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SUMMARY 

Glioblastoma (GBM) is a complex disease that is difficult to treat. Establishing the complex 
genetic interactions regulating cell fate decisions in GBM can help to shed light on disease 
aggressivity and improved treatments. Networks and data science offer alternative approaches 
to classical bioinformatics pipelines to study gene expression patterns from single-cell datasets, 
helping to distinguish genes associated with control of differentiation and thus aggressivity. 
Here, we applied a host of data theoretic techniques, including clustering algorithms, 
Waddington landscape reconstruction, trajectory inference algorithms, and network approaches, 
to compare gene expression patterns between pediatric and adult GBM, and those of adult 
glioma-derived stem cells (GSCs) to identify the key molecular regulators of the complex 
networks driving GBM/GSC and predict their cell fate dynamics. Using these tools, we identified 
critical genes and transcription factors coordinating cell state transitions from stem-like to 
mature GBM phenotypes, including eight transcription factors (OLIG1/2, TAZ, GATA2, FOXG1, 
SOX6, SATB2, YY1) and four signaling genes (ATL3, MTSS1, EMP1, and TPT1) as clinically 
targetable novel putative function interactions differentiating pediatric and adult GBMs from 
adult GSCs. Our study provides strong evidence of the applicability of complex systems 
approaches for reverse-engineering gene networks from patient-derived single-cell datasets and 
inferring their complex dynamics, bolstering the search for new clinically relevant targets in 
GBM. 
 
Keywords: Glioblastoma; Complex Systems; Networks; Data Science; Waddington Landscape 

Reconstruction; Computational Oncology; Pediatric Glioblastoma 
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1. INTRODUCTION 1 

 2 

Glioblastoma (GBM) is the most lethal pediatric and adult brain tumour. Despite advances in 3 

treatment, recurrence will occur in all GBM patients, and mean survival is only 15 months 4 

(Alifieris and Trafalis, 2015). GBM is a morbid disease that is driven by a high degree of 5 

heterogeneity and phenotypic plasticity in response to the interactions with their tumor 6 

microenvironment (Jung et al., 2019). The cell fate transitions and cellular decision-making in 7 

GBM cell populations are regulated by the dynamics of complex signaling networks (Suvà et al., 8 

2014; Jia et al., 2017). Recent advances linking single-cell datasets and computational 9 

algorithms have improved our understanding of these complex networks and their orchestration 10 

of cell fate decisions of GBM transcriptional states (phenotypes) (Jin et al., 2018; Iacono et al., 11 

2019). Despite this progress, quantitative approaches that reconstruct the information flow and 12 

dynamics of these complex networks remain under-applied. Pediatric GBM exhibits molecular 13 

patterns and collective behaviors which are fundamentally different from those of adult GBM 14 

(Paugh et al., 2010; Jones et al., 2017; Schwartzentruber et al., 2012; Sturm et al., 2012). There 15 

is a greater epigenetic burden in pediatric GBM marked by specific histone H3.3 modifications 16 

and aberrant DNA methylation profiles (Scwartzentruber et al., 2012; Sturm et al., 2012; Lulla et 17 

al., 2016; Harutyunyan et al., 2019). However, the complex signaling dynamics distinguishing 18 

pediatric and adult GBM subgroups, and the similarities within the molecular networks driving 19 

their cancer stemness, remain poorly investigated (Paugh et al., 2010; Jones et al., 2017). 20 

Answering the question of whether the reconfiguration of these underlying signaling networks in 21 

both GBM groups steers their cell fate dynamics would allow for the prediction of causal 22 

patterns in the disease progression and therapeutic responses.  23 

 24 

Glioma-derived stem cells (GSCs) are believed to be a small subset of GBM cancer cells that 25 

largely contribute to emergent GBM adaptive behaviors such as phenotypic plasticity, clonal 26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2021.09.21.461255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461255
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

heterogeneity, self-renewal, aggressiveness (resilience), relapse/recurrence, and therapy 27 

resistance (Jung et al., 2019, Xiong et al., 2019). However, many different phenotypes in the 28 

tumor microenvironment, including immune cells, healthy cells, extracellular matrices, and blood 29 

vessels, form complex feedback loops with malignant GBM cells (Jung et al., 2019, Xiong et al., 30 

2019). GSCs form complex networks with their tumor microenvironment. Signaling dynamics 31 

within this microenvironment and its reconfiguration govern the fitness and stemness of GSCs. 32 

A lack of quantitative understanding of the causal mechanisms (gene expression patterns) 33 

underlying GSC cell fate choices and transitions to their mature phenotypes hinders successful 34 

clinical interventions in the treatment of GBM (Jung et al., 2019, Xiong et al., 2019; Yabo et al., 35 

2021).  36 

 37 

Statistical approaches are traditionally used to study cell fate dynamics and infer complex 38 

networks from large-scale single cell transcriptomics by differential expression analysis through 39 

a combination of single cell data processing and clustering algorithms (Iacono et al., 2019). 40 

However, these algorithmic pipelines are inadequate for capturing the complex patterns and 41 

emergent behaviors of cancer network dynamics. Further, fundamental limitations associated 42 

with the raw counts of the scRNA-Seq complicate the inference of networks in complex 43 

diseases like GBM. These limitations include drop out events (zero counts), and the inherent 44 

noise and sparsity of single cell data. To extract quantitatively meaningful differences between 45 

GSC and GBM networks, while retaining the essential information representative of their 46 

complex dynamics, requires tools from the interdisciplinary paradigm of complex systems 47 

theory.  48 

 49 

Complex systems theory, or complexity science, is the study of irreducible systems composed 50 

of many interacting parts in which the systems exhibit emergent behaviors. Emergence denotes 51 

systems in which the nonlinear interactions between the system and its environment give rise to 52 
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complex patterns and unpredicted collective dynamics (Wolfram, 1988; Shalizi, 2006). Some 53 

general properties of complex systems include nonlinear dynamics, adaptive processes, self-54 

organized structures, interconnectedness, collective behaviors, pattern formation, fractality, 55 

sudden phase-transitions, computational irreducibility, non-locality, long-term unpredictability, 56 

undecidability and multi-scaled, multi-nested feedback loops (Wolfram, 1988; Shalizi, 2006). 57 

The presence of multi-scaled feedback loops, in particular, is the defining feature of complex 58 

networks (Thurner et al., 2018). Traditional reductionist approaches are inadequate to quantify 59 

the properties and temporal behaviors of complex networks (Wolfram, 1988; Shalizi, 2006). 60 

Complex systems theory advocates the use of computational algorithms and tools from network 61 

science to dissect these complex networks (Thurner et al., 2018; Huang et al., 2009; Barabási 62 

and Oltvai, 2004).  63 

 64 

The molecular networks coordinating the emergence of GSC and GBM phenotypes are such 65 

complex networks. To reveal the mechanisms underlying GSC cell fate decisions and 66 

transitions to their mature GBM phenotypes, we deployed several approaches from complex 67 

systems theory on data from single-cell RNA Sequencing (scRNA-Seq) count matrices. We 68 

compared pediatric GBM to adult GBM to identify the signaling network patterns distinguishing 69 

pediatric and adult GBM from GSCs. For this, we relied upon clustering algorithms, Waddington 70 

landscape reconstruction, multivariate information theory, network science (graph theory), and 71 

machine learning algorithms to map possible cell fate dynamics and identify robust expression 72 

markers (critical TFs and genes) driving the complex networks underlying GBM/GSC cell fate 73 

control and regulation. We found that distinct gene expression signatures regulate the cell fate 74 

decisions in the GBM and GSC patient groups we studied. In particular, we identified a set of 75 

key gene targets as master regulators of cell fate decision dynamics in all patient groups, and 76 

the critical drivers of GSC stemness networks. Mapping their energy landscape dynamics and 77 

cell fate trajectories in pseudotime (cellular transition dimension), we represented the GSC/GBM 78 
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cell fate decisions as dynamical systems which allowed us to identify genes such as GATA2, 79 

