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Abstract

Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts
such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies
measure the molecules mediating cell-cell communication, and emerging computational tools can
exploit these data to decipher intercellular communication. However, current methods either disregard
cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to
decipher complex cell-cell communication across multiple time points, levels of disease severity, or
spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor
decomposition, which is the first strategy to decipher context-driven intercellular communication by
simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-
cell2cell uncovers context-driven patterns of communication associated with different phenotypic states
and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-
cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show
Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g.,
participating cell-cell and ligand receptor pairs) linked to COVID-19 severities and Autism Spectrum
Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex

communication patterns across diverse conditions.
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Introduction

Organismal phenotypes arise as cells adapt and coordinate their functions through cell-cell interactions
within their microenvironments®. Variations in these interactions and the resulting phenotypes can occur
because of genotypic differences (e.g. different subjects) or the transition from one biological state or
condition to another? (e.g. from one life stage into another, migration from one location into another,
and transition from health to disease states). These interactions are mediated by changes in the
production of signals and receptors by the cells, causing changes in cell-cell communication (CCC).
Thus, CCC is dependent on temporal, spatial and condition-specific contexts®, which we refer to here
as cellular contexts. “Cellular contexts” refer to variation in genotype, biological state or condition that
can shape the microenvironment of a cell and therefore its CCC. Thus, CCC can be seen as a function
of a context variable that is not necessarily binary and can encompass multiple levels (e.g. multiple time
points, gradient of disease severities, different subjects, distinct tissues, etc.). Consequently, varying

contexts trigger distinct strength and/or signaling activity*™®

of communication, leading to complex
dynamics (e.g. increasing, decreasing, pulsatile and oscillatory communication activities across
contexts). Importantly, unique combinations of cell-cell and ligand-receptor (LR) pairs can follow

different context-dependent dynamics, making CCC hard to decipher across multiple contexts.

Single-cell omics assays provide the necessary resolution to measure these cell-cell interactions and
the ligand-receptor pairs mediating CCC. While computational methods for inferring CCC have been
invaluable for discovering the cellular and molecular interactions underlying many biological processes,
including organismal development and disease pathogenesis®, current approaches cannot account for
high variability in contexts (e.g., multiple time points or phenotypic states) simultaneously. Existing
methods lose the correlation structure across contexts since they involve repeating analysis for each
context separately, disregarding informative variation in CCC across such factors as disease severities,

time points, subjects, or cellular locations’. Additional analysis steps are required to compare and
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compile results from pairwise comparisons®™**, reducing the statistical power and hindering efforts to
link phenotypes to CCC. Moreover, this roundabout process is computationally expensive, making
analysis of large sample cohorts intractable. Thus, new methods are needed that analyze CCC while

accounting for the correlation structure across multiple contexts simultaneously.

Tensor-based approaches such as Tensor Component Analysis™ (TCA) can deconvolve patterns
associated with the biological context of the system of interest. While matrix-based dimensionality
reduction methods such as Principal Component Analysis (PCA), Non-negative Matrix Factorization
(NMF), Uniform Manifold Approximation and Projection (UMAP) and t-distributed Stochastic Neighbor
Embedding (t-SNE) can extract low-dimensional structures from the data and reflect important
molecular signals****, TCA is better suited to analyze multidimensional datasets obtained from multiple
biological contexts or conditions’ (e.g. time points, study subjects and body sites). Indeed, TCA
outperforms matrix-based dimensionality reduction methods when recovering ground truth patterns
associated with, for example, dynamic changes in microbial composition across multiple patients™ and
neuronal firing dynamics across multiple experimental trials'®>. TCA exhibits superior performance
because it does not require the aggregation of datasets across varying contexts into a single matrix. It
instead organizes the data as a tensor, the higher order generalization of matrices, which better
preserves the underlying context-driven correlation structure by retaining mathematical features that
matrices lack'®*’. Thus, with the correlation structure retained, the use of TCA with expression data
across many contexts allows one to gain a detailed understanding of how context shapes

communication, as well as the specific molecules and cells mediating these processes.

Here, we introduce Tensor-cell2cell, a TCA-based strategy that deconvolves intercellular
communication across multiple contexts and uncovers modules, or latent context-dependent patterns,
of CCC. These data-driven patterns reveal underlying communication changes given the simultaneous

interaction between contexts, ligand-receptor pairs, and cells. We demonstrate that Tensor-cell2cell is
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broadly applicable, enabling the study of diverse biological questions about CCC in multiple organisms
and contexts. We first show that Tensor-cell2cell successfully extracts complex temporal patterns from
a simulated dataset. While our approach can simultaneously analyze more than two samples, we show
that Tensor-cell2cell is faster, demands less memory and can achieve better accuracy in separating
context-specific information in simpler analyses accessible to other tools. We further demonstrate that
Tensor-cell2cell can leverage existing CCC tools by using their output communication scores to

analyze multiple contexts.

Finally, we apply Tensor-cell2cell to two datasets, identifying communication patterns associated with
COVID-19 severity and Autism Spectrum Disorder (ASD). In the case of COVID-19, we demonstrate
that from just the single analysis of one dataset recapitulates findings across tens of published literature
resources. For example, we identify stronger interactions between epithelial and immune cells with
increased severity'® and M1- and M2-like macrophage communication distinguishing moderate from
severe cases. In the case of ASD, we focus on a data-driven analysis, exemplifying the possible
downstream analyses that can be run on the outputs of Tensor-cell2cell, including pathway enrichment,
clustering, and the generation of factor-specific communication networks. From these analyses we also
show that combinations of CCC dysregulation across multiple context-dependent patterns distinguish
ASD patients from controls. Thus, Tensor-cell2cell’'s easily interpretable output enables quick
identification of key mediators of cell-cell communication across contexts, both reproducing known

results and identifying novel interactors.
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Results

Deciphering context-driven communication patterns with Tensor-cell2cell

Organizing biological data through a tensor preserves the underlying correlation structure of the
biological conditions of interest***>*". Extending this approach to infer cell-cell communication enables
analysis of important ligand-receptor pairs and cell-cell interactions in a context-aware manner.
Accordingly, we developed Tensor-cell2cell, a method based on tensor decomposition®’ that extracts
context-driven latent patterns of intercellular communication in an unsupervised manner. Briefly,
Tensor-cell2cell first generates a 4D-communication tensor that contains non-negative scores to
represent cell-cell communication across different conditions (Figures 1a-c). Then, a non-negative
TCAY is applied to deconvolve the latent CCC structure of this tensor into low-dimensional components
or factors (Figures 1d-e). Thus, each of these factors can be interpreted as a module or pattern of
communication whose dynamics across contexts is indicated by the loadings in the context dimension

(Figure 1e).

