated by PLAC-seq (Fig. 5a; Supplementary Fig. 16c).
352  This suggests that TRIPOD identifies real regulatory relationships that complement those
353 detected by existing methods.

354 We also note that the type of evidence that supports a regulatory relationship
355 matters when compared to other types of experimental data. For example, PLAC-seq
356 measures, for a fixed TF, the degree of promoter contacts in the TF-binding domains.
357 Conceptually, the closest analog to this measurement in our model is level 1 association,
358 conditioned on TF expression, between the motif-containing peak region and target gene

359 expression. Thus, it is not surprising that this level 1 test matching by TF gives the most
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360 significant enrichment (Supplementary Fig. 16b, 17a, 18a). However, detection by
361 TRIPOD is pre-conditioned on the expression of the target gene at a high enough level,
362 which is irrelevant to the PLAC-seq data. Thus, not all detections made by PLAC-seq are
363 expected to be found by TRIPOD.

364 To validate the links between TFs and peaks, we used publicly available ChlP-seq
365 data for Olig2®, Neurog234, Eomes®, and Thrl1%, TFs that play key roles in embryonic
366 brain development (Table 1). The Olig2 ChiP-seq data were generated in three types of
367 rat cells, oligodendrocyte precursor cells (OPC), immature oligodendrocytes (iOL), and
368 mature oligodendrocytes (mOL), while the Neurog2, Eomes, and Tbhrl ChiP-seq data
369 were generated in mouse embryonic cerebral cortices (see Methods for details). When
370 TF expression was matched, TF binding peaks identified by TRIPOD level 1 tests were
371  significantly enriched in the TF ChIP-seq peaks across all datasets except for the Olig2
372 ChIP-seq data of mature oligodendrocytes (mOL), which served as a negative control
373 and had a substantially lower degree of enrichment (Supplementary Fig. 17, 18).
374  Importantly, TRIPOD detected a substantial number of peak-TF pairs that were not
375 detected through marginal associations but validated by ChIP-seq (Fig. 5b).

376 The validations and global benchmarking demonstrate TRIPOD’s effectiveness in
377  finding real regulatory relationships. Next, we focused on a set of TFs known to play
378 essential roles during mouse embryonic brain development. Specifically, we chose Pax6,
379 Neurog2, Eomes, Neurod1, and Tbrl, major TFs mediating glutamatergic neurogenesiss®,
380 and Olig2, Sox10, Nkx2-2, Sox9, Nfia, and Ascl1, which initiate and mediate gliogenesis®’;
381 the known regulatory cascades are shown in Fig. 5c. Here, the up and downstream TFs
382 inalink are used as the TF and the target gene in TRIPOD’s analysis, respectively, and
383 we established a link if at least one of the TRIPOD tests returned a positive coefficient
384  estimate with FDR-adjusted p-values less than 0.01 for at least one trio involving the pair
385 ofthe TF and the target gene. TRIPOD’s level 1 and level 2 testing successfully captured
386 five out of the seven known regulatory links (Fig. 5¢, d, Supplementary Fig. 19, 20);
387 interestingly, TRIPOD’s results also suggest substantial crosstalk between the two
388 cascades, where neurogenesis-specific TFs activate gliogenesis-specific TFs (Fig. 5c, d).
389 ChlIP-seq data of Neurog2, Eomes, and Tbrl supported four of the crosstalk links:
390 regulation of Sox9 by Neurog2 and regulation of Nfia by Neurog2, Eomes, and Thbrl,
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391 respectively (Supplementary Fig. 21). These crosstalk links that were validated by ChIP-
392 seq were also captured by conditional associations; two of them were captured by
393 marginal associations (Supplementary Fig. 19). Thus, we think it is highly plausible that
394 neurogenesis TFs activate gliogenesis genes at day 18 of embryonic mouse brain
395 development, which is exactly when the switch is being made from neurogenesis to
396 gliogenesis. To our best knowledge, these possible links between neurogenesis and
397 gliogenesis pathways have not been systematically explored and thus warrant future
398 investigation. Finally, for each of the neurogenesis and gliogenesis TFs, we performed a
399 gene ontology (GO) analysis of their significantly linked target genes using DAVID38; the
400 enriched terms were largely consistent with the regulatory functions of the TFs during
401 neurogenesis and gliogenesis (Fig. 5e). Specifically, the mouse embryonic brain cells are
402 collected during the transition phase between neurogenesis and gliogenesis, and the
403 enriched terms contain oligodendrocyte differentiation and regulation of neuron
404  differentiation, confirming TRIPOD'’s calling results. Other terms, such as regulation of
405 transcription and cell cycle, are enriched due to the transcriptional regulatory role of the
406  TFs.