FOXG1, SATB2, YY1, and SOX6, amidst others, as master regulators of information flow in 80 

their signaling networks. Our results help to understand how cellular fate decisions in GBM, 81 

identify potential drug targets for precision oncology, and provide a roadmap for data theoretic 82 

approaches to other such complex systems. 83 

 84 

2. METHODS 85 

2.1.  General methodological framework 86 

To understand GBM network complexity, we integrated several pediatric and adult IDH-wt 87 

GBM single-cell RNA-Seq (scRNA-Seq) datasets in an analytical pipeline that combines 88 

several network reconstruction and analysis tools (see subsections below). Details of the 89 

datasets used are provided in Table 1. Single-cell datasets were first filtered and normalized 90 

in a quality control step, and patient samples were removed from the scRNA-Seq counts 91 

expression matrix due to low unique molecular identifier (UMI)/high drop-out rates.  92 

 93 

Next, gene expression matrices were analyzed independently using the various clustering 94 

and trajectory inference algorithms discussed below. Here we provide a short summary 95 

(Figure 1). For the Seurat algorithm, the top 10 principal component analysis (PCA) loadings 96 

were used for the differential marker discovery; the top 25 PC loadings were used for the 97 

BigScale analysis. To identify the differential markers expressed in all clusters, the top 10 98 

markers within these PC loadings were pooled and analyzed on the UMAP/tSNE patterning 99 

space of the cell fate clusters for each patient group. Similarly, the top 2 PCA loadings were 100 

used by the scEpath pseudotime analysis. The normalized scRNA-Seq counts of the 101 

discovered markers from the Seurat and BigSCale algorithms were pooled together, and 102 

separately analyzed for each patient group. The expression counts of these markers were 103 

then run through the PIDC Network Inference algorithm to obtain gene receptor networks. 104 
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The differential transcription factors identified in the pseudotemporal progression heatmaps 105 

were selected for scEpath analysis. Only the markers specific to each patient group were 106 

selected for the PIDC network inference. Lastly, complex networks analysis was performed 107 

on the reconstructed networks using transitivity and centrality scores to assess the network 108 

structure and dynamics (information flow) to identify key regulators of GBM/GSC cell fate 109 

decisions. Further, algorithmic complexity measures, as provided in the Supplementary 110 

Material, were used to identify gene markers which could accurately discriminate the patient 111 

groups by machine learning classifiers. Within the established gene networks, algorithmic 112 

complexity was used to identify robust discriminants that could accurately distinguish the 113 

three patient groups (i.e., pediatric GBM, adult GBM, and adult GSC), based on the 114 

performance of machine learning classifiers on their algorithmic complexity scores (see 115 

Supplementary Information).  116 
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 117 

FIGURE 1. Workflow schematic of gene expression network pattern discovery. 118 
Flowchart summarizing the methodological approach to differential marker discovery and 119 
cell fate dynamics inference (see Methods section 2.1).  120 
 121 

2.2. Single-cell datasets: Gene expression matrices for pediatric GBM, adult GBM, and 122 

adult GSC were obtained from the SingleCell Portal repositories from Neftel et al., 2019 and 123 

Richards et al., 2021 (Table 1). Briefly, GBM patient samples from Neftel et al. (2019) 124 

contained the single cell RNA-Seq counts of four phenotypes (or cellular states): 125 

macrophages, malignant GBM cells, oligodendrocytes, and T-cells. Adult GSC consisted 126 

only of stem cells. Overall, our dataset included 28 adult GSC datasets, 7 pediatric GBM, 127 

and 18 adult GBM scRNA-Seq expression count matrices.  128 

 129 
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As a quality control measure for the Seurat and BigSCale clustering, two adult GBM 130 

samples and one pediatric GBM sample were dropped in the filtering process (prior to 131 

clustering) due to high zero-counts (i.e., low UMI). Importantly, we confirmed that our 132 

findings were insensitive to the number of patient samples within each patient group: 133 

including these removed samples did not change the differential expression analysis. To 134 

further validate this finding, one sample was randomly chosen and dropped from the total 135 

number of samples from each patient group to verify whether the clustering analysis 136 

changed (i.e., leave-out-one cross-validation) and we confirmed the clustering results were 137 

identical. Beyond 2500 cells, the computational time complexity of the scEpath algorithm 138 

increased. Thus, the total cell counts of all three patient groups were kept at the maximum 139 

computational threshold for the scEpath analysis (see Section 2.3.3). Further, to visualize 140 

the cell fate attractor dynamics at the same fine-scale resolution for all patient groups, cell 141 

counts were kept roughly the same for each GBM type. Selecting a different combination of 142 

adult GSC samples did not change the scEpath landscape or results, as the trial of multiple 143 

random selections (> 6 distinct combinations) reproduced identical results.  A complete 144 

description of the experimental approaches used to derive these datasets from their original 145 

studies is provided in the Supplementary Information. 146 

 147 

2.3. Clustering techniques. Clustering algorithms were used to identify differential markers 148 

co-expressed within all patient groups and distinguish a robust network regulating the cell 149 

fate dynamics across all phenotypes. 150 

Patient 
Group 

Single-Cell 
Dataset 

# Patient 
Samples (n) and 
Single-Cells (N) 

for 
Seurat/BigSCale 

# Patient 
Samples (n) and 
single-cells (N) 

for scEpath 
Analysis 

# of Cell Fate 
Trajectories in 

scEpath 
Waddington 
Landscape 

Pediatric 
GBM 

Neftel et al. 
(18) 

n = 7 
N = 1850 

n = 7 
N= 1850 

2 
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Adult GBM Neftel et al. 
(18) 

n = 18 
N ~ 21,500 

n = 7 
N = 2221 

4 

Adult GSC Richards et 
al. (19) 

n = 28 
N ~ 69, 000 

n= 13 
N = 1504 

2 

TABLE 1.  Summary of single-cell datasets. The total number of patient samples (n) and 151 
number of single-cells within each patient group (N) used for each step of the clustering and 152 
single-cell trajectory inference process are shown.  153 

 154 

2.3.1. Seurat algorithm: scRNA-Seq count matrices were pre-processed to obtain normalized 155 

and binarized count expressions. Seurat initially performs a cluster analysis by principal 156 

component analysis (PCA) dimensionality reduction followed by a graph-based 157 

clustering (k-nearest neighbor (kNN) graph) based on the Euclidean distance of the 10 158 

PCA loadings using the FindNeighbors function and Louvain community detection 159 

algorithm (modularity optimization) using the FindClusters function (parameter can be 160 

tuned between 0.4-1.2 for optimal results), to cluster cells by their Jaccard index-161 

expression similarity (see Seurat Clustering tutorial in GitHub code). All clustering 162 

parameters were kept to their default settings. Next, the cells within the graph-based 163 

clusters were visualized on Uniform Manifold Approximation and Projection (UMAP) or t-164 

