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ABSTRACT 

De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of 

DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. 

Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven 

coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM 

caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160�164 resolution 

images. DeNovoCNN was trained on DNMs of 5,616 whole exome sequencing (WES) trios achieving 

total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased 

recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, 

DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and 

WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN 

outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust 

against different exome sequencing and analyses approaches, thereby allowing the application on other 

datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment 

(BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling. 
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INTRODUCTION 

Many developmental disorders, such as intellectual disability (1), autism spectrum disorder (2) and 

multiple congenital anomalies (3) are known to be caused by de novo mutations (DNMs) (4,5). The 

reliable identification of DNMs is, therefore, of paramount importance both for genetic testing as well as 

research studies. Because of the genetic heterogeneity that exists for disorders where DNMs play a 

major role, the identification of DNMs is typically performed based on whole exome (WES) or whole 

genome sequencing (WGS) data. In principle, DNMs can be easily identified by selecting variants in the 

proband that are not present in either of the parents. In practice, however, this process is complicated by 

sequencing artifacts, mapping artifacts, differences in sequence coverage and mosaicism. Moreover, the 

genome of an average individual has 40 - 80 DNMs of which on average 1.45 occur in the coding regions 

(6), making DNMs considerably rarer than errors associated with sequencing technology. Practically this 

means that the sensitivity and specificity of DNM detection are usually balanced by selecting appropriate 

quality score cutoffs.  

 

Several different methods have been developed to identify DNMs in next-generation sequencing (NGS) 

data. With methods such as DeepTrio (7) and the Genome Analysis Toolkit (GATK) (8) de novo calling is 

achieved straightforwardly by performing multi-sample variant calling and subsequent selection of 

variants based on genotypes corresponding to de novo mutations. The downside of these approaches is 

that DNM calling is dependent on the variant calling, which therefore always needs to be performed with 

the same method. For existing datasets, this may require recalling of variants with potentially high 

computational and storage overheads. Other tools, such as DeNovoGear (9) and TrioDeNovo (10) are 

able to call DNMs based on existing variant calls by modelling the probability of mutation transfer using 

mutation rate priors. All of these approaches provide high sensitivity, but the specificity is usually lower 

due to the amount of noise in NGS data, resulting in a high number of false positive calls (11). 

Subsequent filtering of DNMs based on quality criteria is, therefore, typically required.  

 

Deep learning, a field of machine learning, has recently seen a growth in popularity amongst applications 

in genomics (12). Deep learning approaches have been able to achieve improvements in many genomics 

applications by converting genomic data into an image-like representation and employing convolutional 

neural networks (CNNs) (e.g. tumor type classification using RNA-Seq data (13) and germline variant 

calling (7)). Here we developed DeNovoCNN, a deep-learning model that encodes trio NGS data as 

images and uses a suite of CNNs to detect de novo mutations in next generation sequencing data.  
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MATERIALS AND METHODS 

Training, validation and test datasets 

A cohort of 6,067 child-parent trios was used for building the training and validation datasets, which is an 

extension of the cohort used in Kaplanis et. al. (5). All of the individuals were initially referred to the 

Radboudumc Department of Human Genetics with an indication of unexplained developmental delay, for 

whom trio WES was performed as described before (5). Briefly, all samples were sequenced on Illumina 

HiSeq 2000/4000 instruments using Agilent SureSelect v4 or v5 exome enrichment kits, respectively. 

Initially, de novo calling was performed using our in-house method based on Samtools. Subsequently, all 

calls from the cohort used in Kaplanis et. al. were filtered based on quality metrics as described in the 

original manuscript (5) and the rest of the cohort was filtered according to the following approach: GATK 

quality score > 300 for substitutions and > 500 for insertions and deletions, coverage ≥ 20X in the 

proband, VAF > 30%. The complete dataset yielded 13,068 DNM calls, which were used to construct the 

training and validation datasets (Supplementary Figure 1).  

 

Snapshots of all of the potential DNM calls were generated using the Integrative Genomics Viewer (IGV) 

(14) for visual inspection, and each variant was evaluated by assigning it to one of the three classes: 

DNM, IV (inherited variant) or UN (unknown) for cases where it was not feasible to make the confident 

decision on visual inspection alone. UN variants were removed from the dataset. The obtained dataset of 

5,616 trios was complemented with randomly selected IVs resulting in 10,274 DNMs and 55,134 IVs. The 

5,616 trios were randomly divided into training, validation and test subsets using a 70/15/15 percentage 

ratio. (Supplementary Figure 1).  