407 So far, we have taken advantage of the cross-cell-type variation to identify the trio
408 regulatory relationships. To dissect cell-type-specific regulation, we next applied the
409 influence analysis framework (see Methods for details) to the significant trios involving
410 neurogenesis and gliogenesis TFs. For a given TF, the number of trios, for which a given
411  cell type was influential (FDR < 0.01), is summarized in Fig. 5f, with details for specific
412  example trios given in Supplementary Fig. 22. The analyses underpinned the cell types
413 in which the transcriptional regulation was active, and, reassuringly, the neurogenesis
414 and gliogenesis TFs have the most regulatory influence in neuroblasts and glioblasts,
415 respectively. Additionally, Ascll is active in GABAergic neurons in addition to neuroblasts
416  and glioblasts, consistent with its role as a GABAergic fate determinant®. Notably, the
417  highly influential cell types that lead to the significant trios involving several neurogenesis-
418 specific TFs include not only neuroblast but also glioblast, supporting our previous
419 findings on the crosstalk between the two cascades. Notably, these results are unlikely
420 duetothe given TFs being overexpressed in the corresponding highly influential cell types,

421  since the influential cell types were not the same as the cell types where the TFs were
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422  highly expressed (Fig. 5f, Supplementary Fig. 22, 23). Overall, TRIPOD allows fine
423 characterization of cell-type- and cell-state-specific functions of the TFs during
424  neurogenesis and gliogenesis.

425 Using this dataset, we further examined how varying window sizes and different
426  resolutions/constructions of metacells affect the model fitting results; this led to the
427  following observations. First, incorporating peaks 100kb/200kb up/downstream of genes’
428 TSSs leads to consistent and significant enrichment of validated gene-peak pairs by
429  PLAC-seq and peak-TF pairs by ChlP-seq, while narrowing the window size down to 50kb
430 decreased the degree of enrichment (Supplementary Fig. 17). Second, the validation
431 results were robust to changes in resolutions of the metacells (Supplementary Fig. 18),
432 since TRIPOD does not require the metacells to truly represent distinct and non-
433  overlapping segments of the transcriptome space.

434

435 TRIPOD infers lineage-specific regulatory relationships in differentiating mouse
436 hair follicle cells. As a last example, we applied TRIPOD to SHARE-seq!® data
437  (Supplementary Fig. 1c) of mouse hair follicle cells, consisting of four broadly defined cell
438 types — transit-amplifying cells (TAC), inner root sheath (IRS), hair shaft, and medulla
439 cells — along a differentiation trajectory. The cell-type labels were curated based on
440 marker genes, TF motifs, and ATAC peaks from the original publication!3; pseudotime
441  was inferred using Palantir*® and overlaid on the cisTopic** reduced dimensions of the
442  ATAC domain. Cells were partitioned using both the pseudotime and the UMAP
443  coordinates to construct metacells (Fig. 6a). Due to the low RNA coverage
444  (Supplementary Fig. 4), we focused on 222 highly-expressed TFs, 794 highly expressed
445 genes reported to have more than ten linked cis-regulatory peaks'3, and peaks 100kb
446  up/downstream of the genes’ TSSs.

447 For validation, we used H3K4mel and H3K27ac ChlP-seq data from an isolated
448 mouse TAC population*? (Table 1). H3K4mel and H3K27ac are markers for poised and
449 active enhancers, respectively, and were used to benchmark TRIPOD’s linked peaks
450 against previously reported domains of regulatory chromatin (DORCs)*3, as well as
451 randomly sampled peaks. The linked peaks by TRIPOD had higher scores for both
452 H3K4mel and H3K27ac than DORCs, the latter identified through marginal associations
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453  (Fig. 6b). To further validate the regulatory effects of the linked peaks, we obtained
454  previously characterized super-enhancers (SEs) in mouse TACs*2. Target genes of the
455 381 SEs were assigned based on the gene’s proximity to the SE, as well as the correlation
456  between loss of the SE and loss of the gene transcription?. TRIPOD was able to
457  successfully recapitulate the SE regions for the genes considered, with four examples
458  shown in Fig. 6¢, where significantly linked peaks mostly resided in the SEs.

459 To demonstrate, Fig. 6d shows regulatory trios that are specific to the IRS lineage,
460 the hair shaft lineage, and the medulla lineage (Supplementary Fig. 24). These trios also
461 showed significant pairwise marginal associations (Fig. 6e), lending confidence that they
462 are real. The cell types where the regulation happens were identified by influence analysis,
463  for which the p-values were smoothed along the differentiation trajectory and overlaid on
464 the UMAP embedding (Fig. 6f). DNA footprinting analyses surveyed the enrichment of
465 Tnb5 integration events surrounding the corresponding motif sites and showed cell-type-
466  specific enrichment (Fig. 6g), corroborating TRIPOD’s results.

467

468 Discussion

469 We have considered the detection of regulatory trios, consisting of a TF binding to a
470  regulatory region to activate or repress the transcription of a nearby gene, using single-
471 cell RNA and ATAC multiomic sequencing data. The presented method, TRIPOD, is a
472 new nonparametric approach that goes beyond marginal relationships to detect
473  conditional associations and interactions on peak-TF-gene trios. We applied TRIPOD to
474  three single-cell multiomic datasets from different species and protocols with extensive
475 validations and benchmarks. We started our analyses with predicting gene expression
476  from both peak accessibility and TF expression. Supervised frameworks have been
477 proposed to predict gene expression from DNA accessibility*3, and vice versa**, using
478  matched bulk transcriptomic and epigenomic sequencing data. Blatti et al.*> showed that
479  joint analysis of DNA accessibility, gene expression, and TF motif binding specificity
480 allows reasonably good prediction of TF binding as measured by ChlP-seq. However,
481 none of these methods incorporate TF expression. By selecting peaks near the genes’

482 TSSs and TFs with high motif scores in the selected peaks, we constructed biologically
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483 meaningful peak-TF pairs as predictors and showed that such a mechanistic model
484  significantly boosts the prediction accuracy of gene expression.