Distributed Stochastic Neighbor Embedding (TSNE) space (i.e., unsupervised nonlinear 165 

dimensionality reduction techniques) (Stuart et al., 2019). Differential markers from the 166 

top 10 PCA loadings were visualized in UMAP space (analysis does not vary for TSNE 167 

space) using the FindAllMarkers function with parameters: min.pct = 0.25 and 168 

logfc.threshold = 0.25. We clustered similarly expressed cells together in the low 169 

dimensional space by finding differentially expressed features/markers corresponding to 170 

the highest ten PCA loadings in the graph-based clusters. To identify markers that 171 

govern disease progression and transcriptional dynamics, we imposed the condition that 172 

selected markers for the network reconstruction must be expressed in all clusters of the 173 

three patient groups (pediatric GBM, adult GBM, and adult GSC). 174 
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2.3.2. BigSCale algorithm: BigSCale is a framework for clustering, phenotyping, 175 

pseudotiming, and inferring gene regulatory and protein-protein interaction networks 176 

from single-cell data (Iacono et al., 2019). A SingleCellExperiment class was created 177 

from the scRNA-Seq raw count matrices for BigSCale processing, and counts were 178 

replaced by z-scores. Cellular clustering was established by first computing all pairwise 179 

cell distances using the Pearson correlation to generate a distance matrix. Following, 180 

cells were assigned to cluster groups via the Ward’s linkage/method (an agglomerative 181 

hierarchical clustering algorithm). Iterative differential expression analysis was 182 

performed between the clusters of cells and the differential markers within the identified 183 

clusters were assessed using the getMarkers function (see BigSCale 2 tutorial in Github 184 

code). The markers specific to a cluster were sorted from the highest (most significant) 185 

to the lowest (least significant) z-score for the selection of cluster-specific differential and 186 

co-expressed gene markers within the top 25 PCA components. A z-score threshold of 187 

5.0 was used as a cut-off threshold while the min_ODscore parameter was kept default 188 

at 2.33. This imposed cut-off acts as a filtering mechanism to retain only the markers 189 

with significant expression changes per cluster. As in the Seurat analysis, we imposed 190 

the condition that selected markers for the network reconstruction must be expressed in 191 

all clusters of the three patient groups. 192 

 193 

2.3.3. ScEpath algorithm: We applied single cell Energy path (scEpath) to reconstruct the 3D-194 

energy landscape of cells and infer regulatory relationships from their transcriptional 195 

dynamics (Jin et al., 2018). scEpath is a Waddington Landscape reconstruction 196 

algorithm with an unsupervised clustering framework for cell lineage hierarchy mapping 197 

and studying the pseudotemporal transcriptional dynamics in cell fate decisions. In this 198 

trajectory inference algorithm, information flow and network reconfiguration underlying 199 

the cellular decision-making steer the topography of cell populations’ energy landscapes 200 
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(also referred to as a cell fate landscape, attractor landscape, or Waddington’s 201 

epigenetic landscape (Waddington, 1957)). A cell state (cell fate) corresponds to a 202 

specific transcriptional (gene expression) program and phenotype of a given cellular 203 

population. Cell clusters higher on the energy landscape correspond to stem-cell like 204 

states (unstable attractors) with higher differentiation potency, while cell states stuck in 205 

lower energies (valleys, or stable attractors) correspond to differentiated (mature) 206 

phenotypes with lower potency/plasticity (Figure 2).  207 

 208 

scEpath allows for the visualization of cell fate transition probabilities in the population, 209 

mapping of cell lineage trajectories in pseudotemporal ordering, and inference of cell 210 

fate decisions from patient-derived scRNA-Seq datasets using the following steps: (i) 211 

preprocessing of scRNA-seq count matrix, (ii) gene regulatory network (GRN) inference, 212 

(iii) single cell energy (scEnergy) calculation, (iv) 3D energy landscape reconstruction via 213 

principal component analysis and structural clustering; (v) Transition probabilities 214 

calculation, (vi) Inference of cell lineage hierarchy via a probabilistic directed graph, (vii) 215 

pseudotime trajectory inference and, (viii) downstream analyses of identifying critical 216 

transcription factors (TFs) governing the cell-fate commitments (Jin et al., 2018). A 217 

detailed description of the scEpath algorithm is provided in the Supplementary 218 

Information.  219 

 220 

To perform the scEpath analysis on our data, we first pre-processed the log-normalized 221 

(within patient-groups) count matrices with respect to their gene expression values by 222 

filtering out zero counts. The differential markers were selected from the first two 223 

significant PCA components. We then ran the scEpath MATLAB code from (Jin et al, 224 

2018) on these processed datasets. GSC patient samples BT127, BT48, and BT84 from 225 

Richards et al. (2021) were used for all scEpath analyses on GSC. Seven pediatric GBM 226 
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samples from (Neftel et al., 2019) and seven adult GBM samples, selected to match the 227 

cell count of the pediatric patient group, from (Neftel et al., 2019), were analyzed. We 228 

confirmed that the number of patients did not influence the results and analysis by 229 

selecting different random sets of adult GBM samples. We then ran energy 230 

(Waddington) landscapes reconstruction on the following population sizes: pediatric 231 

GBM: n= 7, N= 1850 cells; adult GBM: n = 7, N= 2221 cells; adult GSC: n=3, N=1504 232 

cells.  233 

 234 

scEpath smooths the average normalized expression of each gene using cubic 235 

regression splines to map the pseudotemporal gene expression dynamics along the 236 

inferred trajectories of the cell fates on the landscape, leading to smoothed gene 237 

expression along a lineage path (Jin et al., 2018). Leveraging this, we inferred key 238 

regulatory TFs for the cell fate differentiation by considering all PDG genes with a 239 

standard deviation > 0.5 and a Bonferroni-corrected p-value below a significance level α 240 

= 0.01 for the expression greater than a threshold (e.g., log2(fold-change) > 1). The 241 

probabilistic-directed graph network and the cell lineage hierarchy inference parameters 242 

were kept at default settings (quick_construct = 1; tau = 0.4; alpha = 0.01; theta1 = 0.8). 243 

The pseudotime-dependent genes were identified using parameters sd_thresh = 0.5; 244 

sig_thresh = 0.01; nboot (see hyperparameter-optimized code in GitHub link).  245 

 246 

2.3.4. Fractal and multifractal analysis: We applied fractal analysis to quantify the 247 

complexity of the phenotypic patterns on the scEpath cell fate attractor landscape. 248 

Fractals are signatures of complex systems (Mandelbrot, 1982), and the fractal 249 

dimension is a non-integer, fractional dimension characterizing the statistical self-250 

similarity and roughness of a pattern. A higher fractality in tumor structures may imply 251 

that the tumor is more complex, resilient (i.e., withstands environmental perturbations), 252 
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aggressive, and difficult to treat (Coffey, 1998; Baish and Jain, 1998). As such, the 253 

fractal index provides a quantitative measure of the cell fates’ phenotypic plasticity (i.e., 254 

higher for stem cell-like fates) and disease progression. 255 

 256 

We used ImageJ plugin FracLac (v2.5) to compute the fractal dimension (FD) of 257 

analyzed samples using the BoxCount algorithm on the cell state attractors (patterns of 258 

cellular distributions on the scEpath energy landscapes). To calculate the fractal 259 

dimension, landscape images were converted to black and white. Attractor fractal 260 

dimensions reconstructed from the cell fate landscapes found to be non-integer were 261 

considered to exhibit a fractional dimension in phase-space. Higher fractal indices 262 

indicate more complex dynamics that are irregular and asymptotically unpredictable, 263 

since in dynamical systems theory, patterns of systems exhibiting deterministic chaos 264 

have a fractal dimension (i.e., strange attractors) (Strogatz, 2015). 265 

 266 

2.3.5. Partial Information Decomposition and Context network inference: Using the 267 

differential expression markers identified by the various approaches discussed above, 268 

we reconstructed the underlying complex networks driving the GBM/GSC cell state 269 

dynamics on the Waddington energy landscapes. Network inference tools study the 270 

statistical dependencies between genes amidst distributions of expression levels in 271 

populations of sampled cells (Chan et al., 2017) by inferring a graph-theoretic 272 

representation of the functional relationships between the drivers of complex behaviors 273 

such as cell fate transitions, thus allowing for the quantification of the relationships 274 

between identified differential transition markers and tracking how these relationships 275 

change across distinct phenotypes. Partial Information Decomposition and Context 276 