To demonstrate how Tensor-cell2cell recovers latent patterns of communication, we simulated a
system of 3 cell types interacting through 300 LR pairs across 12 contexts (represented in our
simulation as time points) (Figure 2a). We built a 4D-communication tensor that incorporates a set of
embedded patterns of communication that were assigned to certain LR pairs used by specific pairs of
interacting cells, and represented through oscillatory, pulsatile, exponential, and linear changes in
communication scores (Figures 2a-f; see Supplementary Notes for further details of simulating and
decomposing this tensor). Using Tensor-cell2cell, we found that four factors led to the decomposition
that best minimized error (Supplementary Figure Sla), consistent with the number of introduced
patterns (Figure 2f). This was robustly observed in multiple independent simulations (Supplementary

Figure S2a).


https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/

125

126

127

128

129

130

131

132

133

134

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.461129; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Our simulation-based analysis further demonstrates that Tensor-cell2cell accurately detects context-
dependent changes of communication, and identifies which LR pairs, sender cells, and receiver cells
are important (Figure 29g). In particular, the context loadings of the TCA on the simulated tensor
accurately recapitulate the introduced patterns (Figures 2f-g), while ligand-receptor and cell loadings
properly capture the ligand-receptor pairs, sender cells and receiver cells assigned as participants of
the cognate pattern (Figure 2g). Indeed, we observed a concordance between the “ground truth” LR
pairs assigned to a pattern and their respective factor loadings through Jaccard index and Pearson
correlation metrics (Supplementary Tables S1-S2). Moreover, Tensor-cell2cell robustly recovered
communication patterns when we added noise to the simulated tensor (Supplementary Figure S2 and

Supplementary Notes).
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Figure 1. Tensor representation and factorization of cell-cell communication. In a given context (n-th context among N
total contexts), cell-cell communication scores (see available scoring functions in REF®) are computed from the expression of
the ligand and the receptor in a LR pair (k-th pair among K pairs) for a specific sender-receiver cell pair (i-th and j-th cells
among | and J cells, respectively). This results in a communication matrix containing all pairs of sender-receiver cells for that
LR pair (a). The same process is repeated for every single LR pair in the input list of ligand-receptor interactions, resulting in a
set of communication matrices that generate a 3D-communication tensor (b). 3D-communication tensors are built for all
contexts and are used to generate a 4D-communication tensor wherein each dimension represents the contexts (colored
lines), ligand-receptor pairs, sender cells and receiver cells (c). A non-negative TCA model approximates this tensor by a
lower-rank tensor equivalent to the sum of multiple factors of rank-one (R factors in total) (d). Each component or factor (r-th
factor) is built by the outer product of interconnected descriptors (vectors) that contain the loadings for describing the relative
contribution that contexts, ligand-receptor pairs, sender cells and receiver cells have in the factor (e). For interpretability, the
behavior that context loadings follow represent a communication pattern across contexts. Hence, the communication captured
by a factor is more relevant or more likely to be occurring in contexts with higher loadings. Similarly, ligand-receptor pairs with
higher loadings are the main mediators of that communication pattern. By constructing the tensor to account for directional
interactions (panels a-b), ligands and receptors in LR pairs with high loadings are mainly produced by sender and receiver
cells with high loadings, respectively.
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Figure 2. Tensor-cell2cell recovers simulated communication patterns. (a) Cell-cell communication scenario used for
simulating patterns of communication across different contexts (here each a different time point). (b) Examples of specific
ligand-receptor (LR) and (c) cell-cell pairs that participate in the simulated interactions. Individual LR pairs and cell pairs were
categorized into groups of signaling pathways and cell types, respectively. In this simulation, signaling pathways did not
overlap in their LR pairs, and each pathway was assigned 100 different LR pairs. (d) Distinct combinations of signaling
pathways with sender-receiver cell type pairs were generated (LR-CC combinations). LR-CC combinations that were assigned
the same signaling pathway overlap in the LR pairs but not in the interacting cell types. (e) A simulated 4D-communication
tensor was built from each time point’s 3D-communication tensor. Here, a communication score was assigned to each ligand-
receptor and cell-cell member of a LR-CC combination. Each communication score varied across time points according to a
specific pattern. (f) Four different patterns of communication scores were introduced to the simulated tensor by assigning a
unique pattern to a specific LR-CC combination. From top to bottom, these patterns were an oscillation, a pulse, an
exponential decay and a linear decrease. The average communication score (y-axis) is shown across time points (x-axis). This
average was computed from the scores assigned to every ligand-receptor and cell-cell pair in the same LR-CC combination.
(g9) Results of running Tensor-cell2cell on the simulated tensor. Each row represents a factor, and each column a tensor
dimension, wherein each bar represents an element of that dimension (e.g. a time point, a ligand-receptor pair, a sender cell
or a receiver cell). Factor loadings (y-axis) are displayed for each element of a given dimension. Here, the factors were visually
matched to the corresponding latent pattern in the tensor, and their loadings were normalized to unit Euclidean length.
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Tensor-cell2cell adds new capabilities to cell-cell communication analysis

To demonstrate the power of accounting for multiple contexts simultaneously, we compared the
computational efficiency and accuracy of our method with respect to CellChat™®, the only tool that
summarizes multiple pairwise comparisons in an automated manner (Table 1). Since CellChat cannot
extract patterns of CCC across multiple contexts, we instead use the output of its joint manifold learning
on pairwise-based changes in signaling pathways as a comparable proxy to the output of Tensor-
cell2cell. Despite the use of these proxy comparisons, we emphasize that the conceptual outputs
reported by Tensor-cell2cell are unique. Briefly, we found that Tensor-cell2cell is faster, uses less
memory, and achieves higher accuracy when analyzing CCC of multiple samples (Supplementary
Figure S3); using a GPU further increases computational speed of Tensor-cell2cell. See more details
regarding this comparison in the Methods and Tensor-cell2cell is fast and accurate section of the

Supplementary Notes.

