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ABSTRACT

De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of
DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics.
Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven
coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM
caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160x164 resolution
images. DeNovoCNN was trained on DNMs of 5,616 whole exome sequencing (WES) trios achieving
total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased
recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear,
DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and
WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN
outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust
against different exome sequencing and analyses approaches, thereby allowing the application on other
datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment
(BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.
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INTRODUCTION

Many developmental disorders, such as intellectual disability (1), autism spectrum disorder (2) and
multiple congenital anomalies (3) are known to be caused by de novo mutations (DNMs) (4,5). The
reliable identification of DNMs is, therefore, of paramount importance both for genetic testing as well as
research studies. Because of the genetic heterogeneity that exists for disorders where DNMs play a
major role, the identification of DNMs is typically performed based on whole exome (WES) or whole
genome sequencing (WGS) data. In principle, DNMs can be easily identified by selecting variants in the
proband that are not present in either of the parents. In practice, however, this process is complicated by
sequencing artifacts, mapping artifacts, differences in sequence coverage and mosaicism. Moreover, the
genome of an average individual has 40 - 80 DNMs of which on average 1.45 occur in the coding regions
(6), making DNMs considerably rarer than errors associated with sequencing technology. Practically this
means that the sensitivity and specificity of DNM detection are usually balanced by selecting appropriate

quality score cutoffs.

Several different methods have been developed to identify DNMs in next-generation sequencing (NGS)
data. With methods such as DeepTrio (7) and the Genome Analysis Toolkit (GATK) (8) de novo calling is
achieved straightforwardly by performing multi-sample variant calling and subsequent selection of
variants based on genotypes corresponding to de novo mutations. The downside of these approaches is
that DNM calling is dependent on the variant calling, which therefore always needs to be performed with
the same method. For existing datasets, this may require recalling of variants with potentially high
computational and storage overheads. Other tools, such as DeNovoGear (9) and TrioDeNovo (10) are
able to call DNMs based on existing variant calls by modelling the probability of mutation transfer using
mutation rate priors. All of these approaches provide high sensitivity, but the specificity is usually lower
due to the amount of noise in NGS data, resulting in a high number of false positive calls (11).

Subsequent filtering of DNMs based on quality criteria is, therefore, typically required.

Deep learning, a field of machine learning, has recently seen a growth in popularity amongst applications
in genomics (12). Deep learning approaches have been able to achieve improvements in many genomics
applications by converting genomic data into an image-like representation and employing convolutional
neural networks (CNNSs) (e.g. tumor type classification using RNA-Seq data (13) and germline variant
calling (7)). Here we developed DeNovoCNN, a deep-learning model that encodes trio NGS data as

images and uses a suite of CNNs to detect de novo mutations in next generation sequencing data.
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MATERIALS AND METHODS

Training, validation and test datasets

A cohort of 6,067 child-parent trios was used for building the training and validation datasets, which is an
extension of the cohort used in Kaplanis et. al. (5). All of the individuals were initially referred to the
Radboudumc Department of Human Genetics with an indication of unexplained developmental delay, for
whom trio WES was performed as described before (5). Briefly, all samples were sequenced on lllumina
HiSeqg 2000/4000 instruments using Agilent SureSelect v4 or v5 exome enrichment kits, respectively.
Initially, de novo calling was performed using our in-house method based on Samtools. Subsequently, all
calls from the cohort used in Kaplanis et. al. were filtered based on quality metrics as described in the
original manuscript (5) and the rest of the cohort was filtered according to the following approach: GATK
quality score > 300 for substitutions and > 500 for insertions and deletions, coverage = 20X in the
proband, VAF > 30%. The complete dataset yielded 13,068 DNM calls, which were used to construct the

training and validation datasets (Supplementary Figure 1).

Snapshots of all of the potential DNM calls were generated using the Integrative Genomics Viewer (IGV)
(14) for visual inspection, and each variant was evaluated by assigning it to one of the three classes:
DNM, IV (inherited variant) or UN (unknown) for cases where it was not feasible to make the confident
decision on visual inspection alone. UN variants were removed from the dataset. The obtained dataset of
5,616 trios was complemented with randomly selected IVs resulting in 10,274 DNMs and 55,134 IVs. The
5,616 trios were randomly divided into training, validation and test subsets using a 70/15/15 percentage

ratio. (Supplementary Figure 1).

