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Slice-to-volume registration (SVR) methods allow reconstruction of high-resolution 3D
images from multiple motion-corrupted stacks. SVR-based pipelines have been increas-
ingly used for motion correction for T2-weighted fetal MRI since they allow more in-
formed and detailed diagnosis of brain and body anomalies including congenital heart
defects (Lloyd et al., 2019). Recently, fully automated rigid SVR reconstruction of the
fetal brain in the atlas space was achieved in (Salehi et al., |2019) that used convolu-
tional neural networks (CNNs) for segmentation and pose estimation. However, these
CNN-based methods have not yet been applied to the fetal trunk region. Meanwhile,
the existing rigid and deformable SVR (DSVR) solutions (Uus et al., [2020)) for the fetal
trunk region are limited by the requirement of manual input as well the narrow capture
range of the classical gradient descent based registration methods that cannot resolve
severe fetal motion frequently occurring at the early gestational age (GA). Furthermore,
in our experience, the conventional 2D slice-wise CNN-based brain masking solutions
are reportedly prone to errors that require manual corrections when applied on a wide
range of acquisition protocols or abnormal cases in clinical setting.

In this work, we propose a fully automated pipeline for reconstruction of the fe-
tal thorax region for 21-36 weeks GA range T2-weighted MRI datasets. It includes
3D CNN-based intra-uterine localisation of the fetal trunk and landmark-guided pose
estimation steps that allow automated DSVR reconstruction in the standard radiolog-
ical space irrespective of the fetal trunk position or the regional stack coverage. The
additional step for generation of the common template space and rejection of outliers
provides the means for automated exclusion of stacks affected by low image quality or
extreme motion. The pipeline was evaluated on a series of experiments including fetal
MRI datasets and simulated rotation motion. Furthermore, we performed a qualitative
assessment of the image reconstruction quality in terms of the definition of vascular
structures on 100 early (median 23.14 weeks) and late (median 31.79 weeks) GA group
MRI datasets covering 21 to 36 weeks GA range.

© 2022 Elsevier B. V. All rights reserved.
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1. Introduction

Since the emergence of fast acquisition sequences and ad-
vanced motion compensation techniques (Malamateniou et al.}
MRI has been gradually integrated into clinical practice
for imaging of fetal anomalies (Story and Rutherford, 2015}
Manganaro et al, 2018).

Single shot turbo spin echo (ssTSE) sequences allow acqui-
sition of each slice in less than a second, which minimises the
impact of fetal motion artefacts on image quality. However,
inter-slice fetal and maternal motion leads to loss of structural
continuity between slices and corruption of 3D volumetric in-
formation in 3D stacks.

Slice-to-volume registration (SVR) tools allow reconstruc-
tion of high-resolution isotropic 3D images of the fetal brain
(Gholipour et al} 2010; Rousseau et al 2010; Kuklisova|
[Murgasova et all, [2012) from multiple low-resolution motion
corrupted MRI stacks. The more recently proposed deformable

SVR (DSVR) method (Uus et al.,2020) designed for correction

of non-rigid motion has also been applied for reconstruction of

the fetal trunk (Davidson et al,[2021).

A. Motion corrupted low-resolution stacks acquired under different orientations

!

Fig. 1. An example of a fetal CMR dataset (30 weeks GA). A: Motion cor-
rupted low resolution stacks acquired under different orientations visu-
alised in the through plane view. B: The corresponding high-resolution
SVR-reconstructed fetal thorax and 3D segmentation of the heart and ves-

sels based on the pipeline proposed in (Lloyd et al., 2019).

Since 2018, rigid SVR (Kuklisova-Murgasova et al, 2012}
has been employed on regular basis for aver-
aged 3D reconstruction of the 3D fetal heart anatomy as a part
of the current clinical practice for diagnosis of fetal congeni-
tal heart disease (CHD) (Lloyd et al 2019, 2021) at Evelina
London Children’s Hospital with more than 300 reconstructions
performed since 2017. An example of a 30 weeks GA cardiac
MRI (CMR) dataset in Fig. [I| shows a set of motion corrupted
input stacks (in the through-plane view) and the corresponding
SVR-reconstructed 3D fetal thorax which allows detailed seg-
mentation of the heart and examination of fine vascular struc-
tures. The reconstructed images are clinically used for detailed
3D diagnosis of congenital anomalies of fetal cardiac vascu-
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lature, such as suspected coarctation of the aorta and right or
double aortic arch (Lloyd et al.|[2019).

However, at present, acceptable reconstruction quality can be
achieved primarily for the cohort of fetuses from the > 28 weeks
gestational age (GA) range. This limitation is caused by the
fact that the current SVR methodology (Kuklisova-Murgasoval
letal}[2012; [Kainz et al., [2015)) is based on classical registration
that cannot resolve large (> 45 — 90°) rotations and transla-
tions of the fetal trunk. Early GA cases are particularly prone
to large rotations and translations due to the amount of intra-
uterine space available for manoeuvre (e.g., see Fig. [3]B). For
instance, Fig.[2]demonstrates a 23 weeks GA dataset affected by
large rotations and translations of the fetus between the stacks
which led to failed SVR reconstruction of the thorax.

Fig. 2. An example of the global change of the fetal trunk (blue) and brain
(red) position between stacks during acquisition for an early (23 weeks)
GA case. This particular case was affected by severe motion with > 90°
rotations and this led to failed SVR reconstruction of the thorax.

In general, the degree of motion corruption and its sever-
ity varies between datasets. A major proportion of early GA
datasets can still be successfully reconstructed using classical
SVR or DSVR methods [2020) if there is a sufficient
number of stacks where the fetal trunk is in the same position
and only they are selected for the reconstruction. On the other
hand, some of late GA cases can also be affected by large rota-
tions due to polyhydramnios when there is too much amniotic
fluid around the fetus. The plot in Fig. [3]A shows the average
degree of rotation of the fetal thorax position between stacks
within individual datasets for randomly selected 40 early and
late GA datasets. There is a notable increase in the rotation
range for the early GA cases which confirms the limited appli-
cability of the classical SVR-based methods for this cohort.

This limitation was recently addressed for the fetal brain
by application of spatial transformer convolutional neural net-
works (CNN) networks for reorientation of individual 2D slices
to the standard radiological atlas space prior to reconstruction
(Hou et all, 2018}, [Salehi et all, 2019) as well as the already
reconstructed 3D volumes (Salehi et al.l 2019). However, this
approach has not yet been applied for motion correction in the
fetal trunk ROI. Contrary to the brain, in the fetal trunk ROI,
individual 2D slices do not have distinct features required for
precise and reliable reorientation to the atlas space. This con-
stitutes a challenge for application of the 2D approaches for
pose-estimation of the fetal trunk.

