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SUMMARY

Glioblastoma (GBM) is a complex disease that is difficult to treat. Establishing the complex
genetic interactions regulating cell fate decisions in GBM can help to shed light on disease
aggressivity and improved treatments. Networks and data science offer alternative approaches
to classical bioinformatics pipelines to study gene expression patterns from single-cell datasets,
helping to distinguish genes associated with control of differentiation and thus aggressivity.
Here, we applied a host of data theoretic techniques, including clustering algorithms,
Waddington landscape reconstruction, trajectory inference algorithms, and network approaches,
to compare gene expression patterns between pediatric and adult GBM, and those of adult
glioma-derived stem cells (GSCs) to identify the key molecular regulators of the complex
networks driving GBM/GSC and predict their cell fate dynamics. Using these tools, we identified
critical genes and transcription factors coordinating cell state transitions from stem-like to
mature GBM phenotypes, including eight transcription factors (OLIG1/2, TAZ, GATA2, FOXG1,
SOX6, SATB2, YY1) and four signaling genes (ATL3, MTSS1, EMP1, and TPT1) as clinically
targetable novel putative function interactions differentiating pediatric and adult GBMs from
adult GSCs. Our study provides strong evidence of the applicability of complex systems
approaches for reverse-engineering gene networks from patient-derived single-cell datasets and
inferring their complex dynamics, bolstering the search for new clinically relevant targets in
GBM.

Keywords: Glioblastoma; Complex Systems; Networks; Data Science; Waddington Landscape
Reconstruction; Computational Oncology; Pediatric Glioblastoma
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1. INTRODUCTION

Glioblastoma (GBM) is the most lethal pediatric and adult brain tumour. Despite advances in
treatment, recurrence will occur in all GBM patients, and mean survival is only 15 months
(Alifieris and Trafalis, 2015). GBM is a morbid disease that is driven by a high degree of
heterogeneity and phenotypic plasticity in response to the interactions with their tumor
microenvironment (Jung et al., 2019). The cell fate transitions and cellular decision-making in
GBM cell populations are regulated by the dynamics of complex signaling networks (Suva et al.,
2014; Jia et al., 2017). Recent advances linking single-cell datasets and computational
algorithms have improved our understanding of these complex networks and their orchestration
of cell fate decisions of GBM transcriptional states (phenotypes) (Jin et al., 2018; lacono et al.,
2019). Despite this progress, quantitative approaches that reconstruct the information flow and
dynamics of these complex networks remain under-applied. Pediatric GBM exhibits molecular
patterns and collective behaviors which are fundamentally different from those of adult GBM
(Paugh et al., 2010; Jones et al., 2017; Schwartzentruber et al., 2012; Sturm et al., 2012). There
is a greater epigenetic burden in pediatric GBM marked by specific histone H3.3 modifications
and aberrant DNA methylation profiles (Scwartzentruber et al., 2012; Sturm et al., 2012; Lulla et
al., 2016; Harutyunyan et al., 2019). However, the complex signaling dynamics distinguishing
pediatric and adult GBM subgroups, and the similarities within the molecular networks driving
their cancer stemness, remain poorly investigated (Paugh et al., 2010; Jones et al., 2017).
Answering the question of whether the reconfiguration of these underlying signaling networks in
both GBM groups steers their cell fate dynamics would allow for the prediction of causal

patterns in the disease progression and therapeutic responses.

Glioma-derived stem cells (GSCs) are believed to be a small subset of GBM cancer cells that

largely contribute to emergent GBM adaptive behaviors such as phenotypic plasticity, clonal
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heterogeneity, self-renewal, aggressiveness (resilience), relapse/recurrence, and therapy
resistance (Jung et al., 2019, Xiong et al., 2019). However, many different phenotypes in the
tumor microenvironment, including immune cells, healthy cells, extracellular matrices, and blood
vessels, form complex feedback loops with malignant GBM cells (Jung et al., 2019, Xiong et al.,
2019). GSCs form complex networks with their tumor microenvironment. Signaling dynamics
within this microenvironment and its reconfiguration govern the fitness and stemness of GSCs.
A lack of quantitative understanding of the causal mechanisms (gene expression patterns)
underlying GSC cell fate choices and transitions to their mature phenotypes hinders successful
clinical interventions in the treatment of GBM (Jung et al., 2019, Xiong et al., 2019; Yabo et al.,

2021).

Statistical approaches are traditionally used to study cell fate dynamics and infer complex
networks from large-scale single cell transcriptomics by differential expression analysis through
a combination of single cell data processing and clustering algorithms (lacono et al., 2019).
However, these algorithmic pipelines are inadequate for capturing the complex patterns and
emergent behaviors of cancer network dynamics. Further, fundamental limitations associated
with the raw counts of the sScRNA-Seq complicate the inference of networks in complex
diseases like GBM. These limitations include drop out events (zero counts), and the inherent
noise and sparsity of single cell data. To extract quantitatively meaningful differences between
GSC and GBM networks, while retaining the essential information representative of their
complex dynamics, requires tools from the interdisciplinary paradigm of complex systems

theory.

Complex systems theory, or complexity science, is the study of irreducible systems composed
of many interacting parts in which the systems exhibit emergent behaviors. Emergence denotes
systems in which the nonlinear interactions between the system and its environment give rise to
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complex patterns and unpredicted collective dynamics (Wolfram, 1988; Shalizi, 2006). Some
general properties of complex systems include nonlinear dynamics, adaptive processes, self-
organized structures, interconnectedness, collective behaviors, pattern formation, fractality,
sudden phase-transitions, computational irreducibility, non-locality, long-term unpredictability,
undecidability and multi-scaled, multi-nested feedback loops (Wolfram, 1988; Shalizi, 2006).
The presence of multi-scaled feedback loops, in particular, is the defining feature of complex
networks (Thurner et al., 2018). Traditional reductionist approaches are inadequate to quantify
the properties and temporal behaviors of complex networks (Wolfram, 1988; Shalizi, 2006).
Complex systems theory advocates the use of computational algorithms and tools from network
science to dissect these complex networks (Thurner et al., 2018; Huang et al., 2009; Barabasi

and Oltvai, 2004).

The molecular networks coordinating the emergence of GSC and GBM phenotypes are such
complex networks. To reveal the mechanisms underlying GSC cell fate decisions and
transitions to their mature GBM phenotypes, we deployed several approaches from complex
systems theory on data from single-cell RNA Sequencing (ScCRNA-Seq) count matrices. We
compared pediatric GBM to adult GBM to identify the signaling network patterns distinguishing
pediatric and adult GBM from GSCs. For this, we relied upon clustering algorithms, Waddington
landscape reconstruction, multivariate information theory, network science (graph theory), and
machine learning algorithms to map possible cell fate dynamics and identify robust expression
markers (critical TFs and genes) driving the complex networks underlying GBM/GSC cell fate
control and regulation. We found that distinct gene expression signatures regulate the cell fate
decisions in the GBM and GSC patient groups we studied. In particular, we identified a set of
key gene targets as master regulators of cell fate decision dynamics in all patient groups, and
the critical drivers of GSC stemness networks. Mapping their energy landscape dynamics and
cell fate trajectories in pseudotime (cellular transition dimension), we represented the GSC/GBM

5
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cell fate decisions as dynamical systems which allowed us to identify genes such as GATA2,
FOXG1, SATB2, YY1, and SOX6, amidst others, as master regulators of information flow in
their signaling networks. Our results help to understand how cellular fate decisions in GBM,
identify potential drug targets for precision oncology, and provide a roadmap for data theoretic

approaches to other such complex systems.

2. METHODS

2.1. General methodological framework
To understand GBM network complexity, we integrated several pediatric and adult IDH-wt
GBM single-cell RNA-Seq (scRNA-Seq) datasets in an analytical pipeline that combines
several network reconstruction and analysis tools (see subsections below). Details of the
datasets used are provided in Table 1. Single-cell datasets were first filtered and normalized
in a quality control step, and patient samples were removed from the scRNA-Seq counts

expression matrix due to low unique molecular identifier (UMI)/high drop-out rates.