 

One of the challenges of DNM detection is to distinguish false positives in difficult genomic regions, so we 

developed a way to add such examples. First, we took the current training and validation datasets to train 

an interim DeNovoCNN model for DNMs calling. Second, we randomly selected 403 trios and applied an 

interim DeNovoCNN model to get candidate DNM calls on these trios. Finally, we manually curated all 

calls in IGV, selecting 905 IVs that were either clearly inherited from the parents or occurred in difficult 

regions where a lot of sequencing mistakes and artefacts were visible. In addition, we selected 159 true 

DNMs. This provided a better representation of the locations where our algorithm made mistakes in the 

previous step and therefore the most difficult genomic regions for the model.  

 

Despite the large exome dataset, the total number of DNMs for training was relatively low. Therefore, we 

supplemented the DNM dataset by performing DNM calling using the in-house caller on 2 artificial trios 

where the child was unrelated to the parents. These 2 trios were constructed by randomly sampling 2 

parent pairs, followed by the random choice of a child (Supplementary Figure 1). This resulted in an 
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additional 1,005 DNMs that were added only to the training dataset to avoid biases in validation and test 

datasets.  

 

All IVs and DNMs were further assigned into three categories: insertions, deletions and single-nucleotide 

substitutions for the training of the three different models. (Supplementary Table 1). 

 

DeNovoCNN 

Model architecture 

We aimed to replicate the visual inspection process of possible DNMs performed by human experts using 

software such as IGV. By converting NGS data into RGB images de novo variant calling could be 

approached as a computer vision classification task with two classes: DNMs and IVs. The state-of-the-art 

approach for vision classification tasks is the convolutional neural network (CNN), a variation of which we 

chose for our purposes. The choice of the architecture was a trade-off between the ability to generalize 

(complexity) of the model and the available amount of training data. Thus, the model architecture was 

chosen to be basic and consisted of 9 2D convolutional layers with 96 filters, 3x3 kernels, ReLU activation 

and the same padding in each layer. After every third convolutional layer, we applied batch normalization 

and added a Squeeze-and-Excitation block (15). Global max and average pooling were applied before 

the output layer (Supplementary Figure 2). The architecture was developed using Python with the 

TensorFlow v.2.3.0 (16). Using this architecture we constructed three separate models, for insertions, 

deletions and substitutions because of their specific visual patterns and the skewness of the dataset 

towards substitutions. We also considered a single model for all three types of variants but obtained 

inferior results using this approach. 

Image generation 

Variants in de novo and control datasets were converted into images prior to being fed to the 

convolutional neural network. All variants of interest were converted into 160�164 RGB images 

(Supplementary Figure 3). Image generation was based on reads pileup data in the location of the variant 

capturing 20 nucleotides before and after the candidate DNM. Read pileup data from individual trio 

members for the same variant position was extracted using the Pysam v.0.19.0 library (17).  

 

Each row in the image encodes a read base sequence. Image columns were structured in a recurring 

pattern of 4 pixels per genomic position, which represents a one-hot vector that encodes A, C, T and G 

bases respectively. Thus, the image width of 164 pixels represents a sequence of 41 (164 / 4) bases with 

the variant starting at the central position (20 using 0 indexing). In a one-hot vector for (A, C, T, G) the 

coordinate was filled with a value in the resulting image in case we observe this nucleotide in the 

corresponding genomic position in the read, whereas the rest were filled with zeros (Figure 1). Pixel 

intensities have a maximum value of 255, adjusted by mapping and base quality scores with higher 
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quality corresponding to higher pixel intensity. Each column represents the sequencing depth which was 

limited to 160 reads for computational performance. Red, green, and blue color channels represent 

different individuals of the trio, corresponding to child, father, and mother respectively. 

 

Hyperparameters optimization 

The architecture of the model and the process of training require the definition of some hyperparameters, 

such as learning rate, number of convolutional features, batch size, and regularization coefficients. The 

choice of these parameters was done using the Hyperband algorithm for hyperparameter optimization 

(18) (Supplementary Table 2). The values for the number of convolutional features and batch size were 

sampled from [32, 64, 96, 128] and [32, 64] respectively. For continuous parameters the values were 

logarithmically sampled from corresponding segments. The L1 coefficient of the sigmoid layer was 

sampled from [1e-10, 0.1], learning rate from [1e-8, 0.01] and the Adam weight decay from [1e-8, 0.01]. 

