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Abstract 1 

Epigenetic control of gene expression is highly cell-type- and context-specific. Yet, 2 

despite its complexity, gene regulatory logic can be broken down into modular 3 

components consisting of a transcription factor (TF) activating or repressing the 4 

expression of a target gene through its binding to a cis-regulatory region. Recent 5 

advances in joint profiling of transcription and chromatin accessibility with single-cell 6 

resolution offer unprecedented opportunities to interrogate such regulatory logic. Here, 7 

we propose a nonparametric approach, TRIPOD, to detect and characterize three-way 8 

relationships between a TF, its target gene, and the accessibility of the TF’s binding site, 9 

using single-cell RNA and ATAC multiomic data. We apply TRIPOD to interrogate cell-10 

type-specific regulatory logic in peripheral blood mononuclear cells and contrast our 11 

results to detections from enhancer databases, cis-eQTL studies, ChIP-seq experiments, 12 

and TF knockdown/knockout studies. We then apply TRIPOD to mouse embryonic brain 13 

data during neurogenesis and gliogenesis and identified known and novel putative 14 

regulatory relationships, validated by ChIP-seq and PLAC-seq. Finally, we demonstrate 15 

TRIPOD on SHARE-seq data of differentiating mouse hair follicle cells and identify 16 

lineage-specific regulation supported by histone marks for gene activation and super-17 

enhancer annotations. 18 

 19 

Keywords: single-cell multiomics, transcriptional regulation, transcription factor, 20 

chromatin accessibility.  21 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2021.09.22.461437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461437
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Context-specific regulation of gene transcription is central to cell identity and 22 

function in eukaryotes. Precision of transcriptional control is achieved through multitudes 23 

of transcription factors (TFs) that bind to the cis-regulatory regions of their target genes, 24 

dynamically modulating chromatin accessibility and recruiting transcription complexes in 25 

response to developmental and environmental cues1. Dissecting this regulatory logic is 26 

fundamental to our understanding of biological systems and our study of diseases. Over 27 

the past decades, molecular studies have elucidated the structure of TF complexes and 28 

provided mechanistic models into their function2. Methods based on high-throughput 29 

sequencing have enabled the genome-wide profiling of gene expression3, TF binding4, 30 

chromatin accessibility5, and 3D genome structure6. TF knockdown/knockout studies 31 

have also identified, en masse, their species-, tissue-, and context-specific target genes7. 32 

Concurrently, novel statistical approaches have allowed for more precise identification 33 

and modeling of TF binding sites8, and expression quantitative trait loci (eQTLs) 34 

databases now include associations that are tissue-specific9 and will soon be cell-type 35 

specific10. Yet, despite this tremendous progress, our understanding of gene regulatory 36 

logic is still rudimentary. When a TF activates or represses the expression of a gene 37 

through binding to a regulatory element in cis to the gene, we call such a relationship a 38 

regulatory trio. Despite its complexity, gene regulatory logic can be broken down into 39 

modular components consisting of such peak-TF-gene trios. In this paper, we focus on 40 

the identification of regulatory trios using multiomic experiments that jointly profile gene 41 

expression and chromatin accessibility at single-cell resolution. 42 

Single-cell RNA sequencing (scRNA-seq) and single-cell assay of transposase-43 

accessible chromatin sequencing (scATAC-seq), performed separately, have already 44 

generated detailed cell-type-specific profiles of gene expression and chromatin 45 

accessibility. When the two modalities are not measured in the same cells, the cells can 46 

be aligned by computational methods11, followed by association analyses of gene 47 

expression and peak accessibility. While these methods have been shown to align well-48 

differentiated cell types correctly, they often fail for cell populations consisting of transient 49 

and closely similar cell states. Additionally, the alignment of cells between scRNA-seq 50 

and scATAC-seq necessarily assumes a peak-gene relationship which is usually learned 51 

from other datasets. Then, the post-alignment association analysis is plagued by logical 52 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2021.09.22.461437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461437
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

circularity, as it is difficult to disentangle new findings from prior assumptions that underlie 53 

the initial cell alignment. 54 

Single-cell multiomic experiments that sequence the RNA and ATAC from the 55 

same cells directly enable joint modeling of a cell’s RNA expression and chromatin state, 56 

yet methods for the analysis of such data are still in their infancy. Almost all existing 57 

methods for detecting and characterizing regulatory relationships between TF, regulatory 58 

region, and target gene rely only on marginal relationships, i.e., associations between two 59 

of the three entities without conditioning on the third. For example, Signac12 and Ma et 60 

al.13 use marginal associations between peaks and genes to identify putative enhancer 61 

regions, while Signac12 and Seurat V414 link differentially expressed TFs to differentially 62 

accessible motifs across cell types. Such pairwise marginal associations are sometimes 63 

examined manually using low-dimensional embedding. One exception is PECA15, which 64 

uses a parametric model to characterize the joint four-way relationship between TF 65 

expression, regulatory site accessibility, chromatin remodeler expression, and target 66 

gene expression. Although PECA was designed to be applied to matched bulk 67 

transcriptomic and epigenomic data, such joint modeling concepts could potentially be 68 

very powerful for single-cell multiomic data. In this paper, we propose a nonparametric 69 

approach as an alternative to PECA’s parametric model, thus allowing for robustness and 70 

computational scalability. 71 

As we will show through examples, context-specific gene regulation, such as cell-72 

type-specific regulation, may be masked in marginal associations. For example, 73 

associations between a TF and its target gene may be apparent only conditional on the 74 

accessibility of its binding site. Or, associations between the accessibility of an enhancer 75 

and its target gene may be apparent only after accounting for the expression of certain 76 

transcription factors involved in, but not sufficient for, the remodeling of the enhancer 77 

region. The identification and characterization of such context-specific relationships are 78 

relevant, for example, in the interpretation of GWAS results, where marginal pairwise 79 

associations between ATAC peaks and gene expression have had limited success in 80 

linking disease-associated SNPs to genes16. 81 

We explore in this paper the use of higher-order models that interrogate conditional 82 

and three-way interaction relationships for the identification of regulatory trios. First, as 83 
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proof of principle, we show that a simple model that integrates TF expression with cis-84 

peak accessibility significantly improves gene expression prediction, as compared to a 85 

comparable model that utilizes peak accessibility alone. We present TRIPOD, a 86 

computational framework for transcription regulation interrogation through nonparametric 87 

partial association analysis of single-cell multiomic sequencing data. TRIPOD detects two 88 

types of trio relationships, which we call conditional level 1 and conditional level 2, through 89 

robust nonparametric tests that are easy to diagnose. TRIPOD’s nonparametric approach 90 

for the identification of conditional associations avoids assumptions of linearity of 91 

relationships and normality of errors, allowing for better adjustment for confounding. Thus, 92 

given a multiome experiment that measures RNA expression and chromatin accessibility 93 

for the same cells at single-cell resolution, TRIPOD outputs, for a list of transcription 94 

factors, their putative regulatory gene targets and the cis regions where they putatively 95 

bind to regulate each gene. This allows the prioritization of regulatory relationships for 96 

downstream analyses. We also develop a novel influence measure that allows the 97 

detection and visualization of cell states driving these regulatory relationships, applicable 98 

to data consisting of discrete cell types as well as continuous cell trajectories. 99 

We first apply TRIPOD to single-cell multiomic data of human peripheral blood 100 

mononuclear cells (PBMCs) and compare the regulatory trios detected to relationships 101 

detected through marginal associations. We show that the detections are coherent with 102 

the vast amounts of existing knowledge from enhancer databases, bulk cell-type-specific 103 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments, tissue-104 

specific TF knockdown/knockout studies, and cis-eQTL studies, but that conditional and 105 

marginal models identify different sets of relationships. We next apply TRIPOD to the 106 

interrogation of lineage-specific regulation in the developing mouse brain, where 107 

relationships detected by TRIPOD are compared against those derived from existing 108 

ChIP-seq and proximity ligation-assisted ChIP-seq (PLAC-seq) data. Here, TRIPOD 109 

identifies known trio relationships, as well as putative novel regulatory crosstalk between 110 

neuronal TFs and glial-lineage genes. We also apply TRIPOD to SHARE-seq data on 111 

mouse hair follicle cell differentiation to illustrate trio detection and influence analysis in 112 

data collected from different protocols. Through these analyses, we demonstrate how to 113 
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harness single-cell multiomic technologies in the study of gene regulation and how the 114 

data from these technologies corroborate and complement existing data. 115 

 116 

Results 117 

A simple interaction model between TF expression and peak accessibility improves 118 

RNA prediction. To motivate our methods, we start with a simple prediction-based 119 

analysis, comparable to that done by existing methods11. We benchmarked against: (i) 120 