Next, gene expression matrices were analyzed independently using the various clustering
and trajectory inference algorithms discussed below. Here we provide a short summary
(Figure 1). For the Seurat algorithm, the top 10 principal component analysis (PCA) loadings
were used for the differential marker discovery; the top 25 PC loadings were used for the
BigScale analysis. To identify the differential markers expressed in all clusters, the top 10
markers within these PC loadings were pooled and analyzed on the UMAP/tSNE patterning
space of the cell fate clusters for each patient group. Similarly, the top 2 PCA loadings were
used by the scEpath pseudotime analysis. The normalized scRNA-Seq counts of the
discovered markers from the Seurat and BigSCale algorithms were pooled together, and
separately analyzed for each patient group. The expression counts of these markers were
then run through the PIDC Network Inference algorithm to obtain gene receptor networks.

6


https://doi.org/10.1101/2021.09.21.461255
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.21.461255; this version posted February 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

105 The differential transcription factors identified in the pseudotemporal progression heatmaps
106 were selected for scEpath analysis. Only the markers specific to each patient group were
107 selected for the PIDC network inference. Lastly, complex networks analysis was performed
108 on the reconstructed networks using transitivity and centrality scores to assess the network
109 structure and dynamics (information flow) to identify key regulators of GBM/GSC cell fate
110 decisions. Further, algorithmic complexity measures, as provided in the Supplementary
111 Material, were used to identify gene markers which could accurately discriminate the patient
112 groups by machine learning classifiers. Within the established gene networks, algorithmic
113 complexity was used to identify robust discriminants that could accurately distinguish the
114 three patient groups (i.e., pediatric GBM, adult GBM, and adult GSC), based on the

115 performance of machine learning classifiers on their algorithmic complexity scores (see
116 Supplementary Information).
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118 FIGURE 1. Workflow schematic of gene expression network pattern discovery.
119 Flowchart summarizing the methodological approach to differential marker discovery and
120 cell fate dynamics inference (see Methods section 2.1).
121

122 2.2. Single-cell datasets: Gene expression matrices for pediatric GBM, adult GBM, and

123 adult GSC were obtained from the SingleCell Portal repositories from Neftel et al., 2019 and
124 Richards et al., 2021 (Table 1). Briefly, GBM patient samples from Neftel et al. (2019)

125 contained the single cell RNA-Seq counts of four phenotypes (or cellular states):

126 macrophages, malignant GBM cells, oligodendrocytes, and T-cells. Adult GSC consisted
127 only of stem cells. Overall, our dataset included 28 adult GSC datasets, 7 pediatric GBM,
128 and 18 adult GBM scRNA-Seq expression count matrices.

129
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130 As a guality control measure for the Seurat and BigSCale clustering, two adult GBM

131 samples and one pediatric GBM sample were dropped in the filtering process (prior to

132 clustering) due to high zero-counts (i.e., low UMI). Importantly, we confirmed that our

133 findings were insensitive to the number of patient samples within each patient group:

134 including these removed samples did not change the differential expression analysis. To
135 further validate this finding, one sample was randomly chosen and dropped from the total
136 number of samples from each patient group to verify whether the clustering analysis

137 changed (i.e., leave-out-one cross-validation) and we confirmed the clustering results were
138 identical. Beyond 2500 cells, the computational time complexity of the scEpath algorithm
139 increased. Thus, the total cell counts of all three patient groups were kept at the maximum
140 computational threshold for the scEpath analysis (see Section 2.3.3). Further, to visualize
141 the cell fate attractor dynamics at the same fine-scale resolution for all patient groups, cell
142 counts were kept roughly the same for each GBM type. Selecting a different combination of
143 adult GSC samples did not change the scEpath landscape or results, as the trial of multiple
144 random selections (> 6 distinct combinations) reproduced identical results. A complete

145 description of the experimental approaches used to derive these datasets from their original
146 studies is provided in the Supplementary Information.

147

148 2.3. Clustering techniques. Clustering algorithms were used to identify differential markers

149 co-expressed within all patient groups and distinguish a robust network regulating the cell
150 fate dynamics across all phenotypes.
# Patient # Patient # of Cell Fate
. . i Samples (n) and | Samples (n) and Trajectories in
Féart(;im S'Sgtlzsce:te” Single-Cells (N) | single-cells (N) scEpath
P for for scEpath Waddington
Seurat/BigSCale Analysis Landscape
Pediatric Neftel et al. n=7 n=7 2
GBM (18) N = 1850 N= 1850
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Adult GBM Neftel et al. n=18 n="7 4
(18) N ~ 21,500 N =2221

Adult GSC Richards et n=28 n=13 2
al. (19) N ~ 69, 000 N = 1504

TABLE 1. Summary of single-cell datasets. The total number of patient samples (n) and
number of single-cells within each patient group (N) used for each step of the clustering and
single-cell trajectory inference process are shown.

2.3.1. Seurat algorithm: scRNA-Seq count matrices were pre-processed to obtain normalized
and binarized count expressions. Seurat initially performs a cluster analysis by principal
component analysis (PCA) dimensionality reduction followed by a graph-based
clustering (k-nearest neighbor (KNN) graph) based on the Euclidean distance of the 10
PCA loadings using the FindNeighbors function and Louvain community detection
algorithm (modularity optimization) using the FindClusters function (parameter can be
tuned between 0.4-1.2 for optimal results), to cluster cells by their Jaccard index-
expression similarity (see Seurat Clustering tutorial in GitHub code). All clustering
parameters were kept to their default settings. Next, the cells within the graph-based
clusters were visualized on Uniform Manifold Approximation and Projection (UMAP) or t-
Distributed Stochastic Neighbor Embedding (TSNE) space (i.e., unsupervised nonlinear
dimensionality reduction techniques) (Stuart et al., 2019). Differential markers from the
top 10 PCA loadings were visualized in UMAP space (analysis does not vary for TSNE
space) using the FindAllMarkers function with parameters: min.pct = 0.25 and
logfc.threshold = 0.25. We clustered similarly expressed cells together in the low
dimensional space by finding differentially expressed features/markers corresponding to
the highest ten PCA loadings in the graph-based clusters. To identify markers that
govern disease progression and transcriptional dynamics, we imposed the condition that
selected markers for the network reconstruction must be expressed in all clusters of the

three patient groups (pediatric GBM, adult GBM, and adult GSC).

10
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175 2.3.2. BigSCale algorithm: BigSCale is a framework for clustering, phenotyping,

176 pseudotiming, and inferring gene regulatory and protein-protein interaction networks
177 from single-cell data (lacono et al., 2019). A SingleCellExperiment class was created
178 from the scRNA-Seq raw count matrices for BigSCale processing, and counts were

179 replaced by z-scores. Cellular clustering was established by first computing all pairwise
180 cell distances using the Pearson correlation to generate a distance matrix. Following,
181 cells were assigned to cluster groups via the Ward’s linkage/method (an agglomerative
182 hierarchical clustering algorithm). Iterative differential expression analysis was

183 performed between the clusters of cells and the differential markers within the identified
184 clusters were assessed using the getMarkers function (see BigSCale 2 tutorial in Github
185 code). The markers specific to a cluster were sorted from the highest (most significant)
186 to the lowest (least significant) z-score for the selection of cluster-specific differential and
187 co-expressed gene markers within the top 25 PCA components. A z-score threshold of
188 5.0 was used as a cut-off threshold while the min_ODscore parameter was kept default
189 at 2.33. This imposed cut-off acts as a filtering mechanism to retain only the markers
190 with significant expression changes per cluster. As in the Seurat analysis, we imposed
191 the condition that selected markers for the network reconstruction must be expressed in
192 all clusters of the three patient groups.