A major advantage of Tensor-cell2cell is that it acts as a robust dimensionality reduction method for any
communication scores arranged as a tensor. To illustrate this, we set out to harness the sample-wise
communication scoring outputs of other tools. Tensor-cell2cell can restructure these outputs into a 4D-
communication tensor (Figure 1), extending their capabilities to recover context-dependent patterns of
communication. This generalizability enables users to employ any scoring method. Thus, we ran
Tensor-cell2cell on communication scores generated by sample-specific analysis with CellPhoneDB?,
CellChat'®, NATMI®, and SingleCellSignalR?!, as well as the built-in scoring of Tensor-cell2cell.
Specifically, we analyzed twelve bronchoalveolar lavage fluid (BALF) samples from patients with
different severities of COVID-19 (healthy, moderate and severe) with each method listed above. We
assessed the consistency of decomposition between all five scoring methods by using the Corrindex®.
The Corrindex value lies between 0 and 1, with a higher score indicating more dissimilar decompaosition

outputs; we thus report our similarity results as (1-Corrindex). Our results indicate that Tensor-cell2cell
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can consistently identify context-dependent communication patterns independent of the initial
communication scoring method (Figure 3a, Supplementary Figure S4), with a mean similarity score of
0.82. Furthermore, differences in decomposition results are driven at the ligand-receptor resolution, yet
tend not to propagate to the cell- or context-resolution (Supplementary Notes and Supplementary
Figures S5-6). While these results agree with previous reports regarding the inconsistency of scoring
methods for ligand-receptor interactions®, they also show the power of tensor decomposition to resolve

these inconsistencies and identify biologically and conceptually consistent communication patterns.

Since Tensor-cell2cell requires the use of multiple conditions or samples, we also assessed biases that
may have been introduced by batch effects during gene expression count transformation (e.qg.,
normalization, batch correction, etc). Specifically, we assessed the impact of applying the log(CPM+1)
and the fraction of non-zero cells as preprocessing methods?**, and ComBat®®> and Scanorama?® as
batch-effect correction. Here, we also used the BALF COVID-19 samples and built the 4D-tensors
using the gene expression values obtained in each case. After running the tensor decomposition, these
strategies generated results that seem biologically comparable, as measured with a mean similarity
score of 0.86 (Figure 3b). As expected, using the raw counts leads to the most biased and different
results in comparison to the other preprocessing methods; the mean similarity score between raw
counts and all other approaches is 0.77. In contrast, the highest similarity was between the log(CPM+1)
and the non-zero fraction of cells. This result is also expected since the non-zero fraction of cells is
comparable to the log(CPM+1). However, the non-zero fraction performs better in comparisons of lowly
expressed genes®(e.g. receptors on the cell surface®’), so we included this fraction as part of the
Tensor-cell2cell built-in workflow. Thus, Tensor-cell2cell can detect consistent CCC signatures
independent of the method by which gene expression is corrected, with the exception of raw counts, as

indicated by the high similarities observed (Figure 3b).

10
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Table 1. Methodological strategy and context-based analysis in available tools

Tool Communication | Context Evaluation | Simultaneous |Multimeric Data Platform | Refs.
Score? Contexts LR pairs [Resolution
Tensor-cell2cell | Expression Mean, | Builds a tensor with all Unlimited® Yes Bulk, Single| Python [ This
Expression Product contexts Cell work
and Geometric simultaneously and
Mean runs a tensor
decomposition,
accounting for the
correlation structure
across contexts
CellChat Mass-action-based Runs separate 2 Yes Single Cell R 10
probability analyses of each
context, does pairwise
comparisons and
harmonizes them
through a joint manifold
learning
CellPhoneDB Expression Mean None 1 Yes Single Cell | Python «
CellTalker Differential Differential analysis 2 No Single Cell R 8
Combinations between two contexts
Connectome Modified Differential analysis 2 No Single Cell R 1
Expression Product| between two contexts.
An overall analysis of
cell-type importance
can be done for more
contexts
ICELLNET Expression Product None 1 Yes Bulk, Single| R 8
Cell
iTalk Differential Differential analysis 2 No Single Cell R “
Combinations between two contexts
NATMI Expression Product None 1 No Bulk, Single| Python 9
and Normalized Cell
Expression Product
NicheNet Personalized- None 1 No Bulk, Single R 30
PageRank-based Cell
score
scAgeCom Geometric Mean Differential analysis 2 Yes Single Cell R st
between two contexts
scTensor Expression Product None 1 No Single Cell %
SingleCellSignalR Regularized None 1 No Single Cell “
Expression Product

2 For further details about distinct communication scores, see REF® and/or respective references for each tool.
e Dependent on computational resources (e.g. memory availability)

LR, ligand-receptor

11
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Figure 3. Comparison of tensor decompositions resulting from varying input values. The similarity of tensor

decompositions performed on 4D-communication tensors constructed from the single-cell dataset of BALF in patients with
varying severities. For a given comparison, constructed tensors have the same elements in each dimension. (a) Similarity
between tensor decompositions performed on 4D-communication tensors, each corresponding to communication scores
computed from dlfferent tools for inferring ceII cell communication. The scoring functions correspond to those of CellChat™®
CellPhoneDB®, NATMI®, SlngIeCeIIS|gnaIR and the built-in methods in Tensor-cell2cell. (b) Similarity between tensor
decompositions performed on 4D-communication tensors, each modlfylng the gene expression values by dlfferent
preprocessmg methods (log(CPM+1) and the fraction of non-zero cells? ) or batch-effect correction methods (Combat and
Scanorama’ ) as well as using the raw counts. The communication scores in (b) were calculated as the mean expression
between the partners in each LR pair, previously aggregating gene expressmn at the single-cell level into the cell-type level. In
(@) and (b) similarity was measured as (1-Corrindex), where the Corrindex® is a distance metric for comparing different
decompositions on tensors containing the same indices and its values range from 0 to 1 (more similar to more dissimilar).
Assessed methods were hierarchically clustered by the similarities of their tensor decompositions.

Tensor-cell2cell links intercellular communication with varying severities of COVID-19

Great strides have been made to unravel molecular and cellular mechanisms associated with SARS-
CoV-2 infection and COVID-19 pathogenesis. Thus, we tested our method on a single-cell dataset of
BALF samples from COVID-19 patients* to see how many cell-cell and LR pair relationships in COVID-
19 could be revealed by Tensor-cell2cell. By decomposing the tensor associated with this dataset into
10 factors (Figure 4a and Supplementary Figure S1b), Tensor-cell2cell found factors representing

communication patterns that are highly correlated with COVID-19 severity (Figure 4c) and other factors
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that distinguish features of the different disease stages (Supplementary Figure S7), consistent with the
high performance that the classifier achieved for this dataset (Supplementary Figure S3f,h).
Furthermore, these factors involve signaling molecules previously linked with severity in separate works

(Supplementary Table S3).