Signac12 and Cicero17, which predict gene expression by the gene activity matrix derived 121 

from the sum of the ATAC reads in gene bodies and promoter regions; (ii) MAESTRO18, 122 

which predicts gene expression using a regulatory potential model that sums ATAC reads 123 

weighted based on existing gene annotations; and (iii) sci-CAR19, which predicts gene 124 

expression by a regularized regression on coverage of individual peaks nearby. We 125 

compared the predictions derived from these methods to that of a regularized regression 126 

model, where for predictors, peak accessibilities are replaced by products between peak 127 

accessibilities and TF expressions. Only peaks within a certain range of the gene’s 128 

transcription start site (TSS) and only interactions between TFs and peaks containing 129 

high-scoring binding motifs for the TFs are considered. We refer to this model as the 130 

peak-TF LASSO model. Since this model is prediction-based, we do not expect the peak-131 

TF pairs selected by LASSO to necessarily have a causal regulatory relationship to the 132 

gene. Comparing this model to (i)-(iii) allows us to assess whether the peak-TF interaction 133 

terms are informative for gene expression. To avoid overfitting, we performed out-of-fold 134 

prediction and adopted independent training and testing sets. See Methods for details. 135 

 We analyzed single-cell multiomic datasets from different human and mouse 136 

tissues generated by different platforms – PBMC by 10X Genomics, embryonic mouse 137 

brain by 10X Genomics, mouse skin by SHARE-seq13, and adult mouse brain by SNARE-138 

seq20. Data summaries are included in Supplementary Table 1; reduced dimensions via 139 

uniform manifold approximation and projection (UMAP)21 are shown in Fig. 1a and 140 

Supplementary Fig. 1, 2a. To mitigate the undesirable consequences of sparsity and 141 

stochasticity in the single-cell data, we clustered cells to form metacells14 and pooled 142 

gene expression and chromatin accessibility measurements within each metacell. 143 
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 Our results show that, across window sizes, the peak-TF LASSO model 144 

significantly improves prediction accuracy across the transcriptome (Fig.1b), with 145 

examples of specific genes shown in Fig. 1c. This improvement in prediction accuracy 146 

holds true when an independent dataset is used for validation (Supplementary Fig. 3). 147 

For the SNARE-seq data20, sequencing depth is substantially shallower (Supplementary 148 

Fig. 4), thus the improvement of the peak-TF LASSO model is diminished but still evident 149 

(Supplementary Fig. 2b). This demonstrates that the product of TF expression and peak 150 

accessibility significantly improves RNA prediction accuracy beyond simply using peak 151 

accessibility, offering strong empirical evidence of three-way interaction relationships 152 

between TF expression, peak accessibility, and target gene expression that can be 153 

extracted from such multiomic experiments. However, we will not rely on coefficients from 154 

the LASSO model to screen for such trios, as their significance is difficult to compute due 155 

to the hazards of post-selection inference22. Additionally, accessibility of peaks and 156 

expression of TF affecting the same gene are often highly correlated, in which case 157 

LASSO tends to select the few with the highest associations and ignore the rest. In such 158 

cases, we believe it is more desirable to report all trios. 159 

 160 

TRIPOD for the detection of peak-TF-gene trio regulatory relationships by single-161 

cell multiomic data. We propose TRIPOD, a nonparametric method that screens single-162 

cell RNA and ATAC multiomic data for conditional associations and three-way 163 

interactions between the expression of a TF 𝑡 , the accessibility of a peak region 164 

𝑝 containing the TF’s motif, and the expression of a putative target gene 𝑔 within a pre-165 

fixed distance of peak 𝑝 (Fig. 2a). Existing methods12-14 screen for marginal associations 166 

either between the TF and the peak or between the peak and the target gene. However, 167 

three-way relationships may be complex: When a TF binds to a cis-regulatory region to 168 

affect the expression of a gene, it can do so in multiple ways, leading to different patterns 169 

in the data. The TF could be directly responsible for opening the chromatin of the 170 

enhancer region, facilitating the binding of other TFs that recruit the RNA polymerase. In 171 

such cases, expression of the TF is likely to be marginally correlated with the accessibility 172 

of the enhancer region, but its correlation with the expression of the target gene may be 173 

masked due to confounding of other involved TFs. Alternatively, the TF may not be 174 
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directly responsible for chromatin remodeling but may bind to already accessible 175 

chromatin in recruiting other TFs or the RNA polymerase. In such cases, expression of 176 

the TF may not be highly correlated with the accessibility of the enhancer region or with 177 

the expression of the target gene. When marginal associations are masked, evidence for 178 

binding of the TF at the peak in the regulation of a gene can be inferred from partial 179 

associations: (i) with the peak open at a fixed accessibility, whether cells with higher TF 180 

expression have higher gene expression; and (ii) with the TF expression fixed at a value 181 

above a threshold, whether cells with higher peak accessibility have higher gene 182 

expression. To identify such conditional associations without making linearity 183 

assumptions on the marginal relationships, TRIPOD matches metacells by either their TF 184 

expressions or peak accessibilities (Fig. 2b): for each matched metacell pair, the variable 185 

being matched is controlled for, and differences between the pair in the other two 186 

variables are computed. Then, across pairs, the nonparametric Spearman’s test is used 187 

to assess the association between the difference in target gene expression Δ𝑌𝑔  and 188 

difference in the unmatched variable (i.e., Δ𝑌𝑡 if the cells were matched by 𝑋𝑝, or Δ𝑋𝑝 if 189 

the cells were matched by 𝑌𝑡). We call this the “conditional level 1 test.” 190 

For illustration, consider the metacell denoted by the black point in Fig. 2b: If we 191 

were to match by peak accessibility, this metacell would be matched to the metacell 192 

colored in red. We would then compute Δ𝑌𝑡, the difference between TF 𝑡 expressions of 193 

the matched pair. If we were to match by TF expression, the black dot would be matched 194 

to the metacell in green, and we would compute Δ𝑋𝑝, the difference in peak 𝑝 accessibility 195 

for this pair. In either case, we would compute Δ𝑌𝑔, the difference in gene 𝑔 expressions 196 

between the pair. We would then mask those metacell-pairs whose values, for the 197 

variable being matched, are too low (i.e., those pairs where the TF is off or the peak is 198 

closed). Then, Δ𝑋𝑝 or Δ𝑌𝑡, together with Δ𝑌𝑔, would be submitted for level 1 test. We call 199 

such a triplet of TF, peak, and target gene a “regulatory trio.” 200 

Even stronger evidence for a regulatory trio could be claimed if the degree of 201 

association between the pairwise differences depends on the matched variable. For 202 

example, we would tend to believe that TF 𝑡 binds to peak 𝑝 to regulate gene 𝑔 if, in cells 203 

with high expression of TF 𝑡, an increase in peak 𝑝 accessibility yields a much larger 204 

increase in gene 𝑔 expression, as compared to in cells with low expression of TF 𝑡. One 205 
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could screen for such interactions by matching by either TF 𝑡 or peak 𝑝 accessibility. 206 

TRIPOD screens for such interaction effects through a “conditional level 2 test”, which 207 

assesses the association between Δ𝑌𝑔 and the product of the matched variable with the 208 

difference in the unmatched variable, after taking partial residuals on the difference in the 209 

unmatched variable. In summary, TRIPOD categorizes each identified trio relationship as 210 

supported by marginal association, association between peak and gene conditioned on 211 

TF expression, and/or association between TF and gene conditioned on peak 212 

accessibility. The conditional relationships are further categorized to level 1 or level 2, 213 

with level 2 indicative of a stronger relationship exhibiting multiplicative interaction effects 214 

between TF expression and peak accessibility.  215 

For significant trios, TRIPOD further carries out a sampling-based influence 216 

analysis, where phenotypically contiguous sets of metacells are held out to measure their 217 

influence on the estimated coefficients. The corresponding cell types/states that lead to 218 

significant deviations from the null upon their removal have high influence scores, which 219 

can be used to identify cell types/states that drive a regulatory relationship. 220 

To highlight the differences between TRIPOD and existing methods based on 221 

marginal associations, we show two canonical examples (Supplementary Fig. 5) where 222 

the two approaches disagree. Fig. 2c outlines a significant trio detected by TRIPOD’s 223 

level 2 testing, yet the marginal peak-gene and TF-gene associations were insignificant. 224 

It turns out that a subset of cells with high peak accessibility {𝑋𝑝} have close-to-zero TF 225 

expressions {𝑌𝑡}, and, meanwhile, another subset of cells with high TF expressions {𝑌𝑡} 226 

have close-to-zero peak accessibilities {𝑋𝑝}. In these cells, either the peak is closed, or 227 

the TF is not expressed, and this leads to the target gene not being expressed, which 228 

masks the marginal associations. The high peak accessibility and TF expression in these 229 

cells, which act through other regulatory trios, cancel out when we consider the interaction 230 

{𝑋𝑝 × 𝑌𝑡}, leading to a significant interaction term detected by TRIPOD. Conversely, Fig. 231 

2d outlines another trio, whose marginal associations were significant, yet TRIPOD did 232 

not detect significant conditional associations from either level 1 or level 2 testing. In this 233 

case, with almost constant TF expression, the large difference in peak accessibility leads 234 

to a small difference in target gene expression. Meanwhile, the cells that drive the 235 

significantly positive correlation between {𝑌𝑔} and {𝑌𝑡} have almost zero values for {𝑋𝑝}. 236 
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Both observations suggest that this peak has little to do with the regulation of the target 237 

gene FGL2 by this specific TF MAFK. Notably, we do not claim that the significantly linked 238 

peaks and TFs through marginal association are false positives, but rather this specific 239 

trio is insignificant (i.e., the peak and TF may act through other TF and peak, respectively). 240 