Automation of SVR reconstruction process is another im-
portant aspect of general usability and integration into clinical
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A. Average rotation of the thorax between stacks
within individual datasets for different GA range groups
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B. Examples of fetal MRI scans at different GA

Fig. 3. A. Comparison of the degree of the global fetal mobility during MRI
acquisition for 55 randomly selected datasets acquired at St. Thomas’s
Hospital and Evelina London Children’s Hospital using the same acquisi-
tion protocol: average rotation ranges for the fetal thorax ROI (region of
interest) between stacks within individual datasets. It includes < 25 weeks
GA early (red), 25-29 weeks GA (green), > 29 weeks GA late (blue) groups.
B. Examples of fetal MRI scans at 22 and 32 weeks GA.

practice. The classical SVR and DSVR methods require man-
ual masks and template stack selection as an input. The existing
most efficient solutions for automation of SVR proposed to use
2D CNN slice-wise segmentation for brain masking and intra-
uterine localisation (Salehi et al., 2018; |[Ebner et al., 2020).
However, in our experience, 2D segmentation often leads to
errors due to the insufficient context information or when the
object is not present in a stack due to partial coverage. There-
fore, the existing automated SVR pipelines reportedly require
manual editing and input in a certain proportion of cases. Fur-
thermore, in routine clinical practice, there are also expected
inter-site differences in acquisition protocols as well as the cov-
erage of the ROI in input MRI stacks. Full automation without
the need for manual inspection of stacks by an operator would
require robust localisation.

1.1. Related work

During the past decade, different implementations of rigid
SVR super-resolution (SR) reconstruction methods were pro-
posed for reconstruction of the fetal brain (Gholipour et al.,
2010; [Rousseau et al., [2010; |[Kuklisova-Murgasova et al., 2012
Kainz et al.| 2015} [Ebner et al., 2020). Based on the approxi-
mately rigid motion assumption within the rib cage, SVR was
also successfully applied for reconstruction of the averaged 3D

fetal heart anatomy (Lloyd et al., 2019). More recently, de-
formable SVR (Uus et al., 2020) showed to provide improved
reconstruction quality for the fetal trunk and placenta ROIs af-
fected by non-rigid motion.

Recently, the limited capture range of the classical registra-
tion methods was proposed to be addressed via fetal pose esti-
mation. In this case, the term pose estimation represents com-
putation of the transformation of the object (fetus) the 3D refer-
ence world space. The transformation can be retrieved by using
either regression or landmark detection approach widely used
in computer vision (Wang et al.||2021). The two major existing
solutions for the fetal brain pose estimation are based on regres-
sion (Hou et al., [2018; [Salehi et al.l 2019) convolutional neural
networks (CNN). They are used for prediction of position of
individual 2D slices in the atlas space and the outputs trans-
formations are then used to initialise the SVR reconstruction
pipelines. In (Wright et al., 2018), a Long Short-Term Mem-
ory (LSTM) network was used for rigid registration of motion-
corrected 3D MRI and ultrasound images of the fetal brain and
reorientation to the standard space. An alternative landmark-
based CNN approach was proposed in (Xu et al., | 2019) for pose
estimation of the whole fetus based on 15 keypoint landmarks
in low-resolution echo-planar imaging (EPI) stacks.

Recently, a series of CNN segmentation-based solutions
were proposed for fetal brain localisation and automation of
SVR reconstruction. These works employed a 2D UNet (Salehi
et al., 2018)), a 2D P-net (Ebner et al., 2020) or a 3D V-net for
ellipse brain model fitting (Cordero-Grandel et al.,|2019). The
2D output segmentations were then combined into 3D masks
and refined using morphological operations and passed to SVR
pipelines. In (Li et al.l 2020} [Fadida-Specktor et al., 2021}, a
3D UNet was successfully used for localisation of the whole
fetus in EPI and balanced turbo field echo stacks.

1.2. Contributions

In this work, we propose a fully automated pipeline for 3D
reconstruction of the fetal thorax in the atlas space from motion-
corrupted MRI stacks that can capture the full range of fetal mo-
tion. It is based on 3D CNN global localisation and landmark-
guided pose estimation that allows correction of large rotations
and translations that cannot be resolved by the classical regis-
tration methods. The additional step for generation of the com-
mon template space and rejection of outliers is used in order
to account for stacks affected by low image quality or extreme
motion. Furthermore, we employ DSVR (Uus et al., 2020) re-
construction rather than rigid SVR used in (Lloyd et al., 2019)
since it provides superior performance for the fetal thorax ROI
affected by non-rigid motion.

In addition to automation, this solution extends the applica-
tion of DSVR thorax reconstruction to early GA range cohort
that was not previously achievable due to the large rotation mo-
tion present in the early GA datasets. The pipeline is evaluated
on a series of experiments including both fetal MRI datasets
and simulated rotation motion experiments. The general im-
age reconstruction quality with respect to the acceptability for
anatomical interpretation is qualitatively evaluated in terms of
definition of cardiovascular structures on 100 early and late GA
MRI datasets from 21 to 36 weeks GA range.
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Proposed automated 3D DSVR thorax reconstruction pipeline

Motion- 1. Global 3D localisation of 1. landmark-based
corrupted stacks fetal brain and trunk; reorientation to the
of 2D slices Localisation of the landmarks atlas space

3D ROI landmarks

Reorientation to the atlas space

11l Selection of stacks; 3D high-
rejection of outliers; IV. 3D DSVR resolution
generation of the average reconstruction reconstructed

template and mask thorax volume

DSVR reconstruction 3D high-resolution image

Fig. 4. Proposed pipeline for automated DSVR reconstruction of the fetal thorax from motion-corrupted MRI stacks.

2. Methods

2.1. Overview of the algorithm

The proposed pipeline for automated DSVR fetal thorax re-
construction is presented in Fig.[d] In summary, at first, the fetal
trunk is globally localised in all stacks using a robust 3D CNN-
based segmentation and they are cropped to the trunk ROI. This
is followed by segmentation of the thorax, abdomen, heart and
liver ROIs and the corresponding centroid landmarks are used
for reorientation of all stacks to the standard radiological atlas
space. The reoriented stacks are then automatically analysed
in terms of similarity and degree of motion corruption in the
thorax ROI. Following exclusion of outliers, the template space
and the thorax mask are generated as a median average from
all preregistered input stacks and masks. The output files are
then passed to the standard DSVR reconstruction pipeline (Uus
et al.| 2020) that produces isotropic high-resolution 3D images.

2.2. Global 3D localisation

In clinical practice, acquired fetal MRI stacks cover differ-
ent ROIs such as the entire uterus, only the fetal brain or only
the trunk. This poses a general challenge to fully automated
intra-uterine localisation methods. The existing solutions for
localisation of fetal brain in MRI stacks employ 2D slice-wise
CNN-based segmentation in combination with morphological
operations (Salehi et al., [2018; [Ebner et al., |2020). Our experi-
ments showed that 2D UNet localisation of fetal trunk leads to
significant errors due to the insufficient context information in
individual 2D slices. A comparison of 2D vs. 3D UNet localisa-
tion trained on the same (30) datasets is given in Supplemental
Figure S1. Furthermore, the slices that contain only the periph-
eral parts of the fetal brain/trunk and do not have distinctive
structure or contrast. We found that the masks generated by
the 2D slice-wise approach pipelines are likely to require ad-
ditional post-processing, manual editing and a certain level of
direct quality control from an operator.

In this work, we propose to use a multi-label 3D UNet for
simultaneous segmentation-based localisation of the uterus, fe-
tal brain and trunk (Fig.[5) to account for the stacks where only
fetal brain or trunk are present and to avoid errors when mater-
nal structures outside the uterus have resemblance to the fetal

trunk components. The advantage of 3D multi-component seg-
mentation is the extensive structural information content as well
as the mutually exclusive property. In this work, we use only
the trunk label for further processing but the brain mask can
be potentially used for the whole fetus (head and trunk) recon-
struction.