The first two factors capture CCC involving autocrine and paracrine interactions of epithelial cells with
immune cells in BALF (Figure 4a). The sample loadings of these factors reveal a communication
pattern wherein the involved LR and cell-cell interactions become stronger as severity increases
(Spearman correlation of 0.72 and 0.61, Figure 4c and Supplementary Figure S7). Although this
observation was not reported in the original study, it is consistent with a previous observation of a
correlation between COVID-19 severity and the airway epithelium-immune cell interactions®®.
Specifically, epithelial cells are highlighted by Tensor-cell2cell as the main sender cells in factor 1
(Figure 4a), and we further provide new details of the molecular mechanisms involving top ranked

signals such as APP, MDK, MIF and CD99 (Figure 4b). These molecules have been reported to be

34-40 36-38,41

produced by epithelial cells and participate in immune cell recruiting , in response to
mechanical stress in lungs® and regeneration of the alveolar barrier during viral infection®. In addition,
epithelial cells act as the main receiver in factor 2 (Figure 4a), involving proteins such as PLXNB2,
SDC4 and F11R (Figure 4b), which were previously determined important for tissue repair and
inflammation during lung injury**™**. Remarkably, a new technology for experimentally tracing CCC
revealed that SEMA4D-PLXNB2 interaction promotes inflammation in a diseased central nervous
system*; our approach suggests a similar role promoting inflammation in severe COVID-19,

specifically mediating the communication between immune and epithelial cells, as reflected in factor 2

(Figure 4Db).
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Figure 4. Deconvolution of intercellular communication in patients with varying severity of COVID-19. (a) Factors
obtained after decomposing the 4D-communication tensor from a single-cell dataset of BALF in patients with varying severities
of COVID-19. 10 factors were selected for the analysis, as indicated in Supplementary Figure S1b. Here, the context
corresponds to samples coming from distinct patients (12 in total, with three healthy controls, three moderate infections, and
six severe COVID-19 cases). Each row represents a factor and each column represents the loadings for the given tensor
dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colored by
categories assigned to each element in each tensor dimension, as indicated in the legend. (b) List of the top 5 ligand-receptor
pairs ranked by loading for each factor. The corresponding ligands and receptors in these top-ranked pairs are mainly
produced by sender and receiver cells with high loadings, respectively. Ligand-receptor pairs with supporting evidence
(Supplementary Table S3) for a relevant role in general immune response (black bold) or in COVID-19-associated immune
response (red bold) are highlighted. (c) Coefficients associated with loadings of each factor: Spearman coefficient quantifying
correlation between sample loadings and COVID-19 severity, and Gini coefficient quantifying the dispersion of the edge
weights in each factor-specific cell-cell communication network (to measure the imbalance of communication). Important
values are highlighted in red (higher absolute Spearman coefficients represent stronger correlations; while smaller Gini
coefficients represent distributions with similar edge weights).
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Our strategy also elucidates communication patterns attributable to specific groups of patients
according to disease severity (Figure 4a). For example, we found interactions that are characteristic of
severe (factor 8) and moderate COVID-19 (factors 3 and 10), and healthy patients (factor 9) (adj. P-
value < 0.05, Supplementary Figure S7). Factor 8 was the most correlated with severity of the disease
(Spearman coefficient 0.92, Figure 4c) and highlights macrophages playing a major role as pro-
inflammatory sender cells. Their main signals include CCL2, CCL3 and CCLS8, which are received by
cells expressing the receptors CCR1, CCR2 and CCR5 (Figure 4b). Consistent with our result, another
study of BALF samples®® revealed that critical COVID-19 cases involve stronger interactions of cells in
the respiratory tract through ligands such as CCL2 and CCL3, expressed by inflammatory
macrophages*®. Moreover, the inhibition of CCR1 and/or CCR5 (receptors of CCL2 and CCL3) has
been proposed as a potential therapeutic target for treating COVID-19'%*°. Tensor-cell2cell also
deconvolved patterns attributable to moderate rather than severe COVID-19, also highlighting
interactions driven by macrophages (factors 3 and 10; Figure 4a). However, top-ranked molecules
(Figure 4b) and gene expression patterns (Supplementary Figure S8) suggest that the intercellular
communication is led by macrophages with an anti-inflammatory M2-like phenotype, in contrast to
factor 8 (pro-inflammatory phenotype). Multiple top-ranked signals in factors 3 and 10 have been

associated with an M2 macrophage phenotype acting in the immune response to SARS-CoV-2*""%,

In contrast to severe and moderate COVID-19 patients, communication patterns associated with
healthy subjects involve all sender-receiver cell pairs with a similar importance. In particular, factor 9
(Figure 4a) demonstrated the smallest Gini coefficient (0.09; Figure 4c), which measures the extent to
which edge weights between sender and receiver cells are evenly distributed in the factor-specific cell-
cell communication network. Smaller Gini coefficients show more even distributions, i.e., more equally
weighted potential of communication across sender and receiver cell pairs (see Methods). This

indicates that the intercellular communication represented by factor 9 is ubiquitous across cell types.
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Thus, this conservation across cells may be an indicator of communication during homeostasis, since
the context loadings for this factor are not associated with disease (Supplementary Figure S7).
Interestingly, a top-ranked LR pair in factor 9 is MIF-CD74/CD44 (Figure 4b), which is consistent with
ubiquitous expression of MIF across tissues and its protective role in normal conditions*®>3. Thus,
Tensor-cell2cell extracts communication patterns distinguishing one group of patients from another and
detects known mechanisms of immune response during disease progression (Supplementary Notes),

which is important for therapeutic applications.

Tensor-cell2cell elucidates communication mechanisms associated with Autism

Spectrum Disorders

Dysregulation of neurodevelopment in Autism Spectrum Disorders (ASD) is associated with perturbed
signaling pathways and CCC in complex ways>*. To understand these cellular and molecular
mechanisms, we analyzed single-nucleus RNA-seq (snRNA-seq) data from postmortem prefrontal
brain cortex (PFC) from 13 ASD patients and 10 controls®. We built a 4D-communication tensor
containing 16 cell types present in all samples, including neurons and non-neuronal cells, and 749 LR
pairs; then we used Tensor-cell2cell to deconvolve their associated CCC into 6 context-driven patterns
(Figure 5a and Supplementary Figure S1c). In these factors, we observe communication between all
neurons (factor 1), as well as communication of specific neurons in the cortical layers I-VI (factors 2 and

3), interneurons (factor 4), astrocytes and oligodendrocytes (factor 5), and endothelial cells (factor 6).

Tensor-cell2cell’s outputs can be further dissected using downstream analyses with common
approaches. To illustrate this, we ranked the LR pairs by their loadings in a factor-specific fashion, and
ran Gene Set Enrichment Analysis®® (GSEA) using LR pathway sets built from KEGG pathways®’ (see
Methods). We observed that each factor was associated with different biological functions including

axon guidance, cell adhesion, extracellular-matrix-receptor interaction, ERBB signaling, MAPK
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signaling, among others (Figure 5b). Dysregulation of axon guidance, synaptic processes and MAPK

pathway have been previously linked to ASD from differential analysis®*®

, Supporting our observations.
Moreover, our results extend to other roles associated with extracellular matrix, focal adhesion of cells,
regulation of actin cytoskeleton, and signaling through ErbB receptors, which involves Akt, PI3K, and
MTOR pathways, as well as regulation of cell proliferation, migration, motility, differentiation, and

apoptosis®®. Thus, Tensor-cell2cell outputs can be used to assign macro-scale biological functions to

each of the factors, extending the interpretation of factor-specific CCC.