In summary, TRIPOD puts peak-TF-gene trios into one unified model, complementing 241 

existing methods based on marginal associations and allowing for simultaneous 242 

identification of all three factors and prioritization of a different set of regulatory 243 

relationships. 244 

 245 

TRIPOD identifies three-way regulatory relationships in PBMCs with orthogonal 246 

validations. We first applied TRIPOD to identify regulatory trios in the 10k PBMC dataset. 247 

Cell-type labels for this dataset were transferred from a recently released CITE-seq 248 

reference of 162,000 PBMC cells measured with 228 antibodies14. After quality control, 249 

we kept 7790 cells from 14 cell types pooled into 80 metacells, 103,755 peaks, 14,508 250 

genes, and 342 TFs; the UMAP reduced dimensions are shown in Supplementary Fig. 251 

1a. Distribution of the number of peaks 100kb/200kb upstream and downstream of the 252 

TSS per gene, as well as distribution of the number of motifs per peak, are shown in 253 

Supplementary Fig. 6.  254 

As a proof of concept, we first illustrate two trios where the frameworks agree, 255 

identified by level 1 conditional testing (regulation of CCR7 by LEF1; Fig. 3a) and level 2 256 

interaction testing (regulation of GNLY by TBX21; Fig. 3b). From the influence analyses, 257 

TRIPOD identified B and T cells as the cell types where LEF1 regulates CCR7, and 258 

natural killer (NK) cells as the cell types where TBX21 regulates GNLY. These cell type-259 

specific regulatory relationships are corroborated by motif’s deviation scores using 260 

chromVAR23 (Fig. 3) and the enrichment of Tn5 integration events in the flanking regions 261 

using DNA footprinting analyses12 (Supplementary Fig. 7e). Unlike chromVar and DNA 262 

footprinting analyses, which only give genome-wide average enrichments, TRIPOD 263 

significantly enhances the resolution by identifying the specific cis-regulatory regions that 264 

the TFs bind for the regulation of target genes. 265 

Results from TRIPOD and marginal association tests overlap but, as expected, 266 

exhibit substantial differences (Supplementary Fig. 8). The previous section showed 267 
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example trios where the two frameworks disagree. Additionally, results from TRIPOD’s 268 

matching scheme and those from random matching also overlap but exhibit substantial 269 

differences, both on the global scale (Supplementary Fig. 9) and for each gene 270 

(Supplementary Fig. 10). Notably, for the two counterexamples discussed in the previous 271 

section, random matching could not identify the masked positive trio in Fig. 2c, yet it 272 

retained significance for the negative trio shown in Fig. 2d, in a similar fashion to marginal 273 

testing (Supplementary Fig. 11). Genome-wide 𝑝-value distributions from TRIPOD’s two 274 

levels of testing under the null with permuted peak accessibility and TF expression are 275 

shown in Supplementary Fig. 12, indicating that TRIPOD’s framework has good type I 276 

error control. A master output of significant associations with Bonferroni correction is 277 

shown in Supplementary Table 2, with scatterplots and pairwise correlations of genome-278 

wide p-values from different testing schemes shown in Supplementary Fig. 13. 279 

 To our best knowledge, no experimental technique can directly validate three-way 280 

regulatory relationships at high resolution with high throughput. Therefore, we performed 281 

validation and benchmarking by harnessing existing databases and orthogonal 282 

sequencing experiments that interrogate each pairwise relationship among the three 283 

factors (Table 1). The rationale is that true regulatory relationships should show 284 

enrichment in all three marginal relationships. Fig. 4a illustrates the extensive validation 285 

strategies that were undertaken. 286 

First, to validate the cis-linkage between peak region and target gene, we used the 287 

enhancer databases of blood and non-cancerous cells from FANTOM524 (from HACER25), 288 

4DGenome26 (from HACER25), and EnhancerAtlas 2.027, as well as cis-eQTLs in the 289 

whole blood reported by the GTEx consortium9. We collapsed TRIPOD’s trio calls into 290 

peak-gene relationships and benchmarked against Signac’s LinkPeaks12 on single cells 291 

and marginal association testing on metacells; for each target gene, we performed a 292 

hypergeometric test for enrichment of the peak-gene linkages in the regulatory databases 293 

and annotations (see Methods for details). For all four databases, TRIPOD’s 𝑝-values for 294 

enrichment are substantially significant (Fig. 4b). When stratified by the different levels of 295 

testing, TRIPOD’s level 1 and level 2 conditional testing returns more significant 296 

enrichment compared to linkPeaks and marginal associations; the most significant 297 

enrichment is from level 1 testing matching by TF expression, which is expected since 298 
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the “gold-standard” peak-gene relationship is directly captured by the level 1 testing 299 

without TF interaction (Supplementary Fig. 14a). Additionally, the unique sets of trio 300 

regulatory relationships identified by TRIPOD but not by random matching (which results 301 

in only marginally associated linkages) have significant enrichment, demonstrating the 302 

effectiveness of TRIPOD in identifying true trio relationships that complement existing 303 

methods based on marginal association testing (Supplementary Fig. 14b). 304 

 Second, to validate the TF-gene edge in the TRIPOD-identified trios, we referred 305 

to knockTF7, a TF knockdown/knockout gene expression database, and hTFtarget28, a 306 

database of known TF regulatory targets. Specifically, in knockTF, we found seven TF 307 

knockdown/knockout RNA-seq experiments in the peripheral blood category. For these 308 

TFs, we identified significantly linked genes by marginal association and by TRIPOD and 309 

found TRIPOD’s results to have significantly higher precision and recall (Fig. 4c); the 310 

improvement is robust to varying FDR thresholds (Supplementary Table 3). For hTFtarget, 311 

we obtained, for each highly variable gene, its blood-specific TFs, and calculated the 312 

gene-specific precision-recall rates – TRIPOD is more sensitive compared to marginal 313 

association testing, although both suffered from inflated “false positives,” which can also 314 

be due to the low sensitivity in the in silico calls by hTFtarget (Fig. 4d). Precision and 315 

recall rates with varying significance levels further confirm that TRIPOD has better 316 

agreement with existing TF knockdown/knockout data, in comparison to marginal 317 

association testing (Supplementary Fig. 15). 318 

 Third, to validate the TF-peak edge representing TF binding to peak regions, in 319 

addition to the DNA footprinting analysis shown in Supplementary Fig. 7e, we 320 

downloaded from the Cistrome portal29 non-cancerous ChIP-seq data from sorted human 321 

blood cells (B lymphocyte, T lymphocyte, and monocyte (Supplementary Table 4). The 322 

peaks identified by TRIPOD had a substantially higher percentage of overlap with the 323 

ChIP-seq peaks compared to the genome-wide baseline; TRIPOD’s performance is better 324 

than or on par with that from testing of marginal associations (Fig. 4e). Since ChIP-seq 325 

peaks reflect only TF binding, without consideration for the gene target of regulation, it is 326 

expected that it agrees well with marginal association test results, which are capturing 327 

such a universal relationship. 328 
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 In summary, existing databases and public data of different types from a wide 329 

range of studies extensively support each of the three pairwise links in the trios reported 330 

by TRIPOD, demonstrating its effectiveness in uncovering true regulatory relationships. 331 

 332 

TRIPOD identifies known and novel putative regulatory relationships during mouse 333 

embryonic brain development. We next applied TRIPOD to single-cell multiomic data 334 

of 5k mouse embryonic brain cells at day 18 by 10X Genomics. The cell type labels were 335 

transferred from an independent scRNA-seq reference30 using SAVERCAT31. We kept 336 

3,962 cells that had consistent transferred labels from seven major cell types: radial glia, 337 

neuroblast, GABAergic neuron, glutamatergic neuron, glioblast, oligodendrocyte, and 338 

Cajal−Retzius neuron (Supplementary Fig. 1b). We applied TRIPOD to 633 TFs, 1000 339 

highly variable genes, and ATAC peaks 200kb up/downstream of the genes’ TSSs.  340 

 On the genome-wide scale, the union of TRIPOD’s level 1 and 2 tests gave a larger 341 

number of unique peak-gene pairs and TF-gene pairs than LinkPeaks12 and marginal 342 

association testing, respectively (Supplementary Fig. 16a). To evaluate these results, we 343 

first examined whether the peak-gene links were enriched in previously reported 344 

enhancer-promoter chromatin contacts using PLAC-seq data of mouse fetal brain32 345 

(Table 1, Supplementary Fig. 16b). We observed that the regulatory links detected by 346 

both marginal association and TRIPOD showed significant enrichment in PLAC-seq 347 

contacts (Supplementary Fig. 16b). Importantly, TRIPOD detected sets of peak-gene 348 

pairs from trio relationships that were overlapping but distinct from the sets obtained by 349 

marginal association, and a substantial fraction of the links identified by TRIPOD but not 350 

by the marginal method were validated by PLAC-seq (Fig. 5a; Supplementary Fig. 16c). 351 