3D UNet

MRI stack

Predicted Segmentation

e fe | [
> > [

y v vy v o

g’

Fig. 5. Multi-label 3D UNet network for 3D localisation of the fetal brain
(red), fetal trunk (blue) and uterus (lilac) in motion-corrupted 3D MRI
stacks.

We employ a classical 3D UNet (Cicek et al., [2016)) archi-
tecture with 5 encoding-decoding branches with 32, 64, 128,
256 and 512 channels, respectively. Each encoder block con-
sists of 2 repeated blocks of 3 x 3 X 3 convolutions (with a
stride of 1), instance normalisation (Ulyanov et al., 2016) and
LeakyReLU activations. The first two down-sampling blocks
contains a 2 X 2 X 2 average pooling layers, while the others use
2 x 2 x 2 max pooling layers. The decoder blocks have a simi-
lar architecture as the encoder blocks, followed by upsampling
layers. This choice of the pooling layers was primarily dictated
by the motion corrupted and blurred nature of the input images.
The model outputs an N-channel 3D image, corresponding to
our N = 4 classes: background, uterus, fetal brain and trunk.
The segmentation network is trained by minimizing a gener-
alised Dice loss (Sudre et al.| [2017) using the Adam optimizer
with the default parameters (8; = 0.9 and 3, = 0.999), learning
rate 0.002 and batch size 2.

As summarised in Fig. [6] following the 3D UNet segmenta-
tion step, the trunk labels are extracted with an additional mor-
phological filtering of the largest connected component.

2.3. Landmark-guided pose estimation

As mentioned before, correction of large rotations and trans-
lations of the fetal thorax within the same dataset cannot be re-
solved by the classical rigid registration and poses a particular
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Step I: 3D localisation of fetal brain and trunk in motion-corrupted stacks

Motion- 3D UNet Extraction of Cropped
corrupted segmentation of  trunk labels and pp
R stacks (trunk
stacks of 2D the uterus, fetal morphological
; ) N ROI)
slices trunk and brain filtering

Fig. 6. Proposed automated pipeline, Step I: 3D localisation of the uterus,
fetal brain and trunk in motion-corrupted stacks.

challenge for processing of the wider GA range MRI datasets.
Therefore, integration of the fetal trunk pose estimation step
into the pipeline and reorientation of all input stacks to the same
reference space is one of the requirements for robust reconstruc-
tion performance. In this work, we propose to perform global
reorientation of the 3D input stacks rather than 2D slice-wise
approach used in (Hou et al 2018 Salehi et al., [2019). This
allows incorporation of 3D spatial information and that min-
imises the errors for marginal 2D slices with not sufficiently
defined structural content.

In summary, the proposed fetal trunk pose estimation step
(Fig.|7) is based on automated detection of a set of ROI-specific
3D landmarks (similarly to (Xu et al., 2019)) within the fe-
tal trunk in each stack followed by point-based registration to
the atlas space. The output transformations represent the esti-
mated pose of the fetal trunk in the standard 3D space. The 3D
landmark-based solution is translation invariant and simultane-
ously corrects for both rotations and translations.

Step |l: landmark-based reorientation of 3D fetal trunk ROI to the atlas reference space

|. Segmentation of the
thorax, abdomen, heart
and liver

II. Calculation of mask

centroids (landmarks) —‘

IV. Applying Stacks
transformations to stack reoriented to the
headers standard space

Cropped stacks
(trunk ROI)

\‘ 111. Point-based
registration of stacks the

atlas space

Fig. 7. Proposed automated pipeline, Step II: landmark-based 3D fetal tho-
rax pose estimation and reorientation to the atlas space.

We selected centre points of the thorax, abdomen, heart and
liver ROI masks as the landmarks. These ROIs are easily iden-
tifiable in low-resolution MRI stacks (Fig.[8]A) and are present
in both normal and abnormal cases (e.g., missing stomach or
lung lesions). While there is an expected inter-subject variabil-
ity, the position and relative size and position of the selected
regions is stable across our target GA.

The ROI masks are extracted using the classical 3D UNet
(see architecture described in Sec. [2.2)) segmentation of the in-
put stacks cropped to the fetal trunk region. The cropping of
stacks is required because the inputs to the 3D network are re-
sampled to 128x128x128 grid that leads to loss of resolution for
small features for large coverage stacks. This is why we employ
hierarchical localisation approach.

The transformations to the standard radiological coordinate
system are computed using rigid point-based registration to the
same organ centre-point landmarks in the standard radiological

atlas space. These transformations represent the estimated fetal
pose in every stack.The registration step is performed for every
stack and the output rigid transformations are applied directly
to the NIfTT header orientation matrices reorienting (estimated
pose).

A. Stack in the original orientation with the segmented ROI-specific landmarks

B. 3D landmark ROl models before and after reorientation to the standard space

Original space Standard space

Point-based
registration
(estimated pose) blue — thorax

red — heart
brown — liver

yellow — abdomen

S ,M/
C. Stack after reorientation to the standard space

Fig. 8. An example of landmark-based reorientation to the atlas reference
space: (A) an original motion-corrupted stack in random orientation with
detected ROI-specific landmarks, (B) the corresponding 3D models in the
original orientation and after transformation to the standard space based
on point registration (pose estimation) and (C) the final reoriented stack.

However, taking into account the varying degree of motion
corruption and possible inaccuracies in 3D segmentation of the
landmarks, the output positions of the landmarks and transfor-
mations are not expected to be precise. We also cannot use
direct registration to the atlas due to expected inter-subject de-
viations from the atlas anatomy, especially for abnormal cases.
Thus, we introduce an additional rigid registration step which
is performed at the next stage of the pipeline.

2.4. Automated stack selection and template generation

Selection of the initial template for global registration di-
rectly defines the quality of reconstruction outputs (Kuklisova-
Murgasova et al., 2012} Uus et al.,|2020). Poor template quality
(due to either severe motion corruption or a ROI pose differ-
ent from the majority of stacks) is one of the common reasons
for failure of the classical SVR methods. The conventional ap-
proach for template selection implies manual inspection of all
input stacks by an operator.

At the next step of the proposed automated pipeline, the re-
oriented stacks are rigidly registered to each other for refine-
ment of the global landmark-based estimated pose transforma-
tions and automatically analysed in terms of the mutual simi-
larity and the degree of motion corruption. This is necessary
for selection of the most optimal common trunk position and
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generation of the robust average template and thorax mask re-
quired for reconstruction. This step also includes rejection of
outlier stacks, which may be affected by misregistration, severe
motion corruption, intensity artifacts or the absence of the fetal
trunk within the stack coverage.

Step lllI: selection of stacks, rejection of outliers, generation of template

II. Calculation of

Stacks I. Rigid registration of all stacks X
A motion
reoriented to masked to the the thorax ROI .
g corruption,
the standard to each other (refinement of
volume and
space the landmark output) A, .
similarity metrics

I1l. Selection of the
stack with the
highest mutual
similarity score

V. Rejection of outliers
based on volume, motion

corruption and similarity —‘

IV. Reorientation of
all stacks to the

selected best stack .
metrics

Selected reoriented
stacks, generated
template and thorax
mask

VII. Generation of
the average
thorax mask

\- VI. Generation of the
median template from

the selected stacks

Fig. 9. Proposed automated pipeline, Step III: selection of stacks, rejection
of outliers and template generation.