After identifying main pathways involved in each factor, one can further use sample loadings to identify
how these functions are associated with each sample group. By doing so, we found that factors 3 and 4
significantly distinguish ASD from typically-developing controls (Figure 5c¢). Neurons in cortical layers
are the main sender cells in factor 3, while interneurons are key receiver cell types in factor 4 (Figure
5a and Supplementary Figure S9), with parvalbumin interneurons (IN-PV), and SV2C-expressing
interneurons (IN-SV2C) as the top ranked cells, consistent with the previously reported cell types that
are more affected in ASD condition® (i.e., with a greater number of dysregulated genes), and that
correspond to neurons in the cortical layers I-VI, IN-SV2C and IN-PV. Thus, considering the overall
decreased sample loadings in the ASD group, the GSEA results, and the factor-specific CCC networks
built from the cell loadings (Supplementary Figure S9), our analysis suggests that there is a
downregulation of axon guidance, cell adhesion, and ERBB signaling involving neurons in cortical

layers I-VI and interneurons in ASD patients. See Supplementary Notes for further discussion.

Clustering methods can be applied for grouping samples in an unsupervised manner. Thus, we can
assess the overall similarity between samples across all factors; considering combinations of factors
can offer additional insights to the analysis as compared to considering one factor at a time. We use
hierarchical clustering to group samples into four main clusters (Figure 5d). Cluster 1 mainly groups

controls, cluster 2 is not associated with any category, cluster 3 mostly represents ASD patients, and

17


https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.461129; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cluster 4 is completely related to ASD condition. These clusters also reveal that combinations of factors
separate samples by ASD and control groups. For example, samples in cluster 1 seem to have smaller
loadings in factors 1 and 5, and higher loadings in factors 3 and 4. Interestingly, the only ASD sample
present in this cluster had the smallest ASD clinical score, suggesting that CCC mechanisms are more
similar to controls when the phenotype is mild. In contrast, cluster 3 shows an opposite CCC behavior
to cluster 1. Cluster 4 also reveals that the combination of factor 6 with low sample loadings and factors
1 and 5 with high values is a strong marker of several ASD patients, even though factors 1, 5, and 6 did
not show significant differences between sample groups (Figure 5c). Based on this, patients in cluster 4
had increased CCC through the NRXNs-NRLGs, CTNs-NRCAMs, and NCAMs-NCAMs interactions
(synapse and cell adhesion) in neurons as senders and receivers, and astrocytes and oligodendrocytes
as receivers, as well as a decreased CCC through VEGFs-FLT1, PTPRM-PTPRM, and PTN-NCL
interactions (angiogenesis, neural migration and neuroprotection) related to endothelial cells as the
main receivers (Supplementary Table S4). Finally, both ASD-clusters seem to be slightly distinct in
terms of phenotype, considering their mean clinical scores of 25.0 and 22.8, respectively for clusters 3
and 4, but without significant differences. Thus, downstream analyses reveal that multiple
dysregulations of CCC patterns captured by Tensor-cell2cell occur simultaneously in ASD condition
(Figure 5d), even though these patterns could not explain phenotypic differences when considered in

isolation (Figures 5c).
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Figure 5. Application of Tensor-cell2cell to study mechanisms underlying intercellular communication in patients
with ASD. (a) Factors obtained after decomposing the 4D-communication tensor from a single-nucleus dataset of prefrontal
brain cortex samples from patients with or without ASD. Six factors were selected for the analysis, as indicated in
Supplementary Figure Slc. Here, the context corresponds to samples coming from distinct patients (23 in total, with thirteen
ASD patients and ten controls). Each row represents a factor and each column represents the loadings for the given tensor
dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colored by
categories aSS|gned to each element in each tensor dimension, as indicated in the legend. Cell-type annotations are those
used in REF>® . (b) GSEA performed on the pre-ranked LR pairs by their respective loadings in each factor, and using KEGG
pathways. Dot sizes are proportional to the negative logarithmic of the P-values, as indicated at the top of the panel. The
threshold value indicates the size of a P-value=0.05. The dot colors represent the normalized enrichment score (NES) after
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the permutations performed by the GSEA, as indicated by the colorbar. (c) Boxplot representation for ASD and control groups
of patients. Each panel represents the sample loadings, grouped by disease condition, in each of the factors. Groups were
compared by a two-sided independent t-test, followed by a Bonferroni correction. Annotations of significance are ns (P-value
>=0.05) and * (0.01 < P-value < 0.05). (d) Heatmap of the standardized sample loadings across factors (z-scores) for each of
the samples. An agglomerative hierarchical clustering was performed on the z-scores to group both samples and factors.
Major clusters of the samples are indicated at the bottom. The category of each sample is colored on the top, according to the
legend. A clinical score of each patient is also shown, according to the colorbar. Controls, and ASD samples without an
assigned score, were colored gray. This clinical score summarizes the social interactions, communication, repetitive
behaviors, and abnormal development of the patients, as indicated in REF>.

Discussion

Here we present Tensor-cell2cell, a computational approach that identifies modules of cell-cell
communication and their changes across contexts (e.g., across subjects with different disease severity,
multiple time points, different tissues, etc.). Our approach can rank LR pairs based on their contribution
to each communication module and connect these signals to specific cell types and phenotypes.
Tensor-cell2cell’s ability to consider multiple contexts simultaneously to identify context-dependent
communication patterns is novel, in contrast to state-of-the-art tools that are either unaware of the
context driving CCC>?%%%% or require analysis of each context separately to perform pairwise
comparisons in posterior steps'®®!. Tensor-cell2cell is therefore a flexible method that can integrate
multiple datasets and readily identify patterns of intercellular communication in a context-aware

manner, reporting them through interconnected and easily interpretable scores.

Tensor-cell2cell robustly detects communication patterns using many other scoring methods*3. Thus,
our method is not only an improvement over other tools, but also greatly extends these tools, enabling
new analyses with existing methods. One can choose any tool of interest, run it on each context
separately, and use the resulting communication scores to build and deconvolve a 4D-communication
tensor. Other tools, such as CellChat, allow the generation of scores at the signaling pathway level
instead of LR pairs. This, combined with Tensor-cell2cell, could provide additional information about
changes in signaling pathways. Thus, Tensor-cell2cell can also be used for analyzing any other score
linking gene expression from cell pairs, beyond just scores based on protein-protein interactions. In this

regard, our tool outputs consistent results regardless of the preprocessing and batch correction method
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we evaluated (Figure 3b). Nevertheless, it is best practice to employ integration/batch-correction
methods to correct gene expression and annotate cell types before running Tensor-cell2cell to ensure

this source of variation is controlled®?.