(PIDC) networks have been suggested to outperform traditional gene regulatory network 277 

inference approaches using correlation metrics, mutual information, Boolean networks, 278 
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or Bayesian inference methods for network reconstruction (Chan et al., 2017). We used 279 

this PIDC network inference algorithm to obtain a network structure of GBM and GSC 280 

samples.  281 

 282 

The Julia packages InformationMeasures.jl and NetworkInference.jl were used to 283 

reconstruct the GRN networks. PIDC network inference uses partial information 284 

decomposition (PID) to infer regulatory interaction networks from gene expression 285 

datasets. We used the NetworkInference.jl package to establish the (undirected) 286 

networks from the multivariate information measure (PID) calculated from the gene 287 

expression matrices. Gene expression counts were first discretized via Bayesian blocks 288 

discretization and the maximum likelihood estimator (Chan et al., 2017). The PIDC 289 

network pattern is the simplest network the algorithm can construct such that the 290 

distance between the nodes (genes or TFs) are minimized given their weights (PID 291 

score). Network measures characterizing the structure, properties, and information flow 292 

of these complex networks were then computed and the most differentially expressed 293 

genes were identified by the clustering algorithms using PID scores. 294 

 295 

2.3.6. Block Decomposition Method Calculations: We evaluated the algorithmic complexity 296 

of key nodes (genes) of the inferred signaling networks to further identify robust markers 297 

distinguishing GBM and GSC. Algorithmic complexity is a complementary measure that 298 

identifies the minimal amount or set of information in our inferred complex networks 299 

which regulate the phenotypic plasticity dynamics across the patient groups, and as 300 

such the genes/TFs with highest algorithmic complexity could be robust disease 301 

screening tools in precision oncology. The K-complexity of a string 𝑠, 𝐾(𝑠), also known 302 

as Kolmogorov or algorithmic complexity, is the shortest computer program length 303 

needed to output that string. This can also alternatively be interpreted as the length of 304 
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the shortest description of a system (Zenil et al., 2016). Since 𝐾(𝑠) does not depend on 305 

a choice of probability distribution like Shannon entropy, it is more robust for the 306 

assessment of system complexity (Zenil et al., 2016, Zenil et al., 2019). Formally, the 307 

Kolmogorov complexity of a discrete dynamical system is given by  308 

𝐾(𝑠|𝑒) = min⁡{|𝑝|:𝑈(𝑝, 𝑒) = 𝑠}, 309 

for a string or array 𝑠, where 𝑝 is the program that produces 𝑠 and halts running on a 310 

universal Turing machine 𝑈 with input 𝑒. Then, K(s) is a function that takes a string or 311 

matrix⁡𝑠 to be the length of the shortest program 𝑝 that generates s. However, 𝐾(𝑠) is in 312 

principle incomputable and must be approximated using the coding theorem method 313 

(Zenil et al., 2019). We therefore used the Block Decomposition Method (BDM) to 314 

approximate the 𝐾(𝑠) of a dataset, which provides local estimates of the algorithmic 315 

complexity (Zenil et al., 2016). BDM is available in the online algorithmic complexity 316 

calculator [OACC] and its R-implementation (see Availability of Data and Material). The 317 

BDM is defined as  318 

𝐵𝐷𝑀 = ∑ 𝐾(𝑏𝑙𝑜𝑐𝑘𝑖) + 𝑙𝑜𝑔2(|𝑏𝑙𝑜𝑐𝑘𝑖|)
𝑛
𝑖=1 , 319 

where the block size must be specified for the n-number of blocks. When the block sizes 320 

are higher, better approximations of the K-complexity are obtained (Zenil et al., 2016, 321 

Zenil et al., 2019).  322 

 323 

To calculate the BDM, we selected scRNA-Seq counts of seven randomly chosen 324 

patient samples from each of the three patient groups. String length was kept the same 325 

for all gene candidates from each sample. Accordingly, we chose the cell count 326 

expressions of 46 cells from each patient sample for this analysis. The R-implementation 327 

of the Online Algorithmic Complexity Calculator was used to compute the BDM 328 

estimates of K-complexity for each expression string. scNA-Seq counts of the top gene 329 
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interactions with highest PID scores were selected from each network and binarized.  330 

We then performed BDM on these binarized strings using a block size of 12 and 331 

alphabet size of 2 bits to estimate the K-complexity (i.e., BDM score) (see 332 

Supplementary Information for BDM Results). 333 

 334 

3. RESULTS 335 

3.1.  Key driver genes mediating the cell fate transition dynamics in GBM/GSC 336 

epigenetic landscapes are identified using the scEpath algorithm.  337 

The Waddington landscape reconstruction identified causal patterns (attractors) to which the 338 

distinct transcriptional states within each patient group cluster (Fig 2A-C). Distinct patient group 339 

clusters were determined by the scEpath algorithm (colored by similarity in gene expression 340 

(i.e., phenotypes) in Figure 2). Three and four meta-clusters were identified in the pediatric GBM 341 

(Fig 2A) and adult GBM (Fig 2B), respectively while sub-populations are observed within each 342 

meta-cluster indicating the presence of phenotypic heterogeneity and epigenetic plasticity. Many 343 

genes encoding transcription factors (TFs) were identified as the transition genes required for 344 

cells to transition from one attractor to another. We mapped the expressions of these transition 345 

genes across the inferred cell fate trajectories (Fig 2D-F) and found similarities in the gene 346 

expression signatures and similar oscillatory patterns in EMP1, MTSS1, PHGDH and OLIG1/2 347 

(Fig 3). These markers were selected in the clustering and trajectory inference process as 348 

explained above. Their similarity was assessed by their expression variation along the cell fate 349 

trajectories in pseudotime (Figure 3). We also identified OLIG1/2 as critical transcription factors 350 

in the adult GSC phenotypic transitions (Fig 2F).   351 
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 352 

FIGURE 2. Waddington landscape reconstruction differentiates adult and pediatric GBM, 353 
and adult GSC critical genes and transcription factors for cell fate transitions. A-C) The 354 
distinct phenotypes of each patient group were clustered on the Waddington energy landscape 355 
by their similarity in gene expression. The cell clustering patterns on the landscape are referred 356 
to as attractors. Balls represent the transcriptional states (cell fates) and paths correspond to 357 
the cell fate differentiation trajectories on the Waddington landscape. A) Pediatric GBM. B) Adult 358 
GBM. C) Adult GSC. D-F) Heat maps of the critical transcription factors involved in the 359 
differentiation and cell fate transitions between the distinct attractors (phenotype clusters) of the 360 
GBM/GSC Waddington landscape. The color gradient represents the intensity of the gene 361 
expression in pseudotime trajectory, where blue implies low expression and red implies high 362 
expression of the gene (TF) during the cell fate choices along the cell differentiation trajectories. 363 
The path corresponds to the inferred trajectories in between the cell state attractors on the 364 
Waddington landscape. D) Pediatric GBM. E) Adult GBM. and F) Adult GSC. 365 

 366 

 367 

 368 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2021.09.21.461255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461255
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

3.2. Pseudotime expression dynamics identifies oscillatory patterns in critical gene 369 

targets. 370 

Given the key driver genes and transcription factors identified by scEpath trajectory inference, 371 

we next sought to infer similarities in gene expression dynamics during cell fate transitions 372 

within each patient group amidst the identified critical gene markers. Using clustering algorithms 373 

(see Methods), we found that PTPRZ1 and S100B showed nearly identical expression 374 

dynamics in pediatric GBM along both cell fate trajectories on the Waddington landscape, 375 

whereas genes such as EMP1, MTSS1, and PHGDH had more complex dynamics and 376 

exhibited oscillations during cell fate dynamics in pediatric GBM and adult GSC (Fig 3A and Fig 377 