This suggests that TRIPOD identifies real regulatory relationships that complement those 352 

detected by existing methods. 353 

 We also note that the type of evidence that supports a regulatory relationship 354 

matters when compared to other types of experimental data. For example, PLAC-seq 355 

measures, for a fixed TF, the degree of promoter contacts in the TF-binding domains. 356 

Conceptually, the closest analog to this measurement in our model is level 1 association, 357 

conditioned on TF expression, between the motif-containing peak region and target gene 358 

expression. Thus, it is not surprising that this level 1 test matching by TF gives the most 359 
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significant enrichment (Supplementary Fig. 16b, 17a, 18a). However, detection by 360 

TRIPOD is pre-conditioned on the expression of the target gene at a high enough level, 361 

which is irrelevant to the PLAC-seq data. Thus, not all detections made by PLAC-seq are 362 

expected to be found by TRIPOD. 363 

To validate the links between TFs and peaks, we used publicly available ChIP-seq 364 

data for Olig233, Neurog234, Eomes34, and Tbr135, TFs that play key roles in embryonic 365 

brain development (Table 1). The Olig2 ChIP-seq data were generated in three types of 366 

rat cells, oligodendrocyte precursor cells (OPC), immature oligodendrocytes (iOL), and 367 

mature oligodendrocytes (mOL), while the Neurog2, Eomes, and Tbr1 ChIP-seq data 368 

were generated in mouse embryonic cerebral cortices (see Methods for details). When 369 

TF expression was matched, TF binding peaks identified by TRIPOD level 1 tests were 370 

significantly enriched in the TF ChIP-seq peaks across all datasets except for the Olig2 371 

ChIP-seq data of mature oligodendrocytes (mOL), which served as a negative control 372 

and had a substantially lower degree of enrichment (Supplementary Fig. 17, 18). 373 

Importantly, TRIPOD detected a substantial number of peak-TF pairs that were not 374 

detected through marginal associations but validated by ChIP-seq (Fig. 5b). 375 

 The validations and global benchmarking demonstrate TRIPOD’s effectiveness in 376 

finding real regulatory relationships. Next, we focused on a set of TFs known to play 377 

essential roles during mouse embryonic brain development. Specifically, we chose Pax6, 378 

Neurog2, Eomes, Neurod1, and Tbr1, major TFs mediating glutamatergic neurogenesis36, 379 

and Olig2, Sox10, Nkx2-2, Sox9, Nfia, and Ascl1, which initiate and mediate gliogenesis37; 380 

the known regulatory cascades are shown in Fig. 5c. Here, the up and downstream TFs 381 

in a link are used as the TF and the target gene in TRIPOD’s analysis, respectively, and 382 

we established a link if at least one of the TRIPOD tests returned a positive coefficient 383 

estimate with FDR-adjusted p-values less than 0.01 for at least one trio involving the pair 384 

of the TF and the target gene. TRIPOD’s level 1 and level 2 testing successfully captured 385 

five out of the seven known regulatory links (Fig. 5c, d, Supplementary Fig. 19, 20); 386 

interestingly, TRIPOD’s results also suggest substantial crosstalk between the two 387 

cascades, where neurogenesis-specific TFs activate gliogenesis-specific TFs (Fig. 5c, d). 388 

ChIP-seq data of Neurog2, Eomes, and Tbr1 supported four of the crosstalk links: 389 

regulation of Sox9 by Neurog2 and regulation of Nfia by Neurog2, Eomes, and Tbr1, 390 
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respectively (Supplementary Fig. 21). These crosstalk links that were validated by ChIP-391 

seq were also captured by conditional associations; two of them were captured by 392 

marginal associations (Supplementary Fig. 19). Thus, we think it is highly plausible that 393 

neurogenesis TFs activate gliogenesis genes at day 18 of embryonic mouse brain 394 

development, which is exactly when the switch is being made from neurogenesis to 395 

gliogenesis. To our best knowledge, these possible links between neurogenesis and 396 

gliogenesis pathways have not been systematically explored and thus warrant future 397 

investigation. Finally, for each of the neurogenesis and gliogenesis TFs, we performed a 398 

gene ontology (GO) analysis of their significantly linked target genes using DAVID38; the 399 

enriched terms were largely consistent with the regulatory functions of the TFs during 400 

neurogenesis and gliogenesis (Fig. 5e). Specifically, the mouse embryonic brain cells are 401 

collected during the transition phase between neurogenesis and gliogenesis, and the 402 

enriched terms contain oligodendrocyte differentiation and regulation of neuron 403 

differentiation, confirming TRIPOD’s calling results. Other terms, such as regulation of 404 

transcription and cell cycle, are enriched due to the transcriptional regulatory role of the 405 

TFs. 406 

 So far, we have taken advantage of the cross-cell-type variation to identify the trio 407 

regulatory relationships. To dissect cell-type-specific regulation, we next applied the 408 

influence analysis framework (see Methods for details) to the significant trios involving 409 

neurogenesis and gliogenesis TFs. For a given TF, the number of trios, for which a given 410 

cell type was influential (FDR < 0.01), is summarized in Fig. 5f, with details for specific 411 

example trios given in Supplementary Fig. 22. The analyses underpinned the cell types 412 

in which the transcriptional regulation was active, and, reassuringly, the neurogenesis 413 

and gliogenesis TFs have the most regulatory influence in neuroblasts and glioblasts, 414 

respectively. Additionally, Ascl1 is active in GABAergic neurons in addition to neuroblasts 415 

and glioblasts, consistent with its role as a GABAergic fate determinant39. Notably, the 416 

highly influential cell types that lead to the significant trios involving several neurogenesis-417 

specific TFs include not only neuroblast but also glioblast, supporting our previous 418 

findings on the crosstalk between the two cascades. Notably, these results are unlikely 419 

due to the given TFs being overexpressed in the corresponding highly influential cell types, 420 

since the influential cell types were not the same as the cell types where the TFs were 421 
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highly expressed (Fig. 5f, Supplementary Fig. 22, 23). Overall, TRIPOD allows fine 422 

characterization of cell-type- and cell-state-specific functions of the TFs during 423 

neurogenesis and gliogenesis. 424 

Using this dataset, we further examined how varying window sizes and different 425 

resolutions/constructions of metacells affect the model fitting results; this led to the 426 

following observations. First, incorporating peaks 100kb/200kb up/downstream of genes’ 427 

TSSs leads to consistent and significant enrichment of validated gene-peak pairs by 428 

PLAC-seq and peak-TF pairs by ChIP-seq, while narrowing the window size down to 50kb 429 

decreased the degree of enrichment (Supplementary Fig. 17). Second, the validation 430 

results were robust to changes in resolutions of the metacells (Supplementary Fig. 18), 431 

since TRIPOD does not require the metacells to truly represent distinct and non-432 

overlapping segments of the transcriptome space. 433 

 434 

TRIPOD infers lineage-specific regulatory relationships in differentiating mouse 435 

hair follicle cells. As a last example, we applied TRIPOD to SHARE-seq13 data 436 

(Supplementary Fig. 1c) of mouse hair follicle cells, consisting of four broadly defined cell 437 

types – transit-amplifying cells (TAC), inner root sheath (IRS), hair shaft, and medulla 438 

cells – along a differentiation trajectory. The cell-type labels were curated based on 439 

marker genes, TF motifs, and ATAC peaks from the original publication13; pseudotime 440 

was inferred using Palantir40 and overlaid on the cisTopic41 reduced dimensions of the 441 

ATAC domain. Cells were partitioned using both the pseudotime and the UMAP 442 

coordinates to construct metacells (Fig. 6a). Due to the low RNA coverage 443 

(Supplementary Fig. 4), we focused on 222 highly-expressed TFs, 794 highly expressed 444 

genes reported to have more than ten linked cis-regulatory peaks13, and peaks 100kb 445 

up/downstream of the genes’ TSSs. 446 

For validation, we used H3K4me1 and H3K27ac ChIP-seq data from an isolated 447 

mouse TAC population42 (Table 1). H3K4me1 and H3K27ac are markers for poised and 448 

active enhancers, respectively, and were used to benchmark TRIPOD’s linked peaks 449 

against previously reported domains of regulatory chromatin (DORCs)13, as well as 450 

randomly sampled peaks. The linked peaks by TRIPOD had higher scores for both 451 

H3K4me1 and H3K27ac than DORCs, the latter identified through marginal associations 452 
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(Fig. 6b). To further validate the regulatory effects of the linked peaks, we obtained 453 

previously characterized super-enhancers (SEs) in mouse TACs42. Target genes of the 454 

381 SEs were assigned based on the gene’s proximity to the SE, as well as the correlation 455 

between loss of the SE and loss of the gene transcription42. TRIPOD was able to 456 

successfully recapitulate the SE regions for the genes considered, with four examples 457 

shown in Fig. 6c, where significantly linked peaks mostly resided in the SEs. 458 