Tensor-cell2cell is faster for analyzing multiple samples than pairwise comparisons, providing a
considerable improvement in running time and reduced memory requirements (Supplementary Notes).
Tensor-cell2cell’'s runtime can be further accelerated when a GPU is available (Supplementary Figure
S3a). It is also more accurate, resulting in 10-20% higher classification accuracy of subjects with
COVID-19 when compared to CellChat (Supplementary Figures S3e-h). However, we note that
benchmarking CCC prediction tools is challenging due to the lack of a ground truth®, and it is hard to
compare and evaluate tools because of the qualitative differences in their outputs®® (Supplementary
Notes). While pairwise comparisons can be informative about differential cellular and molecular
mediators of communication, the results are less interpretable (Supplementary Figures S10-13), do not
provide the multi-scale resolution available in Tensor-cell2cell (Figures 4a and 5a), and do not identify

context-dependent patterns.

Meaningful biology can be easily identified from Tensor-cell2cell. For example, a manual interpretation
of the BALF COVID-19 decomposition found communication results not previously observed in the
original study*® and recapitulated findings spanning tens of peer-reviewed articles (Supplementary
Table S3). This included a correlation between the lung epithelium-immune cell interactions and
COVID-19 severity™® and molecular mediators that distinguished moderate and severe COVID-19 (see
Tensor-cell2cell elucidates molecular mechanisms distinguishing moderate from severe COVID-19 in
the Supplementary Notes). Additionally, Tensor-cell2cell results can be coupled with downstream
analysis methods to facilitate interpretation and provide further insights of underlying mechanisms. In
our ASD case-study (Figure 5), such analyses included GSEA, clustering, visualization and statistical

comparison of factors, and factor-specific analysis of sender-receiver communication networks
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(Supplementary Figure S9). In the ASD case-study, we found dysregulated CCC directly distinguished
ASD patients from controls and was linked with a downregulation of axon guidance, cell adhesion,
synaptic processes, and ERBB signaling in cortical neurons and interneurons (Figures 5a,b), consistent
with previous evidence®*%3% Moveover, accounting for the combinatorial relationship of samples

across factors demonstrated additional complex relationships of CCC dysregulation (Figure 5d).

A limitation to consider is the potential of missing communication scores in the tensor (e.g., when a rare
cell type appears in only one sample). Although Tensor-cell2cell can handle cell types that are missing
in some conditions, the implemented tensor decomposition algorithm can be further optimized for
missing values. Since the implemented algorithm is not optimized for this purpose, we built a 4D-
communication tensor that contains only the cell types that are shared across all samples in our
COVID-19 and ASD study cases. Thus, further developments will facilitate analyses with missing
values to include all possible members of communication (i.e., LR pairs and cell types that may be

missing in certain contexts).

In addition to single cell data analyzed here, Tensor-cell2cell also accepts bulk transcriptomics data (an
example of a time series bulk dataset of C. elegans is included in a Code Ocean capsule, see
Methods), and it could further be used to analyze proteomic data. We demonstrated the application of
Tensor-cell2cell in cases where samples correspond to distinct patients, but it can be applied to many
other contexts. For instance, our strategy can be readily applied to time series data by considering time
points as the contexts, and to spatial transcriptomic datasets, by previously defining cellular niches or
neighborhoods as the contexts. We have included Tensor-cell2cell as a part of our previously
developed tool cell2cell®®, enabling previous functionalities such as employing any list of LR pairs
(including protein complexes), multiple visualization options, and personalizing the communication
scores to account for other signaling effects such as the (in)activation of downstream genes in a

signaling pathway®*°®. Thus, these attributes make Tensor-cell2cell valuable for identifying key cell-cell
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and LR pairs mediating complex patterns of cellular communication within a single analysis for a wide

range of studies.

Methods

RNA-seq data processing

RNA-seq datasets were obtained from publicly available resources. Datasets correspond to a large-
scale single-cell atlas of COVID-19 in humans®’, a COVID-19 dataset of single-cell transcriptomes for
BALF samples®. COVID-19 datasets were collected as raw count matrices from the NCBI's Gene
Expression Omnibus® (GEO accession numbers GSE158055 and GSE145926, respectively), while the

ASD dataset was obtained from https://cells.ucsc.edu/autism/downloads.html. In total, the first dataset

contains 1,462,702 single cells, the second 65,813 and the last one 104,559 single nuclei. The first
dataset contains samples of patients with varying severities of COVID-19 (control, mild/moderate and
severe/critical) and we selected just 60 PBMC samples among all different sample sources (20 per
severity type). In the second dataset, we considered the 12 BALF samples of patients with varying
severities of COVID-19 (3 control, 3 moderate and 6 severe) and preprocessed them by removing
genes expressed in fewer than 3 cells, which left a total of 11,688 genes in common across samples. In
the ASD dataset, PFC samples from 23 patients with and without ASD condition (13 ASD patients and
10 controls) were considered, and preprocessed similarly to the BALF dataset, resulting in a total of
24,298 genes in common across samples. In all datasets, we used the cell type labels included in their
respective metadata. We aggregated the gene expression from single cells/nuclei into cell types by
calculating the fraction of cells in the respective label with non-zero counts, as previously
recommended for properly representing genes with low expression levels*, as usually happens with

genes encoding surface proteins?’.
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Ligand-receptor pairs

A human list of 2,005 ligand-receptor pairs, 48% of which include heteromeric-protein complexes, was
obtained from CellChat™. We filtered this list by considering the genes expressed in the PBMC and
BALF expression datasets and that match the IDs in the list of LR pairs, resulting in a final list of 1639
and 189 LR pairs, respectively. While in the ASD dataset, 749 LR pairs that matched the gene IDs were

considered.

Building the context-aware communication tensor

For building a context-aware communication tensor, three main steps are followed: 1) A communication
matrix is built for each ligand-receptor pair contained in the interaction list from the gene expression
matrix of a given sample. To build this communication matrix, a communication score® is assigned to a
given LR pair for each pair of sender-receiver cells. The communication score is based on the
expression of the ligand and the receptor in the respective sender and receiver cells (Figure 1a). 2)
After computing the communication matrices for all LR pairs, they are joined into a 3D-communication
tensor for the given sample (Figure 1b). Steps 1 and 2 are repeated for all the samples (or contexts) in
the dataset. 3) Finally, the 3D-communication tensors for each sample are combined, each of them
representing a coordinate in the 4th-dimension of the 4D-communication tensor (or context-aware

communication tensor; Figure 1c).