485 We next considered the detection and significance assessment for individual peak-
486  TF-gene trios, comprehensively comparing our detections with those made by tissue- and
487  cell-type-matched PLAC-seq and ChlP-seq experiments, by cis-eQTL and TF
488  knockdown/knockout studies, and by those recorded in the main enhancer databases.
489 The comparisons show that TRIPOD detections are substantially enriched for overlap
490 with all of these experiments, and in most cases, improve upon the overlap achieved by
491 existing methods. It is important to note that the recall rates in the comparisons to these
492  experiments should only be interpreted as relative metrics and not as absolute measures
493  of sensitivity. That is because each experiment measures a biological relationship that is
494  associated but different from what we aim to recover from TRIPOD. For example, ChiP-
495 seq aims to capture all locations where the TF binds, regardless of which gene it is
496 affecting, while TRIPOD aims to recover specific TF, enhancer, target gene trios.
497  KnockTF and hTFtarget, on the other hand, aims to identify all genes whose expressions
498 change when a TF is knocked out/down, which may not be genes that the TF directly
499 regulates through binding. An experiment that perhaps comes closest to measuring what
500 TRIPOD detects is PLAC-seq, which quantifies chromatin contacts anchored at genomic
501 regions bound by specific proteins. In addition to ChlP-seq, we used PLAC-seq data to
502 corroborate TRIPOD detections for the embryonic mouse brain data in Fig. 5a,
503 Supplementary Fig. 16b, 17a, 18a. Here, the overlap is also far from 100%, as TRIPOD
504 can only detect a PLAC-seq relationship if the expression of the target gene is high
505 enough. Also, PLAC-seq cannot detect TRIPOD relationships unless the cis-region in
506 question comes into direct contact with the promoter, which is not the only mechanism of
507 gene regulation. For example, TF binding may change the local chromatin conformation
508 as an insulator or may help recruit the binding of other TFs. Thus, it is expected that
509 TRIPOD only recovers a small fraction of the signals identified by these experiments. For
510 this reason, we choose to use the word “recall” rather than “sensitivity,” as we are using
511 it as a metric of enrichment rather than as a measure of true positive rate.

512 Our current study is limited in several ways. A study in Drosophila*® modeled motif

513  binding specificities and chromatin accessibilities in bulk RNA and ATAC sequencing data
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514  to predict the cooperative binding of pairs of TFs, using in vitro protein-protein binding
515 experiments for validation. The detection of synergies between multiple TFs and peaks
516 onthe genome-wide scale and in a cell-type-specific manner needs further investigation.
517  Additionally, while we have not differentiated between positive and negative regulation,
518 TRIPOD reports both types of relationships and categorizes them by sign. While we
519 describe the trios with a positive sign to be enhancers, it is not clear how to interpret the
520 trios with negative signs, the latter having lower overlap with other benchmarking datasets.
521  Transcription activation and repression have been active research areas in biology, with
522 alot yet unknown*’. TRIPOD’s results provide potential targets for experimental follow-
523  up and detailed characterization.

524 TRIPOD uses cell matching as a nonparametric method of computing conditional
525 associations. One could, conceptually, match on more cell-level attributes in addition to
526 transcription factor expression or peak level accessibility. For example, to recover true
527  causal relationships, it seems tempting to match on more potential confounders, such as
528 cell type. However, one should be careful in matching by additional covariates such as
529 inferred cell type labels, as this could also reduce the signal. For example, condition-
530 specific regulation signals that are shared across multiple (but not all) cell types would be
531 much reduced if we were to match on cell type. For specificity, TRIPOD relies on the
532 careful curation of inputs to the regression (using only peaks that contain the TF motif
533 and are close to the target gene), rather than matching on all possible confounders.

534 Our analysis focused on three datasets where the RNA and ATAC modalities have
535 sufficient depths of coverage. For the SHARE-seq data, the sequencing depth for RNA is
536 very low, and thus we focused only on highly expressed genes and TFs (Fig. 6). For
537 SNARE-seq data, whose coverage in both modalities is even lower, we focused on
538 prediction models and not trio detection, where we saw only marginal improvement
539 beyond existing methods?° (Supplementary Fig. 2b). For data where the coverage is even
540 lower, e.g., PAIRED-seq, cross-modality metacells could not be stably formed, making
541  such analyses impossible (Supplementary Table 1, Supplementary Fig. 4). With rapidly
542 increasing sequencing capacity and technological advancement, TRIPOD, applied to
543 more cells sequenced at higher depth, can uncover novel regulatory relationships at a

544  finer resolution. With increased data resolution and cell numbers, it would then be
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545 meaningful to explore beyond the three-way relationships characterized by TRIPOD to
546 include higher-order models that can more realistically capture the complex regulatory
547  relationships between enhancers, modules consisting of multiple transcription factors,
548 and the transcription of the target gene.