To demonstrate, Fig. 6d shows regulatory trios that are specific to the IRS lineage, 459 

the hair shaft lineage, and the medulla lineage (Supplementary Fig. 24). These trios also 460 

showed significant pairwise marginal associations (Fig. 6e), lending confidence that they 461 

are real. The cell types where the regulation happens were identified by influence analysis, 462 

for which the 𝑝-values were smoothed along the differentiation trajectory and overlaid on 463 

the UMAP embedding (Fig. 6f). DNA footprinting analyses surveyed the enrichment of 464 

Tn5 integration events surrounding the corresponding motif sites and showed cell-type-465 

specific enrichment (Fig. 6g), corroborating TRIPOD’s results. 466 

  467 

Discussion 468 

We have considered the detection of regulatory trios, consisting of a TF binding to a 469 

regulatory region to activate or repress the transcription of a nearby gene, using single-470 

cell RNA and ATAC multiomic sequencing data. The presented method, TRIPOD, is a 471 

new nonparametric approach that goes beyond marginal relationships to detect 472 

conditional associations and interactions on peak-TF-gene trios. We applied TRIPOD to 473 

three single-cell multiomic datasets from different species and protocols with extensive 474 

validations and benchmarks. We started our analyses with predicting gene expression 475 

from both peak accessibility and TF expression. Supervised frameworks have been 476 

proposed to predict gene expression from DNA accessibility43, and vice versa44, using 477 

matched bulk transcriptomic and epigenomic sequencing data. Blatti et al.45 showed that 478 

joint analysis of DNA accessibility, gene expression, and TF motif binding specificity 479 

allows reasonably good prediction of TF binding as measured by ChIP-seq. However, 480 

none of these methods incorporate TF expression. By selecting peaks near the genes’ 481 

TSSs and TFs with high motif scores in the selected peaks, we constructed biologically 482 
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meaningful peak-TF pairs as predictors and showed that such a mechanistic model 483 

significantly boosts the prediction accuracy of gene expression. 484 

We next considered the detection and significance assessment for individual peak-485 

TF-gene trios, comprehensively comparing our detections with those made by tissue- and 486 

cell-type-matched PLAC-seq and ChIP-seq experiments, by cis-eQTL and TF 487 

knockdown/knockout studies, and by those recorded in the main enhancer databases. 488 

The comparisons show that TRIPOD detections are substantially enriched for overlap 489 

with all of these experiments, and in most cases, improve upon the overlap achieved by 490 

existing methods. It is important to note that the recall rates in the comparisons to these 491 

experiments should only be interpreted as relative metrics and not as absolute measures 492 

of sensitivity. That is because each experiment measures a biological relationship that is 493 

associated but different from what we aim to recover from TRIPOD. For example, ChIP-494 

seq aims to capture all locations where the TF binds, regardless of which gene it is 495 

affecting, while TRIPOD aims to recover specific TF, enhancer, target gene trios. 496 

KnockTF and hTFtarget, on the other hand, aims to identify all genes whose expressions 497 

change when a TF is knocked out/down, which may not be genes that the TF directly 498 

regulates through binding. An experiment that perhaps comes closest to measuring what 499 

TRIPOD detects is PLAC-seq, which quantifies chromatin contacts anchored at genomic 500 

regions bound by specific proteins. In addition to ChIP-seq, we used PLAC-seq data to 501 

corroborate TRIPOD detections for the embryonic mouse brain data in Fig. 5a, 502 

Supplementary Fig. 16b, 17a, 18a. Here, the overlap is also far from 100%, as TRIPOD 503 

can only detect a PLAC-seq relationship if the expression of the target gene is high 504 

enough. Also, PLAC-seq cannot detect TRIPOD relationships unless the cis-region in 505 

question comes into direct contact with the promoter, which is not the only mechanism of 506 

gene regulation. For example, TF binding may change the local chromatin conformation 507 

as an insulator or may help recruit the binding of other TFs. Thus, it is expected that 508 

TRIPOD only recovers a small fraction of the signals identified by these experiments. For 509 

this reason, we choose to use the word “recall” rather than “sensitivity,” as we are using 510 

it as a metric of enrichment rather than as a measure of true positive rate. 511 

Our current study is limited in several ways. A study in Drosophila46 modeled motif 512 

binding specificities and chromatin accessibilities in bulk RNA and ATAC sequencing data 513 
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to predict the cooperative binding of pairs of TFs, using in vitro protein-protein binding 514 

experiments for validation. The detection of synergies between multiple TFs and peaks 515 

on the genome-wide scale and in a cell-type-specific manner needs further investigation. 516 

Additionally, while we have not differentiated between positive and negative regulation, 517 

TRIPOD reports both types of relationships and categorizes them by sign. While we 518 

describe the trios with a positive sign to be enhancers, it is not clear how to interpret the 519 

trios with negative signs, the latter having lower overlap with other benchmarking datasets. 520 

Transcription activation and repression have been active research areas in biology, with 521 

a lot yet unknown47. TRIPOD’s results provide potential targets for experimental follow-522 

up and detailed characterization. 523 

TRIPOD uses cell matching as a nonparametric method of computing conditional 524 

associations. One could, conceptually, match on more cell-level attributes in addition to 525 

transcription factor expression or peak level accessibility. For example, to recover true 526 

causal relationships, it seems tempting to match on more potential confounders, such as 527 

cell type. However, one should be careful in matching by additional covariates such as 528 

inferred cell type labels, as this could also reduce the signal. For example, condition-529 

specific regulation signals that are shared across multiple (but not all) cell types would be 530 

much reduced if we were to match on cell type. For specificity, TRIPOD relies on the 531 

careful curation of inputs to the regression (using only peaks that contain the TF motif 532 

and are close to the target gene), rather than matching on all possible confounders. 533 

Our analysis focused on three datasets where the RNA and ATAC modalities have 534 

sufficient depths of coverage. For the SHARE-seq data, the sequencing depth for RNA is 535 

very low, and thus we focused only on highly expressed genes and TFs (Fig. 6). For 536 

SNARE-seq data, whose coverage in both modalities is even lower, we focused on 537 

prediction models and not trio detection, where we saw only marginal improvement 538 

beyond existing methods20 (Supplementary Fig. 2b). For data where the coverage is even 539 

lower, e.g., PAIRED-seq, cross-modality metacells could not be stably formed, making 540 

such analyses impossible (Supplementary Table 1, Supplementary Fig. 4). With rapidly 541 

increasing sequencing capacity and technological advancement, TRIPOD, applied to 542 

more cells sequenced at higher depth, can uncover novel regulatory relationships at a 543 

finer resolution. With increased data resolution and cell numbers, it would then be 544 
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meaningful to explore beyond the three-way relationships characterized by TRIPOD to 545 

include higher-order models that can more realistically capture the complex regulatory 546 

relationships between enhancers, modules consisting of multiple transcription factors, 547 

and the transcription of the target gene. 548 

 549 

Methods 550 

Data input and construction of metacells. Denote 𝑋𝑖𝑝 as the peak accessibility for peak 551 

𝑝 (1 ≤ 𝑝 ≤ 𝑃) in cell 𝑖 (1 ≤ 𝑖 ≤ 𝑁), 𝑌𝑖𝑔  as the gene expression for gene 𝑔 (1 ≤ 𝑔 ≤ 𝐺), 552 

and 𝑌𝑖𝑡 as the TF expression for TF 𝑡 (1 ≤ 𝑡 ≤ 𝑇). The TF expression matrix is a subset 553 

of the gene expression matrix, and for single-cell multiomic data, the cell entries are 554 

matched. To mitigate the effect of ATAC sparsity48 and RNA expression stochasticity49, 555 

as a first step, TRIPOD performs cell-wise smoothing by pooling similar cells into 556 

“metacells.” This, by default, is performed using the weighted-nearest neighbor method 557 

by Seurat V414 to jointly reduce dimension and identify cell clusters/states across different 558 

modalities. In practice, the metacells can also be inferred using one modality – for 559 

example, RNA may better separate the different cell types30, and in other cases, 560 

chromatin accessibility may prime cells for differentiation13. For data normalization, we 561 

use sctransform50 and TF-IDF11 for scRNA-seq and scATAC-seq, respectively, followed 562 

by dimension reduction and clustering12. To account for peaks overlapping with other 563 

genes (Supplementary Fig. 6b), TRIPOD has the option to either remove the overlapped 564 

peaks or to adjust the peak accessibilities by the expressions of the overlapped genes, in 565 

a similar fashion to MAESTRO18. To reconstruct the RNA and ATAC features for the 566 

metacells, we take the sum of the integer-valued ATAC and RNA read counts across cells 567 

belonging to the metacells; library size is adjusted for both the RNA and ATAC domain 568 

by dividing all counts by a metacell-specific size factor (total read counts divided by 106). 569 

 For the analyses presented in the manuscript, position frequency matrices (PFM) 570 

were by default obtained from the JASPAR database51, and we used 633 and 107 pairs 571 

of TFs and motifs annotated in human and mouse, respectively. TRIPOD provides an 572 

option to use a more comprehensive set of motif annotations from the HOCOMOCO52 573 

database. TRIPOD also allows for a binding motif to be shared across multiple TFs, as 574 

well as user-defined and/or de novo motifs. We additionally examined the effects of 575 
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combining the accessibilities of ATAC peaks containing the TF binding sites within the 576 

window centered at the gene’s TSS and using the combined accessibility as input; we did 577 

not observe an improvement in model performance (Supplementary Fig. 25). 578 

 579 

RNA prediction by TF expression and peak accessibility. To predict RNA from ATAC, 580 

