

ALGORITHMIC RECONSTRUCTION OF GBM NETWORK COMPLEXITY

Abicumaran Uthamacumaran¹ and Morgan Craig^{2,3,*}

¹Department of Physics, Concordia University, Montreal, Canada

²Sainte-Justine University Hospital Research Centre, Montreal, Canada

³Département de mathématiques et de statistique, Université de Montréal, Montreal, Canada

*Corresponding author: morgan.craig@umontreal.ca

Lead contact: morgan.craig@umontreal.ca

SUMMARY

Glioblastoma (GBM) is a complex disease that is difficult to treat. Establishing the complex genetic interactions regulating cell fate decisions in GBM can help to shed light on disease aggressivity and improved treatments. Networks and data science offer alternative approaches to classical bioinformatics pipelines to study gene expression patterns from single-cell datasets, helping to distinguish genes associated with control of differentiation and thus aggressivity. Here, we applied a host of data theoretic techniques, including clustering algorithms, Waddington landscape reconstruction, trajectory inference algorithms, and network approaches, to compare gene expression patterns between pediatric and adult GBM, and those of adult glioma-derived stem cells (GSCs) to identify the key molecular regulators of the complex networks driving GBM/GSC and predict their cell fate dynamics. Using these tools, we identified critical genes and transcription factors coordinating cell state transitions from stem-like to mature GBM phenotypes, including eight transcription factors (OLIG1/2, TAZ, GATA2, FOXG1, SOX6, SATB2, YY1) and four signaling genes (ATL3, MTSS1, EMP1, and TPT1) as clinically targetable novel putative function interactions differentiating pediatric and adult GBMs from adult GSCs. Our study provides strong evidence of the applicability of complex systems approaches for reverse-engineering gene networks from patient-derived single-cell datasets and inferring their complex dynamics, bolstering the search for new clinically relevant targets in GBM.

Keywords: Glioblastoma; Complex Systems; Networks; Data Science; Waddington Landscape Reconstruction; Computational Oncology; Pediatric Glioblastoma

1 **1. INTRODUCTION**

2

3 Glioblastoma (GBM) is the most lethal pediatric and adult brain tumour. Despite advances in
4 treatment, recurrence will occur in all GBM patients, and mean survival is only 15 months
5 (Alifieris and Trafalis, 2015). GBM is a morbid disease that is driven by a high degree of
6 heterogeneity and phenotypic plasticity in response to the interactions with their tumor
7 microenvironment (Jung et al., 2019). The cell fate transitions and cellular decision-making in
8 GBM cell populations are regulated by the dynamics of complex signaling networks (Suvà et al.,
9 2014; Jia et al., 2017). Recent advances linking single-cell datasets and computational
10 algorithms have improved our understanding of these complex networks and their orchestration
11 of cell fate decisions of GBM transcriptional states (phenotypes) (Jin et al., 2018; Iacono et al.,
12 2019). Despite this progress, quantitative approaches that reconstruct the information flow and
13 dynamics of these complex networks remain under-applied. Pediatric GBM exhibits molecular
14 patterns and collective behaviors which are fundamentally different from those of adult GBM
15 (Paugh et al., 2010; Jones et al., 2017; Schwartzenruber et al., 2012; Sturm et al., 2012). There
16 is a greater epigenetic burden in pediatric GBM marked by specific histone H3.3 modifications
17 and aberrant DNA methylation profiles (Schwartzenruber et al., 2012; Sturm et al., 2012; Lulla et
18 al., 2016; Harutyunyan et al., 2019). However, the complex signaling dynamics distinguishing
19 pediatric and adult GBM subgroups, and the similarities within the molecular networks driving
20 their cancer stemness, remain poorly investigated (Paugh et al., 2010; Jones et al., 2017).
21 Answering the question of whether the reconfiguration of these underlying signaling networks in
22 both GBM groups steers their cell fate dynamics would allow for the prediction of causal
23 patterns in the disease progression and therapeutic responses.

24

25 Glioma-derived stem cells (GSCs) are believed to be a small subset of GBM cancer cells that
26 largely contribute to emergent GBM adaptive behaviors such as phenotypic plasticity, clonal

27 heterogeneity, self-renewal, aggressiveness (resilience), relapse/recurrence, and therapy
28 resistance (Jung et al., 2019, Xiong et al., 2019). However, many different phenotypes in the
29 tumor microenvironment, including immune cells, healthy cells, extracellular matrices, and blood
30 vessels, form complex feedback loops with malignant GBM cells (Jung et al., 2019, Xiong et al.,
31 2019). GSCs form complex networks with their tumor microenvironment. Signaling dynamics
32 within this microenvironment and its reconfiguration govern the fitness and stemness of GSCs.
33 A lack of quantitative understanding of the causal mechanisms (gene expression patterns)
34 underlying GSC cell fate choices and transitions to their mature phenotypes hinders successful
35 clinical interventions in the treatment of GBM (Jung et al., 2019, Xiong et al., 2019; Yabo et al.,
36 2021).

37
38 Statistical approaches are traditionally used to study cell fate dynamics and infer complex
39 networks from large-scale single cell transcriptomics by differential expression analysis through
40 a combination of single cell data processing and clustering algorithms (Iacono et al., 2019).
41 However, these algorithmic pipelines are inadequate for capturing the complex patterns and
42 emergent behaviors of cancer network dynamics. Further, fundamental limitations associated
43 with the raw counts of the scRNA-Seq complicate the inference of networks in complex
44 diseases like GBM. These limitations include drop out events (zero counts), and the inherent
45 noise and sparsity of single cell data. To extract quantitatively meaningful differences between
46 GSC and GBM networks, while retaining the essential information representative of their
47 complex dynamics, requires tools from the interdisciplinary paradigm of *complex systems*
48 *theory*.

49
50 Complex systems theory, or complexity science, is the study of irreducible systems composed
51 of many interacting parts in which the systems exhibit emergent behaviors. Emergence denotes
52 systems in which the nonlinear interactions between the system and its environment give rise to

53 complex patterns and unpredicted collective dynamics (Wolfram, 1988; Shalizi, 2006). Some
54 general properties of complex systems include nonlinear dynamics, adaptive processes, self-
55 organized structures, interconnectedness, collective behaviors, pattern formation, fractality,
56 sudden phase-transitions, computational irreducibility, non-locality, long-term unpredictability,
57 undecidability and multi-scaled, multi-nested feedback loops (Wolfram, 1988; Shalizi, 2006).
58 The presence of multi-scaled feedback loops, in particular, is the defining feature of complex
59 networks (Thurner et al., 2018). Traditional reductionist approaches are inadequate to quantify
60 the properties and temporal behaviors of complex networks (Wolfram, 1988; Shalizi, 2006).
61 Complex systems theory advocates the use of computational algorithms and tools from network
62 science to dissect these complex networks (Thurner et al., 2018; Huang et al., 2009; Barabási
63 and Oltvai, 2004).

64
65 The molecular networks coordinating the emergence of GSC and GBM phenotypes are such
66 complex networks. To reveal the mechanisms underlying GSC cell fate decisions and
67 transitions to their mature GBM phenotypes, we deployed several approaches from complex
68 systems theory on data from single-cell RNA Sequencing (scRNA-Seq) count matrices. We
69 compared pediatric GBM to adult GBM to identify the signaling network patterns distinguishing
70 pediatric and adult GBM from GSCs. For this, we relied upon clustering algorithms, Waddington
71 landscape reconstruction, multivariate information theory, network science (graph theory), and
72 machine learning algorithms to map possible *cell fate dynamics* and identify robust expression
73 markers (critical TFs and genes) driving the complex networks underlying GBM/GSC cell fate
74 control and regulation. We found that distinct gene expression signatures regulate the cell fate
75 decisions in the GBM and GSC patient groups we studied. In particular, we identified a set of
76 key gene targets as master regulators of cell fate decision dynamics in all patient groups, and
77 the critical drivers of GSC stemness networks. Mapping their energy landscape dynamics and
78 cell fate trajectories in pseudotime (cellular transition dimension), we represented the GSC/GBM

79 cell fate decisions as dynamical systems which allowed us to identify genes such as GATA2,
80 FOXG1, SATB2, YY1, and SOX6, amidst others, as master regulators of information flow in
81 their signaling networks. Our results help to understand how cellular fate decisions in GBM,
82 identify potential drug targets for precision oncology, and provide a roadmap for data theoretic
83 approaches to other such complex systems.

84

85 **2. METHODS**

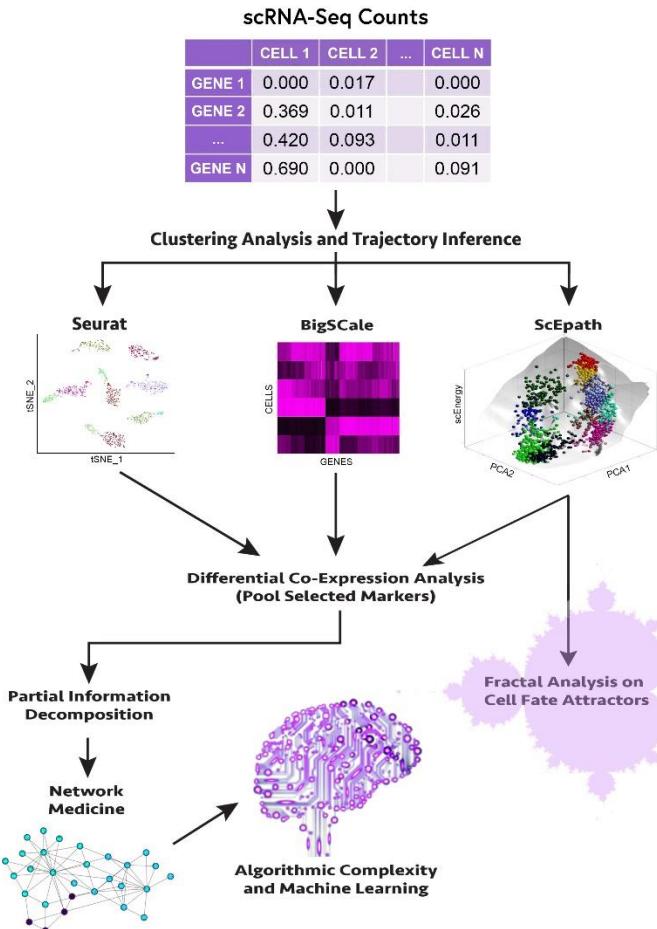
86 **2.1. General methodological framework**

87 To understand GBM network complexity, we integrated several pediatric and adult IDH-wt
88 GBM single-cell RNA-Seq (scRNA-Seq) datasets in an analytical pipeline that combines
89 several network reconstruction and analysis tools (see subsections below). Details of the
90 datasets used are provided in Table 1. Single-cell datasets were first filtered and normalized
91 in a quality control step, and patient samples were removed from the scRNA-Seq counts
92 expression matrix due to low unique molecular identifier (UMI)/high drop-out rates.

93

94 Next, gene expression matrices were analyzed independently using the various clustering
95 and trajectory inference algorithms discussed below. Here we provide a short summary
96 (Figure 1). For the Seurat algorithm, the top 10 principal component analysis (PCA) loadings
97 were used for the differential marker discovery; the top 25 PC loadings were used for the
98 BigScale analysis. To identify the differential markers expressed in all clusters, the top 10
99 markers within these PC loadings were pooled and analyzed on the UMAP/tSNE patterning
100 space of the cell fate clusters for each patient group. Similarly, the top 2 PCA loadings were
101 used by the scEpath pseudotime analysis. The normalized scRNA-Seq counts of the
102 discovered markers from the Seurat and BigScale algorithms were pooled together, and
103 separately analyzed for each patient group. The expression counts of these markers were
104 then run through the PIDC Network Inference algorithm to obtain gene receptor networks.