549

550 Methods

551 Datainputand construction of metacells. Denote X;,, as the peak accessibility for peak
552 p(1<p=<P)incelli(1<i<N),Y, as the gene expression for gene g (1< g < G),
553 andYj as the TF expression for TF t (1 <t < T). The TF expression matrix is a subset
554  of the gene expression matrix, and for single-cell multiomic data, the cell entries are
555 matched. To mitigate the effect of ATAC sparsity*® and RNA expression stochasticity*?,
556 as a first step, TRIPOD performs cell-wise smoothing by pooling similar cells into
557  “metacells.” This, by default, is performed using the weighted-nearest neighbor method
558 by Seurat V4! to jointly reduce dimension and identify cell clusters/states across different
559 modalities. In practice, the metacells can also be inferred using one modality — for
560 example, RNA may better separate the different cell types®, and in other cases,
561 chromatin accessibility may prime cells for differentiation!3. For data normalization, we
562 use sctransform®® and TF-IDF! for scRNA-seq and scATAC-seq, respectively, followed
563 by dimension reduction and clustering'?. To account for peaks overlapping with other
564  genes (Supplementary Fig. 6b), TRIPOD has the option to either remove the overlapped
565 peaks or to adjust the peak accessibilities by the expressions of the overlapped genes, in
566 a similar fashion to MAESTRO?8. To reconstruct the RNA and ATAC features for the
567 metacells, we take the sum of the integer-valued ATAC and RNA read counts across cells
568 belonging to the metacells; library size is adjusted for both the RNA and ATAC domain
569 by dividing all counts by a metacell-specific size factor (total read counts divided by 10°).
570 For the analyses presented in the manuscript, position frequency matrices (PFM)
571  were by default obtained from the JASPAR database®!, and we used 633 and 107 pairs
572 of TFs and motifs annotated in human and mouse, respectively. TRIPOD provides an
573  option to use a more comprehensive set of motif annotations from the HOCOMOCQO®?
574  database. TRIPOD also allows for a binding motif to be shared across multiple TFs, as

575 well as user-defined and/or de novo motifs. We additionally examined the effects of
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576  combining the accessibilities of ATAC peaks containing the TF binding sites within the
577  window centered at the gene’s TSS and using the combined accessibility as input; we did
578 not observe an improvement in model performance (Supplementary Fig. 25).

579

580 RNA prediction by TF expression and peak accessibility. To predict RNA from ATAC,
581  Signac® and Cicero’ take the sum of peak accessibilities in gene bodies and promoter

582  regions to construct a pseudo-gene activity matrix: ¥;, = ZPEEg Xip, Where Ej is the set of

583 peaks within gene bodies and upstream regions of TSSs. Instead of directly taking the
584 sum, MAESTRO? adopts a “regulatory potential” model by taking the weighted sum of
585 accessibilities across all nearby peaks: Yy = Xpes, wy Xy . With weights {w)} pre-
586 calculated based on existing gene annotations. Specifically, the method weighs peaks by
587 exponential decay from TSS, sums all peaks on the given gene exons as if they are on
588 the TSS, normalizes the sum by total exon lengths, and excludes the peaks from
589 promoters and exons of nearby genes. The strategy to take the unweighted/weighted sum
590 of accessibility as a proxy for expression has been adopted to align the RNA and ATAC
591 modalities when scRNA-seq and scATAC-seq are sequenced in parallel from the same
592 cell population but not the same cells*. For single-cell multiomic data, sci-CAR?® performs
593 feature selection to identify cis-linked peaks via a LASSO regression: Y;, ~ ZPEEg ,[i'ngip,
594  where an L1 regularization is imposed on ,85. Compared to MAESTRO, which pre-fixes
595 the weights {wj’}, {ﬁ{f} are estimated from the data by regressing RNA against matched
596 ATAC data. What we propose is a feature selection model involving both peak
597  accessibility and TF expression: Y;, ~ ZpEEg Ztefp ﬂ;f’txipYit, where f,, contains the set of
598 TFs with high-scoring binding motifs in peak p inferred from the JASPAR database®!.
599

600 TRIPOD model and trio regulatory relationship. For a given target gene g, a peak p
601 within a window centered at the gene’s TSS, and a TF t whose binding motif is high-
602 scoring in the peak, TRIPOD infers the relationship between a regulatory trio (p, t, 9).
603 TRIPOD focuses on one trio at a time and goes beyond the marginal associations to

604 characterize the function Y, = f(X,,Y;). In what follows, we first describe TRIPOD's
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605 matching-based nonparametric approach and then describe a linear parametric approach,
606 followed by a discussion on the connections and contrasts between the two approaches.
607 For each cell i whose TF expression is above a threshold § (we only carry out
608 testing in cells that express the TF), we carry out a minimum distance pairwise cross-

609 match based on {Y;|Y;; > 6}. Let {(i;,{;-)} be the optimal matching, after throwing away