The Hyperband optimization was performed such that the hyperparameters showed the lowest cross-

entropy loss on the validation dataset. 

Training the model 

Networks were trained for 100 epochs unless the performance on the validation dataset did not improve 

for 40 epochs, in which case the training was stopped. For all 3 networks training stopped before 

reaching 100 epochs (Supplementary Figure 4). The final models were selected at the epoch that showed 

the best performance on the validation dataset. Due to the large dataset size, the substitution network 

was trained first using random weight initialization, while insertion and deletion networks were trained 

using weights from the trained substitution network as the starting point. As a result of optimization, some 

hyperparameters are different for the three different networks (Supplementary Table 2). Adam optimizer 

for substitutions and AdamW for insertions and deletions with default Keras parameters were used for 

minimization of binary cross-entropy loss in all models. The initial learning rate was set to the optimized 

values for each network with a stepwise decay of 0.5 every 10 epochs (Supplementary Table 2). The 

output of the network is a vector containing probabilities for a variant being a DNM and IV. The area 

under the curve (AUC), overall accuracy, specificity, sensitivity and F1 score were calculated on the test 

set. 

 

Data augmentation was applied during the training of the networks for substitutions, deletions and 

insertions. The standard augmentations included random brightness adjustment by a factor between [0.3, 

1]. To increase the stability of the model, random shuffling of the reads was implemented.  Additionally, 

we observed that some specific cases of DNMs were underrepresented in our dataset, namely, DNMs in 

low-coverage regions and multi-nucleotide substitutions. We simulated reduced coverage by discarding a 

random number of reads from the pileup and enriched the dataset for multi-nucleotide substitutions by 

generating adjacent substitutions using the substitution dataset on-the-fly.  
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The training was performed on a machine with NVIDIA GeForce GTX TITAN X 12 Gb. Training time on 

this machine was approximately 17.6 hours for substitutions, 1.7 hours for deletions, and 1.5 hours for 

insertions. 

DNM prediction 

After the training DeNovoCNN was used for DNM prediction on new data. The input consists of one VCF 

and one BAM file per sample (three per trio), as well as paths to the trained model weights for 

substitutions, insertions and deletions. The prediction consists of two steps. The first step is dependent on 

the initial variant calling used for generating VCF files: using the trio VCF files, the inherited variants are 

discarded. This is achieved using the bcftools isec -C child_vcf father_vcf mother_vcf 

(17) command and results in around a 10-fold reduction of the number of genomic locations for 

evaluation, which usually ends up with <10,000 variants for WES (depending on capture kit size) and 

~100,000 for WGS. The second step iterates through the generated list and classifies each variant as 

DNM or non-DNM. The variant is considered to be de novo if the probability of DNM class returned by 

DeNovoCNN is higher or equal to 0.5. The application of DeNovoCNN doesn’t require any GPUs. On a 

standard 16 core CPU machine, the run-time is approximately 15 – 20 minutes for a 100x coverage WES 

trio and 5.5 - 6 hours for a 50x WGS trio. 

Performance assessment 

In order to validate the performance of the proposed deep learning model, we used datasets from 

different types of sequencing (exomes and genomes) as well as different types of enrichment and 

sequencing platforms (Supplementary Table 3, Supplementary Methods). DeNovoCNN was compared to 

other available algorithms, such as DeepTrio (7), GATK PossibleDeNovo (8), and DeNovoGear (9). We 

also compared to our in-house de novo detection algorithm, based on Samtools mpileups, because of the 

10 years of experience that we had with this approach.  

 

For validation purposes, we applied the above-mentioned algorithms as follows: 

● DeNovoCNN takes as an input trio VCF files and BAM/CRAM files. See the DNM prediction 

section for the details. 

 

● DeepTrio version 1.2.0 was run on BAM/CRAM files to call variants on a trio, followed by 

GLnexus tool for gVCF merging according to DeepVariant and GLnexus best practices (19) with 

optimized configuration for DeepVariant caller in WES and WGS data (DeepVariantWES, 

DeepVariantWGS).  We additionally ran GLnexus using a config with no quality filters 

(DeepVariant_unfiltered) as it is suggested in the DeepTrio available documentation. Since it is 

recommended not to perform BQSR on the input files for DeepTrio, we run the tool on the BAMs 
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without base recalibration as well. De novo mutations were defined as Mendelian violations with a 

heterozygous variant in the child and homozygous reference calls in the parents and were 

selected with the RTG Tools Mendelian package v.3.12.1 (20).  

