

1 Context-aware deconvolution of cell-cell communication 2 with Tensor-cell2cell

3
4 Erick Armingol^{1,2,7}, Hratch M. Baghdassarian^{1,2,7}, Cameron Martino^{1,2,3}, Araceli Perez-Lopez⁴, Caitlin Aamodt²,
5 Rob Knight^{2,3,5,6}, Nathan E. Lewis^{2,6*}

6
7 ¹ Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
8

9 ² Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
10

11 ³ Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
12

13 ⁴ Biomedicine Research Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México,
14 Tlalnepantla, State of México 54090, México
15

16 ⁵ Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
17

18 ⁶ Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
19

20 ⁷ These authors equally contributed to this work: Erick Armingol, Hratch Baghdassarian
21

22 *Correspondence: nlewisres@ucsd.edu

16 Abstract

17 Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts
18 such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies
19 measure the molecules mediating cell-cell communication, and emerging computational tools can
20 exploit these data to decipher intercellular communication. However, current methods either disregard
21 cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to
22 decipher complex cell-cell communication across multiple time points, levels of disease severity, or
23 spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor
24 decomposition, which is the first strategy to decipher context-driven intercellular communication by
25 simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-
26 cell2cell uncovers context-driven patterns of communication associated with different phenotypic states
27 and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-
28 cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show
29 Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g.,
30 participating cell-cell and ligand receptor pairs) linked to COVID-19 severities and Autism Spectrum
31 Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex
32 communication patterns across diverse conditions.

33 Introduction

34 Organismal phenotypes arise as cells adapt and coordinate their functions through cell-cell interactions
35 within their microenvironments¹. Variations in these interactions and the resulting phenotypes can occur
36 because of genotypic differences (e.g. different subjects) or the transition from one biological state or
37 condition to another² (e.g. from one life stage into another, migration from one location into another,
38 and transition from health to disease states). These interactions are mediated by changes in the
39 production of signals and receptors by the cells, causing changes in cell-cell communication (CCC).
40 Thus, CCC is dependent on temporal, spatial and condition-specific contexts³, which we refer to here
41 as cellular contexts. “Cellular contexts” refer to variation in genotype, biological state or condition that
42 can shape the microenvironment of a cell and therefore its CCC. Thus, CCC can be seen as a function
43 of a context variable that is not necessarily binary and can encompass multiple levels (e.g. multiple time
44 points, gradient of disease severities, different subjects, distinct tissues, etc.). Consequently, varying
45 contexts trigger distinct strength and/or signaling activity^{1,4-6} of communication, leading to complex
46 dynamics (e.g. increasing, decreasing, pulsatile and oscillatory communication activities across
47 contexts). Importantly, unique combinations of cell-cell and ligand-receptor (LR) pairs can follow
48 different context-dependent dynamics, making CCC hard to decipher across multiple contexts.
49
50 Single-cell omics assays provide the necessary resolution to measure these cell-cell interactions and
51 the ligand-receptor pairs mediating CCC. While computational methods for inferring CCC have been
52 invaluable for discovering the cellular and molecular interactions underlying many biological processes,
53 including organismal development and disease pathogenesis⁵, current approaches cannot account for
54 high variability in contexts (e.g., multiple time points or phenotypic states) simultaneously. Existing
55 methods lose the correlation structure across contexts since they involve repeating analysis for each
56 context separately, disregarding informative variation in CCC across such factors as disease severities,
57 time points, subjects, or cellular locations⁷. Additional analysis steps are required to compare and

58 compile results from pairwise comparisons^{8–11}, reducing the statistical power and hindering efforts to
59 link phenotypes to CCC. Moreover, this roundabout process is computationally expensive, making
60 analysis of large sample cohorts intractable. Thus, new methods are needed that analyze CCC while
61 accounting for the correlation structure across multiple contexts simultaneously.

62 Tensor-based approaches such as Tensor Component Analysis¹² (TCA) can deconvolve patterns
63 associated with the biological context of the system of interest. While matrix-based dimensionality
64 reduction methods such as Principal Component Analysis (PCA), Non-negative Matrix Factorization
65 (NMF), Uniform Manifold Approximation and Projection (UMAP) and t-distributed Stochastic Neighbor
66 Embedding (t-SNE) can extract low-dimensional structures from the data and reflect important
67 molecular signals^{13,14}, TCA is better suited to analyze multidimensional datasets obtained from multiple
68 biological contexts or conditions⁷ (e.g. time points, study subjects and body sites). Indeed, TCA
69 outperforms matrix-based dimensionality reduction methods when recovering ground truth patterns
70 associated with, for example, dynamic changes in microbial composition across multiple patients¹⁵ and
71 neuronal firing dynamics across multiple experimental trials¹². TCA exhibits superior performance
72 because it does not require the aggregation of datasets across varying contexts into a single matrix. It
73 instead organizes the data as a tensor, the higher order generalization of matrices, which better
74 preserves the underlying context-driven correlation structure by retaining mathematical features that
75 matrices lack^{16,17}. Thus, with the correlation structure retained, the use of TCA with expression data
76 across many contexts allows one to gain a detailed understanding of how context shapes
77 communication, as well as the specific molecules and cells mediating these processes.

78 Here, we introduce Tensor-cell2cell, a TCA-based strategy that deconvolves intercellular
79 communication across multiple contexts and uncovers modules, or latent context-dependent patterns,
80 of CCC. These data-driven patterns reveal underlying communication changes given the simultaneous
81 interaction between contexts, ligand-receptor pairs, and cells. We demonstrate that Tensor-cell2cell is

82 broadly applicable, enabling the study of diverse biological questions about CCC in multiple organisms
83 and contexts. We first show that Tensor-cell2cell successfully extracts complex temporal patterns from
84 a simulated dataset. While our approach can simultaneously analyze more than two samples, we show
85 that Tensor-cell2cell is faster, demands less memory and can achieve better accuracy in separating
86 context-specific information in simpler analyses accessible to other tools. We further demonstrate that
87 Tensor-cell2cell can leverage existing CCC tools by using their output communication scores to
88 analyze multiple contexts.

89 Finally, we apply Tensor-cell2cell to two datasets, identifying communication patterns associated with
90 COVID-19 severity and Autism Spectrum Disorder (ASD). In the case of COVID-19, we demonstrate
91 that from just the single analysis of one dataset recapitulates findings across tens of published literature
92 resources. For example, we identify stronger interactions between epithelial and immune cells with
93 increased severity¹⁸ and M1- and M2-like macrophage communication distinguishing moderate from
94 severe cases. In the case of ASD, we focus on a data-driven analysis, exemplifying the possible
95 downstream analyses that can be run on the outputs of Tensor-cell2cell, including pathway enrichment,
96 clustering, and the generation of factor-specific communication networks. From these analyses we also
97 show that combinations of CCC dysregulation across multiple context-dependent patterns distinguish
98 ASD patients from controls. Thus, Tensor-cell2cell's easily interpretable output enables quick
99 identification of key mediators of cell-cell communication across contexts, both reproducing known
100 results and identifying novel interactors.

101

102 **Results**

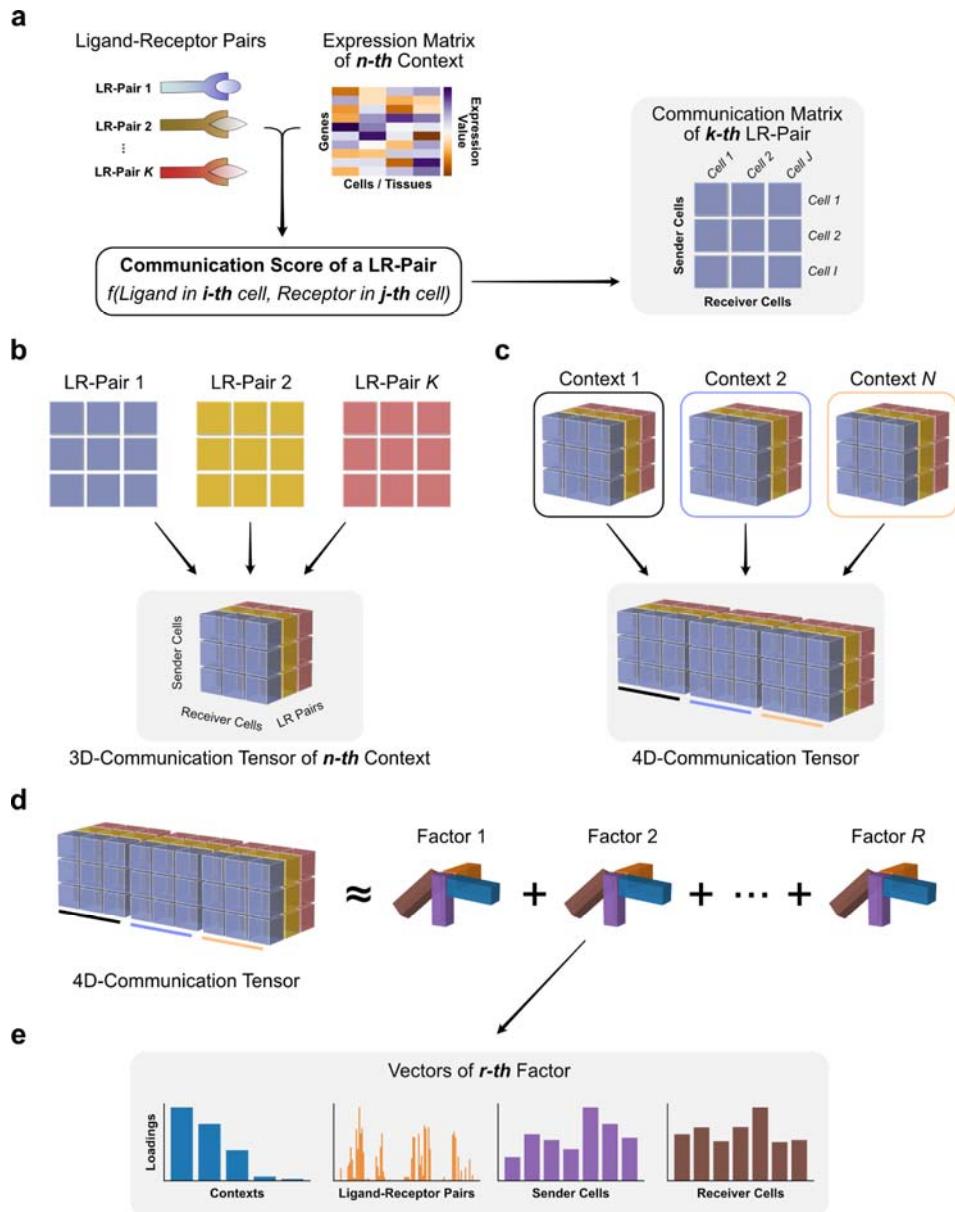
103 ***Deciphering context-driven communication patterns with Tensor-cell2cell***

104 Organizing biological data through a tensor preserves the underlying correlation structure of the
105 biological conditions of interest^{12,15,17}. Extending this approach to infer cell-cell communication enables
106 analysis of important ligand-receptor pairs and cell-cell interactions in a context-aware manner.

107 Accordingly, we developed Tensor-cell2cell, a method based on tensor decomposition¹⁷ that extracts
108 context-driven latent patterns of intercellular communication in an unsupervised manner. Briefly,
109 Tensor-cell2cell first generates a 4D-communication tensor that contains non-negative scores to
110 represent cell-cell communication across different conditions (Figures 1a-c). Then, a non-negative
111 TCA¹⁹ is applied to deconvolve the latent CCC structure of this tensor into low-dimensional components
112 or factors (Figures 1d-e). Thus, each of these factors can be interpreted as a module or pattern of
113 communication whose dynamics across contexts is indicated by the loadings in the context dimension
114 (Figure 1e).