610 those pairs that have |Yi]-t — Yij*t| > e. For each pair j, i; and i;- are two metacells with

611 matched TF expression, for which we now observe two, possibly different, values
612 {Xijp,Xl-j*p} for peak p, as well as two corresponding values {Yi].g,Yij*g} for gene g. We

613 then compute the following auxiliary differentials within each pair:

614 AXjp = Xijp = Xijop,
615 AYjg =Yg = Vi

616 aswell as

617 th = (Yijt + Yij*t)/z'

618 For level 1 testing of conditional association, we estimate fpg = p(AX-

i 4Y;,), where p is

619 Spearman correlation, and test H,: rpg = 0. For level 2 testing of interaction, we perform a

620 regression 4Y;, = adX;, + ijt x AX;,, set y,,, to be the least-squares solution for y, and

jp’
621  test H,:y,, = 0. For visualization of the model fitting, we take the partial residuals of 4Y;,

622 and Y, x 4X;, on AX;,,

respectively. Note that even though TF expression is not included
623 in the model as a main term, it is controlled for (and not just in the linear sense) by the
624  matching. Similarly, we can also perform this procedure matching by peak accessibility.

625 As asummary, for level 1 testing of conditional association, we have:

626 Match by Y, a = p(AY,, AX,),

627 Match by X, B = p(AY,, AY,).

628 For level 2 testing of (TF expression)x(peak accessibility) interaction effects, we have:
629 Match by Y;, 4Y, = a*AX, + v, (¥, x 4X),),

630 Match by X, 4Y, = B*4Y, + y,(X, x 4Y,).

631 To test for the conditional associations and interactions, we can also apply a

632 parametric method, such as multiple linear regression:
633 Y:g = M+aLXp +ﬁLYtl
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634 Yo =pu+ar X, + BrY: + v X, Y.

635 See Supplementary Fig. 26 for linear testing results for trios shown in Fig. 3 and Fig. 6.
636 The estimated coefficients from the nonparametric and parametric methods are
637 correlated on the global scale (Supplementary Fig. 13, 27), and their interpretations are
638 similar: « and «; estimate the change in gene expression per change in peak
639 accessibility, fixing TF expression; g and f, estimate the change in gene expression per
640 change in TF expression, fixing peak accessibility; y; and y, measure how the change in
641 gene expression per change in peak accessibility at each fixed TF expression relies on
642 the TF expression; y, and y, measure how the change in gene expression per change in
643 TF expression at each fixed peak accessibility relies on the peak accessibility. However,
644  the underlying models and assumptions are different. Matching controls for not just the
645 linear variation in the matched variable, but also any nonlinear variation. This contrasts
646  with adding the variable as a covariate in the linear regression, where we simply remove
647 linear dependence. The main motivation for using the matching model above is our
648 reluctance to assume the simple linear relationship. Additionally, we use the rank-based
649  Spearman correlation, which will not be driven by outliers — a “bulk” association between
650 ranks is needed for significance. Thus, the nonparametric model of TRIPOD is more
651 stringent (Supplementary Fig. 28) and more robust to outliers.

652

653 Identifying regulatory cell type(s) and cell state(s). For the significant trios detected
654 by TRIPOD, we next seek to identify the underlying regulatory cell type(s). Specifically,
655 we carry out a cell-type-specific influence analysis to identify cell types that are highly
656 influential in driving the significance of the trio. Traditional approaches (e.g., the Cook’s
657 distance and the DFFITS) delete observations one at a time, refit the model on remaining
658 observations, and measure the difference in the predicted value from the full model and
659 that from when the point s left out. While they can be readily applied to detect “influential”
660 metacells one at a time (Supplementary Fig. 7a,b), these methods do not adjust for the
661 degree of freedom properly when deleting different numbers of metacells from different
662 cell types. That is, they do not account for the different numbers of observations that are
663 simultaneously deleted. Additionally, both methods adopt a thresholding approach to

664 determine significance, without returning p-values that are necessary for multiple testing
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665 correction. We, therefore, develop a sampling-based approach to directly test for the
666 influence of multiple metacells and to return p-values (Supplementary Fig. 7c).

667 Here, we focus on the linear model for its ease of computation: ?g =[a+aX, +

668  fY, + 7X,Y;. Given a set of observations I = {i: ith metacell belongs to a cell type}, we
669 remove these metacells, fit the regression model, and make predictions: 179(’) =p® +

670 aWx, + pDY, +9DX,Y,. The test statistics are the difference in the fitted gene

671  expressions |1?:q - ?g(’) | We generate the null distribution via sampling. Specifically, within

672 each sampling iteration, we sample without replacement the same number of metacells,

673 denoted as a set of [*, delete these observations, and refit the regression model on the
674 remaining observations: ?g(’*) =A% +aWx, + pY, + 90X, Y,. The p -value is
675 computed across K sampling iterations as Py, = Yl (Z|Y’g - ?;’)| > Z|17g — Y’g(’*)|)/1{,

676 where 1() is the indicator function. In addition to testing each cell type separately, the
677 framework can be extended to test for the influence of cell-type groups. For example, in
678 Fig. 3, we reconstruct the cell-type hierarchy using expression levels of highly variable
679 genes from the RNA domain and carry out the aforementioned testing scheme at each
680  split for its descendent cell types in the hierarchical structure.

