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Abstract 16 

Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts 17 

such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies 18 

measure the molecules mediating cell-cell communication, and emerging computational tools can 19 

exploit these data to decipher intercellular communication. However, current methods either disregard 20 

cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to 21 

decipher complex cell-cell communication across multiple time points, levels of disease severity, or 22 

spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor 23 

decomposition, which is the first strategy to decipher context-driven intercellular communication by 24 

simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-25 

cell2cell uncovers context-driven patterns of communication associated with different phenotypic states 26 

and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-27 

cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show 28 

Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., 29 

participating cell-cell and ligand receptor pairs) linked to COVID-19 severities and Autism Spectrum 30 

Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex 31 

communication patterns across diverse conditions. 32 
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Introduction 33 

Organismal phenotypes arise as cells adapt and coordinate their functions through cell-cell interactions 34 

within their microenvironments1. Variations in these interactions and the resulting phenotypes can occur 35 

because of genotypic differences (e.g. different subjects) or the transition from one biological state or 36 

condition to another2 (e.g. from one life stage into another, migration from one location into another, 37 

and transition from health to disease states). These interactions are mediated by changes in the 38 

production of signals and receptors by the cells, causing changes in cell-cell communication (CCC). 39 

Thus, CCC is dependent on temporal, spatial and condition-specific contexts3, which we refer to here 40 

as cellular contexts. “Cellular contexts” refer to variation in genotype, biological state or condition that 41 

can shape the microenvironment of a cell and therefore its CCC. Thus, CCC can be seen as a function 42 

of a context variable that is not necessarily binary and can encompass multiple levels (e.g. multiple time 43 

points, gradient of disease severities, different subjects, distinct tissues, etc.). Consequently, varying 44 

contexts trigger distinct strength and/or signaling activity1,4–6 of communication, leading to complex 45 

dynamics (e.g. increasing, decreasing, pulsatile and oscillatory communication activities across 46 

contexts). Importantly, unique combinations of cell-cell and ligand-receptor (LR) pairs can follow 47 

different context-dependent dynamics, making CCC hard to decipher across multiple contexts. 48 

 49 
Single-cell omics assays provide the necessary resolution to measure these cell-cell interactions and 50 

the ligand-receptor pairs mediating CCC. While computational methods for inferring CCC have been 51 

invaluable for discovering the cellular and molecular interactions underlying many biological processes, 52 

including organismal development and disease pathogenesis5, current approaches cannot account for 53 

high variability in contexts (e.g., multiple time points or phenotypic states) simultaneously. Existing 54 

methods lose the correlation structure across contexts since they involve repeating analysis for each 55 

context separately, disregarding informative variation in CCC across such factors as disease severities, 56 

time points, subjects, or cellular locations7. Additional analysis steps are required to compare and 57 
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compile results from pairwise comparisons8–11, reducing the statistical power and hindering efforts to 58 

link phenotypes to CCC. Moreover, this roundabout process is computationally expensive, making 59 

analysis of large sample cohorts intractable. Thus, new methods are needed that analyze CCC while 60 

accounting for the correlation structure across multiple contexts simultaneously. 61 

Tensor-based approaches such as Tensor Component Analysis12 (TCA) can deconvolve patterns 62 

associated with the biological context of the system of interest. While matrix-based dimensionality 63 

reduction methods such as Principal Component Analysis (PCA), Non-negative Matrix Factorization 64 

(NMF), Uniform Manifold Approximation and Projection (UMAP) and t-distributed Stochastic Neighbor 65 

Embedding (t-SNE) can extract low-dimensional structures from the data and reflect important 66 

molecular signals13,14, TCA is better suited to analyze multidimensional datasets obtained from multiple 67 

biological contexts or conditions7 (e.g. time points, study subjects and body sites). Indeed, TCA 68 

outperforms matrix-based dimensionality reduction methods when recovering ground truth patterns 69 

associated with, for example, dynamic changes in microbial composition across multiple patients15 and 70 

neuronal firing dynamics across multiple experimental trials12. TCA exhibits superior performance 71 

because it does not require the aggregation of datasets across varying contexts into a single matrix. It 72 

instead organizes the data as a tensor, the higher order generalization of matrices, which better 73 

preserves the underlying context-driven correlation structure by retaining mathematical features that 74 

matrices lack16,17. Thus, with the correlation structure retained, the use of TCA with expression data 75 

across many contexts allows one to gain a detailed understanding of how context shapes 76 

communication, as well as the specific molecules and cells mediating these processes. 77 

Here, we introduce Tensor-cell2cell, a TCA-based strategy that deconvolves intercellular 78 

communication across multiple contexts and uncovers modules, or latent context-dependent patterns, 79 

of CCC. These data-driven patterns reveal underlying communication changes given the simultaneous 80 

interaction between contexts, ligand-receptor pairs, and cells. We demonstrate that Tensor-cell2cell is 81 
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broadly applicable, enabling the study of diverse biological questions about CCC in multiple organisms 82 

and contexts. We first show that Tensor-cell2cell successfully extracts complex temporal patterns from 83 

a simulated dataset. While our approach can simultaneously analyze more than two samples, we show 84 

that Tensor-cell2cell is faster, demands less memory and can achieve better accuracy in separating 85 

context-specific information in simpler analyses accessible to other tools. We further demonstrate that 86 

Tensor-cell2cell can leverage existing CCC tools by using their output communication scores to 87 

analyze multiple contexts. 88 

Finally, we apply Tensor-cell2cell to two datasets, identifying communication patterns associated with 89 

COVID-19 severity and Autism Spectrum Disorder (ASD). In the case of COVID-19, we demonstrate 90 

that from just the single analysis of one dataset recapitulates findings across tens of published literature 91 

resources. For example, we identify stronger interactions between epithelial and immune cells with 92 

increased severity18 and M1- and M2-like macrophage communication distinguishing moderate from 93 

severe cases. In the case of ASD, we focus on a data-driven analysis, exemplifying the possible 94 

downstream analyses that can be run on the outputs of Tensor-cell2cell, including pathway enrichment, 95 

clustering, and the generation of factor-specific communication networks. From these analyses we also 96 

show that combinations of CCC dysregulation across multiple context-dependent patterns distinguish 97 

ASD patients from controls. Thus, Tensor-cell2cell’s easily interpretable output enables quick 98 

identification of key mediators of cell-cell communication across contexts, both reproducing known 99 

results and identifying novel interactors. 100 

  101 
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Results 102 

Deciphering context-driven communication patterns with Tensor-cell2cell 103 

Organizing biological data through a tensor preserves the underlying correlation structure of the 104 

biological conditions of interest12,15,17. Extending this approach to infer cell-cell communication enables 105 

analysis of important ligand-receptor pairs and cell-cell interactions in a context-aware manner. 106 

Accordingly, we developed Tensor-cell2cell, a method based on tensor decomposition17 that extracts 107 

context-driven latent patterns of intercellular communication in an unsupervised manner. Briefly, 108 

Tensor-cell2cell first generates a 4D-communication tensor that contains non-negative scores to 109 

represent cell-cell communication across different conditions (Figures 1a-c). Then, a non-negative 110 

TCA19 is applied to deconvolve the latent CCC structure of this tensor into low-dimensional components 111 

or factors (Figures 1d-e). Thus, each of these factors can be interpreted as a module or pattern of 112 

communication whose dynamics across contexts is indicated by the loadings in the context dimension 113 

(Figure 1e). 114 

To demonstrate how Tensor-cell2cell recovers latent patterns of communication, we simulated a 115 

system of 3 cell types interacting through 300 LR pairs across 12 contexts (represented in our 116 

simulation as time points) (Figure 2a). We built a 4D-communication tensor that incorporates a set of 117 

embedded patterns of communication that were assigned to certain LR pairs used by specific pairs of 118 

interacting cells, and represented through oscillatory, pulsatile, exponential, and linear changes in 119 

communication scores (Figures 2a-f; see Supplementary Notes for further details of simulating and 120 

decomposing this tensor). Using Tensor-cell2cell, we found that four factors led to the decomposition 121 

that best minimized error (Supplementary Figure S1a), consistent with the number of introduced 122 

patterns (Figure 2f). This was robustly observed in multiple independent simulations (Supplementary 123 

Figure S2a).  124 
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Our simulation-based analysis further demonstrates that Tensor-cell2cell accurately detects context-125 

dependent changes of communication, and identifies which LR pairs, sender cells, and receiver cells 126 

are important (Figure 2g). In particular, the context loadings of the TCA on the simulated tensor 127 

accurately recapitulate the introduced patterns (Figures 2f-g), while ligand-receptor and cell loadings 128 

properly capture the ligand-receptor pairs, sender cells and receiver cells assigned as participants of 129 

the cognate pattern (Figure 2g). Indeed, we observed a concordance between the “ground truth” LR 130 

pairs assigned to a pattern and their respective factor loadings through Jaccard index and Pearson 131 

correlation metrics (Supplementary Tables S1-S2). Moreover, Tensor-cell2cell robustly recovered 132 

communication patterns when we added noise to the simulated tensor (Supplementary Figure S2 and 133 