193

194  2.3.3. ScEpath algorithm: We applied single cell Energy path (scEpath) to reconstruct the 3D-

195 energy landscape of cells and infer regulatory relationships from their transcriptional
196 dynamics (Jin et al., 2018). scEpath is a Waddington Landscape reconstruction

197 algorithm with an unsupervised clustering framework for cell lineage hierarchy mapping
198 and studying the pseudotemporal transcriptional dynamics in cell fate decisions. In this
199 trajectory inference algorithm, information flow and network reconfiguration underlying
200 the cellular decision-making steer the topography of cell populations’ energy landscapes

11
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201 (also referred to as a cell fate landscape, attractor landscape, or Waddington’s

202 epigenetic landscape (Waddington, 1957)). A cell state (cell fate) corresponds to a

203 specific transcriptional (gene expression) program and phenotype of a given cellular
204 population. Cell clusters higher on the energy landscape correspond to stem-cell like
205 states (unstable attractors) with higher differentiation potency, while cell states stuck in
206 lower energies (valleys, or stable attractors) correspond to differentiated (mature)

207 phenotypes with lower potency/plasticity (Figure 2).

208

209 scEpath allows for the visualization of cell fate transition probabilities in the population,
210 mapping of cell lineage trajectories in pseudotemporal ordering, and inference of cell
211 fate decisions from patient-derived scRNA-Seq datasets using the following steps: (i)
212 preprocessing of sScRNA-seq count matrix, (ii) gene regulatory network (GRN) inference,
213 (iii) single cell energy (scEnergy) calculation, (iv) 3D energy landscape reconstruction via
214 principal component analysis and structural clustering; (v) Transition probabilities

215 calculation, (vi) Inference of cell lineage hierarchy via a probabilistic directed graph, (vii)
216 pseudotime trajectory inference and, (viii) downstream analyses of identifying critical
217 transcription factors (TFs) governing the cell-fate commitments (Jin et al., 2018). A

218 detailed description of the scEpath algorithm is provided in the Supplementary

219 Information.

220

221 To perform the scEpath analysis on our data, we first pre-processed the log-normalized
222 (within patient-groups) count matrices with respect to their gene expression values by
223 filtering out zero counts. The differential markers were selected from the first two

224 significant PCA components. We then ran the scEpath MATLAB code from (Jin et al,
225 2018) on these processed datasets. GSC patient samples BT127, BT48, and BT84 from
226 Richards et al. (2021) were used for all scEpath analyses on GSC. Seven pediatric GBM

12
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227 samples from (Neftel et al., 2019) and seven adult GBM samples, selected to match the
228 cell count of the pediatric patient group, from (Neftel et al., 2019), were analyzed. We
229 confirmed that the number of patients did not influence the results and analysis by

230 selecting different random sets of adult GBM samples. We then ran energy

231 (Waddington) landscapes reconstruction on the following population sizes: pediatric
232 GBM: n= 7, N= 1850 cells; adult GBM: n = 7, N= 2221 cells; adult GSC: n=3, N=1504
233 cells.

234

235 scEpath smooths the average normalized expression of each gene using cubic

236 regression splines to map the pseudotemporal gene expression dynamics along the
237 inferred trajectories of the cell fates on the landscape, leading to smoothed gene

238 expression along a lineage path (Jin et al., 2018). Leveraging this, we inferred key

239 regulatory TFs for the cell fate differentiation by considering all PDG genes with a

240 standard deviation > 0.5 and a Bonferroni-corrected p-value below a significance level a
241 = 0.01 for the expression greater than a threshold (e.g., log2(fold-change) > 1). The
242 probabilistic-directed graph network and the cell lineage hierarchy inference parameters
243 were kept at default settings (quick_construct = 1; tau = 0.4; alpha = 0.01; thetal = 0.8).
244 The pseudotime-dependent genes were identified using parameters sd_thresh = 0.5;
245 sig_thresh = 0.01; nboot (see hyperparameter-optimized code in GitHub link).

246

247  2.3.4. Fractal and multifractal analysis: We applied fractal analysis to quantify the

248 complexity of the phenotypic patterns on the scEpath cell fate attractor landscape.

249 Fractals are signatures of complex systems (Mandelbrot, 1982), and the fractal

250 dimension is a non-integer, fractional dimension characterizing the statistical self-

251 similarity and roughness of a pattern. A higher fractality in tumor structures may imply
252 that the tumor is more complex, resilient (i.e., withstands environmental perturbations),

13
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aggressive, and difficult to treat (Coffey, 1998; Baish and Jain, 1998). As such, the
fractal index provides a quantitative measure of the cell fates’ phenotypic plasticity (i.e.,

higher for stem cell-like fates) and disease progression.

We used ImageJ plugin FracLac (v2.5) to compute the fractal dimension (FD) of
analyzed samples using the BoxCount algorithm on the cell state attractors (patterns of
cellular distributions on the scEpath energy landscapes). To calculate the fractal
dimension, landscape images were converted to black and white. Attractor fractal
dimensions reconstructed from the cell fate landscapes found to be non-integer were
considered to exhibit a fractional dimension in phase-space. Higher fractal indices
indicate more complex dynamics that are irregular and asymptotically unpredictable,
since in dynamical systems theory, patterns of systems exhibiting deterministic chaos

have a fractal dimension (i.e., strange attractors) (Strogatz, 2015).

Partial Information Decomposition and Context network inference: Using the
differential expression markers identified by the various approaches discussed above,
we reconstructed the underlying complex networks driving the GBM/GSC cell state
dynamics on the Waddington energy landscapes. Network inference tools study the
statistical dependencies between genes amidst distributions of expression levels in
populations of sampled cells (Chan et al., 2017) by inferring a graph-theoretic
representation of the functional relationships between the drivers of complex behaviors
such as cell fate transitions, thus allowing for the quantification of the relationships
between identified differential transition markers and tracking how these relationships
change across distinct phenotypes. Partial Information Decomposition and Context
(PIDC) networks have been suggested to outperform traditional gene regulatory network
inference approaches using correlation metrics, mutual information, Boolean networks,
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or Bayesian inference methods for network reconstruction (Chan et al., 2017). We used
this PIDC network inference algorithm to obtain a network structure of GBM and GSC

samples.

The Julia packages InformationMeasures.jl and Networkinference.jl were used to
reconstruct the GRN networks. PIDC network inference uses partial information
decomposition (PID) to infer regulatory interaction networks from gene expression
datasets. We used the Networkinference.jl package to establish the (undirected)
networks from the multivariate information measure (PID) calculated from the gene
expression matrices. Gene expression counts were first discretized via Bayesian blocks
discretization and the maximum likelihood estimator (Chan et al., 2017). The PIDC
network pattern is the simplest network the algorithm can construct such that the
distance between the nodes (genes or TFs) are minimized given their weights (PID
score). Network measures characterizing the structure, properties, and information flow
of these complex networks were then computed and the most differentially expressed

genes were identified by the clustering algorithms using PID scores.

Block Decomposition Method Calculations: We evaluated the algorithmic complexity
of key nodes (genes) of the inferred signaling networks to further identify robust markers
distinguishing GBM and GSC. Algorithmic complexity is a complementary measure that
identifies the minimal amount or set of information in our inferred complex networks
which regulate the phenotypic plasticity dynamics across the patient groups, and as
such the genes/TFs with highest algorithmic complexity could be robust disease
screening tools in precision oncology. The K-complexity of a string s, K(s), also known
as Kolmogorov or algorithmic complexity, is the shortest computer program length
needed to output that string. This can also alternatively be interpreted as the length of
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305 the shortest description of a system (Zenil et al., 2016). Since K(s) does not depend on
306 a choice of probability distribution like Shannon entropy, it is more robust for the

307 assessment of system complexity (Zenil et al., 2016, Zenil et al., 2019). Formally, the
308 Kolmogorov complexity of a discrete dynamical system is given by

309 K(sle) = min {|p|: U(p, e) = s},

310 for a string or array s, where p is the program that produces s and halts running on a
311 universal Turing machine U with input e. Then, K(s) is a function that takes a string or
312 matrix s to be the length of the shortest program p that generates s. However, K(s) is in
313 principle incomputable and must be approximated using the coding theorem method
314 (Zenil et al., 2019). We therefore used the Block Decomposition Method (BDM) to

315 approximate the K (s) of a dataset, which provides local estimates of the algorithmic
316 complexity (Zenil et al., 2016). BDM is available in the online algorithmic complexity
317 calculator [OACC] and its R-implementation (see Availability of Data and Material). The
318 BDM is defined as

319 BDM = Y, K(block;) + log,(|block;]),

320 where the block size must be specified for the n-number of blocks. When the block sizes
321 are higher, better approximations of the K-complexity are obtained (Zenil et al., 2016,
322 Zenil et al., 2019).