 
Whereas DeepTrio performed well on WGS data, we were unable to generate good results for 

DeepTrio on WES data. Although we tried different settings and post-analysis filtering, we found 

that DeepTrio consistently generated high numbers of DNM calls in WES data. We have 

documented our efforts and results in the Supplemental (Supplementary Table 4). 

 

● DeNovoGear version 1.1.1 (9) was run according to the specifications. DeNovoGear takes in 

PED and BCF files as input. The BCF file was generated using the following command: 

samtools mpileup -gDf reference.fa child.bam father.bam mother.bam 

 

● GATK (gatk4-4.1.2.0 and gatk4-4.1.8.1) was run on BAM/CRAM or gVCF files according to the 

best practices for germline short variant discovery (SNPs + indels) and “Genotype Refinement 

workflow for germline short variants” (8) to detect de novo variants.  

 

● Our in-house method: this is an in-house developed method that generates a list of de novo 

candidates based on the VCF files of the trio (1). For WES remaining candidates were then 

filtered out based on gnomAD allele frequency �1.0%. For WGS data gnomAD allele frequency 

�0.1% and xAtlas quality score �15 filters were used. Subsequently, this method performs 

Samtools pileups which are used to select the most likely DNM candidates based on a set of hard 

filters. The variant is considered to be de novo if the coverage in both parents is �10 and either 

there are no alternative reads in the parents or the VAF in both parents �15% with the number of 

alternative reads �3.  

 
We compared these methods based on the raw de novo calls, as well as after the application of the 

commonly used quality filtering for de novo mutations. This high-quality DNM set was created using the 

following filters (derived from in-house practices): number of reads in the sample and both parents �10, 

variant allele frequency �20%, gnomAD allele frequency �0.01%.  

RESULTS 

We used a convolutional neural network (CNN) with squeeze-and-excitation blocks (15) as the 

architecture for DeNovoCNN (Figure 1, Supplementary Figure 2), and trained three separate models for 

substitutions, insertion and deletion variants. Our primary training dataset was based on DNMs and 

inherited variants (IVs) from a cohort of 6,067 child-parent trios that were supplemented with simulated 

data in order to optimize training (5), (Supplementary Figure 1, Material and Methods). All variants were 
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converted into 160�164 RGB images (Supplementary Figure 3). The dataset was split into an 70% 

training (8,517 DNMs, 40,590 IVs), 15% validation (1,357 DNMs, 7,110 IVs; Supplementary Table 1) and 

15% test (1,564 DNMs, 8,410 IVs) dataset. DeNovoCNN generates a probability of a variant being de 

novo, and, therefore, we used a threshold of �0.5 to select de novo calls. After training DeNovoCNN 

achieved a high sensitivity/recall rate of 96.74% (substitutions: 97.71%, insertions: 91.76%, deletions: 

91.76%) and precision of 96.55% (substitutions: 97.78%, insertions: 96.3%, deletions: 87.64%) 

(Supplementary Figure 5, Supplementary Figure 6, Supplementary Table 5) on the test dataset.  

Comparison on GIAB WGS dataset 

In order to compare our method to other de novo detection methods on an independent dataset, we used 

Illumina WGS data of an Ashkenazim Trio (NA24385; NA24149; NA24143) from the Genome in a Bottle 

(GIAB) consortium (21). This trio was sequenced using various different technologies in order to create a 

dataset of 1,323 high-quality cell-line and germline DNMs. We only considered DNMs in high-quality 

regions, as suggested by the GIAB consortium. We compared DeNovoCNN DNMs to DNMs from 

DeepTrio (applied on BAMs with and without BQSR, with DeepVariantWGS and DeepVariant_unfiltered 

presets for GLnexus), in-house method based on Samtools (17), GATK (8), GATK filtered for high 

confidence DNM calls (GATK_HC), and DeNovoGear filtered using a �0.5 and �0.9 probability 

thresholds (DeNovoGear-0.5, DeNovoGear-0.9) (9) (Figure 2A, Table 1, Supplementary Table 6, 

Supplementary Figure 7).  