To build the tensor for all datasets, we computed the communication scores as the mean expression
between the ligand in a sender cell type and cognate receptor in a receiver cell type, as previously
described®. For the LR pairs wherein either the ligand or the receptor is a multimeric protein, we used
the minimum value of expression among all subunits of the respective protein to compute the
communication score. In all cases we further considered cell types that were present across all

samples. Thus, the 4D-communication tensor for the PBMC, BALF and ASD datasets resulted in a size
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of 60 x 1639 x 6 x 6; 12 x 189 x 6 x 6, and 23 x 749 x 16 x 16 respectively (that is, samples x ligand-

receptor pairs x sender cell types x receiver cell types).

Non-negative tensor component analysis

Briefly, non-negative TCA is a generalization of NMF to higher-order tensors (matrices are tensors of
order two). To detail this approach, let y representa C x P x S x T tensor, where C, P, Sand T
correspond to the number of contexts/samples, ligand-receptor pairs, sender cells and receiver cells
contained in the tensor, respectively. Similarly, let y;;,; denote the representative interactions of context
i, using the LR pair j, between the sender cell k and receiver cell I. Thus, the TCA method underlying
Tensor-cell2cell corresponds to CANDECOMP/PARAFAC®"°, which yields the decomposition,

factorization or approximation of y through a sum of R tensors of rank-1 (Figure 1d):
X =Y QP ®s" L7 (1)

Where the notation ® represents the outer product and c”, p", s"and t"are vectors of the factor r that
contain the loadings of the respective elements in each dimension of the tensor (Figure 1e). These
vectors have values greater than or equal to zero. Similar to NMF, the factors are permutable and the
elements with greater loadings represent an important component of a biological pattern captured by

the corresponding factor. Values of individual elements in this approximation are represented by:
Xijig = 2r=16 Qp] ®s; @ t] 2)

The tensor factorization is performed by iterating the following objective function until convergence

through an alternating least squares minimization'”"*:

2
MiN p s 1) ||)( —YR_ TQpT®sT® tr| . 3)
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2 . .
Where || .||Frepresent the squared Frobenius norm of a tensor, calculated as the sum of element-wise

squares in the tensor:
2
[ 1] = 2 2 X o Xt Xijia® (4)

All the described calculations were implemented in Tensor-cell2cell through functions available in

Tensorly’?, a Python library for tensors.

Measuring the error of the tensor decomposition

Depending on the number of factors used for approximating the 4D-communication tensor, the
reconstruction error calculated in the objective function can vary. To quantify the error with an
interpretable value, we used a normalized reconstruction error as previously described'?. This
normalized error is on a scale of zero to one and is analogous to the fraction of unexplained variance

used in PCA:

2
|Ix -3F - cr@pT@s |

Il

(5)

Running Tensor-cell2cell with communication scores from external tools

We assessed the similarity of tensor decomposition on the BALF dataset using different communication
scoring methods (CellChat'®, CellPhoneDB?°, NATMI°, SingleCellSignalR?!, and Tensor-cell2cell’s built-
in scoring). To enable consistency between methods, we used the same ligand-receptor PPI database
(CellChat — see “Ligand-receptor pairs”) and ran each method via LIANA?®, LIANA provides a number
of advantages over running each tool separately, including consistent thresholding and parameters,
interoperability between methods and LR databases, and modifications to allow methods that could not

originally account for protein complexes to do so. We adjusted parameters to match those of Tensor-
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cell2cell’s built-in scoring by not filtering for minimal proportions of expression by cell type or

thresholding for differentially expressed genes.

As input to LIANA, we constructed a Seurat object with log(CPM+1) normalized counts for each
sample. For each tool and sample, LIANA outputs an edge-list of communication scores for a given
combination of sender and receiver cells, as well as ligand-receptor pairs. We extended Tensor-
cell2cell’s functionalities to restructure a set of these edge-lists, each associated with a sample, into a
4D-communication tensor (Figure 1). This functionality enables users to either provide input expression
matrices and use Tensor-cell2cell’s built-in scoring, or to run their communication scoring method of
choice on each sample and provide the resultant edge-lists as input. To further ensure consistency, we
subsetted each resultant tensor to the intersection of ligand-receptor pairs scored across all 5 methods.
For each method, this resulted in a tensor consisting of 12 samples, 172 ligand-receptor pairs, and 6
sender- and receiver- cells.

Evaluating the effect of gene expression preprocessing and batch-effect correction on
Tensor-cell2cell

To evaluate how gene expression preprocessing and batch-effect correction impact the results of
Tensor-cell2cell, we assessed the similarity of tensor decomposition on the BALF dataset. To compute
the communication scores for building the tensors (Figure 1a), we used different gene expression
values, including the raw UMI counts, the preprocessed values with log(CPM+1) and the fraction of
non-zero cells?*, and the batch-corrected values with ComBat®® and Scanorama?®®. Except by the
fraction of non-zero cells, which already aggregated single-cells into cell-types, other values were
aggregated into the cell-type level by computing their average value for each gene across single cells
with the same cell-type label. As the communication score, we used the expression mean of the
interacting partners in each LR pair. Thus, we built 4D-communication tensors as mentioned for the

BALF data in the Methods subsection Building the context-aware communication tensor. The
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tensor decomposition resulting with the fraction of non-zero cells in this case corresponds to the same

in Figure 4.

Measuring the similarity between distinct tensor decomposition runs

To assess decomposition consistency between different scoring methods or preprocessing pipelines,
we employed the Corrindex?. The Corrindex is a permutation- and scaling-invariant distance metric
that enables consistent comparison of decompositions between tensors containing the same elements,
without need to align the factors obtained in each case (separate tensor decompositions can output
similar factors but in different order). The Corrindex value lies between 0 and 1, with a higher score
indicating more dissimilar decomposition outputs. To score tensor decompositions, the output factor
matrices must first be vertically stacked. We implemented a modification that instead assesses each
tensor dimension separately (see Supplementary Note for more details). While taking the minimal score
between all dimensions tends to be more stringent, it disregards the combinatorial effects of all
dimensions together. These combinatorial effects are important because they better reflect the goal of
tensor decomposition and because similarity in those dimensions that are not the minimal one may be
artificially inflated. To facilitate the use of the Corrindex and its modified version, we wrote a Python

implementation that is available on the Tensorly package’.