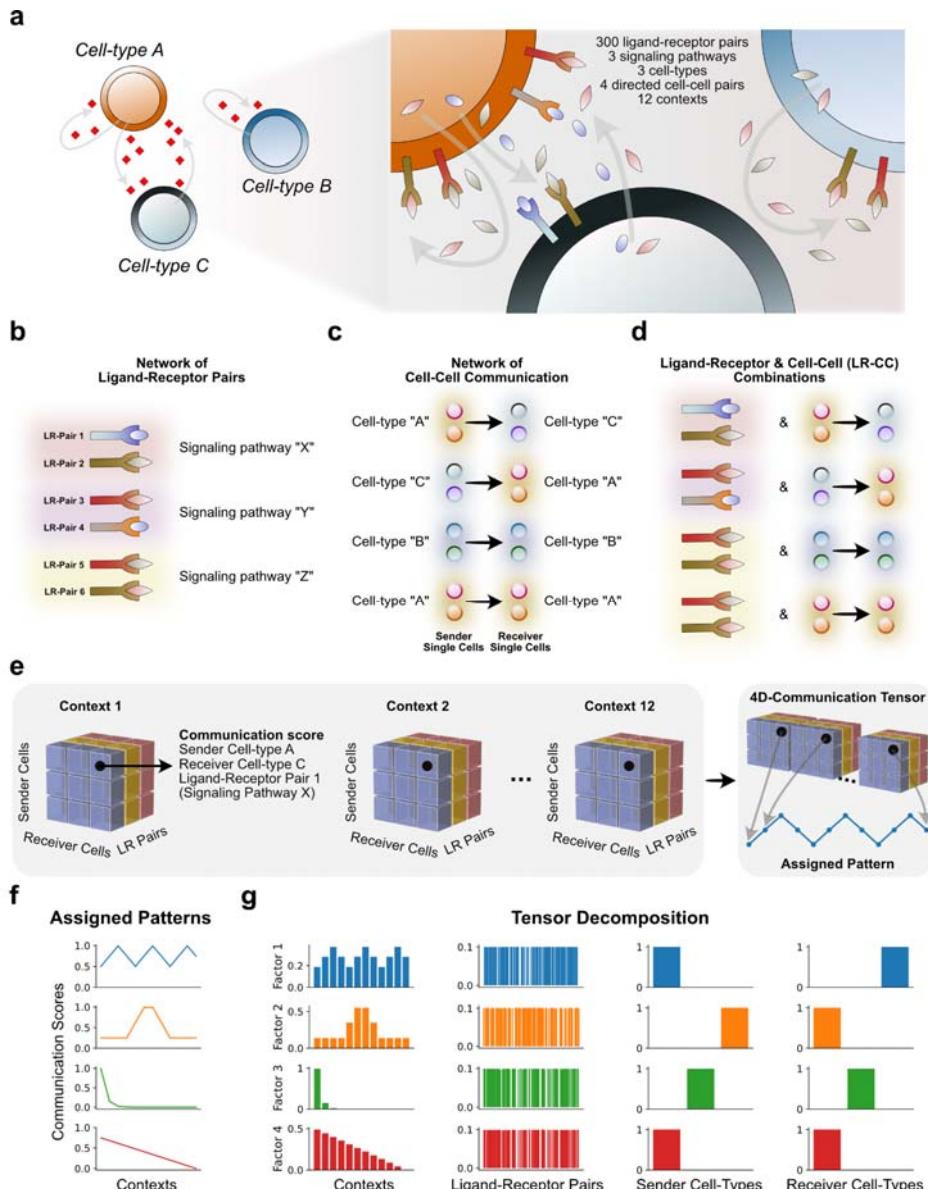
115 To demonstrate how Tensor-cell2cell recovers latent patterns of communication, we simulated a
116 system of 3 cell types interacting through 300 LR pairs across 12 contexts (represented in our
117 simulation as time points) (Figure 2a). We built a 4D-communication tensor that incorporates a set of
118 embedded patterns of communication that were assigned to certain LR pairs used by specific pairs of
119 interacting cells, and represented through oscillatory, pulsatile, exponential, and linear changes in
120 communication scores (Figures 2a-f; see Supplementary Notes for further details of simulating and
121 decomposing this tensor). Using Tensor-cell2cell, we found that four factors led to the decomposition
122 that best minimized error (Supplementary Figure S1a), consistent with the number of introduced
123 patterns (Figure 2f). This was robustly observed in multiple independent simulations (Supplementary
124 Figure S2a).

125 Our simulation-based analysis further demonstrates that Tensor-cell2cell accurately detects context-
126 dependent changes of communication, and identifies which LR pairs, sender cells, and receiver cells
127 are important (Figure 2g). In particular, the context loadings of the TCA on the simulated tensor
128 accurately recapitulate the introduced patterns (Figures 2f-g), while ligand-receptor and cell loadings
129 properly capture the ligand-receptor pairs, sender cells and receiver cells assigned as participants of
130 the cognate pattern (Figure 2g). Indeed, we observed a concordance between the “ground truth” LR
131 pairs assigned to a pattern and their respective factor loadings through Jaccard index and Pearson
132 correlation metrics (Supplementary Tables S1-S2). Moreover, Tensor-cell2cell robustly recovered
133 communication patterns when we added noise to the simulated tensor (Supplementary Figure S2 and
134 Supplementary Notes).



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

Figure 1. Tensor representation and factorization of cell-cell communication. In a given context (n -th context among N total contexts), cell-cell communication scores (see available scoring functions in REF⁵) are computed from the expression of the ligand and the receptor in a LR pair (k -th pair among K pairs) for a specific sender-receiver cell pair (i -th and j -th cells among I and J cells, respectively). This results in a communication matrix containing all pairs of sender-receiver cells for that LR pair (a). The same process is repeated for every single LR pair in the input list of ligand-receptor interactions, resulting in a set of communication matrices that generate a 3D-communication tensor (b). 3D-communication tensors are built for all contexts and are used to generate a 4D-communication tensor wherein each dimension represents the contexts (colored lines), ligand-receptor pairs, sender cells and receiver cells (c). A non-negative TCA model approximates this tensor by a lower-rank tensor equivalent to the sum of multiple factors of rank-one (R factors in total) (d). Each component or factor (r -th factor) is built by the outer product of interconnected descriptors (vectors) that contain the loadings for describing the relative contribution that contexts, ligand-receptor pairs, sender cells and receiver cells have in the factor (e). For interpretability, the behavior that context loadings follow represent a communication pattern across contexts. Hence, the communication captured by a factor is more relevant or more likely to be occurring in contexts with higher loadings. Similarly, ligand-receptor pairs with higher loadings are the main mediators of that communication pattern. By constructing the tensor to account for directional interactions (panels a-b), ligands and receptors in LR pairs with high loadings are mainly produced by sender and receiver cells with high loadings, respectively.



152
153 **Figure 2. Tensor-cell2cell recovers simulated communication patterns.** (a) Cell-cell communication scenario used for
154 simulating patterns of communication across different contexts (here each a different time point). (b) Examples of specific
155 ligand-receptor (LR) and (c) cell-cell pairs that participate in the simulated interactions. Individual LR pairs and cell pairs were
156 categorized into groups of signaling pathways and cell types, respectively. In this simulation, signaling pathways did not
157 overlap in their LR pairs, and each pathway was assigned 100 different LR pairs. (d) Distinct combinations of signaling
158 pathways with sender-receiver cell type pairs were generated (LR-CC combinations). LR-CC combinations that were assigned
159 the same signaling pathway overlap in the LR pairs but not in the interacting cell types. (e) A simulated 4D-communication
160 tensor was built from each time point's 3D-communication tensor. Here, a communication score was assigned to each ligand-
161 receptor and cell-cell member of a LR-CC combination. Each communication score varied across time points according to a
162 specific pattern. (f) Four different patterns of communication scores were introduced to the simulated tensor by assigning a
163 unique pattern to a specific LR-CC combination. From top to bottom, these patterns were an oscillation, a pulse, an
164 exponential decay and a linear decrease. The average communication score (y-axis) is shown across time points (x-axis). This
165 average was computed from the scores assigned to every ligand-receptor and cell-cell pair in the same LR-CC combination.
166 (g) Results of running Tensor-cell2cell on the simulated tensor. Each row represents a factor, and each column a tensor
167 dimension, wherein each bar represents an element of that dimension (e.g. a time point, a ligand-receptor pair, a sender cell
168 or a receiver cell). Factor loadings (y-axis) are displayed for each element of a given dimension. Here, the factors were visually
169 matched to the corresponding latent pattern in the tensor, and their loadings were normalized to unit Euclidean length.

170 **Tensor-cell2cell adds new capabilities to cell-cell communication analysis**

171 To demonstrate the power of accounting for multiple contexts simultaneously, we compared the
172 computational efficiency and accuracy of our method with respect to CellChat¹⁰, the only tool that
173 summarizes multiple pairwise comparisons in an automated manner (Table 1). Since CellChat cannot
174 extract patterns of CCC across multiple contexts, we instead use the output of its joint manifold learning
175 on pairwise-based changes in signaling pathways as a comparable proxy to the output of Tensor-
176 cell2cell. Despite the use of these proxy comparisons, we emphasize that the conceptual outputs
177 reported by Tensor-cell2cell are unique. Briefly, we found that Tensor-cell2cell is faster, uses less
178 memory, and achieves higher accuracy when analyzing CCC of multiple samples (Supplementary
179 Figure S3); using a GPU further increases computational speed of Tensor-cell2cell. See more details
180 regarding this comparison in the Methods and *Tensor-cell2cell is fast and accurate* section of the
181 Supplementary Notes.

182 A major advantage of Tensor-cell2cell is that it acts as a robust dimensionality reduction method for any
183 communication scores arranged as a tensor. To illustrate this, we set out to harness the sample-wise
184 communication scoring outputs of other tools. Tensor-cell2cell can restructure these outputs into a 4D-
185 communication tensor (Figure 1), extending their capabilities to recover context-dependent patterns of
186 communication. This generalizability enables users to employ any scoring method. Thus, we ran
187 Tensor-cell2cell on communication scores generated by sample-specific analysis with CellPhoneDB²⁰,
188 CellChat¹⁰, NATMI⁹, and SingleCellSignalR²¹, as well as the built-in scoring of Tensor-cell2cell.
189 Specifically, we analyzed twelve bronchoalveolar lavage fluid (BALF) samples from patients with
190 different severities of COVID-19 (healthy, moderate and severe) with each method listed above. We
191 assessed the consistency of decomposition between all five scoring methods by using the CorrIndex²².
192 The CorrIndex value lies between 0 and 1, with a higher score indicating more dissimilar decomposition
193 outputs; we thus report our similarity results as (1-CorrIndex). Our results indicate that Tensor-cell2cell

194 can consistently identify context-dependent communication patterns independent of the initial
195 communication scoring method (Figure 3a, Supplementary Figure S4), with a mean similarity score of
196 0.82. Furthermore, differences in decomposition results are driven at the ligand-receptor resolution, yet
197 tend not to propagate to the cell- or context-resolution (Supplementary Notes and Supplementary
198 Figures S5-6). While these results agree with previous reports regarding the inconsistency of scoring
199 methods for ligand-receptor interactions²³, they also show the power of tensor decomposition to resolve
200 these inconsistencies and identify biologically and conceptually consistent communication patterns.

201 Since Tensor-cell2cell requires the use of multiple conditions or samples, we also assessed biases that
202 may have been introduced by batch effects during gene expression count transformation (e.g.,
203 normalization, batch correction, etc). Specifically, we assessed the impact of applying the log(CPM+1)
204 and the fraction of non-zero cells as preprocessing methods²⁴, and ComBat²⁵ and Scanorama²⁶ as
205 batch-effect correction. Here, we also used the BALF COVID-19 samples and built the 4D-tensors
206 using the gene expression values obtained in each case. After running the tensor decomposition, these
207 strategies generated results that seem biologically comparable, as measured with a mean similarity
208 score of 0.86 (Figure 3b). As expected, using the raw counts leads to the most biased and different
209 results in comparison to the other preprocessing methods; the mean similarity score between raw
210 counts and all other approaches is 0.77. In contrast, the highest similarity was between the log(CPM+1)
211 and the non-zero fraction of cells. This result is also expected since the non-zero fraction of cells is
212 comparable to the log(CPM+1). However, the non-zero fraction performs better in comparisons of lowly
213 expressed genes²⁴ (e.g. receptors on the cell surface²⁷), so we included this fraction as part of the
214 Tensor-cell2cell built-in workflow. Thus, Tensor-cell2cell can detect consistent CCC signatures
215 independent of the method by which gene expression is corrected, with the exception of raw counts, as
216 indicated by the high similarities observed (Figure 3b).

217 **Table 1. Methodological strategy and context-based analysis in available tools**