3C). The expression metric used to compare the dynamics of the different pseudotime-378 

dependent genes correspond to the cubic spline smoothened average normalized expression 379 

along the pseudotime interval of [0,1].  380 

 381 

In adult GBM, NACA and PABPC1, and TPT1 and PSAP had similar expression patterns across 382 

all four differentiation paths (Fig 3B). S100B, OLIG1, and PHGDH all had a broad expression 383 

profile in path 4 (Fig 3B). Furthermore, the presence of four cell clusters in adult GBM 384 

landscape (Fig 2B) is in good agreement with previous classifications of four molecular 385 

subtypes of adult GBM (Verhaak et al., 2010). The expression of EGFR and PDGFRA were 386 

distinctly higher in one of the four cell fate clusters/attractors (Figure S4B). However, the 387 

expression of IDH1 exhibited oscillatory dynamics in all four paths/attractors (data not shown). 388 

In adult GSC, many of the identified markers had similar gene expression profiles in 389 

pseudotemporal ordering (Fig 3C). For instance, PTPRZ1, NACA and PABPC1, were all found 390 

to have similar expression dynamics in both transition paths (Fig 3C). Notably, OLIG 1 and 391 

OLIG2 were found to have similar expression patterns in all three patient groups across all cell 392 

fate transition trajectories of the landscape (Fig 3A-C). 393 

 394 
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Notably, we identified that genes such as STMN3, MTSS1 and TAZ are critical regulators in one 395 

transition pathway, while PSAP, TPT1, and PTPRZ1 are relevant for the other transition 396 

trajectory on the pediatric GBM’s Waddington landscape (Fig 3A and S4A). The same trends in 397 

pseudotemporal gene expression patterns in STMN3 and PTPRZ1 have also been found in the 398 

adult GSC cell fate trajectories (see Fig S4C in the Supplementary Information). In all three 399 

patient groups, OLIG1, OLIG2, PHGDH, and TIMELESS had similar expression profiles within 400 

the distinct cell fate transition paths indicating potentially some network coordination or 401 

collective oscillations. Some signals (e.g., BCAN and CLU) were found to exhibit oscillations 402 

that may be indicative of complex dynamics with time-series expression analysis 403 

(Supplementary Information). These findings suggest that the identified markers involved in 404 

GBM/GSC cell fate decisions exhibit similar patterns in their expression dynamics, and that the 405 

identified critical genes are functionally putative master orchestrators of cell fate 406 

transitions/differentiation of the heterogeneous phenotypes within a GBM patient’s tumor.  407 
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 408 

FIGURE 3. Reconstructing pseudotime dynamics in GBM/GSC cell fate decisions of the 409 
Waddington landscape. Average normalized gene expression in cells plotted along 410 
pseudotime after fitting with a cubic smoothing spline (black line). Cells are colored according to 411 
cell clusters defined by scEpath. The expression patterns of the top genes identified by scEpath 412 
and BigSCale algorithms (via correlation metrics) showed significant changes along the 413 
pseudotime trajectory inferred by scEpath algorithm. Selected gene markers in A) pediatric 414 
GBM, B) adult GBM, C) adult GSC. 415 

 416 

3.3. PIDC Network Inference algorithm reconstructs the regulatory network 417 

configurations driving GBM/GSC cell fate transitions. 418 

We next reverse engineered the signaling networks coordinating the information flow in GBM 419 

and GSC using Partial Information Decomposition and Context (PIDC). Though the network 420 

topography may seem similar, the arrangement of the interactions from highest influence on the 421 

information flow (i.e., top PID scores) to those of the weakest interactions (lowest PID scores) 422 
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vary for each patient group. As seen in Figure 4A, OLIG1 and OLIG2 have the highest PID 423 

score of 1.9508, followed by S100B and PTPRZ1 interaction with a PID score of 1.9303 in 424 

pediatric GBM, suggesting a strong relationship between these two genes in the complex 425 

network steering their cell fate decisions (Fig 4A). We found that S100A10 and EMP1 have the 426 

highest interaction in adult GBM with a PID score of 1.9517 (Fig 4B), whereas NACA and TPT1 427 

had the highest interaction in adult GSC with a PID score of 1.9628 (Fig 4C). A distinct pattern 428 

was observed in the PIDC regulatory network of adult GSC sample BT127 (highest quality GSC 429 

cells). The highest interaction was observed between PHGDH and TIMELESS at a PID score of 430 

2.762. Other top interactions identified for the TF networks (Fig 4E-G) had similar 431 

pseudotemporal expression dynamics (Figure S4 A-C in the Supplementary Information). ATF3 432 

and DDIT3 were the top interaction markers from the critical TFs identified for pediatric GBM 433 

with a PID score of 1.971 (Fig 4E). EGR1 and FOSB in the adult GBM group (Fig 4F), and 434 

YBX1 and HMGB1 were identified as the top interaction TF markers, with PID score of 1.992 435 

(Fig 4G). These results suggest the reconfiguration of the nodes within the same complex 436 

signaling network may characterize GSC cells from GBM cells and distinguish pediatric GBM 437 

from adult GBM cell fate dynamics.   438 
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 439 

FIGURE 4. Mathematical modelling identifies key regulatory genes driving GBM 440 
networks. Gene regulatory networks of A) pediatric GBM, B) adult GBM, C) adult GSC, D) adult 441 
GSC sample BT127, E) pediatric GBM transcription factors, F) adult GBM transcription factors, 442 
and G) adult GSC transcription factors. In each, the signaling networks show the information 443 
flow between critical signals required for the complex cell fate dynamics. The GRN networks 444 
identified by Seurat and BigSCale are colored in violet nodes (Fig 4A-D) while the scEpath TF 445 
networks are colored in teal (Fig 4E-G). The ranks were assigned a priority index by the PID 446 
content as indicated by the numbers on the nodes. A high PID content implies a high mutual 447 
information (dependence) of those gene interactions in the information flow network. The 448 
number index on the nodes of the network correspond to the PID score in a decreasing order, 449 
where rank 1 denotes the top (highest) value. As shown in the legend, the nodes with the 450 
highest PID score are colored in green with a red shadow. Additionally, three different colored 451 
rings are used to identify the nodes of the networks with the highest network centrality 452 
measures as identified in Figure 5.  453 
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3.4. Network centrality measures identify master regulators of information flow across 454 

the regulatory networks underlying GBM/GSC cell fate decision-making.  455 

Centrality is a key property of complex networks that influences the network dynamics and 456 

information flow (Iacono et al., 2019). The nodes (genes or TFs) with the highest centrality in the 457 

regulatory networks are the most biologically important signals. By measuring network 458 

centrality, we identified the primary genes regulating communication flow across each of the 459 

pediatric and adult GBM, and adult GSC networks (Table 2). In particular, we calculated the 460 

global clustering coefficient that measures the total number of closed triangles (link density) in a 461 

network. A clustering coefficient at its maximal value of 1 indicates that the neighbors of the 462 

gene (node) 𝑖 form a complete graph (i.e., they all connect to each other) versus the converse 463 

for a clustering coefficient of 0 (Barabási and Posfai, 2016). We observed a lower clustering 464 

coefficient of 0.94 for the BT127 network in Figure 4D. In the transcription factor networks 465 

reconstructed from the scEpath heatmaps (italic columns, Table 2), the GSC TF network had 466 

the highest diameter, while the GBM networks (both pediatric and adult) had smaller diameters. 467 

The diameter is relatively in the same order of magnitude for the PIDC networks reconstructed 468 

from the Seurat-BigSCale markers (bold columns, Table 2) as they correspond essentially to the 469 

same set of genes interactions. The degree of centrality of all networks in Figure 4 was 1.0 at all 470 

nodes, except for the BT127 PIDC network which had a degree centrality of value of 1.0 only at 471 

nodes 1, 5, 10, 12, 13, and 16, and a clustering coefficient of value 0.96. The degree centrality 472 

of nodes 2, 7, and 8 were 0.89, the degree centrality of nodes 14 and 15 were roughly 0.5, and 473 

the remaining nodes had a degree centrality of 0.95. 474 

 475 

The closeness centrality identified genes/TFs occupying a central position in a network (Iacono 476 

et al., 2019).  The nodes corresponding to the highest closeness centrality for each GRN 477 

network were found to be Node 6 (EMP1) for pediatric GBM, Node 14 (ATL3) for adult GBM, 478 
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Node 18 (ATL3) for GSC BT127, and Node 19 (TAZ) for GSC with closeness values of 1.398, 479 