Supplementary Notes). 134 
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 135 
Figure 1. Tensor representation and factorization of cell-cell communication. In a given context (n-th context among 136 
total contexts), cell-cell communication scores (see available scoring functions in REF5) are computed from the expression137 
the ligand and the receptor in a LR pair (k-th pair among K pairs) for a specific sender-receiver cell pair (i-th and j-th cells 138 
among I and J cells, respectively). This results in a communication matrix containing all pairs of sender-receiver cells for th139 
LR pair (a). The same process is repeated for every single LR pair in the input list of ligand-receptor interactions, resulting 140 
set of communication matrices that generate a 3D-communication tensor (b). 3D-communication tensors are built for all 141 
contexts and are used to generate a 4D-communication tensor wherein each dimension represents the contexts (colored 142 
lines), ligand-receptor pairs, sender cells and receiver cells (c). A non-negative TCA model approximates this tensor by a 143 
lower-rank tensor equivalent to the sum of multiple factors of rank-one (R factors in total) (d). Each component or factor (r-144 
factor) is built by the outer product of interconnected descriptors (vectors) that contain the loadings for describing the relati145 
contribution that contexts, ligand-receptor pairs, sender cells and receiver cells have in the factor (e). For interpretability, th146 
behavior that context loadings follow represent a communication pattern across contexts. Hence, the communication captu147 
by a factor is more relevant or more likely to be occurring in contexts with higher loadings. Similarly, ligand-receptor pairs w148 
higher loadings are the main mediators of that communication pattern. By constructing the tensor to account for directional149 
interactions (panels a-b), ligands and receptors in LR pairs with high loadings are mainly produced by sender and receiver150 
cells with high loadings, respectively.  151 
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 152 
Figure 2. Tensor-cell2cell recovers simulated communication patterns. (a) Cell-cell communication scenario used153 
simulating patterns of communication across different contexts (here each a different time point). (b) Examples of spe154 
ligand-receptor (LR) and (c) cell-cell pairs that participate in the simulated interactions. Individual LR pairs and cell pairs w155 
categorized into groups of signaling pathways and cell types, respectively. In this simulation, signaling pathways did156 
overlap in their LR pairs, and each pathway was assigned 100 different LR pairs. (d) Distinct combinations of signa157 
pathways with sender-receiver cell type pairs were generated (LR-CC combinations). LR-CC combinations that were assig158 
the same signaling pathway overlap in the LR pairs but not in the interacting cell types. (e) A simulated 4D-communica159 
tensor was built from each time point’s 3D-communication tensor. Here, a communication score was assigned to each lig160 
receptor and cell-cell member of a LR-CC combination. Each communication score varied across time points according 161 
specific pattern. (f) Four different patterns of communication scores were introduced to the simulated tensor by assigni162 
unique pattern to a specific LR-CC combination. From top to bottom, these patterns were an oscillation, a pulse163 
exponential decay and a linear decrease. The average communication score (y-axis) is shown across time points (x-axis). 164 
average was computed from the scores assigned to every ligand-receptor and cell-cell pair in the same LR-CC combina165 
(g) Results of running Tensor-cell2cell on the simulated tensor. Each row represents a factor, and each column a te166 
dimension, wherein each bar represents an element of that dimension (e.g. a time point, a ligand-receptor pair, a sender167 
or a receiver cell). Factor loadings (y-axis) are displayed for each element of a given dimension. Here, the factors were vis168 
matched to the corresponding latent pattern in the tensor, and their loadings were normalized to unit Euclidean length. 169 
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Tensor-cell2cell adds new capabilities to cell-cell communication analysis 170 

To demonstrate the power of accounting for multiple contexts simultaneously, we compared the 171 

computational efficiency and accuracy of our method with respect to CellChat10, the only tool that 172 

summarizes multiple pairwise comparisons in an automated manner (Table 1). Since CellChat cannot 173 

extract patterns of CCC across multiple contexts, we instead use the output of its joint manifold learning 174 

on pairwise-based changes in signaling pathways as a comparable proxy to the output of Tensor-175 

cell2cell. Despite the use of these proxy comparisons, we emphasize that the conceptual outputs 176 

reported by Tensor-cell2cell are unique. Briefly, we found that Tensor-cell2cell is faster, uses less 177 

memory, and achieves higher accuracy when analyzing CCC of multiple samples (Supplementary 178 

Figure S3); using a GPU further increases computational speed of Tensor-cell2cell. See more details 179 

regarding this comparison in the Methods and Tensor-cell2cell is fast and accurate section of the 180 

Supplementary Notes.  181 

A major advantage of Tensor-cell2cell is that it acts as a robust dimensionality reduction method for any 182 

communication scores arranged as a tensor. To illustrate this, we set out to harness the sample-wise 183 

communication scoring outputs of other tools. Tensor-cell2cell can restructure these outputs into a 4D-184 

communication tensor (Figure 1), extending their capabilities to recover context-dependent patterns of 185 

communication. This generalizability enables users to employ any scoring method. Thus, we ran 186 

Tensor-cell2cell on communication scores generated by sample-specific analysis with CellPhoneDB20, 187 

CellChat10, NATMI9, and SingleCellSignalR21, as well as the built-in scoring of Tensor-cell2cell. 188 

Specifically, we analyzed twelve bronchoalveolar lavage fluid (BALF) samples from patients with 189 

different severities of COVID-19 (healthy, moderate and severe) with each method listed above. We 190 

assessed the consistency of decomposition between all five scoring methods by using the CorrIndex22. 191 

The CorrIndex value lies between 0 and 1, with a higher score indicating more dissimilar decomposition 192 

outputs; we thus report our similarity results as (1-CorrIndex). Our results indicate that Tensor-cell2cell 193 
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can consistently identify context-dependent communication patterns independent of the initial 194 

communication scoring method (Figure 3a, Supplementary Figure S4), with a mean similarity score of 195 

0.82. Furthermore, differences in decomposition results are driven at the ligand-receptor resolution, yet 196 

tend not to propagate to the cell- or context-resolution (Supplementary Notes and Supplementary 197 

Figures S5-6). While these results agree with previous reports regarding the inconsistency of scoring 198 

methods for ligand-receptor interactions23, they also show the power of tensor decomposition to resolve 199 

these inconsistencies and identify biologically and conceptually consistent communication patterns. 200 

Since Tensor-cell2cell requires the use of multiple conditions or samples, we also assessed biases that 201 

may have been introduced by batch effects during gene expression count transformation (e.g., 202 

normalization, batch correction, etc). Specifically, we assessed the impact of applying the log(CPM+1) 203 

and the fraction of non-zero cells as preprocessing methods24, and ComBat25 and Scanorama26 as 204 

batch-effect correction. Here, we also used the BALF COVID-19 samples and built the 4D-tensors 205 

using the gene expression values obtained in each case. After running the tensor decomposition, these 206 

strategies generated results that seem biologically comparable, as measured with a mean similarity 207 

score of 0.86 (Figure 3b). As expected, using the raw counts leads to the most biased and different 208 

results in comparison to the other preprocessing methods; the mean similarity score between raw 209 

counts and all other approaches is 0.77. In contrast, the highest similarity was between the log(CPM+1) 210 

and the non-zero fraction of cells. This result is also expected since the non-zero fraction of cells is 211 

comparable to the log(CPM+1). However, the non-zero fraction performs better in comparisons of lowly 212 

expressed genes24(e.g. receptors on the cell surface27), so we included this fraction as part of the 213 

Tensor-cell2cell built-in workflow. Thus, Tensor-cell2cell can detect consistent CCC signatures 214 

independent of the method by which gene expression is corrected, with the exception of raw counts, as 215 

indicated by the high similarities observed (Figure 3b).  216 
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Table 1. Methodological strategy and context-based analysis in available tools  217 

Tool Communication 
Scorea 

Context Evaluation Simultaneous 
Contexts 

Multimeric 
LR pairs 

Data 
Resolution 

Platform Refs. 