105 The differential transcription factors identified in the pseudotemporal progression heatmaps
106 were selected for scEpath analysis. Only the markers specific to each patient group were
107 selected for the PIDC network inference. Lastly, complex networks analysis was performed
108 on the reconstructed networks using transitivity and centrality scores to assess the network
109 structure and dynamics (information flow) to identify key regulators of GBM/GSC cell fate
110 decisions. Further, algorithmic complexity measures, as provided in the Supplementary
111 Material, were used to identify gene markers which could accurately discriminate the patient
112 groups by machine learning classifiers. Within the established gene networks, algorithmic
113 complexity was used to identify robust discriminants that could accurately distinguish the
114 three patient groups (i.e., pediatric GBM, adult GBM, and adult GSC), based on the
115 performance of machine learning classifiers on their algorithmic complexity scores (see
116 Supplementary Information).



117

118 **FIGURE 1. Workflow schematic of gene expression network pattern discovery.**
119 Flowchart summarizing the methodological approach to differential marker discovery and
120 cell fate dynamics inference (see Methods section 2.1).
121

122 **2.2. Single-cell datasets:** Gene expression matrices for pediatric GBM, adult GBM, and
123 adult GSC were obtained from the SingleCell Portal repositories from Neftel et al., 2019 and
124 Richards et al., 2021 (Table 1). Briefly, GBM patient samples from Neftel et al. (2019)
125 contained the single cell RNA-Seq counts of four phenotypes (or cellular states):
126 macrophages, malignant GBM cells, oligodendrocytes, and T-cells. Adult GSC consisted
127 only of stem cells. Overall, our dataset included 28 adult GSC datasets, 7 pediatric GBM,
128 and 18 adult GBM scRNA-Seq expression count matrices.

129

130 As a quality control measure for the Seurat and BigSCale clustering, two adult GBM
131 samples and one pediatric GBM sample were dropped in the filtering process (prior to
132 clustering) due to high zero-counts (i.e., low UMI). Importantly, we confirmed that our
133 findings were insensitive to the number of patient samples within each patient group:
134 including these removed samples did not change the differential expression analysis. To
135 further validate this finding, one sample was randomly chosen and dropped from the total
136 number of samples from each patient group to verify whether the clustering analysis
137 changed (i.e., leave-out-one cross-validation) and we confirmed the clustering results were
138 identical. Beyond 2500 cells, the computational time complexity of the scEpath algorithm
139 increased. Thus, the total cell counts of all three patient groups were kept at the maximum
140 computational threshold for the scEpath analysis (see Section 2.3.3). Further, to visualize
141 the cell fate attractor dynamics at the same fine-scale resolution for all patient groups, cell
142 counts were kept roughly the same for each GBM type. Selecting a different combination of
143 adult GSC samples did not change the scEpath landscape or results, as the trial of multiple
144 random selections (> 6 distinct combinations) reproduced identical results. A complete
145 description of the experimental approaches used to derive these datasets from their original
146 studies is provided in the Supplementary Information.

147

148 **2.3. Clustering techniques.** Clustering algorithms were used to identify differential markers
149 co-expressed within all patient groups and distinguish a robust network regulating the cell
150 fate dynamics across all phenotypes.

Patient Group	Single-Cell Dataset	# Patient Samples (n) and Single-Cells (N) for Seurat/BigSCale	# Patient Samples (n) and single-cells (N) for scEpath Analysis	# of Cell Fate Trajectories in scEpath Waddington Landscape
Pediatric GBM	Neftel et al. (18)	n = 7 N = 1850	n = 7 N= 1850	2

Adult GBM	Neftel et al. (18)	n = 18 N ~ 21,500	n = 7 N = 2221	4
Adult GSC	Richards et al. (19)	n = 28 N ~ 69, 000	n= 13 N = 1504	2

151 **TABLE 1. Summary of single-cell datasets.** The total number of patient samples (n) and
152 number of single-cells within each patient group (N) used for each step of the clustering and
153 single-cell trajectory inference process are shown.

154

155 **2.3.1. Seurat algorithm:** scRNA-Seq count matrices were pre-processed to obtain normalized
156 and binarized count expressions. Seurat initially performs a cluster analysis by principal
157 component analysis (PCA) dimensionality reduction followed by a graph-based
158 clustering (k-nearest neighbor (kNN) graph) based on the Euclidean distance of the 10
159 PCA loadings using the FindNeighbors function and Louvain community detection
160 algorithm (modularity optimization) using the FindClusters function (parameter can be
161 tuned between 0.4-1.2 for optimal results), to cluster cells by their Jaccard index-
162 expression similarity (see Seurat Clustering tutorial in GitHub code). All clustering
163 parameters were kept to their default settings. Next, the cells within the graph-based
164 clusters were visualized on Uniform Manifold Approximation and Projection (UMAP) or t-
165 Distributed Stochastic Neighbor Embedding (TSNE) space (i.e., unsupervised nonlinear
166 dimensionality reduction techniques) (Stuart et al., 2019). Differential markers from the
167 top 10 PCA loadings were visualized in UMAP space (analysis does not vary for TSNE
168 space) using the FindAllMarkers function with parameters: min.pct = 0.25 and
169 logfc.threshold = 0.25. We clustered similarly expressed cells together in the low
170 dimensional space by finding differentially expressed features/markers corresponding to
171 the highest ten PCA loadings in the graph-based clusters. To identify markers that
172 govern disease progression and transcriptional dynamics, we imposed the condition that
173 selected markers for the network reconstruction must be expressed in all clusters of the
174 three patient groups (pediatric GBM, adult GBM, and adult GSC).

175 **2.3.2. BigSCale algorithm:** BigSCale is a framework for clustering, phenotyping,
176 pseudotiming, and inferring gene regulatory and protein-protein interaction networks
177 from single-cell data (Iacono et al., 2019). A SingleCellExperiment class was created
178 from the scRNA-Seq raw count matrices for BigSCale processing, and counts were
179 replaced by z-scores. Cellular clustering was established by first computing all pairwise
180 cell distances using the Pearson correlation to generate a distance matrix. Following,
181 cells were assigned to cluster groups via the Ward's linkage/method (an agglomerative
182 hierarchical clustering algorithm). Iterative differential expression analysis was
183 performed between the clusters of cells and the differential markers within the identified
184 clusters were assessed using the getMarkers function (see BigSCale 2 tutorial in Github
185 code). The markers specific to a cluster were sorted from the highest (most significant)
186 to the lowest (least significant) z-score for the selection of cluster-specific differential and
187 co-expressed gene markers within the top 25 PCA components. A z-score threshold of
188 5.0 was used as a cut-off threshold while the min_ODscore parameter was kept default
189 at 2.33. This imposed cut-off acts as a filtering mechanism to retain only the markers
190 with significant expression changes per cluster. As in the Seurat analysis, we imposed
191 the condition that selected markers for the network reconstruction must be expressed in
192 all clusters of the three patient groups.

193
194 **2.3.3. ScEpath algorithm:** We applied single cell Energy path (scEpath) to reconstruct the 3D-
195 energy landscape of cells and infer regulatory relationships from their transcriptional
196 dynamics (Jin et al., 2018). scEpath is a Waddington Landscape reconstruction
197 algorithm with an unsupervised clustering framework for cell lineage hierarchy mapping
198 and studying the pseudotemporal transcriptional dynamics in cell fate decisions. In this
199 trajectory inference algorithm, information flow and network reconfiguration underlying
200 the cellular decision-making steer the topography of cell populations' energy landscapes

201 (also referred to as a cell fate landscape, attractor landscape, or Waddington's
202 epigenetic landscape (Waddington, 1957)). A cell state (cell fate) corresponds to a
203 specific transcriptional (gene expression) program and phenotype of a given cellular
204 population. Cell clusters higher on the energy landscape correspond to stem-cell like
205 states (unstable attractors) with higher differentiation potency, while cell states stuck in
206 lower energies (valleys, or stable attractors) correspond to differentiated (mature)
207 phenotypes with lower potency/plasticity (Figure 2).

208
209 scEpath allows for the visualization of cell fate transition probabilities in the population,
210 mapping of cell lineage trajectories in pseudotemporal ordering, and inference of cell
211 fate decisions from patient-derived scRNA-Seq datasets using the following steps: (i)
212 preprocessing of scRNA-seq count matrix, (ii) gene regulatory network (GRN) inference,
213 (iii) single cell energy (scEnergy) calculation, (iv) 3D energy landscape reconstruction via
214 principal component analysis and structural clustering; (v) Transition probabilities
215 calculation, (vi) Inference of cell lineage hierarchy via a probabilistic directed graph, (vii)
216 pseudotime trajectory inference and, (viii) downstream analyses of identifying critical
217 transcription factors (TFs) governing the cell-fate commitments (Jin et al., 2018). A
218 detailed description of the scEpath algorithm is provided in the Supplementary
219 Information.

220
221 To perform the scEpath analysis on our data, we first pre-processed the log-normalized
222 (within patient-groups) count matrices with respect to their gene expression values by
223 filtering out zero counts. The differential markers were selected from the first two
224 significant PCA components. We then ran the scEpath MATLAB code from (Jin et al,
225 2018) on these processed datasets. GSC patient samples BT127, BT48, and BT84 from
226 Richards et al. (2021) were used for all scEpath analyses on GSC. Seven pediatric GBM

227 samples from (Neftel et al., 2019) and seven adult GBM samples, selected to match the
228 cell count of the pediatric patient group, from (Neftel et al., 2019), were analyzed. We
229 confirmed that the number of patients did not influence the results and analysis by
230 selecting different random sets of adult GBM samples. We then ran energy
231 (Waddington) landscapes reconstruction on the following population sizes: pediatric
232 GBM: n= 7, N= 1850 cells; adult GBM: n = 7, N= 2221 cells; adult GSC: n=3, N=1504
233 cells.

234

235 scEpath smooths the average normalized expression of each gene using cubic
236 regression splines to map the pseudotemporal gene expression dynamics along the
237 inferred trajectories of the cell fates on the landscape, leading to smoothed gene
238 expression along a lineage path (Jin et al., 2018). Leveraging this, we inferred key
239 regulatory TFs for the cell fate differentiation by considering all PDG genes with a
240 standard deviation > 0.5 and a Bonferroni-corrected p-value below a significance level α
241 = 0.01 for the expression greater than a threshold (e.g., $\log_2(\text{fold-change}) > 1$). The
242 probabilistic-directed graph network and the cell lineage hierarchy inference parameters
243 were kept at default settings (quick_construct = 1; tau = 0.4; alpha = 0.01; theta1 = 0.8).
244 The pseudotime-dependent genes were identified using parameters sd_thresh = 0.5;
245 sig_thresh = 0.01; nboot (see hyperparameter-optimized code in GitHub link).

246

247 **2.3.4. Fractal and multifractal analysis:** We applied fractal analysis to quantify the
248 complexity of the phenotypic patterns on the scEpath cell fate attractor landscape.
249 Fractals are signatures of complex systems (Mandelbrot, 1982), and the fractal
250 dimension is a non-integer, fractional dimension characterizing the statistical self-
251 similarity and roughness of a pattern. A higher fractality in tumor structures may imply
252 that the tumor is more complex, resilient (i.e., withstands environmental perturbations),

253 aggressive, and difficult to treat (Coffey, 1998; Baish and Jain, 1998). As such, the
254 fractal index provides a quantitative measure of the cell fates' phenotypic plasticity (i.e.,
255 higher for stem cell-like fates) and disease progression.

256

257 We used ImageJ plugin FracLac (v2.5) to compute the fractal dimension (FD) of
258 analyzed samples using the BoxCount algorithm on the cell state attractors (patterns of
259 cellular distributions on the scEpath energy landscapes). To calculate the fractal
260 dimension, landscape images were converted to black and white. Attractor fractal
261 dimensions reconstructed from the cell fate landscapes found to be non-integer were
262 considered to exhibit a fractional dimension in phase-space. Higher fractal indices
263 indicate more complex dynamics that are irregular and asymptotically unpredictable,
264 since in dynamical systems theory, patterns of systems exhibiting deterministic chaos
265 have a fractal dimension (i.e., strange attractors) (Strogatz, 2015).