1.361, 1.006, and 1.184, respectively (Fig 5A).  480 

 481 

Nodes corresponding to the maximal closeness in the pediatric GBM, adult GBM, and adult 482 

GSC TF networks were found to be node 12 (GATA2), node 32 (MECOM), and node 31 483 

(FOXG1), respectively with closeness measures of 1.761, 2.563, and 1.478 respectively (Fig 484 

5B).  485 

Betweenness centrality indicates the presence of regulatory bottlenecks (Iacono et al., 2019; 486 

Latora et al., 2017; Rodrigues, 2019). In our analyses, the highest betweenness measures for 487 

the pediatric GBM, adult GBM, BT127 adult GSC, and adult GSC GRN networks were node 16 488 

(ATL3), node 14 (ATL3), node 18 (ATL3), and node 19 (TAZ), respectively with betweenness 489 

values of 0.3947, 0.5842, 0.2690, and 0.4678, respectively (Fig 5C). The trends in maximal 490 

betweenness values (Fig 5C) were in good agreement with the nodes contributing to the 491 

maximal closeness values discussed in Fig 5A, indicating that identified nodes are critical 492 

targets governing the information flow in these complex networks. The highest betweenness 493 

values for the TF networks were found to be to node 12 (GATA2) for pediatric GBM, node 11 494 

(SOX6) for adult GBM, and node 31 (FOXG1) for adult GSC, with values of 0.3801, 0.2279, and 495 

0.1539, respectively (Fig 5D). The highest values of eigenvector centrality, a measure of 496 

information flow across the network, for the GRNs were found to be node 8 (MTSS1) for 497 

pediatric GBM, node 5 (MTSS1) for adult GBM, node 10 (EMP1) for BT127, and node 2 (TPT1) 498 

for GSC, with measures of 0.2796, 0.2827, 0.2909, and 0.2805, respectively.  499 

 500 

The maximal eigenvector is a measure of the hub-score, i.e., the highest authority node of hub 501 

networks (Latora et al., 2017; Rodrigues, 2019). The maximal eigenvector centrality of the TF 502 

networks was found to be node 6 (SATB2) for pediatric GBM, and node 29 (YY1) for adult GBM, 503 
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and node 1 (YBX1) for GSC, with values of 0.2594, 0.1874, and 0.2322, respectively.  SATB2 is 504 

a nuclear matrix-associated protein involved in chromatin remodelling and transcription 505 

regulation during neuronal differentiation (Gyorgy et al., 2008). Interestingly, all transition genes 506 

with high centrality measures identified in our network analyses, including EMP1, MTSS1, 507 

ATL3, and TPT1 have a TF-binding site for YY1 (Stelzer et al., 2016; GeneCards, 2021) (see 508 

Table 3). 509 

 510 

We also performed fractal analysis on the attractors (cell clustering patterns) in the scEpath 511 

Waddington landscapes. The fractal dimension scores obtained on the cell state attractors on 512 

the energy landscape were compared across all groups (pediatric GBM (n=7), adult GBM (n = 513 

18), and GSC (n=28)). The mean fractal dimension scores of the pediatric GBM, adult GBM, 514 

and adult GSC groups were 1.502 ± 0.099, 1.509 ± 0.091, and 1.588 ± 0.051, respectively 515 

(Figure 5G). The FD scores of the two GBM groups were nearly identical, while a statistically 516 

significant difference was observed from the GSC group. The multifractal spectrum 𝑓(𝛼) was 517 

extracted from the multifractal spectra of the individual cancer samples energy landscape 518 

(n=54) (Fig 5H). Only the difference between GSC versus adult GBM was found to be 519 

statistically significant (p=0.0201) by a Kolmogorov-Smirnov test. The pediatric GBM, and adult 520 

GBM and GSC groups had a maximal multifractal spectrum 𝑓(α) value of 1.499 ± 0.092, 1.462 521 

± 0.066, and 1.521 ± 0.075, respectively. 522 

Network 
Properties 

Pediatric 
GBM 

Adult 
GBM 

Adult 
GSC 

BT127 
(Adult 
GSC) 

Pediatric 
GBM 
(TF 
Network) 

Adult 
GBM 
(TF 
Network) 

Adult 
GSC (TF 
Network) 

𝐺(𝑉, 𝐸) (21,210) (21,210) (20,190) (20,174) (20,190) (50, 
1225) 

(37,666) 

Center 16 14 19 18 8 15 31 

Diameter 3.037 3.283 3.490 3.106 1.869 1.474 3.936 

Global 
Clustering 
Coefficient 

1.00 1.00 1.00 0.94 1.00 1.00 1.00 

 523 
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TABLE 2. General Properties of Inferred Complex Networks. 𝐺(𝑉, 𝐸) denotes the graph with 524 
the number of vertices 𝑉 (the genes) and number of edges 𝐸 for each inferred GRN network. 525 
The center values designate to the node index (gene) acting as the center of the simple 526 
weighted network. The clustering coefficient captures the degree to which the neighbors of a 527 
given node link to each other.  528 

 529 
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FIGURE 5. Centrality measures distinguish master regulators of information flow in GBM 530 
networks. Three network centrality measures are assessed on the reconstructed GBM/GSC 531 
networks. Three different network centralities were computed on the reconstructed networks: 532 
closeness, betweenness, and eigenvector centrality. The genes (nodes) occupying the highest 533 
of these centrality measures correspond to critical nodes steering the information flow in the 534 
complex signaling networks governing GBM/GSC cell fate transition dynamics. A) Closeness 535 
centrality of inferred GRNs.  B) Closeness centrality of TF networks. C) Betweenness centrality 536 
of gene regulatory networks. D) Betweenness centrality of transcription factor networks. E) 537 
Eigenvector centrality of gene regulatory networks. F) Eigenvector centrality of transcription 538 
factor networks. G) Fractal dimension of cell state attractors on scEpath energy landscapes. A 539 
p-value of 0.0031 between the adult GSC and adult GBM, and p= 0.0011 between adult GSC 540 
and pediatric GBM was calculated for the box-count algorithm’s fractal dimension scores using 541 
the Kolmogorov-Smirnov test. Multifractal analysis of cell fate attractors on scEpath Waddington 542 
landscapes. 543 

 544 

4. DISCUSSION 545 

Here we applied a collection of data theoretic and complexity science approaches to single cell 546 

RNA-seq data from pediatric and adult GBM, and adult GSCs to distinguish genes regulating 547 

communication within these cellular populations. Our findings demonstrate the application of 548 

these tools for deciphering GBM/GSC signaling networks to understand how network 549 

configuration orchestrates information flow and determines cell fate dynamics.  550 

 551 

Multiple clustering algorithms were deployed to cross-validate their findings and ensure that the 552 

differential markers extracted for network analysis were robust, complementary, and of high 553 

importance in cell fate transition/differentiation mapping. There is a high degree of heterogeneity 554 

displayed by GBM stem cells. The complementarity of our results in our independent and 555 

orthogonal approaches are outlined in Table 3 by the associations identified between the 556 

transition genes and the scEpath TFs. Our approach using distinct clustering techniques and 557 

verifying their matching or complementary results was deployed to minimize the effects of 558 

expression heterogeneity and validate our findings (Krieger et al., 2020).   559 

TRANSITION GENES  TRANSCRIPTION FACTORS 

ATL3 YY1, FOSB, SOX6, GATA2, ATF3, EGR1, 
MYC 

MTSS1 YY1, ATF3, MYC 
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EMP1 YY1, FOSB, GATA2, ATF3, MYC 