 

DeNovoCNN outperformed other algorithms with a precision rate of 97.16%. DeepTrio 

(DeepVariant_unfiltered, BQSR) showed a precision of 93.37%, our in-house tool showed a precision of 

92.42%, and DeepTrio (DeepVariant_unfiltered, no BQSR) showed 92.39%, while GATK_HC and 

DeNovoGear-0.9 performances were 91.41% and 90.18% respectively. DeNovoCNN also has the highest 

sensitivity/recall rate of 90.55%, our in-house tool showed 90.33%, and DeepTrio 

(DeepVariant_unfiltered, no BQSR) showed 85.34%, GATK and DeNovoGear-0.5 performance were 

88.51% and 80.35% respectively (Figure 2A, Table 1). We note that DeepTrio was actually trained on this 

GIAB dataset, and therefore the DeepTrio results may be slightly inflated.  

 

We observed a relatively low recall for insertions and deletions of all algorithms which led us to 

investigate possible problems with the GIAB high-quality DNM dataset (Supplementary Table 6). 

Therefore, we performed manual cleaning of likely false positive de novo insertion and deletion calls in 

the GIAB gold standard dataset based on visual inspection (Supplementary Methods). We then repeated 

our comparison on this manually curated GIAB dataset and found that DeNovoCNN still outperformed all 

other methods on sensitivity/recall as well as precision and accuracy (Figure 2B, Supplementary Table 7). 
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Comparison on 20 WES trios 

The comparison on the GIAB dataset highlighted the difficulties in obtaining high-quality validation 

datasets for DNMs. Therefore, we also compared DeNovoCNN performance with GATK_HC, 

DeNovoGear, and our in-house tool on a dataset of 20 randomly selected in-house WES trios that were 

not part of the original training dataset of 6,067 trios (Figure 3A, Table 2, Material and Methods). This 

allowed us to validate the called DNMs experimentally. For all of the DNM calls by the different methods 

we performed a visual selection to discard obvious false-positive variants. The remaining 50 variants 

were validated by Sanger/IonTorrent sequencing of which 24 were confirmed as DNMs, and 4 were either 

inherited or false positives (Supplementary Figure 8). For 22 variants it was not possible to perform the 

validation due to difficulties with designing the primers (9 variants) and depletion of the DNA sample (13 

variants). Based on these validations, DeNovoCNN was able to correctly identify all 24 confirmed DNMs 

(DeNovoCNN sensitivity/recall is 100%, next best is 83.33% for in-house, GATK and GATK with high 

quality calls, and DeNovoGear-0.9 has 79.17%), showing the best performance on all other metrics as 

well (Table 2). We subsequently performed additional quality filtering on the DNMs (Materials and 

methods), as is likely to happen in a real-world setting, and re-evaluated the results. DeNovoCNN still 

showed the best results on all calculated metrics (Supplementary Table 8).  

 

Additionally, we compared different properties (VAF, coverage, strand bias, variant context and 

population allele frequency) between the true positive and false positive DNMs from DeNovoCNN, GATK 

and DeNovoGear in order to explore obvious possibilities for improvements (Supplementary File). We did 

not observe any striking differences, with the exception of population allele frequency (gnomAD) which 

could be used as post-processing filtering.  

Results on the multi-platform WES trio dataset 

Next, we wanted to verify that DeNovoCNN is robust across different capture and sequencing 

approaches. We used an exome dataset of the Solve-RD consortium (22) that contains 551 trios 

sequenced across 15 different capture/sequencing combinations (Supplementary Methods; 

Supplementary Table 9). We measured the robustness of our method by considering the number of 

called DNMs per sample and compared this to the number of high-quality DNM calls from GATK 

(GATK_HC) (Figure 3B, Supplementary Figure 9). In addition, we expected that the number of calls is 

within the same range regardless of the sequencing platform that was used. The median number of 

DeNovoCNN calls is 2.5, the 5th and 95th percentiles are 0.0 and 7.55 whereas the overall distribution 

lies between 0 and 64 calls. This result is consistent with what we observe for GATK calling (median 

number of calls is 4.0, the 5th and 95th percentiles are 1.0 and 13.0, maximum number of calls is 93.0). 

This suggests that our method was likely not overfitted to the training dataset's specific capture kit and 

sequencing instrument. 
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Results on 7 WGS trios 

To confirm that DeNovoCNN also performs well on whole-genome sequencing data, we used 7 in-house 

WGS trios. We applied DeNovoCNN, GATK and DeepTrio (with DeepVariantWGS and 

DeepVariant_unfiltered presets for GLnexus). We compared these tools with high-quality de novo calls 

obtained with PacBio Hi-Fi long reads sequencing (LRS) (Supplementary Methods). DeNovoCNN had the 

highest concordance with LRS calls with sensitivity/recall of 81.83%, next was GATK with 76.37% and 

75.72% and for low and high confidence calls respectively. DeepTrio had 73.47% and 15.76% 

concordance with DeepVariant_unfiltered and DeepVariantWGS preset filtration respectively. 