One of the challenges of DNM detection is to distinguish false positives in difficult genomic regions, so we
developed a way to add such examples. First, we took the current training and validation datasets to train
an interim DeNovoCNN model for DNMs calling. Second, we randomly selected 403 trios and applied an
interim DeNovoCNN model to get candidate DNM calls on these trios. Finally, we manually curated all
calls in IGV, selecting 905 Vs that were either clearly inherited from the parents or occurred in difficult
regions where a lot of sequencing mistakes and artefacts were visible. In addition, we selected 159 true
DNMs. This provided a better representation of the locations where our algorithm made mistakes in the

previous step and therefore the most difficult genomic regions for the model.

Despite the large exome dataset, the total number of DNMs for training was relatively low. Therefore, we
supplemented the DNM dataset by performing DNM calling using the in-house caller on 2 artificial trios
where the child was unrelated to the parents. These 2 trios were constructed by randomly sampling 2

parent pairs, followed by the random choice of a child (Supplementary Figure 1). This resulted in an
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additional 1,005 DNMs that were added only to the training dataset to avoid biases in validation and test

datasets.

All IVs and DNMs were further assigned into three categories: insertions, deletions and single-nucleotide

substitutions for the training of the three different models. (Supplementary Table 1).

DeNovoCNN

Model architecture

We aimed to replicate the visual inspection process of possible DNMs performed by human experts using
software such as IGV. By converting NGS data into RGB images de novo variant calling could be
approached as a computer vision classification task with two classes: DNMs and IVs. The state-of-the-art
approach for vision classification tasks is the convolutional neural network (CNN), a variation of which we
chose for our purposes. The choice of the architecture was a trade-off between the ability to generalize
(complexity) of the model and the available amount of training data. Thus, the model architecture was
chosen to be basic and consisted of 9 2D convolutional layers with 96 filters, 3x3 kernels, ReLU activation
and the same padding in each layer. After every third convolutional layer, we applied batch normalization
and added a Squeeze-and-Excitation block (15). Global max and average pooling were applied before
the output layer (Supplementary Figure 2). The architecture was developed using Python with the
TensorFlow v.2.3.0 (16). Using this architecture we constructed three separate models, for insertions,
deletions and substitutions because of their specific visual patterns and the skewness of the dataset
towards substitutions. We also considered a single model for all three types of variants but obtained

inferior results using this approach.

Image generation

Variants in de novo and control datasets were converted into images prior to being fed to the
convolutional neural network. All variants of interest were converted into 160x164 RGB images
(Supplementary Figure 3). Image generation was based on reads pileup data in the location of the variant
capturing 20 nucleotides before and after the candidate DNM. Read pileup data from individual trio

members for the same variant position was extracted using the Pysam v.0.19.0 library (17).

Each row in the image encodes a read base sequence. Image columns were structured in a recurring
pattern of 4 pixels per genomic position, which represents a one-hot vector that encodes A, C, T and G
bases respectively. Thus, the image width of 164 pixels represents a sequence of 41 (164 / 4) bases with
the variant starting at the central position (20 using 0 indexing). In a one-hot vector for (A, C, T, G) the
coordinate was filled with a value in the resulting image in case we observe this nucleotide in the
corresponding genomic position in the read, whereas the rest were filled with zeros (Figure 1). Pixel

intensities have a maximum value of 255, adjusted by mapping and base quality scores with higher
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quality corresponding to higher pixel intensity. Each column represents the sequencing depth which was
limited to 160 reads for computational performance. Red, green, and blue color channels represent

different individuals of the trio, corresponding to child, father, and mother respectively.

Hyperparameters optimization

The architecture of the model and the process of training require the definition of some hyperparameters,
such as learning rate, number of convolutional features, batch size, and regularization coefficients. The
choice of these parameters was done using the Hyperband algorithm for hyperparameter optimization
(18) (Supplementary Table 2). The values for the number of convolutional features and batch size were
sampled from [32, 64, 96, 128] and [32, 64] respectively. For continuous parameters the values were
logarithmically sampled from corresponding segments. The L1 coefficient of the sigmoid layer was
sampled from [1e-10, 0.1], learning rate from [1e-8, 0.01] and the Adam weight decay from [1e-8, 0.01].
The Hyperband optimization was performed such that the hyperparameters showed the lowest cross-

entropy loss on the validation dataset.