266

267 **2.3.5. Partial Information Decomposition and Context network inference:** Using the
268 differential expression markers identified by the various approaches discussed above,
269 we reconstructed the underlying complex networks driving the GBM/GSC cell state
270 dynamics on the Waddington energy landscapes. Network inference tools study the
271 statistical dependencies between genes amidst distributions of expression levels in
272 populations of sampled cells (Chan et al., 2017) by inferring a graph-theoretic
273 representation of the functional relationships between the drivers of complex behaviors
274 such as cell fate transitions, thus allowing for the quantification of the relationships
275 between identified differential transition markers and tracking how these relationships
276 change across distinct phenotypes. Partial Information Decomposition and Context
277 (PIDC) networks have been suggested to outperform traditional gene regulatory network
278 inference approaches using correlation metrics, mutual information, Boolean networks,

279 or Bayesian inference methods for network reconstruction (Chan et al., 2017). We used
280 this PIDC network inference algorithm to obtain a network structure of GBM and GSC
281 samples.

282

283 The Julia packages *InformationMeasures.jl* and *NetworkInference.jl* were used to
284 reconstruct the GRN networks. PIDC network inference uses partial information
285 decomposition (PID) to infer regulatory interaction networks from gene expression
286 datasets. We used the *NetworkInference.jl* package to establish the (undirected)
287 networks from the multivariate information measure (PID) calculated from the gene
288 expression matrices. Gene expression counts were first discretized via Bayesian blocks
289 discretization and the maximum likelihood estimator (Chan et al., 2017). The PIDC
290 network pattern is the simplest network the algorithm can construct such that the
291 distance between the nodes (genes or TFs) are minimized given their weights (PID
292 score). Network measures characterizing the structure, properties, and information flow
293 of these complex networks were then computed and the most differentially expressed
294 genes were identified by the clustering algorithms using PID scores.

295

296 **2.3.6. Block Decomposition Method Calculations:** We evaluated the algorithmic complexity
297 of key nodes (genes) of the inferred signaling networks to further identify robust markers
298 distinguishing GBM and GSC. Algorithmic complexity is a complementary measure that
299 identifies the minimal amount or set of information in our inferred complex networks
300 which regulate the phenotypic plasticity dynamics across the patient groups, and as
301 such the genes/TFs with highest algorithmic complexity could be robust disease
302 screening tools in precision oncology. The K-complexity of a string s , $K(s)$, also known
303 as Kolmogorov or algorithmic complexity, is the shortest computer program length
304 needed to output that string. This can also alternatively be interpreted as the length of

305 the shortest description of a system (Zenil et al., 2016). Since $K(s)$ does not depend on
306 a choice of probability distribution like Shannon entropy, it is more robust for the
307 assessment of system complexity (Zenil et al., 2016, Zenil et al., 2019). Formally, the
308 Kolmogorov complexity of a discrete dynamical system is given by

309
$$K(s|e) = \min \{|p|: U(p, e) = s\},$$

310 for a string or array s , where p is the program that produces s and halts running on a
311 universal Turing machine U with input e . Then, $K(s)$ is a function that takes a string or
312 matrix s to be the length of the shortest program p that generates s . However, $K(s)$ is in
313 principle incomputable and must be approximated using the coding theorem method
314 (Zenil et al., 2019). We therefore used the Block Decomposition Method (BDM) to
315 approximate the $K(s)$ of a dataset, which provides local estimates of the algorithmic
316 complexity (Zenil et al., 2016). BDM is available in the online algorithmic complexity
317 calculator [OACC] and its R-implementation (see Availability of Data and Material). The
318 BDM is defined as

319
$$BDM = \sum_{i=1}^n K(block_i) + \log_2(|block_i|),$$

320 where the block size must be specified for the n-number of blocks. When the block sizes
321 are higher, better approximations of the K-complexity are obtained (Zenil et al., 2016,
322 Zenil et al., 2019).

323
324 To calculate the BDM, we selected scRNA-Seq counts of seven randomly chosen
325 patient samples from each of the three patient groups. String length was kept the same
326 for all gene candidates from each sample. Accordingly, we chose the cell count
327 expressions of 46 cells from each patient sample for this analysis. The R-implementation
328 of the Online Algorithmic Complexity Calculator was used to compute the BDM
329 estimates of K-complexity for each expression string. scNA-Seq counts of the top gene

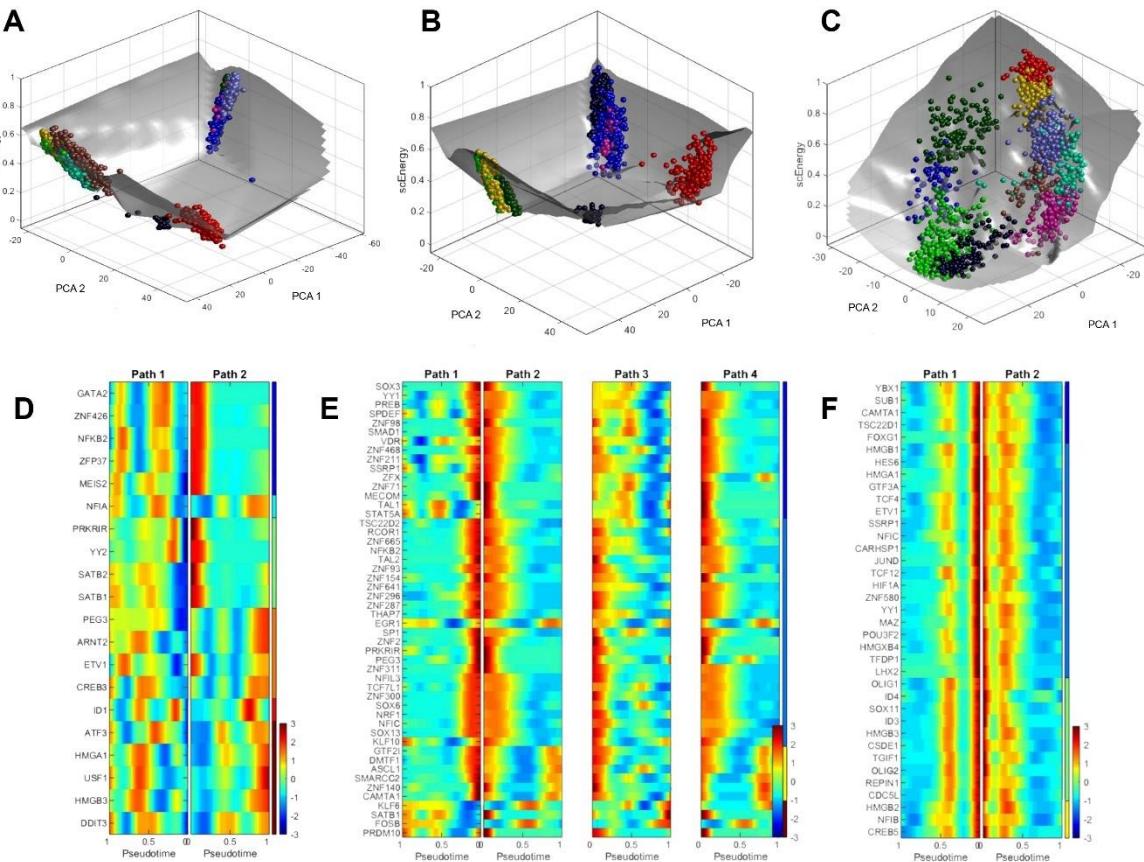
330 interactions with highest PID scores were selected from each network and binarized.
331 We then performed BDM on these binarized strings using a block size of 12 and
332 alphabet size of 2 bits to estimate the K-complexity (i.e., BDM score) (see
333 Supplementary Information for BDM Results).

334

335 **3. RESULTS**

336 **3.1. *Key driver genes mediating the cell fate transition dynamics in GBM/GSC***
337 ***epigenetic landscapes are identified using the scEpath algorithm.***

338 The Waddington landscape reconstruction identified causal patterns (attractors) to which the
339 distinct transcriptional states within each patient group cluster (Fig 2A-C). Distinct patient group
340 clusters were determined by the scEpath algorithm (colored by similarity in gene expression
341 (i.e., phenotypes) in Figure 2). Three and four meta-clusters were identified in the pediatric GBM
342 (Fig 2A) and adult GBM (Fig 2B), respectively while sub-populations are observed within each
343 meta-cluster indicating the presence of phenotypic heterogeneity and epigenetic plasticity. Many
344 genes encoding transcription factors (TFs) were identified as the transition genes required for
345 cells to transition from one attractor to another. We mapped the expressions of these transition
346 genes across the inferred cell fate trajectories (Fig 2D-F) and found similarities in the gene
347 expression signatures and similar oscillatory patterns in EMP1, MTSS1, PHGDH and OLIG1/2
348 (Fig 3). These markers were selected in the clustering and trajectory inference process as
349 explained above. Their similarity was assessed by their expression variation along the cell fate
350 trajectories in pseudotime (Figure 3). We also identified OLIG1/2 as critical transcription factors
351 in the adult GSC phenotypic transitions (Fig 2F).



352

353 **FIGURE 2. Waddington landscape reconstruction differentiates adult and pediatric GBM,**
 354 **and adult GSC critical genes and transcription factors for cell fate transitions.** A-C) The
 355 distinct phenotypes of each patient group were clustered on the Waddington energy landscape
 356 by their similarity in gene expression. The cell clustering patterns on the landscape are referred
 357 to as **attractors**. Balls represent the transcriptional states (cell fates) and paths correspond to
 358 the cell fate differentiation trajectories on the Waddington landscape. A) Pediatric GBM. B) Adult
 359 GBM. C) Adult GSC. D-F) Heat maps of the critical transcription factors involved in the
 360 differentiation and cell fate transitions between the distinct attractors (phenotype clusters) of the
 361 GBM/GSC Waddington landscape. The color gradient represents the intensity of the gene
 362 expression in pseudotime trajectory, where blue implies low expression and red implies high
 363 expression of the gene (TF) during the cell fate choices along the cell differentiation trajectories.
 364 The path corresponds to the inferred trajectories in between the cell state attractors on the
 365 Waddington landscape. D) Pediatric GBM. E) Adult GBM. and F) Adult GSC.