DeNovoCNN outperformed other tools significantly based on the specificity (92.81%), precision (21.8%), 

and accuracy (92.54%) (Figure 4, Table 3). We repeated the comparison after filtering the DNMs for high 

quality calls (Materials and methods) and obtained similar results (Figure 4, Supplementary Table 10). 

DISCUSSION 

Here we introduced DeNovoCNN, a novel approach to de novo variant calling based on a convolutional 

neural network. We applied DeNovoCNN to several independent datasets such as the GIAB WGS 

Ashkenazi trio, 20 WES trios and 7 whole-genome short-read sequencing trios to compare the 

performance with other methods (GATK, Samtools, DeepTrio, DeNovoGear) based on orthogonal 

validations with the GIAB gold standard DNM dataset, Sanger/IonTorrent validations and PacBio LRS 

respectively. For all of these datasets, we find that DeNovoCNN consistently outperforms other 

approaches in terms of precision, recall and specificity. An advantage of DeNovoCNN is that it is in 

principle not dependent on the variant calling method itself, which will make it easier to use on existing 

datasets and incorporate into existing data analysis pipelines. Other approaches such as GATK and 

DeepTrio, require that variants are called in a specific way and otherwise will not be able to produce DNM 

calls. This means that for existing datasets recalling is likely to be needed which may represent a 

significant (computational) effort. However, we cannot fully exclude that for particular variant calling 

methods, DeNovoCNN will need to be retrained.  

 

Another potential advantage comes from the observation that DeNovoCNN seems to be able to identify 

also mosaic variants. Because these variants are even rarer than DNMs we were not able to perform a 

thorough evaluation. However, we ran DeNovoCNN on 10 WES trios in which a mosaic variant had been 

reported and identified 9 out of 10 of these variants (Supplementary Table 11).  

 

The biggest challenge of DeNovoCNN is common for most deep learning models and is related to the fact 

that the model should generalize well to other data unseen during training. Deep learning models can be 

sensitive to subtle differences in the data which can lead to unexpected results. Because we exclusively 

used data from a single center for the training of our model, albeit from two different capture kits and 

sequencing instruments we have used data augmentation techniques to prevent overfitting. Our 
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validations are for the most part done on completely different datasets than those used for training the 

model, such as the GIAB dataset, the 7 WGS trios, and the WES data from the Solve-RD project. For all 

of these datasets, we obtain good results, supporting the notion that DeNovoCNN is not overly biased 

towards the training dataset. However, we cannot exclude that some residual bias from the training data 

exists and that this may become apparent when DeNovoCNN is applied to other datasets. We tested for 

two potential biases, namely lower coverage sequencing data, and omitting Base Quality Score 

Recalibration (BQSR). At lower coverages, we observed no drastic effects on recall and precision 

(Supplementary Figure 10) and find a high correlation in DeNovoCNN predictions for the alignments with 

and without BQSR (Supplementary Figure 11). Another hurdle to the application of DeNovoCNN could be 

the fact that nowadays CRAM is becoming a new data standard (23) for storing sequence alignments. 

Therefore, we also compared DeNovoCNN results from BAM files and corresponding CRAM files with 

quality-score binning. We find that the correlation between the prediction on BAM and CRAM files is very 

high (Supplementary Figure 12) and therefore expect DeNovoCNN to work equally well on CRAM files.  

 

A possible source of bias of our model lies in the generation of the training data using manual inspection 

of the variants in IGV. We did not observe any obvious biases in the performance of DeNovoCNN on 

independent datasets that seemed to arise from our manual inspection. However, comprehensive gold 

standard DNM datasets, including DNMs in the complex regions of the human genome, will be needed to 

make such manual visual inspection unnecessary in the future.   