Training the model

Networks were trained for 100 epochs unless the performance on the validation dataset did not improve
for 40 epochs, in which case the training was stopped. For all 3 networks training stopped before
reaching 100 epochs (Supplementary Figure 4). The final models were selected at the epoch that showed
the best performance on the validation dataset. Due to the large dataset size, the substitution network
was trained first using random weight initialization, while insertion and deletion networks were trained
using weights from the trained substitution network as the starting point. As a result of optimization, some
hyperparameters are different for the three different networks (Supplementary Table 2). Adam optimizer
for substitutions and AdamW for insertions and deletions with default Keras parameters were used for
minimization of binary cross-entropy loss in all models. The initial learning rate was set to the optimized
values for each network with a stepwise decay of 0.5 every 10 epochs (Supplementary Table 2). The
output of the network is a vector containing probabilities for a variant being a DNM and IV. The area
under the curve (AUC), overall accuracy, specificity, sensitivity and F1 score were calculated on the test

set.

Data augmentation was applied during the training of the networks for substitutions, deletions and
insertions. The standard augmentations included random brightness adjustment by a factor between [0.3,
1]. To increase the stability of the model, random shuffling of the reads was implemented. Additionally,
we observed that some specific cases of DNMs were underrepresented in our dataset, namely, DNMs in
low-coverage regions and multi-nucleotide substitutions. We simulated reduced coverage by discarding a
random number of reads from the pileup and enriched the dataset for multi-nucleotide substitutions by

generating adjacent substitutions using the substitution dataset on-the-fly.
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The training was performed on a machine with NVIDIA GeForce GTX TITAN X 12 Gb. Training time on
this machine was approximately 17.6 hours for substitutions, 1.7 hours for deletions, and 1.5 hours for
insertions.

DNM prediction

After the training DeNovoCNN was used for DNM prediction on new data. The input consists of one VCF
and one BAM file per sample (three per trio), as well as paths to the trained model weights for
substitutions, insertions and deletions. The prediction consists of two steps. The first step is dependent on
the initial variant calling used for generating VCF files: using the trio VCF files, the inherited variants are
discarded. This is achieved using the bcftools isec -C child vef father vecf mother vef
(17) command and results in around a 10-fold reduction of the number of genomic locations for
evaluation, which usually ends up with <10,000 variants for WES (depending on capture kit size) and
~100,000 for WGS. The second step iterates through the generated list and classifies each variant as
DNM or non-DNM. The variant is considered to be de novo if the probability of DNM class returned by
DeNovoCNN is higher or equal to 0.5. The application of DeNovoCNN doesn’t require any GPUs. On a
standard 16 core CPU machine, the run-time is approximately 15 — 20 minutes for a 100x coverage WES
trio and 5.5 - 6 hours for a 50x WGS trio.

Performance assessment

In order to validate the performance of the proposed deep learning model, we used datasets from
different types of sequencing (exomes and genomes) as well as different types of enrichment and
sequencing platforms (Supplementary Table 3, Supplementary Methods). DeNovoCNN was compared to
other available algorithms, such as DeepTrio (7), GATK PossibleDeNovo (8), and DeNovoGear (9). We
also compared to our in-house de novo detection algorithm, based on Samtools mpileups, because of the
10 years of experience that we had with this approach.

For validation purposes, we applied the above-mentioned algorithms as follows:
e DeNovoCNN takes as an input trio VCF files and BAM/CRAM files. See the DNM prediction
section for the details.

e DeepTrio version 1.2.0 was run on BAM/CRAM files to call variants on a trio, followed by
GLnexus tool for gvVCF merging according to DeepVariant and GLnexus best practices (19) with
optimized configuration for DeepVariant caller in WES and WGS data (DeepVariantWES,
DeepVariantWGS). We additionally ran GLnexus using a config with no quality filters
(DeepVariant_unfiltered) as it is suggested in the DeepTrio available documentation. Since it is
recommended not to perform BQSR on the input files for DeepTrio, we run the tool on the BAMs
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without base recalibration as well. De hovo mutations were defined as Mendelian violations with a
heterozygous variant in the child and homozygous reference calls in the parents and were
selected with the RTG Tools Mendelian package v.3.12.1 (20).