The pipeline summarised in Fig. [9] includes: (i) refinement
of pair-wise stack alignments by rigid registration of all pairs
of stacks (the thorax ROI only) initialised by the landmark-
based transformations; (ii) calculation of inter-slice motion-
corruption (Eq. [I), volume difference (Eq.[3) and mutual stack
similarity (Eq. [2) metrics; (iii) selection of the stack with the
highest quality and similarity scores Y. an) for definition
of the common reference space; (iv) reorientation of all stacks
to the stack with the highest mutual similarity; (v) rejection of
stack outliers based on the computed metrics; (vi) generation of
the median template from the selected reoriented stacks; (vii)
generation of the average thorax mask from the selected stack
masks.

For each individual stack (denoted by index i,
1, ..., Ngtacks) We compute the following metrics: the degree of
within-stack motion corruption Cg’gr, similarity with the rest of
the stacks Ciﬁn and deviation from the median thorax volume

I =

CSZI. These metrics are computed as:

(i)

Ny 1 ..
ijshlces NCCzD(],] + 1)

Clor = 5 e
Nslices -1
ZNsmcks NCCSD(I Vl)
c¥ = Zn=l ’ )
sim N, stacks
()
Cf,i(zl — ” thorax mask Vmedian” (3)

Vmedian

where NCC is normalised cross-correlation between sequential
2D slices or individual 3D stacks computed over a non-zero
overlapping region, Ng,cks is the number of stacks, N:{i)ces is the
number of slices in stack i and Viedian and Viporax mask are the
median and individual stack thorax mask volumes.

The corresponding stack inclusion criteria are as follows:

€Y. > 0.5 - max{Cl,} 4)
(@) (i)

Cm > 0.5 - max(Cy | 5)

CY < 40% (6)

These criteria ensure exclusion of misregistered and severely
motion-corrupted stacks as well as stacks with small mask vol-
umes (e.g., when the thorax is absent in the stack).

Following registration of stacks and analysis of the computed
metrics, all stacks are reoriented with respect to the stack with
the highest mutual stack similarity metric. Following rejection
of outliers, the final template and thorax mask are generated as
a median average of all remaining stacks.

2.5. DSVR reconstruction

As the final step, the selected reoriented stacks along with
the generated average template and the mask are passed to
the 3D reconstruction step, which is based on our earlier pro-
posed DSVR method. DSVR showed to outperform rigid SVR
(Kuklisova-Murgasova et al., [2012) for the fetal trunk ROI af-
fected by non-rigid motion such as bending and stretching. It
also includes the structure-based outlier rejection step that min-
imises the impact of misregistered or low image quality slices
on reconstruction results. The output of the reconstruction
pipeline is a 3D high-resolution (0.7mm) volume of the thorax
ROI in the standard radiological atlas space.

Step IV: 3D DSVR reconstruction of the thorax ROI in the atlas reference space

Selected reoriented
stacks, generated
template and thorax mask

3D high-resolution
reconstructed
thorax volume

3D DSVR
reconstruction

Fig. 10. Proposed automated pipeline, Step IV: 3D DSVR reconstruction of
the thorax ROIL.

3. Implementation

3.1. Input data requirements

The proposed DSVR-based reconstruction technique re-
quires a sufficient number of stacks in different orientations,
coverage of the fetal head and body ROIs. In the current imple-
mentation, the method is operational only for singleton preg-
nancies.

The ssTSE datasets used in this work have thin slices (
2.5mm slice thickness, see Sec.T), interleave slice order and
negative slice gap to achieve denser oversampling of the ROIL.
This acquisition protocol was optimised at St. Thomas’ Hospital
for imaging and SVR-based reconstruction of both fetal brain
and body during the past 5 years and is now used for all clinical
and research cases. Even though our acquisitions are performed
in this way, the methodology is not restricted to this acquisition
protocol. It is independent on the slice gap and acquisition or-
der (ascending or interleaved).
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For the protocols with interleaved (e.g., “even-odd”) slice ac-
quisition, input stacks should also be divided into individual
“packages” based on the slice acquisition order (e.g., 2 or 4)
prior to processing in order to minimise the global change of
the 3D fetal position within the stacks. In this case, we divided
the stacks into 4 packages with 5 mm slice gap. This step is
not required for widely employed clinical thick-slice acquisi-
tion format with ascending slice order.

Higher number of stacks and thin slices increase the degree of
oversampling of the region of interest and reportedly improves
the output image quality for SVR-based methods (Kuklisova-
Murgasova et al., [2012; Rubert et al., 2021)). In this case, we
identified 6 stacks (for the protocol in Sec[4.T)) as the minimum
for good quality visualisation of vascular structures for both mi-
nor and severe motion cases. An illustration of the general im-
pact of the number of stacks on DSVR reconstruction quality is
given in Supplemental Figure S2.

The proposed pipeline was designed and trained for black-
blood T2-weighted ssTSE datasets optimised for fetal body
imaging. And while the performance of DSVR reconstruction
is independent on the acquisition parameters, in this work, the
localisation networks were trained only on 1.5T datasets with
TE=80ms. Although the employed augmentation should po-
tentially partially resolve this limitation, this still might lead to
sub-optimal quality due to the differences in tissue contrast.

However, low image quality in terms of SNR levels and se-
vere B1 artefacts is another challenge that affects localisation
and reconstruction results and should be addressed separately,
either during acquisition or using suitable pre-processing tech-
niques. For the purpose of this work, we exclude datasets with
extremely low SNR or severe intensity artifacts.

3.2. 3D localisation and pose estimation

Software

In summary, the proposed pipeline includes three 3D CNN
modules: (i) 4 label 3D UNet for global localisation of fe-
tal trunk and brain (the two other labels are uterus and back-
ground); (ii) 3 label 3D UNet for segmentation of the marks
global fetal thorax and abdomen landmark (the third label is the
background); (iii) 3 label 3D UNet for segmentation of the in-
dividual fetal organ landmarks (heart, liver and the third label
is the background). The networks (ii) and (iii) were used to de-
fine the four landmarks used for reorientation of the stacks. We
selected this setup because it was robust for different GAs, in
presence of normal functional variation (e.g. variable presence
of fluid in the digestive tract, shape of the liver) as well as fetal
congenital abnormalities (such as diaphragmatic hernia or renal
anomalies).

In our implementation, we used two separate networks to
segmentation of the landmarks, one to segment thorax and ab-
domen, and the other for heart and liver. In order to account
for overlapping of the outputs, the heart and liver labels are
subtracted from the thorax and abdomen labels. This approach
produced very similar results to a single network with 4 land-
marks.