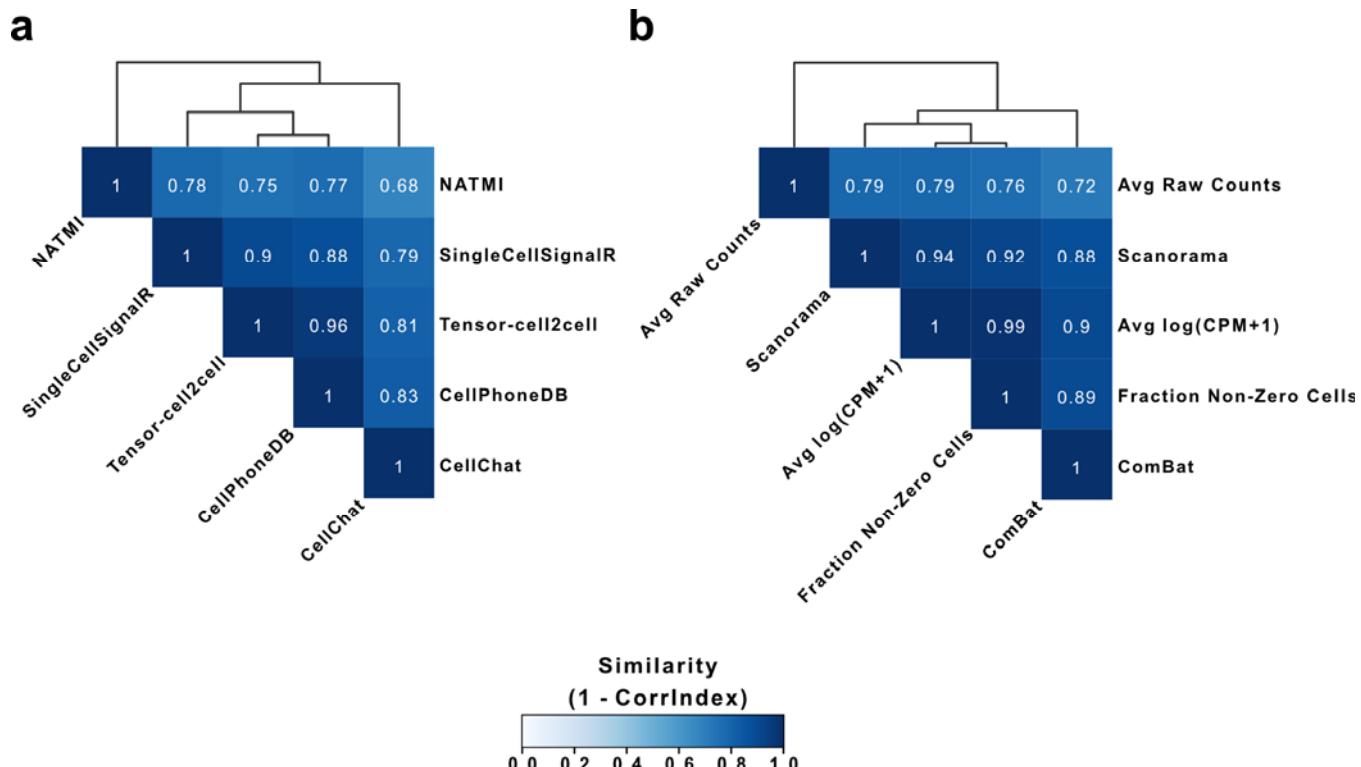
Tool	Communication Score ^a	Context Evaluation	Simultaneous Contexts	Multimeric LR pairs	Data Resolution	Platform	Refs.
Tensor-cell2cell	Expression Mean, Expression Product and Geometric Mean	Builds a tensor with all contexts simultaneously and runs a tensor decomposition, accounting for the correlation structure across contexts	Unlimited ^b	Yes	Bulk, Single Cell	Python	This work
CellChat	Mass-action-based probability	Runs separate analyses of each context, does pairwise comparisons and harmonizes them through a joint manifold learning	2	Yes	Single Cell	R	¹⁰
CellPhoneDB	Expression Mean	None	1	Yes	Single Cell	Python	²⁰
CellTalker	Differential Combinations	Differential analysis between two contexts	2	No	Single Cell	R	⁸
Connectome	Modified Expression Product	Differential analysis between two contexts. An overall analysis of cell-type importance can be done for more contexts	2	No	Single Cell	R	¹¹
ICELLNET	Expression Product	None	1	Yes	Bulk, Single Cell	R	²⁸
iTalk	Differential Combinations	Differential analysis between two contexts	2	No	Single Cell	R	²⁹
NATMI	Expression Product and Normalized Expression Product	None	1	No	Bulk, Single Cell	Python	⁹
NicheNet	Personalized-PageRank-based score	None	1	No	Bulk, Single Cell	R	³⁰
scAgeCom	Geometric Mean	Differential analysis between two contexts	2	Yes	Single Cell	R	³¹
scTensor	Expression Product	None	1	No	Single Cell	R	³²
SingleCellSignalR	Regularized Expression Product	None	1	No	Single Cell	R	²¹

218 ^a For further details about distinct communication scores, see REF⁵ and/or respective references for each tool.

219 ^b Dependent on computational resources (e.g. memory availability)

220 LR, ligand-receptor

221
222
223



224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

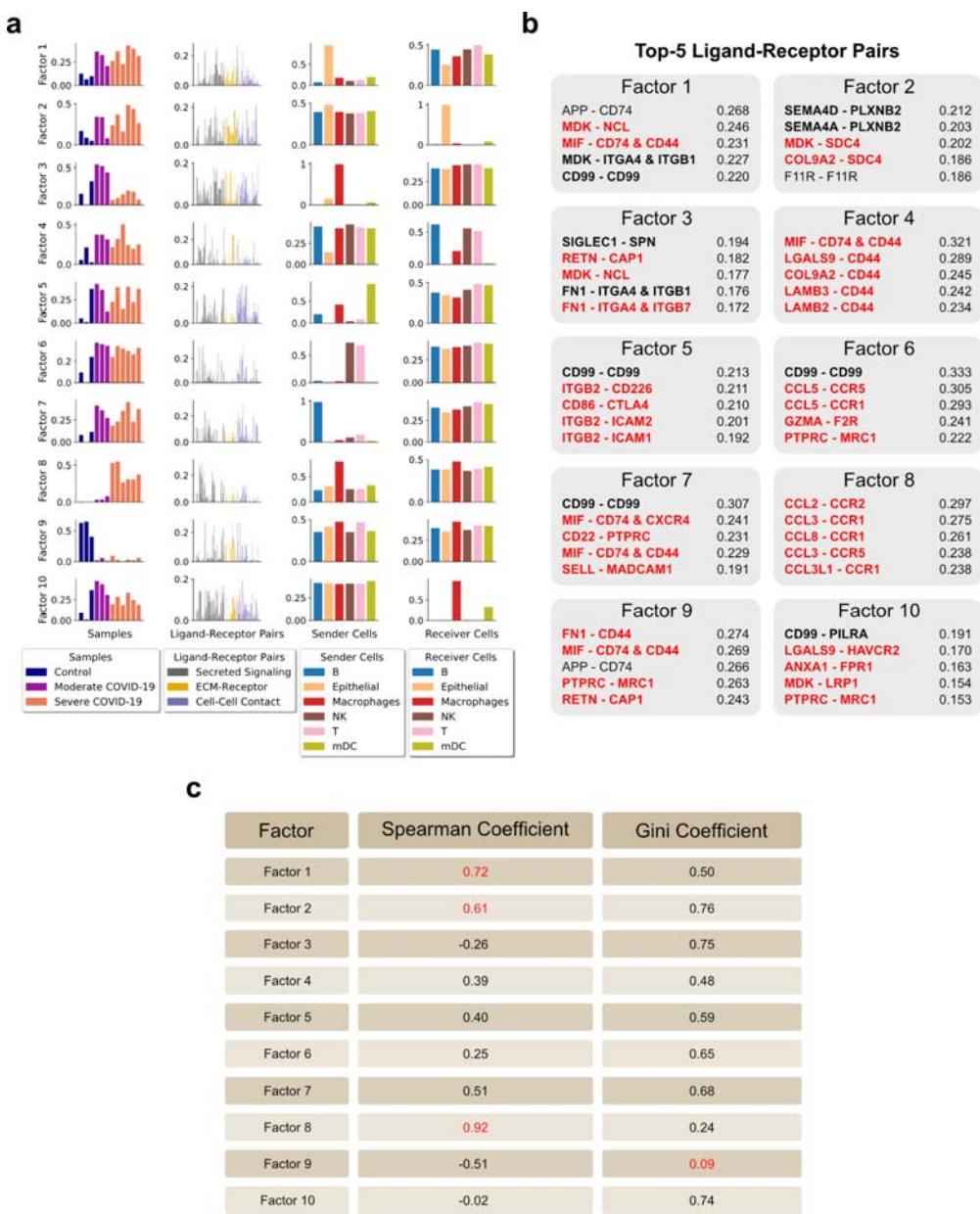
Figure 3. Comparison of tensor decompositions resulting from varying input values. The similarity of tensor decompositions performed on 4D-communication tensors constructed from the single-cell dataset of BALF in patients with varying severities. For a given comparison, constructed tensors have the same elements in each dimension. (a) Similarity between tensor decompositions performed on 4D-communication tensors, each corresponding to communication scores computed from different tools for inferring cell-cell communication. The scoring functions correspond to those of CellChat¹⁰, CellPhoneDB²⁰, NATMI⁹, SingleCellSignalR²¹ and the built-in methods in Tensor-cell2cell. (b) Similarity between tensor decompositions performed on 4D-communication tensors, each modifying the gene expression values by different preprocessing methods (log(CPM+1) and the fraction of non-zero cells²⁴) or batch-effect correction methods (ComBat²⁵ and Scanorama²⁶), as well as using the raw counts. The communication scores in (b) were calculated as the mean expression between the partners in each LR pair, previously aggregating gene expression at the single-cell level into the cell-type level. In (a) and (b) similarity was measured as (1-CorrIndex), where the CorrIndex²² is a distance metric for comparing different decompositions on tensors containing the same indices and its values range from 0 to 1 (more similar to more dissimilar). Assessed methods were hierarchically clustered by the similarities of their tensor decompositions.

239
240
241
242
243
244
245

Tensor-cell2cell links intercellular communication with varying severities of COVID-19

Great strides have been made to unravel molecular and cellular mechanisms associated with SARS-CoV-2 infection and COVID-19 pathogenesis. Thus, we tested our method on a single-cell dataset of BALF samples from COVID-19 patients³³ to see how many cell-cell and LR pair relationships in COVID-19 could be revealed by Tensor-cell2cell. By decomposing the tensor associated with this dataset into 10 factors (Figure 4a and Supplementary Figure S1b), Tensor-cell2cell found factors representing communication patterns that are highly correlated with COVID-19 severity (Figure 4c) and other factors

246 that distinguish features of the different disease stages (Supplementary Figure S7), consistent with the
247 high performance that the classifier achieved for this dataset (Supplementary Figure S3f,h).
248 Furthermore, these factors involve signaling molecules previously linked with severity in separate works
249 (Supplementary Table S3).
250 The first two factors capture CCC involving autocrine and paracrine interactions of epithelial cells with
251 immune cells in BALF (Figure 4a). The sample loadings of these factors reveal a communication
252 pattern wherein the involved LR and cell-cell interactions become stronger as severity increases
253 (Spearman correlation of 0.72 and 0.61, Figure 4c and Supplementary Figure S7). Although this
254 observation was not reported in the original study, it is consistent with a previous observation of a
255 correlation between COVID-19 severity and the airway epithelium-immune cell interactions¹⁸.
256 Specifically, epithelial cells are highlighted by Tensor-cell2cell as the main sender cells in factor 1
257 (Figure 4a), and we further provide new details of the molecular mechanisms involving top ranked
258 signals such as APP, MDK, MIF and CD99 (Figure 4b). These molecules have been reported to be
259 produced by epithelial cells³⁴⁻⁴⁰ and participate in immune cell recruiting^{36-38,41}, in response to
260 mechanical stress in lungs³⁹ and regeneration of the alveolar barrier during viral infection⁴⁰. In addition,
261 epithelial cells act as the main receiver in factor 2 (Figure 4a), involving proteins such as PLXNB2,
262 SDC4 and F11R (Figure 4b), which were previously determined important for tissue repair and
263 inflammation during lung injury⁴²⁻⁴⁴. Remarkably, a new technology for experimentally tracing CCC
264 revealed that SEMA4D-PLXNB2 interaction promotes inflammation in a diseased central nervous
265 system⁴⁵; our approach suggests a similar role promoting inflammation in severe COVID-19,
266 specifically mediating the communication between immune and epithelial cells, as reflected in factor 2
267 (Figure 4b).



268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Figure 4. Deconvolution of intercellular communication in patients with varying severity of COVID-19. (a) Factors obtained after decomposing the 4D-communication tensor from a single-cell dataset of BALF in patients with varying severities of COVID-19. 10 factors were selected for the analysis, as indicated in Supplementary Figure S1b. Here, the context corresponds to samples coming from distinct patients (12 in total, with three healthy controls, three moderate infections, and six severe COVID-19 cases). Each row represents a factor and each column represents the loadings for the given tensor dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colored by categories assigned to each element in each tensor dimension, as indicated in the legend. (b) List of the top 5 ligand-receptor pairs ranked by loading for each factor. The corresponding ligands and receptors in these top-ranked pairs are mainly produced by sender and receiver cells with high loadings, respectively. Ligand-receptor pairs with supporting evidence (Supplementary Table S3) for a relevant role in general immune response (black bold) or in COVID-19-associated immune response (red bold) are highlighted. (c) Coefficients associated with loadings of each factor: Spearman coefficient quantifying correlation between sample loadings and COVID-19 severity, and Gini coefficient quantifying the dispersion of the edge weights in each factor-specific cell-cell communication network (to measure the imbalance of communication). Important values are highlighted in red (higher absolute Spearman coefficients represent stronger correlations; while smaller Gini coefficients represent distributions with similar edge weights).

284 Our strategy also elucidates communication patterns attributable to specific groups of patients
285 according to disease severity (Figure 4a). For example, we found interactions that are characteristic of
286 severe (factor 8) and moderate COVID-19 (factors 3 and 10), and healthy patients (factor 9) (adj. P-
287 value < 0.05, Supplementary Figure S7). Factor 8 was the most correlated with severity of the disease
288 (Spearman coefficient 0.92, Figure 4c) and highlights macrophages playing a major role as pro-
289 inflammatory sender cells. Their main signals include CCL2, CCL3 and CCL8, which are received by
290 cells expressing the receptors CCR1, CCR2 and CCR5 (Figure 4b). Consistent with our result, another
291 study of BALF samples¹⁸ revealed that critical COVID-19 cases involve stronger interactions of cells in
292 the respiratory tract through ligands such as CCL2 and CCL3, expressed by inflammatory
293 macrophages¹⁸. Moreover, the inhibition of CCR1 and/or CCR5 (receptors of CCL2 and CCL3) has
294 been proposed as a potential therapeutic target for treating COVID-19^{18,46}. Tensor-cell2cell also
295 deconvolved patterns attributable to moderate rather than severe COVID-19, also highlighting
296 interactions driven by macrophages (factors 3 and 10; Figure 4a). However, top-ranked molecules
297 (Figure 4b) and gene expression patterns (Supplementary Figure S8) suggest that the intercellular
298 communication is led by macrophages with an anti-inflammatory M2-like phenotype, in contrast to
299 factor 8 (pro-inflammatory phenotype). Multiple top-ranked signals in factors 3 and 10 have been
300 associated with an M2 macrophage phenotype acting in the immune response to SARS-CoV-2⁴⁷⁻⁵².