366
 367
 368

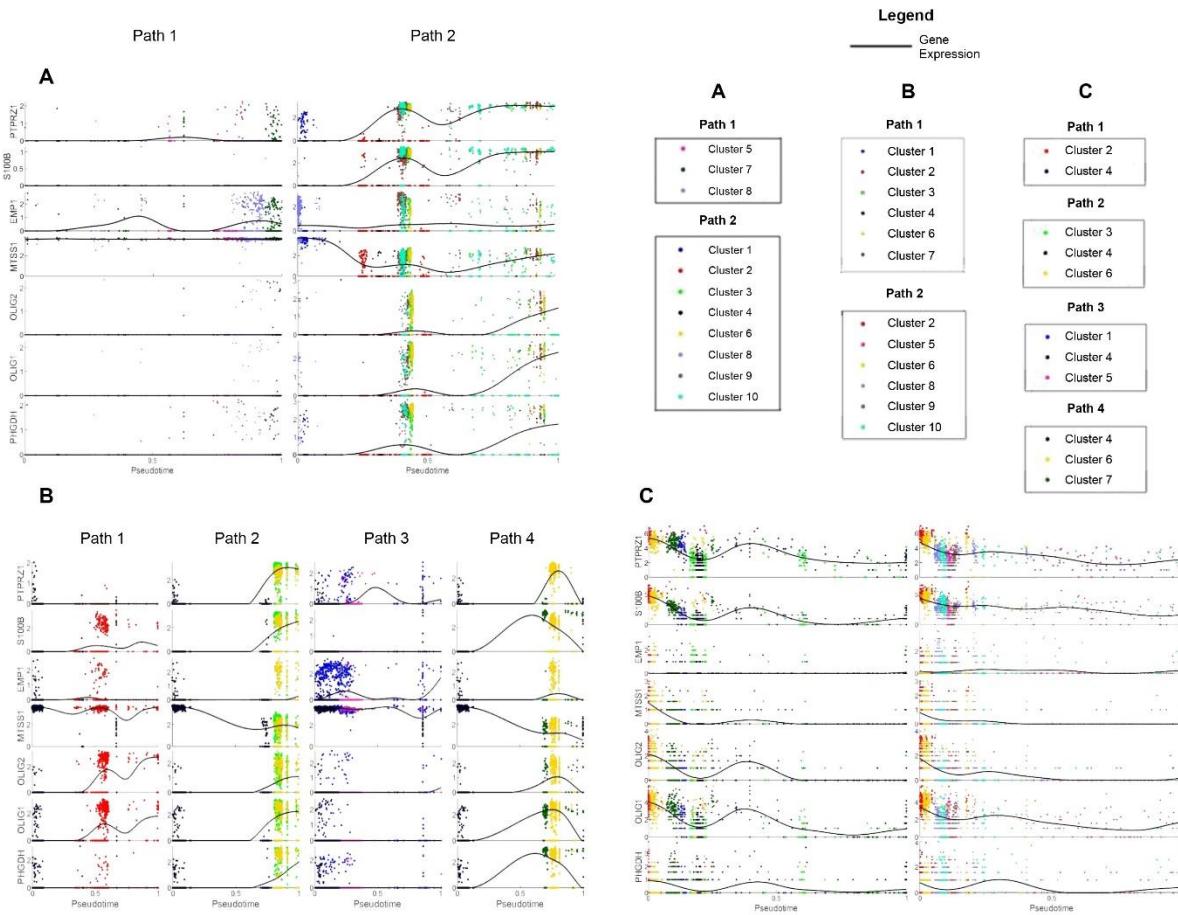
369 **3.2. Pseudotime expression dynamics identifies oscillatory patterns in critical gene
370 targets.**

371 Given the key driver genes and transcription factors identified by scEpath trajectory inference,
372 we next sought to infer similarities in gene expression dynamics during cell fate transitions
373 within each patient group amidst the identified critical gene markers. Using clustering algorithms
374 (see Methods), we found that PTPRZ1 and S100B showed nearly identical expression
375 dynamics in pediatric GBM along both cell fate trajectories on the Waddington landscape,
376 whereas genes such as EMP1, MTSS1, and PHGDH had more complex dynamics and
377 exhibited oscillations during cell fate dynamics in pediatric GBM and adult GSC (Fig 3A and Fig
378 3C). The expression metric used to compare the dynamics of the different pseudotime-
379 dependent genes correspond to the cubic spline smoothed average normalized expression
380 along the pseudotime interval of [0,1].

381
382 In adult GBM, NACA and PABPC1, and TPT1 and PSAP had similar expression patterns across
383 all four differentiation paths (Fig 3B). S100B, OLIG1, and PHGDH all had a broad expression
384 profile in path 4 (Fig 3B). Furthermore, the presence of four cell clusters in adult GBM
385 landscape (Fig 2B) is in good agreement with previous classifications of four molecular
386 subtypes of adult GBM (Verhaak et al., 2010). The expression of EGFR and PDGFRA were
387 distinctly higher in one of the four cell fate clusters/attractors (Figure S4B). However, the
388 expression of IDH1 exhibited oscillatory dynamics in all four paths/attractors (data not shown).
389 In adult GSC, many of the identified markers had similar gene expression profiles in
390 pseudotemporal ordering (Fig 3C). For instance, PTPRZ1, NACA and PABPC1, were all found
391 to have similar expression dynamics in both transition paths (Fig 3C). Notably, OLIG 1 and
392 OLIG2 were found to have similar expression patterns in all three patient groups across all cell
393 fate transition trajectories of the landscape (Fig 3A-C).

394

395 Notably, we identified that genes such as STMN3, MTSS1 and TAZ are critical regulators in one
396 transition pathway, while PSAP, TPT1, and PTPRZ1 are relevant for the other transition
397 trajectory on the pediatric GBM's Waddington landscape (Fig 3A and S4A). The same trends in
398 pseudotemporal gene expression patterns in STMN3 and PTPRZ1 have also been found in the
399 adult GSC cell fate trajectories (see Fig S4C in the Supplementary Information). In all three
400 patient groups, OLIG1, OLIG2, PHGDH, and TIMELESS had similar expression profiles within
401 the distinct cell fate transition paths indicating potentially some network coordination or
402 collective oscillations. Some signals (e.g., BCAN and CLU) were found to exhibit oscillations
403 that may be indicative of complex dynamics with time-series expression analysis
404 (Supplementary Information). These findings suggest that the identified markers involved in
405 GBM/GSC cell fate decisions exhibit similar patterns in their expression dynamics, and that the
406 identified critical genes are functionally putative master orchestrators of cell fate
407 transitions/differentiation of the heterogeneous phenotypes within a GBM patient's tumor.



408

409 **FIGURE 3. Reconstructing pseudotime dynamics in GBM/GSC cell fate decisions of the**
 410 **Waddington landscape.** Average normalized gene expression in cells plotted along
 411 pseudotime after fitting with a cubic smoothing spline (black line). Cells are colored according to
 412 cell clusters defined by scEpath. The expression patterns of the top genes identified by scEpath
 413 and BigSCale algorithms (via correlation metrics) showed significant changes along the
 414 pseudotime trajectory inferred by scEpath algorithm. Selected gene markers in A) pediatric
 415 GBM, B) adult GBM, C) adult GSC.

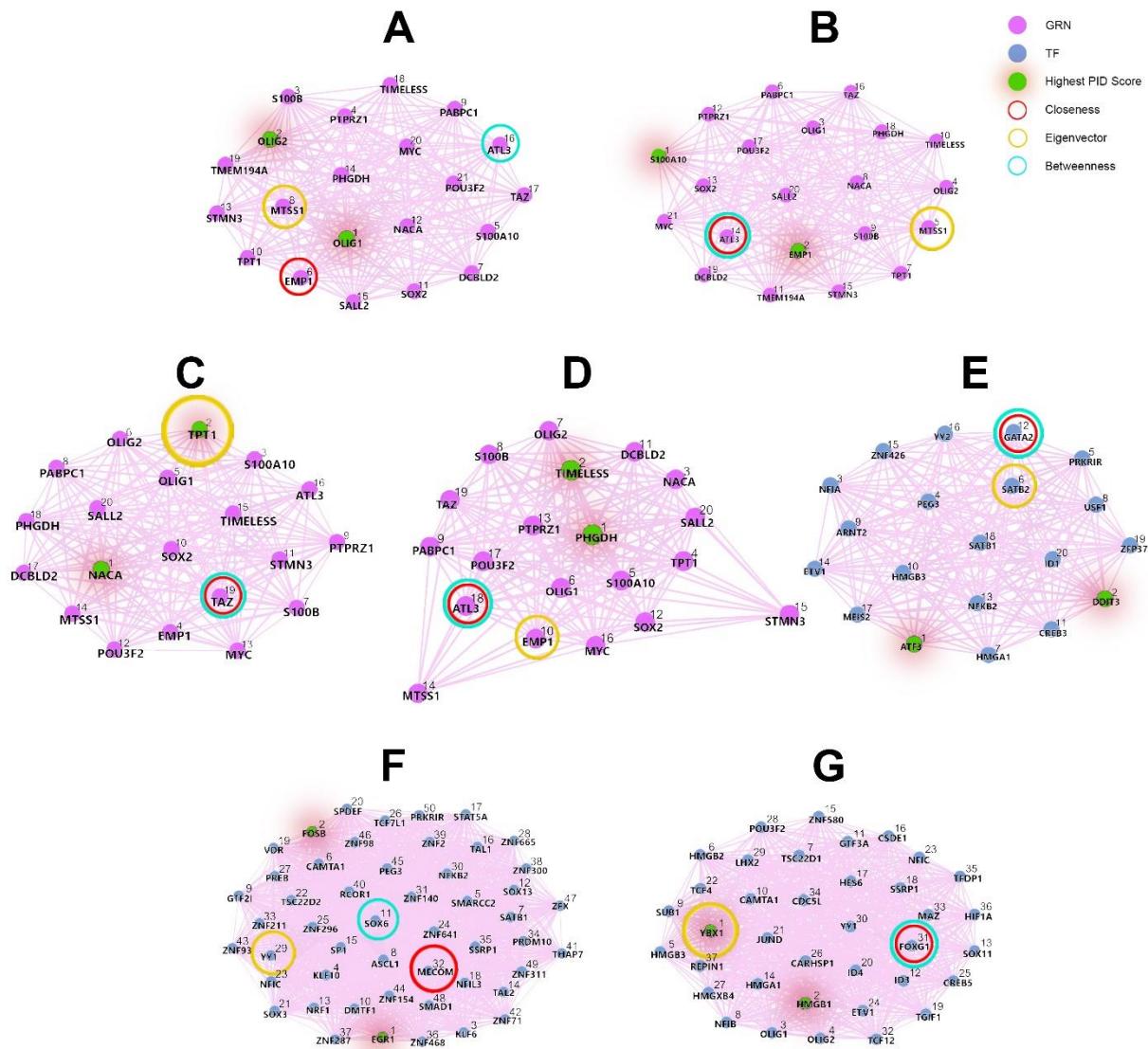
416

417 **3.3. PIDC Network Inference algorithm reconstructs the regulatory network**

418 **configurations driving GBM/GSC cell fate transitions.**

419 We next reverse engineered the signaling networks coordinating the information flow in GBM
 420 and GSC using Partial Information Decomposition and Context (PIDC). Though the network
 421 topography may seem similar, the arrangement of the interactions from highest influence on the
 422 information flow (i.e., top PID scores) to those of the weakest interactions (lowest PID scores)

423 vary for each patient group. As seen in Figure 4A, OLIG1 and OLIG2 have the highest PID
424 score of 1.9508, followed by S100B and PTPRZ1 interaction with a PID score of 1.9303 in
425 pediatric GBM, suggesting a strong relationship between these two genes in the complex
426 network steering their cell fate decisions (Fig 4A). We found that S100A10 and EMP1 have the
427 highest interaction in adult GBM with a PID score of 1.9517 (Fig 4B), whereas NACA and TPT1
428 had the highest interaction in adult GSC with a PID score of 1.9628 (Fig 4C). A distinct pattern
429 was observed in the PIDC regulatory network of adult GSC sample BT127 (highest quality GSC
430 cells). The highest interaction was observed between PHGDH and TIMELESS at a PID score of
431 2.762. Other top interactions identified for the TF networks (Fig 4E-G) had similar
432 pseudotemporal expression dynamics (Figure S4 A-C in the Supplementary Information). ATF3
433 and DDIT3 were the top interaction markers from the critical TFs identified for pediatric GBM
434 with a PID score of 1.971 (Fig 4E). EGR1 and FOSB in the adult GBM group (Fig 4F), and
435 YBX1 and HMGB1 were identified as the top interaction TF markers, with PID score of 1.992
436 (Fig 4G). These results suggest the reconfiguration of the nodes within the same complex
437 signaling network may characterize GSC cells from GBM cells and distinguish pediatric GBM
438 from adult GBM cell fate dynamics.



439

440 **FIGURE 4. Mathematical modelling identifies key regulatory genes driving GBM**
441 **networks.** Gene regulatory networks of A) pediatric GBM, B) adult GBM, C) adult GSC, D) adult
442 GSC sample BT127, E) pediatric GBM transcription factors, F) adult GBM transcription factors,
443 and G) adult GSC transcription factors. In each, the signaling networks show the information
444 flow between critical signals required for the complex cell fate dynamics. The GRN networks
445 identified by Seurat and BigSCale are colored in violet nodes (Fig 4A-D) while the scEpath TF
446 networks are colored in teal (Fig 4E-G). The ranks were assigned a priority index by the PID
447 content as indicated by the numbers on the nodes. A high PID content implies a high mutual
448 information (dependence) of those gene interactions in the information flow network. The
449 number index on the nodes of the network correspond to the PID score in a decreasing order,
450 where rank 1 denotes the top (highest) value. As shown in the legend, the nodes with the
451 highest PID score are colored in green with a red shadow. Additionally, three different colored
452 rings are used to identify the nodes of the networks with the highest network centrality
453 measures as identified in Figure 5.