323

324 To calculate the BDM, we selected scRNA-Seq counts of seven randomly chosen

325 patient samples from each of the three patient groups. String length was kept the same
326 for all gene candidates from each sample. Accordingly, we chose the cell count

327 expressions of 46 cells from each patient sample for this analysis. The R-implementation
328 of the Online Algorithmic Complexity Calculator was used to compute the BDM

329 estimates of K-complexity for each expression string. scNA-Seq counts of the top gene
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330 interactions with highest PID scores were selected from each network and binarized.
331 We then performed BDM on these binarized strings using a block size of 12 and
332 alphabet size of 2 bits to estimate the K-complexity (i.e., BDM score) (see

333 Supplementary Information for BDM Results).

334

335 3. RESULTS
336 3.1 Key driver genes mediating the cell fate transition dynamics in GBM/GSC

337 epigenetic landscapes are identified using the scEpath algorithm.

338 The Waddington landscape reconstruction identified causal patterns (attractors) to which the
339  distinct transcriptional states within each patient group cluster (Fig 2A-C). Distinct patient group
340 clusters were determined by the scEpath algorithm (colored by similarity in gene expression

341 (i.e., phenotypes) in Figure 2). Three and four meta-clusters were identified in the pediatric GBM
342  (Fig 2A) and adult GBM (Fig 2B), respectively while sub-populations are observed within each
343  meta-cluster indicating the presence of phenotypic heterogeneity and epigenetic plasticity. Many
344  genes encoding transcription factors (TFs) were identified as the transition genes required for
345  cells to transition from one attractor to another. We mapped the expressions of these transition
346  genes across the inferred cell fate trajectories (Fig 2D-F) and found similarities in the gene

347  expression signatures and similar oscillatory patterns in EMP1, MTSS1, PHGDH and OLIG1/2
348 (Fig 3). These markers were selected in the clustering and trajectory inference process as

349  explained above. Their similarity was assessed by their expression variation along the cell fate
350 trajectories in pseudotime (Figure 3). We also identified OLIG1/2 as critical transcription factors

351 inthe adult GSC phenotypic transitions (Fig 2F).
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353 FIGURE 2. Waddington landscape reconstruction differentiates adult and pediatric GBM,
354 and adult GSC critical genes and transcription factors for cell fate transitions. A-C) The
355  distinct phenotypes of each patient group were clustered on the Waddington energy landscape
356 by their similarity in gene expression. The cell clustering patterns on the landscape are referred
357  to as attractors. Balls represent the transcriptional states (cell fates) and paths correspond to
358 the cell fate differentiation trajectories on the Waddington landscape. A) Pediatric GBM. B) Adult
359 GBM. C) Adult GSC. D-F) Heat maps of the critical transcription factors involved in the

360 differentiation and cell fate transitions between the distinct attractors (phenotype clusters) of the
361 GBM/GSC Waddington landscape. The color gradient represents the intensity of the gene

362  expression in pseudotime trajectory, where blue implies low expression and red implies high
363  expression of the gene (TF) during the cell fate choices along the cell differentiation trajectories.
364  The path corresponds to the inferred trajectories in between the cell state attractors on the

365  Waddington landscape. D) Pediatric GBM. E) Adult GBM. and F) Adult GSC.

366
367
368
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369 3.2. Pseudotime expression dynamics identifies oscillatory patterns in critical gene
370 targets.

371  Given the key driver genes and transcription factors identified by scEpath trajectory inference,
372  we next sought to infer similarities in gene expression dynamics during cell fate transitions

373  within each patient group amidst the identified critical gene markers. Using clustering algorithms
374  (see Methods), we found that PTPRZ1 and S100B showed nearly identical expression

375 dynamics in pediatric GBM along both cell fate trajectories on the Waddington landscape,

376  whereas genes such as EMP1, MTSS1, and PHGDH had more complex dynamics and

377  exhibited oscillations during cell fate dynamics in pediatric GBM and adult GSC (Fig 3A and Fig
378  3C). The expression metric used to compare the dynamics of the different pseudotime-

379 dependent genes correspond to the cubic spline smoothened average normalized expression
380 along the pseudotime interval of [0,1].

381

382  In adult GBM, NACA and PABPC1, and TPT1 and PSAP had similar expression patterns across
383  all four differentiation paths (Fig 3B). S100B, OLIG1, and PHGDH all had a broad expression
384  profile in path 4 (Fig 3B). Furthermore, the presence of four cell clusters in adult GBM

385 landscape (Fig 2B) is in good agreement with previous classifications of four molecular

386  subtypes of adult GBM (Verhaak et al., 2010). The expression of EGFR and PDGFRA were
387  distinctly higher in one of the four cell fate clusters/attractors (Figure S4B). However, the

388  expression of IDH1 exhibited oscillatory dynamics in all four paths/attractors (data not shown).
389 In adult GSC, many of the identified markers had similar gene expression profiles in

390 pseudotemporal ordering (Fig 3C). For instance, PTPRZ1, NACA and PABPC1, were all found
391 to have similar expression dynamics in both transition paths (Fig 3C). Notably, OLIG 1 and

392 OLIG2 were found to have similar expression patterns in all three patient groups across all cell
393 fate transition trajectories of the landscape (Fig 3A-C).

394
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395 Notably, we identified that genes such as STMN3, MTSS1 and TAZ are critical regulators in one
396 transition pathway, while PSAP, TPT1, and PTPRZ1 are relevant for the other transition

397 trajectory on the pediatric GBM’s Waddington landscape (Fig 3A and S4A). The same trends in
398 pseudotemporal gene expression patterns in STMN3 and PTPRZ1 have also been found in the
399  adult GSC cell fate trajectories (see Fig S4C in the Supplementary Information). In all three
400  patient groups, OLIG1, OLIG2, PHGDH, and TIMELESS had similar expression profiles within
401 the distinct cell fate transition paths indicating potentially some network coordination or

402  collective oscillations. Some signals (e.g., BCAN and CLU) were found to exhibit oscillations
403 that may be indicative of complex dynamics with time-series expression analysis

404  (Supplementary Information). These findings suggest that the identified markers involved in
405 GBM/GSC cell fate decisions exhibit similar patterns in their expression dynamics, and that the
406 identified critical genes are functionally putative master orchestrators of cell fate

407  transitions/differentiation of the heterogeneous phenotypes within a GBM patient’s tumor.
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409 FIGURE 3. Reconstructing pseudotime dynamics in GBM/GSC cell fate decisions of the
410 Waddington landscape. Average normalized gene expression in cells plotted along

411  pseudotime after fitting with a cubic smoothing spline (black line). Cells are colored according to
412  cell clusters defined by scEpath. The expression patterns of the top genes identified by scEpath
413 and BigSCale algorithms (via correlation metrics) showed significant changes along the

414  pseudotime trajectory inferred by scEpath algorithm. Selected gene markers in A) pediatric

415 GBM, B) adult GBM, C) adult GSC.

416
417 3.3. PIDC Network Inference algorithm reconstructs the regulatory network

418 configurations driving GBM/GSC cell fate transitions.