The networks were implemented in PyTorclﬂ based on the
classical 3D UNet architecture (Cicek et al.l [2016) with Tor-
chlO (Pérez-Garcia et al., [2020) augmentation. The employd
augmentations included: bias field, 360° rotations, motion arti-
facts. The selected 128 x 128 x 128 grid size due to the varying
ROI coverage in stacks and the size of the fetus with respect
maternal structures. All input stacks are resampled and padded
to this grid size prior to processing. The code is available online
at SVRTK Fetal MRI Segmentation repositoryﬂ

Training the network for global localisation of the fetus

For the global 3D localisation step, 32 fetal CMR CHD MRI
datasets from the 28-32 GA range were used for training (318
stacks) and 3 for validation (36 stacks). The uterus, brain and
trunk masks were created manually for one of the stacks within
each dataset and then propagated to the rest using rigid registra-
tion. All resulting masks were visually inspected and corrected,
when required. The training was performed for 800 epochs with
TorchlIO augmentation (textcolorbluerandom with 0.3 probabil-
ity: bias field, 360° rotations, noise, motion artifacts).

Training thorax and landmark segmentation networks

For the thorax, abdomen and organ (heart and liver) ROI seg-
mentation, 65 fetal MRI datasets with normal anatomy from
25 to 32 GA range were used for training and 5 for validation.
Rather than using the original motion-corrupted stacks, we used
3D DSVR reconstructed fetal trunk ROI images obtained from
a subset of cases from the outputs of (Uus et al.,2020) analysis.
The masks were created using label propagation from a gener-
ated average fetal trunk atlas followed by manual refinement,
if required. The training of the networks was performed for
500 epochs each with TorchlO augmentation (random with 0.3
probability: bias field, 360° rotations, anisotropy, noise, motion
artifacts).

3.3. Reorientation, stack selection and DSVR reconstruction

The landmark-based reorientation is based on the classical
3D point rigid registration method (Arun et al.| [1987)) imple-
mented using MIRTK library [ﬂ The reference point landmarks
were defined in the average fetal trunk atlas reoriented to the
standard radiological space.

The step for automated selection of the stacks for reconstruc-
tion and generation of the template was also implemented based
on MIRTK library and is available as a part of SVRTK packageE]
as stackselection function.

3.4. Software and hardware requirements

The full compiled pipeline will be available at the SVRTK
docker repository E] (fetal thorax tag) after publication of the
article.

2PyTorch: https://pytorch.org

3SVRTK fetal MRI segmentation repository: https://github.com/
SVRTK/Segmentation_FetalMRI

*MIRTK library: https://github.com/BioMedIA/MIRTK

SSVRTK toolbox: https://github.com/SVRTK/SVRTK

OSVRTK fetal thorax reconstruction docker (fetal_thorax tag): https://
hub.docker.com/repository/docker/fetalsvrtk/svrtk
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The recommended hardware configuration is 16 GB GPU,
32-64 GB RAM and 6-12 CPU cores. The total processing time
varies between 20 and 60 minutes depending on the ROI size
(defined by GA), number of stacks, input and output resolution
and system configuration.

4. Experiments and results

4.1. Fetal MRI data

The fetal MRI data used in this work include 85 datasets ac-
quired under the iFIN]ﬂ project at St. Thomas’s Hospital, Lon-
don [REC: 14/LO/1806] and 93 datasets acquired as a part of
the clinical fetal CHD CMR service at Evelina London Chil-
dren’s Hospital [REC: 07/H0707/105]. The datasets were col-
lected subject to the informed consent of the participants. The
inclusion criteria for the datasets were: singleton pregnancy, no
extreme SNR loss and > 6 input stacks.

The acquisitions were performed on a Philips Ingenia 1.5T
MRI system using the same protocol without any maternal se-
dation: ssTSE sequence with TR=15000ms, TE=80ms, voxel
size 1.25 x 1.25 x 2.5mm, slice thickness 2.5mm, slice spac-
ing 1.25mm and interleaved slice order. The stacks were ac-
quired under different orientations and different ROI coverage,
with 100-160 slices per stack, depending on GA and orienta-
tion. Each of the datasets contains 6-13 T2-weighted stacks
with minimum 4 different orientations and covering different
ROIs (whole uterus, brain or trunk only). This acquisition pro-
tocol was optimised at St.Thomas’ Hospital for both conven-
tional 2D fetal imaging and SVR-based reconstruction over the
past 5 years and is now used for all clinical and research cases.
The higher number of sliced (negative gap) increases the de-
gree of oversampling of the region of interest thus improving
definition of small features.

The experiments in Sections 4.6] were based on differ-
ent setups depending on the availability of the segmentations
for training. An additional description of how the datasets were
used for different parts of the quantitative and qualitative as-
sessment steps is given Supplemental Table ST1. For each of
the experiments we used separate datasets for training, valida-
tion and testing. The datasets used for quantitative evaluation
were not used in training or validation of the networks.

4.2. Automated global 3D localisation: fetal MRI datasets

The first step of the pipeline (Sec. 2.2 CNN module 1) for
global localisation of the fetal trunk in raw stacks was evaluated
on 16 fetal MRI datasets randomly selected from the early (8
cases, | 24 weeks) and late (8 cases, 28-33 weeks) GA cohorts.
Each of the datasets contains 9 - 13 stacks (with 164 stacks in
total) acquired under minimum 7 different orientations and with
different ROI coverage (uterus, brain+trunk or brain or trunk
only).

We compared localisation performance of the 3D multi-
(uterus + trunk + brain) and single- (trunkonly) label 3D UNet
cases respect to the fetal trunk label.

TiFIND project: https://www.ifindproject.com

For 8 late GA datasets for which we had ground truth la-
bels, the quantitative evaluation (for the fetal trunk ) included:
the centroid distance (d[mm]), the false positive rate (F PR) and
the manually graded localisation quality scores (LQS) defined
as {0-incorrect; 1-partially correct; 2-correct}, see Tabm The
high centroid distances and FPR values in the baseline 3D UNet
results correspond to wrong localisation outputs, while differ-
ences in small values are not informative, because the ground
truth (GT) masks are not precise and are affected by motion-
corruption. For the 8 early GA datasets, we performed LQS
evaluation. In this experiment, the uterus and brain labels are
not used for evaluation purposes but only to improve localisa-
tion by excluding external structures.

Table 1. Evaluation of the fetal trunk localisation quality of the multi-label
3D UNet in comparison to a single-label 3D UNet. The results are statisti-
cally significant with p < 0.01.

Metric [ 3D UNet (3 labels) | 3D UNet (1 label)
28-32 weeks GA datasets
dlmm] 6.75 + 4.68 18.17 + 26.38
FPR x 10° 0.154 £ 0.192 0.537 + 0.944
LOS 1.91 + 0.33 1.64 £0.75
< 24 weeks GA datasets
LOS | 188+£027 [ 1.50+0.70

The multi-label 3D UNet correctly localised the trunk in all
datasets (and nothing was detected in brain-only stacks where
the trunk was absent) and provided high localisation quality
scores. For late GA datasets, fetal trunk localisation using the
single label scenario failed in 16% of the cases, primarily in
the stacks where only the brain was present. For early GA
datasets, the localisation scores demonstrated that 3-label so-
lution also improved the performance and the trunk was cor-
rectly localised with only minor segmentation inconsistencies
(1.5 scores for slightly larger mask). For the single label case,
the trunk was incorrectly localised in the majority of the brain
only stacks (22%) leading to lower LQS.

This confirms the feasibility of the proposed multi-label
3D segmentation approach for automated SVR reconstruction
pipelines.