454 **3.4. Network centrality measures identify master regulators of information flow across**
455 **the regulatory networks underlying GBM/GSC cell fate decision-making.**

456 Centrality is a key property of complex networks that influences the network dynamics and
457 information flow (Iacono et al., 2019). The nodes (genes or TFs) with the highest centrality in the
458 regulatory networks are the most biologically important signals. By measuring network
459 centrality, we identified the primary genes regulating communication flow across each of the
460 pediatric and adult GBM, and adult GSC networks (Table 2). In particular, we calculated the
461 global clustering coefficient that measures the total number of closed triangles (link density) in a
462 network. A clustering coefficient at its maximal value of 1 indicates that the neighbors of the
463 gene (node) i form a complete graph (i.e., they all connect to each other) versus the converse
464 for a clustering coefficient of 0 (Barabási and Posfai, 2016). We observed a lower clustering
465 coefficient of 0.94 for the BT127 network in Figure 4D. In the transcription factor networks
466 reconstructed from the scEpath heatmaps (italic columns, Table 2), the GSC TF network had
467 the highest diameter, while the GBM networks (both pediatric and adult) had smaller diameters.
468 The diameter is relatively in the same order of magnitude for the PIDC networks reconstructed
469 from the Seurat-BigSCale markers (bold columns, Table 2) as they correspond essentially to the
470 same set of genes interactions. The degree of centrality of all networks in Figure 4 was 1.0 at all
471 nodes, except for the BT127 PIDC network which had a degree centrality of value of 1.0 only at
472 nodes 1, 5, 10, 12, 13, and 16, and a clustering coefficient of value 0.96. The degree centrality
473 of nodes 2, 7, and 8 were 0.89, the degree centrality of nodes 14 and 15 were roughly 0.5, and
474 the remaining nodes had a degree centrality of 0.95.

475
476 The closeness centrality identified genes/TFs occupying a central position in a network (Iacono
477 et al., 2019). The nodes corresponding to the highest closeness centrality for each GRN
478 network were found to be Node 6 (EMP1) for pediatric GBM, Node 14 (ATL3) for adult GBM,

479 Node 18 (ATL3) for GSC BT127, and Node 19 (TAZ) for GSC with closeness values of 1.398,
480 1.361, 1.006, and 1.184, respectively (Fig 5A).

481

482 Nodes corresponding to the maximal closeness in the pediatric GBM, adult GBM, and adult
483 GSC TF networks were found to be node 12 (GATA2), node 32 (MECOM), and node 31
484 (FOXG1), respectively with closeness measures of 1.761, 2.563, and 1.478 respectively (Fig
485 5B).

486 Betweenness centrality indicates the presence of regulatory bottlenecks (Iacono et al., 2019;
487 Latora et al., 2017; Rodrigues, 2019). In our analyses, the highest betweenness measures for
488 the pediatric GBM, adult GBM, BT127 adult GSC, and adult GSC GRN networks were node 16
489 (ATL3), node 14 (ATL3), node 18 (ATL3), and node 19 (TAZ), respectively with betweenness
490 values of 0.3947, 0.5842, 0.2690, and 0.4678, respectively (Fig 5C). The trends in maximal
491 betweenness values (Fig 5C) were in good agreement with the nodes contributing to the
492 maximal closeness values discussed in Fig 5A, indicating that identified nodes are critical
493 targets governing the information flow in these complex networks. The highest betweenness
494 values for the TF networks were found to be to node 12 (GATA2) for pediatric GBM, node 11
495 (SOX6) for adult GBM, and node 31 (FOXG1) for adult GSC, with values of 0.3801, 0.2279, and
496 0.1539, respectively (Fig 5D). The highest values of eigenvector centrality, a measure of
497 information flow across the network, for the GRNs were found to be node 8 (MTSS1) for
498 pediatric GBM, node 5 (MTSS1) for adult GBM, node 10 (EMP1) for BT127, and node 2 (TPT1)
499 for GSC, with measures of 0.2796, 0.2827, 0.2909, and 0.2805, respectively.

500

501 The maximal eigenvector is a measure of the hub-score, i.e., the highest authority node of hub
502 networks (Latora et al., 2017; Rodrigues, 2019). The maximal eigenvector centrality of the TF
503 networks was found to be node 6 (SATB2) for pediatric GBM, and node 29 (YY1) for adult GBM,

504 and node 1 (YBX1) for GSC, with values of 0.2594, 0.1874, and 0.2322, respectively. SATB2 is
505 a nuclear matrix-associated protein involved in chromatin remodelling and transcription
506 regulation during neuronal differentiation (Gyorgy et al., 2008). Interestingly, all transition genes
507 with high centrality measures identified in our network analyses, including EMP1, MTSS1,
508 ATL3, and TPT1 have a TF-binding site for YY1 (Stelzer et al., 2016; GeneCards, 2021) (see
509 Table 3).

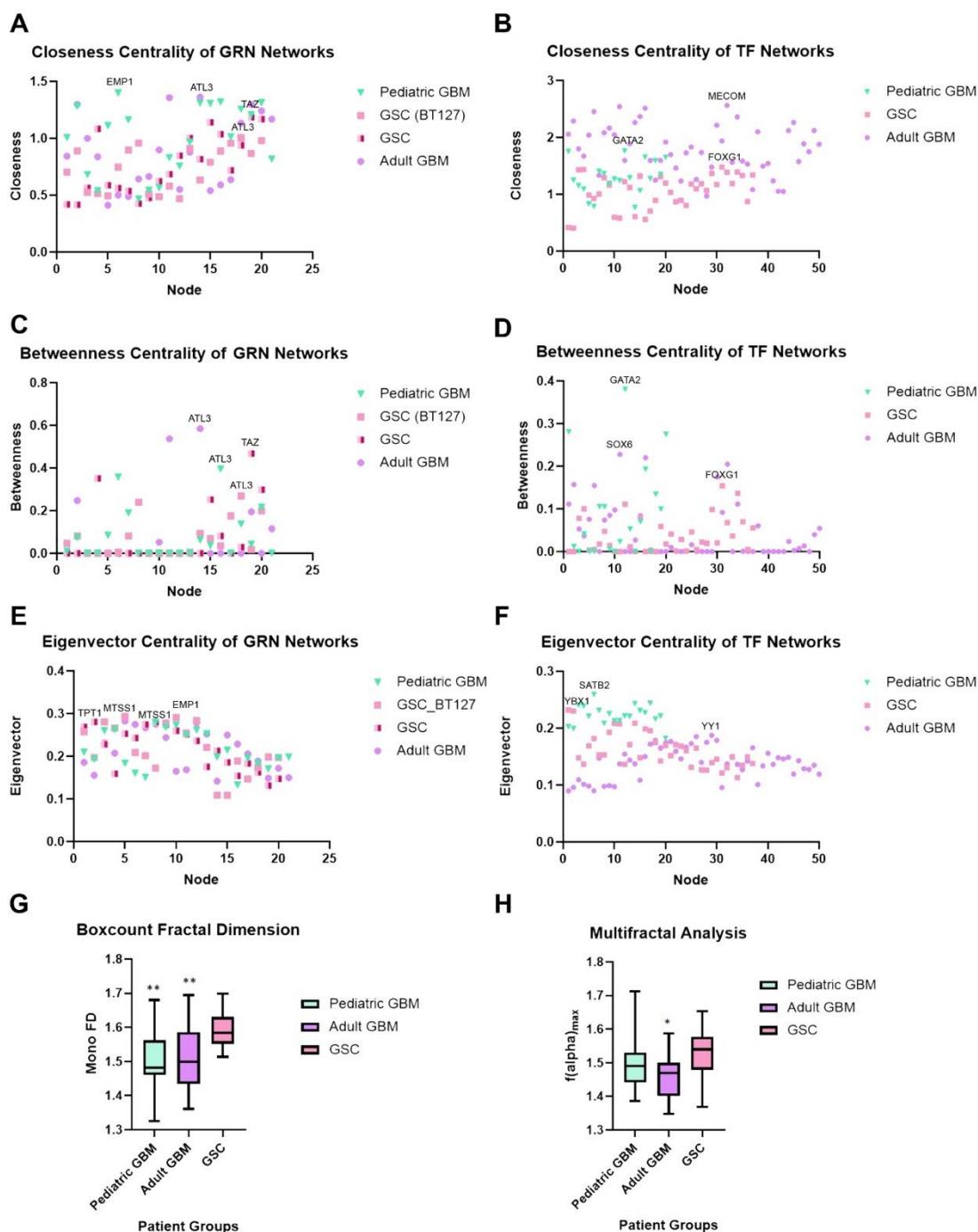
510

511 We also performed fractal analysis on the attractors (cell clustering patterns) in the scEpath
512 Waddington landscapes. The fractal dimension scores obtained on the cell state attractors on
513 the energy landscape were compared across all groups (pediatric GBM (n=7), adult GBM (n =
514 18), and GSC (n=28)). The mean fractal dimension scores of the pediatric GBM, adult GBM,
515 and adult GSC groups were 1.502 ± 0.099 , 1.509 ± 0.091 , and 1.588 ± 0.051 , respectively
516 (Figure 5G). The FD scores of the two GBM groups were nearly identical, while a statistically
517 significant difference was observed from the GSC group. The multifractal spectrum $f(\alpha)$ was
518 extracted from the multifractal spectra of the individual cancer samples energy landscape
519 (n=54) (Fig 5H). Only the difference between GSC versus adult GBM was found to be
520 statistically significant ($p=0.0201$) by a Kolmogorov-Smirnov test. The pediatric GBM, and adult
521 GBM and GSC groups had a maximal multifractal spectrum $f(\alpha)$ value of 1.499 ± 0.092 , 1.462
522 ± 0.066 , and 1.521 ± 0.075 , respectively.

Network Properties	Pediatric GBM	Adult GBM	Adult GSC	BT127 (Adult GSC)	Pediatric GBM (TF Network)	Adult GBM (TF Network)	Adult GSC (TF Network)
$G(V, E)$	(21,210)	(21,210)	(20,190)	(20,174)	(20,190)	(50, 1225)	(37,666)
Center	16	14	19	18	8	15	31
Diameter	3.037	3.283	3.490	3.106	1.869	1.474	3.936
Global Clustering Coefficient	1.00	1.00	1.00	0.94	1.00	1.00	1.00

523

524 **TABLE 2. General Properties of Inferred Complex Networks.** $G(V, E)$ denotes the graph with
 525 the number of vertices V (the genes) and number of edges E for each inferred GRN network.
 526 The center values designate to the node index (gene) acting as the center of the simple
 527 weighted network. The clustering coefficient captures the degree to which the neighbors of a
 528 given node link to each other.



530 **FIGURE 5. Centrality measures distinguish master regulators of information flow in GBM**
531 **networks.** Three network centrality measures are assessed on the reconstructed GBM/GSC
532 networks. Three different network centralities were computed on the reconstructed networks:
533 closeness, betweenness, and eigenvector centrality. The genes (nodes) occupying the highest
534 of these centrality measures correspond to critical nodes steering the information flow in the
535 complex signaling networks governing GBM/GSC cell fate transition dynamics. A) Closeness
536 centrality of inferred GRNs. B) Closeness centrality of TF networks. C) Betweenness centrality
537 of gene regulatory networks. D) Betweenness centrality of transcription factor networks. E)
538 Eigenvector centrality of gene regulatory networks. F) Eigenvector centrality of transcription
539 factor networks. G) Fractal dimension of cell state attractors on scEpath energy landscapes. A
540 p-value of 0.0031 between the adult GSC and adult GBM, and p= 0.0011 between adult GSC
541 and pediatric GBM was calculated for the box-count algorithm's fractal dimension scores using
542 the Kolmogorov-Smirnov test. Multifractal analysis of cell fate attractors on scEpath Waddington
543 landscapes.