419  We next reverse engineered the signaling networks coordinating the information flow in GBM
420 and GSC using Partial Information Decomposition and Context (PIDC). Though the network
421  topography may seem similar, the arrangement of the interactions from highest influence on the
422  information flow (i.e., top PID scores) to those of the weakest interactions (lowest PID scores)
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423  vary for each patient group. As seen in Figure 4A, OLIG1 and OLIG2 have the highest PID

424 score of 1.9508, followed by S100B and PTPRZ1 interaction with a PID score of 1.9303 in

425  pediatric GBM, suggesting a strong relationship between these two genes in the complex

426  network steering their cell fate decisions (Fig 4A). We found that S100A10 and EMP1 have the
427  highest interaction in adult GBM with a PID score of 1.9517 (Fig 4B), whereas NACA and TPT1
428  had the highest interaction in adult GSC with a PID score of 1.9628 (Fig 4C). A distinct pattern
429  was observed in the PIDC regulatory network of adult GSC sample BT127 (highest quality GSC
430 cells). The highest interaction was observed between PHGDH and TIMELESS at a PID score of
431  2.762. Other top interactions identified for the TF networks (Fig 4E-G) had similar

432  pseudotemporal expression dynamics (Figure S4 A-C in the Supplementary Information). ATF3
433  and DDIT3 were the top interaction markers from the critical TFs identified for pediatric GBM
434  with a PID score of 1.971 (Fig 4E). EGR1 and FOSB in the adult GBM group (Fig 4F), and

435 YBX1 and HMGB1 were identified as the top interaction TF markers, with PID score of 1.992
436  (Fig 4G). These results suggest the reconfiguration of the nodes within the same complex

437  signaling network may characterize GSC cells from GBM cells and distinguish pediatric GBM

438  from adult GBM cell fate dynamics.
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FIGURE 4. Mathematical modelling identifies key regulatory genes driving GBM
networks. Gene regulatory networks of A) pediatric GBM, B) adult GBM, C) adult GSC, D) adult
GSC sample BT127, E) pediatric GBM transcription factors, F) adult GBM transcription factors,
and G) adult GSC transcription factors. In each, the signaling networks show the information
flow between critical signals required for the complex cell fate dynamics. The GRN networks
identified by Seurat and BigSCale are colored in violet nodes (Fig 4A-D) while the scEpath TF
networks are colored in teal (Fig 4E-G). The ranks were assigned a priority index by the PID
content as indicated by the numbers on the nodes. A high PID content implies a high mutual
information (dependence) of those gene interactions in the information flow network. The
number index on the nodes of the network correspond to the PID score in a decreasing order,
where rank 1 denotes the top (highest) value. As shown in the legend, the nodes with the
highest PID score are colored in green with a red shadow. Additionally, three different colored
rings are used to identify the nodes of the networks with the highest network centrality
measures as identified in Figure 5.
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454  3.4. Network centrality measures identify master regulators of information flow across
455 the regulatory networks underlying GBM/GSC cell fate decision-making.

456  Centrality is a key property of complex networks that influences the network dynamics and

457  information flow (lacono et al., 2019). The nodes (genes or TFs) with the highest centrality in the
458  regulatory networks are the most biologically important signals. By measuring network

459  centrality, we identified the primary genes regulating communication flow across each of the
460  pediatric and adult GBM, and adult GSC networks (Table 2). In particular, we calculated the
461  global clustering coefficient that measures the total number of closed triangles (link density) in a
462  network. A clustering coefficient at its maximal value of 1 indicates that the neighbors of the

463 gene (node) i form a complete graph (i.e., they all connect to each other) versus the converse
464  for a clustering coefficient of O (Barabasi and Posfai, 2016). We observed a lower clustering
465  coefficient of 0.94 for the BT127 network in Figure 4D. In the transcription factor networks

466  reconstructed from the scEpath heatmaps (italic columns, Table 2), the GSC TF network had
467  the highest diameter, while the GBM networks (both pediatric and adult) had smaller diameters.
468  The diameter is relatively in the same order of magnitude for the PIDC networks reconstructed
469 from the Seurat-BigSCale markers (bold columns, Table 2) as they correspond essentially to the
470 same set of genes interactions. The degree of centrality of all networks in Figure 4 was 1.0 at all
471  nodes, except for the BT127 PIDC network which had a degree centrality of value of 1.0 only at
472 nodes 1,5, 10, 12, 13, and 16, and a clustering coefficient of value 0.96. The degree centrality
473  of nodes 2, 7, and 8 were 0.89, the degree centrality of nodes 14 and 15 were roughly 0.5, and
474  the remaining nodes had a degree centrality of 0.95.

475

476  The closeness centrality identified genes/TFs occupying a central position in a network (lacono
477  etal., 2019). The nodes corresponding to the highest closeness centrality for each GRN

478  network were found to be Node 6 (EMP1) for pediatric GBM, Node 14 (ATL3) for adult GBM,
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479  Node 18 (ATL3) for GSC BT127, and Node 19 (TAZ) for GSC with closeness values of 1.398,
480 1.361, 1.006, and 1.184, respectively (Fig 5A).

481

482  Nodes corresponding to the maximal closeness in the pediatric GBM, adult GBM, and adult
483  GSC TF networks were found to be node 12 (GATA2), node 32 (MECOM), and node 31

484  (FOXG1), respectively with closeness measures of 1.761, 2.563, and 1.478 respectively (Fig

485 5B).

486  Betweenness centrality indicates the presence of regulatory bottlenecks (lacono et al., 2019;
487  Latora et al., 2017; Rodrigues, 2019). In our analyses, the highest betweenness measures for
488  the pediatric GBM, adult GBM, BT127 adult GSC, and adult GSC GRN networks were node 16
489  (ATL3), node 14 (ATL3), node 18 (ATL3), and node 19 (TAZ), respectively with betweenness
490 values of 0.3947, 0.5842, 0.2690, and 0.4678, respectively (Fig 5C). The trends in maximal
491  betweenness values (Fig 5C) were in good agreement with the nodes contributing to the

492  maximal closeness values discussed in Fig 5A, indicating that identified hodes are critical

493  targets governing the information flow in these complex networks. The highest betweenness
494  values for the TF networks were found to be to node 12 (GATAZ2) for pediatric GBM, node 11
495  (SOX6) for adult GBM, and node 31 (FOXG1) for adult GSC, with values of 0.3801, 0.2279, and
496  0.1539, respectively (Fig 5D). The highest values of eigenvector centrality, a measure of

497  information flow across the network, for the GRNs were found to be node 8 (MTSS1) for

498  pediatric GBM, node 5 (MTSS1) for adult GBM, node 10 (EMP1) for BT127, and node 2 (TPT1)
499  for GSC, with measures of 0.2796, 0.2827, 0.2909, and 0.2805, respectively.