Tensor-cell2cell Expression Mean, 
Expression Product 

and Geometric 
Mean 

Builds a tensor with all 
contexts 

simultaneously and 
runs a tensor 

decomposition, 
accounting for the 

correlation structure 
across contexts 

Unlimitedb Yes Bulk, Single 
Cell 

Python This 
work 

CellChat Mass-action-based 
probability 

Runs separate 
analyses of each 

context, does pairwise 
comparisons and 
harmonizes them 

through a joint manifold 
learning 

2 Yes Single Cell R 10 

CellPhoneDB Expression Mean None 1 Yes Single Cell Python 20 

CellTalker Differential 
Combinations 

Differential analysis 
between two contexts 

2 No Single Cell R 8 

Connectome Modified 
Expression Product 

Differential analysis 
between two contexts. 
An overall analysis of 
cell-type importance 
can be done for more 

contexts 

2 No Single Cell R 11 

ICELLNET Expression Product None 1 Yes Bulk, Single 
Cell 

R 28 

iTalk Differential 
Combinations 

Differential analysis 
between two contexts 

2 No Single Cell R 29 

NATMI Expression Product 
and Normalized 

Expression Product 

None 1 No Bulk, Single 
Cell 

Python 9 

NicheNet Personalized-
PageRank-based 

score 

None 1 No Bulk, Single 
Cell 

R 30 

scAgeCom Geometric Mean Differential analysis 
between two contexts 

2 Yes Single Cell R 31 

scTensor Expression Product None 1 No Single Cell R 32 

SingleCellSignalR Regularized 
Expression Product 

None 1 No Single Cell R 21 

a For further details about distinct communication scores, see REF5 and/or respective references for each tool. 218 
b Dependent on computational resources (e.g. memory availability) 219 
LR, ligand-receptor 220 
 221 
 222 
 223 
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224 
Figure 3. Comparison of tensor decompositions resulting from varying input values. The similarity of te225 
decompositions performed on 4D-communication tensors constructed from the single-cell dataset of BALF in patients 226 
varying severities. For a given comparison, constructed tensors have the same elements in each dimension. (a) Simil227 
between tensor decompositions performed on 4D-communication tensors, each corresponding to communication sc228 
computed from different tools for inferring cell-cell communication. The scoring functions correspond to those of CellCh229 
CellPhoneDB20, NATMI9, SingleCellSignalR21 and the built-in methods in Tensor-cell2cell. (b) Similarity between te230 
decompositions performed on 4D-communication tensors, each modifying the gene expression values by diffe231 
preprocessing methods (log(CPM+1) and the fraction of non-zero cells24) or batch-effect correction methods (Combat25232 
Scanorama26), as well as using the raw counts. The communication scores in (b) were calculated as the mean expres233 
between the partners in each LR pair, previously aggregating gene expression at the single-cell level into the cell-type leve234 
(a) and (b) similarity was measured as (1-CorrIndex), where the CorrIndex22 is a distance metric for comparing diffe235 
decompositions on tensors containing the same indices and its values range from 0 to 1 (more similar to more dissim236 
Assessed methods were hierarchically clustered by the similarities of their tensor decompositions. 237 
 238 

Tensor-cell2cell links intercellular communication with varying severities of COVID-19239 

Great strides have been made to unravel molecular and cellular mechanisms associated with SARS240 

CoV-2 infection and COVID-19 pathogenesis. Thus, we tested our method on a single-cell dataset o241 

BALF samples from COVID-19 patients33 to see how many cell-cell and LR pair relationships in COV242 

19 could be revealed by Tensor-cell2cell. By decomposing the tensor associated with this dataset in243 

10 factors (Figure 4a and Supplementary Figure S1b), Tensor-cell2cell found factors representing 244 

communication patterns that are highly correlated with COVID-19 severity (Figure 4c) and other facto245 
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that distinguish features of the different disease stages (Supplementary Figure S7), consistent with the 246 

high performance that the classifier achieved for this dataset (Supplementary Figure S3f,h). 247 

Furthermore, these factors involve signaling molecules previously linked with severity in separate works 248 

(Supplementary Table S3). 249 

The first two factors capture CCC involving autocrine and paracrine interactions of epithelial cells with 250 

immune cells in BALF (Figure 4a). The sample loadings of these factors reveal a communication 251 

pattern wherein the involved LR and cell-cell interactions become stronger as severity increases 252 

(Spearman correlation of 0.72 and 0.61, Figure 4c and Supplementary Figure S7). Although this 253 

observation was not reported in the original study, it is consistent with a previous observation of a 254 

correlation between COVID-19 severity and the airway epithelium-immune cell interactions18. 255 

Specifically, epithelial cells are highlighted by Tensor-cell2cell as the main sender cells in factor 1 256 

(Figure 4a), and we further provide new details of the molecular mechanisms involving top ranked 257 

signals such as APP, MDK, MIF and CD99 (Figure 4b). These molecules have been reported to be 258 

produced by epithelial cells34–40 and participate in immune cell recruiting36–38,41, in response to 259 

mechanical stress in lungs39 and regeneration of the alveolar barrier during viral infection40. In addition, 260 

epithelial cells act as the main receiver in factor 2 (Figure 4a), involving proteins such as PLXNB2, 261 

SDC4 and F11R (Figure 4b), which were previously determined important for tissue repair and 262 

inflammation during lung injury42–44. Remarkably, a new technology for experimentally tracing CCC 263 

revealed that SEMA4D-PLXNB2 interaction promotes inflammation in a diseased central nervous 264 

system45; our approach suggests a similar role promoting inflammation in severe COVID-19, 265 

specifically mediating the communication between immune and epithelial cells, as reflected in factor 2 266 

(Figure 4b).  267 
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 268 
Figure 4. Deconvolution of intercellular communication in patients with varying severity of COVID-19. (a) Fac269 
obtained after decomposing the 4D-communication tensor from a single-cell dataset of BALF in patients with varying sever270 
of COVID-19. 10 factors were selected for the analysis, as indicated in Supplementary Figure S1b. Here, the con271 
corresponds to samples coming from distinct patients (12 in total, with three healthy controls, three moderate infections,272 
six severe COVID-19 cases). Each row represents a factor and each column represents the loadings for the given te273 
dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colore274 
categories assigned to each element in each tensor dimension, as indicated in the legend. (b) List of the top 5 ligand-rece275 
pairs ranked by loading for each factor. The corresponding ligands and receptors in these top-ranked pairs are m276 
produced by sender and receiver cells with high loadings, respectively. Ligand-receptor pairs with supporting evide277 
(Supplementary Table S3) for a relevant role in general immune response (black bold) or in COVID-19-associated imm278 
response (red bold) are highlighted. (c) Coefficients associated with loadings of each factor: Spearman coefficient quanti279 
correlation between sample loadings and COVID-19 severity, and Gini coefficient quantifying the dispersion of the e280 
weights in each factor-specific cell-cell communication network (to measure the imbalance of communication). Impo281 
values are highlighted in red (higher absolute Spearman coefficients represent stronger correlations; while smaller 282 
coefficients represent distributions with similar edge weights). 283 
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Our strategy also elucidates communication patterns attributable to specific groups of patients 284 

according to disease severity (Figure 4a). For example, we found interactions that are characteristic of 285 

severe (factor 8) and moderate COVID-19 (factors 3 and 10), and healthy patients (factor 9) (adj. P-286 

value < 0.05, Supplementary Figure S7). Factor 8 was the most correlated with severity of the disease 287 

(Spearman coefficient 0.92, Figure 4c) and highlights macrophages playing a major role as pro-288 

inflammatory sender cells. Their main signals include CCL2, CCL3 and CCL8, which are received by 289 

cells expressing the receptors CCR1, CCR2 and CCR5 (Figure 4b). Consistent with our result, another 290 

study of BALF samples18 revealed that critical COVID-19 cases involve stronger interactions of cells in 291 

the respiratory tract through ligands such as CCL2 and CCL3, expressed by inflammatory 292 

macrophages18. Moreover, the inhibition of CCR1 and/or CCR5 (receptors of CCL2 and CCL3) has 293 

been proposed as a potential therapeutic target for treating COVID-1918,46. Tensor-cell2cell also 294 

deconvolved patterns attributable to moderate rather than severe COVID-19, also highlighting 295 

interactions driven by macrophages (factors 3 and 10; Figure 4a). However, top-ranked molecules 296 

(Figure 4b) and gene expression patterns (Supplementary Figure S8) suggest that the intercellular 297 

communication is led by macrophages with an anti-inflammatory M2-like phenotype, in contrast to 298 

factor 8 (pro-inflammatory phenotype). Multiple top-ranked signals in factors 3 and 10 have been 299 

associated with an M2 macrophage phenotype acting in the immune response to SARS-CoV-247–52.  300 

In contrast to severe and moderate COVID-19 patients, communication patterns associated with 301 

healthy subjects involve all sender-receiver cell pairs with a similar importance. In particular, factor 9 302 

(Figure 4a) demonstrated the smallest Gini coefficient (0.09; Figure 4c), which measures the extent to 303 

which edge weights between sender and receiver cells are evenly distributed in the factor-specific cell-304 

cell communication network. Smaller Gini coefficients show more even distributions, i.e., more equally 305 

weighted potential of communication across sender and receiver cell pairs (see Methods). This 306 

indicates that the intercellular communication represented by factor 9 is ubiquitous across cell types. 307 
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Thus, this conservation across cells may be an indicator of communication during homeostasis, since 308 

the context loadings for this factor are not associated with disease (Supplementary Figure S7). 309 

Interestingly, a top-ranked LR pair in factor 9 is MIF-CD74/CD44 (Figure 4b), which is consistent with 310 

ubiquitous expression of MIF across tissues and its protective role in normal conditions40,53. Thus, 311 

