

1 Evolutionary association of receptor-wide
2 amino acids with G protein coupling selectivity
3 in aminergic GPCRs

4

5 Berkay Selçuk¹, Ismail Erol^{2,3}, Serdar Durdağı², Ogun Adebali^{1,4*}

6

7 ¹ Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural
8 Sciences, Sabancı University, Istanbul 34956, Turkey

9 ² Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of
10 Medicine, Bahcesehir University, Istanbul 34734, Turkey

11 ³ Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey

12 ⁴ TÜBİTAK Research Institute for Fundamental Sciences, Gebze 41470, Kocaeli, Turkey

13

14 *To whom correspondence should be addressed: oadebali@sabanciuniv.edu

15 **Competing interests:** The authors declare that they have no conflict of interest

16 Abstract

17 G protein-coupled receptors (GPCRs) induce signal transduction pathways through coupling to four
18 main subtypes of G proteins (G_s , G_i , G_q , $G_{12/13}$), selectively. However, G protein selective activation
19 mechanisms and residual determinants in GPCRs have remained obscure. Herein, we performed an
20 extensive phylogenetic analysis and identified specifically conserved residues for the receptors having
21 similar coupling profiles in each aminergic receptor. By integrating our methodology of differential
22 evolutionary conservation of G protein-specific amino acids with structural analyses, we identified
23 selective activation networks for G_s , G_{i1} , G_o , and G_q . To validate that these networks could determine
24 coupling selectivity we further analyzed G_s specific activation network and associated it with the larger
25 TM6 tilt which is a signature of G_s -coupled receptors. Through molecular dynamics simulations, we
26 showed that previously uncharacterized Glycine at position 7x41 plays an important role in both receptor
27 activation and G_s coupling selectivity by inducing a larger TM6 movement. Finally, we gathered our
28 results into a comprehensive model of G protein selectivity called “sequential switches of activation”
29 describing three main molecular switches controlling GPCR activation: ligand binding, G protein
30 selective activation mechanisms and G protein contact.

31

32 Introduction

33 G protein-coupled receptors (GPCRs) constitute a significant group of membrane-bound receptors that
34 contain five different classes (Fredriksson, Lagerström, Lundin, & Schiöth, 2003; Rosenbaum,
35 Rasmussen, & Kobilka, 2009). The aminergic subfamily of receptors are present in class A and include
36 receptors for dopamine, serotonin, epinephrine, histamine, trace amine, and acetylcholine (Vass et al.,
37 2019). With a large amount of known coupling profiles, experimental structures, and mutagenesis
38 experiments available, aminergic receptors are by far the most studied subfamily of GPCRs. These
39 receptors can couple with different heterotrimeric G proteins which induce distinct downstream signaling
40 pathways (Wettschureck & Offermanns, 2005). Disruption of the proper receptor activation is likely to
41 be the cause of diseases such as coronary heart disease (Jialu Wang, Gareri, & Rockman, 2018) or
42 major depression (Catapano & Manji, 2007; Senese, Rasenick, & Traynor, 2018) . Therefore,
43 understanding the molecular mechanisms of coupling selectivity is crucial for developing better
44 therapeutics and diagnostics.

45

46 With the advancement of new methodologies, two recent studies have revealed the G protein-coupling
47 profiles of a large set of receptors. Inoue et al. (Inoue et al., 2019) have used a shedding assay-based
48 method to measure chimeric G protein activity for 11 unique chimeric G proteins representing all human
49 subtypes and 148 human GPCRs. Because they have not managed to find an evident conserved motif
50 determining G protein selectivity between receptors, they have built a machine learning-based prediction
51 tool to identify sequence-based important features for each G protein. Similarly, Avet et al. (Avet et al.,
52 2020) have used a BRET-based method detecting the recruitment of the G protein subunits to the
53 receptor to reveal coupling profiles for 100 different receptors. The main strength of this study is that it
54 does not require a modified G protein. Although both high-throughput studies largely agree with each
55 other for certain G proteins, there are inconsistencies between the datasets. Thus, these valuable
56 resources should be analyzed together in detail to gain more power in identifying the selectivity-
57 determining factors in G protein coupling.

58

59 Several attempts have been made to identify molecular determinants of G protein coupling. Most of
60 these (Chung et al., 2011; Du et al., 2019; Liu et al., 2019; Okashah et al., 2019; Semack, Sandhu,
61 Malik, Vaidehi, & Sivaramakrishnan, 2016) have focused on the G protein-coupling interface by
62 analyzing contacts between receptor and the G protein. The others (Kang et al., 2018; Rose et al., 2014;
63 Van Eps et al., 2018; Jinan Wang & Miao, 2019) have highlighted the structural differences between
64 receptors that couple to different G proteins. Flock et al. (Flock et al., 2017) have analyzed the
65 evolutionary conserved positions of orthologous and paralogous G proteins and proposed the “lock and
66 key” model. According to their model, G proteins (locks) have evolved with subtype-specific conserved
67 barcodes that have been recognized by different subfamilies of receptors (keys). Because receptors
68 with distinct evolutionary backgrounds can couple to the same G protein, receptors also must have
69 evolved to recognize the existing barcodes. Although the model has explained the selectivity
70 determining interactions between G protein and receptors, we still lack subfamily specific receptor
71 signaling mechanisms that involves but not limited to the G protein coupling interface.

72

73 Despite the extensive research carried out to identify the determinants of G protein selectivity, selectivity
74 determining positions within receptors have remained underexplored. Here, we developed a novel

75 methodology to identify a set of specifically conserved residues for the receptors sharing similar coupling
76 profiles through identification of orthologous receptors. Structural analyses revealed that specifically
77 conserved positions are part of G protein specific activation pathways that allow receptors to transduce
78 signal from ligand binding pocket to the G protein-coupling interface, induce the necessary
79 conformational changes to get coupled by the relevant G protein subtype.