500

501 The maximal eigenvector is a measure of the hub-score, i.e., the highest authority node of hub
502 networks (Latora et al., 2017; Rodrigues, 2019). The maximal eigenvector centrality of the TF

503 networks was found to be node 6 (SATB2) for pediatric GBM, and node 29 (YY1) for adult GBM,
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504 and node 1 (YBX1) for GSC, with values of 0.2594, 0.1874, and 0.2322, respectively. SATB2 is
505 a nuclear matrix-associated protein involved in chromatin remodelling and transcription
506 regulation during neuronal differentiation (Gyorgy et al., 2008). Interestingly, all transition genes
507  with high centrality measures identified in our network analyses, including EMP1, MTSS1,
508 ATL3, and TPT1 have a TF-binding site for YY1 (Stelzer et al., 2016; GeneCards, 2021) (see
509 Table 3).
510
511 We also performed fractal analysis on the attractors (cell clustering patterns) in the scEpath
512  Waddington landscapes. The fractal dimension scores obtained on the cell state attractors on
513 the energy landscape were compared across all groups (pediatric GBM (n=7), adult GBM (n =
514  18), and GSC (n=28)). The mean fractal dimension scores of the pediatric GBM, adult GBM,
515 and adult GSC groups were 1.502 £+ 0.099, 1.509 + 0.091, and 1.588 + 0.051, respectively
516 (Figure 5G). The FD scores of the two GBM groups were nearly identical, while a statistically
517  significant difference was observed from the GSC group. The multifractal spectrum f(a) was
518 extracted from the multifractal spectra of the individual cancer samples energy landscape
519 (n=54) (Fig 5H). Only the difference between GSC versus adult GBM was found to be
520  statistically significant (p=0.0201) by a Kolmogorov-Smirnov test. The pediatric GBM, and adult
521  GBM and GSC groups had a maximal multifractal spectrum f(«) value of 1.499 + 0.092, 1.462
522 +0.066, and 1.521 + 0.075, respectively.
Network Pediatric | Adult Adult BT127 | Pediatric | Adult Adult
Properties | GBM GBM GSC (Adult GBM GBM GSC (TF
GSC) (TF (TF Network)
Network) | Network)
G(V,E) (21,210) | (21,210) | (20,190) | (20,174) | (20,190) | (50, (37,666)
1225)
Center 16 14 19 18 8 15 31
Diameter | 3.037 3.283 3.490 3.106 1.869 1.474 3.936
Global 1.00 1.00 1.00 0.94 1.00 1.00 1.00
Clustering
Coefficient
523
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524  TABLE 2. General Properties of Inferred Complex Networks. G(V, E) denotes the graph with
525  the number of vertices V (the genes) and number of edges E for each inferred GRN network.
526  The center values designate to the node index (gene) acting as the center of the simple

527  weighted network. The clustering coefficient captures the degree to which the neighbors of a
528 given node link to each other.
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530 FIGURE 5. Centrality measures distinguish master regulators of information flow in GBM
531 networks. Three network centrality measures are assessed on the reconstructed GBM/GSC
532  networks. Three different network centralities were computed on the reconstructed networks:
533 closeness, betweenness, and eigenvector centrality. The genes (nodes) occupying the highest
534  of these centrality measures correspond to critical nodes steering the information flow in the
535 complex signaling networks governing GBM/GSC cell fate transition dynamics. A) Closeness
536  centrality of inferred GRNs. B) Closeness centrality of TF networks. C) Betweenness centrality
537  of gene regulatory networks. D) Betweenness centrality of transcription factor networks. E)

538  Eigenvector centrality of gene regulatory networks. F) Eigenvector centrality of transcription
539 factor networks. G) Fractal dimension of cell state attractors on scEpath energy landscapes. A
540  p-value of 0.0031 between the adult GSC and adult GBM, and p= 0.0011 between adult GSC
541  and pediatric GBM was calculated for the box-count algorithm’s fractal dimension scores using
542  the Kolmogorov-Smirnov test. Multifractal analysis of cell fate attractors on scEpath Waddington
543  landscapes.

544
545 4. DISCUSSION

546  Here we applied a collection of data theoretic and complexity science approaches to single cell
547  RNA-seq data from pediatric and adult GBM, and adult GSCs to distinguish genes regulating
548 communication within these cellular populations. Our findings demonstrate the application of
549 these tools for deciphering GBM/GSC signaling networks to understand how network

550 configuration orchestrates information flow and determines cell fate dynamics.

551

552  Multiple clustering algorithms were deployed to cross-validate their findings and ensure that the
553 differential markers extracted for network analysis were robust, complementary, and of high
554  importance in cell fate transition/differentiation mapping. There is a high degree of heterogeneity
555  displayed by GBM stem cells. The complementarity of our results in our independent and

556  orthogonal approaches are outlined in Table 3 by the associations identified between the

557 transition genes and the scEpath TFs. Our approach using distinct clustering techniques and
558  verifying their matching or complementary results was deployed to minimize the effects of

559  expression heterogeneity and validate our findings (Krieger et al., 2020).

TRANSITION GENES TRANSCRIPTION FACTORS

ATL3 YY1, FOSB, SOX6, GATA2, ATF3, EGR1,
MYC

MTSS1 YY1, ATF3, MYC
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EMP1 YY1, FOSB, GATA2, ATF3, MYC

TPT1 YY1, ATF3, FOSB, SOX6, EGR1, OLIG1/2
PTPRZ1 YY1, YY2, EGR1, NANOG, POUF51
S100B YY1, GATA2, EGR1, SOX6, MYC

560 TABLE 3. Interactions between transition genes and transcription factors identified in
561 network analysis. Amidst the critical transition genes listed, the first four were identified as the
562  central regulators of information flow across the GBM/GSC regulatory networks, while PTPRZ1
563 and S100B were other differential markers identified in our analyses. The list is not inclusive of
564  all possible gene-TF interactions but restricted to the analysis of only the high importance (i.e.,
565  highest network centrality measures) scEpath TFs identified in our findings. The TF-gene

566 interactions were identified using the GeneCards human gene database (GeneCards, 2021).

567
568  Using scEpath, we identified three and four meta-clusters in the pediatric GBM (Fig 2A) and

569 adult GBM (Fig 2B), respectively, while sub-clusters within each meta-cluster indicated the

570 presence of phenotypic heterogeneity and plasticity. However, the number of meta-clusters was
571 ambiguous in the adult GSC landscape (Fig 2C), as shown by the continuous progression from
572 the higher energy state clusters (stem-like fates) to the lower energy states indicating the

573  potential presence of a complex attractor. An alternative measure to assess the significance of
574  the scEpath clustering is the transition paths (cell fate trajectories). We predicted that the

575  number of clusters identified in the pediatric GBM group corresponds to the neuronal, astrocytic-
576  mesenchymal, and oligodendrocytic lineages, mirroring the healthy brain’s neurodevelopmental
577 hierarchy (Jessa et al., 2019; Couturier et al., 2020). Similarly, the four clusters identified in the
578 adult GBM group correspond to the four groups identified by Neftel et al. (2019), namely the
579  OPC-like (oligodendrocytic progenitor cell), NPC-like (neuronal progenitor cell-like), AC-like

580 (astrocytic cell-like), and MES-like (mesenchymal cell) lineages. Further, the infiltrated immune
581 cells (i.e., T-cells and macrophages) grouped into the MES-like state (Neftel et al., 2019).

582 Pediatric GBM cells showed less differentiation than the adult GBM samples, as indicated by
583 the higher energy cell-states, suggesting a closer resemblance to the GSC sample. The two cell
584  fate trajectories observed in the adult GSC sample may correspond to the transcriptional

585  gradient of two cellular states observed in the original study by Richards et al. (Fig 2C), which
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586  were shown to mirror normal neurodevelopment and inflammatory wound responses (Richards
587 etal, 2021).

588

589 The cell fate trajectories along the scEpath Waddington landscape (Figure 2A-C) were

590 determined by the transition probabilities of the probabilistic directed graph reconstructed from
591 the cell fate clusters, where the weighted edges of the networks correspond to the average

592  normalized gene expression (see Supplementary Information for additional details). scEpath
593 used the minimum directed spanning tree to find the maximum probability flow and minimal

594  number of edges along the network, since cell fates transition to lower energy states during

595 differentiation. The resulting tree approximates the cell state transition network and infers the
596 observed developmental trajectories/lineage structures. The weighted edges of the cell state
597 transition network were found to be proportional to the gene expression values seen in Figure 3,
598  where the number of developmental trajectories inferred are indicated by the path numbers in
599  Figure 2. Thus, two cell fate trajectories were detected in the pediatric GBM and adult GSC

600 samples while four developmental trajectories were observed in adult GBM.