 

Although DeNovoCNN shows overall good performance compared to other methods, we have seen some 

possibilities for future improvements. We noticed that the performance on indels is lower than the 

performance on substitutions. This is not surprising since the calling of indels is also more challenging 

than for substitution variants, but could also be explained by the fact that the amount of the indels events 

in the training dataset is much lower than substitutions events. In addition, DNMs were mostly validated 

using visual inspection. Because indel de novo events are more difficult to distinguish manually from 

sequencing artefacts, this could have led to a poorer training dataset specifically for these events. In 

general, we remark that for future improvements in DNM detection, it will be essential to have sizeable, 

curated training datasets. 

 

Other possible improvements could lie in the model itself. The training of deep learning models is 

computationally intensive, which is why we chose a relatively simple CNN. Although we did not observe 

any clear negative effects on model performance, more complex architectures and more context 

information for variants could potentially improve the performance further.   
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AVAILABILITY 

DeNovoCNN is open-source software available as a Docker container in the GitHub repository 

(https://github.com/Genome-Bioinformatics-RadboudUMC/DeNovoCNN).  

The training dataset for DeNovoCNN is available in the GitHub repository  

(https://github.com/Genome-Bioinformatics-RadboudUMC/DeNovoCNN_training_dataset). 
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FIGURES 

 
Figure 1. Overview of the method depicting the different steps starting with (from left to right), the training 

data, encoding of sequence data as images, training of the different deep-learning models, and validation 

of the final model. The first step consisted of the construction of training and validation datasets using de 

novo and inherited or false de novo variants from the 6,067 trios. As is shown in the “Image encoding” 

section of the figure all variants were transformed to RGB images, where each color channel corresponds 

to the child, father, and mother data respectively. Every row encodes a separate read, and every 

nucleotide in a particular position is encoded as a one-hot vector, containing (A, C, T, G). 70% of these 

images were then used to train 3 convolutional neural networks (for substitutions, deletions, and 

insertions variants). The remaining 15% of the data (1,564 DNM variants, 8,410 IV variants) was used as 

a test dataset. The resulting models were thoroughly validated using various independent datasets: the 

external gold standard GIAB WGS trio, the in-house 20 WES dataset, the in-house 7 WGS dataset, and 

the multi-platform 551 WES trios from the SolveRD project.  
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Figure 2. The comparison results on the GIAB reference trio. These figures contain 4 plots of the 

different tools’ performance for substitutions, insertions, deletions, and all variants on a GIAB dataset. All 

tools for the comparison are on the horizontal axis: DeNovoGear with a threshold of 0.5, DeNovoGear 

with a threshold of 0.9, DeepTrio (DeepVariant_unfiltered, BQSR), DeepTrio (DeepVariant_unfiltered, no 

BQSR), GATK with high quality calls only, GATK, our in-house tool, and DeNovoCNN. The green, orange 

and violet bars show precision, recall (sensitivity), and specificity respectively.  

 

A. The performance of different de novo calling methods for the GIAB reference genome trio. 

  
B. The performance of different de novo calling methods for the GIAB reference genome trio using 

the manually curated set of DNMs (Material and Methods).  

 

 

 
 

Figure 3. Validation and comparison of the DeNovoCNN method with other tools on exome data.  

A. Comparison results on 20 in-house WES trios based on DNMs that were validated by 

Sanger/ IonTorrent sequencing. The graph contains only variants that were marked as 

potentially de novo after manual validation in IGV and then sent for Sanger/IonTorrent validation 

(see Materials and Methods). The green oval contains all potentially de novo variants for the 

GATK tool with high quality DNMs, the light blue oval indicates potential de novo variants 

according to the in-house tool, the magenta oval contains potentially de novo variants according 

to the DeNovoCNN tool, and finally, light brown oval shows potentially de novo variants based on 

the DeNovoGear tool. Each intersection of the circles contains the number of potentially de novo 

variants that were found in the overlap of the corresponding tools’ calls. For each intersection, the 

results of the Sanger validation of these variants are shown.  
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B. The DeNovoCNN and GATK results on SolveRD samples from different exome sequencing 

kits and platforms. For each sequencing kit, the number of samples used is indicated in 

brackets. The first two graphs show the distribution of the number of calls (on the horizontal axis) 

per sequencing kit using boxplots for DeNovoCNN and GATK with high-quality DNMs 

respectively. The last graph shows the distribution of the average coverage per sequencing kit 

using violin plots. 
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Figure 4. Validation and comparison of the DeNovoCNN method on genome data. The figure 

contains 2 plots for the performance based on raw and high confidence DNM calls (Material and 

methods). The tools used for the comparison are on the horizontal axis: DeepTrio (DeepVariantWGS), 