80 **Results**

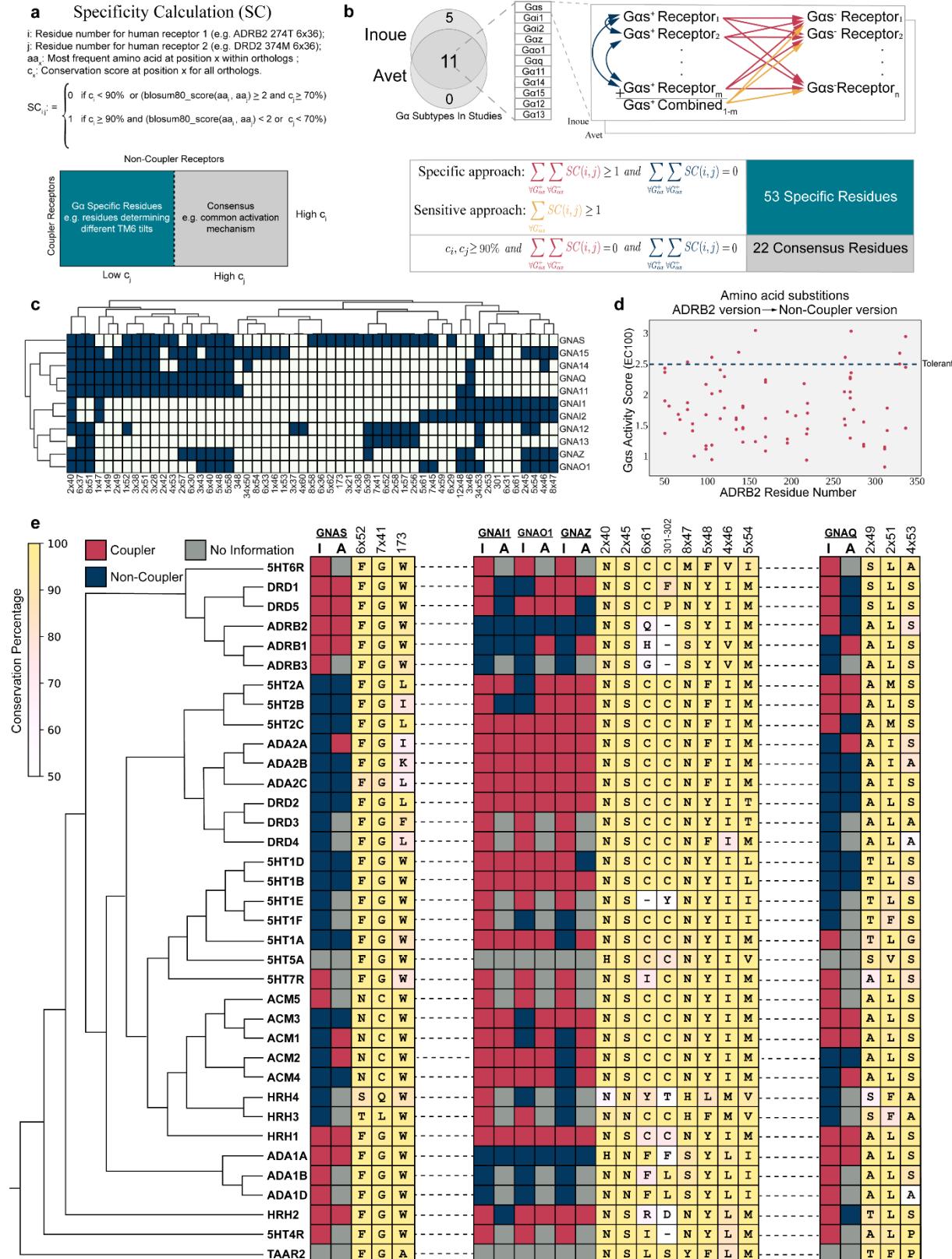
81 After a gene duplication event, paralogous clades might diverge from each other with respect to their
82 functions. Therefore, evolutionary pressure against paralogous genes might differ. To perform a precise
83 conservation analysis, we aimed to identify the gene duplication nodes in aminergic receptor evolution.
84 We identified receptor subfamilies (orthologous and paralogous sequences) through a meticulous
85 phylogenetic analysis. As we previously proposed (Adebali, Reznik, Ory, & Zhulin, 2016), the variations
86 that observed in a paralog protein of interest may not be tolerated in the orthologous proteins. In our
87 analyses, we only used orthologous receptors to define a subfamily of interest, members of which are
88 likely to retain the same function. This approach greatly improved the sensitivity of conserved residue
89 assignment for each human GPCR.

90
91 To link receptor evolution to its function, we identified residues that are conserved within the functionally-
92 equivalent orthologs for each aminergic receptor. For the residues that play a role in common receptor
93 functions we expect both clades to retain the amino acid residues with similar physicochemical
94 properties. On the other hand, the positions that serve receptor-specific functions, in our case the
95 coupling selectivity, we expect to see differential conservation (**Figure 1a**). Therefore, we grouped
96 receptors based on their known coupling profiles for eleven different G proteins (**Figure 1b**). We termed
97 these groups as couplers (e.g., G_s coupler receptors) and non-couplers, and performed a two-step
98 enrichment method (Figure 1b) to distinguish specifically conserved residues in couplers from non-
99 couplers. Initially, we used a specific approach to identify evident differentially conserved amino acid
100 residues with high confidence. With the specific approach, residues were labeled as specifically
101 conserved when there was a variation between coupler and non-coupler receptors but not within coupler
102 receptors (Figure 1b. red and blue arrows). This approach depends solely on the coupling profile
103 datasets (Avet et al., 2020; Inoue et al., 2019) and thus, they may contain false-positive couplings. To

104 tolerate the insensitivity introduced by potential false positive couplings, we developed and employed a
105 sensitive approach enabling to obtain a more complete set of residues for each G protein subtype by
106 allowing minor variations within the coupler receptors. With this method, we used a single
107 comprehensive multiple sequence alignment that combined all coupler receptors and their orthologs
108 (Figure 1b. orange arrows), allowed minor variations within a group. We didn't apply sensitive approach
109 to G₁₂ and G₁₃ because the low number of coupler receptors would likely cause a high number of false
110 positives. Finally, we compared each aminergic receptor and identified positions that were conserved
111 across all aminergic receptors (consensus) to link the specifically conserved residues to the general
112 mechanism of receptor activation. In total, we identified 53 specifically conserved and 22 consensus
113 residues. The distribution of the specific residues for each G protein is presented in **Figure 1c**.

114

115 We aimed to validate the functional impact of potentially deleterious variants that we observe within non-
116 coupler receptors. Thus, we used a dataset (Jones et al., 2020) containing G_s activity scores at EC100
117 for each possible mutation of ADRB2. 31 residues were identified for G_s and the activity scores of non-
118 coupler variants were plotted (**Figure 1d**). Non-coupler variants that we identified predominantly
119 decrease G_s activity when compared to average activity of tolerant substitutions. Under normal
120 conditions, the decrease in G_s coupling can be attributed to various reasons including misfolding and
121 decreased cell surface expression. However, the substitutions we proposed are not likely to disrupt
122 general receptor functions because the substituting amino acids are indeed found and tolerated in non-
123 coupler receptors (**Figure 1e**) having very high sequence and functional similarity. Additional to the G_s
124 coupling dataset, Kim et al. (Kim et al., 2020) mutated two of the residues we identified for G_q coupling
125 (8x47 and 6x37) to alanine and showed a decrease in G_q activity compared to wild-type 5HT2A receptor
126 which validates that variations at specifically conserved positions are not well-tolerated.



127

Figure 1: Selectivity determining residues for each Gα subtype. **(a)** The formula for specific residue identification.

129 (b) The schema describes the comparisons between paralogous human receptors to find the specifically conserved

130 residues for each Gα. Arrows represent a single comparison. (c) The distribution of specifically conserved residues

131 for each G α subtype and hierarchical clustering of them (complete linkage). **(d)** Possible variants of G $_s$ specific
132 residues that are observed in non-coupler receptors are compared with the wild-type activity score. **(e)** Maximum-
133 likelihood phylogenetic tree of aminergic receptors including coupling profiles, conservation information of selected
134 specifically conserved residues (I: Inoue A: Avet), The background color scale for each consensus amino acids
135 correlates with their conservation (identity).