601

602 In pediatric GBM, the expression of transcription factors in pseudotime was shown to be highly
603 nonlinear. Certain genes, including GATA2, were even found to be oscillatory in one trajectory
604  while demonstrating an increasing or decreasing gradient of expression along the other cell fate
605 trajectory. Likewise, patterns of other critical transition genes (TFs) were identified along the
606  attractor dynamics between the distinct transcriptional states of adult GBM and adult GSC cells.
607  Further, we found that genes such as EMP1, MTSS1, PTPRZ1 and S100B exhibited distinct
608 gene expression oscillations in one differentiation trajectory (path) over the other(s) (Figure 3).
609 These genes were also found to have TF-binding sites for the scEpath identified TFs with the
610 highest network centrality measures in our downstream analysis (Figure 4). Together, these
611 findings are indicative of a highly interconnected network of gene-TF interactions governing
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612 GBM/GSC cell fate decisions, and further suggest that the information flow across the inferred
613 networks may steer cell fate decisions towards complex attractors on the GBM/GSC

614  Waddington landscape.

615

616  Using network centrality measures, we identified OLIG1/2, TAZ, GATA2, FOXG1, SOX6,

617 SATB2, YY1, and gene targets ATL3, MTSS1, EMP1, and TPT1 as critical genes governing the
618 cell fate dynamics of GBM and GSC cells (Fig 5A-F). Many of these signals are

619 neurodevelopmental transcription factors involved in healthy brain development, essential for
620 conferring and maintaining cancer stem cells (GSCs). Maximal centrality scores indicated that
621 they are key regulators of the network information flow in both GBM groups and GSCs. The
622 functional significance of these transcription factors (see Supplementary Information) suggests
623  their critical role in stem cell decision-making and differentiation dynamics. Our findings indicate
624  that these genes may be strong candidates for therapeutic interventions points for the treatment
625 of GBM. Other signaling interactions such as PTPRZ1 and S100B were identified in our

626  analyses as potent clinically druggable targets in the treatment of GBM. Furthermore, we

627  predicted that GATA2 and MTSS1 may provide a common ground for interlinking

628 leukemogenesis, the complex signaling dynamics of leukemia/lymphoma affecting children, and
629 pediatric glioma/GBM (Menendez-Gonzalez et al., 2019, Schemionek et al., 2015).

630

631 BDM was used to distinguish which of the differential markers can accurately

632 classify/differentiate the three patient group samples (see Supplementary Information). We

633 identified FOSB, HMGB1 and EGR1 as differential signatures which can accurately predict the
634  patient groups in our single-cell analyses (see Sl). The algorithmic complexity measured by the
635 BDM allowed for the identification of critical network genes differentiating GBM and GSC

636  phenotypes with the minimal information. The rationale for using gene/TF markers’ BDM as a
637  phenotypic discriminant is that the algorithmic complexity denotes the shortest algorithm or

31


https://doi.org/10.1101/2021.09.21.461255
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.21.461255; this version posted February 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

638  minimal set of information within the complex networks inferred required to classify the distinct
639  patient groups. As such, the identified genes/TFs may be useful biomarkers for prognostic
640 screening and disease phenotyping in clinical medicine.

641

642  From the transcription factor (TF) networks identified by scEpath (Table 3), we distinguished
643 some TFs to form interactions with some of the differential gene markers, suggesting cellular
644  reprogramming targets for controlling GBM cell fate dynamics. Our study therefore quantifies
645 how these markers’ expression vary in the cell fate transitions from stem-like to mature

646  phenotypes. For a discussion on the biological significance of key genes and transcription
647 factors identified in our analyses, see the Supplementary Results in the Supplementary

648  Information.

649

650 The cell fate transition markers identified in our study, including PTPRZ1, EMP1, S100B, and
651 MTSS], are in good agreement with the findings from the original studies (SCP393 and

652  SCP503). Although some of the signatures we identified overlap with the differential expression
653  patterns of the original studies, they did not compare the co-expression of these markers

654  between GSC and GBM. Markers differentiating distinct cellular states have been previously
655 investigated (for instance, the original study by Neftel et al. identified copy number

656  amplifications of the CDK4, EGFR, and PDGFRA loci and mutations of the NF1 locus, each
657 favoring one of the four GBM phenotypes (Neftel et al., 2019)). Our study instead analyzed the
658  expression patterns which fluctuate or form a differentiation gradient across the distinct cell
659  states. Further, while previous studies have associated the differentiation markers of GBM
660  progression identified here, our study demonstrates their novel integrated application to

661 elucidate the roles of these network biomarkers in GBM cell fate decisions and differentiation
662  dynamics. Indeed, while many of the identified genes or TFs have been previously studied in
663  the context of neurodevelopmental regulation and glioma cell fate dynamics, most of those
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664  selected in our analyses are not yet documented in glioblastoma cell fate control. As such, we
665  propose the identified interactions in Table 3 may provide clinically relevant GBM-specific

666  precision therapeutics, and that our network analyses provide a quantitative tool to characterize
667  which of the markers were of high importance (i.e., high centrality measures) in cell fate control,
668  plasticity regulation, and transition dynamics. Future studies should exploit tools from

669 algorithmic complexity theory including algorithmic network perturbation analysis (i.e., quantify
670 the BDM changes across a network by node or link deletion) to better elucidate the inferred

671 network dynamics in cancer cell fate control and regulation.

672

673  While previous GBM gene regulatory network inference methods vary from our approaches, our
674 findings are consistent with their results. For example, Sun et al. found 15 hub genes in GBM-
675  specific miRNA-TF networks, including PDGFRA and SOX11, and 6 hub TFs (including GATAL)
676  as key regulators of GBM dynamics (Sun et al., 2012). In our study, we also identified PDGFRA
677 and SOX11 as hub genes of the inferred GBM networks, and found that GATA2, an alternate
678 isoform, overlapped with these findings. However, Sun et al. (2012) did not compare GBM of
679 different age groups nor consider GBM-derived stem cells for reconstruct their differentiation
680 networks. Similarly, a network inference study by Ping et al. (2015) revealed 17 hub genes in
681 GBM networks, including EGFR and PDGFRA, as gene signatures of the proneural GBM

682  subtype, both of which were identified in our analyses. In another study, GSEA and IPA-based
683  gene enrichment pathway analysis discovered TAZ as a key regulator of GBM networks

684  (Bozdag et al., 2014), which was also identified as a master regulator of GBM differentiation
685  dynamics in our analyses.

686

687  Using multi-omic analyses, Suva et al. distinguished OLIG2, POU3F2 SALL2, and SOX2 as hub
688 genes of GBM stemness networks critical for their tumor-propagation potential (Suva et al.,

689  2014). Our findings identified OLIG2 as a master control gene of GBM differentiation dynamics
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690 and established a connection between SOX2 expression and the critical hub gene FOXG1.
691  Further, some epigenetic profiling studies have shown that aberrant histone modifications and
692  methylation profiles are molecular signatures driving pediatric GBM and distinguishing them
693  from their adult counterparts (Jones et al., 2017, Lulla et al., 2016, Sturm et al., 2012). Sturm et
694  al. (2012) revealed that the TFs OLIG1, OLIG2 and FOXG1 are the master regulators of the hub
695 gene networks driving these oncohistone pediatric GBM variants (i.e., K27M and G34V/R).

696  Similar findings were recently reported by Wang et al. (2021), who identified the same set of
697  TFs as critical drivers of pediatric high-grade gliomas’ epigenetic landscapes. We identified all
698 three TFs reported by Sturm et al. and Wang et al. in our network approaches as critical

699 regulators of GBM cell fate dynamics. Thus, our findings recapitulate the complex network

700 dynamics driving the oncohistone variants of pediatric GBM and validate and extend previous
701  findings.