544

545 4. DISCUSSION

546 Here we applied a collection of data theoretic and complexity science approaches to single cell
547 RNA-seq data from pediatric and adult GBM, and adult GSCs to distinguish genes regulating
548 communication within these cellular populations. Our findings demonstrate the application of
549 these tools for deciphering GBM/GSC signaling networks to understand how network
550 configuration orchestrates information flow and determines cell fate dynamics.

551

552 Multiple clustering algorithms were deployed to cross-validate their findings and ensure that the
553 differential markers extracted for network analysis were robust, complementary, and of high
554 importance in cell fate transition/differentiation mapping. There is a high degree of heterogeneity
555 displayed by GBM stem cells. The complementarity of our results in our independent and
556 orthogonal approaches are outlined in Table 3 by the associations identified between the
557 transition genes and the scEpath TFs. Our approach using distinct clustering techniques and
558 verifying their matching or complementary results was deployed to minimize the effects of
559 expression heterogeneity and validate our findings (Krieger et al., 2020).

TRANSITION GENES	TRANSCRIPTION FACTORS
ATL3	YY1, FOSB, SOX6, GATA2, ATF3, EGR1, MYC
MTSS1	YY1, ATF3, MYC

EMP1	YY1, FOSB, GATA2, ATF3, MYC
TPT1	YY1, ATF3, FOSB, SOX6, EGR1, OLIG1/2
PTPRZ1	YY1, YY2, EGR1, NANOG, POUF51
S100B	YY1, GATA2, EGR1, SOX6, MYC

560 **TABLE 3. Interactions between transition genes and transcription factors identified in**
561 **network analysis.** Amidst the critical transition genes listed, the first four were identified as the
562 central regulators of information flow across the GBM/GSC regulatory networks, while PTPRZ1
563 and S100B were other differential markers identified in our analyses. The list is not inclusive of
564 all possible gene-TF interactions but restricted to the analysis of only the high importance (i.e.,
565 highest network centrality measures) scEpath TFs identified in our findings. The TF-gene
566 interactions were identified using the GeneCards human gene database (GeneCards, 2021).

567
568 Using scEpath, we identified three and four meta-clusters in the pediatric GBM (Fig 2A) and
569 adult GBM (Fig 2B), respectively, while sub-clusters within each meta-cluster indicated the
570 presence of phenotypic heterogeneity and plasticity. However, the number of meta-clusters was
571 ambiguous in the adult GSC landscape (Fig 2C), as shown by the continuous progression from
572 the higher energy state clusters (stem-like fates) to the lower energy states indicating the
573 potential presence of a complex attractor. An alternative measure to assess the significance of
574 the scEpath clustering is the transition paths (cell fate trajectories). We predicted that the
575 number of clusters identified in the pediatric GBM group corresponds to the neuronal, astrocytic-
576 mesenchymal, and oligodendrocytic lineages, mirroring the healthy brain's neurodevelopmental
577 hierarchy (Jessa et al., 2019; Couturier et al., 2020). Similarly, the four clusters identified in the
578 adult GBM group correspond to the four groups identified by Neftel et al. (2019), namely the
579 OPC-like (oligodendrocytic progenitor cell), NPC-like (neuronal progenitor cell-like), AC-like
580 (astrocytic cell-like), and MES-like (mesenchymal cell) lineages. Further, the infiltrated immune
581 cells (i.e., T-cells and macrophages) grouped into the MES-like state (Neftel et al., 2019).
582 Pediatric GBM cells showed less differentiation than the adult GBM samples, as indicated by
583 the higher energy cell-states, suggesting a closer resemblance to the GSC sample. The two cell
584 fate trajectories observed in the adult GSC sample may correspond to the transcriptional
585 gradient of two cellular states observed in the original study by Richards et al. (Fig 2C), which

586 were shown to mirror normal neurodevelopment and inflammatory wound responses (Richards
587 et al., 2021).

588

589 The cell fate trajectories along the scEpath Waddington landscape (Figure 2A-C) were
590 determined by the transition probabilities of the probabilistic directed graph reconstructed from
591 the cell fate clusters, where the weighted edges of the networks correspond to the average
592 normalized gene expression (see Supplementary Information for additional details). scEpath
593 used the minimum directed spanning tree to find the maximum probability flow and minimal
594 number of edges along the network, since cell fates transition to lower energy states during
595 differentiation. The resulting tree approximates the cell state transition network and infers the
596 observed developmental trajectories/lineage structures. The weighted edges of the cell state
597 transition network were found to be proportional to the gene expression values seen in Figure 3,
598 where the number of developmental trajectories inferred are indicated by the path numbers in
599 Figure 2. Thus, two cell fate trajectories were detected in the pediatric GBM and adult GSC
600 samples while four developmental trajectories were observed in adult GBM.

601

602 In pediatric GBM, the expression of transcription factors in pseudotime was shown to be highly
603 nonlinear. Certain genes, including GATA2, were even found to be oscillatory in one trajectory
604 while demonstrating an increasing or decreasing gradient of expression along the other cell fate
605 trajectory. Likewise, patterns of other critical transition genes (TFs) were identified along the
606 attractor dynamics between the distinct transcriptional states of adult GBM and adult GSC cells.
607 Further, we found that genes such as EMP1, MTSS1, PTPRZ1 and S100B exhibited distinct
608 gene expression oscillations in one differentiation trajectory (path) over the other(s) (Figure 3).
609 These genes were also found to have TF-binding sites for the scEpath identified TFs with the
610 highest network centrality measures in our downstream analysis (Figure 4). Together, these
611 findings are indicative of a highly interconnected network of gene-TF interactions governing

612 GBM/GSC cell fate decisions, and further suggest that the information flow across the inferred
613 networks may steer cell fate decisions towards complex attractors on the GBM/GSC
614 Waddington landscape.

615

616 Using network centrality measures, we identified OLIG1/2, TAZ, GATA2, FOXG1, SOX6,
617 SATB2, YY1, and gene targets ATL3, MTSS1, EMP1, and TPT1 as critical genes governing the
618 cell fate dynamics of GBM and GSC cells (Fig 5A-F). Many of these signals are
619 neurodevelopmental transcription factors involved in healthy brain development, essential for
620 conferring and maintaining cancer stem cells (GSCs). Maximal centrality scores indicated that
621 they are key regulators of the network information flow in both GBM groups and GSCs. The
622 functional significance of these transcription factors (see Supplementary Information) suggests
623 their critical role in stem cell decision-making and differentiation dynamics. Our findings indicate
624 that these genes may be strong candidates for therapeutic interventions points for the treatment
625 of GBM. Other signaling interactions such as PTPRZ1 and S100B were identified in our
626 analyses as potent clinically druggable targets in the treatment of GBM. Furthermore, we
627 predicted that GATA2 and MTSS1 may provide a common ground for interlinking
628 leukemogenesis, the complex signaling dynamics of leukemia/lymphoma affecting children, and
629 pediatric glioma/GBM (Menendez-Gonzalez et al., 2019, Schemionek et al., 2015).

630

631 BDM was used to distinguish which of the differential markers can accurately
632 classify/differentiate the three patient group samples (see Supplementary Information). We
633 identified FOSB, HMGB1 and EGR1 as differential signatures which can accurately predict the
634 patient groups in our single-cell analyses (see SI). The algorithmic complexity measured by the
635 BDM allowed for the identification of critical network genes differentiating GBM and GSC
636 phenotypes with the minimal information. The rationale for using gene/TF markers' BDM as a
637 phenotypic discriminant is that the algorithmic complexity denotes the shortest algorithm or

638 minimal set of information within the complex networks inferred required to classify the distinct
639 patient groups. As such, the identified genes/TFs may be useful biomarkers for prognostic
640 screening and disease phenotyping in clinical medicine.

641

642 From the transcription factor (TF) networks identified by scEpath (Table 3), we distinguished
643 some TFs to form interactions with some of the differential gene markers, suggesting cellular
644 reprogramming targets for controlling GBM cell fate dynamics. Our study therefore quantifies
645 how these markers' expression vary in the cell fate transitions from stem-like to mature
646 phenotypes. For a discussion on the biological significance of key genes and transcription
647 factors identified in our analyses, see the Supplementary Results in the Supplementary
648 Information.

649

650 The cell fate transition markers identified in our study, including PTPRZ1, EMP1, S100B, and
651 MTSS1, are in good agreement with the findings from the original studies (SCP393 and
652 SCP503). Although some of the signatures we identified overlap with the differential expression
653 patterns of the original studies, they did not compare the co-expression of these markers
654 between GSC and GBM. Markers differentiating distinct cellular states have been previously
655 investigated (for instance, the original study by Neftel et al. identified copy number
656 amplifications of the CDK4, EGFR, and PDGFRA loci and mutations of the NF1 locus, each
657 favoring one of the four GBM phenotypes (Neftel et al., 2019)). Our study instead analyzed the
658 expression patterns which fluctuate or form a differentiation gradient across the distinct cell
659 states. Further, while previous studies have associated the differentiation markers of GBM
660 progression identified here, our study demonstrates their novel integrated application to
661 elucidate the roles of these network biomarkers in GBM cell fate decisions and differentiation
662 dynamics. Indeed, while many of the identified genes or TFs have been previously studied in
663 the context of neurodevelopmental regulation and glioma cell fate dynamics, most of those

664 selected in our analyses are not yet documented in glioblastoma cell fate control. As such, we
665 propose the identified interactions in Table 3 may provide clinically relevant GBM-specific
666 precision therapeutics, and that our network analyses provide a quantitative tool to characterize
667 which of the markers were of high importance (i.e., high centrality measures) in cell fate control,
668 plasticity regulation, and transition dynamics. Future studies should exploit tools from
669 algorithmic complexity theory including algorithmic network perturbation analysis (i.e., quantify
670 the BDM changes across a network by node or link deletion) to better elucidate the inferred
671 network dynamics in cancer cell fate control and regulation.

672

673 While previous GBM gene regulatory network inference methods vary from our approaches, our
674 findings are consistent with their results. For example, Sun et al. found 15 hub genes in GBM-
675 specific miRNA-TF networks, including PDGFRA and SOX11, and 6 hub TFs (including GATA1)
676 as key regulators of GBM dynamics (Sun et al., 2012). In our study, we also identified PDGFRA
677 and SOX11 as hub genes of the inferred GBM networks, and found that GATA2, an alternate
678 isoform, overlapped with these findings. However, Sun et al. (2012) did not compare GBM of
679 different age groups nor consider GBM-derived stem cells for reconstruct their differentiation
680 networks. Similarly, a network inference study by Ping et al. (2015) revealed 17 hub genes in
681 GBM networks, including EGFR and PDGFRA, as gene signatures of the proneural GBM
682 subtype, both of which were identified in our analyses. In another study, GSEA and IPA-based
683 gene enrichment pathway analysis discovered TAZ as a key regulator of GBM networks
684 (Bozdag et al., 2014), which was also identified as a master regulator of GBM differentiation
685 dynamics in our analyses.

686

687 Using multi-omic analyses, Suva et al. distinguished OLIG2, POU3F2 SALL2, and SOX2 as hub
688 genes of GBM stemness networks critical for their tumor-propagation potential (Suvà et al.,
689 2014). Our findings identified OLIG2 as a master control gene of GBM differentiation dynamics

690 and established a connection between SOX2 expression and the critical hub gene FOXG1.
691 Further, some epigenetic profiling studies have shown that aberrant histone modifications and
692 methylation profiles are molecular signatures driving pediatric GBM and distinguishing them
693 from their adult counterparts (Jones et al., 2017, Lulla et al., 2016, Sturm et al., 2012). Sturm et
694 al. (2012) revealed that the TFs OLIG1, OLIG2 and FOXG1 are the master regulators of the hub
695 gene networks driving these oncohystone pediatric GBM variants (i.e., K27M and G34V/R).
696 Similar findings were recently reported by Wang et al. (2021), who identified the same set of
697 TFs as critical drivers of pediatric high-grade gliomas' epigenetic landscapes. We identified all
698 three TFs reported by Sturm et al. and Wang et al. in our network approaches as critical
699 regulators of GBM cell fate dynamics. Thus, our findings recapitulate the complex network
700 dynamics driving the oncohystone variants of pediatric GBM and validate and extend previous
701 findings.