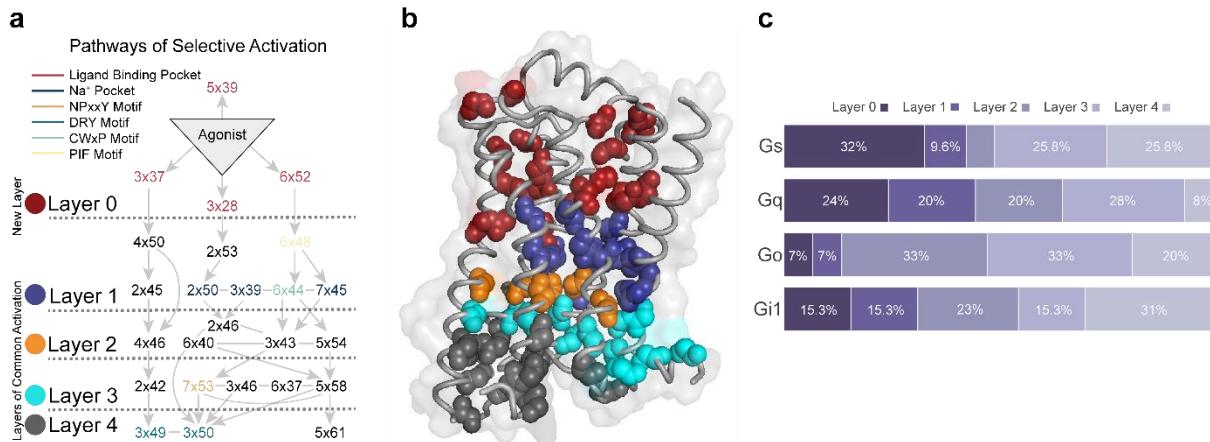
136
137 Experimentally shown non-coupler variants cause loss of function in receptors. However, losing the
138 coupling function may not be associated with G protein coupling selectivity. For an amino acid to be
139 involved in G protein coupling selectivity, it should govern functional G protein-specific roles. These roles
140 can be recognition of G protein, ligand binding and/or establishing allosteric receptor conformations that
141 may favor (or disfavor) the engagement with certain G protein subtypes. Hence, we manually assigned
142 each residue into functional clusters such as coupling interface and ligand binding. For example, our
143 method identified positions that are at the G protein coupling interface such as 8x47 (Kim et al., 2020;
144 Maeda, Qu, Robertson, Skiniotis, & Kobilka, 2019; Zhuang, Xu, et al., 2021) and 6x36 (Rasmussen et
145 al., 2011; Xiao et al., 2021; Yang et al., 2020) with no structural information taken into account. The
146 residues that are in the coupling interface are in line with the model that Flock et al. proposed and are
147 likely important for proper G protein recognition. However, for the residues that we could not directly
148 assign a role in G protein coupling activity, we hypothesized that they should be a part of a network
149 controlling the signal transduction from ligand binding pocket to G protein coupling interface and
150 establish required selective structural conformations. To test this hypothesis, we explored the residue-
151 level contact changes upon coupling to a G protein. We used an algorithm that is called Residue-
152 Residue Contact Score (RRCS) which has been proposed to identify the common activation mechanism
153 in class A GPCRs (Zhou et al., 2019). We calculated Δ RRCS for each interacting residue pairs by
154 subtracting contact scores of the active structure from the inactive structure. All the active structures we
155 used contained a heteromeric G protein machinery coupled to receptor. We filtered out residue pairs
156 with $|\Delta$ RRCS| \leq 0.2 and only kept residues that are in our pool of conserved residues (75 residues in
157 total). We analyzed structures of eight different receptors with four different G proteins (see Methods).
158 The structures we used were experimentally characterized except for one state of a single receptor. As
159 we aimed to use the 10 active-state G $_s$ coupled structures of DRD1, which lacks an experimental

160 inactive structure, we used a model inactive DRD1 structure (Pndy-Szekeres et al., 2018) retrieved
161 from GPCRdb (Kooistra et al., 2021).

162
163 In total, we analyzed 41 pairs of active and inactive structures and identified Δ RRCS values of activation
164 networks. We analyzed each network and detected edges (increase or decrease in contact score)
165 observed at least 36 times regardless the sign of Δ RRCS value to build a network that would represent
166 all 41 networks. By using this network, we identified the most frequently used signal transduction paths
167 (**Figure 2a**), connecting ligand binding pocket to G protein-coupling interface and create a basis for the
168 routes that can induce coupling selectivity. We divided the receptor into five layers based on sequential
169 nature of interactions and illustrated the direction of signal transduction between layers. Additional to
170 the 4 layers (1-4) that were previously proposed in the common activation mechanism (Zhou et al.,
171 2019) we defined “Layer 0” which is corresponds to the ligand binding site. Though the most of the
172 signaling paths pass through important motifs such as Na^+ binding pocket and PIF (Katritch et al., 2014),
173 it is remarkable that the novel path starting with a 3x37 does not require the involvement of any of these
174 important motifs. Within the identified network, the signal is transmitted from ligand binding pocket to
175 the G protein interface by using mainly TM2, TM3, and TM4. We projected all the residues onto an
176 inactive structure of ADRB2 based on the layers they belong to (**Figure 2b**) to provide an insight about
177 their locations of different layers.

178
179 To determine the contribution of each layer for G_s , G_{i1} , G_o and G_q , we calculated the distribution of
180 specific residues to different layers (**Figure 2c**). Layer 0 and Layer 1 are more involved in the coupling
181 for G_s and G_q relative to G_{i1} and G_o . For G_o , 86% of the coupling-related residues are positioned in the
182 layers (2, 3 and 4) closer to the G protein binding site. Differences in these distributions indicate
183 mechanistic differences between distinct coupling events.

184



185

186 **Figure 2:** Structural analysis of molecular pathways that are observed upon coupling with heteromeric G protein
187 complex. **(a)** The most common molecular signal transduction pathways from ligand binding pocket to G protein
188 coupling interface. The arrows represent a contact change upon coupling to a G protein. The network is
189 summarized and divided into different layers based on their functional relevance. **(b)** Projection of main chains of
190 specifically conserved and consensus residues in different layers of activation on inactive ADRB2 structure (PDB
191 ID 2RH1) **(c)** The distribution of specifically conserved residues for each analyzed G α subtype.