Whereas DeepTrio performed well on WGS data, we were unable to generate good results for
DeepTrio on WES data. Although we tried different settings and post-analysis filtering, we found
that DeepTrio consistently generated high numbers of DNM calls in WES data. We have
documented our efforts and results in the Supplemental (Supplementary Table 4).

e DeNovoGear version 1.1.1 (9) was run according to the specifications. DeNovoGear takes in
PED and BCF files as input. The BCF file was generated using the following command:

samtools mpileup -gDf reference.fa child.bam father.bam mother.bam

e GATK (gatk4-4.1.2.0 and gatk4-4.1.8.1) was run on BAM/CRAM or gVCF files according to the
best practices for germline short variant discovery (SNPs + indels) and “Genotype Refinement

workflow for germline short variants” (8) to detect de novo variants.

e Our in-house method: this is an in-house developed method that generates a list of de novo
candidates based on the VCF files of the trio (1). For WES remaining candidates were then
filtered out based on gnomAD allele frequency <1.0%. For WGS data gnomAD allele frequency
<0.1% and xAtlas quality score >15 filters were used. Subsequently, this method performs
Samtools pileups which are used to select the most likely DNM candidates based on a set of hard
filters. The variant is considered to be de novo if the coverage in both parents is =10 and either
there are no alternative reads in the parents or the VAF in both parents <15% with the number of

alternative reads <3.

We compared these methods based on the raw de novo calls, as well as after the application of the
commonly used quality filtering for de novo mutations. This high-quality DNM set was created using the
following filters (derived from in-house practices): number of reads in the sample and both parents =10,

variant allele frequency >20%, gnomAD allele frequency <0.01%.

RESULTS

We used a convolutional neural network (CNN) with squeeze-and-excitation blocks (15) as the
architecture for DeNovoCNN (Figure 1, Supplementary Figure 2), and trained three separate models for
substitutions, insertion and deletion variants. Our primary training dataset was based on DNMs and
inherited variants (IVs) from a cohort of 6,067 child-parent trios that were supplemented with simulated

data in order to optimize training (5), (Supplementary Figure 1, Material and Methods). All variants were
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converted into 160x164 RGB images (Supplementary Figure 3). The dataset was split into an 70%
training (8,517 DNMs, 40,590 1Vs), 15% validation (1,357 DNMs, 7,110 IVs; Supplementary Table 1) and
15% test (1,564 DNMs, 8,410 IVs) dataset. DeNovoCNN generates a probability of a variant being de
novo, and, therefore, we used a threshold of >0.5 to select de novo calls. After training DeNovoCNN
achieved a high sensitivity/recall rate of 96.74% (substitutions: 97.71%, insertions: 91.76%, deletions:
91.76%) and precision of 96.55% (substitutions: 97.78%, insertions: 96.3%, deletions: 87.64%)
(Supplementary Figure 5, Supplementary Figure 6, Supplementary Table 5) on the test dataset.

Comparison on GIAB WGS dataset

In order to compare our method to other de novo detection methods on an independent dataset, we used
lllumina WGS data of an Ashkenazim Trio (NA24385; NA24149; NA24143) from the Genome in a Bottle
(GIAB) consortium (21). This trio was sequenced using various different technologies in order to create a
dataset of 1,323 high-quality cell-line and germline DNMs. We only considered DNMs in high-quality
regions, as suggested by the GIAB consortium. We compared DeNovoCNN DNMs to DNMs from
DeepTrio (applied on BAMs with and without BQSR, with DeepVariantWGS and DeepVariant_unfiltered
presets for GLnexus), in-house method based on Samtools (17), GATK (8), GATK filtered for high
confidence DNM calls (GATK_HC), and DeNovoGear filtered using a =0.5 and =0.9 probability
thresholds (DeNovoGear-0.5, DeNovoGear-0.9) (9) (Figure 2A, Table 1, Supplementary Table 6,
Supplementary Figure 7).

DeNovoCNN outperformed other algorithms with a precision rate of 97.16%. DeepTrio
(DeepVariant_unfiltered, BQSR) showed a precision of 93.37%, our in-house tool showed a precision of
92.42%, and DeepTrio (DeepVariant_unfiltered, no BQSR) showed 92.39%, while GATK_HC and
DeNovoGear-0.9 performances were 91.41% and 90.18% respectively. DeNovoCNN also has the highest
sensitivity/recall rate of 90.55%, our in-house tool showed 90.33%, and DeepTrio
(DeepVariant_unfiltered, no BQSR) showed 85.34%, GATK and DeNovoGear-0.5 performance were
88.51% and 80.35% respectively (Figure 2A, Table 1). We note that DeepTrio was actually trained on this
GIAB dataset, and therefore the DeepTrio results may be slightly inflated.