Downstream analyses using the loadings from the tensor decomposition

We incorporate several downstream analyses of Tensor-cell2cell’'s decomposition outputs to further
elucidate the underlying cell- and molecular- mediators of cell-cell communication. Each of these
analyses are associated with a specific tensor dimension, and thus, a specific biological resolution. This
includes 1) statistical, correlative, and clustering analyses to understand context associations for each
factor, 2) gene set enrichment analysis of ligand-receptor loadings to identify granular signaling
pathways associated with factors, 3) the generation of factor-specific cell-cell communication networks

to represent the overall communication state of cells in that factor.
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We can understand the context associations for a factor by comparing the loadings of samples
associated with distinct contexts. For statistical significance, we conduct an independent t-test pairwise
between each context group associated with the samples and use Bonferonni’s correction to account
for multiple comparisons. We use this for both the COVID-19 BALF dataset (Supplementary Figures S7
and S8) and the ASD dataset (Figure 5c¢). We also conduct correlative analyses — assuming ordinal
contexts (i.e., healthy control < moderate COVID-19 < severe COVID-19), we take the Spearman
correlation between the sample loadings and sample severity (Figure 4c). Finally, we also hierarchically
cluster the samples using their loadings across all factors (Figure 5d). For this purpose, we use the
normalized loadings resulting from the tensor decomposition, and standardize them across all factors.
Then, we apply an agglomerative hierarchical clustering by using Ward's method and the Euclidean
distance as a metric. Note that this type of clustering analysis can be applied to the other tensor

dimensions.

We can use the LR-pair loadings of a factor to identify the signaling pathways associated with it, by
using the Gene Set Enrichment Analysis®® (GSEA). Before running the analysis, pathways of interest

have to be assigned to a list of associated LR pairs. We do that by considering the KEGG gene sets

available at http://www.gsea-msigdb.org/. We annotate a LR pair available in CellChat with the gene
sets that contain all genes patrticipating in that LR interaction. Then, by filtering LR pathway sets to
those containing at least 15 LR pairs, we end up with 22 LR pathway sets. To run GSEA, we rank the
LR pairs in each factor by their loadings, and use the PreRanked GSEA function in the package
gseapy, by including the 22 LR pathway sets as input. As parameters of the “gseapy.prerank” function,
we consider 999 permutations, gene sets (LR pathway sets here) with at least 15 elements, and a

score weight of 1 for computing the enrichment scores.

Finally, we generate factor-specific cell-cell communication networks. To do so, for a factor r, we take

the outer product between the sender-cell loadings vector, s, and the receiver-cell loadings vector, t".
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Conceptually, this outer product represents an adjacency matrix of a factor-specific cell-cell
communication network, where each value is an edge weight representing the overall communication
between a pair of sender-receiver cells (Supplementary Figure S9). We can further use this network to
understand the communication distribution inequality between sender- and receiver- cells. We compute
a Gini coefficient” ranging between 0 and 1 on the distribution of edge weights in the adjacency matrix
(Figure 4c). A value of 1 represents maximal inequality of overall communication between cell pairs (i.e.
one cell pair has a high overall communication value while the others have a value of 0) and O indicates
minimal inequality (i.e. all cell pairs have the same overall communication values). More generally, the
outer product between any two tensor dimension loadings for a given factor conceptually represents the
joint distribution of the elements in those two dimensions and can be informative of how the specific

elements are related.

Benchmarking of computational efficiency of tools

We measured the running time and memory demanded by Tensor-cell2cell and CellChat to analyze the
COVID-19 dataset containing PBMC samples. Each tool was evaluated in two scenarios: either using
each sample individually, or by first combining samples by severity (control, mild/moderate, and
severe/critical) by aggregating the expression matrices. The latter was intended to favor CellChat by
diminishing the number of pairwise comparisons to always be between three contexts; thus, increases
in running time or memory demand in this case are not due to an exponentiation of comparisons (n
samples choose 2). CellChat was run by following the procedures outlined in the
“Comparison_analysis_of multiple_datasets” vignette

(https://github.com/sqgjin/CellChat/tree/master/tutorial). Briefly, signaling pathway communication

probabilities were first individually calculated for each sample or context. Next, pairwise comparisons
between each sample or context were obtained by computing either a “functional” or a “structural”

similarity. The functional approach computes a Jaccard index to compare the signaling pathways that
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are active in two cellular communication networks, while the structural approach computes a network
dissimilarity’ to compare the topology of two signaling networks (see REF for further details). Finally,
CellChat performs a manifold learning approach on sample similarities and returns UMAP embeddings
for each signaling pathway in each different context (e.qg. if CellChat evaluates 10 signaling pathways in
3 different contexts, it will return embeddings for 30 points) which can be used to rank the similarity of

shared signaling pathways between contexts in a pairwise manner.

The analyses of computational efficiency were run on a compute cluster of 2.8GHz x2 Intel(R) Xeon(R)
Gold 6242 CPUs with 1.5 TB of RAM (Micron 72ASS8G72LZ-2G6D2) across 32 cores. Each timing
task was limited to 128 GB of RAM on one isolated core and one thread independently where no other
processes were being performed. To limit channel delay, data was stored on the node where the job
was performed, where the within socket latency and bandwidth are 78.9 ns and 46,102 MB/s
respectively. For all timing jobs, the same ligand-receptor pairs and cell types were used. Furthermore,
to make the timing comparable, all samples in the dataset were subsampled to have 2,000 single cells.
In the case of Tensor-cell2cell, the analysis was also repeated by using a GPU, which corresponded to

a Nvidia Tesla V100.

Training and evaluation of a classification model

A Random Forest” (RF) model was trained to predict disease status based on both COVID-19 status
(healthy-control vs. patient with COVID-19) and severity (healthy-control, moderate symptoms, and
severe symptoms). The RF model was trained using a Stratified K-Folds cross-validation (CV) with 3-
Fold CV splits. On each CV split a RF model with 500 estimators was trained and RF probability-
predictions were compared to the test set using the Receiver Operating Characteristic (ROC). The
mean and standard deviation from the mean were calculated for the area under the Area Under the
Curve (AUC) across the CV splits. This classification was performed on the context loadings of Tensor-

cell2cell, and the two UMAP dimensions of the structural and functional joint manifold learning of

31


https://doi.org/10.1101/2021.09.20.461129
http://creativecommons.org/licenses/by-nc-nd/4.0/

666

667

668
669

670

671

672

673

674

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.461129; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CellChat, for both the BALF and PBMC COVID-19 datasets. All classification was performed through

Scikit-learn (v. 0.23.2)"°.

Code and data availability

Tensor-cell2cell is implemented in our cell2cell suite®, which is available in a GitHub repository

(https://github.com/earmingol/cell2cell). All the code and input data used for the analyses are available

online in a Code Ocean capsule for reproducible runs (https://doi.org/10.24433/C0.0051950.v2). While

the code for benchmarking the computational efficiency in a local computer is available in a GitHub

repository (https://github.com/LewisLabUCSD/CCC-Benchmark).
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