192

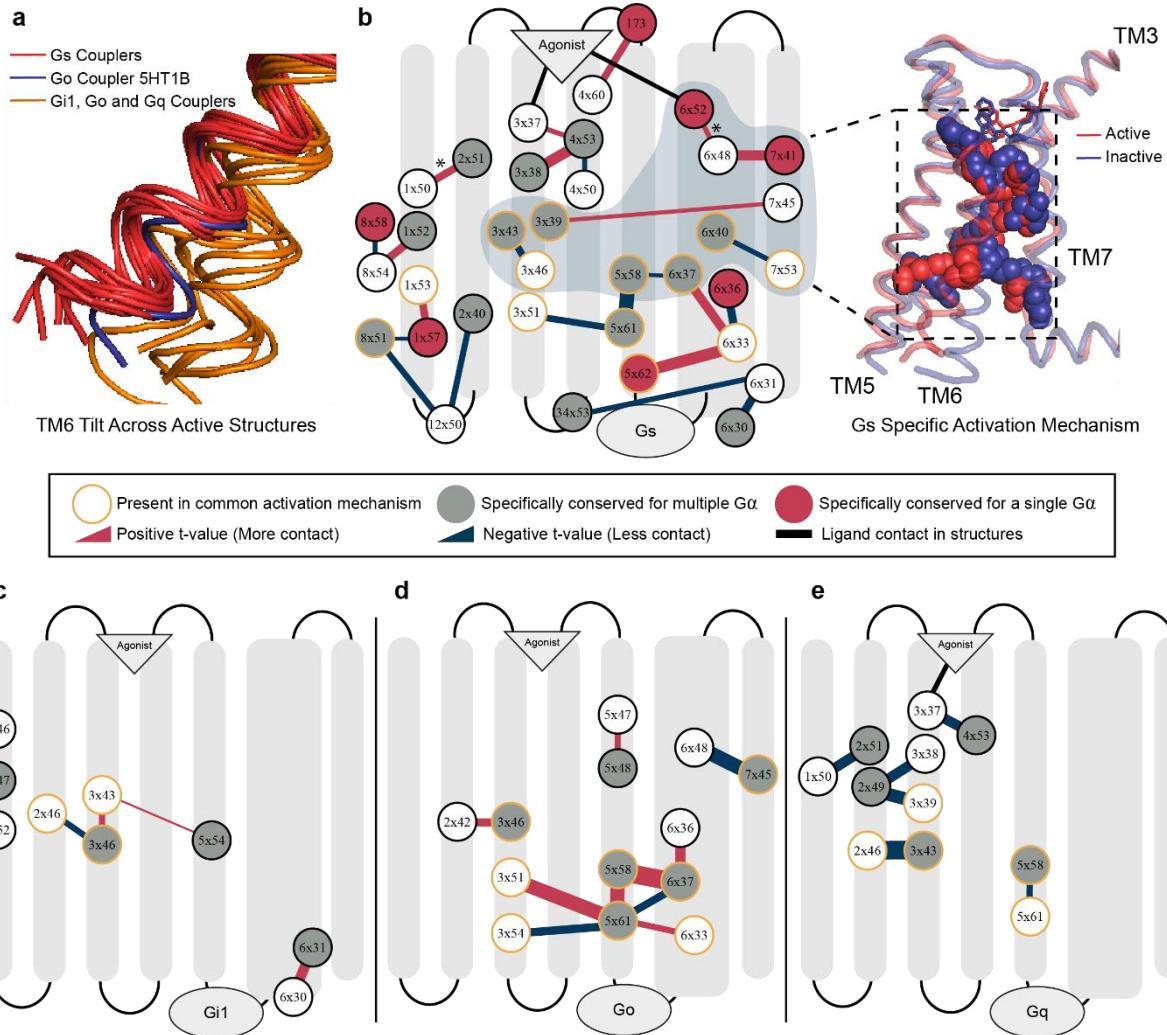
193 To detect if the specifically conserved residues have differential roles in G protein coupling-related
194 mechanisms, we grouped Δ RRCSs (contact changes upon coupling to a G protein) for the receptors
195 coupled to same G protein and compared with the rest by using two sample t-test. This approach
196 yielded interaction changes (Δ RRCS) within the receptors that are significantly different ($p < 0.01$) and
197 specific for G_s, G_{i1}, G_o, and G_q. Significant contact changes occurring between 75 conserved residues
198 were used to construct G protein specific activation mechanisms. The constructed networks (**Figure**
199 **3b-e**) support our evolution-driven hypothesis and demonstrate that specifically conserved residues
200 indeed have differential mechanistic roles in G protein coupling. In parallel to the Figure 2c, networks
201 for G_s and G_q contained ligand contacting residues (Figure 3a and Figure 3e) while networks for G_{i1}
202 and G_o do not. Although, G_{i1} and G_o belong to same subfamily and they share 8 of the specifically
203 conserved residues (47% of the specifically conserved residues for G_o and 62% for G_{i1}) of G proteins
204 their networks are totally different from each other. Moreover, even when we grouped the receptors
205 coupled to G_i together, no significant difference in contact scores having p-value less than 0.01 was
206 observed (Supplementary Table) for the shared specifically conserved residues (Figure 1c). This
207 suggests that receptors coupling to G_i may not necessarily share a common activation mechanism.
208 Therefore, these differences in activation networks could be one of the factors determining selectivity
209 between G_{i1} and G_o coupled receptors.

210

211 Even though residues specifically conserved for the receptors sharing similar coupling profiles are part
212 of G protein specific activation networks, it is still not clear that these contact changes are the basis for
213 selective coupling, or they arise due to the physical interaction with a G protein itself. To show that these
214 networks can determine selectivity we further analyzed the activation network for G_s coupled receptors.
215 Previously, it was shown that receptors coupled to G_s achieve a larger TM6 tilt (Rose et al., 2014; Van
216 Eps et al., 2018) than the receptors coupled to other G proteins. Superimposition of the active structures
217 that we used in our analysis (**Figure 3a**) is also in line with the previous findings. We hypothesized that
218 the network we identified can modulate this structural difference. Furthermore, requirement for a larger
219 TM6 movement can be the reason why G_s specific activation mechanism is more complex than the rest
220 (Figure 3b-e). An exception to this is the TM6 position of 5HT1B (García-Nafría, Nehmé, Edwards, &
221 Tate, 2018) that is coupled to G_o (Figure 3a, blue structure), because it achieved a slightly larger tilt.
222 Thus, we performed an additional statistical test to reveal possible interactions that can promote larger
223 TM6 movement by excluding the samples for 5HT1B and revealed the 6x52-6x48 interaction indicating
224 the role of 6x48 in differential TM6 movement in G_s coupled receptors. (p=0.0023).

225
226 We projected a part of G_s specific activation network which we predicted to be associated with the
227 differential TM6 movement onto experimentally resolved active (red, 3SN6) and inactive (blue, 2RH1)
228 ADRB2 structures (**Figure 3b**). More specifically, we hypothesized that the network containing 6x52 and
229 7x41 triggers this structural difference because interactions at the upper layers are more likely to be
230 leading a structural change. In agreement with our hypothesis, deep mutational scanning of ADRB2
231 (Jones et al., 2020), has revealed that 7x41 is the second and 6x48 is the fourth most intolerant residue
232 to any mutations and, to our knowledge, no previous study has identified the functional role of 7x41 until
233 now. It is expected that a position that is crucial for G_s coupling to be to be one of the most intolerant
234 residues for a receptor primarily coupled to G_s.

235



236

237 **Figure 3: Specific Activation Networks for G_s, G_{i1}, G_o and G_q.** **(a)** TM6 tilt comparison between the active
238 receptors we used. Red: G_s couplers, Orange: G_o, G_{i1} and G_q, Blue: 5HT1B G_o coupler as an exception. **(b)**
239 Interactions within the receptor that are specific ($p < 0.01$) to G_s. Red: increasing contact, blue: decreasing contact,
240 orange circle: present in common activation mechanism, red fill: uniquely identified specific residue for G_s, grey
241 fill: G α specific residue. Width of the lines correlate with statistical significance. Group of residues that possibly
242 facilitate in TM6 movement for G_s coupling were shown on inactive (blue) and active (red) structures. **(c-e)**
243 Specific interaction networks for G_{i1}, G_o and G_q. $p < 0.1$ is used for G_{i1}. *: This interaction is identified only if 5HT1B
244 is neglected from the comparison due to its larger TM6 movement.