702
703 It should be noted that there is a good deal of heterogeneity within the single-cell datasets
704 across and with the patient groups. The original datasets contained 8 pediatric GBM samples,
705 20 adult GBM samples, and 28 adult GSC samples. For the initial clustering (i.e., differential
706 discovery using Seurat and BigSCale), samples--two adult GBM and one pediatric GBM-- with
707 the highest drop-out rate (i.e., zero counts) were removed as a data filtering and quality control
708 step prior to normalization. Subsequently, the number of adult GBM samples in the scEpath
709 analysis was randomly selected to closely match the cell count numbers of the adult GSC
710 patient groups. The down-sampling of GSC samples was necessary since scEpath analysis has
711 a computational limitation on the number of samples which can be processed (roughly 2500
712 cells). As noted in the Methods, selecting a different combination of GSC samples did not
713 change the results and including the removed samples did not change the differential marker
714 discovery or expression analyses. Indeed, the global clustering patterns remained the same
715 although there was greater dispersion in the local sub-clusters in the Seurat and BigSCale

716 pattern space. However, including all n=8 pediatric GBM patient samples generated a shorter
717 list of transition genes with abrupt transitions between the distinct phenotypes.

718

719 A limitation of our study is that we did not have access to pediatric GSC cells, given that adult
720 GSC data have only recently been described (Richards et al., 2021). There may be other hidden
721 causal interactions interconnecting the nodes of the complex networks we inferred that were not
722 identified due to lack of data. Further, the lack of time-series scRNA-Seq counts is a barrier to
723 understanding the complex dynamics of GBM/GSC networks. The pseudotemporal dynamics
724 consist of inferred cell fate trajectories in a dimensionality-reduced data space (i.e., PCA space)
725 by transcriptional similarity of cell fates. Ribosomal proteins and certain cytoskeletal markers
726 (housekeeping genes) were also not pooled with the differential expression signatures for
727 network inference (Figure S1).

728

729 This proof-of-concept study provides a comprehensive method to dissect the cybernetics of
730 cancer cellular ecosystems and their cell fate dynamics. Current bioinformatic pipelines in
731 cancer data science largely fail to reconcile the complex dynamics and temporal features of
732 GBM transcriptional states, as they either take a reductionist approach to inferring gene
733 expression patterns or rely on statistical correlation methods. In contrast, our framework
734 provides a pipeline for causal pattern discovery and thereby allows the prediction/forecasting of
735 how the differentially expressed transition genes control and regulate cell fate decision-making.
736 Further, our approach allows for the mapping of these cancer cell fate behaviors to information
737 flow across the inferred complex networks. Thus, these causal inference tools shed light on
738 emergent behaviors in cell fate decisions such as transcriptional heterogeneity from a dynamical
739 systems perspective. As such, we propose our methodological framework may provide a
740 complementary and potentially more useful means to assess how the heterogeneous cancer

741 phenotypes exhibit adaptive (emergent) behaviors and help forecast their dynamic response to
742 drug/therapeutic perturbations at the level of molecular interactions.

743

744 **6. CONCLUSION**

745 This study demonstrates the use of complex systems approaches in deciphering the cybernetics
746 of GBM/GSC networks, and shows how signaling dynamics differ between pediatric GBM, adult
747 GBM, and adult GSC populations. By identifying transcription factors and genes, our combined
748 approach serves as one part of the precision medicine toolbox for the treatment of GBM,
749 suggesting both precision therapeutic targets and GBM reprogramming factors.

750

751 Prospective studies should explore the use of artificial neural networks, including Deep Learning
752 algorithms, for single-cell transcriptomic analyses. Further, causal inference-based network
753 inference methods such as Bayesian networks and algorithmic information dynamics should be
754 investigated for GBM regulatory networks reconstruction. The epigenetic regulation of our
755 identified transcriptional networks must be explored using high-throughput multi-omics datasets.
756 Our network approaches should be extended to protein-protein interaction networks, epigenetic
757 networks, and metabolic networks to investigate multi-omic levels of GBM heterogeneity,
758 including oncohistone variants (i.e., K27M, K36M, G34V/R) and IDH1/2-mutants observed in
759 pediatric gliomas (GBM).

760 **DECLARATIONS**

761 **DECLARATIONS STATEMENT:** The authors declare no competing interests.

762 **ETHICS APPROVAL AND CONSENT TO PARTICIPATE:** Not Applicable

763 **AUTHOR CONTRIBUTIONS:** AU performed the algorithms, wrote, and edited the manuscript.
764 MC supervised, wrote, and edited the manuscript.

765 **FUNDING:** MC was funded by Natural Science and Engineering Research Council of Canada
766 Discovery Grant RGPIN-2018-04546 and an FRQS Research Scholar grant (J1).

767 **DATA AND CODE AVAILABILITY:**

768 The datasets supporting the conclusions of this article are available in the Single Cell Portal
769 repository:

770 https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma#study-summary

771
772
773 https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity#study-download

774
775
776

777 All Codes and Algorithms used for the single-cell data analysis are available in the project
778 GitHub page:

779 https://github.com/Abicumaran/GBM_Complexity_I

780

781 **Software/Algorithms:**

782 **Seurat**

783 Project name: Seurat V3

784 Project home page: <https://github.com/satijalab/seurat/>

785 Archived version: 10.1016/j.cell.2019.05.031

786 Operating system(s): Platform independent

787 Programming language: R

788 Other requirements: Not Applicable

789 License: GNU Public License (GPL 3.0)

790 Any restrictions to use by non-academics: Not Applicable

791

792 **BigScale**

793 Project name: BigScale V2

794 Project home page: <https://github.com/iaconogi/BigSCale2>

795 Archived version: 10.1186/s13059-019-1713-4

796 Operating system(s): Platform independent

797 Programming language: R

798 Other requirements: C++

799 License: Not Applicable

800 Any restrictions to use by non-academics: Not Applicable

801

802 **scEpath**

803 Project name: single-cell Energy path (scEpath)

804 Project home page: <https://github.com/sqjin/scEpath>

805 Archived version: 10.1093/bioinformatics/bty058

806 Operating system(s): Platform independent

807 Programming language: MATLAB

808 Other requirements: C++

809 License: Not Applicable

810 Any restrictions to use by non-academics: Not Applicable

811

812

813 **OACC**

814 Project name: Online Algorithmic Complexity Calculator V3
815 Project home page: <https://github.com/algorithmicnaturelab/OACC>
816 Archived version: 10.1016/j.isci.2019.07.043
817 Operating system(s): Platform independent
818 Programming language: R
819 Other requirements: Not Applicable
820 License: GNU Public License (GPL 3.0)
821 Any restrictions to use by non-academics: Not Applicable
822

Network Inference

823 Project name: NetworkInference.jl and Partial Information Decomposition (PID)
824 Project home page: <https://github.com/Tchanders/NetworkInference.jl>
825 Archived version: 10.1016/j.cels.2017.08.014
826 Operating system(s): Platform independent
827 Programming language: Julia
828 Other requirements: Not Applicable
829 License: MIT "Expat" License
830 Any restrictions to use by non-academics: Not Applicable
831
832

Julia LightGraphs

833 Project name: LightGraphs.jl V1.3
834 Project home page: <https://github.com/JuliaGraphs/SimpleWeightedGraphs.jl>
835 Archived version: Not Applicable
836 Operating system(s): Platform independent
837 Programming language: Julia
838 Other requirements: Jupyter Notebook and HTML
839 License: MIT "Expat" License
840 Any restrictions to use by non-academics: Not Applicable
841
842

SciKit-learn:

843 Project name: Scikit-learn
844 Project home page: <https://scikit-learn.org/> or <https://github.com/scikit-learn/scikit-learn>
845 Archived version: <http://jmlr.org/papers/v12/pedregosa11a.html>
846 Operating system(s): Platform independent
847 Programming language: Python (\geq V3.7)
848 Other requirements: NumPy (\geq 1.14.6), SciPy (\geq 1.1.0), joblib (\geq 0.11), threadpoolctl (\geq 2.0.0),
849 Google Colab or Jupyter Notebook
850 License: 3-Clause BSD license
851 Any restrictions to use by non-academics: Not Applicable
852
853

FracLac

854 Project name: FracLac V2.5
855 Project home page: <https://imagej.nih.gov/ij/plugins/fraclac>
856 Archived version: Not Applicable
857 Operating system(s): Platform independent
858 Programming language: Java
859 Other requirements: Not Applicable
860 License: National Institute of Health (NIH) Public License
861 Any restrictions to use by non-academics: Not Applicable
862
863

865

866 REFERENCES

- 867 1. Alifieris, C., & Trafalis, D. T. Glioblastoma multiforme: Pathogenesis and
868 treatment. *Pharmacology & therapeutics*, 152, 63–82. (2015).
869 <https://doi.org/10.1016/j.pharmthera.2015.05.005>
- 870 2. Jung, E., Alfonso, J., Osswald, M., Monyer, H., Wick, W., and Winkler, F. Emerging
871 intersections between neuroscience and glioma biology. *Nat. Neurosci.* 22, 1951–1960.
872 (2019). <https://doi.org/10.1038/s41593-019-0540-y>.
- 873 3. Suvà, M. L., Rheinbay, E., Gillespie, S. M., Patel, A. P., Wakimoto, H., Rabkin, S. D.,
874 Raggi, N., Chi, A. S., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., Rivera, M.
875 N., Rossetti, N., Kasif, S., Beik, S., Kadri, S., Tirosh, I., Wortman, I., Shalek, A. K., ...
876 Bernstein, B. E. Reconstructing and reprogramming the tumor-propagating potential of
877 glioblastoma stem-like cells. *Cell*, 157(3), 580–594. (2014).
878 <https://doi.org/10.1016/j.cell.2014.02.030>
- 879 4. Jia, D., Jolly, M. K., Kulkarni, P., & Levine, H. Phenotypic Plasticity and Cell Fate
880 Decisions in Cancer: Insights from Dynamical Systems Theory. *Cancers*, 9(7), 70.
881 (2017). <https://doi.org/10.3390/cancers9070070>
- 882 5. Jin, S., MacLean, A.L., Peng, T., Nie, Q. scEpath: Energy Landscape-based Inference of
883 Transition Probabilities and Cellular Trajectories from Single-cell Transcriptomic Data.
884 *Bioinformatics* 34(12):2077-2086. (2018). 10.1093/bioinformatics/bty058.
- 885 6. Iacono, G., Massoni-Badosa, R. & Heyn, H. Single-cell transcriptomics unveils gene
886 regulatory network plasticity. *Genome Biol* 20: 110. (2019). 10.1186/s13059-019-1713-4.
- 887 7. Paugh, B. S., Qu, C., Jones, C., Liu, Z., Adamowicz-Brice, M., Zhang, J., et al.
888 Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key
889 differences with the adult disease. *J Clin Oncol.* 28(18), 3061–3068 (2010). doi:
890 10.1200/JCO.2009.26.7252.
- 891 8. Jones, C., Karajannis, M. A., Jones, D., Kieran, M. W., Monje, M., Baker, S. J. et al.
892 Pediatric high-grade glioma: biologically and clinically in need of new thinking. *Neuro-
893 oncology*, 19(2), 153–161 (2017). doi: 10.1093/neuonc/now101.
- 894 9. Schwartzentruber, J., Korshunov, A., Liu, X.-Y., Jones, D. T. W., Pfaff, E., Jacob, K., ...
895 Tönjes, M. Driver mutations in histone H3.3 and chromatin remodelling genes in
896 paediatric glioblastoma. *Nature*, 482(7384), 226–231. (2012). doi:10.1038/nature10833
- 897 10. Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D. A., Jones, D. T., Konermann, C.,
898 Pfaff, E., Tönjes, M., Sill, M., Bender, S., Kool, M., Zapatka, M., Becker, N., Zucknick,
899 M., Hielscher, T., Liu, X. Y., Fontebasso, A. M., Ryzhova, M., Albrecht, S., Jacob, K., ...
900 Pfister, S. M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and
901 biological subgroups of glioblastoma. *Cancer cell*, 22(4), 425–437. (2012).
902 <https://doi.org/10.1016/j.ccr.2012.08.024>

911

912 11. Lulla RR, Saratsis AM, Hashizume R. Mutations in chromatin machinery and pediatric
913 high-grade glioma. *Sci Adv.* 2(3): e1501354. (2016). 10.1126/sciadv.1501354.