Tensor-cell2cell extracts communication patterns distinguishing one group of patients from another and 312 

detects known mechanisms of immune response during disease progression (Supplementary Notes), 313 

which is important for therapeutic applications. 314 

Tensor-cell2cell elucidates communication mechanisms associated with Autism 315 

Spectrum Disorders 316 

Dysregulation of neurodevelopment in Autism Spectrum Disorders (ASD) is associated with perturbed 317 

signaling pathways and CCC in complex ways54. To understand these cellular and molecular 318 

mechanisms, we analyzed single-nucleus RNA-seq (snRNA-seq) data from postmortem prefrontal 319 

brain cortex (PFC) from 13 ASD patients and 10 controls55. We built a 4D-communication tensor 320 

containing 16 cell types present in all samples, including neurons and non-neuronal cells, and 749 LR 321 

pairs; then we used Tensor-cell2cell to deconvolve their associated CCC into 6 context-driven patterns 322 

(Figure 5a and Supplementary Figure S1c). In these factors, we observe communication between all 323 

neurons (factor 1), as well as communication of specific neurons in the cortical layers I-VI (factors 2 and 324 

3), interneurons (factor 4), astrocytes and oligodendrocytes (factor 5), and endothelial cells (factor 6). 325 

Tensor-cell2cell’s outputs can be further dissected using downstream analyses with common 326 

approaches. To illustrate this, we ranked the LR pairs by their loadings in a factor-specific fashion, and 327 

ran Gene Set Enrichment Analysis56 (GSEA) using LR pathway sets built from KEGG pathways57 (see 328 

Methods). We observed that each factor was associated with different biological functions including 329 

axon guidance, cell adhesion, extracellular-matrix-receptor interaction, ERBB signaling, MAPK 330 
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signaling, among others (Figure 5b). Dysregulation of axon guidance, synaptic processes and MAPK 331 

pathway have been previously linked to ASD from differential analysis55,58, supporting our observations. 332 

Moreover, our results extend to other roles associated with extracellular matrix, focal adhesion of cells, 333 

regulation of actin cytoskeleton, and signaling through ErbB receptors, which involves Akt, PI3K, and 334 

mTOR pathways, as well as regulation of cell proliferation, migration, motility, differentiation, and 335 

apoptosis59. Thus, Tensor-cell2cell outputs can be used to assign macro-scale biological functions to 336 

each of the factors, extending the interpretation of factor-specific CCC. 337 

After identifying main pathways involved in each factor, one can further use sample loadings to identify 338 

how these functions are associated with each sample group. By doing so, we found that factors 3 and 4 339 

significantly distinguish ASD from typically-developing controls (Figure 5c). Neurons in cortical layers 340 

are the main sender cells in factor 3, while interneurons are key receiver cell types in factor 4 (Figure 341 

5a and Supplementary Figure S9), with parvalbumin interneurons (IN-PV), and SV2C-expressing 342 

interneurons (IN-SV2C) as the top ranked cells, consistent with the previously reported cell types that 343 

are more affected in ASD condition55 (i.e., with a greater number of dysregulated genes), and that 344 

correspond to neurons in the cortical layers I-VI, IN-SV2C and IN-PV. Thus, considering the overall 345 

decreased sample loadings in the ASD group, the GSEA results, and the factor-specific CCC networks 346 

built from the cell loadings (Supplementary Figure S9), our analysis suggests that there is a 347 

downregulation of axon guidance, cell adhesion, and ERBB signaling involving neurons in cortical 348 

layers I-VI and interneurons in ASD patients. See Supplementary Notes for further discussion. 349 

Clustering methods can be applied for grouping samples in an unsupervised manner. Thus, we can 350 

assess the overall similarity between samples across all factors; considering combinations of factors 351 

can offer additional insights to the analysis as compared to considering one factor at a time. We use 352 

hierarchical clustering to group samples into four main clusters (Figure 5d). Cluster 1 mainly groups 353 

controls, cluster 2 is not associated with any category, cluster 3 mostly represents ASD patients, and 354 
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cluster 4 is completely related to ASD condition. These clusters also reveal that combinations of factors 355 

separate samples by ASD and control groups. For example, samples in cluster 1 seem to have smaller 356 

loadings in factors 1 and 5, and higher loadings in factors 3 and 4. Interestingly, the only ASD sample 357 

present in this cluster had the smallest ASD clinical score, suggesting that CCC mechanisms are more 358 

similar to controls when the phenotype is mild. In contrast, cluster 3 shows an opposite CCC behavior 359 

to cluster 1. Cluster 4 also reveals that the combination of factor 6 with low sample loadings and factors 360 

1 and 5 with high values is a strong marker of several ASD patients, even though factors 1, 5, and 6 did 361 

not show significant differences between sample groups (Figure 5c). Based on this, patients in cluster 4 362 

had increased CCC through the NRXNs-NRLGs, CTNs-NRCAMs, and NCAMs-NCAMs interactions 363 

(synapse and cell adhesion) in neurons as senders and receivers, and astrocytes and oligodendrocytes 364 

as receivers, as well as a decreased CCC through VEGFs-FLT1, PTPRM-PTPRM, and PTN-NCL 365 

interactions (angiogenesis, neural migration and neuroprotection) related to endothelial cells as the 366 

main receivers (Supplementary Table S4). Finally, both ASD-clusters seem to be slightly distinct in 367 

terms of phenotype, considering their mean clinical scores of 25.0 and 22.8, respectively for clusters 3 368 

and 4, but without significant differences. Thus, downstream analyses reveal that multiple 369 

dysregulations of CCC patterns captured by Tensor-cell2cell occur simultaneously in ASD condition 370 

(Figure 5d), even though these patterns could not explain phenotypic differences when considered in 371 

isolation (Figures 5c). 372 
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 373 
Figure 5. Application of Tensor-cell2cell to study mechanisms underlying intercellular communication in pati374 
with ASD. (a) Factors obtained after decomposing the 4D-communication tensor from a single-nucleus dataset of prefro375 
brain cortex samples from patients with or without ASD. Six factors were selected for the analysis, as indicate376 
Supplementary Figure S1c. Here, the context corresponds to samples coming from distinct patients (23 in total, with thir377 
ASD patients and ten controls). Each row represents a factor and each column represents the loadings for the given te378 
dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colore379 
categories assigned to each element in each tensor dimension, as indicated in the legend. Cell-type annotations are th380 
used in REF55. (b) GSEA performed on the pre-ranked LR pairs by their respective loadings in each factor, and using KE381 
pathways. Dot sizes are proportional to the negative logarithmic of the P-values, as indicated at the top of the panel. 382 
threshold value indicates the size of a P-value=0.05. The dot colors represent the normalized enrichment score (NES) 383 
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the permutations performed by the GSEA, as indicated by the colorbar. (c) Boxplot representation for ASD and control groups 384 
of patients. Each panel represents the sample loadings, grouped by disease condition, in each of the factors. Groups were 385 
compared by a two-sided independent t-test, followed by a Bonferroni correction. Annotations of significance are ns (P-value 386 
>= 0.05) and * (0.01 < P-value < 0.05). (d) Heatmap of the standardized sample loadings across factors (z-scores) for each of 387 
the samples. An agglomerative hierarchical clustering was performed on the z-scores to group both samples and factors. 388 
Major clusters of the samples are indicated at the bottom. The category of each sample is colored on the top, according to the 389 
legend. A clinical score of each patient is also shown, according to the colorbar. Controls, and ASD samples without an 390 
assigned score, were colored gray. This clinical score summarizes the social interactions, communication, repetitive 391 
behaviors, and abnormal development of the patients, as indicated in REF55. 392 

Discussion 393 

Here we present Tensor-cell2cell, a computational approach that identifies modules of cell-cell 394 

communication and their changes across contexts (e.g., across subjects with different disease severity, 395 

multiple time points, different tissues, etc.). Our approach can rank LR pairs based on their contribution 396 

to each communication module and connect these signals to specific cell types and phenotypes. 397 

Tensor-cell2cell’s ability to consider multiple contexts simultaneously to identify context-dependent 398 

communication patterns is novel, in contrast to state-of-the-art tools that are either unaware of the 399 

context driving CCC5,20,30,60 or require analysis of each context separately to perform pairwise 400 

comparisons in posterior steps10,61. Tensor-cell2cell is therefore a flexible method that can integrate 401 

multiple datasets and readily identify patterns of intercellular communication in a context-aware 402 

manner, reporting them through interconnected and easily interpretable scores. 403 

Tensor-cell2cell robustly detects communication patterns using many other scoring methods13. Thus, 404 

our method is not only an improvement over other tools, but also greatly extends these tools, enabling 405 

new analyses with existing methods. One can choose any tool of interest, run it on each context 406 

separately, and use the resulting communication scores to build and deconvolve a 4D-communication 407 

tensor. Other tools, such as CellChat, allow the generation of scores at the signaling pathway level 408 

instead of LR pairs. This, combined with Tensor-cell2cell, could provide additional information about 409 

changes in signaling pathways. Thus, Tensor-cell2cell can also be used for analyzing any other score 410 

linking gene expression from cell pairs, beyond just scores based on protein-protein interactions. In this 411 

regard, our tool outputs consistent results regardless of the preprocessing and batch correction method 412 
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we evaluated (Figure 3b). Nevertheless, it is best practice to employ integration/batch-correction 413 

methods to correct gene expression and annotate cell types before running Tensor-cell2cell to ensure 414 

this source of variation is controlled62.  415 

Tensor-cell2cell is faster for analyzing multiple samples than pairwise comparisons, providing a 416 

considerable improvement in running time and reduced memory requirements (Supplementary Notes). 417 