Signac12 and Cicero17 take the sum of peak accessibilities in gene bodies and promoter 581 

regions to construct a pseudo-gene activity matrix: 𝑌̂𝑖𝑔 = ∑ 𝑋𝑖𝑝𝑝∈𝐸𝑔
, where 𝐸𝑔 is the set of 582 

peaks within gene bodies and upstream regions of TSSs. Instead of directly taking the 583 

sum, MAESTRO18 adopts a “regulatory potential” model by taking the weighted sum of 584 

accessibilities across all nearby peaks: 𝑌̂𝑖𝑔 = ∑ 𝑤𝑝
𝑔

𝑋𝑖𝑝𝑝∈𝐸𝑔
, with weights {𝑤𝑝

𝑔
}  pre-585 

calculated based on existing gene annotations. Specifically, the method weighs peaks by 586 

exponential decay from TSS, sums all peaks on the given gene exons as if they are on 587 

the TSS, normalizes the sum by total exon lengths, and excludes the peaks from 588 

promoters and exons of nearby genes. The strategy to take the unweighted/weighted sum 589 

of accessibility as a proxy for expression has been adopted to align the RNA and ATAC 590 

modalities when scRNA-seq and scATAC-seq are sequenced in parallel from the same 591 

cell population but not the same cells11. For single-cell multiomic data, sci-CAR19 performs 592 

feature selection to identify cis-linked peaks via a LASSO regression: 𝑌𝑖𝑔 ~ ∑ 𝛽𝑝
𝑔

𝑋𝑖𝑝𝑝∈𝐸𝑔
, 593 

where an L1 regularization is imposed on 𝛽𝑝
𝑔
. Compared to MAESTRO, which pre-fixes 594 

the weights {𝑤𝑝
𝑔

}, {𝛽𝑝
𝑔

} are estimated from the data by regressing RNA against matched 595 

ATAC data. What we propose is a feature selection model involving both peak 596 

accessibility and TF expression: 𝑌𝑖𝑔 ~ ∑ ∑ 𝛽𝑝𝑡
𝑔

𝑋𝑖𝑝𝑌𝑖𝑡𝑡∈𝑓𝑝𝑝∈𝐸𝑔
, where 𝑓𝑝 contains the set of 597 

TFs with high-scoring binding motifs in peak 𝑝 inferred from the JASPAR database51. 598 

 599 

TRIPOD model and trio regulatory relationship. For a given target gene 𝑔, a peak 𝑝 600 

within a window centered at the gene’s TSS, and a TF 𝑡 whose binding motif is high-601 

scoring in the peak, TRIPOD infers the relationship between a regulatory trio (𝑝, 𝑡, 𝑔). 602 

TRIPOD focuses on one trio at a time and goes beyond the marginal associations to 603 

characterize the function 𝑌𝑔 = 𝑓(𝑋𝑝, 𝑌𝑡).  In what follows, we first describe TRIPOD’s 604 
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matching-based nonparametric approach and then describe a linear parametric approach, 605 

followed by a discussion on the connections and contrasts between the two approaches. 606 

 For each cell 𝑖 whose TF expression is above a threshold 𝛿 (we only carry out 607 

testing in cells that express the TF), we carry out a minimum distance pairwise cross-608 

match based on {𝑌𝑖𝑡|𝑌𝑖𝑡 > 𝛿}. Let {(𝑖𝑗 , 𝑖𝑗∗)} be the optimal matching, after throwing away 609 

those pairs that have |𝑌𝑖𝑗𝑡 − 𝑌𝑖𝑗∗𝑡| > 𝑒. For each pair 𝑗, 𝑖𝑗 and 𝑖𝑗∗ are two metacells with 610 

matched TF expression, for which we now observe two, possibly different, values 611 

{𝑋𝑖𝑗𝑝, 𝑋𝑖𝑗∗𝑝} for peak 𝑝, as well as two corresponding values {𝑌𝑖𝑗𝑔, 𝑌𝑖𝑗∗𝑔} for gene 𝑔. We 612 

then compute the following auxiliary differentials within each pair: 613 

Δ𝑋𝑗𝑝 = 𝑋𝑖𝑗𝑝 − 𝑋𝑖𝑗∗𝑝, 614 

Δ𝑌𝑗𝑔 = 𝑌𝑖𝑗𝑔 − 𝑌𝑖𝑗∗𝑔, 615 

as well as 616 

𝑌̅𝑗𝑡 = (𝑌𝑖𝑗𝑡 + 𝑌𝑖𝑗∗𝑡)/2. 617 

For level 1 testing of conditional association, we estimate 𝑟̂𝑝
𝑔

= 𝜌(𝛥𝑋𝑗𝑝,  𝛥𝑌𝑗𝑔), where 𝜌 is 618 

Spearman correlation, and test 𝐻1: 𝑟𝑝
𝑔

= 0. For level 2 testing of interaction, we perform a 619 

regression 𝛥𝑌𝑗𝑔 = 𝛼𝛥𝑋𝑗𝑝 + 𝛾𝑌̅𝑗𝑡 × 𝛥𝑋𝑗𝑝, set 𝛾̂𝑝𝑡  to be the least-squares solution for 𝛾, and 620 

test 𝐻2: 𝛾𝑝𝑡 = 0. For visualization of the model fitting, we take the partial residuals of 𝛥𝑌𝑗𝑔 621 

and 𝑌̅𝑗𝑡 × 𝛥𝑋𝑗𝑝 on 𝛥𝑋𝑗𝑝, respectively. Note that even though TF expression is not included 622 

in the model as a main term, it is controlled for (and not just in the linear sense) by the 623 

matching. Similarly, we can also perform this procedure matching by peak accessibility. 624 

As a summary, for level 1 testing of conditional association, we have: 625 

Match by 𝑌𝑡, 𝛼 = 𝜌(Δ𝑌𝑔, Δ𝑋𝑝), 626 

Match by 𝑋𝑝, 𝛽 = 𝜌(Δ𝑌𝑔,  Δ𝑌𝑡). 627 

For level 2 testing of (TF expression)×(peak accessibility) interaction effects, we have: 628 

Match by 𝑌𝑡, 𝛥𝑌𝑔 = 𝛼∗𝛥𝑋𝑝 + 𝛾1(𝑌̅𝑡 × 𝛥𝑋𝑝), 629 

Match by 𝑋𝑝, 𝛥𝑌𝑔 = 𝛽∗𝛥𝑌𝑡 + 𝛾2(𝑋̅𝑝 × 𝛥𝑌𝑡). 630 

To test for the conditional associations and interactions, we can also apply a 631 

parametric method, such as multiple linear regression: 632 

𝑌𝑔 = 𝜇 + 𝛼𝐿𝑋𝑝 + 𝛽𝐿𝑌𝑡 , 633 
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𝑌𝑔 = 𝜇 + 𝛼𝐿
∗𝑋𝑝 + 𝛽𝐿

∗𝑌𝑡 + 𝛾𝐿𝑋𝑝𝑌𝑡 . 634 

See Supplementary Fig. 26 for linear testing results for trios shown in Fig. 3 and Fig. 6. 635 

The estimated coefficients from the nonparametric and parametric methods are 636 

correlated on the global scale (Supplementary Fig. 13, 27), and their interpretations are 637 

similar: 𝛼  and 𝛼𝐿  estimate the change in gene expression per change in peak 638 

accessibility, fixing TF expression; 𝛽 and 𝛽𝐿 estimate the change in gene expression per 639 

change in TF expression, fixing peak accessibility; 𝛾1 and 𝛾𝐿 measure how the change in 640 

gene expression per change in peak accessibility at each fixed TF expression relies on 641 

the TF expression; 𝛾2 and 𝛾𝐿 measure how the change in gene expression per change in 642 

TF expression at each fixed peak accessibility relies on the peak accessibility. However, 643 

the underlying models and assumptions are different. Matching controls for not just the 644 

linear variation in the matched variable, but also any nonlinear variation. This contrasts 645 

with adding the variable as a covariate in the linear regression, where we simply remove 646 

linear dependence. The main motivation for using the matching model above is our 647 

reluctance to assume the simple linear relationship. Additionally, we use the rank-based 648 