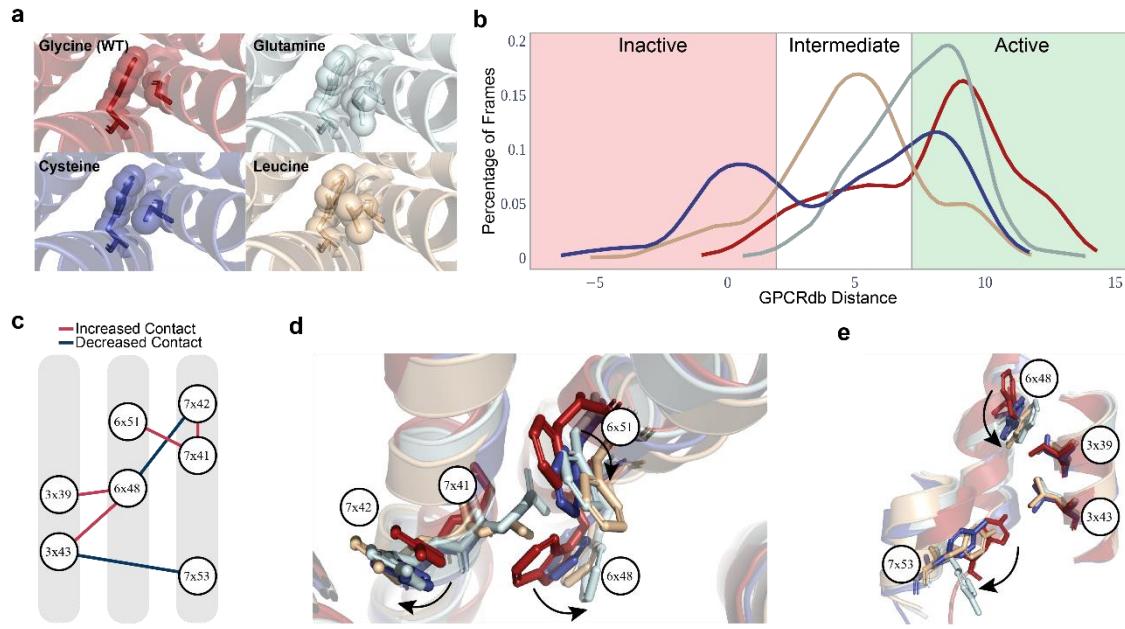
245

246 To validate our methodology and further understand the mechanistic insight of the relevance of core
247 transmembrane region in G protein coupling, we studied the glycine at position 7x41 as a test case and
248 performed molecular dynamics (MD) simulations. We applied three different mutations, G315C, G315Q,
249 and G315L, on monomeric active and inactive-state ADRB2 (**Figure 4a**). We particularly selected
250 variants observed in acetylcholine and histamine receptors (Figure 1e) to validate our hypothesis that

251 variants in non-coupler aminergic receptors at the same position are inactivating. We used two main
252 metrics to assess the molecular impact of these three mutations. First, the comparison active/inactive
253 states based on GPCRdb distances (see methods) revealed that wild-type receptor keeps its active
254 state more than the variants (**Figure 4b**) and leucine residue was the most inactivating mutation. The
255 significant inactivation through integration of leucine mutation is parallel to pre-existing experiments
256 (Arakawa et al., 2011; Jones et al., 2020). Then, to identify the molecular changes in absence of glycine,
257 we evaluated the significant contact differences (Δ RRCS) between WT and mutated MD simulation
258 trajectories.

259
260 To examine the entire trajectory, we selected 11 frames from each simulation with 50 ns time intervals
261 (in total 500 ns) for each replicate. Thus, we compared residue-residue contact scores of 77 mutated
262 and 77 WT frames for active-state simulations, while we compared 22 mutated and 22 WT frames for
263 inactive-state simulations by using two-sided t-test. For each mutation and activation state, we identified
264 significant contact changes ($p<0.01$) and intersected common changes that we observed for all of
265 mutated systems. As a result, we identified 135 residue pairs for active and 83 residue pairs for inactive
266 simulations. When we projected these residue pairs (135 residue pairs) as a contact network, we
267 identified a conserved and highly affected pathway (**Figure 4c**) connecting ligand binding pocket to
268 NPxxY motif which showed changes towards inactivation of the receptor. Then, we projected the
269 identified molecular pathway onto average cluster structures that were produced by using the
270 trajectories from all 7 replicates (35000 frames in total) for each mutation (**Figure 4d-e**). MD results
271 suggested a pathway (Figure 4c) which explains the importance of G315: An increase bulkiness of the
272 amino acid at 7x41 (by non-glycine amino acids) leads to increased contact with 7x42 and 6x51 while
273 7x41 physically impairs the interaction between 6x48 and 7x42. When 6x48 loses its contact with 7x42
274 (Figure 4d), it increases its contact residues at TM3 3x43 and 3x39 (Figure 4e). Increased interactions
275 between TM6 and TM3 loosens TM3-TM7 packing which is an important initiator of the TM6 tilt in class-
276 A GPCRs (Zhou et al., 2019). Additionally, it loosens the contacts between TM6 and TM7 through 6x48-
277 7x42, 6x44-7x49, and 6x52-7x45, which explains the increased distance between 7x53 and 3x43 (Figure
278 4e). Moreover, the simulations of cysteine and leucine variants exhibited an increased contact between
279 3x43 and 6x40 ($p<0.01$) inhibiting the receptor activation through restricting outward TM6 movement.
280 When we evaluated the inactive trajectories, we observed similar contact changes between 6x48, 6x51,

281 7x41 and 7x42 ($p < 0.01$) proving that the simulation results are not biased to active-state simulations.
282 Thus, analysis of MD trajectories suggests that glycine at 7x41 plays an important role in receptor
283 activation, and it is likely to control selectivity for G_s coupling by promoting a larger tilt of TM6 which we
284 observe almost exclusively in G_s coupled receptors.