301 In contrast to severe and moderate COVID-19 patients, communication patterns associated with
302 healthy subjects involve all sender-receiver cell pairs with a similar importance. In particular, factor 9
303 (Figure 4a) demonstrated the smallest Gini coefficient (0.09; Figure 4c), which measures the extent to
304 which edge weights between sender and receiver cells are evenly distributed in the factor-specific cell-
305 cell communication network. Smaller Gini coefficients show more even distributions, i.e., more equally
306 weighted potential of communication across sender and receiver cell pairs (see **Methods**). This
307 indicates that the intercellular communication represented by factor 9 is ubiquitous across cell types.

308 Thus, this conservation across cells may be an indicator of communication during homeostasis, since
309 the context loadings for this factor are not associated with disease (Supplementary Figure S7).
310 Interestingly, a top-ranked LR pair in factor 9 is MIF-CD74/CD44 (Figure 4b), which is consistent with
311 ubiquitous expression of MIF across tissues and its protective role in normal conditions^{40,53}. Thus,
312 Tensor-cell2cell extracts communication patterns distinguishing one group of patients from another and
313 detects known mechanisms of immune response during disease progression (Supplementary Notes),
314 which is important for therapeutic applications.

315 ***Tensor-cell2cell elucidates communication mechanisms associated with Autism
316 Spectrum Disorders***

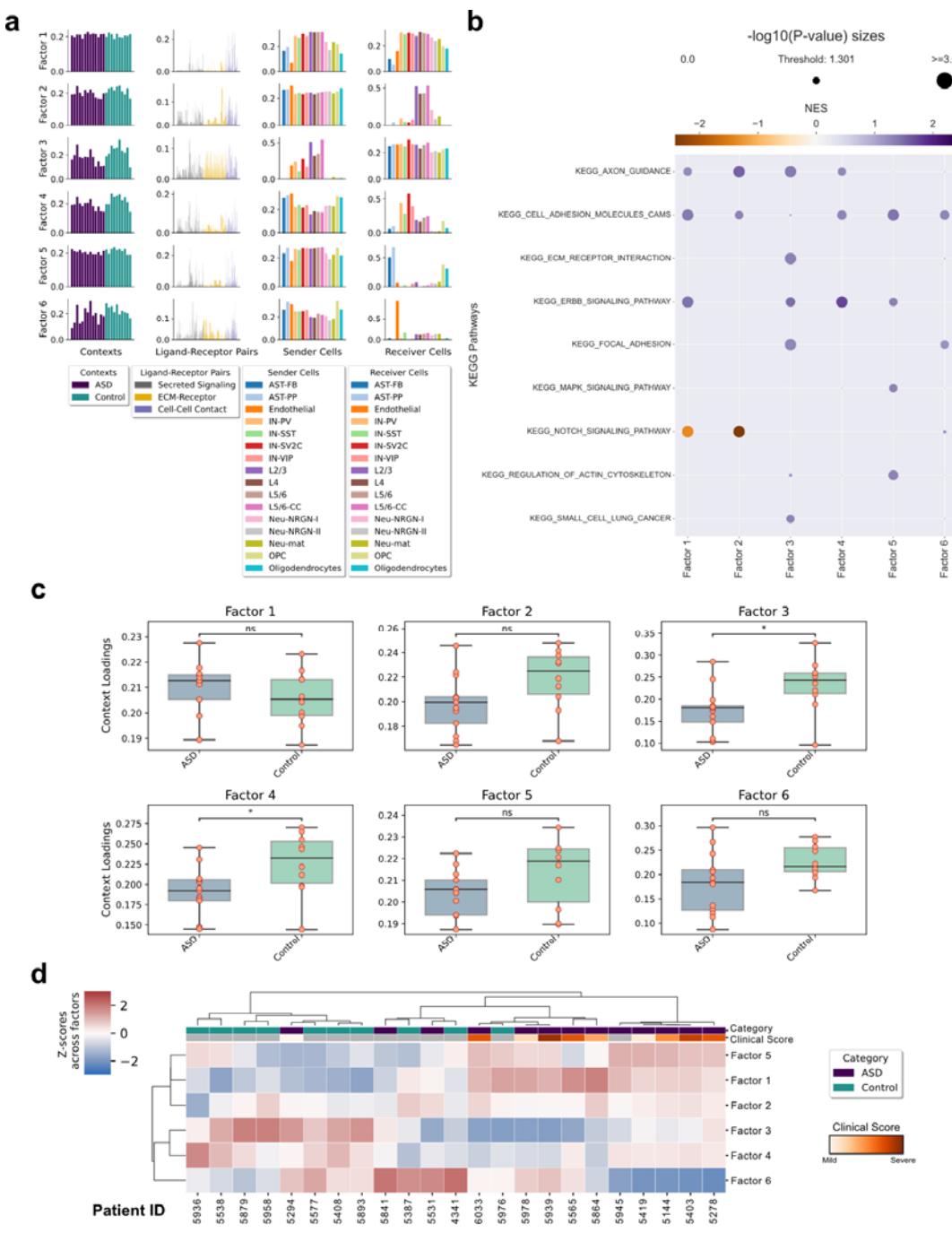
317 Dysregulation of neurodevelopment in Autism Spectrum Disorders (ASD) is associated with perturbed
318 signaling pathways and CCC in complex ways⁵⁴. To understand these cellular and molecular
319 mechanisms, we analyzed single-nucleus RNA-seq (snRNA-seq) data from postmortem prefrontal
320 brain cortex (PFC) from 13 ASD patients and 10 controls⁵⁵. We built a 4D-communication tensor
321 containing 16 cell types present in all samples, including neurons and non-neuronal cells, and 749 LR
322 pairs; then we used Tensor-cell2cell to deconvolve their associated CCC into 6 context-driven patterns
323 (Figure 5a and Supplementary Figure S1c). In these factors, we observe communication between all
324 neurons (factor 1), as well as communication of specific neurons in the cortical layers I-VI (factors 2 and
325 3), interneurons (factor 4), astrocytes and oligodendrocytes (factor 5), and endothelial cells (factor 6).
326 Tensor-cell2cell's outputs can be further dissected using downstream analyses with common
327 approaches. To illustrate this, we ranked the LR pairs by their loadings in a factor-specific fashion, and
328 ran Gene Set Enrichment Analysis⁵⁶ (GSEA) using LR pathway sets built from KEGG pathways⁵⁷ (see
329 **Methods**). We observed that each factor was associated with different biological functions including
330 axon guidance, cell adhesion, extracellular-matrix-receptor interaction, ERBB signaling, MAPK

331 signaling, among others (Figure 5b). Dysregulation of axon guidance, synaptic processes and MAPK
332 pathway have been previously linked to ASD from differential analysis^{55,58}, supporting our observations.
333 Moreover, our results extend to other roles associated with extracellular matrix, focal adhesion of cells,
334 regulation of actin cytoskeleton, and signaling through ErbB receptors, which involves Akt, PI3K, and
335 mTOR pathways, as well as regulation of cell proliferation, migration, motility, differentiation, and
336 apoptosis⁵⁹. Thus, Tensor-cell2cell outputs can be used to assign macro-scale biological functions to
337 each of the factors, extending the interpretation of factor-specific CCC.

338 After identifying main pathways involved in each factor, one can further use sample loadings to identify
339 how these functions are associated with each sample group. By doing so, we found that factors 3 and 4
340 significantly distinguish ASD from typically-developing controls (Figure 5c). Neurons in cortical layers
341 are the main sender cells in factor 3, while interneurons are key receiver cell types in factor 4 (Figure
342 5a and Supplementary Figure S9), with parvalbumin interneurons (IN-PV), and SV2C-expressing
343 interneurons (IN-SV2C) as the top ranked cells, consistent with the previously reported cell types that
344 are more affected in ASD condition⁵⁵ (i.e., with a greater number of dysregulated genes), and that
345 correspond to neurons in the cortical layers I-VI, IN-SV2C and IN-PV. Thus, considering the overall
346 decreased sample loadings in the ASD group, the GSEA results, and the factor-specific CCC networks
347 built from the cell loadings (Supplementary Figure S9), our analysis suggests that there is a
348 downregulation of axon guidance, cell adhesion, and ERBB signaling involving neurons in cortical
349 layers I-VI and interneurons in ASD patients. See Supplementary Notes for further discussion.

350 Clustering methods can be applied for grouping samples in an unsupervised manner. Thus, we can
351 assess the overall similarity between samples across all factors; considering combinations of factors
352 can offer additional insights to the analysis as compared to considering one factor at a time. We use
353 hierarchical clustering to group samples into four main clusters (Figure 5d). Cluster 1 mainly groups
354 controls, cluster 2 is not associated with any category, cluster 3 mostly represents ASD patients, and

355 cluster 4 is completely related to ASD condition. These clusters also reveal that combinations of factors
356 separate samples by ASD and control groups. For example, samples in cluster 1 seem to have smaller
357 loadings in factors 1 and 5, and higher loadings in factors 3 and 4. Interestingly, the only ASD sample
358 present in this cluster had the smallest ASD clinical score, suggesting that CCC mechanisms are more
359 similar to controls when the phenotype is mild. In contrast, cluster 3 shows an opposite CCC behavior
360 to cluster 1. Cluster 4 also reveals that the combination of factor 6 with low sample loadings and factors
361 1 and 5 with high values is a strong marker of several ASD patients, even though factors 1, 5, and 6 did
362 not show significant differences between sample groups (Figure 5c). Based on this, patients in cluster 4
363 had increased CCC through the NRXNs-NRLGs, CTNs-NRCAMs, and NCAMs-NCAMs interactions
364 (synapse and cell adhesion) in neurons as senders and receivers, and astrocytes and oligodendrocytes
365 as receivers, as well as a decreased CCC through VEGFs-FLT1, PTPRM-PTPRM, and PTN-NCL
366 interactions (angiogenesis, neural migration and neuroprotection) related to endothelial cells as the
367 main receivers (Supplementary Table S4). Finally, both ASD-clusters seem to be slightly distinct in
368 terms of phenotype, considering their mean clinical scores of 25.0 and 22.8, respectively for clusters 3
369 and 4, but without significant differences. Thus, downstream analyses reveal that multiple
370 dysregulations of CCC patterns captured by Tensor-cell2cell occur simultaneously in ASD condition
371 (Figure 5d), even though these patterns could not explain phenotypic differences when considered in
372 isolation (Figures 5c).



373
374
375
376
377
378
379
380
381
382
383

Figure 5. Application of Tensor-cell2cell to study mechanisms underlying intercellular communication in patients with ASD. (a) Factors obtained after decomposing the 4D-communication tensor from a single-nucleus dataset of prefrontal brain cortex samples from patients with or without ASD. Six factors were selected for the analysis, as indicated in Supplementary Figure S1c. Here, the context corresponds to samples coming from distinct patients (23 in total, with thirteen ASD patients and ten controls). Each row represents a factor and each column represents the loadings for the given tensor dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colored by categories assigned to each element in each tensor dimension, as indicated in the legend. Cell-type annotations are those used in REF⁵⁵. (b) GSEA performed on the pre-ranked LR pairs by their respective loadings in each factor, and using KEGG pathways. Dot sizes are proportional to the negative logarithmic of the P-values, as indicated at the top of the panel. The threshold value indicates the size of a P-value=0.05. The dot colors represent the normalized enrichment score (NES) after

384 the permutations performed by the GSEA, as indicated by the colorbar. **(c)** Boxplot representation for ASD and control groups
385 of patients. Each panel represents the sample loadings, grouped by disease condition, in each of the factors. Groups were
386 compared by a two-sided independent t-test, followed by a Bonferroni correction. Annotations of significance are ns (P-value
387 ≥ 0.05) and * ($0.01 < P\text{-value} < 0.05$). **(d)** Heatmap of the standardized sample loadings across factors (z-scores) for each of
388 the samples. An agglomerative hierarchical clustering was performed on the z-scores to group both samples and factors.
389 Major clusters of the samples are indicated at the bottom. The category of each sample is colored on the top, according to the
390 legend. A clinical score of each patient is also shown, according to the colorbar. Controls, and ASD samples without an
391 assigned score, were colored gray. This clinical score summarizes the social interactions, communication, repetitive
392 behaviors, and abnormal development of the patients, as indicated in REF⁵⁵.

393 Discussion

394 Here we present Tensor-cell2cell, a computational approach that identifies modules of cell-cell
395 communication and their changes across contexts (e.g., across subjects with different disease severity,
396 multiple time points, different tissues, etc.). Our approach can rank LR pairs based on their contribution
397 to each communication module and connect these signals to specific cell types and phenotypes.
398 Tensor-cell2cell's ability to consider multiple contexts simultaneously to identify context-dependent
399 communication patterns is novel, in contrast to state-of-the-art tools that are either unaware of the
400 context driving CCC^{5,20,30,60} or require analysis of each context separately to perform pairwise
401 comparisons in posterior steps^{10,61}. Tensor-cell2cell is therefore a flexible method that can integrate
402 multiple datasets and readily identify patterns of intercellular communication in a context-aware
403 manner, reporting them through interconnected and easily interpretable scores.
404 Tensor-cell2cell robustly detects communication patterns using many other scoring methods¹³. Thus,
405 our method is not only an improvement over other tools, but also greatly extends these tools, enabling
406 new analyses with existing methods. One can choose any tool of interest, run it on each context
407 separately, and use the resulting communication scores to build and deconvolve a 4D-communication
408 tensor. Other tools, such as CellChat, allow the generation of scores at the signaling pathway level
409 instead of LR pairs. This, combined with Tensor-cell2cell, could provide additional information about
410 changes in signaling pathways. Thus, Tensor-cell2cell can also be used for analyzing any other score
411 linking gene expression from cell pairs, beyond just scores based on protein-protein interactions. In this
412 regard, our tool outputs consistent results regardless of the preprocessing and batch correction method

413 we evaluated (Figure 3b). Nevertheless, it is best practice to employ integration/batch-correction
414 methods to correct gene expression and annotate cell types before running Tensor-cell2cell to ensure
415 this source of variation is controlled⁶².