Tensor-cell2cell’s runtime can be further accelerated when a GPU is available (Supplementary Figure 418 

S3a). It is also more accurate, resulting in 10-20% higher classification accuracy of subjects with 419 

COVID-19 when compared to CellChat (Supplementary Figures S3e-h). However, we note that 420 

benchmarking CCC prediction tools is challenging due to the lack of a ground truth5, and it is hard to 421 

compare and evaluate tools because of the qualitative differences in their outputs23 (Supplementary 422 

Notes). While pairwise comparisons can be informative about differential cellular and molecular 423 

mediators of communication, the results are less interpretable (Supplementary Figures S10-13), do not 424 

provide the multi-scale resolution available in Tensor-cell2cell (Figures 4a and 5a), and do not identify 425 

context-dependent patterns. 426 

Meaningful biology can be easily identified from Tensor-cell2cell. For example, a manual interpretation 427 

of the BALF COVID-19 decomposition found communication results not previously observed in the 428 

original study33 and recapitulated findings spanning tens of peer-reviewed articles (Supplementary 429 

Table S3). This included a correlation between the lung epithelium-immune cell interactions and 430 

COVID-19 severity18 and molecular mediators that distinguished moderate and severe COVID-19 (see 431 

Tensor-cell2cell elucidates molecular mechanisms distinguishing moderate from severe COVID-19 in 432 

the Supplementary Notes). Additionally, Tensor-cell2cell results can be coupled with downstream 433 

analysis methods to facilitate interpretation and provide further insights of underlying mechanisms. In 434 

our ASD case-study (Figure 5), such analyses included GSEA, clustering, visualization and statistical 435 

comparison of factors, and factor-specific analysis of sender-receiver communication networks 436 
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(Supplementary Figure S9). In the ASD case-study, we found dysregulated CCC directly distinguished 437 

ASD patients from controls and was linked with a downregulation of axon guidance, cell adhesion, 438 

synaptic processes, and ERBB signaling in cortical neurons and interneurons (Figures 5a,b), consistent 439 

with previous evidence55,58,63,64. Moveover, accounting for the combinatorial relationship of samples 440 

across factors demonstrated additional complex relationships of CCC dysregulation (Figure 5d). 441 

A limitation to consider is the potential of missing communication scores in the tensor (e.g., when a rare 442 

cell type appears in only one sample). Although Tensor-cell2cell can handle cell types that are missing 443 

in some conditions, the implemented tensor decomposition algorithm can be further optimized for 444 

missing values. Since the implemented algorithm is not optimized for this purpose, we built a 4D-445 

communication tensor that contains only the cell types that are shared across all samples in our 446 

COVID-19 and ASD study cases. Thus, further developments will facilitate analyses with missing 447 

values to include all possible members of communication (i.e., LR pairs and cell types that may be 448 

missing in certain contexts). 449 

In addition to single cell data analyzed here, Tensor-cell2cell also accepts bulk transcriptomics data (an 450 

example of a time series bulk dataset of C. elegans is included in a Code Ocean capsule, see 451 

Methods), and it could further be used to analyze proteomic data. We demonstrated the application of 452 

Tensor-cell2cell in cases where samples correspond to distinct patients, but it can be applied to many 453 

other contexts. For instance, our strategy can be readily applied to time series data by considering time 454 

points as the contexts, and to spatial transcriptomic datasets, by previously defining cellular niches or 455 

neighborhoods as the contexts. We have included Tensor-cell2cell as a part of our previously 456 

developed tool cell2cell65, enabling previous functionalities such as employing any list of LR pairs 457 

(including protein complexes), multiple visualization options, and personalizing the communication 458 

scores to account for other signaling effects such as the (in)activation of downstream genes in a 459 

signaling pathway30,66. Thus, these attributes make Tensor-cell2cell valuable for identifying key cell-cell 460 
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and LR pairs mediating complex patterns of cellular communication within a single analysis for a wide 461 

range of studies. 462 

Methods 463 

RNA-seq data processing 464 

RNA-seq datasets were obtained from publicly available resources. Datasets correspond to a large-465 

scale single-cell atlas of COVID-19 in humans67, a COVID-19 dataset of single-cell transcriptomes for 466 

BALF samples33. COVID-19 datasets were collected as raw count matrices from the NCBI's Gene 467 

Expression Omnibus68 (GEO accession numbers GSE158055 and GSE145926, respectively), while the 468 

ASD dataset was obtained from https://cells.ucsc.edu/autism/downloads.html. In total, the first dataset 469 

contains 1,462,702 single cells, the second 65,813 and the last one 104,559 single nuclei. The first 470 

dataset contains samples of patients with varying severities of COVID-19 (control, mild/moderate and 471 

severe/critical) and we selected just 60 PBMC samples among all different sample sources (20 per 472 

severity type). In the second dataset, we considered the 12 BALF samples of patients with varying 473 

severities of COVID-19 (3 control, 3 moderate and 6 severe) and preprocessed them by removing 474 

genes expressed in fewer than 3 cells, which left a total of 11,688 genes in common across samples. In 475 

the ASD dataset, PFC samples from 23 patients with and without ASD condition (13 ASD patients and 476 

10 controls) were considered, and preprocessed similarly to the BALF dataset, resulting in a total of 477 

24,298 genes in common across samples. In all datasets, we used the cell type labels included in their 478 

respective metadata. We aggregated the gene expression from single cells/nuclei into cell types by 479 

calculating the fraction of cells in the respective label with non-zero counts, as previously 480 

recommended for properly representing genes with low expression levels24, as usually happens with 481 

genes encoding surface proteins27. 482 
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Ligand-receptor pairs 483 

A human list of 2,005 ligand-receptor pairs, 48% of which include heteromeric-protein complexes, was 484 

obtained from CellChat10. We filtered this list by considering the genes expressed in the PBMC and 485 

BALF expression datasets and that match the IDs in the list of LR pairs, resulting in a final list of 1639 486 

and 189 LR pairs, respectively. While in the ASD dataset, 749 LR pairs that matched the gene IDs were 487 

considered. 488 

Building the context-aware communication tensor 489 

For building a context-aware communication tensor, three main steps are followed: 1) A communication 490 

matrix is built for each ligand-receptor pair contained in the interaction list from the gene expression 491 

matrix of a given sample. To build this communication matrix, a communication score5 is assigned to a 492 

given LR pair for each pair of sender-receiver cells. The communication score is based on the 493 

expression of the ligand and the receptor in the respective sender and receiver cells (Figure 1a). 2) 494 

After computing the communication matrices for all LR pairs, they are joined into a 3D-communication 495 

tensor for the given sample (Figure 1b). Steps 1 and 2 are repeated for all the samples (or contexts) in 496 

the dataset. 3) Finally, the 3D-communication tensors for each sample are combined, each of them 497 

representing a coordinate in the 4th-dimension of the 4D-communication tensor (or context-aware 498 

communication tensor; Figure 1c). 499 

To build the tensor for all datasets, we computed the communication scores as the mean expression 500 

between the ligand in a sender cell type and cognate receptor in a receiver cell type, as previously 501 

described20. For the LR pairs wherein either the ligand or the receptor is a multimeric protein, we used 502 

the minimum value of expression among all subunits of the respective protein to compute the 503 

communication score. In all cases we further considered cell types that were present across all 504 

samples. Thus, the 4D-communication tensor for the PBMC, BALF and ASD datasets resulted in a size 505 
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of 60 x 1639 x 6 x 6; 12 x 189 x 6 x 6, and 23 x 749 x 16 x 16 respectively (that is, samples x ligand-506 

receptor pairs x sender cell types x receiver cell types). 507 

Non-negative tensor component analysis 508 

Briefly, non-negative TCA is a generalization of NMF to higher-order tensors (matrices are tensors of 509 

order two). To detail this approach, let � represent a C x P x S x T tensor, where C, P, S and T 510 

correspond to the number of contexts/samples, ligand-receptor pairs, sender cells and receiver cells 511 

contained in the tensor, respectively. Similarly, let ����� denote the representative interactions of context 512 

i, using the LR pair j, between the sender cell k and receiver cell l. Thus, the TCA method underlying 513 

Tensor-cell2cell corresponds to CANDECOMP/PARAFAC69,70, which yields the decomposition, 514 

factorization or approximation of � through a sum of R tensors of rank-1 (Figure 1d): 515 

� � ∑ �� � �� � �� � 	��
� � 	    (1) 516 

Where the notation � represents the outer product and �� , �� , ����
 	�are vectors of the factor r that 517 

contain the loadings of the respective elements in each dimension of the tensor (Figure 1e). These 518 

vectors have values greater than or equal to zero. Similar to NMF, the factors are permutable and the 519 

elements with greater loadings represent an important component of a biological pattern captured by 520 

the corresponding factor. Values of individual elements in this approximation are represented by: 521 