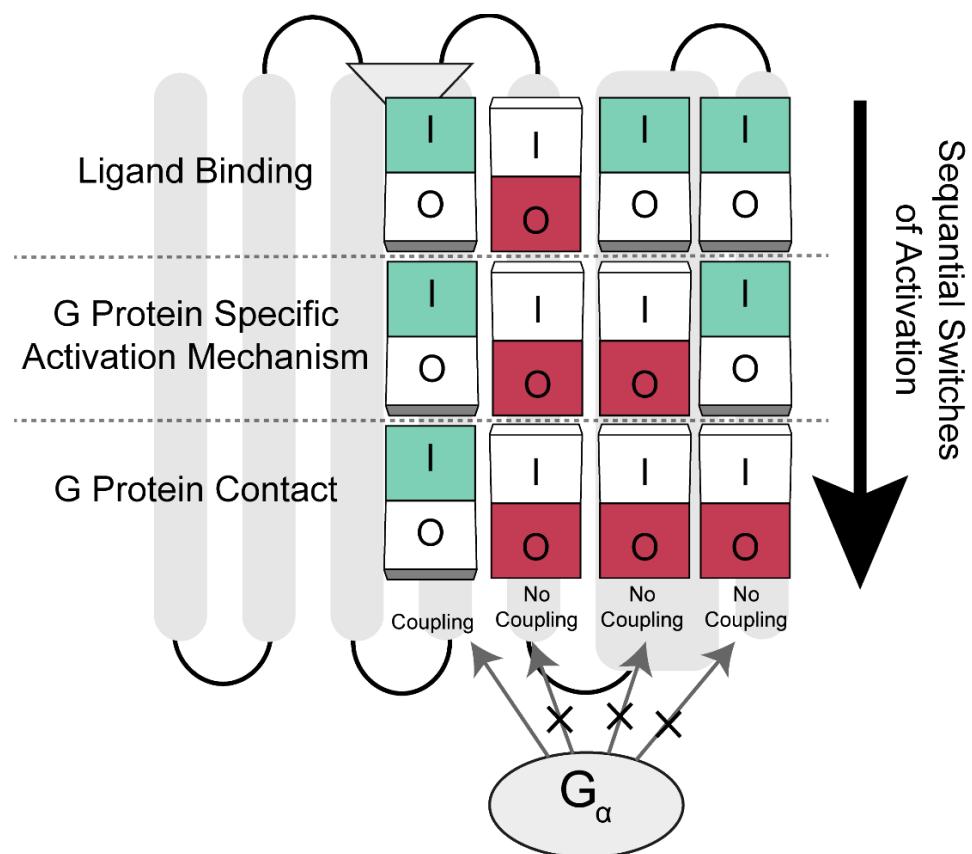


286 **Figure 4: Analysis of molecular dynamics simulations reveal functional importance of glycine at 7x41.** (a)
287 4 different MD simulation systems were shown in their initial conformation. (b) For each simulation distribution of
288 frames with respect to their state of activation were shown, distance in Angstrom. (c) The common pathway
289 representing impact of the mutations at 7x41. (d-e) The common pathway was represented on average structures
290 that were obtained in all MD trajectories for every mutation and WT. The movements of residues were
291 represented with arrows.

292 Discussion

293 By integrating our findings and current literature we propose a G protein selectivity model involving a
294 series of modules. As pilots turn on switches in a pre-determined order before the takeoff, GPCRs must
295 turn on their molecular switches for a specific type of G-protein coupling to occur. If pilots fail to turn on
296 all the switches properly due to an error, there will be no permission for them to depart. Similarly, all
297 molecular switches must be turned on for receptors to engage with a G protein and induce downstream
298 signaling pathways. For these reasons, we named our model “**sequential switches of activation**”. We
299 propose the existence of three main switches within a GPCR structure. The first switch checks for

300 binding of the proper agonist which induces conformational changes in lower layers of the receptors. If
301 an agonist makes the proper contacts with the receptor the first switch turns on. Then as a next step,
302 receptors should be activated through G protein selective activation mechanisms which includes multiple
303 micro-switches to turn on the second main switch. Micro-switches represent the arrangement of inner
304 contacts that are specific for G protein subtypes. When inner contacts are established properly the
305 second switch turns on as well. As a third and last check point, receptors should contain the set of
306 residues that can recognize the ridges on G proteins according to the “key and lock” model that Flock
307 et al suggested. When required contact between G protein and receptor is established, the third switch
308 turns on and the receptor is successfully coupled by a subtype of G proteins. Mutations inducing
309 constitutional activity can be considered as a “short circuit” because they can bypass switches. On the
310 other hand, mutations that halt receptor’s ability to turn on a particular switch can prevent coupling. It is
311 important to note that our model is inclusive of and complementary to the model Flock et al. suggested.
312 Combination of these two models gives us a more complete perspective on receptor-level determinants
313 of coupling selectivity.



314

315 **Figure 5:** Sequential switches of activation model for G protein selectivity. The model describes that all switches
316 in different layers of receptors must be turned off for receptor activation and coupling of the G protein. If switches
317 at upper layers are halted due to a mutation, following switches become turned off which inhibits G protein
318 coupling eventually.

319 In our study, we used a novel phylogenetic approach to identify residues that are conserved among
320 groups of receptors coupling to a particular G protein. We identified the largest possible set of residues
321 (Figure 1c) by combining sensitive and specific approaches together. Due to our greedy approach while
322 some positions could determine coupling selectivity, others may be “passenger” positions that may
323 modulate core receptor functions. Moreover, the positions we identified are the ones that are shared
324 among all aminergic receptors and lack receptor-level variations. Previous studies on chimeric GPCRs
325 (Wess, 1998, 2021; Wong, 2003) point out the importance of ICL3 in determining coupling selectivity.
326 While we identified residues that contact with G proteins, our analyses did not reveal any possible
327 determinants at ICL3. This indicates that the determinants at ICL3 are not shared between aminergic
328 receptors and rather be specific to individual receptors. Alternatively, in nature there may not be a
329 solution for G protein coupling selectivity determination with ICL3 only. Experimentally constructed
330 chimeric receptor activation should be handled with caution because they cannot be evaluated as a part
331 of receptor evolution. Thus, to identify all selectivity-determining positions, each receptor should be
332 analyzed individually.

333 Although our study does not include any direct experimental evidence that coupler or non-coupler
334 variants alter coupling selectivity, it provides sufficient evidence to support the existence of receptor-
335 wide selectivity determinants not only at the G protein coupling site but throughout receptors including
336 the ligand binding site. We used G_s coupling data from deep mutational scanning of ADRB2 performed
337 by Jones et al. to show that non-coupler variants cause loss of function (Figure 1d) (Jones et al., 2020),
338 their roles in determining coupling selectivity should be clarified further. With that purpose, we used
339 residue-residue contact score algorithm and revealed involvement of specifically conserved residues in
340 G protein specific activation mechanisms (Figure 3b-d) which suggests their role in determining coupling
341 selectivity. We should note that due to scarcity of G_q, G_o and G₁₁ coupled structures, the networks we
342 provided could be modified in the future as the number of G protein coupled experimental structures
343 increase. As a third layer of evidence, we identified the role of a previously uncharacterized G^{7x41} (Jones
344 et al., 2020) for ADRB2 and G_s coupled receptors through molecular dynamics simulations (Figure 4c).

345 Although we cannot rule out the potential effect of G^{7x41} in non- G_s activation, we can conclude that it has
346 a critical importance for determining G_s coupling selectivity. The fact that G^{7x41} is dispensable for Gi
347 couplers suggest that it may not be as critical for those GPCRs and Gi activation. To summarize, multiple
348 layers of evidence suggest that G protein selectivity determinants for aminergic receptors are distributed
349 receptor-wide.

350 The conclusions of this study are limited aminergic receptors only because there has been no supporting
351 evidence for a common selective mechanism that might present for all class A GPCRs. Therefore, it is
352 necessary to handle each GPCR subfamily separately to identify subfamily specific selectivity
353 determinants. With such an effort, it may be possible to discover commonalities and differences between
354 different subfamilies of GPCRs. Although different subfamilies of receptors couple to a G protein by
355 having similar structural conformations, underlying mechanisms for achieving a conformation might
356 vary. As the number of solved G protein-coupled receptor structures increase in the protein data bank,
357 it is inevitable that new selectivity determinants and similar mechanisms will be discovered in near future.

358

359

360 **Acknowledgements**

361 This work is supported by EMBO Installation Grant (to OA 4163) that is funded by TUBITAK. The
362 molecular dynamics simulations reported in this paper were fully performed at TUBITAK ULAKBIM, High
363 Performance and Grid Computing Center (TRUBA resources).

364 **Methods**

365 **Sequence Selection**

366 Sequence selection is the very first step of this study. We used the BLAST+ (Camacho et al., 2009)
367 algorithm to obtain homologous protein sequences from other organisms. We blasted a human target
368 protein to find its homologs. The UniProt ("UniProt: a worldwide hub of protein knowledge," 2019)
369 database is used as a source for the sequences. We retrieved all the sequences until the third human
370 protein from the blast output.