Spearman correlation, which will not be driven by outliers – a “bulk” association between 649 

ranks is needed for significance. Thus, the nonparametric model of TRIPOD is more 650 

stringent (Supplementary Fig. 28) and more robust to outliers.  651 

 652 

Identifying regulatory cell type(s) and cell state(s). For the significant trios detected 653 

by TRIPOD, we next seek to identify the underlying regulatory cell type(s). Specifically, 654 

we carry out a cell-type-specific influence analysis to identify cell types that are highly 655 

influential in driving the significance of the trio. Traditional approaches (e.g., the Cook’s 656 

distance and the DFFITs) delete observations one at a time, refit the model on remaining 657 

observations, and measure the difference in the predicted value from the full model and 658 

that from when the point is left out. While they can be readily applied to detect “influential” 659 

metacells one at a time (Supplementary Fig. 7a,b), these methods do not adjust for the 660 

degree of freedom properly when deleting different numbers of metacells from different 661 

cell types. That is, they do not account for the different numbers of observations that are 662 

simultaneously deleted. Additionally, both methods adopt a thresholding approach to 663 

determine significance, without returning 𝑝-values that are necessary for multiple testing 664 
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correction. We, therefore, develop a sampling-based approach to directly test for the 665 

influence of multiple metacells and to return 𝑝-values (Supplementary Fig. 7c). 666 

Here, we focus on the linear model for its ease of computation: 𝑌̂𝑔 = 𝜇̂ + 𝛼̂𝑋𝑝 +667 

𝛽̂𝑌𝑡 + 𝛾̂𝑋𝑝𝑌𝑡 . Given a set of observations 𝐼 = {𝑖: 𝑖th metacell belongs to a cell type},  we 668 

remove these metacells, fit the regression model, and make predictions: 𝑌̂𝑔
(𝐼)

= 𝜇̂(𝐼) +669 

𝛼̂(𝐼)𝑋𝑝 + 𝛽̂(𝐼)𝑌𝑡 + 𝛾̂(𝐼)𝑋𝑝𝑌𝑡 .  The test statistics are the difference in the fitted gene 670 

expressions |𝑌̂𝑔 − 𝑌̂𝑔
(𝐼)

|. We generate the null distribution via sampling. Specifically, within 671 

each sampling iteration, we sample without replacement the same number of metacells, 672 

denoted as a set of 𝐼∗, delete these observations, and refit the regression model on the 673 

remaining observations: 𝑌̂𝑔
(𝐼∗)

= 𝜇̂(𝐼∗) + 𝛼̂(𝐼∗)𝑋𝑝 + 𝛽̂(𝐼∗)𝑌𝑡 + 𝛾̂(𝐼∗)𝑋𝑝𝑌𝑡 .  The 𝑝 -value is 674 

computed across 𝐾  sampling iterations as 𝑝𝑌𝑔
= ∑ 1 (∑|𝑌̂𝑔 − 𝑌̂𝑔

(𝐼)
| ≥ ∑|𝑌̂𝑔 − 𝑌̂𝑔

(𝐼∗)
|)𝐼∗ 𝐾⁄ , 675 

where 1() is the indicator function. In addition to testing each cell type separately, the 676 

framework can be extended to test for the influence of cell-type groups. For example, in 677 

Fig. 3, we reconstruct the cell-type hierarchy using expression levels of highly variable 678 

genes from the RNA domain and carry out the aforementioned testing scheme at each 679 

split for its descendent cell types in the hierarchical structure. 680 

For transient cell states, TRIPOD first identifies the neighbors of each metacell 681 

along the trajectory and then carries out metacell-specific testing by simultaneously 682 

removing each metacell and its neighbors using the framework described above. The 683 

resulting 𝑝-values are, therefore, smoothed and can be visualized in the UMAP plot (Fig. 684 

6f and Supplementary Fig. 22) to identify the underlying branches/segments that are key 685 

in defining the significant regulatory trio. This approach can be directly applied to cells 686 

with branching dynamics without the need to isolate cell subsets or to identify cell types.  687 

 688 

Validation resources and strategies. Resources for validating the trio regulatory 689 

relationships are summarized in Table 1. To validate the peak-gene relationships, we 690 

referred to existing enhancer databases: FANTOM524 links enhancers and genes based 691 

on enhancer RNA expression; 4DGenome26 links enhancers and genes based on 692 

physical interactions using chromatin-looping data including 3C, 4C, 5C, ChIA-PET, and 693 
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Hi-C; EnhancerAtlas 2.027 reports enhancers using 12 high-throughput experimental 694 

methods including H3K4me1/H3K27ac ChIP-seq, Dnase-seq, ATAC-seq, and GRO-seq. 695 

We only focused on blood and non-cancerous cells from these databases (Fig. 4b). A list 696 

of cis-eQTLs within the whole blood mapped in European-American subjects was 697 

downloaded from the GTEx consortium9 (Fig. 4b). For the mouse embryonic brain dataset, 698 

we additionally adopted H3K4me3-mediated PLAC-seq data32, which reported enhancer-699 

promoter chromatin contacts mapped in mouse fetal forebrain (Fig. 5a, Supplementary 700 

Fig. 16b, 17a, 18a). For the mouse skin dataset, we adopted TAC-specific ChIP-seq data 701 

of H3K4me1 and H3K27ac42, markers for poised and active enhancers, respectively (Fig. 702 

6b); we also obtained previously reported super-enhancers in mouse TACs from in vivo 703 

studies42 (Fig. 6c). Genomic coordinates were lifted over from mm9 to mm10 when 704 

necessary. 705 

To validate the TF-gene relationships in the PBMC data, we utilized the knockTF7 706 

and the hTFtarget28 databases. knockTF interrogates the changes in gene expression 707 

profiles in TF knockdown/knockout experiments to link the TFs to their target genes in a 708 

tissue- or cell-type-specific manner. We downloaded 12 experiments, corresponding to 709 

12 TFs (BCL11A, ELK1, GATA3, JUN, MAF, MYB, NFATC3, NFKB1, STAT3, STAT6, 710 

TAL1, and ZNF148) in the peripheral blood category, and focused on seven TFs that 711 

have at least one linked gene by any model benchmarked (Fig. 4c; Supplementary Table 712 

3). hTFtarget computationally predicts TF-gene relationships using ChIP-seq data, and 713 

we manually downloaded the TFs associated with each of the top 100 highly variable 714 

genes in the blood tissue (Fig. 4d; Supplementary Fig. 15). 715 

For peak enrichment analysis compared to the existing enhancers, cis-eQTLs, and 716 

enhancer-promoter contacts, we carried out a hypergeometric test as follows. Let 𝑘 be 717 

the number of significantly linked peaks, 𝑞 be the number of significantly linked peaks that 718 

overlap with annotations (e.g., annotated enhancers), 𝑚 be the number of peaks that 719 

overlap with the annotations, and 𝑛 be the number of peaks that do not overlap with 720 

annotations. The 𝑝-value of enrichment is derived from the hypergeometric distribution 721 

using the cumulative distribution function, coded as phyper(q, m, n, k, lower.tail=F) in R. 722 

We used this hypothesis testing framework to validate and benchmark the reported peak-723 

gene links, with results shown in Fig. 4b.  724 
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To validate the peak-TF relationships, we downloaded non-cancerous cell-type-725 

specific ChIP-seq data of human blood (B lymphocyte, T lymphocyte, and monocyte) from 726 

the Cistrome29 portal for the PBMC data (Fig. 4e, Supplementary Table 4), and ChIP-seq 727 

data of Olig233, Neurog234, Eomes34, and Tbr135 for the mouse embryonic brain data. The 728 

Olig2 ChIP-seq data were generated in three types of rat cells: data from oligodendrocyte 729 

precursor cells (OPC) and immature oligodendrocytes (iOL) were used for validation, 730 

while data from mature oligodendrocytes (mOL) serve as a negative control33. Genomic 731 

coordinates were converted from rn4 to mm10. The Neurog2 and Eomes ChIP-seq data 732 

were generated in mouse embryonic cerebral cortices at day 14.534; the Tbr1 ChIP-seq 733 

data was generated in the whole cortex dissected from embryos at day 15.535. In addition, 734 

DNA footprinting signatures were corrected for Tn5 sequence insertion bias and stratified 735 

by cell types using the Signac package12 and can be used to validate the identified 736 

TFs/motifs in a cell-type-specific manner (Fig. 6g, Supplementary Fig. 7e). 737 

Hypergeometric tests for peak enrichment in TF binding sites by ChIP-seq were carried 738 

out (Supplementary Fig. 17b-d, 18b-d). The results presented in Fig. 4e were obtained in 739 

several steps: (i) we obtained sets of trios, for which B cells, T cells, and monocytes were 740 

significantly influential; (ii) we applied TRIPOD and took the union set of the significant 741 

trios; and (iii) we took the intersection between the trios obtained by the two types of 742 

analyses, collapsed the trios to TF-peak relationships, and computed the fraction of peaks 743 

overlapping ChIP-seq peaks. 744 

 745 

Data availability 746 

This study analyzed existing and publicly available single-cell RNA and ATAC multiomic 747 

data. 10X Genomics single-cell multiomic datasets of PBMC (10k and 3k) and mouse 748 

embryonic brain were downloaded https://support.10xgenomics.com/single-cell-749 

multiome-atac-gex/datasets. SNARE-seq data of adult mouse brain and SHARE-seq 750 

data of mouse skin are available from the Gene Expression Omnibus (GEO) database 751 

with accession numbers GSE126074 and GSE140203. A detailed data summary is 752 

provided in Supplementary Table 1. Validation resources based on existing databases 753 

and high-throughput sequencing data are summarized in Table 1 and Supplementary 754 