TPT1 YY1, ATF3, FOSB, SOX6, EGR1, OLIG1/2 

PTPRZ1 YY1, YY2, EGR1, NANOG, POUF51 

S100B YY1, GATA2, EGR1, SOX6, MYC 

TABLE 3. Interactions between transition genes and transcription factors identified in 560 
network analysis. Amidst the critical transition genes listed, the first four were identified as the 561 
central regulators of information flow across the GBM/GSC regulatory networks, while PTPRZ1 562 
and S100B were other differential markers identified in our analyses. The list is not inclusive of 563 
all possible gene-TF interactions but restricted to the analysis of only the high importance (i.e., 564 
highest network centrality measures) scEpath TFs identified in our findings. The TF-gene 565 
interactions were identified using the GeneCards human gene database (GeneCards, 2021).  566 

 567 

Using scEpath, we identified three and four meta-clusters in the pediatric GBM (Fig 2A) and 568 

adult GBM (Fig 2B), respectively, while sub-clusters within each meta-cluster indicated the 569 

presence of phenotypic heterogeneity and plasticity. However, the number of meta-clusters was 570 

ambiguous in the adult GSC landscape (Fig 2C), as shown by the continuous progression from 571 

the higher energy state clusters (stem-like fates) to the lower energy states indicating the 572 

potential presence of a complex attractor. An alternative measure to assess the significance of 573 

the scEpath clustering is the transition paths (cell fate trajectories). We predicted that the 574 

number of clusters identified in the pediatric GBM group corresponds to the neuronal, astrocytic-575 

mesenchymal, and oligodendrocytic lineages, mirroring the healthy brain’s neurodevelopmental 576 

hierarchy (Jessa et al., 2019; Couturier et al., 2020). Similarly, the four clusters identified in the 577 

adult GBM group correspond to the four groups identified by Neftel et al. (2019), namely the 578 

OPC-like (oligodendrocytic progenitor cell), NPC-like (neuronal progenitor cell-like), AC-like 579 

(astrocytic cell-like), and MES-like (mesenchymal cell) lineages. Further, the infiltrated immune 580 

cells (i.e., T-cells and macrophages) grouped into the MES-like state (Neftel et al., 2019). 581 

Pediatric GBM cells showed less differentiation than the adult GBM samples, as indicated by 582 

the higher energy cell-states, suggesting a closer resemblance to the GSC sample. The two cell 583 

fate trajectories observed in the adult GSC sample may correspond to the transcriptional 584 

gradient of two cellular states observed in the original study by Richards et al. (Fig 2C), which 585 
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were shown to mirror normal neurodevelopment and inflammatory wound responses (Richards 586 

et al., 2021). 587 

 588 

The cell fate trajectories along the scEpath Waddington landscape (Figure 2A-C) were 589 

determined by the transition probabilities of the probabilistic directed graph reconstructed from 590 

the cell fate clusters, where the weighted edges of the networks correspond to the average 591 

normalized gene expression (see Supplementary Information for additional details). scEpath 592 

used the minimum directed spanning tree to find the maximum probability flow and minimal 593 

number of edges along the network, since cell fates transition to lower energy states during 594 

differentiation. The resulting tree approximates the cell state transition network and infers the 595 

observed developmental trajectories/lineage structures. The weighted edges of the cell state 596 

transition network were found to be proportional to the gene expression values seen in Figure 3, 597 

where the number of developmental trajectories inferred are indicated by the path numbers in 598 

Figure 2. Thus, two cell fate trajectories were detected in the pediatric GBM and adult GSC 599 

samples while four developmental trajectories were observed in adult GBM. 600 

 601 

In pediatric GBM, the expression of transcription factors in pseudotime was shown to be highly 602 

nonlinear. Certain genes, including GATA2, were even found to be oscillatory in one trajectory 603 

while demonstrating an increasing or decreasing gradient of expression along the other cell fate 604 

trajectory. Likewise, patterns of other critical transition genes (TFs) were identified along the 605 

attractor dynamics between the distinct transcriptional states of adult GBM and adult GSC cells. 606 

Further, we found that genes such as EMP1, MTSS1, PTPRZ1 and S100B exhibited distinct 607 

gene expression oscillations in one differentiation trajectory (path) over the other(s) (Figure 3). 608 

These genes were also found to have TF-binding sites for the scEpath identified TFs with the 609 

highest network centrality measures in our downstream analysis (Figure 4). Together, these 610 

findings are indicative of a highly interconnected network of gene-TF interactions governing 611 
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GBM/GSC cell fate decisions, and further suggest that the information flow across the inferred 612 

networks may steer cell fate decisions towards complex attractors on the GBM/GSC 613 

Waddington landscape.  614 

 615 

Using network centrality measures, we identified OLIG1/2, TAZ, GATA2, FOXG1, SOX6, 616 

SATB2, YY1, and gene targets ATL3, MTSS1, EMP1, and TPT1 as critical genes governing the 617 

cell fate dynamics of GBM and GSC cells (Fig 5A-F). Many of these signals are 618 

neurodevelopmental transcription factors involved in healthy brain development, essential for 619 

conferring and maintaining cancer stem cells (GSCs). Maximal centrality scores indicated that 620 

they are key regulators of the network information flow in both GBM groups and GSCs. The 621 

functional significance of these transcription factors (see Supplementary Information) suggests 622 

their critical role in stem cell decision-making and differentiation dynamics. Our findings indicate 623 

that these genes may be strong candidates for therapeutic interventions points for the treatment 624 

of GBM. Other signaling interactions such as PTPRZ1 and S100B were identified in our 625 

analyses as potent clinically druggable targets in the treatment of GBM. Furthermore, we 626 

predicted that GATA2 and MTSS1 may provide a common ground for interlinking 627 

leukemogenesis, the complex signaling dynamics of leukemia/lymphoma affecting children, and 628 

pediatric glioma/GBM (Menendez-Gonzalez et al., 2019, Schemionek et al., 2015).  629 

 630 

BDM was used to distinguish which of the differential markers can accurately 631 

classify/differentiate the three patient group samples (see Supplementary Information). We 632 

identified FOSB, HMGB1 and EGR1 as differential signatures which can accurately predict the 633 

patient groups in our single-cell analyses (see SI). The algorithmic complexity measured by the 634 

BDM allowed for the identification of critical network genes differentiating GBM and GSC 635 

phenotypes with the minimal information. The rationale for using gene/TF markers’ BDM as a 636 

phenotypic discriminant is that the algorithmic complexity denotes the shortest algorithm or 637 
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minimal set of information within the complex networks inferred required to classify the distinct 638 

patient groups. As such, the identified genes/TFs may be useful biomarkers for prognostic 639 

screening and disease phenotyping in clinical medicine.  640 

  641 

From the transcription factor (TF) networks identified by scEpath (Table 3), we distinguished 642 

some TFs to form interactions with some of the differential gene markers, suggesting cellular 643 

reprogramming targets for controlling GBM cell fate dynamics.  Our study therefore quantifies 644 

how these markers’ expression vary in the cell fate transitions from stem-like to mature 645 

phenotypes. For a discussion on the biological significance of key genes and transcription 646 

factors identified in our analyses, see the Supplementary Results in the Supplementary 647 

Information.  648 

 649 

The cell fate transition markers identified in our study, including PTPRZ1, EMP1, S100B, and 650 

MTSS1, are in good agreement with the findings from the original studies (SCP393 and 651 