DeepTrio (DeepVariant_unfiltered), GATK with high quality DNMs, GATK, and DeNovoCNN. The green, 

orange and violet bars show precision, recall (sensitivity), and specificity respectively.  
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TABLES 

 

Table 1. The results of the comparison on the GIAB dataset. Every row shows different statistics and 

performance metrics for DeNovoCNN, DeNovoGear with the probability threshold of 0.5 and 0.9, 

DeepTrio with different settings, GATK and GATK with high quality DNMs, and our in-house tool. The first 

column shows the name of the tool, the next five columns show the number of total DNM calls, the 

number of true positive, false positive, true negative and false negative DNM calls respectively based on 

GIAB reference calls. The next 4 columns show the performance metrics, such as sensitivity/recall, 

specificity, precision and accuracy.  

 

 
  

Tool Calls TP FP TN FN 
Sensitivity/

Recall 
Specificity Precision Accuracy 

DeNovoCNN 1233 1198 35 640 125 90.55 94.81 97.16 91.99 

DeNovoGear-0.5 1346 1063 283 392 260 80.35 58.07 78.97 72.82 

DeNovoGear-0.9 1161 1047 114 561 276 79.14 83.11 90.18 80.48 

DeepTrio (DeepVariantWGS, 
BQSR) 

210 176 34 641 1147 13.3 94.96 83.81 40.89 

DeepTrio (DeepVariantWGS, 
no BQSR) 

268 240 28 647 1083 18.14 95.85 89.55 44.39 

DeepTrio 
(DeepVariant_unfiltered, 
BQSR) 

1207 1127 80 595 196 85.19 88.15 93.37 86.19 

DeepTrio 
(DeepVariant_unfiltered, no 
BQSR) 

1222 1129 93 582 194 85.34 86.22 92.39 85.64 

GATK 1338 1171 167 508 152 88.51 75.26 87.52 84.03 

GATK_HC 1257 1149 108 567 174 86.85 84.0 91.41 85.89 

In-house 1293 1195 98 577 128 90.33 85.48 92.42 88.69 
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Table 2. The results of the Sanger/IonTorrent validations on the 20 WES trios based on raw calls 

of the tools.  Every row shows different statistics and performance metrics for DeNovoCNN, GATK with 

high quality DNMs and GATK, DeNovoGear with a probability threshold of 0.9, and our in-house tool. The 

first column shows the name of the tool, the next five columns show the number of total DNM calls, the 

number of true positive, false positive, true negative and false negative DNM calls respectively based on 

the results of Sanger/IonTorrent validations. The next 4 columns show the performance metrics, such as 

sensitivity/recall, specificity, precision and accuracy.  

 

Tool Calls TP FP TN FN 
Sensitivity/

Recall 
Specificity Precision Accuracy 

DeNovoCNN 75 24 51 2488 0 100.0 97.99 32.0 98.01 

GATK_HC 103 20 83 2456 4 83.33 96.73 19.42 96.61 

GATK 147 20 127 2412 4 83.33 95.0 13.61 94.89 

DeNovoGear-0.9 599 19 580 1959 5 79.17 77.16 3.17 77.18 

In-house 85 20 65 2474 4 83.33 97.44 23.53 97.31 

 

 

Table 3. Validations on the 7 WGS trios using PacBio LRS based on raw calls of the tools. Every 

row shows different statistics and performance metrics for DeNovoCNN, GATK with high quality DNMs 

and GATK, and DeepTrio with two different settings. The first column shows the name of the tool, the 

next five columns show the number of total DNM calls, the number of true positive, false positive, true 

negative and false negative DNM calls respectively based on comparison with DNMs from PacBio HiFi 

LRS. The next 4 columns show the performance metrics, such as sensitivity/recall, specificity, precision 

and accuracy.  

Tool Calls TP FP TN FN 
Sensitivity/

Recall 
Specificity Precision Accuracy

DeNovoCNN 2335 509 1826 23557 113 81.83 92.81 21.8 92.54 

GATK_HC 5562 471 5091 20292 151 75.72 79.94 8.47 79.84 

GATK 8353 475 7878 17505 147 76.37 68.96 5.69 69.14 

DeepTrio 
(DeepVariant_unfiltered) 

14554 457 14097 11286 165 73.47 44.46 3.14 45.16 
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DeepTrio 
(DeepVariantWGS) 

5792 98 5694 19689 524 15.76 77.57 1.69 76.09 
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