We observed a relatively low recall for insertions and deletions of all algorithms which led us to
investigate possible problems with the GIAB high-quality DNM dataset (Supplementary Table 6).
Therefore, we performed manual cleaning of likely false positive de novo insertion and deletion calls in
the GIAB gold standard dataset based on visual inspection (Supplementary Methods). We then repeated
our comparison on this manually curated GIAB dataset and found that DeNovoCNN still outperformed all

other methods on sensitivity/recall as well as precision and accuracy (Figure 2B, Supplementary Table 7).
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Comparison on 20 WES trios
The comparison on the GIAB dataset highlighted the difficulties in obtaining high-quality validation

datasets for DNMs. Therefore, we also compared DeNovoCNN performance with GATK_HC,
DeNovoGear, and our in-house tool on a dataset of 20 randomly selected in-house WES trios that were
not part of the original training dataset of 6,067 trios (Figure 3A, Table 2, Material and Methods). This
allowed us to validate the called DNMs experimentally. For all of the DNM calls by the different methods
we performed a visual selection to discard obvious false-positive variants. The remaining 50 variants
were validated by Sanger/lonTorrent sequencing of which 24 were confirmed as DNMs, and 4 were either
inherited or false positives (Supplementary Figure 8). For 22 variants it was not possible to perform the
validation due to difficulties with designing the primers (9 variants) and depletion of the DNA sample (13
variants). Based on these validations, DeNovoCNN was able to correctly identify all 24 confirmed DNMs
(DeNovoCNN sensitivity/recall is 100%, next best is 83.33% for in-house, GATK and GATK with high
quality calls, and DeNovoGear-0.9 has 79.17%), showing the best performance on all other metrics as
well (Table 2). We subsequently performed additional quality filtering on the DNMs (Materials and
methods), as is likely to happen in a real-world setting, and re-evaluated the results. DeNovoCNN still

showed the best results on all calculated metrics (Supplementary Table 8).

Additionally, we compared different properties (VAF, coverage, strand bias, variant context and
population allele frequency) between the true positive and false positive DNMs from DeNovoCNN, GATK
and DeNovoGear in order to explore obvious possibilities for improvements (Supplementary File). We did
not observe any striking differences, with the exception of population allele frequency (gnomAD) which

could be used as post-processing filtering.

Results on the multi-platform WES trio dataset

Next, we wanted to verify that DeNovoCNN is robust across different capture and sequencing
approaches. We used an exome dataset of the Solve-RD consortium (22) that contains 551 trios
sequenced across 15 different capture/sequencing combinations (Supplementary Methods;
Supplementary Table 9). We measured the robustness of our method by considering the number of
called DNMs per sample and compared this to the number of high-quality DNM calls from GATK
(GATK_HC) (Figure 3B, Supplementary Figure 9). In addition, we expected that the number of calls is
within the same range regardless of the sequencing platform that was used. The median number of
DeNovoCNN calls is 2.5, the 5th and 95th percentiles are 0.0 and 7.55 whereas the overall distribution
lies between 0 and 64 calls. This result is consistent with what we observe for GATK calling (median
number of calls is 4.0, the 5th and 95th percentiles are 1.0 and 13.0, maximum number of calls is 93.0).
This suggests that our method was likely not overfitted to the training dataset's specific capture kit and

sequencing instrument.

10
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Results on 7 WGS trios

To confirm that DeNovoCNN also performs well on whole-genome sequencing data, we used 7 in-house
WGS trios. We applied DeNovoCNN, GATK and DeepTrio (with DeepVariantWGS and
DeepVariant_unfiltered presets for GLnexus). We compared these tools with high-quality de novo calls
obtained with PacBio Hi-Fi long reads sequencing (LRS) (Supplementary Methods). DeNovoCNN had the
highest concordance with LRS calls with sensitivity/recall of 81.83%, next was GATK with 76.37% and
75.72% and for low and high confidence calls respectively. DeepTrio had 73.47% and 15.76%
concordance with DeepVariant_unfiltered and DeepVariantWGS preset filtration respectively.
DeNovoCNN outperformed other tools significantly based on the specificity (92.81%), precision (21.8%),
and accuracy (92.54%) (Figure 4, Table 3). We repeated the comparison after filtering the DNMs for high

quality calls (Materials and methods) and obtained similar results (Figure 4, Supplementary Table 10).