�����  � ∑ ��
�  � ��

�  � ��
� � 	�

��
� � 	    (2) 522 

The tensor factorization is performed by iterating the following objective function until convergence 523 

through an alternating least squares minimization17,71: 524 

���
�,
,�,��  ��� � ∑ �� � �� � �� � 	��
� � 	 ��

�

�
   (3) 525 
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Where �| . |��
�
represent the squared Frobenius norm of a tensor, calculated as the sum of element-wise 526 

squares in the tensor: 527 

�| � |��
� � ∑ ∑ ∑ ∑ �������

��	
�
��	

�
��	

�
��	     (4) 528 

All the described calculations were implemented in Tensor-cell2cell through functions available in 529 

Tensorly72, a Python library for tensors. 530 

Measuring the error of the tensor decomposition 531 

Depending on the number of factors used for approximating the 4D-communication tensor, the 532 

reconstruction error calculated in the objective function can vary. To quantify the error with an 533 

interpretable value, we used a normalized reconstruction error as previously described12. This 534 

normalized error is on a scale of zero to one and is analogous to the fraction of unexplained variance 535 

used in PCA: 536 

��� �∑ ���
��������
� � � ��

�

�

�| � |�
�

�      (5) 537 

Running Tensor-cell2cell with communication scores from external tools 538 

We assessed the similarity of tensor decomposition on the BALF dataset using different communication 539 

scoring methods (CellChat10, CellPhoneDB20, NATMI9, SingleCellSignalR21, and Tensor-cell2cell’s built-540 

in scoring). To enable consistency between methods, we used the same ligand-receptor PPI database 541 

(CellChat – see “Ligand-receptor pairs”) and ran each method via LIANA23. LIANA provides a number 542 

of advantages over running each tool separately, including consistent thresholding and parameters, 543 

interoperability between methods and LR databases, and modifications to allow methods that could not 544 

originally account for protein complexes to do so. We adjusted parameters to match those of Tensor-545 
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cell2cell’s built-in scoring by not filtering for minimal proportions of expression by cell type or 546 

thresholding for differentially expressed genes.  547 

As input to LIANA, we constructed a Seurat object with log(CPM+1) normalized counts for each 548 

sample. For each tool and sample, LIANA outputs an edge-list of communication scores for a given 549 

combination of sender and receiver cells, as well as ligand-receptor pairs. We extended Tensor-550 

cell2cell’s functionalities to restructure a set of these edge-lists, each associated with a sample, into a 551 

4D-communication tensor (Figure 1). This functionality enables users to either provide input expression 552 

matrices and use Tensor-cell2cell’s built-in scoring, or to run their communication scoring method of 553 

choice on each sample and provide the resultant edge-lists as input. To further ensure consistency, we 554 

subsetted each resultant tensor to the intersection of ligand-receptor pairs scored across all 5 methods. 555 

For each method, this resulted in a tensor consisting of 12 samples, 172 ligand-receptor pairs, and 6 556 

sender- and receiver- cells.  557 

Evaluating the effect of gene expression preprocessing and batch-effect correction on 558 
Tensor-cell2cell 559 

To evaluate how gene expression preprocessing and batch-effect correction impact the results of 560 

Tensor-cell2cell, we assessed the similarity of tensor decomposition on the BALF dataset. To compute 561 

the communication scores for building the tensors (Figure 1a), we used different gene expression 562 

values, including the raw UMI counts, the preprocessed values with log(CPM+1) and the fraction of 563 

non-zero cells24, and the batch-corrected values with ComBat25 and Scanorama26. Except by the 564 

fraction of non-zero cells, which already aggregated single-cells into cell-types, other values were 565 

aggregated into the cell-type level by computing their average value for each gene across single cells 566 

with the same cell-type label. As the communication score, we used the expression mean of the 567 

interacting partners in each LR pair. Thus, we built 4D-communication tensors as mentioned for the 568 

BALF data in the Methods subsection Building the context-aware communication tensor. The 569 
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tensor decomposition resulting with the fraction of non-zero cells in this case corresponds to the same 570 

in Figure 4. 571 

Measuring the similarity between distinct tensor decomposition runs 572 

To assess decomposition consistency between different scoring methods or preprocessing pipelines, 573 

we employed the CorrIndex22. The CorrIndex is a permutation- and scaling-invariant distance metric 574 

that enables consistent comparison of decompositions between tensors containing the same elements, 575 

without need to align the factors obtained in each case (separate tensor decompositions can output 576 

similar factors but in different order). The CorrIndex value lies between 0 and 1, with a higher score 577 

indicating more dissimilar decomposition outputs. To score tensor decompositions, the output factor 578 

matrices must first be vertically stacked. We implemented a modification that instead assesses each 579 

tensor dimension separately (see Supplementary Note for more details). While taking the minimal score 580 

between all dimensions tends to be more stringent, it disregards the combinatorial effects of all 581 

dimensions together. These combinatorial effects are important because they better reflect the goal of 582 

tensor decomposition and because similarity in those dimensions that are not the minimal one may be 583 

artificially inflated. To facilitate the use of the CorrIndex and its modified version, we wrote a Python 584 

implementation that is available on the Tensorly package72. 585 

Downstream analyses using the loadings from the tensor decomposition 586 

We incorporate several downstream analyses of Tensor-cell2cell’s decomposition outputs to further 587 

elucidate the underlying cell- and molecular- mediators of cell-cell communication. Each of these 588 

analyses are associated with a specific tensor dimension, and thus, a specific biological resolution. This 589 

includes 1) statistical, correlative, and clustering analyses to understand context associations for each 590 

factor, 2) gene set enrichment analysis of ligand-receptor loadings to identify granular signaling 591 

pathways associated with factors, 3) the generation of factor-specific cell-cell communication networks 592 

to represent the overall communication state of cells in that factor. 593 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

29 

We can understand the context associations for a factor by comparing the loadings of samples 594 

associated with distinct contexts. For statistical significance, we conduct an independent t-test pairwise 595 

between each context group associated with the samples and use Bonferonni’s correction to account 596 

for multiple comparisons. We use this for both the COVID-19 BALF dataset (Supplementary Figures S7 597 

and S8) and the ASD dataset (Figure 5c). We also conduct correlative analyses – assuming ordinal 598 

contexts (i.e., healthy control < moderate COVID-19 < severe COVID-19), we take the Spearman 599 

correlation between the sample loadings and sample severity (Figure 4c). Finally, we also hierarchically 600 

cluster the samples using their loadings across all factors (Figure 5d). For this purpose, we use the 601 

normalized loadings resulting from the tensor decomposition, and standardize them across all factors. 602 

Then, we apply an agglomerative hierarchical clustering by using Ward's method and the Euclidean 603 

distance as a metric. Note that this type of clustering analysis can be applied to the other tensor 604 

dimensions.  605 

We can use the LR-pair loadings of a factor to identify the signaling pathways associated with it, by 606 

using the Gene Set Enrichment Analysis56 (GSEA). Before running the analysis, pathways of interest 607 

have to be assigned to a list of associated LR pairs. We do that by considering the KEGG gene sets 608 

available at http://www.gsea-msigdb.org/. We annotate a LR pair available in CellChat with the gene 609 

sets that contain all genes participating in that LR interaction. Then, by filtering LR pathway sets to 610 

those containing at least 15 LR pairs, we end up with 22 LR pathway sets. To run GSEA, we rank the 611 

LR pairs in each factor by their loadings, and use the PreRanked GSEA function in the package 612 

gseapy, by including the 22 LR pathway sets as input. As parameters of the “gseapy.prerank” function, 613 

we consider 999 permutations, gene sets (LR pathway sets here) with at least 15 elements, and a 614 

score weight of 1 for computing the enrichment scores56. 615 

Finally, we generate factor-specific cell-cell communication networks. To do so, for a factor r, we take 616 

the outer product between the sender-cell loadings vector, ��, and the receiver-cell loadings vector, ��. 617 
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Conceptually, this outer product represents an adjacency matrix of a factor-specific cell-cell 618 

communication network, where each value is an edge weight representing the overall communication 619 

between a pair of sender-receiver cells (Supplementary Figure S9). We can further use this network to 620 

understand the communication distribution inequality between sender- and receiver- cells. We compute 621 

a Gini coefficient73 ranging between 0 and 1 on the distribution of edge weights in the adjacency matrix 622 

(Figure 4c). A value of 1 represents maximal inequality of overall communication between cell pairs (i.e. 623 

one cell pair has a high overall communication value while the others have a value of 0) and 0 indicates 624 

minimal inequality (i.e. all cell pairs have the same overall communication values). More generally, the 625 

outer product between any two tensor dimension loadings for a given factor conceptually represents the 626 

joint distribution of the elements in those two dimensions and can be informative of how the specific 627 

elements are related.  628 

Benchmarking of computational efficiency of tools 629 

We measured the running time and memory demanded by Tensor-cell2cell and CellChat to analyze the 630 