416 Tensor-cell2cell is faster for analyzing multiple samples than pairwise comparisons, providing a
417 considerable improvement in running time and reduced memory requirements (Supplementary Notes).
418 Tensor-cell2cell's runtime can be further accelerated when a GPU is available (Supplementary Figure
419 S3a). It is also more accurate, resulting in 10-20% higher classification accuracy of subjects with
420 COVID-19 when compared to CellChat (Supplementary Figures S3e-h). However, we note that
421 benchmarking CCC prediction tools is challenging due to the lack of a ground truth⁵, and it is hard to
422 compare and evaluate tools because of the qualitative differences in their outputs²³ (Supplementary
423 Notes). While pairwise comparisons can be informative about differential cellular and molecular
424 mediators of communication, the results are less interpretable (Supplementary Figures S10-13), do not
425 provide the multi-scale resolution available in Tensor-cell2cell (Figures 4a and 5a), and do not identify
426 context-dependent patterns.

427 Meaningful biology can be easily identified from Tensor-cell2cell. For example, a manual interpretation
428 of the BALF COVID-19 decomposition found communication results not previously observed in the
429 original study³³ and recapitulated findings spanning tens of peer-reviewed articles (Supplementary
430 Table S3). This included a correlation between the lung epithelium-immune cell interactions and
431 COVID-19 severity¹⁸ and molecular mediators that distinguished moderate and severe COVID-19 (see
432 *Tensor-cell2cell elucidates molecular mechanisms distinguishing moderate from severe COVID-19* in
433 the Supplementary Notes). Additionally, Tensor-cell2cell results can be coupled with downstream
434 analysis methods to facilitate interpretation and provide further insights of underlying mechanisms. In
435 our ASD case-study (Figure 5), such analyses included GSEA, clustering, visualization and statistical
436 comparison of factors, and factor-specific analysis of sender-receiver communication networks

437 (Supplementary Figure S9). In the ASD case-study, we found dysregulated CCC directly distinguished
438 ASD patients from controls and was linked with a downregulation of axon guidance, cell adhesion,
439 synaptic processes, and ERBB signaling in cortical neurons and interneurons (Figures 5a,b), consistent
440 with previous evidence^{55,58,63,64}. Moreover, accounting for the combinatorial relationship of samples
441 across factors demonstrated additional complex relationships of CCC dysregulation (Figure 5d).

442 A limitation to consider is the potential of missing communication scores in the tensor (e.g., when a rare
443 cell type appears in only one sample). Although Tensor-cell2cell can handle cell types that are missing
444 in some conditions, the implemented tensor decomposition algorithm can be further optimized for
445 missing values. Since the implemented algorithm is not optimized for this purpose, we built a 4D-
446 communication tensor that contains only the cell types that are shared across all samples in our
447 COVID-19 and ASD study cases. Thus, further developments will facilitate analyses with missing
448 values to include all possible members of communication (i.e., LR pairs and cell types that may be
449 missing in certain contexts).

450 In addition to single cell data analyzed here, Tensor-cell2cell also accepts bulk transcriptomics data (an
451 example of a time series bulk dataset of *C. elegans* is included in a Code Ocean capsule, see
452 **Methods**), and it could further be used to analyze proteomic data. We demonstrated the application of
453 Tensor-cell2cell in cases where samples correspond to distinct patients, but it can be applied to many
454 other contexts. For instance, our strategy can be readily applied to time series data by considering time
455 points as the contexts, and to spatial transcriptomic datasets, by previously defining cellular niches or
456 neighborhoods as the contexts. We have included Tensor-cell2cell as a part of our previously
457 developed tool cell2cell⁶⁵, enabling previous functionalities such as employing any list of LR pairs
458 (including protein complexes), multiple visualization options, and personalizing the communication
459 scores to account for other signaling effects such as the (in)activation of downstream genes in a
460 signaling pathway^{30,66}. Thus, these attributes make Tensor-cell2cell valuable for identifying key cell-cell

461 and LR pairs mediating complex patterns of cellular communication within a single analysis for a wide
462 range of studies.

463 **Methods**

464 ***RNA-seq data processing***

465 RNA-seq datasets were obtained from publicly available resources. Datasets correspond to a large-
466 scale single-cell atlas of COVID-19 in humans⁶⁷, a COVID-19 dataset of single-cell transcriptomes for
467 BALF samples³³. COVID-19 datasets were collected as raw count matrices from the NCBI's Gene
468 Expression Omnibus⁶⁸ (GEO accession numbers GSE158055 and GSE145926, respectively), while the
469 ASD dataset was obtained from <https://cells.ucsc.edu/autism/downloads.html>. In total, the first dataset
470 contains 1,462,702 single cells, the second 65,813 and the last one 104,559 single nuclei. The first
471 dataset contains samples of patients with varying severities of COVID-19 (control, mild/moderate and
472 severe/critical) and we selected just 60 PBMC samples among all different sample sources (20 per
473 severity type). In the second dataset, we considered the 12 BALF samples of patients with varying
474 severities of COVID-19 (3 control, 3 moderate and 6 severe) and preprocessed them by removing
475 genes expressed in fewer than 3 cells, which left a total of 11,688 genes in common across samples. In
476 the ASD dataset, PFC samples from 23 patients with and without ASD condition (13 ASD patients and
477 10 controls) were considered, and preprocessed similarly to the BALF dataset, resulting in a total of
478 24,298 genes in common across samples. In all datasets, we used the cell type labels included in their
479 respective metadata. We aggregated the gene expression from single cells/nuclei into cell types by
480 calculating the fraction of cells in the respective label with non-zero counts, as previously
481 recommended for properly representing genes with low expression levels²⁴, as usually happens with
482 genes encoding surface proteins²⁷.

483 ***Ligand-receptor pairs***

484 A human list of 2,005 ligand-receptor pairs, 48% of which include heteromeric-protein complexes, was
485 obtained from CellChat¹⁰. We filtered this list by considering the genes expressed in the PBMC and
486 BALF expression datasets and that match the IDs in the list of LR pairs, resulting in a final list of 1639
487 and 189 LR pairs, respectively. While in the ASD dataset, 749 LR pairs that matched the gene IDs were
488 considered.

489 ***Building the context-aware communication tensor***

490 For building a context-aware communication tensor, three main steps are followed: 1) A communication
491 matrix is built for each ligand-receptor pair contained in the interaction list from the gene expression
492 matrix of a given sample. To build this communication matrix, a communication score⁵ is assigned to a
493 given LR pair for each pair of sender-receiver cells. The communication score is based on the
494 expression of the ligand and the receptor in the respective sender and receiver cells (Figure 1a). 2)
495 After computing the communication matrices for all LR pairs, they are joined into a 3D-communication
496 tensor for the given sample (Figure 1b). Steps 1 and 2 are repeated for all the samples (or contexts) in
497 the dataset. 3) Finally, the 3D-communication tensors for each sample are combined, each of them
498 representing a coordinate in the 4th-dimension of the 4D-communication tensor (or context-aware
499 communication tensor; Figure 1c).

500 To build the tensor for all datasets, we computed the communication scores as the mean expression
501 between the ligand in a sender cell type and cognate receptor in a receiver cell type, as previously
502 described²⁰. For the LR pairs wherein either the ligand or the receptor is a multimeric protein, we used
503 the minimum value of expression among all subunits of the respective protein to compute the
504 communication score. In all cases we further considered cell types that were present across all
505 samples. Thus, the 4D-communication tensor for the PBMC, BALF and ASD datasets resulted in a size

506 of $60 \times 1639 \times 6 \times 6$; $12 \times 189 \times 6 \times 6$, and $23 \times 749 \times 16 \times 16$ respectively (that is, samples x ligand-
507 receptor pairs x sender cell types x receiver cell types).

508 **Non-negative tensor component analysis**

509 Briefly, non-negative TCA is a generalization of NMF to higher-order tensors (matrices are tensors of
510 order two). To detail this approach, let χ represent a $C \times P \times S \times T$ tensor, where C, P, S and T
511 correspond to the number of contexts/samples, ligand-receptor pairs, sender cells and receiver cells
512 contained in the tensor, respectively. Similarly, let χ_{ijkl} denote the representative interactions of context
513 i , using the LR pair j , between the sender cell k and receiver cell l . Thus, the TCA method underlying
514 Tensor-cell2cell corresponds to CANDECOMP/PARAFAC^{69,70}, which yields the decomposition,
515 factorization or approximation of χ through a sum of R tensors of rank-1 (Figure 1d):

516
$$\chi \approx \sum_{r=1}^R c^r \otimes p^r \otimes s^r \otimes t^r \quad (1)$$

517 Where the notation \otimes represents the outer product and c^r, p^r, s^r and t^r are vectors of the factor r that
518 contain the loadings of the respective elements in each dimension of the tensor (Figure 1e). These
519 vectors have values greater than or equal to zero. Similar to NMF, the factors are permutable and the
520 elements with greater loadings represent an important component of a biological pattern captured by
521 the corresponding factor. Values of individual elements in this approximation are represented by:

522
$$\chi_{ijkl} \approx \sum_{r=1}^R c_i^r \otimes p_j^r \otimes s_k^r \otimes t_l^r \quad (2)$$

523 The tensor factorization is performed by iterating the following objective function until convergence
524 through an alternating least squares minimization^{17,71}:

525
$$\min_{\{c,p,s,t\}} \left\| \chi - \sum_{r=1}^R c^r \otimes p^r \otimes s^r \otimes t^r \right\|_F^2 \quad (3)$$

526 Where $\|\cdot\|_F^2$ represent the squared Frobenius norm of a tensor, calculated as the sum of element-wise
527 squares in the tensor:

528
$$\|\chi\|_F^2 = \sum_{i=1}^C \sum_{j=1}^P \sum_{k=1}^S \sum_{l=1}^T \chi_{ijkl}^2 \quad (4)$$

529 All the described calculations were implemented in Tensor-cell2cell through functions available in
530 Tensorly⁷², a Python library for tensors.

531 ***Measuring the error of the tensor decomposition***

532 Depending on the number of factors used for approximating the 4D-communication tensor, the
533 reconstruction error calculated in the objective function can vary. To quantify the error with an
534 interpretable value, we used a normalized reconstruction error as previously described¹². This
535 normalized error is on a scale of zero to one and is analogous to the fraction of unexplained variance
536 used in PCA:

537
$$\frac{\|\chi - \sum_{r=1}^R c^r \otimes p^r \otimes s^r \otimes t^r\|_F^2}{\|\chi\|_F^2} \quad (5)$$

538 ***Running Tensor-cell2cell with communication scores from external tools***

539 We assessed the similarity of tensor decomposition on the BALF dataset using different communication
540 scoring methods (CellChat¹⁰, CellPhoneDB²⁰, NATMI⁹, SingleCellSignalR²¹, and Tensor-cell2cell's built-
541 in scoring). To enable consistency between methods, we used the same ligand-receptor PPI database
542 (CellChat – see “Ligand-receptor pairs”) and ran each method via LIANA²³. LIANA provides a number
543 of advantages over running each tool separately, including consistent thresholding and parameters,
544 interoperability between methods and LR databases, and modifications to allow methods that could not
545 originally account for protein complexes to do so. We adjusted parameters to match those of Tensor-

546 cell2cell's built-in scoring by not filtering for minimal proportions of expression by cell type or
547 thresholding for differentially expressed genes.

548 As input to LIANA, we constructed a Seurat object with $\log(\text{CPM}+1)$ normalized counts for each
549 sample. For each tool and sample, LIANA outputs an edge-list of communication scores for a given
550 combination of sender and receiver cells, as well as ligand-receptor pairs. We extended Tensor-
551 cell2cell's functionalities to restructure a set of these edge-lists, each associated with a sample, into a
552 4D-communication tensor (Figure 1). This functionality enables users to either provide input expression
553 matrices and use Tensor-cell2cell's built-in scoring, or to run their communication scoring method of
554 choice on each sample and provide the resultant edge-lists as input. To further ensure consistency, we
555 subsetted each resultant tensor to the intersection of ligand-receptor pairs scored across all 5 methods.
556 For each method, this resulted in a tensor consisting of 12 samples, 172 ligand-receptor pairs, and 6
557 sender- and receiver- cells.

558 ***Evaluating the effect of gene expression preprocessing and batch-effect correction on***
559 ***Tensor-cell2cell***

560 To evaluate how gene expression preprocessing and batch-effect correction impact the results of
561 Tensor-cell2cell, we assessed the similarity of tensor decomposition on the BALF dataset. To compute
562 the communication scores for building the tensors (Figure 1a), we used different gene expression
563 values, including the raw UMI counts, the preprocessed values with $\log(\text{CPM}+1)$ and the fraction of
564 non-zero cells²⁴, and the batch-corrected values with ComBat²⁵ and Scanorama²⁶. Except by the
565 fraction of non-zero cells, which already aggregated single-cells into cell-types, other values were
566 aggregated into the cell-type level by computing their average value for each gene across single cells
567 with the same cell-type label. As the communication score, we used the expression mean of the
568 interacting partners in each LR pair. Thus, we built 4D-communication tensors as mentioned for the
569 BALF data in the Methods subsection ***Building the context-aware communication tensor***. The

570 tensor decomposition resulting with the fraction of non-zero cells in this case corresponds to the same
571 in Figure 4.