DISCUSSION

Here we introduced DeNovoCNN, a novel approach to de novo variant calling based on a convolutional
neural network. We applied DeNovoCNN to several independent datasets such as the GIAB WGS
Ashkenazi trio, 20 WES trios and 7 whole-genome short-read sequencing trios to compare the
performance with other methods (GATK, Samtools, DeepTrio, DeNovoGear) based on orthogonal
validations with the GIAB gold standard DNM dataset, Sanger/lonTorrent validations and PacBio LRS
respectively. For all of these datasets, we find that DeNovoCNN consistently outperforms other
approaches in terms of precision, recall and specificity. An advantage of DeNovoCNN is that it is in
principle not dependent on the variant calling method itself, which will make it easier to use on existing
datasets and incorporate into existing data analysis pipelines. Other approaches such as GATK and
DeepTrio, require that variants are called in a specific way and otherwise will not be able to produce DNM
calls. This means that for existing datasets recalling is likely to be needed which may represent a
significant (computational) effort. However, we cannot fully exclude that for particular variant calling

methods, DeNovoCNN will need to be retrained.

Another potential advantage comes from the observation that DeNovoCNN seems to be able to identify
also mosaic variants. Because these variants are even rarer than DNMs we were not able to perform a
thorough evaluation. However, we ran DeNovoCNN on 10 WES trios in which a mosaic variant had been
reported and identified 9 out of 10 of these variants (Supplementary Table 11).

The biggest challenge of DeNovoCNN is common for most deep learning models and is related to the fact
that the model should generalize well to other data unseen during training. Deep learning models can be
sensitive to subtle differences in the data which can lead to unexpected results. Because we exclusively
used data from a single center for the training of our model, albeit from two different capture kits and

sequencing instruments we have used data augmentation techniques to prevent overfitting. Our
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validations are for the most part done on completely different datasets than those used for training the
model, such as the GIAB dataset, the 7 WGS trios, and the WES data from the Solve-RD project. For all
of these datasets, we obtain good results, supporting the notion that DeNovoCNN is not overly biased
towards the training dataset. However, we cannot exclude that some residual bias from the training data
exists and that this may become apparent when DeNovoCNN is applied to other datasets. We tested for
two potential biases, namely lower coverage sequencing data, and omitting Base Quality Score
Recalibration (BQSR). At lower coverages, we observed no drastic effects on recall and precision
(Supplementary Figure 10) and find a high correlation in DeNovoCNN predictions for the alignments with
and without BQSR (Supplementary Figure 11). Another hurdle to the application of DeNovoCNN could be
the fact that nowadays CRAM is becoming a new data standard (23) for storing sequence alignments.
Therefore, we also compared DeNovoCNN results from BAM files and corresponding CRAM files with
quality-score binning. We find that the correlation between the prediction on BAM and CRAM files is very

high (Supplementary Figure 12) and therefore expect DeNovoCNN to work equally well on CRAM files.

A possible source of bias of our model lies in the generation of the training data using manual inspection
of the variants in IGV. We did not observe any obvious biases in the performance of DeNovoCNN on
independent datasets that seemed to arise from our manual inspection. However, comprehensive gold
standard DNM datasets, including DNMs in the complex regions of the human genome, will be needed to

make such manual visual inspection unnecessary in the future.

Although DeNovoCNN shows overall good performance compared to other methods, we have seen some
possibilities for future improvements. We noticed that the performance on indels is lower than the
performance on substitutions. This is not surprising since the calling of indels is also more challenging
than for substitution variants, but could also be explained by the fact that the amount of the indels events
in the training dataset is much lower than substitutions events. In addition, DNMs were mostly validated
using visual inspection. Because indel de novo events are more difficult to distinguish manually from
sequencing artefacts, this could have led to a poorer training dataset specifically for these events. In
general, we remark that for future improvements in DNM detection, it will be essential to have sizeable,

curated training datasets.

Other possible improvements could lie in the model itself. The training of deep learning models is
computationally intensive, which is why we chose a relatively simple CNN. Although we did not observe
any clear negative effects on model performance, more complex architectures and more context

information for variants could potentially improve the performance further.
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AVAILABILITY

DeNovoCNN is open-source software available as a Docker container in the GitHub repository
(https://github.com/Genome-Bioinformatics-RadboudUMC/DeNovoCNN).