681 For transient cell states, TRIPOD first identifies the neighbors of each metacell
682 along the trajectory and then carries out metacell-specific testing by simultaneously
683 removing each metacell and its neighbors using the framework described above. The
684  resulting p-values are, therefore, smoothed and can be visualized in the UMAP plot (Fig.
685 6f and Supplementary Fig. 22) to identify the underlying branches/segments that are key
686 in defining the significant regulatory trio. This approach can be directly applied to cells
687  with branching dynamics without the need to isolate cell subsets or to identify cell types.
688

689 Validation resources and strategies. Resources for validating the trio regulatory
690 relationships are summarized in Table 1. To validate the peak-gene relationships, we
691 referred to existing enhancer databases: FANTOM52 links enhancers and genes based
692 on enhancer RNA expression; 4DGenome?® links enhancers and genes based on

693  physical interactions using chromatin-looping data including 3C, 4C, 5C, ChlA-PET, and
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694  Hi-C; EnhancerAtlas 2.0?" reports enhancers using 12 high-throughput experimental
695 methods including H3K4mel1l/H3K27ac ChIP-seq, Dnase-seq, ATAC-seq, and GRO-seq.
696 We only focused on blood and non-cancerous cells from these databases (Fig. 4b). A list
697 of cis-eQTLs within the whole blood mapped in European-American subjects was
698 downloaded from the GTEx consortium?® (Fig. 4b). For the mouse embryonic brain dataset,
699 we additionally adopted H3K4me3-mediated PLAC-seq data®?, which reported enhancer-
700 promoter chromatin contacts mapped in mouse fetal forebrain (Fig. 5a, Supplementary
701 Fig. 16b, 17a, 18a). For the mouse skin dataset, we adopted TAC-specific ChlP-seq data
702  of H3K4mel and H3K27ac*?, markers for poised and active enhancers, respectively (Fig.
703  6b); we also obtained previously reported super-enhancers in mouse TACs from in vivo
704  studies*? (Fig. 6¢). Genomic coordinates were lifted over from mm9 to mm10 when
705 necessary.

706 To validate the TF-gene relationships in the PBMC data, we utilized the knockTF’
707 and the hTFtarget?® databases. knockTF interrogates the changes in gene expression
708 profiles in TF knockdown/knockout experiments to link the TFs to their target genes in a
709 tissue- or cell-type-specific manner. We downloaded 12 experiments, corresponding to
710 12 TFs (BCL11A, ELK1, GATA3, JUN, MAF, MYB, NFATC3, NFKB1, STAT3, STATS,
711 TAL1, and ZNF148) in the peripheral blood category, and focused on seven TFs that
712  have at least one linked gene by any model benchmarked (Fig. 4c; Supplementary Table
713  3). hTFtarget computationally predicts TF-gene relationships using ChiP-seq data, and
714  we manually downloaded the TFs associated with each of the top 100 highly variable
715 genes in the blood tissue (Fig. 4d; Supplementary Fig. 15).

716 For peak enrichment analysis compared to the existing enhancers, cis-eQTLs, and
717  enhancer-promoter contacts, we carried out a hypergeometric test as follows. Let k be
718 the number of significantly linked peaks, g be the number of significantly linked peaks that
719 overlap with annotations (e.g., annotated enhancers), m be the number of peaks that
720 overlap with the annotations, and n be the number of peaks that do not overlap with
721 annotations. The p-value of enrichment is derived from the hypergeometric distribution
722  using the cumulative distribution function, coded as phyper(q, m, n, k, lower.tail=F) in R.
723  We used this hypothesis testing framework to validate and benchmark the reported peak-

724  gene links, with results shown in Fig. 4b.
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725 To validate the peak-TF relationships, we downloaded non-cancerous cell-type-
726  specific ChiP-seq data of human blood (B lymphocyte, T lymphocyte, and monocyte) from
727  the Cistrome?® portal for the PBMC data (Fig. 4e, Supplementary Table 4), and ChIP-seq
728 data of Olig2%, Neurog234, Eomes?®, and Tbr1% for the mouse embryonic brain data. The
729  Olig2 ChlP-seq data were generated in three types of rat cells: data from oligodendrocyte
730 precursor cells (OPC) and immature oligodendrocytes (iOL) were used for validation,
731  while data from mature oligodendrocytes (mOL) serve as a negative control®3. Genomic
732  coordinates were converted from rn4 to mmZ10. The Neurog2 and Eomes ChlP-seq data
733  were generated in mouse embryonic cerebral cortices at day 14.5%4; the Tbrl ChIP-seq
734  data was generated in the whole cortex dissected from embryos at day 15.5%. In addition,
735 DNA footprinting signatures were corrected for Th5 sequence insertion bias and stratified
736 by cell types using the Signac package!? and can be used to validate the identified
737 TFs/motifs in a cell-type-specific manner (Fig. 6g, Supplementary Fig. 7e).
738 Hypergeometric tests for peak enrichment in TF binding sites by ChiP-seq were carried
739  out (Supplementary Fig. 17b-d, 18b-d). The results presented in Fig. 4e were obtained in
740 several steps: (i) we obtained sets of trios, for which B cells, T cells, and monocytes were
741  significantly influential; (ii) we applied TRIPOD and took the union set of the significant
742  trios; and (iii) we took the intersection between the trios obtained by the two types of
743 analyses, collapsed the trios to TF-peak relationships, and computed the fraction of peaks
744  overlapping ChlP-seq peaks.