914

915 12. Harutyunyan, A. S., Krug, B., Chen, H., Papillon-Cavanagh, S., Zeinieh, M., De Jay, N.,
916 ... Majewski, J. H3K27M induces defective chromatin spread of PRC2-mediated
917 repressive H3K27me2/me3 and is essential for glioma tumorigenesis. *Nature
918 Communications*, 10(1262). (2019). doi:10.1038/s41467-019-09140-x

919

920 13. Xiong, S., Feng, Y., and Cheng, L. Cellular reprogramming as a therapeutic target in
921 cancer. *Trends Cell Biol.* 29 (8): 623–34. (2019). 10.1016/j.tcb.2019.05.001.

922

923 14. Yabo, Y. A., Niclou, S. P., & Golebiewska, A. (2021). Cancer cell heterogeneity and
924 plasticity: A paradigm shift in glioblastoma. *Neuro-oncology*, noab269. Advance online
925 publication. <https://doi.org/10.1093/neuonc/noab269>

926

927

928 15. Wolfram, S. “Complex Systems Theory,” in *Emerging Syntheses in Science: Proceedings of the Founding Workshops of the Santa Fe Institute*, Santa Fe, New Mexico (D. Pines, ed.), Redwood City, CA: Addison-Wesley, pp. 183–189. (1988).

929

930

931 16. Shalizi, C.R. Methods and Techniques of Complex Systems Science: An Overview,
932 Complex Systems Science in Biomedicine (T. S. Deisboeck and J. Y. Kresh, eds.), New
933 York: Springer pp. 33–114. (2006).

934

935 17. Thurner, S., Klimek, P., and Hanel, R. *Introduction to the Theory of Complex Systems*
936 (USA: Oxford University Press, 2018).

937

938 18. Huang, S., Ernberg, I., & Kauffman, S. Cancer attractors: a systems view of tumors from
939 a gene network dynamics and developmental perspective. *Seminars in cell &
940 developmental biology*, 20(7), 869–876. (2009).
941 <https://doi.org/10.1016/j.semcd.2009.07.003>

942

943 19. Barabási, A.-L., and Oltvai, Z.N. Network biology: understanding the cell’s functional
944 organization. *Nat. Rev. Genet.* 5, 101–113. (2004). <https://doi.org/10.1038/nrg1272>.

945

946 20. Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R.,
947 Silverbush, D., Shaw, M.L., Hebert, C.M. et al. An Integrative Model of Cellular States,
948 Plasticity, and Genetics for Glioblastoma. *Cell* 178(4). pp. 835–849.e21. (2019).
949 10.1016/j.cell.2019.06.024.

950 21. Richards, L.M., Whitley, O.K.N., MacLeod, G., Cavalli, F.M.G., Coutinho, F.J., Jaramillo,
951 J.E., Svergun, N., Riverin, M., Croucher, D.C., Kushida, M. et al. Gradient of
952 Developmental and Injury Response transcriptional states defines functional
953 vulnerabilities underpinning glioblastoma heterogeneity. *Nat Cancer*. 2:157-173. (2021).
954 10.1038/s43018-020-00154-9.

955

956 22. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd,
957 Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. Comprehensive Integration of Single-
958 Cell Data. *Cell*, 177(7): 1888–1902.e21. (2019). 10.1016/j.cell.2019.05.031

959 23. Waddington, C.H. *The strategy of the Genes; a Discussion of Some Aspects of*
960 *Theoretical Biology* (Allen and Unwin, London. 1957)

961 24. Mandelbrot, B. *The Fractal Geometry of Nature* (San Francisco: W.H. Freeman and
962 Company, 1982).

963 25. Coffey, S.D. Self organization, complexity, and chaos: the new biology for medicine. *Nat.*
964 *Med* 4, 882–885. (1998). <https://doi.org/10.3109/07357909709047603>.

965 26. Baish, J.W., and Jain, R.K. Cancer, angiogenesis and fractals. *Nat. Med.* 4 (984).
966 (1998). <https://doi.org/10.1038/1952>.

967 27. Strogatz, S.H. *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,*
968 *Chemistry, and Engineering* (Boulder, CO: Westview Press, 2015).

969 28. Chan, T. E et al. Gene Regulatory Network Inference from Single-Cell Data Using
970 Multivariate Information Measures. *Cell systems* vol. 5(3): 251-267.e3. (2017).
971 doi:10.1016/j.cels.2017.08.014

972 29. Zenil, H., Kiani, N.A., and Tegnér, J. Methods of Information Theory and Algorithmic
973 Complexity for Network Biology, *Seminars in Cell & Developmental Biology*, 51: 32–43.
974 (2016). doi: 10.1016/j.semcdb.2016.01.011.

975 30. Zenil, H., Kiani, N. A., Marabita, F., Deng, Y., Elias, S., Schmidt, A., Ball, G., & Tegnér,
976 J. An Algorithmic Information Calculus for Causal Discovery and Reprogramming
977 Systems. *iScience*, 19: 1160–1172. (2019). 10.1016/j.isci.2019.07.043

978 31. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies
979 clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,
980 IDH1, EGFR, and NF1. *Cancer Cell*. 17(1):98-110 (2010). doi: [10.1016/j.ccr.2009.12.020](https://doi.org/10.1016/j.ccr.2009.12.020)

981 32. Barabási, A.L., and Posfai, M. *Network Science* (Cambridge University Press, UK. 2016)

982

983

984

985

986 33. Gyorgy, A. B., Szemes, M., de Juan Romero, C., Tarabykin, V., & Agoston, D. V. SATB2
987 interacts with chromatin-remodeling molecules in differentiating cortical neurons. *The*
988 *European journal of neuroscience*, 27(4), 865–873. (2008).
989 <https://doi.org/10.1111/j.1460-9568.2008.06061.x>

990

991

992 34. Stelzer, G., Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny Stein T,
993 Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan - Golan Y, Kohn
994 A, Rappaport N, Safran M, and Lancet D. *The GeneCards Suite: From Gene Data*
995 *Mining to Disease Genome Sequence Analysis, Current Protocols in Bioinformatics.*
1000 [54:1.30.1 - 1.30.33. \(2016\). doi: 10.1002 / cpbi.5.](https://doi.org/10.1002/cpbi.5)

1001

1002

1003 35. GeneCards: The Human Gene Database. <https://www.genecards.org/> (GCID:
1004 GC12P013196; GC08M124550) (Weizmann Institute of Science; accessed on July 3,
1005 2021)

1006 36. Latora, V. et al., Centrality Measures. Complex Networks: Principles, Methods and
1007 Applications (Cambridge University Press, Cambridge, UK. 2017)

1008 37. Rodrigues, F.A. Network centrality: an introduction. [arXiv:1901.07901](https://arxiv.org/abs/1901.07901) [physics.soc-ph]
1009 (2019)

1010 38. Krieger, M. S., Moreau, J. M., Zhang, H., Chien, M., Zehnder, J. L., & Craig, M. A
1011 Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with
1012 Empirical Dynamics. *Patterns* 1(9) 2020). 100138.
1013 <https://doi.org/10.1016/j.patter.2020.100138>

1014 39. Jessa, S., Blanchet-Cohen, A., Krug, B., Vladoiu, M., Coutelier, M., Faury, D., Poreau,
1015 B., De Jay, N., Hébert, S., Monlong, J., Farmer, W. T., Donovan, L. K., Hu, Y.,
1016 McConechy, M. K., Cavalli, F., Mikael, L. G., Ellezam, B., Richer, M., Allaire, A., Weil, A.
1017 G., ... Kleinman, C. L. (2019). Stalled developmental programs at the root of pediatric
1018 brain tumors. *Nature genetics*, 51(12), 1702–1713. <https://doi.org/10.1038/s41588-019-0531-7>

1019 40. Couturier, C. P., Ayyadhyury, S., Le, P. U., Nadaf, J., Monlong, J., Riva, G., Allache, R.,
1020 Baig, S., Yan, X., Bourgey, M., Lee, C., Wang, Y., Wee Yong, V., Guiot, M. C.,
1021 Najafabadi, H., Misic, B., Antel, J., Bourque, G., Ragoussis, J., & Petrecca, K. (2020).
1022 Single-cell RNA-seq reveals that glioblastoma recapitulates a normal
1023 neurodevelopmental hierarchy. *Nature communications*, 11(1), 3406.
1024 <https://doi.org/10.1038/s41467-020-17186-5>

1025 41. Menendez-Gonzalez, J. B., Vukovic, M., Abdelfattah, A., Saleh, L., Almotiri, A., Thomas,
1026 L. A., Agirre-Lizaso, A., Azevedo, A., Menezes, A. C., Tornillo, G., Edkins, S., Kong, K.,
1027 Giles, P., Anjos-Afonso, F., Tonks, A., Boyd, A. S., Kranc, K. R., & Rodrigues, N. P.
1028 Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid
1029 Leukemia. *Stem cell reports*, 13(2), 291–306. (2019).
<https://doi.org/10.1016/j.stemcr.2019.07.005>

1030 42. Schemionek, M., Kharabi Masouleh, B., Klaile, Y., Krug, U., Hebestreit, K., Schubert, C.,
1031 ... Koschmieder, S. Identification of the Adapter Molecule MTSS1 as a Potential
1032 Oncogene-Specific Tumor Suppressor in Acute Myeloid Leukemia. *PLOS ONE*, 10(5),
1033 e0125783. (2015). 10.1371/journal.pone.0125783.

1034 43. Sun, J., Gong, X., Purow, B., & Zhao, Z. (2012). Uncovering MicroRNA and
1035 Transcription Factor Mediated Regulatory Networks in Glioblastoma. *PLoS
1036 computational biology*, 8(7), e1002488. <https://doi.org/10.1371/journal.pcbi.1002488>

1037 44. Ping, Y., Deng, Y., Wang, L., Zhang, H., Zhang, Y., Xu, C., Zhao, H., Fan, H., Yu, F.,
1038 Xiao, Y., & Li, X. (2015). Identifying core gene modules in glioblastoma based on
1039 multilayer factor-mediated dysfunctional regulatory networks through integrating multi-
1040

1050 dimensional genomic data. *Nucleic acids research*, 43(4), 1997–2007.
1051 <https://doi.org/10.1093/nar/gkv074>
1052

1053 45. Bozdag, S., Li, A., Baysan, M., & Fine, H. A. (2014). Master regulators, regulatory
1054 networks, and pathways of glioblastoma subtypes. *Cancer informatics*, 13(Suppl 3), 33–
1055 44. <https://doi.org/10.4137/CIN.S14027>
1056

1057 46. Wang, J., Huang, T. Y., Hou, Y., Bartom, E., Lu, X., Shilatifard, A., Yue, F., & Saratsis,
1058 A. (2021). Epigenomic landscape and 3D genome structure in pediatric high-grade
1059 glioma. *Science advances*, 7(23), eabg4126. <https://doi.org/10.1126/sciadv.abg4126>
1060

1061

1062

1063