COVID-19 dataset containing PBMC samples. Each tool was evaluated in two scenarios: either using 631 

each sample individually, or by first combining samples by severity (control, mild/moderate, and 632 

severe/critical) by aggregating the expression matrices. The latter was intended to favor CellChat by 633 

diminishing the number of pairwise comparisons to always be between three contexts; thus, increases 634 

in running time or memory demand in this case are not due to an exponentiation of comparisons (n 635 

samples choose 2). CellChat was run by following the procedures outlined in the 636 

“Comparison_analysis_of_multiple_datasets” vignette 637 

(https://github.com/sqjin/CellChat/tree/master/tutorial). Briefly, signaling pathway communication 638 

probabilities were first individually calculated for each sample or context. Next, pairwise comparisons 639 

between each sample or context were obtained by computing either a “functional” or a “structural” 640 

similarity. The functional approach computes a Jaccard index to compare the signaling pathways that 641 
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are active in two cellular communication networks, while the structural approach computes a network 642 

dissimilarity74 to compare the topology of two signaling networks (see REF10 for further details). Finally, 643 

CellChat performs a manifold learning approach on sample similarities and returns UMAP embeddings 644 

for each signaling pathway in each different context (e.g. if CellChat evaluates 10 signaling pathways in 645 

3 different contexts, it will return embeddings for 30 points) which can be used to rank the similarity of 646 

shared signaling pathways between contexts in a pairwise manner. 647 

The analyses of computational efficiency were run on a compute cluster of 2.8GHz x2 Intel(R) Xeon(R) 648 

Gold 6242 CPUs with 1.5 TB of RAM (Micron 72ASS8G72LZ-2G6D2) across 32 cores. Each timing 649 

task was limited to 128 GB of RAM on one isolated core and one thread independently where no other 650 

processes were being performed. To limit channel delay, data was stored on the node where the job 651 

was performed, where the within socket latency and bandwidth are 78.9 ns and 46,102 MB/s 652 

respectively. For all timing jobs, the same ligand-receptor pairs and cell types were used. Furthermore, 653 

to make the timing comparable, all samples in the dataset were subsampled to have 2,000 single cells. 654 

In the case of Tensor-cell2cell, the analysis was also repeated by using a GPU, which corresponded to 655 

a Nvidia Tesla V100. 656 

Training and evaluation of a classification model 657 

A Random Forest75 (RF) model was trained to predict disease status based on both COVID-19 status 658 

(healthy-control vs. patient with COVID-19) and severity (healthy-control, moderate symptoms, and 659 

severe symptoms). The RF model was trained using a Stratified K-Folds cross-validation (CV) with 3-660 

Fold CV splits. On each CV split a RF model with 500 estimators was trained and RF probability-661 

predictions were compared to the test set using the Receiver Operating Characteristic (ROC). The 662 

mean and standard deviation from the mean were calculated for the area under the Area Under the 663 

Curve (AUC) across the CV splits. This classification was performed on the context loadings of Tensor-664 

cell2cell, and the two UMAP dimensions of the structural and functional joint manifold learning of 665 
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CellChat, for both the BALF and PBMC COVID-19 datasets. All classification was performed through 666 

Scikit-learn (v. 0.23.2)76.  667 

Code and data availability 668 

Tensor-cell2cell is implemented in our cell2cell suite65, which is available in a GitHub repository 669 

(https://github.com/earmingol/cell2cell). All the code and input data used for the analyses are available 670 

online in a Code Ocean capsule for reproducible runs (https://doi.org/10.24433/CO.0051950.v2). While 671 

the code for benchmarking the computational efficiency in a local computer is available in a GitHub 672 

repository (https://github.com/LewisLabUCSD/CCC-Benchmark). 673 

  674 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

33 

References 675 

1. Hwang, S., Kim, S., Shin, H. & Lee, D. Context-dependent transcriptional regulations between 676 

signal transduction pathways. BMC Bioinformatics 12, 19 (2011). 677 

2. Shakiba, N., Jones, R. D., Weiss, R. & Del Vecchio, D. Context-aware synthetic biology by 678 

controller design: Engineering the mammalian cell. Cell Syst 12, 561–592 (2021). 679 

3. Rachlin, J., Cohen, D. D., Cantor, C. & Kasif, S. Biological context networks: a mosaic view of the 680 

interactome. Mol. Syst. Biol. 2, 66 (2006). 681 

4. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene 682 

expression. Nat. Commun. 9, 20 (2018). 683 

5. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and 684 

communication from gene expression. Nat. Rev. Genet. 1–18 (2020). 685 

6. Griffiths, J. I. et al. Circulating immune cell phenotype dynamics reflect the strength of tumor–686 

immune cell interactions in patients during immunotherapy. Proc. Natl. Acad. Sci. U. S. A. 117, 687 

16072–16082 (2020). 688 

7. Omberg, L., Golub, G. H. & Alter, O. A tensor higher-order singular value decomposition for 689 

integrative analysis of DNA microarray data from different studies. Proc. Natl. Acad. Sci. U. S. A. 690 

104, 18371–18376 (2007). 691 

8. Cillo, A. R. et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. 692 

Immunity vol. 52 183–199.e9 (2020). 693 

9. Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R. R. Predicting cell-to-cell 694 

communication networks using NATMI. Nat. Commun. 11, 1–11 (2020). 695 

10. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 696 

1088 (2021). 697 

11. Raredon, M. S. B. et al. Computation and visualization of cell-cell signaling topologies in single-cell 698 

systems data using Connectome. Sci. Rep. 12, 4187 (2022). 699 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

34 

12. Williams, A. H. et al. Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics 700 

across Multiple Timescales through Tensor Component Analysis. Neuron 98, 1099–1115.e8 701 

(2018). 702 

13. Stein-O’Brien, G. L. et al. Enter the Matrix: Factorization Uncovers Knowledge from Omics. Trends 703 

Genet. 34, 790–805 (2018). 704 

14. Sun, S., Zhu, J., Ma, Y. & Zhou, X. Accuracy, robustness and scalability of dimensionality 705 

reduction methods for single-cell RNA-seq analysis. Genome Biol. 20, 269 (2019). 706 

15. Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community 707 

dynamics. Nat. Biotechnol. 39, 165–168 (2021). 708 

16. Anandkumar, A., Jain, P., Shi, Y. & Niranjan, U. N. Tensor vs. Matrix Methods: Robust Tensor 709 

Decomposition under Block Sparse Perturbations. in Proceedings of the 19th International 710 

Conference on Artificial Intelligence and Statistics (eds. Gretton, A. & Robert, C. C.) vol. 51 268–711 

276 (PMLR, 2016). 712 

17. Rabanser, S., Shchur, O. & Günnemann, S. Introduction to Tensor Decompositions and their 713 

Applications in Machine Learning. arXiv [stat.ML] (2017). 714 

18. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions 715 

identified by single-cell analysis. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-0602-4. 716 

19. Friedlander, M. P. & Hatz, K. Computing non-negative tensor factorizations. Optim. Methods Softw. 717 

23, 631–647 (2008). 718 

20. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-719 

cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. 720 

Protoc. (2020) doi:10.1038/s41596-020-0292-x. 721 

21. Cabello-Aguilar, S. et al. SingleCellSignalR: inference of intercellular networks from single-cell 722 

transcriptomics. Nucleic Acids Res. 48, e55 (2020). 723 

22. Sobhani, E., Comon, P., Jutten, C. & Babaie-Zadeh, M. CorrIndex: A permutation invariant 724 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

35 

performance index. Signal Processing 195, 108457 (2022). 725 

23. Dimitrov, D. et al. Comparison of Resources and Methods to infer Cell-Cell Communication from 726 

Single-cell RNA Data. bioRxiv 2021.05.21.445160 (2021) doi:10.1101/2021.05.21.445160. 727 

24. Booeshaghi, A. S. & Pachter, L. Normalization of single-cell RNA-seq counts by log(x + 1)* or log(1 728 

+ x). Bioinformatics (2021) doi:10.1093/bioinformatics/btab085. 729 

25. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using 730 

empirical Bayes methods. Biostatistics 8, 118–127 (2007). 731 

26. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes 732 

using Scanorama. Nat. Biotechnol. 37, 685–691 (2019). 733 

27. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and 734 

spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020). 735 

28. Noël, F. et al. Dissection of intercellular communication using the transcriptome-based framework 736 

ICELLNET. Nat. Commun. 12, 1089 (2021). 737 

29. Wang, Y. et al. iTALK: an R Package to Characterize and Illustrate Intercellular Communication. 738 

Cancer Biology (2019) doi:10.1101/507871. 739 

30. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking 740 

ligands to target genes. Nat. Methods (2019) doi:10.1038/s41592-019-0667-5. 741 

31. Lagger, C. et al. scAgeCom: a murine atlas of age-related changes in intercellular communication 742 

inferred with the package scDiffCom. bioRxiv 2021.08.13.456238 (2021) 743 

doi:10.1101/2021.08.13.456238. 744 

32. Tsuyuzaki, K., Ishii, M. & Nikaido, I. Uncovering hypergraphs of cell-cell interaction from single cell 745 

RNA-sequencing data. bioRxiv 566182 (2019) doi:10.1101/566182. 746 

33. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. 747 

Nat. Med. 26, 842–844 (2020). 748 

34. Schmitt, T. L., Steiner, E., Klingler, P., Lassmann, H. & Grubeck-Loebenstein, B. Thyroid epithelial 749 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