An example of the 3D trunk localisation results for two in-
vestigated scenarios is shown in Fig. [IT] for three stacks with
different ROI coverage. Both multiple- and single-label net-
works successfully localised the thorax in the whole uterus and
trunk-only stacks but the single-label 3D UNet failed in the case
of the brain only coverage.

4.3. Automated 3D pose estimation: localisation of landmarks

As a part of the pose estimation pipeline (Sec. [2.3), we per-
formed quantitative assessment of organ landmark localisation
on 50 randomly selected stacks covering fetal trunk from 50
different early and late GA datasets originally used for qualita-
tive evaluation (see Fig. [I7]B). Before analysis, the stacks were
cropped to the trunk ROI based on the output of global locali-
sation.

The reference ground truth labels (thorax, heart, stomach and
liver) were created using atlas-based label propagation followed
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A. Whole uterus ROI stack coverage

N
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- i 4 L of
1-label 3D UNet 3-label 3D UN

Fig. 11. An example of localisation results using multiple- (3) and single-
label 3D UNet in three stacks with different ROI coverage: the whole
uterus (A), trunk only (B), brain only (C). The segmentation outputs are
visualised as blue (trunk) and red (brain) overlays.

by manual refinement, if required. Comparison with the out-
puts from the networks (Ses. 3-2) shown in Fig. [[2JA-D was
performed based on Dice, sensitivity, specificity, centre-point
distance and localisation quality score.

The relatively average Dice results (varying between 0.75
and 0.85) are related to the fact that the imperfection of the orig-
inal input labels used for training and motion-corruption of the
input stacks. However, the high specificity and low centre-point
distance values confirm the high localisation quality scores. Vi-
sual assessment of results (LQS) showed that localisation suc-
cessful for all stacks and all labels with minor errors (addi-
tional) affecting thorax, liver and abdomen. A the same time
it did not produce extreme deviations in the compute centroid
distance with the maximum ~ 12mm error for the liver label
(primarily due to shape variability and similarity to the spleen),
which is still within the acceptable range for reorientation.

4.4. Automated 3D pose estimation: simulated experiment

In order to assess the capture range of the proposed pose esti-
mation approach (Sec.[2.3), we simulated rotations from whole
360 degrees range on 5 normal anatomy datasets from 29 - 32
week GA range without significant motion corruption. Each
dataset contains 7 stacks without significant SNR loss or inten-
sity and motion artifacts. All stack were cropped to the dilated
trunk mask and globally reoriented to the atlas space with the
origin set to zero.

At first, for each of these datasets, one of the stacks was se-
lected as a template and the remaining were additionally regis-
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Fig. 12. The results of organ localisation for 50 stacks from early and late
GA cohort (A-D). An example of reference (based on atlas label propaga-
tion) vs. network output for one of the early GA stacks is shown in (E).

tered to it to ensure that the thorax is exactly in the same posi-
tion.

Next, the rotation motion was simulated by rotating six
of the remaining stacks in X, Y and Z direction with the
same =+ angle. The following rotation angles were selected:
{0; 15;30; 45; 60; 75; 90; 105; 120; 180} degrees in order cover
the whole range and identify the limit of the classical rigid reg-
istration. An example of simulated rotations is given in Fig. [I3]

Next, for each of the datasets, we run registration of the
rotated stacks to the template using the following three ap-
proaches: (i) the classical gradient descent based rigid reg-
istration (from MIRTK package), (ii) the proposed auto-
mated landmark-based pose estimation approach (Sec. [2.3) and
(iii) the combination of the previous two methods with the
landmark-based output used for initialisation of the classical
rigid registration.

The graphs in Fig. [T4] show the average global 3D NCC be-
tween the template stack and transformed registered stacks in
the masked thorax ROI, calculated over all stacks in all datasets.
The drop in NCC values to almost zero for > 75 degrees
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Fig. 13. An example of simulated 30, 90 and 180 degrees rotations along
one axis applied to a stack cropped to the fetal trunk ROI. The displayed
landmark labels include: thorax (blue), heart (red), liver (brown) and ab-
domen (yellow).

Simulated rotation experiment: average 3D global NCC

between the template and all stacks vs. rotation degree
0.45

04 T
0.35
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025
g 02
0.15
0.1
0.05

0 °

0 15 30 45 60 75 90 105 120 135 150 165 180

rotation [degrees]

—e—Classical registration
—e— Automated landmark-based registration

Automated landmark-based + classical registration

Fig. 14. Simulated [0; 180] degrees range rotation experiment for compari-
son of the capture range of the classical rigid registration (red), automated
landmark-based solution (blue) and combination of the classical registra-
tion initialised with the automated output (yellow): average global 3D NCC
between the template and all transformed registered stacks in the masked
thorax ROL

rotations confirms the limited capture range of the classical
rigid registration method (red, average NCC = 0.243 + 0.207).
The consistent intermediate level of similarity for the purely
landmark-based output (blue, average NCC = 0.177 % 0.005)
with small standard deviation confirms that this method is
rotation-invariant and provides approximate global reorienta-
tion to the atlas space. The fact that the NCC values are lower
than the classical registration outputs for < 90 degree range in-
dicates that the alignment is not very accurate. This is caused by
differences in centre-point positions in segmented 3D landmark
ROIs.

Combination of these methods by initialisation of the clas-
sical regression-based registration with the global landmark-
based pose estimation provides a stable high quality solution
for the whole rotation range (yellow, NCC = 0.411 +0.083). At
the 90 - 180 degree range, the landmark-based approach out-
performs the classical rigid registration and the combined ap-
proach providing the best solution. The results are significant
with p < 0.001. At the remaining part of the range there is no
significant difference between the only classical and combined

registration approaches.

Therefore, in the proposed full reconstruction pipeline, addi-
tional registration to the common space is used as a part of the
stack selection step described in Sec.[2.4]

4.5. Automated DSVR reconstruction: severe motion datasets

The performance of the full proposed pipeline for automated
reconstruction was evaluated on 5 cases from 21 - 24 weeks
GA range and affected by severe motion with large rotations
and translations. For these cases the original SVR-based recon-
struction pipeline (Lloyd et all 2019) failed (e.g., see Fig. [2)
and the standard DSVR-based pipeline (Uus et al.| 2020) led
to exclusion of large (> 50%) proportion of slices that resulted
in low reconstruction quality. Each of the datasets contains 6
stacks acquired under different orientations with respect to the
uterus and the fetus. Prior to processing, all stacks were divided
into four packages (groups of slices acquired consecutively and
covering the whole ROI) based on the interleaved slice acquisi-
tion order.

Table 2. Evaluation of the components of the proposed automated DSVR
reconstruction pipeline on 5 severe rotation and translation motion
datasets with respect to the % proportion of rejected slices and 2D NCC
between simulated and original slices in all stacks and only the excluded
stack. The investigated scenarios include: (i) Steps I+IV; (ii) Steps
I+I1+1V; (iii) full pipeline: Steps I+II+III+IV. The results are statistically
significant with p < 0.001 for comparison between (i) vs. (ii) and (iii) sce-
narios and with p < 0.01 for (ii) vs. (iii) comparison. Step I is thorax
localisation, Step II is reorientation to the atlas, Step III is stack selection
and average template generation and Step IV is DSVR reconstruction.