The training dataset for DeNovoCNN is available in the GitHub repository

(https://github.com/Genome-Bioinformatics-RadboudUMC/DeNovoCNN training dataset).
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FIGURES

Figure 1. Overview of the method depicting the different steps starting with (from left to right), the training
data, encoding of sequence data as images, training of the different deep-learning models, and validation
of the final model. The first step consisted of the construction of training and validation datasets using de
novo and inherited or false de novo variants from the 6,067 trios. As is shown in the “Image encoding”
section of the figure all variants were transformed to RGB images, where each color channel corresponds
to the child, father, and mother data respectively. Every row encodes a separate read, and every
nucleotide in a particular position is encoded as a one-hot vector, containing (A, C, T, G). 70% of these
images were then used to train 3 convolutional neural networks (for substitutions, deletions, and
insertions variants). The remaining 15% of the data (1,564 DNM variants, 8,410 IV variants) was used as
a test dataset. The resulting models were thoroughly validated using various independent datasets: the
external gold standard GIAB WGS trio, the in-house 20 WES dataset, the in-house 7 WGS dataset, and
the multi-platform 551 WES trios from the SolveRD project.

Training data Image encoding Network training Validation

: Offspring 19 20 21 DNM=6,179 .
Ha 2 40 G /T H IV=35,488 Comparison
e 2 EEREEEREE i & on 20 WES trios
e | i—— £
: i g DNM=1,564 o
i = £ IV=8,410 Validation on GIAB
: Father g : DNM=1,350 WGS trio
i i i - i V=2,732 : (NA24385)
H — m one-hot OI'\E'. 10 one-hof : E )
»: L —- i merge into RGB '» *
H r v H | Comparison on
i Deletions - Solve 551 different
n = 6,067 trios H Mother DNM=988 Testing WES trios
n — ; V=2,410
[ H
e i Comparison
/~  on7WGS trios
Insertions

16



https://doi.org/10.1101/2021.09.20.461072
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.461072; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2. The comparison results on the GIAB reference trio. These figures contain 4 plots of the
different tools’ performance for substitutions, insertions, deletions, and all variants on a GIAB dataset. All
tools for the comparison are on the horizontal axis: DeNovoGear with a threshold of 0.5, DeNovoGear
with a threshold of 0.9, DeepTrio (DeepVariant_unfiltered, BQSR), DeepTrio (DeepVariant_unfiltered, no
BQSR), GATK with high quality calls only, GATK, our in-house tool, and DeNovoCNN. The green, orange
and violet bars show precision, recall (sensitivity), and specificity respectively.

A. The performance of different de novo calling methods for the GIAB reference genome trio.

B. The performance of different de novo calling methods for the GIAB reference genome trio using
the manually curated set of DNMs (Material and Methods).
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Figure 3. Validation and comparison of the DeNovoCNN method with other tools on exome data.

A. Comparison results on 20 in-house WES trios based on DNMs that were validated by
Sanger/ lonTorrent sequencing. The graph contains only variants that were marked as
potentially de novo after manual validation in IGV and then sent for Sanger/lonTorrent validation
(see Materials and Methods). The green oval contains all potentially de novo variants for the
GATK tool with high quality DNMs, the light blue oval indicates potential de novo variants
according to the in-house tool, the magenta oval contains potentially de novo variants according
to the DeNovoCNN tool, and finally, light brown oval shows potentially de novo variants based on
the DeNovoGear tool. Each intersection of the circles contains the number of potentially de novo
variants that were found in the overlap of the corresponding tools’ calls. For each intersection, the
results of the Sanger validation of these variants are shown.
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B. The DeNovoCNN and GATK results on SolveRD samples from different exome sequencing
kits and platforms. For each sequencing kit, the number of samples used is indicated in
brackets. The first two graphs show the distribution of the number of calls (on the horizontal axis)
per sequencing kit using boxplots for DeNovoCNN and GATK with high-quality DNMs
respectively. The last graph shows the distribution of the average coverage per sequencing kit
using violin plots.
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Figure 4. Validation and comparison of the DeNovoCNN method on genome data. The figure
contains 2 plots for the performance based on raw and high confidence DNM calls (Material and
methods). The tools used for the comparison are on the horizontal axis: DeepTrio (DeepVariantWGS),
DeepTrio (DeepVariant_unfiltered), GATK with high quality DNMs, GATK, and DeNovoCNN. The green,
orange and violet bars show precision, recall (sensitivity), and specificity respectively.
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TABLES