572 ***Measuring the similarity between distinct tensor decomposition runs***

573 To assess decomposition consistency between different scoring methods or preprocessing pipelines,
574 we employed the CorrIndex²². The CorrIndex is a permutation- and scaling-invariant distance metric
575 that enables consistent comparison of decompositions between tensors containing the same elements,
576 without need to align the factors obtained in each case (separate tensor decompositions can output
577 similar factors but in different order). The CorrIndex value lies between 0 and 1, with a higher score
578 indicating more dissimilar decomposition outputs. To score tensor decompositions, the output factor
579 matrices must first be vertically stacked. We implemented a modification that instead assesses each
580 tensor dimension separately (see Supplementary Note for more details). While taking the minimal score
581 between all dimensions tends to be more stringent, it disregards the combinatorial effects of all
582 dimensions together. These combinatorial effects are important because they better reflect the goal of
583 tensor decomposition and because similarity in those dimensions that are not the minimal one may be
584 artificially inflated. To facilitate the use of the CorrIndex and its modified version, we wrote a Python
585 implementation that is available on the Tensorly package⁷².

586 ***Downstream analyses using the loadings from the tensor decomposition***

587 We incorporate several downstream analyses of Tensor-cell2cell's decomposition outputs to further
588 elucidate the underlying cell- and molecular- mediators of cell-cell communication. Each of these
589 analyses are associated with a specific tensor dimension, and thus, a specific biological resolution. This
590 includes 1) statistical, correlative, and clustering analyses to understand context associations for each
591 factor, 2) gene set enrichment analysis of ligand-receptor loadings to identify granular signaling
592 pathways associated with factors, 3) the generation of factor-specific cell-cell communication networks
593 to represent the overall communication state of cells in that factor.

594 We can understand the context associations for a factor by comparing the loadings of samples
595 associated with distinct contexts. For statistical significance, we conduct an independent t-test pairwise
596 between each context group associated with the samples and use Bonferroni's correction to account
597 for multiple comparisons. We use this for both the COVID-19 BALF dataset (Supplementary Figures S7
598 and S8) and the ASD dataset (Figure 5c). We also conduct correlative analyses – assuming ordinal
599 contexts (i.e., healthy control < moderate COVID-19 < severe COVID-19), we take the Spearman
600 correlation between the sample loadings and sample severity (Figure 4c). Finally, we also hierarchically
601 cluster the samples using their loadings across all factors (Figure 5d). For this purpose, we use the
602 normalized loadings resulting from the tensor decomposition, and standardize them across all factors.
603 Then, we apply an agglomerative hierarchical clustering by using Ward's method and the Euclidean
604 distance as a metric. Note that this type of clustering analysis can be applied to the other tensor
605 dimensions.

606 We can use the LR-pair loadings of a factor to identify the signaling pathways associated with it, by
607 using the Gene Set Enrichment Analysis⁵⁶ (GSEA). Before running the analysis, pathways of interest
608 have to be assigned to a list of associated LR pairs. We do that by considering the KEGG gene sets
609 available at <http://www.gsea-msigdb.org/>. We annotate a LR pair available in CellChat with the gene
610 sets that contain all genes participating in that LR interaction. Then, by filtering LR pathway sets to
611 those containing at least 15 LR pairs, we end up with 22 LR pathway sets. To run GSEA, we rank the
612 LR pairs in each factor by their loadings, and use the PreRanked GSEA function in the package
613 gseapy, by including the 22 LR pathway sets as input. As parameters of the “gseapy.prerank” function,
614 we consider 999 permutations, gene sets (LR pathway sets here) with at least 15 elements, and a
615 score weight of 1 for computing the enrichment scores⁵⁶.

616 Finally, we generate factor-specific cell-cell communication networks. To do so, for a factor r , we take
617 the outer product between the sender-cell loadings vector, s^r , and the receiver-cell loadings vector, t^r .

618 Conceptually, this outer product represents an adjacency matrix of a factor-specific cell-cell
619 communication network, where each value is an edge weight representing the overall communication
620 between a pair of sender-receiver cells (Supplementary Figure S9). We can further use this network to
621 understand the communication distribution inequality between sender- and receiver- cells. We compute
622 a Gini coefficient⁷³ ranging between 0 and 1 on the distribution of edge weights in the adjacency matrix
623 (Figure 4c). A value of 1 represents maximal inequality of overall communication between cell pairs (i.e.
624 one cell pair has a high overall communication value while the others have a value of 0) and 0 indicates
625 minimal inequality (i.e. all cell pairs have the same overall communication values). More generally, the
626 outer product between any two tensor dimension loadings for a given factor conceptually represents the
627 joint distribution of the elements in those two dimensions and can be informative of how the specific
628 elements are related.

629 ***Benchmarking of computational efficiency of tools***

630 We measured the running time and memory demanded by Tensor-cell2cell and CellChat to analyze the
631 COVID-19 dataset containing PBMC samples. Each tool was evaluated in two scenarios: either using
632 each sample individually, or by first combining samples by severity (control, mild/moderate, and
633 severe/critical) by aggregating the expression matrices. The latter was intended to favor CellChat by
634 diminishing the number of pairwise comparisons to always be between three contexts; thus, increases
635 in running time or memory demand in this case are not due to an exponentiation of comparisons (n
636 samples choose 2). CellChat was run by following the procedures outlined in the
637 “Comparison_analysis_of_multiple_datasets” vignette
638 (<https://github.com/sqjin/CellChat/tree/master/tutorial>). Briefly, signaling pathway communication
639 probabilities were first individually calculated for each sample or context. Next, pairwise comparisons
640 between each sample or context were obtained by computing either a “functional” or a “structural”
641 similarity. The functional approach computes a Jaccard index to compare the signaling pathways that

642 are active in two cellular communication networks, while the structural approach computes a network
643 dissimilarity⁷⁴ to compare the topology of two signaling networks (see REF¹⁰ for further details). Finally,
644 CellChat performs a manifold learning approach on sample similarities and returns UMAP embeddings
645 for each signaling pathway in each different context (e.g. if CellChat evaluates 10 signaling pathways in
646 3 different contexts, it will return embeddings for 30 points) which can be used to rank the similarity of
647 shared signaling pathways between contexts in a pairwise manner.

648 The analyses of computational efficiency were run on a compute cluster of 2.8GHz x2 Intel(R) Xeon(R)
649 Gold 6242 CPUs with 1.5 TB of RAM (Micron 72ASS8G72LZ-2G6D2) across 32 cores. Each timing
650 task was limited to 128 GB of RAM on one isolated core and one thread independently where no other
651 processes were being performed. To limit channel delay, data was stored on the node where the job
652 was performed, where the within socket latency and bandwidth are 78.9 ns and 46,102 MB/s
653 respectively. For all timing jobs, the same ligand-receptor pairs and cell types were used. Furthermore,
654 to make the timing comparable, all samples in the dataset were subsampled to have 2,000 single cells.
655 In the case of Tensor-cell2cell, the analysis was also repeated by using a GPU, which corresponded to
656 a Nvidia Tesla V100.

657 ***Training and evaluation of a classification model***

658 A Random Forest⁷⁵ (RF) model was trained to predict disease status based on both COVID-19 status
659 (healthy-control vs. patient with COVID-19) and severity (healthy-control, moderate symptoms, and
660 severe symptoms). The RF model was trained using a Stratified K-Folds cross-validation (CV) with 3-
661 Fold CV splits. On each CV split a RF model with 500 estimators was trained and RF probability-
662 predictions were compared to the test set using the Receiver Operating Characteristic (ROC). The
663 mean and standard deviation from the mean were calculated for the area under the Area Under the
664 Curve (AUC) across the CV splits. This classification was performed on the context loadings of Tensor-
665 cell2cell, and the two UMAP dimensions of the structural and functional joint manifold learning of

666 CellChat, for both the BALF and PBMC COVID-19 datasets. All classification was performed through
667 Scikit-learn (v. 0.23.2)⁷⁶.

668 ***Code and data availability***

669 Tensor-cell2cell is implemented in our cell2cell suite⁶⁵, which is available in a GitHub repository
670 (<https://github.com/earmingol/cell2cell>). All the code and input data used for the analyses are available
671 online in a Code Ocean capsule for reproducible runs (<https://doi.org/10.24433/CO.0051950.v2>). While
672 the code for benchmarking the computational efficiency in a local computer is available in a GitHub
673 repository (<https://github.com/LewisLabUCSD/CCC-Benchmark>).

674

675

References

- 676 1. Hwang, S., Kim, S., Shin, H. & Lee, D. Context-dependent transcriptional regulations between
677 signal transduction pathways. *BMC Bioinformatics* **12**, 19 (2011).
- 678 2. Shakiba, N., Jones, R. D., Weiss, R. & Del Vecchio, D. Context-aware synthetic biology by
679 controller design: Engineering the mammalian cell. *Cell Syst* **12**, 561–592 (2021).
- 680 3. Rachlin, J., Cohen, D. D., Cantor, C. & Kasif, S. Biological context networks: a mosaic view of the
681 interactome. *Mol. Syst. Biol.* **2**, 66 (2006).
- 682 4. Schubert, M. *et al.* Perturbation-response genes reveal signaling footprints in cancer gene
683 expression. *Nat. Commun.* **9**, 20 (2018).
- 684 5. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and
685 communication from gene expression. *Nat. Rev. Genet.* 1–18 (2020).
- 686 6. Griffiths, J. I. *et al.* Circulating immune cell phenotype dynamics reflect the strength of tumor–
687 immune cell interactions in patients during immunotherapy. *Proc. Natl. Acad. Sci. U. S. A.* **117**,
688 16072–16082 (2020).
- 689 7. Omberg, L., Golub, G. H. & Alter, O. A tensor higher-order singular value decomposition for
690 integrative analysis of DNA microarray data from different studies. *Proc. Natl. Acad. Sci. U. S. A.*
691 **104**, 18371–18376 (2007).
- 692 8. Cillo, A. R. *et al.* Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer.
693 *Immunity* vol. 52 183–199.e9 (2020).
- 694 9. Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R. R. Predicting cell-to-cell
695 communication networks using NATMI. *Nat. Commun.* **11**, 1–11 (2020).
- 696 10. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat. Commun.* **12**,
697 1088 (2021).
- 698 11. Raredon, M. S. B. *et al.* Computation and visualization of cell-cell signaling topologies in single-cell
699 systems data using Connectome. *Sci. Rep.* **12**, 4187 (2022).

700 12. Williams, A. H. *et al.* Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics
701 across Multiple Timescales through Tensor Component Analysis. *Neuron* **98**, 1099–1115.e8
702 (2018).

703 13. Stein-O'Brien, G. L. *et al.* Enter the Matrix: Factorization Uncovers Knowledge from Omics. *Trends
704 Genet.* **34**, 790–805 (2018).

705 14. Sun, S., Zhu, J., Ma, Y. & Zhou, X. Accuracy, robustness and scalability of dimensionality
706 reduction methods for single-cell RNA-seq analysis. *Genome Biol.* **20**, 269 (2019).

707 15. Martino, C. *et al.* Context-aware dimensionality reduction deconvolutes gut microbial community
708 dynamics. *Nat. Biotechnol.* **39**, 165–168 (2021).

709 16. Anandkumar, A., Jain, P., Shi, Y. & Niranjan, U. N. Tensor vs. Matrix Methods: Robust Tensor
710 Decomposition under Block Sparse Perturbations. in *Proceedings of the 19th International
711 Conference on Artificial Intelligence and Statistics* (eds. Gretton, A. & Robert, C. C.) vol. 51 268–
712 276 (PMLR, 2016).

713 17. Rabanser, S., Shchur, O. & Günnemann, S. Introduction to Tensor Decompositions and their
714 Applications in Machine Learning. *arXiv [stat.ML]* (2017).

715 18. Chua, R. L. *et al.* COVID-19 severity correlates with airway epithelium–immune cell interactions
716 identified by single-cell analysis. *Nat. Biotechnol.* (2020) doi:10.1038/s41587-020-0602-4.

717 19. Friedlander, M. P. & Hatz, K. Computing non-negative tensor factorizations. *Optim. Methods Softw.*
718 **23**, 631–647 (2008).

719 20. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-
720 cell communication from combined expression of multi-subunit ligand-receptor complexes. *Nat.
721 Protoc.* (2020) doi:10.1038/s41596-020-0292-x.

722 21. Cabello-Aguilar, S. *et al.* SingleCellSignalR: inference of intercellular networks from single-cell
723 transcriptomics. *Nucleic Acids Res.* **48**, e55 (2020).

724 22. Sobhani, E., Comon, P., Jutten, C. & Babaie-Zadeh, M. CorrIndex: A permutation invariant

725 performance index. *Signal Processing* **195**, 108457 (2022).

726 23. Dimitrov, D. *et al.* Comparison of Resources and Methods to infer Cell-Cell Communication from
727 Single-cell RNA Data. *bioRxiv* 2021.05.21.445160 (2021) doi:10.1101/2021.05.21.445160.

728 24. Booeshaghi, A. S. & Pachter, L. Normalization of single-cell RNA-seq counts by $\log(x + 1)^*$ or $\log(1$
729 $+ x)$. *Bioinformatics* (2021) doi:10.1093/bioinformatics/btab085.