Scenario % of rejected all NCC excl. NCC
I+IvV 64.7+53% | 0.579 £0.058 | 0.550 +0.218
I+II+1V 51.6 £8.0% 0.728 £ 0.090 | 0.705 £ 0.105
[++1I+IV | 37.8+9.1 % | 0.834 +0.028 | 0.809 + 0.058

We investigated 3 scenarios for automated reconstruction
with different combinations of the pipeline components: (i) tho-
rax localisation only with the least motion-corrupted stack se-
lected as a template followed by DSVR (steps [+1V); (ii) reori-
entation of all stacks to the standard space with the least motion-
corrupted stack selected as a template followed by DSVR (steps
I+II+1V); (iii) full proposed pipeline (steps I+II+III+1V). In
scenarios (i) and (ii), the template stack was automatically se-
lected based only on the degree of motion corruption (NCC be-
tween sequential slices) similarly to the approach proposed in
(Kainz et al., |2015)). The results were quantitatively evaluated in
terms of the total proportion of excluded slices, average global
2D NCC between all simulated and original slices and average
2D NCC between the simulated and original slices of an ex-
cluded stack (similarly to the approach in [Uus et al.| (2020)).
The excluded stack was selected so that the thorax would be
in approximately the same position as in the template to make
sure that the main structures will be preserved and that it would
not be completely misaligned. We selected NCC between the
simulated and original slices for evaluation because registration
in DSVR pipeline is driven by normalised mutual information
metric.

The corresponding results presented in Tab. 2] show that ad-
dition of reorientation to the standard space (Step II) to the to
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localisation-only scenario (Step I) decreases the proportion of
the excluded slices which depends on the quality of registra-
tion and increases the average NCC between for all slices in
the dataset. It should be noted that the structure-based outlier
rejection in the standard DSVR method was already designed
for exclusion of the majority of misregistered slices and the
localisation-only pipeline (Step I) is operational even in the ex-
treme motion cases.

A. Rigid SVR

B. Steps I+IV

C. Steps I+lI+IlV  D. Steps I+lI+llI+IV

E. Change of the global fetal position in the input stacks

Fig. 15. An example of reconstruction results for an early GA (23 weeks)
dataset with 6 stacks affected by > 90 degrees rotation motion: (A) orig-
inal manual rigid SVR pipeline [2019), (B) Steps I+1V, (C)
Steps I+11+1V, (D) full pipeline with Steps I+II+III+IV. Note that all im-
ages were additionally aligned to the same space for visualisation purposes
(axial and coronal views). The global change of the fetal thorax (blue) po-
sition between the different input stacks in this dataset is shown in (E).

The main causes of excluded slices are related to the inten-
sity artefacts due to motion as well as misregistrations. Com-
plete exclusion of outliers ensures that the intensity and regis-
tration errors are not propagated into the reconstructed volumes.
But this also leads to the loss of information content required
for super-resolution reconstruction (lower NCC in the excluded
stack in scenarios I+IV and I+I11+IV).

The full pipeline with the stack selection and template gen-
eration components (Step III) resulted in the highest NCC val-
ues between the simulated and original slices. This step refined
global pose stack transformations (see. Sec. f.4) while defi-
nition of the common average template space provided more
stable initial registration target which led to the higher number
of included slices.

An illustration of reconstruction results for one of the early
GA datasets (23 weeks) affected by severe > 90 degrees rotation
and translation motion is presented in Fig. I3} In comparison to
the failed output (A) of the classical rigid SVR pipeline (Lloyd|
et all}, 2019} [Kuklisova-Murgasova et all, [2012), even without
reorientation, the automated DSVR pipeline could still recon-
struct the main anatomical features (B). However, this led to
rejection of a large proportion of slices (58.8%) and grainy un-

Quality grade 0

Quality grade 1 Quality grade 2 Quality grade 3

Overall image quality grade for the heart ROI:

0 Inadequate/ - not possible to visualise any of the vascular structures
failed - severe loss of structure, contrast or very low SNR
possible to delineate some structures but significant lack of detail
1 Poor
loss of contrast, structure or low SNR
2 Adequate/ possible to delineate most the vascular structures clearly
good - slight loss of contrast, structure or SNR
all vascular structures are clearly delineated
3 High Y

high contrast and SNR

Fig. 16. Fetal thorax reconstruction quality grading scheme for the heart
ROI based on the proposed fully automated DSVR pipeline along with the
examples from the early GA cohort.

stable texture, which made interpretation challenging. Addition
of the reorientation step (C) reduced the number of excluded
slices (38.7%) but the template was not optimally selected re-
sulting in a blurred image. Finally, the proposed step for se-
lection of stacks and generation of the average template (D)
improved definition of the fine vascular structures due to the
higher number of included slices (only 30.8% were excluded).

4.6. Qualitative evaluation: early and late GA datasets

The performance of the proposed pipeline was also qualita-
tively evaluated on 50 early GA datasets (< 24 weeks) from
healthy controls of the iFIND project and 50 late GA datasets
(= 30 weeks) from the clinical CMR practice where research
consent was obtained.

The early GA-specific cohort is particularly prone to large ro-
tations and translations that cannot be resolved by the classical
registration methods, which effectively limited the previous 3D
SVR fetal cardiac MRI study to primarily late GA (median ~ 32
weeks) cases (Lloyd et al.,[2019). Furthermore, one of the con-
ditions for a stable reconstruction of small vascular structures in
this subject group is the inclusion of all available image infor-
mation and minimisation of the proportion of excluded slices.

The selection criteria out of all available iFIND datasets
were: < 24 weeks GA, singleton pregnancies, similar acqui-
sition protocol (Sec@), more than 5 available stacks, and no
extreme SNR loss. The 50 late GA CHD CMR datasets (>
30 weeks) were selected randomly from the recent acquisitions
with the consent for research and no extreme SNR loss. The re-
constructions were performed using the full version of the pro-
posed automated pipeline with 0.7mm output isotropic resolu-
tion. The output 3D volumes were graded by a clinician trained
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A. Investigated early and late GA cohorts: 100 fetal MRI datasets
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Fig. 17. The results of qualitative assessment of fetal thorax reconstruc-
tion using the proposed automated DSVR pipeline: distribution of image
quality scores for 50 early (B) 50 late GA (C) fetal MRI datasets. The GA
distribution of the investigated datasets is presented in (A).

in fetal CMR in terms of both general image quality and visibil-
ity of the major cardiovascular structures essential for diagnosis
of a specific group of CHD (major vascular abnormalities). The
quality grading scheme (Fig.[T6) has four categories {0; 1; 2; 3}
with 0 corresponding to failed reconstruction, and 1, 2 and 3 to
poor, good/adequate and high image quality, correspondingly.
The datasets graded > 2 are considered to be acceptable for
detailed clinical assessment and interpretation of the specific
group of CHD (major vascular abnormalities) with all major
cardiovascular structures being clearly visible.

The histogram of the quality grades for the early GA cohort
presented in Fig. [[7|B shows that the majority of the grades
are within 2-3 range and therefore acceptable for interpretation,
with the average grade 2.16 + 0.68. The primary causes of the
low grades in 6 cases are related to significantly lower SNR lev-
els in the input stacks (low quality acquisition) in combination
with the small vessel size.