745

746  Data availability

747  This study analyzed existing and publicly available single-cell RNA and ATAC multiomic
748 data. 10X Genomics single-cell multiomic datasets of PBMC (10k and 3k) and mouse

749 embryonic brain were downloaded https://support.10xgenomics.com/single-cell-

750 multiome-atac-gex/datasets. SNARE-seq data of adult mouse brain and SHARE-seq

751 data of mouse skin are available from the Gene Expression Omnibus (GEO) database
752  with accession numbers GSE126074 and GSE140203. A detailed data summary is
753 provided in Supplementary Table 1. Validation resources based on existing databases
754  and high-throughput sequencing data are summarized in Table 1 and Supplementary
755 Table 4.
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756
757 Code availability
758 TRIPOD is compiled as an open-source R package available at

759  hitps://github.com/yharigaya/TRIPOD. Scripts used for analyses carried out in this paper
760 are deposited in the GitHub repository.
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780 Figure Legends

781 Fig. 1 | Interaction between TF expression and peak accessibility improves RNA
782 prediction accuracy. a, UMAP embedding of 10x Genomics PBMC (left), 10x Genomics
783  embryonic mouse brain (center), and SHARE-seq mouse skin (right) cells from single-
784  cell RNA and ATAC multiomic sequencing. Cell-type labels were transferred from existing
785 single-cell references or curated based on marker genes, motifs, and peaks; metacells

786  were constructed to mitigate sparsity and stochasticity. b, Genome-wide distributions of
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787  Pearson correlations between observed and leave-one-out predicted RNA expression
788 levels, with varying window sizes. Predictions are from gene activity, regulatory potential,
789 peak LASSO regression, and peak-TF LASSO regression. c, Predicted and observed
790 RNA expression levels for highly variable genes, CCR7, Adamts6, and Ano7, from the
791 three datasets, respectively.

792

793 Fig. 2 | TRIPOD infers peak-TF-gene trio regulatory relationships using single-cell
794  multiomic data. a, Data input and schematic on a peak-TF-gene trio. b, Overview of
795 TRIPOD for inferring regulatory relationships. TRIPOD complements existing methods
796 based on marginal associations by identifying conditional associations through matching
797 by TF expression or peak accessibility. ¢, An example trio identified by TRIPOD, but not
798 by the marginal associations due to the heterogeneity of cell-type-specific regulations. d,
799  An example trio identified by the marginal associations, but not by TRIPOD. The peak
800 and TF are significantly linked to the gene, yet they act through other TF and peak, and
801 thus the regulatory trio is insignificant. The points represent metacells (left two panels)
802 and pairs of matched metacells (right two panels). Genomic coordinates for the peaks are
803 from hg38.

804

805 Fig. 3 | Examples of trio regulatory relationships in PBMC single-cell multiomic
806 dataset. a-b, Example trios identified by TRIPOD. Violin plots show cell-type-specific
807  distributions of gene expression, peak accessibility, and TF expression. Scatterplots show
808 TRIPOD’s level 1 and level 2 testing, respectively. Inner and outer circles around the
809 points are color-coded based on the cell types of the matched metacells. Hierarchical
810 clustering is performed on RNA expression levels of highly variable genes. Red/gray
811 circles indicate whether removal of the corresponding branches of metacells significantly
812 changes the model fitting; crosses indicate that removal of the groups of metacells
813 resulted in inestimable coefficients. Genomic coordinates for the peaks are from hg38.
814

815 Fig. 4 | TRIPOD identified trio regulatory relationships in PBMC single-cell
816 multiomic dataset supported by extensive validations. a, A schematic of validation

817 strategies. Shown are external datasets and databases used to validate the links between
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818 peak accessibility and target gene expression (peak-gene validation), those between
819 peak accessibility and TF expression (peak-TF validation), and those between TF
820 expression and target gene expression (TF-gene validation). b, Peak-gene validation
821 based on enhancer databases (FANTOM5, 4DGenome, and EnhancerAtlas) and tissue-
822  specific cis-eQTL data from the GTEx Consortium. Box plots show distributions of p-
823 values from gene-specific hypergeometric tests. ¢, TF-gene validation based on lists of
824  TF-gene pairs from the knockTF database. d, Precision and recall rates for TF-gene pairs
825 using ground truths from the hTFtarget database. e, Peak-TF validation based on eight
826 cell-type-specific TF ChiP-seq datasets (B lymphocytes, monocytes, and T lymphocytes).
827  Fractions of significantly linked peaks and all peaks that overlap with the ChlP-seq peaks
828 are shown.