730 25. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using
731 empirical Bayes methods. *Biostatistics* **8**, 118–127 (2007).

732 26. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes
733 using Scanorama. *Nat. Biotechnol.* **37**, 685–691 (2019).

734 27. Baccin, C. *et al.* Combined single-cell and spatial transcriptomics reveal the molecular, cellular and
735 spatial bone marrow niche organization. *Nat. Cell Biol.* **22**, 38–48 (2020).

736 28. Noël, F. *et al.* Dissection of intercellular communication using the transcriptome-based framework
737 ICELLNET. *Nat. Commun.* **12**, 1089 (2021).

738 29. Wang, Y. *et al.* iTALK: an R Package to Characterize and Illustrate Intercellular Communication.
739 *Cancer Biology* (2019) doi:10.1101/507871.

740 30. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking
741 ligands to target genes. *Nat. Methods* (2019) doi:10.1038/s41592-019-0667-5.

742 31. Lagger, C. *et al.* scAgeCom: a murine atlas of age-related changes in intercellular communication
743 inferred with the package scDiffCom. *bioRxiv* 2021.08.13.456238 (2021)
744 doi:10.1101/2021.08.13.456238.

745 32. Tsuyuzaki, K., Ishii, M. & Nikaido, I. Uncovering hypergraphs of cell-cell interaction from single cell
746 RNA-sequencing data. *bioRxiv* 566182 (2019) doi:10.1101/566182.

747 33. Liao, M. *et al.* Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.
748 *Nat. Med.* **26**, 842–844 (2020).

749 34. Schmitt, T. L., Steiner, E., Klingler, P., Lassmann, H. & Grubeck-Loebenstein, B. Thyroid epithelial

750 cells produce large amounts of the Alzheimer beta-amyloid precursor protein (APP) and generate
751 potentially amyloidogenic APP fragments. *J. Clin. Endocrinol. Metab.* **80**, 3513–3519 (1995).

752 35. Puig, K. L., Manocha, G. D. & Combs, C. K. Amyloid precursor protein mediated changes in
753 intestinal epithelial phenotype in vitro. *PLoS One* **10**, e0119534 (2015).

754 36. Zemans, R. L., Colgan, S. P. & Downey, G. P. Transepithelial migration of neutrophils:
755 mechanisms and implications for acute lung injury. *Am. J. Respir. Cell Mol. Biol.* **40**, 519–535
756 (2009).

757 37. Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role
758 in the migration of monocytes through endothelial junctions. *Nat. Immunol.* **3**, 143–150 (2002).

759 38. Pasello, M., Manara, M. C. & Scotlandi, K. CD99 at the crossroads of physiology and pathology. *J.*
760 *Cell Commun. Signal.* **12**, 55–68 (2018).

761 39. Sanino, G., Bosco, M. & Terrazzano, G. Physiology of Midkine and Its Potential Pathophysiological
762 Role in COVID-19. *Front. Physiol.* **11**, 616552 (2020).

763 40. Farr, L., Ghosh, S. & Moonah, S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting
764 Against Injury and Promoting Repair. *Front. Immunol.* **11**, 1273 (2020).

765 41. Weckbach, L. T., Muramatsu, T. & Walzog, B. Midkine in inflammation. *ScientificWorldJournal* **11**,
766 2491–2505 (2011).

767 42. Xia, J. *et al.* Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial
768 Morphogenesis and Repair. *Dev. Cell* **33**, 299–313 (2015).

769 43. Nikaido, T. *et al.* Serum Syndecan-4 as a Possible Biomarker in Patients With Acute Pneumonia.
770 *J. Infect. Dis.* **212**, 1500–1508 (2015).

771 44. Azari, B. M. *et al.* Transcription and translation of human F11R gene are required for an initial step
772 of atherogenesis induced by inflammatory cytokines. *J. Transl. Med.* **9**, 98 (2011).

773 45. Clark, I. C. *et al.* Barcoded viral tracing of single-cell interactions in central nervous system
774 inflammation. *Science* **372**, (2021).

775 46. Zhang, F. *et al.* IFN- γ and TNF- α drive a CXCL10 + CCL2 + macrophage phenotype expanded in
776 severe COVID-19 and other diseases with tissue inflammation. *bioRxiv* (2020)
777 doi:10.1101/2020.08.05.238360.

778 47. Kohyama, M. *et al.* Monocyte infiltration into obese and fibrilized tissues is regulated by PILRa.
779 *Eur. J. Immunol.* **46**, 1214–1223 (2016).

780 48. Saheb Sharif-Askari, N. *et al.* Enhanced expression of immune checkpoint receptors during SARS-
781 CoV-2 viral infection. *Mol Ther Methods Clin Dev* **20**, 109–121 (2021).

782 49. Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-
783 19 infection: Assay and rationale. *EBioMedicine* **59**, 102964 (2020).

784 50. Ocaña-Guzman, R., Torre-Bouscoulet, L. & Sada-Ovalle, I. TIM-3 Regulates Distinct Functions in
785 Macrophages. *Front. Immunol.* **7**, 229 (2016).

786 51. Grant, R. A. *et al.* Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia.
787 *Nature* **590**, 635–641 (2021).

788 52. Matsuyama, T., Kubli, S. P., Yoshinaga, S. K., Pfeffer, K. & Mak, T. W. An aberrant STAT pathway
789 is central to COVID-19. *Cell Death Differ.* **27**, 3209–3225 (2020).

790 53. Florez-Sampedro, L., Soto-Gamez, A., Poelarends, G. J. & Melgert, B. N. The role of MIF in
791 chronic lung diseases: looking beyond inflammation. *Am. J. Physiol. Lung Cell. Mol. Physiol.* **318**,
792 L1183–L1197 (2020).

793 54. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of
794 autism disease mechanisms through genetics. *Nat. Med.* **22**, 345–361 (2016).

795 55. Velmeshev, D. *et al.* Single-cell genomics identifies cell type-specific molecular changes in autism.
796 *Science* **364**, 685–689 (2019).

797 56. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting
798 genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–15550 (2005).

799 57. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.*

800 28, 27–30 (2000).

801 58. Astorkia, M., Lachman, H. M. & Zheng, D. Characterization of Cell-cell Communication in Autistic
802 Brains with Single Cell Transcriptomes. *bioRxiv* 2021.10.15.464577 (2021)
803 doi:10.1101/2021.10.15.464577.

804 59. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and
805 delayed loops. *Nat. Rev. Mol. Cell Biol.* **12**, 104–117 (2011).

806 60. Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell-cell communication through single-
807 cell transcriptomics. *Current Opinion in Systems Biology* (2021) doi:10.1016/j.coisb.2021.03.007.

808 61. Raredon, M. S. B. *et al.* Connectome: computation and visualization of cell-cell signaling topologies
809 in single-cell systems data. *bioRxiv* 2021.01.21.427529 (2021) doi:10.1101/2021.01.21.427529.

810 62. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. *Mol.*
811 *Syst. Biol.* **15**, e8746 (2019).

812 63. Abbasy, S. *et al.* Neuregulin1 types mRNA level changes in autism spectrum disorder, and is
813 associated with deficit in executive functions. *EBioMedicine* **37**, 483–488 (2018).

814 64. Gazestani, V. H. *et al.* A perturbed gene network containing PI3K-AKT, RAS-ERK and WNT- β -
815 catenin pathways in leukocytes is linked to ASD genetics and symptom severity. *Nat. Neurosci.* **22**,
816 1624–1634 (2019).

817 65. Armingol, E. *et al.* Inferring a spatial code of cell-cell interactions across a whole animal body.
818 *bioRxiv* 2020.11.22.392217 (2020) doi:10.1101/2020.11.22.392217.

819 66. Wang, S., Karikomi, M., MacLean, A. L. & Nie, Q. Cell lineage and communication network
820 inference via optimization for single-cell transcriptomics. *Nucleic Acids Res.* **47**, e66 (2019).

821 67. Ren, X. *et al.* COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas.
822 *Cell* **184**, 1895–1913.e19 (2021).

823 68. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and
824 hybridization array data repository. *Nucleic Acids Res.* **30**, 207–210 (2002).

825 69. Carroll, J. D. & Chang, J.-J. Analysis of individual differences in multidimensional scaling via an n-
826 way generalization of 'Eckart-Young' decomposition. *Psychometrika* **35**, 283–319 (1970).

827 70. Harshman, R. A. & Others. Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multimodal factor analysis. (1970).

828 71. Anandkumar, A., Ge, R. & Janzamin, M. Guaranteed Non-Orthogonal Tensor Decomposition via
829 Alternating Rank-1 Updates. *arXiv [cs.LG]* (2014).

830 72. Kossaifi, J., Panagakis, Y., Anandkumar, A. & Pantic, M. TensorLy: Tensor Learning in Python.
831 *arXiv [cs.LG]* (2016).

832 73. Farris, F. A. The Gini Index and Measures of Inequality. *Am. Math. Mon.* **117**, 851–864 (2010).

833 74. Schieber, T. A. *et al.* Quantification of network structural dissimilarities. *Nat. Commun.* **8**, 13928
834 (2017).

835 75. Breiman, L. Random Forests. *Mach. Learn.* **45**, 5–32 (2001).

836 76. Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *the Journal of machine Learning
837 research* **12**, 2825–2830 (2011).

839 **Acknowledgements**

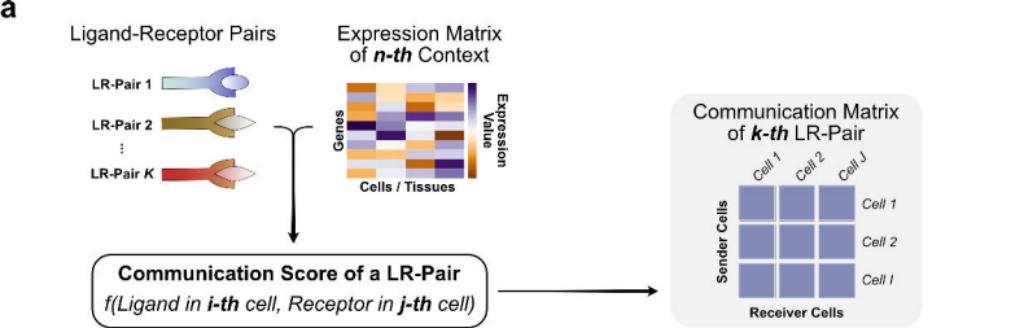
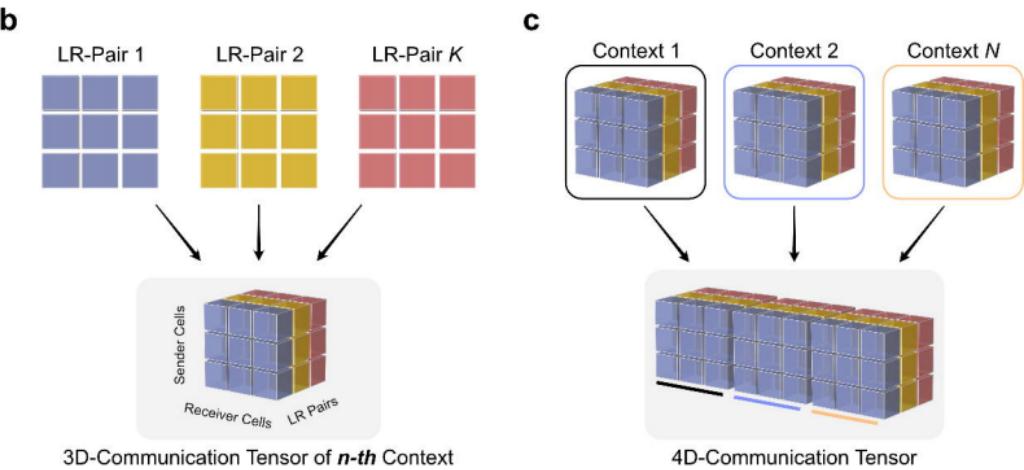
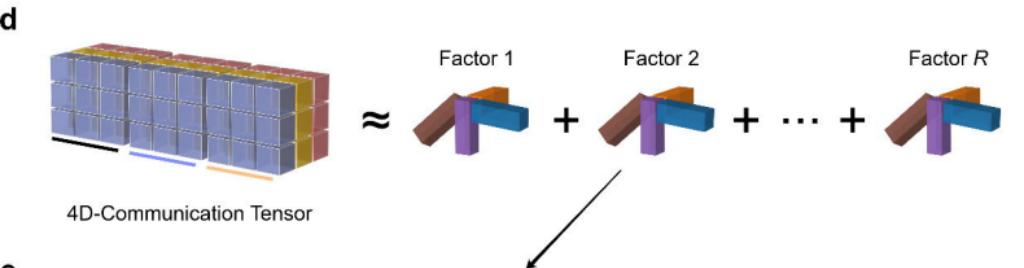
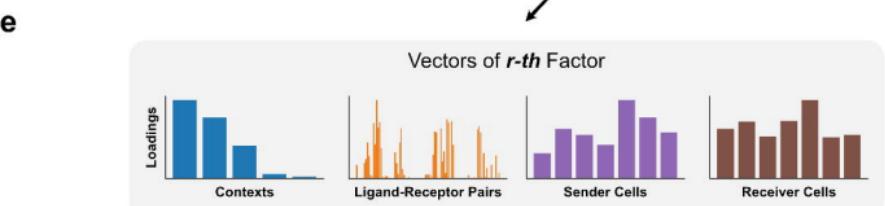
840 EA is supported by the Chilean Agencia Nacional de Investigación y Desarrollo (ANID) through its
841 scholarship program DOCTORADO BECAS CHILE/2018 - 72190270 and by the Fulbright Commission
842 Chile. HMB is supported by NIMH T32GM008806. APL is supported by the InnovaUNAM of the
843 National Autonomous University of Mexico (UNAM) and Alianza UCMX of the University of California.
844 This work was further supported by NIGMS (R35 GM119850) and the Novo Nordisk Foundation
845 (NNF20SA0066621) to NEL. The authors also thank Daniel McDonald for providing useful guidance
846 about the timing analysis of the tools, the Code Ocean team for providing extra computational time for
847 developing the capsule associated with this work, Aaron Meyer for giving practical insights about tensor
848 decomposition methods, and Daniel Dimitrov for providing helpful guidance about running LIANA.