SCP503). Although some of the signatures we identified overlap with the differential expression 652 

patterns of the original studies, they did not compare the co-expression of these markers 653 

between GSC and GBM. Markers differentiating distinct cellular states have been previously 654 

investigated (for instance, the original study by Neftel et al. identified copy number 655 

amplifications of the CDK4, EGFR, and PDGFRA loci and mutations of the NF1 locus, each 656 

favoring one of the four GBM phenotypes (Neftel et al., 2019)). Our study instead analyzed the 657 

expression patterns which fluctuate or form a differentiation gradient across the distinct cell 658 

states. Further, while previous studies have associated the differentiation markers of GBM 659 

progression identified here, our study demonstrates their novel integrated application to 660 

elucidate the roles of these network biomarkers in GBM cell fate decisions and differentiation 661 

dynamics. Indeed, while many of the identified genes or TFs have been previously studied in 662 

the context of neurodevelopmental regulation and glioma cell fate dynamics, most of those 663 
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selected in our analyses are not yet documented in glioblastoma cell fate control. As such, we 664 

propose the identified interactions in Table 3 may provide clinically relevant GBM-specific 665 

precision therapeutics, and that our network analyses provide a quantitative tool to characterize 666 

which of the markers were of high importance (i.e., high centrality measures) in cell fate control, 667 

plasticity regulation, and transition dynamics. Future studies should exploit tools from 668 

algorithmic complexity theory including algorithmic network perturbation analysis (i.e., quantify 669 

the BDM changes across a network by node or link deletion) to better elucidate the inferred 670 

network dynamics in cancer cell fate control and regulation. 671 

 672 

While previous GBM gene regulatory network inference methods vary from our approaches, our 673 

findings are consistent with their results. For example, Sun et al. found 15 hub genes in GBM-674 

specific miRNA-TF networks, including PDGFRA and SOX11, and 6 hub TFs (including GATA1) 675 

as key regulators of GBM dynamics (Sun et al., 2012). In our study, we also identified PDGFRA 676 

and SOX11 as hub genes of the inferred GBM networks, and found that GATA2, an alternate 677 

isoform, overlapped with these findings. However, Sun et al. (2012) did not compare GBM of 678 

different age groups nor consider GBM-derived stem cells for reconstruct their differentiation 679 

networks. Similarly, a network inference study by Ping et al. (2015) revealed 17 hub genes in 680 

GBM networks, including EGFR and PDGFRA, as gene signatures of the proneural GBM 681 

subtype, both of which were identified in our analyses. In another study, GSEA and IPA-based 682 

gene enrichment pathway analysis discovered TAZ as a key regulator of GBM networks 683 

(Bozdag et al., 2014), which was also identified as a master regulator of GBM differentiation 684 

dynamics in our analyses. 685 

 686 

Using multi-omic analyses, Suva et al. distinguished OLIG2, POU3F2 SALL2, and SOX2 as hub 687 

genes of GBM stemness networks critical for their tumor-propagation potential (Suvà et al., 688 

2014). Our findings identified OLIG2 as a master control gene of GBM differentiation dynamics 689 
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and established a connection between SOX2 expression and the critical hub gene FOXG1. 690 

Further, some epigenetic profiling studies have shown that aberrant histone modifications and 691 

methylation profiles are molecular signatures driving pediatric GBM and distinguishing them 692 

from their adult counterparts (Jones et al., 2017, Lulla et al., 2016, Sturm et al., 2012). Sturm et 693 

al. (2012) revealed that the TFs OLIG1, OLIG2 and FOXG1 are the master regulators of the hub 694 

gene networks driving these oncohistone pediatric GBM variants (i.e., K27M and G34V/R). 695 

Similar findings were recently reported by Wang et al. (2021), who identified the same set of 696 

TFs as critical drivers of pediatric high-grade gliomas’ epigenetic landscapes. We identified all 697 

three TFs reported by Sturm et al. and Wang et al. in our network approaches as critical 698 

regulators of GBM cell fate dynamics. Thus, our findings recapitulate the complex network 699 

dynamics driving the oncohistone variants of pediatric GBM and validate and extend previous 700 

findings. 701 

 702 

It should be noted that there is a good deal of heterogeneity within the single-cell datasets 703 

across and with the patient groups.  The original datasets contained 8 pediatric GBM samples, 704 

20 adult GBM samples, and 28 adult GSC samples. For the initial clustering (i.e., differential 705 

discovery using Seurat and BigSCale), samples--two adult GBM and one pediatric GBM-- with 706 

the highest drop-out rate (i.e., zero counts) were removed as a data filtering and quality control 707 

step prior to normalization. Subsequently, the number of adult GBM samples in the scEpath 708 

analysis was randomly selected to closely match the cell count numbers of the adult GSC 709 

patient groups. The down-sampling of GSC samples was necessary since scEpath analysis has 710 

a computational limitation on the number of samples which can be processed (roughly 2500 711 

cells). As noted in the Methods, selecting a different combination of GSC samples did not 712 

change the results and including the removed samples did not change the differential marker 713 

discovery or expression analyses. Indeed, the global clustering patterns remained the same 714 

although there was greater dispersion in the local sub-clusters in the Seurat and BigSCale 715 
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pattern space. However, including all n=8 pediatric GBM patient samples generated a shorter 716 

list of transition genes with abrupt transitions between the distinct phenotypes.  717 

 718 

A limitation of our study is that we did not have access to pediatric GSC cells, given that adult 719 

GSC data have only recently been described (Richards et al., 2021). There may be other hidden 720 

causal interactions interconnecting the nodes of the complex networks we inferred that were not 721 

identified due to lack of data. Further, the lack of time-series scRNA-Seq counts is a barrier to 722 

understanding the complex dynamics of GBM/GSC networks. The pseudotemporal dynamics 723 

consist of inferred cell fate trajectories in a dimensionality-reduced data space (i.e., PCA space) 724 

by transcriptional similarity of cell fates. Ribosomal proteins and certain cytoskeletal markers 725 

(housekeeping genes) were also not pooled with the differential expression signatures for 726 

network inference (Figure S1).  727 

 728 

This proof-of-concept study provides a comprehensive method to dissect the cybernetics of 729 

cancer cellular ecosystems and their cell fate dynamics. Current bioinformatic pipelines in 730 

cancer data science largely fail to reconcile the complex dynamics and temporal features of 731 

GBM transcriptional states, as they either take a reductionist approach to inferring gene 732 

expression patterns or rely on statistical correlation methods. In contrast, our framework 733 

provides a pipeline for causal pattern discovery and thereby allows the prediction/forecasting of 734 

how the differentially expressed transition genes control and regulate cell fate decision-making. 735 

Further, our approach allows for the mapping of these cancer cell fate behaviors to information 736 

flow across the inferred complex networks. Thus, these causal inference tools shed light on 737 

emergent behaviors in cell fate decisions such as transcriptional heterogeneity from a dynamical 738 

systems perspective. As such, we propose our methodological framework may provide a 739 

complementary and potentially more useful means to assess how the heterogeneous cancer 740 
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phenotypes exhibit adaptive (emergent) behaviors and help forecast their dynamic response to 741 

drug/therapeutic perturbations at the level of molecular interactions. 742 

 743 

6. CONCLUSION 744 

This study demonstrates the use of complex systems approaches in deciphering the cybernetics 745 

of GBM/GSC networks, and shows how signaling dynamics differ between pediatric GBM, adult 746 

GBM, and adult GSC populations.  By identifying transcription factors and genes, our combined 747 

approach serves as one part of the precision medicine toolbox for the treatment of GBM, 748 

suggesting both precision therapeutic targets and GBM reprogramming factors. 749 

 750 

Prospective studies should explore the use of artificial neural networks, including Deep Learning 751 

algorithms, for single-cell transcriptomic analyses. Further, causal inference-based network 752 

inference methods such as Bayesian networks and algorithmic information dynamics should be 753 

investigated for GBM regulatory networks reconstruction. The epigenetic regulation of our 754 

identified transcriptional networks must be explored using high-throughput multi-omics datasets. 755 

Our network approaches should be extended to protein-protein interaction networks, epigenetic 756 

networks, and metabolic networks to investigate multi-omic levels of GBM heterogeneity, 757 

including oncohistone variants (i.e., K27M, K36M, G34V/R) and IDH1/2-mutants observed in 758 

pediatric gliomas (GBM). 759 
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