371

372 **Multiple Sequence Alignment (MSA) #1**

373 After sequence selection, the next step is performing multiple sequence alignment for obtained
374 sequences. For this purpose, we used MAFFT (Katoh & Standley, 2013) “einsi” option which allows
375 large gaps. This option allows us to align multiple homologous regions of different receptors.

376

377 **Maximum Likelihood (ML) Tree #1**

378 The MSA was used to produce a maximum likelihood (ML) tree. ML trees helped us to find relationships
379 between different proteins. ML Tree 1 was used to identify the clade which contains our protein of
380 interest. For ML tree construction we use the IQ-Tree version 2.0.6 (Minh et al., 2020) We used 1000
381 Ultra-fast bootstraps and JTT+I+G4+F substitution model. IQ-Tree is used at this step for mainly its high
382 speed in bootstrapping.

383

384 **Obtaining Gene Clade**

385 For making modifications on the ML trees we use a Python based tool ETE3 (Huerta-Cepas, Serra, &
386 Bork, 2016). To analyze a tree, we first need to root it properly. We chose the third human protein from
387 our BLAST results, as an outgroup. Then, we traversed from our target human leaf node to root until we
388 reached a clade containing another human protein. After each move, we analyzed the species content
389 of the clades we are observing. When a clade contained species that were not observed in previous
390 moves, we included all of the leaf nodes to our analysis. On the other hand, when a clade contains a
391 previously observed species, we exclude that clade from our analysis, because seeing a species at a
392 lower phylogenetic levels is an indication of a differential gene loss event. We continued with the
393 remaining sequences and produced a multiple sequence alignment with them.

394

395 **Multiple Sequence Alignment Trimming**

396 MSA trimming is needed to remove some of the noise from the alignment and it speeds up tree
397 reconstruction. MSA trimming removes positions that are misleading for tree production. For example,
398 positions having too many gaps can be removed from the alignment. We used trimAI (Capella-Gutiérrez,
399 Silla-Martínez, & Gabaldón, 2009) with automated1 option which is stated to be the best option for
400 constructing maximum likelihood trees.

401

402 **Maximum Likelihood Tree #2**

403 ML tree 2 was used to identify the paralogous sequences that we have in our analysis. For ML tree

404 construction we used the RaxML-NG version 0.9.0 (Kozlov, Darriba, Flouri, Morel, & Stamatakis, 2019)

405 --search option with JTT+I+G4+F substitution model.

406

407 **Paralog Trimming**

408 Paralog trimming is a key part of our approach. After gene duplication, one of the paralogous clades

409 tends to diverge more than the other. Unless the diverged clade is removed from our analyses (MSA),

410 it might introduce false divergence signals in conservation calculation. For this reason, we need to

411 exclude diverged paralogs from our analyses. We used the second ML tree for detection of the diverged

412 paralogs.

413

414 We first calculated the global alignment scores (BLOSUM62 is used) of every sequence on the ML tree

415 2 with respect to our human target sequence. We assessed each internode having two child clades

416 based on the number of leaf nodes and species they contain. When two child clades contained at least

417 one identical species, we looked for significant divergence between the clades in terms of global

418 alignment scores to label one clade as paralogous. Also, we need those clades to be evolutionarily

419 comparable, thus we compared the taxonomic level of the organisms between two clades. If the clades

420 are comparable to each other, we applied two-sample t test for by using the global alignment scores. If

421 one clade has significantly lower similarity scores ($p \leq 0.1$) that clade is labeled as a diverged

422 paralogous clade. We applied the same approach for detecting the taxonomic level of the organisms

423 and common lineage numbers with *Homo sapiens* was used this time ($p \leq 0.1$). If the clades are

424 evolutionarily comparable and one clade had a significantly lower global alignment score, all of the

425 sequences belonging to that clade were eliminated.

426

427 When two of the clades contained less than three sequences each, it was hard to obtain a significance.

428 Therefore, for those cases we compared the average global alignment scores and eliminated the clade

429 with lower average. For the remaining situations we don't remove any of the clades.

430

431 **Conservation Calculation**

432 After obtaining orthologs we used them to calculate the conservation scores for each receptor.

433 The conservation percentage for a certain residue is calculated as follows:

434 1. Find the most frequent amino acid for a certain position in the multiple sequence alignment
435 (MSA).

436 2. After finding the most frequent amino acid, we compared it with other alternatives in that
437 position. When comparing amino acids, we calculated BLOSUM80 score for each of them. If
438 the BLOSUM80 score is higher than 2 we accept it as an “allowed” substitution because it
439 means that these amino acids replace each other frequently and have similar properties.

440 3. The gaps are not included while calculating the conservation percentage.
441 4. If gaps are more than %50 percent, we categorized that position as a gap.
442 5. The conservation score is equal to the number of most frequently observed and “allowed” amino
443 acids over number of all non-gap positions

444 **Specificity Calculation (SC)**

445 For a position to be specific or consensus the criteria is the following:

446 1. First, we need one alignment of two proteins with their orthologs. Then we split the alignment
447 into two alignments with the same length.

448 2. We label a position as **consensus**, when both alignments are conserved more than consensus
449 threshold (90%) at that particular position and the most frequent amino acids are similar
450 (BLOSUM80 score is more than 1) to each other.

451 3. We calculated conservation percentages for each alignment. There are two different scenarios
452 in this case. The first one is when the most frequent amino acids of the two of the alignments
453 are not similar (BLOSUM80 score is lower than 2) to each other. If this is the case and
454 conservation percentage for any alignment is above the specificity threshold (90%) we label that
455 position as **specifically conserved** for that alignment. The second case is where the most
456 frequently observed amino acids are similar to each other. In this case, for a position to be
457 specific for one alignment first it should satisfy the specificity threshold and secondly the
458 conservation percentage of the other alignment should be lower than our lower threshold (70%).

459 For the steps above we choose 90 percent for both specificity and consensus thresholds. 70 percent is
460 selected for lower specificity threshold.

461

462 **Enrichment of Specifically Conserved Residues**

463 We identified specifically conserved residues with two different approaches:

464 **Specific Approach:**

465 1. We divided receptors into two as couplers vs non-couplers. Let's assume that we have n
466 number of couplers and m number of non-couplers.
467 2. We compare coupler receptors with non-couplers in a pairwise manner. In these
468 comparisons we count the number of being specific for every residue. In total there are n
469 times m comparisons. We divide the obtained counts to the total number of comparisons in
470 order to get the frequency of a residue being specific for the couplers' group.
471 3. To examine if a residue is generally variable or specific to the coupling event, we compared
472 couplers with themselves. We applied STEP 2 for couplers - couplers comparison as well.
473 This time, we have $n*(n-1)$ comparisons in total. We again calculated the frequencies
474 accordingly.
475 4. For the specific approach, we don't allow any inside variation and this makes the result of
476 STEP 3 zero. On the other hand, for a residue to be labeled as specific, we expect the
477 STEP 2 more than zero. When these two conditions are satisfied, we label that residue as
478 specifically conserved

479 **Sensitive Approach:**

480 1. We built a comprehensive multiple sequence alignment for the coupler receptors and their
481 orthologs.
482 2. We compared this alignment with non-coupler receptor's MSAs similarly to the STEP 2 of
483 the Specific Approach.
484 3. We added newly discovered positions to our analysis as specifically conserved.