36 

cells produce large amounts of the Alzheimer beta-amyloid precursor protein (APP) and generate 750 

potentially amyloidogenic APP fragments. J. Clin. Endocrinol. Metab. 80, 3513–3519 (1995). 751 

35. Puig, K. L., Manocha, G. D. & Combs, C. K. Amyloid precursor protein mediated changes in 752 

intestinal epithelial phenotype in vitro. PLoS One 10, e0119534 (2015). 753 

36. Zemans, R. L., Colgan, S. P. & Downey, G. P. Transepithelial migration of neutrophils: 754 

mechanisms and implications for acute lung injury. Am. J. Respir. Cell Mol. Biol. 40, 519–535 755 

(2009). 756 

37. Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role 757 

in the migration of monocytes through endothelial junctions. Nat. Immunol. 3, 143–150 (2002). 758 

38. Pasello, M., Manara, M. C. & Scotlandi, K. CD99 at the crossroads of physiology and pathology. J. 759 

Cell Commun. Signal. 12, 55–68 (2018). 760 

39. Sanino, G., Bosco, M. & Terrazzano, G. Physiology of Midkine and Its Potential Pathophysiological 761 

Role in COVID-19. Front. Physiol. 11, 616552 (2020). 762 

40. Farr, L., Ghosh, S. & Moonah, S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting 763 

Against Injury and Promoting Repair. Front. Immunol. 11, 1273 (2020). 764 

41. Weckbach, L. T., Muramatsu, T. & Walzog, B. Midkine in inflammation. ScientificWorldJournal 11, 765 

2491–2505 (2011). 766 

42. Xia, J. et al. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial 767 

Morphogenesis and Repair. Dev. Cell 33, 299–313 (2015). 768 

43. Nikaido, T. et al. Serum Syndecan-4 as a Possible Biomarker in Patients With Acute Pneumonia. 769 

J. Infect. Dis. 212, 1500–1508 (2015). 770 

44. Azari, B. M. et al. Transcription and translation of human F11R gene are required for an initial step 771 

of atherogenesis induced by inflammatory cytokines. J. Transl. Med. 9, 98 (2011). 772 

45. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system 773 

inflammation. Science 372, (2021). 774 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

37 

46. Zhang, F. et al. IFN- γ and TNF- α drive a CXCL10 + CCL2 + macrophage phenotype expanded in 775 

severe COVID-19 and other diseases with tissue inflammation. bioRxiv (2020) 776 

doi:10.1101/2020.08.05.238360. 777 

47. Kohyama, M. et al. Monocyte infiltration into obese and fibrilized tissues is regulated by PILRα. 778 

Eur. J. Immunol. 46, 1214–1223 (2016). 779 

48. Saheb Sharif-Askari, N. et al. Enhanced expression of immune checkpoint receptors during SARS-780 

CoV-2 viral infection. Mol Ther Methods Clin Dev 20, 109–121 (2021). 781 

49. Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-782 

19 infection: Assay and rationale. EBioMedicine 59, 102964 (2020). 783 

50. Ocaña-Guzman, R., Torre-Bouscoulet, L. & Sada-Ovalle, I. TIM-3 Regulates Distinct Functions in 784 

Macrophages. Front. Immunol. 7, 229 (2016). 785 

51. Grant, R. A. et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. 786 

Nature 590, 635–641 (2021). 787 

52. Matsuyama, T., Kubli, S. P., Yoshinaga, S. K., Pfeffer, K. & Mak, T. W. An aberrant STAT pathway 788 

is central to COVID-19. Cell Death Differ. 27, 3209–3225 (2020). 789 

53. Florez-Sampedro, L., Soto-Gamez, A., Poelarends, G. J. & Melgert, B. N. The role of MIF in 790 

chronic lung diseases: looking beyond inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 318, 791 

L1183–L1197 (2020). 792 

54. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of 793 

autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016). 794 

55. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. 795 

Science 364, 685–689 (2019). 796 

56. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 797 

genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005). 798 

57. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 799 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

38 

28, 27–30 (2000). 800 

58. Astorkia, M., Lachman, H. M. & Zheng, D. Characterization of Cell-cell Communication in Autistic 801 

Brains with Single Cell Transcriptomes. bioRxiv 2021.10.15.464577 (2021) 802 

doi:10.1101/2021.10.15.464577. 803 

59. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and 804 

delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011). 805 

60. Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell-cell communication through single-806 

cell transcriptomics. Current Opinion in Systems Biology (2021) doi:10.1016/j.coisb.2021.03.007. 807 

61. Raredon, M. S. B. et al. Connectome: computation and visualization of cell-cell signaling topologies 808 

in single-cell systems data. bioRxiv 2021.01.21.427529 (2021) doi:10.1101/2021.01.21.427529. 809 

62. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. 810 

Syst. Biol. 15, e8746 (2019). 811 

63. Abbasy, S. et al. Neuregulin1 types mRNA level changes in autism spectrum disorder, and is 812 

associated with deficit in executive functions. EBioMedicine 37, 483–488 (2018). 813 

64. Gazestani, V. H. et al. A perturbed gene network containing PI3K-AKT, RAS-ERK and WNT-β-814 

catenin pathways in leukocytes is linked to ASD genetics and symptom severity. Nat. Neurosci. 22, 815 

1624–1634 (2019). 816 

65. Armingol, E. et al. Inferring a spatial code of cell-cell interactions across a whole animal body. 817 

bioRxiv 2020.11.22.392217 (2020) doi:10.1101/2020.11.22.392217. 818 

66. Wang, S., Karikomi, M., MacLean, A. L. & Nie, Q. Cell lineage and communication network 819 

inference via optimization for single-cell transcriptomics. Nucleic Acids Res. 47, e66 (2019). 820 

67. Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. 821 

Cell 184, 1895–1913.e19 (2021). 822 

68. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and 823 

hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002). 824 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

39 

69. Carroll, J. D. & Chang, J.-J. Analysis of individual differences in multidimensional scaling via an n-825 

way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35, 283–319 (1970). 826 

70. Harshman, R. A. & Others. Foundations of the PARAFAC procedure: Models and conditions for an‘ 827 

explanatory’ multimodal factor analysis. (1970). 828 

71. Anandkumar, A., Ge, R. & Janzamin, M. Guaranteed Non-Orthogonal Tensor Decomposition via 829 

Alternating Rank-1 Updates. arXiv [cs.LG] (2014). 830 

72. Kossaifi, J., Panagakis, Y., Anandkumar, A. & Pantic, M. TensorLy: Tensor Learning in Python. 831 

arXiv [cs.LG] (2016). 832 

73. Farris, F. A. The Gini Index and Measures of Inequality. Am. Math. Mon. 117, 851–864 (2010). 833 

74. Schieber, T. A. et al. Quantification of network structural dissimilarities. Nat. Commun. 8, 13928 834 

(2017). 835 

75. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001). 836 

76. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning 837 

research 12, 2825–2830 (2011). 838 

Acknowledgements 839 

EA is supported by the Chilean Agencia Nacional de Investigación y Desarrollo (ANID) through its 840 

scholarship program DOCTORADO BECAS CHILE/2018 - 72190270 and by the Fulbright Commission 841 

Chile. HMB is supported by NIMH T32GM008806. APL is supported by the InnovaUNAM of the 842 

National Autonomous University of Mexico (UNAM) and Alianza UCMX of the University of California. 843 

This work was further supported by NIGMS (R35 GM119850) and the Novo Nordisk Foundation 844 

(NNF20SA0066621) to NEL. The authors also thank Daniel McDonald for providing useful guidance 845 

about the timing analysis of the tools, the Code Ocean team for providing extra computational time for 846 

developing the capsule associated with this work, Aaron Meyer for giving practical insights about tensor 847 

decomposition methods, and Daniel Dimitrov for providing helpful guidance about running LIANA. 848 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

40 

Author contributions 849 

EA, HB and NEL conceived the work. CM contributed important insights for creating Tensor-cell2cell. 850 

EA implemented Tensor-cell2cell and performed the analyses on the datasets of COVID-19 and ASD. 851 

HB designed and created the simulated 4D-communication tensor and performed the analyses on the 852 

simulated data. EA, HB and CM performed benchmarking and statistical analyses. CM trained 853 

classifiers and compared Tensor-cell2cell to CellChat. HB performed benchmarking analyses using 854 

different external CCC tools. EA performed benchmarking analyses using different pre-processing and 855 

batch-correction methods. EA and HB developed downstream analyses. APL helped to interpret the 856 

COVID-19 results and researched literature. CA helped to interpret the ASD study case and researched 857 

literature. RK contributed to the benchmarking analyses. EA and HB wrote the paper and all authors 858 

carefully reviewed, discussed and edited the paper. 859 

Competing interests 860 

The authors declare no competing interests. 861 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2021.09.20.461129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/