829

830 Fig.5| TRIPOD identified known and novel regulatory relationships during mouse
831 embryonic brain development. a, Venn diagram of the number of peak-gene pairs
832 captured by PLAC-seq, the marginal model, and the union set of TRIPOD’s level 1 and
833 level 2 testing matching TF expression and peak accessibility. b, The same as a but for
834 Peak-TF validation by ChlIP-seq data for Olig2, Neurog2, Eomes, and Tbrl. c, A
835 schematic of well-characterized TF regulatory cascades during neurogenesis and
836 gliogenesis. d, Trio examples from known regulatory relationships, as well as from
837  crosstalks supported by ChiP-seq data, captured by TRIPOD. e, GO analysis of putative
838 target genes of the neurogenesis and gliogenesis TFs. The number of TRIPOD-identified
839 target genes in the GO categories is shown. The background heatmap shows negative
840 log p-values (FDR < 0.05) from hypergeometric tests examining enrichment of GO terms.
841 f, Bar plots showing the number of putative cell-type-specific trios mediated by the
842 neurogenesis- and gliogenesis-specific TFs.

843

844 Fig. 6 | TRIPOD identified regulatory relationships in mouse hair follicles with
845 transient cell states. a, UMAP embedding of hair follicle cells from the mouse skin data.
846 Cells are colored by cell types (TAC, IRS, hair shaft, and medulla) and pseudotime. b,
847 H3K4mel and H3K27ac ChlP-seq scores for linked peaks identified by TRIPOD, DORCs
848 (regulatory domains identified by gene-peak correlations), and randomly sampled peaks.
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849 ¢, TRIPOD’s linked peaks for four representative genes were significantly enriched in
850 previously annotated super-enhancers in the mouse TAC population. d, Trios detected
851 by TRIPOD that were active in IRS (top), medulla (middle), and hair shaft (bottom),
852 respectively. e, Dot plots of gene expressions, peak accessibilities, and TF expressions
853 across different cell types. f, Influence analyses identified segments along the
854  differentiation trajectory where the regulation took effect. The colors in the UMAP
855 embedding correspond to the smoothed p-values from a sampling-based approach. g,
856 DNA footprinting assays showed cell-type-specific enrichments of Tn5 integration events.
857  The findings were consistent with those from the influence analyses.

858

859 Table 1| Resources for validating peak-TF-gene regulatory relationship. While there
860 is no existing experimental approach to validate all three factors in a trio at high resolution
861  with high throughput, we resort to existing databases and orthogonal sequencing data to
862 validate peak-gene, peak-TF, and TF-gene pairs, completing the loop.

863
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lid: Datak /| Description O Tissue PMID GSE GSM URL
FANTOMS (HACER) Tissue-specific enhancer database Human  Blood cell lines 24670763 NA NA http://bioinfo.vanderbilt.edu/AE/HACER
4DGenome (HACER) Tissue-specific enhancer database Human  Blood cell lines 25788621 NA NA http://bioinfo.vanderbilt.edu/AE/HACER
EnhancerAtlas2.0 Tissue-specific enhancer database Human Blood cell lines 31740966 NA NA http://www.enhanceratlas.org
Peak-gene GTEx Tissue-specific cis -eQTLs Human  Whole blood 29022597 NA NA https://gtexportal.or,
Enhancer-promoter interactions by PLAC-seq (rep 1) . . GSM3819641 . .
PLAC- M Emb foreb t day 16.5 31695190 GSE130399 https:, .ncbi.nlm.nih.
seq Enhancer-promoter interactions by PLAC-seq (rep 2) ouse mbryonic Torebrain at day GSM3819642 RS: L WWW.NCDLOIM.NIN.EOV/BEO
Super-enhancer H3K4me1 and H3K27ac ChIP-seq Mouse Transnfar?pllfy}ng cell (TAC) from 25799994 GSE61316 G5M1502001 https://www.ncbi.nlm.nih.gov/geo
mouse hair follicle GSM1502003
Cistrome :c‘:;iiE;Tir:;It:lfaotrai:l:ljsn:!g:z:::f)?sztln Human B lymphocyte, T lymphocyte, monocyte 27789702 Supplementary Table S2  http://cistrome.or;
Oligodendrocyte precursor cell (OPC) GSM1040156
Peak TF Olig2 ChIP-seq Rat Immature oligodendrocyte (iOL) 23332759 GSE42454 GSM1040157
Mature oligodendrocyte (mOL) GSM1040158 X .
TF ChIP-seq https://www.ncbi.nlm.nih.gov/geo
Neurog2 ChiP-seq Embryonic cerebral cortex at day 14.5 27600842 GSE63620 GSM1553880
Eomes ChiP-seq Mouse ryoni Y 14 GSM1553879
Tbrl ChiP-seq Embryonic whole cortex at day 15.5 27325115 GSE71384 GSM1833461
knockTF A database of human gene expres.slon profiles with Human  Blood cells 31598675 NA NA http://www.licpathway.net/KnockTF
T knockdown/knockout of transcription factors
-gene . X
hTFtarget A database of human transcription factors and their Human Blood cells 32858223 NA NA https://bio.tools/hTFtarget

targets

Table 1
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