702

703 It should be noted that there is a good deal of heterogeneity within the single-cell datasets

704  across and with the patient groups. The original datasets contained 8 pediatric GBM samples,
705 20 adult GBM samples, and 28 adult GSC samples. For the initial clustering (i.e., differential
706  discovery using Seurat and BigSCale), samples--two adult GBM and one pediatric GBM-- with
707  the highest drop-out rate (i.e., zero counts) were removed as a data filtering and quality control
708  step prior to normalization. Subsequently, the number of adult GBM samples in the scEpath
709 analysis was randomly selected to closely match the cell count numbers of the adult GSC

710 patient groups. The down-sampling of GSC samples was necessary since scEpath analysis has
711  acomputational limitation on the number of samples which can be processed (roughly 2500
712 cells). As noted in the Methods, selecting a different combination of GSC samples did not

713  change the results and including the removed samples did not change the differential marker
714  discovery or expression analyses. Indeed, the global clustering patterns remained the same
715  although there was greater dispersion in the local sub-clusters in the Seurat and BigSCale
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716  pattern space. However, including all n=8 pediatric GBM patient samples generated a shorter
717  list of transition genes with abrupt transitions between the distinct phenotypes.

718

719  Alimitation of our study is that we did not have access to pediatric GSC cells, given that adult
720 GSC data have only recently been described (Richards et al., 2021). There may be other hidden
721  causal interactions interconnecting the nodes of the complex networks we inferred that were not
722  identified due to lack of data. Further, the lack of time-series SCRNA-Seq counts is a barrier to
723  understanding the complex dynamics of GBM/GSC networks. The pseudotemporal dynamics
724 consist of inferred cell fate trajectories in a dimensionality-reduced data space (i.e., PCA space)
725 by transcriptional similarity of cell fates. Ribosomal proteins and certain cytoskeletal markers
726  (housekeeping genes) were also not pooled with the differential expression signatures for

727  network inference (Figure S1).

728

729  This proof-of-concept study provides a comprehensive method to dissect the cybernetics of

730  cancer cellular ecosystems and their cell fate dynamics. Current bioinformatic pipelines in

731  cancer data science largely fail to reconcile the complex dynamics and temporal features of

732  GBM transcriptional states, as they either take a reductionist approach to inferring gene

733  expression patterns or rely on statistical correlation methods. In contrast, our framework

734  provides a pipeline for causal pattern discovery and thereby allows the prediction/forecasting of
735  how the differentially expressed transition genes control and regulate cell fate decision-making.
736  Further, our approach allows for the mapping of these cancer cell fate behaviors to information
737  flow across the inferred complex networks. Thus, these causal inference tools shed light on

738 emergent behaviors in cell fate decisions such as transcriptional heterogeneity from a dynamical
739  systems perspective. As such, we propose our methodological framework may provide a

740 complementary and potentially more useful means to assess how the heterogeneous cancer
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741  phenotypes exhibit adaptive (emergent) behaviors and help forecast their dynamic response to
742  drug/therapeutic perturbations at the level of molecular interactions.

743

744 6. CONCLUSION

745  This study demonstrates the use of complex systems approaches in deciphering the cybernetics
746  of GBM/GSC networks, and shows how signaling dynamics differ between pediatric GBM, adult
747  GBM, and adult GSC populations. By identifying transcription factors and genes, our combined
748  approach serves as one part of the precision medicine toolbox for the treatment of GBM,

749  suggesting both precision therapeutic targets and GBM reprogramming factors.

750

751  Prospective studies should explore the use of artificial neural networks, including Deep Learning
752  algorithms, for single-cell transcriptomic analyses. Further, causal inference-based network

753 inference methods such as Bayesian networks and algorithmic information dynamics should be
754  investigated for GBM regulatory networks reconstruction. The epigenetic regulation of our

755 identified transcriptional networks must be explored using high-throughput multi-omics datasets.
756  Our network approaches should be extended to protein-protein interaction networks, epigenetic
757  networks, and metabolic networks to investigate multi-omic levels of GBM heterogeneity,

758 including oncohistone variants (i.e., K27M, K36M, G34V/R) and IDH1/2-mutants observed in
759  pediatric gliomas (GBM).
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The datasets supporting the conclusions of this article are available in the Single Cell Portal
repository:

https://singlecell.broadinstitute.org/single cell/study/SCP393/single-cell-rna-seqg-of-adult-and-
pediatric-glioblastoma#study-summary

https://singlecell.broadinstitute.org/single cell/study/SCP503/gradient-of-developmental-and-
injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-
heterogeneity#study-download

All Codes and Algorithms used for the single-cell data analysis are available in the project
GitHub page:

https://qgithub.com/Abicumaran/GBM Complexity |

Software/Algorithms:

Seurat

Project name: Seurat V3

Project home page: https://github.com/satijalab/seurat/
Archived version: 10.1016/j.cell.2019.05.031

Operating system(s): Platform independent
Programming language: R

Other requirements: Not Applicable

License: GNU Public License (GPL 3.0)

Any restrictions to use by non-academics: Not Applicable

BigScale
Project name: BigScale V2

Project home page: https://github.com/iaconogi/BigSCale2
Archived version: 10.1186/s13059-019-1713-4

Operating system(s): Platform independent

Programming language: R

Other requirements: C++

License: Not Applicable

Any restrictions to use by non-academics: Not Applicable

scEpath
Project name: single-cell Energy path (scEpath)

Project home page: https://github.com/sqgjin/scEpath
Archived version: 10.1093/bioinformatics/bty058
Operating system(s): Platform independent
Programming language: MATLAB

Other requirements: C++

License: Not Applicable

Any restrictions to use by non-academics: Not Applicable
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https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity#study-download
https://singlecell.broadinstitute.org/single_cell/study/SCP503/gradient-of-developmental-and-injury-reponse-transcriptional-states-define-functional-vulnerabilities-underpinning-glioblastoma-heterogeneity#study-download
https://github.com/Abicumaran/GBM_Complexity_I
https://github.com/satijalab/seurat/
https://github.com/iaconogi/BigSCale2
https://github.com/sqjin/scEpath
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814  Project name: Online Algorithmic Complexity Calculator V3

815  Project home page: https://github.com/algorithmichaturelab/OACC
816  Archived version: 10.1016/j.isci.2019.07.043

817  Operating system(s): Platform independent

818 Programming language: R

819  Other requirements: Not Applicable

820  License: GNU Public License (GPL 3.0)

821  Any restrictions to use by non-academics: Not Applicable

822

823 Network Inference

824  Project name: Networkinference.jl and Partial Information Decomposition (PID)
825  Project home page: https://github.com/Tchanders/Networkinference.|l
826  Archived version: 10.1016/j.cels.2017.08.014

827  Operating system(s): Platform independent

828  Programming language: Julia

829  Other requirements: Not Applicable

830 License: MIT "Expat" License

831  Any restrictions to use by non-academics: Not Applicable

832

833

834  JuliaLightGraphs

835  Project name: LightGraphs.jl V1.3

836  Project home page: https://github.com/JuliaGraphs/SimpleWeightedGraphs.|l
837  Archived version: Not Applicable

838  Operating system(s): Platform independent

839  Programming language: Julia

840  Other requirements: Jupyter Notebook and HTML

841 License: MIT "Expat" License

842  Any restrictions to use by non-academics: Not Applicable

843

844

845  SciKit-learn:

846  Project name: Scikit-learn

847  Project home page: https://scikit-learn.org/ or https://github.com/scikit-learn/scikit-learn
848  Archived version: http://imir.org/papers/vi2/pedregosalla.html
849  Operating system(s): Platform independent

850  Programming language: Python (= V3.7)

851  Other requirements: NumPy (=1.14.6), SciPy (= 1.1.0), joblib (= 0.11), threadpoolctl (= 2.0.0),
852  Google Colab or Jupyter Notebook

853  License: 3-Clause BSD license

854  Any restrictions to use by non-academics: Not Applicable

855

856 Fraclac

857  Project name: FracLac V2.5

858  Project home page: https://imagej.nih.gov/ii/plugins/fraclac

859  Archived version: Not Applicable

860  Operating system(s): Platform independent

861 Programming language: Java

862  Other requirements: Not Applicable

863 License: National Institute of Health (NIH) Public License

864  Any restrictions to use by non-academics: Not Applicable
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