Table 4. 755 
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 756 

Code availability 757 

TRIPOD is compiled as an open-source R package available at 758 

https://github.com/yharigaya/TRIPOD. Scripts used for analyses carried out in this paper 759 

are deposited in the GitHub repository. 760 
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 779 

Figure Legends 780 

Fig. 1 | Interaction between TF expression and peak accessibility improves RNA 781 

prediction accuracy. a, UMAP embedding of 10x Genomics PBMC (left), 10x Genomics 782 

embryonic mouse brain (center), and SHARE-seq mouse skin (right) cells from single-783 

cell RNA and ATAC multiomic sequencing. Cell-type labels were transferred from existing 784 

single-cell references or curated based on marker genes, motifs, and peaks; metacells 785 

were constructed to mitigate sparsity and stochasticity. b, Genome-wide distributions of 786 
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Pearson correlations between observed and leave-one-out predicted RNA expression 787 

levels, with varying window sizes. Predictions are from gene activity, regulatory potential, 788 

peak LASSO regression, and peak-TF LASSO regression. c, Predicted and observed 789 

RNA expression levels for highly variable genes, CCR7, Adamts6, and Ano7, from the 790 

three datasets, respectively. 791 

 792 

Fig. 2 | TRIPOD infers peak-TF-gene trio regulatory relationships using single-cell 793 

multiomic data. a, Data input and schematic on a peak-TF-gene trio. b, Overview of 794 

TRIPOD for inferring regulatory relationships. TRIPOD complements existing methods 795 

based on marginal associations by identifying conditional associations through matching 796 

by TF expression or peak accessibility. c, An example trio identified by TRIPOD, but not 797 

by the marginal associations due to the heterogeneity of cell-type-specific regulations. d, 798 

An example trio identified by the marginal associations, but not by TRIPOD. The peak 799 

and TF are significantly linked to the gene, yet they act through other TF and peak, and 800 

thus the regulatory trio is insignificant. The points represent metacells (left two panels) 801 

and pairs of matched metacells (right two panels). Genomic coordinates for the peaks are 802 

from hg38. 803 

 804 

Fig. 3 | Examples of trio regulatory relationships in PBMC single-cell multiomic 805 

dataset. a-b, Example trios identified by TRIPOD. Violin plots show cell-type-specific 806 

distributions of gene expression, peak accessibility, and TF expression. Scatterplots show 807 

TRIPOD’s level 1 and level 2 testing, respectively. Inner and outer circles around the 808 

points are color-coded based on the cell types of the matched metacells. Hierarchical 809 

clustering is performed on RNA expression levels of highly variable genes. Red/gray 810 

circles indicate whether removal of the corresponding branches of metacells significantly 811 

changes the model fitting; crosses indicate that removal of the groups of metacells 812 

resulted in inestimable coefficients. Genomic coordinates for the peaks are from hg38. 813 

 814 

Fig. 4 | TRIPOD identified trio regulatory relationships in PBMC single-cell 815 

multiomic dataset supported by extensive validations. a, A schematic of validation 816 

strategies. Shown are external datasets and databases used to validate the links between 817 
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peak accessibility and target gene expression (peak-gene validation), those between 818 

peak accessibility and TF expression (peak-TF validation), and those between TF 819 

expression and target gene expression (TF-gene validation). b, Peak-gene validation 820 

based on enhancer databases (FANTOM5, 4DGenome, and EnhancerAtlas) and tissue-821 

specific cis-eQTL data from the GTEx Consortium. Box plots show distributions of 𝑝-822 

values from gene-specific hypergeometric tests. c, TF-gene validation based on lists of 823 

TF-gene pairs from the knockTF database. d, Precision and recall rates for TF-gene pairs 824 

using ground truths from the hTFtarget database. e, Peak-TF validation based on eight 825 

cell-type-specific TF ChIP-seq datasets (B lymphocytes, monocytes, and T lymphocytes). 826 

Fractions of significantly linked peaks and all peaks that overlap with the ChIP-seq peaks 827 

are shown. 828 

 829 

Fig. 5 | TRIPOD identified known and novel regulatory relationships during mouse 830 

embryonic brain development. a, Venn diagram of the number of peak-gene pairs 831 

captured by PLAC-seq, the marginal model, and the union set of TRIPOD’s level 1 and 832 

level 2 testing matching TF expression and peak accessibility. b, The same as a but for 833 

Peak-TF validation by ChIP-seq data for Olig2, Neurog2, Eomes, and Tbr1. c, A 834 

schematic of well-characterized TF regulatory cascades during neurogenesis and 835 

gliogenesis. d, Trio examples from known regulatory relationships, as well as from 836 

crosstalks supported by ChIP-seq data, captured by TRIPOD. e, GO analysis of putative 837 

target genes of the neurogenesis and gliogenesis TFs. The number of TRIPOD-identified 838 

target genes in the GO categories is shown. The background heatmap shows negative 839 

log 𝑝-values (FDR < 0.05) from hypergeometric tests examining enrichment of GO terms. 840 

f, Bar plots showing the number of putative cell-type-specific trios mediated by the 841 

neurogenesis- and gliogenesis-specific TFs. 842 

 843 

Fig. 6 | TRIPOD identified regulatory relationships in mouse hair follicles with 844 

transient cell states. a, UMAP embedding of hair follicle cells from the mouse skin data. 845 

Cells are colored by cell types (TAC, IRS, hair shaft, and medulla) and pseudotime. b, 846 

H3K4me1 and H3K27ac ChIP-seq scores for linked peaks identified by TRIPOD, DORCs 847 

(regulatory domains identified by gene-peak correlations), and randomly sampled peaks. 848 
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c, TRIPOD’s linked peaks for four representative genes were significantly enriched in 849 

previously annotated super-enhancers in the mouse TAC population. d, Trios detected 850 

by TRIPOD that were active in IRS (top), medulla (middle), and hair shaft (bottom), 851 

respectively. e, Dot plots of gene expressions, peak accessibilities, and TF expressions 852 

across different cell types. f, Influence analyses identified segments along the 853 

differentiation trajectory where the regulation took effect. The colors in the UMAP 854 

embedding correspond to the smoothed 𝑝-values from a sampling-based approach. g, 855 

DNA footprinting assays showed cell-type-specific enrichments of Tn5 integration events. 856 

The findings were consistent with those from the influence analyses.  857 

 858 

Table 1 | Resources for validating peak-TF-gene regulatory relationship. While there 859 

is no existing experimental approach to validate all three factors in a trio at high resolution 860 

with high throughput, we resort to existing databases and orthogonal sequencing data to 861 

validate peak-gene, peak-TF, and TF-gene pairs, completing the loop. 862 
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Validation Database/Resource Description Organism Tissue PMID GSE GSM URL
FANTOM5 (HACER) Tissue-specific enhancer database Human Blood cell lines 24670763 NA NA http://bioinfo.vanderbilt.edu/AE/HACER
4DGenome (HACER) Tissue-specific enhancer database Human Blood cell lines 25788621 NA NA http://bioinfo.vanderbilt.edu/AE/HACER
EnhancerAtlas2.0 Tissue-specific enhancer database Human Blood cell lines 31740966 NA NA http://www.enhanceratlas.org 
GTEx Tissue-specific cis -eQTLs Human Whole blood 29022597 NA NA https://gtexportal.org

Enhancer-promoter interactions by PLAC-seq (rep 1) GSM3819641
Enhancer-promoter interactions by PLAC-seq (rep 2) GSM3819642

Super-enhancer H3K4me1 and H3K27ac ChIP-seq Mouse Transit-amplifying cell (TAC) from 
mouse hair follicle

25799994 GSE61316 GSM1502001
GSM1502003

https://www.ncbi.nlm.nih.gov/geo

Cistrome A data portal for ChIP-Seq and chromatin 
accessibility data in human and mouse

Human B lymphocyte, T lymphocyte, monocyte 27789702 http://cistrome.org

Oligodendrocyte precursor cell (OPC) GSM1040156
Immature oligodendrocyte (iOL) GSM1040157
Mature oligodendrocyte (mOL) GSM1040158

Neurog2 ChIP-seq GSM1553880
Eomes ChIP-seq GSM1553879
Tbr1 ChIP-seq Embryonic whole cortex at day 15.5 27325115 GSE71384 GSM1833461

knockTF A database of human gene expression profiles with 
knockdown/knockout of transcription factors

Human Blood cells 31598675 NA NA http://www.licpathway.net/KnockTF

hTFtarget A database of human transcription factors and their 
targets

Human Blood cells 32858223 NA NA https://bio.tools/hTFtarget

Table 1

Embryonic forebrain at day 16.5 https://www.ncbi.nlm.nih.gov/geoGSE13039931695190Mouse

Supplementary Table S2

Rat GSE42454

https://www.ncbi.nlm.nih.gov/geo
GSE6362027600842

23332759

Embryonic cerebral cortex at day 14.5
Mouse

TF-gene

PLAC-seq

Olig2 ChIP-seq

TF ChIP-seq
Peak-TF

Peak-gene
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