The histogram of the reconstruction image quality grades for
the late GA cohort is presented in Fig. [[7}C and nearly all
grades (apart from 1 case) are within 2-3 range and therefore
acceptable for interpretation with the average grade 2.60+0.53.
As expected, the proportion of the cases with the high image
quality score is higher than in the early GA cohort since the
size of the vessels in significantly larger with respect to the re-
construction resolution.

The distribution of the quality scores of the manual DSVR re-
construction for the same early GA cohort is given in Fig. [T8A.
It should be noted that, in this experiment, we only created the
manual masks and did not perform careful template selection
(like it was done in 2020)) but only chose the stacks
from the middle of the dataset. The automated method im-
proved the image quality in 36% of the cases and did not de-

B. Example of the proposed
automated vs. manual
reconstruction results of for a
severe motion early GA case
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Fig. 18. The results of qualitative assessment of fetal thorax reconstruc-
tion using the original manual DSVR for the early GA cohort (50 cases):
distribution of image quality scores (A) and an example of manual vs. au-
tomated reconstruction with different grades (B).

BB NN
o

o

number of cases

r

4
Proposed pipeline g Manual (Uus etal. 2020)

A. Severe motion early GA datasets

Lloyd et al.. 2019

Proposed pipeline

Fig. 19. An example of the proposed automated DSVR pipeline vs. the clas-
sical manual rigid SVR reconstruction (used for clinical studies in (Lloyd|
et al.} 2019)) for severe (A) and minor (B) rotation and translation motion
early GA (23 weeks) datasets.

crease the quality in any of the rest. The primary reasons for
the lower manual reconstruction results include the fact that the
template was chosen randomly (unlike the average in the pro-
posed solution) and the impact of large rotations. This led to
the lower degree of oversampling resulting the lower visibility
of the vessels or even a complete failure of reconstruction (e.g.,
Fig.[I8)B

In addition, Fig. [19)shows comparison of the outputs of the
proposed automated DSVR-based pipeline with the classical
manual rigid SVR reconstruction used in (Lloyd et all, [2019)
for a clinical study on two 23 weeks GA cases affected by se-
vere and minor rotations. The visual assessment of the results
shows the superior image quality and sharper features even for
the minor motion dataset.

The selected set of landmarks (Sec[2.3) is also operational for
the cases with pronounced anomalies that significantly change
the anatomy. Although it might required additional reorienta-
tion to the atlas space due to the shifted landmark positions. For
example, Supplemental Figure S3 demonstrates reconstruction
results for congenital diaphragmatic hernia. While the shifted
relative liver and heart positions led to slightly different orien-
tation of the output image the reconstruction quality is high.
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5. Discussion and limitations

Automation of 3D (D)SVR-based reconstruction process and
correction of extreme motion are reportedly the two major chal-
lenges in fetal MRI motion correction. And while the exist-
ing CNN-based solutions for the fetal brain (e.g., (Salehi et al.
2019)) already showed promising results, these methods have
not yet been applied to the fetal trunk ROI.

This work focused on development of a practical solution for
automated DSVR reconstruction of the fetal thorax combining
3D CNN-based intra-uterine localisation of the fetal trunk in
motion corrupted stack followed by automated reorientation of
the fetal thorax to the standard atlas space using 3D CNN seg-
mentation of a set or ROI-specific landmarks within the fetal
trunk. The reoriented stacks are then passed to the classical
DSVR reconstruction (Uus et al., [2020) with an additional au-
tomated stack selection and template generation steps based on
motion corruption and mutual stack similarity metrics.

We demonstrated that the proposed localisation pipeline
based on the multi-label 3D UNet provides robust 3D detec-
tion of the trunk even in stacks with partial fetal coverage.
The landmark-based solution is also efficient for global fetal
pose estimation and extends the rotation and translation cap-
ture range of the classical rigid registration. The proposed step
for automated generation of the template space and exclusion
of potentially misregistered or low image quality stacks also
showed to improve reconstruction quality.

In addition, the pipeline was qualitatively evaluated on 100
randomly selected fetal MRI datasets from 21 to 36 week GA
range in terms of the image quality acceptable for anatomical
interpretation of the major cardiovascular structures. The re-
sults showed that the majority of the early GA datasets (88%)
have good image quality with clearly defined most of the ma-
jor cardiovascular structures. The poor reconstruction quality
in the remaining proportion of cases is related to the low in-
put image quality in combination with the small vessel size at
this age range which emphasises the need for optimisation of
the super-resolution reconstruction step and correction of in-
tensity artefacts. The automated DSVR-based pipeline also
produced superior image quality in comparison to the con-
ventional manual rigid SVR-based approach even for minor
motion cases. In addition, the performed assessment of 50
late GA CMR cases showed high image reconstruction qual-
ity with well defined vascular structures. These results indicate
the potential feasibility to extend the application of 3D fetal
SVR/DSVR reconstruction-based CMR analysis to the wider
GA range which is currently primarily limited to the late GA
cases (Lloyd et al.| 2019) due to the extreme rotation motion
affecting young fetus datasets.

In terms of the limitations of the proposed solution, it should
be noted that the image quality and degree of motion corruption
directly affect segmentation and landmark estimation accuracy
with potential errors propagating to the registration step. There-
fore, the landmark-based approach is limited by the condition
that the individual fetal trunk structures should be identifiable in
all stacks. Comparison to the more traditional regression-based
fetal pose estimation methods (e.g., (Hou et al., 2018)) should
also be investigated since it might provide an alternative solu-

tion for severely motion-corrupted stacks. This is planned to be
addressed in our future work.

Other aspects such as low image quality (low SNR or inten-
sity artefacts) and different acquisition protocols would require
further training of the networks on a wider range of datasets
with different acquisition parameters and range of anomalies.

Although, both of the aforementioned limitations (errors in
registration or low image quality) can be resolved by rejection
of outliers this would still lead to loss to useful information re-
quired for reconstruction of fine vascular structures. In order to
minimise this loss of information, an optimal solution should
include advanced signal processing methods for reconstruction
of the datasets affected by low SNR or severe intensity artefacts.

Quantitative evaluation of the per-vessel image quality (in
addition to the qualitative study in Section {f.6) is a challeng-
ing step because there is no ground truth. It can be assessed
only with respect to visibility of individual extracardiac vascu-
lar structures (used in diagnosis in the current fetal 3D T2w
CMR protocol). The presented qualitative evaluation score re-
flects the opinion of the clinical experts in 3D fetal heart MRI
(Lloyd et al.,[2019).

6. Conclusions

In this work, we proposed and implemented a first fully
automated pipeline for robust DSVR reconstruction of high
resolution 3D fetal thorax images from motion-corrupted T2-
weighted MRI stacks. It based on CNN-based solutions for
automated localisation and pose estimation for correction of
large magnitude motion for the fetal trunk ROI, which was not
achievable before. Furthermore, the reconstruction process is
performed directly in the standard atlas space. The pipeline
was quantitatively evaluated on a series of fetal MRI datasets
and a simulated experiment. We also performed qualitative as-
sessment on 100 early and late GA fetal MRI datasets with the
image quality grading results suggesting the potential feasibil-
ity of using 3D automated DSVR reconstructions for clinical
interpretation of the major cardiovascular structures.
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