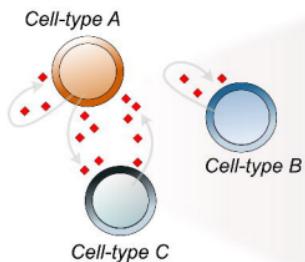
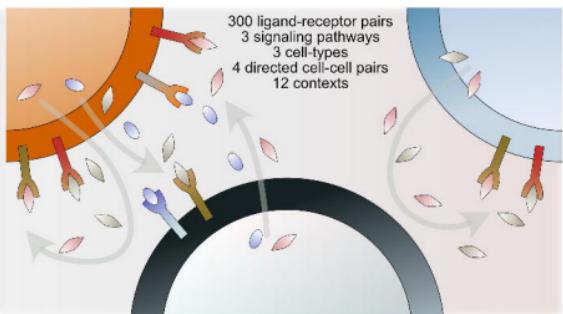
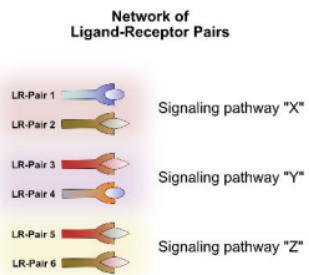
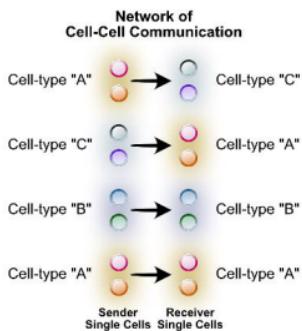
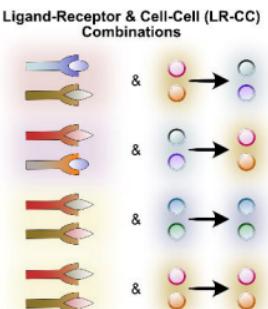
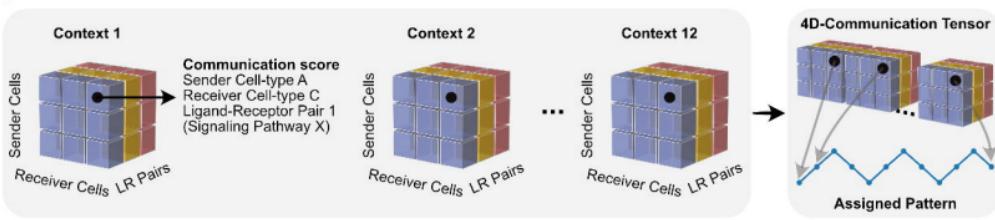
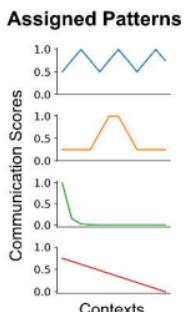
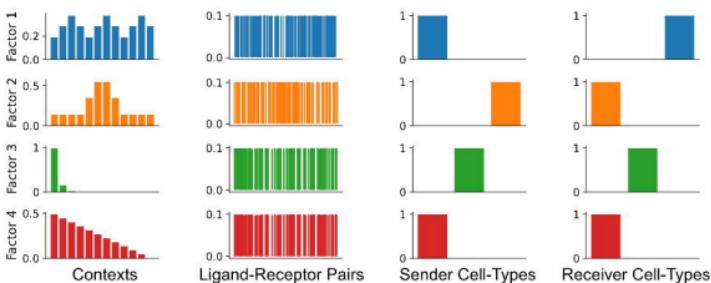
849 **Author contributions**

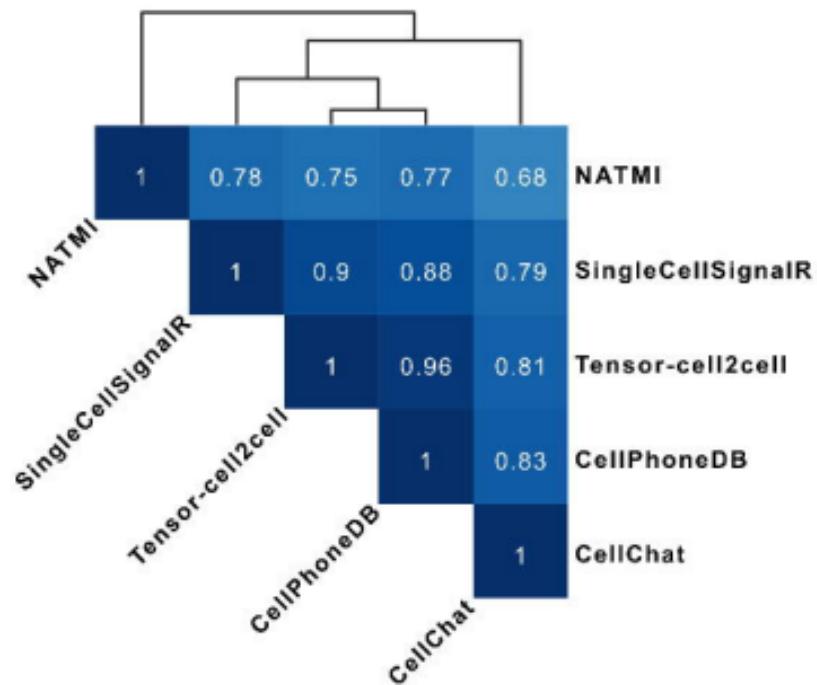
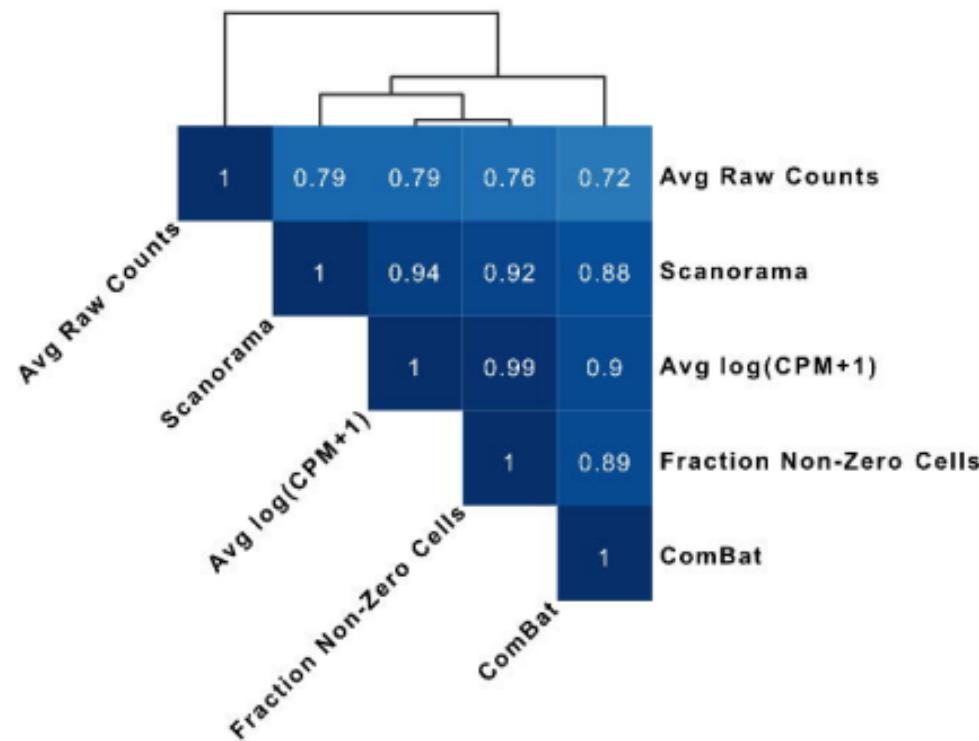
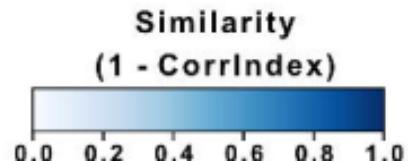
850 EA, HB and NEL conceived the work. CM contributed important insights for creating Tensor-cell2cell.
851 EA implemented Tensor-cell2cell and performed the analyses on the datasets of COVID-19 and ASD.
852 HB designed and created the simulated 4D-communication tensor and performed the analyses on the
853 simulated data. EA, HB and CM performed benchmarking and statistical analyses. CM trained
854 classifiers and compared Tensor-cell2cell to CellChat. HB performed benchmarking analyses using
855 different external CCC tools. EA performed benchmarking analyses using different pre-processing and
856 batch-correction methods. EA and HB developed downstream analyses. APL helped to interpret the
857 COVID-19 results and researched literature. CA helped to interpret the ASD study case and researched
858 literature. RK contributed to the benchmarking analyses. EA and HB wrote the paper and all authors
859 carefully reviewed, discussed and edited the paper.

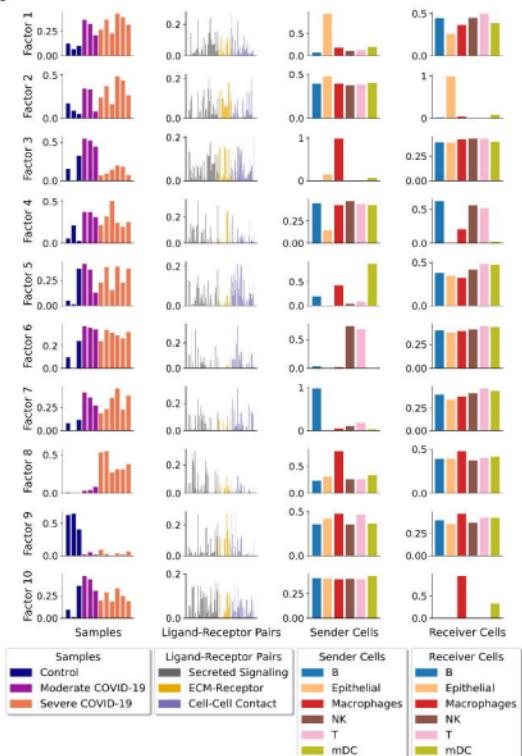
860 **Competing interests**

861 The authors declare no competing interests.



a**b****c****d****e****f****g**

a**b**



b

Top-5 Ligand-Receptor Pairs

Factor 1		Factor 2	
APP - CD74	0.268	SEMA4D - PLXNB2	0.212
MDK - NCL	0.246	SEMA4A - PLXNB2	0.203
MIF - CD74 & CD44	0.231	MDK - SDC4	0.202
MDK - ITGA4 & ITGB1	0.227	COL9A2 - SDC4	0.186
CD99 - CD99	0.220	F11R - F11R	0.186
Factor 3		Factor 4	
SIGLEC1 - SPN	0.194	MIF - CD74 & CD44	0.321
RETN - CAP1	0.182	LGALS9 - CD44	0.289
MDK - NCL	0.177	COL9A2 - CD44	0.245
FN1 - ITGA4 & ITGB1	0.176	LAMB3 - CD44	0.242
FN1 - ITGA4 & ITGB7	0.172	LAMB2 - CD44	0.234
Factor 5		Factor 6	
CD99 - CD99	0.213	CD99 - CD99	0.333
ITGB2 - CD226	0.211	CCL5 - CCR5	0.305
CD86 - CTLA4	0.210	CCL5 - CCR1	0.293
ITGB2 - ICAM2	0.201	GZMA - F2R	0.241
ITGB2 - ICAM1	0.192	PTPRC - MRC1	0.222
Factor 7		Factor 8	
CD99 - CD99	0.307	CCL2 - CCR2	0.297
MIF - CD74 & CXCR4	0.241	CCL3 - CCR1	0.275
CD22 - PTPRC	0.231	CCL8 - CCR1	0.261
MIF - CD74 & CD44	0.229	CCL3 - CCR5	0.238
SELL - MADCAM1	0.191	CCL3L1 - CCR1	0.238
Factor 9		Factor 10	
FN1 - CD44	0.274	CD99 - PILRA	0.191
MIF - CD74 & CD44	0.269	LGALS9 - HAVERC2	0.170
APP - CD74	0.266	ANXA1 - FPR1	0.163
PTPRC - MRC1	0.263	MDK - LRP1	0.154
RETN - CAP1	0.243	PTPRC - MRC1	0.153

6

Factor	Spearman Coefficient	Gini Coefficient
Factor 1	0.72	0.50
Factor 2	0.61	0.76
Factor 3	-0.26	0.75
Factor 4	0.39	0.48
Factor 5	0.40	0.59
Factor 6	0.25	0.65
Factor 7	0.51	0.68
Factor 8	0.92	0.24
Factor 9	-0.51	0.09
Factor 10	-0.02	0.74