Table 1. The results of the comparison on the GIAB dataset. Every row shows different statistics and
performance metrics for DeNovoCNN, DeNovoGear with the probability threshold of 0.5 and 0.9,
DeepTrio with different settings, GATK and GATK with high quality DNMs, and our in-house tool. The first
column shows the name of the tool, the next five columns show the number of total DNM calls, the
number of true positive, false positive, true negative and false negative DNM calls respectively based on
GIAB reference calls. The next 4 columns show the performance metrics, such as sensitivity/recall,
specificity, precision and accuracy.

Tool Calls | TP FP | TN FN Segselggll:ty/ Specificity Precision Accuracy
DeNovoCNN 1233 | 1198 | 35 | 640 | 125 90.55 94.81 97.16 91.99
DeNovoGear-0.5 1346 | 1063 | 283 | 392 | 260 80.35 58.07 78.97 72.82
DeNovoGear-0.9 1161 | 1047 | 114 | 561 | 276 79.14 83.11 90.18 80.48
DeepTrio (DeepVariantWGS, | 4 | 176 | 34 | 641 | 1147 13.3 94.96 83.81 40.89
BQSR)

DeepTrio (DeepVariantWGs, | ,eq | 240 | 28 | 647 | 1083 18.14 95.85 89.55 44.39
no BQSR)

DeepTrio

(DeepVariant_unfiltered, 1207 | 1127 | 80 | 595 | 196 85.19 88.15 93.37 86.19
BQSR)

DeepTrio

(DeepVariant_unfiltered, no 1222 | 1129 | 93 | 582 | 194 85.34 86.22 92.39 85.64
BQSR)

GATK 1338 | 1171 | 167 | 508 | 152 88.51 75.26 87.52 84.03
GATK_HC 1257 | 1149 | 108 | 567 | 174 86.85 84.0 91.41 85.89
In-house 1293 | 1195 | 98 | 577 | 128 90.33 85.48 92.42 88.69
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Table 2. The results of the Sanger/lonTorrent validations on the 20 WES trios based on raw calls
of the tools. Every row shows different statistics and performance metrics for DeNovoCNN, GATK with
high quality DNMs and GATK, DeNovoGear with a probability threshold of 0.9, and our in-house tool. The
first column shows the name of the tool, the next five columns show the number of total DNM calls, the
number of true positive, false positive, true negative and false negative DNM calls respectively based on
the results of Sanger/lonTorrent validations. The next 4 columns show the performance metrics, such as

sensitivity/recall, specificity, precision and accuracy.

Tool Calls TP FP TN FN Se;zi(;[gll:ty/ Specificity Precision Accuracy
DeNovoCNN 75 24 51 2488 0 100.0 97.99 32.0 98.01
GATK_HC 103 20 83 2456 4 83.33 96.73 19.42 96.61
GATK 147 20 127 | 2412 4 83.33 95.0 13.61 94.89
DeNovoGear-0.9 599 19 580 | 1959 5 79.17 77.16 3.17 77.18
In-house 85 20 65 2474 4 83.33 97.44 23.53 97.31

Table 3. Validations on the 7 WGS trios using PacBio LRS based on raw calls of the tools. Every
row shows different statistics and performance metrics for DeNovoCNN, GATK with high quality DNMs
and GATK, and DeepTrio with two different settings. The first column shows the name of the tool, the
next five columns show the number of total DNM calls, the number of true positive, false positive, true
negative and false negative DNM calls respectively based on comparison with DNMs from PacBio HiFi
LRS. The next 4 columns show the performance metrics, such as sensitivity/recall, specificity, precision

and accuracy.

Tool Calls TP FP TN FN Se;selégllllty/ Specificity Precision Accuracy
DeNovoCNN 2335 509 1826 | 23557 113 81.83 92.81 21.8 92.54
GATK_HC 5562 471 5091 | 20292 151 75.72 79.94 8.47 79.84
GATK 8353 475 7878 | 17505 147 76.37 68.96 5.69 69.14
DeepTrio

. ) 14554 | 457 14097 | 11286 165 73.47 44.46 3.14 45.16
(DeepVariant_unfiltered)
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