485 **Building the maximum-likelihood phylogenetic tree for aminergic receptors**

486 1. We blasted (Camacho et al., 2009) aminergic receptors and obtained first 50 sequences to
487 generate a fasta file.
488 2. From that fasta file we selected representative sequences by using cd-hit default options.

489 3. MAFFT (Katoh & Standley, 2013) einsi algorithm was used to align representative sequences.
490 4. IQTree version 2.0.5 (Minh et al., 2020) was used to create the phylogenetic tree with options:
491 -m JTT+G+I+F -b 100 --tbe

492 **Residue-Residue Contact Score (RRCS) and Network Analysis**

493 We calculated the RRCS score for 20 active (ADRB2: 3SN6,7DHI; DRD1: 7CKW, 7CKX, 7CKZ, 7CKY,
494 7CRH, 7JV5, 7JVP, 7JVQ, 7LJC, 7LJD; DRD2: 6VMS, 7JVR; DRD3: 7CMU, 7CMV; 5HT1B: 6G79 ;
495 ACM2: 6OIK; 5HT2A: 6WHA ; HRH1: 7DFL)(García-Nafría et al., 2018; Kim et al., 2020; Maeda et al.,
496 2019; Rasmussen et al., 2011; Xia et al., 2021; Xiao et al., 2021; Xu et al., 2021; Yang et al., 2020; J.
497 Yin et al., 2020; Zhuang, Krumm, et al., 2021; Zhuang, Xu, et al., 2021) and 24 inactive structures
498 (ADRB2: 2RH1, 6PS2, 6PS3, 5D5A; DRD1: GPCRdb inactive model; DRD2: 6CM4, 6LUQ, 7DFP;
499 DRD3: 3PBL; 5HT1B: 4IAQ, 4IAR, 5V54, 7C61; ACM2: 3UON, 5YC8, 5ZK3, 5ZKB, 5ZKC; 5HT2A:
500 6A93, 6A94, 6WH4, 6WGT; HRH1: 3RZE)(Cherezov et al., 2007; Chien et al., 2010; Fan et al., 2020;
501 Haga et al., 2012; C.-Y. Huang et al., 2016; Im et al., 2020; Ishchenko et al., 2019; Kim et al., 2020;
502 Kimura et al., 2019; Miyagi et al., 2020; Shimamura et al., 2011; Suno et al., 2018; C. Wang et al., 2013;
503 S. Wang et al., 2018; W. Yin et al., 2018) . For each receptor we substracted inactive RRCS from
504 activeRRCS to obtain Δ RRCS values for each residue pairs. We wrote a custom python code to obtain
505 files with Δ RRCS scores. We combined all of the networks that contain information about the contact
506 changes upon activation to produce the most common molecular signal transduction pathways.
507 (Supplementary File). For the details of the RRCS algorithm please read the corresponding article (Zhou
508 et al., 2019).

509 **Identification of G protein Specific Activation Networks**

510 After obtaining Δ RRCS networks for each active-inactive structure pairs we grouped Δ RRCS values
511 based on the G protein subtype coupling the receptors. Then we compared Δ RRCS values of individual
512 groups (e.g. G_s: ADRB2 and DRD1) with the rest of the groups (e.g. Non-G_s: DRD2, DRD3, 5HT1B,
513 ACM2, 5HT2A, HRH1) by using two-sample t-test. While p<=0.01 is used for G_s, G_q, and G_o, p<=0.1 is
514 used for G_{i1}. We obtained significant contact changes upon coupling to a particular G protein.

515

516 **Molecular Dynamics Simulations**

517 We downloaded inactive and active structures of Beta2 Adrenergic receptor (β_2 AR) from PDB (PDB ID:
518 4GBR, and 3SN6, respectively)(Rasmussen et al., 2011; Zou, Weis, & Kobilka, 2012) .Three
519 thermostabilizing mutations, T96M^{2x66}, T98M^{23x49}, and E187N^{ECL2}, were mutated back to the wild-type
520 (WT) in both sequences. Since used inactive structure of the β_2 AR has a short ICL3 that links the TM5
521 and TM6, we did not introduce additional residues to the ICL3, and used the crystal structure as it is.
522 However, active structure of the β_2 AR lacks ICL3, and we modeled a short loop with GalaxyLoop code
523 (Park, Lee, Heo, & Seok, 2014). We inserted FHVSKF between ARG239 and CYS265. We introduced
524 three changes at 315^{7x41} position, and one WT and obtained three mutants (namely; G315C, G315L,
525 and G315Q). We used PyMOL to place mutations (PyMOLTM) Molecular Graphics System, Version
526 2.1.0.). Orientations of proteins in biological membranes were calculated with OPM server (Lomize,
527 Pogozheva, Joo, Mosberg, & Lomize, 2012) and We used CHARMM-GUI web server (Jo, Kim, Iyer, &
528 Im, 2008; Lee et al., 2016; Wu et al., 2014) to create input files for the molecular dynamics simulations
529 for Gromacs. Since, inactive and active structures start with ASP29^{1x28} and GLU30^{1x30}; end with
530 LEU342^{Cterm} and CYS341^{8x59}, respectively, we introduced acetylated N-terminus and methylamidated
531 C-terminus to the N and C-terminal ends. Two disulfide bridges between CYS106^{3x25}-CYS191^{ECL2}, and
532 CYS184^{ECL2}-CYS190^{ECL2} were introduced. Each lipid leaflet contains 92 (1-palmitoyl-2-oleoyl-sn-
533 glycero-3-phosphocholine) POPC biological lipid type (total 192 POPC molecules in system). Systems
534 were neutralized with 0.15 M NaCl ions (50 Na⁺ and 55 Cl⁻ ions in total). We used TIP3P water model
535 for water molecules (MacKerell et al., 1998), and CHARMM36m force field for the protein, lipids and
536 ions (J. Huang et al., 2017). One minimization and six equilibration steps were applied to the systems,
537 before production runs (for the equilibration phases 5 ns, 5 ns, 10 ns, 10 ns, 10 ns, and 10 ns MD
538 simulations were run, in total 50 ns). In equilibration phases, both Berendsen thermostat and barostat
539 were used (Berendsen, Postma, Van Gunsteren, Dinola, & Haak, 1984). In production runs, we applied
540 Noose-Hoover thermostat (Hoover, 1986; Nosé & Klein, 1983) and Parrinello-Rahman barostat
541 (Parrinello & Rahman, 1980). 500 ns production simulations were run with Gromacs v2020 (Abraham
542 et al., 2015) and repeated 7 times to increase sampling (in total for each system we simulated 3.5 μ s).
543 5000 frames collected for each run, and for instance for the WT system, we concatenated 35000 frames
544 to calculate GPCRdb distance distributions (*gmx distance* tool was utilized for this purpose) and find
545 average structures (Visual Molecular Dynamics code utilized to find average structure (Humphrey,

546 Dalke, & Schulten, 1996)). To calculate the GPCRdb distance in Class A GPCR structures, CYS125^{3x44}-
547 ILE325^{7x52} distance subtracted from TYR70^{2x41}-GLY276^{6x38} distance. If calculated distance is higher
548 than 7.15 Å, lower than 2 Å, and between 2-7.15 Å state of the receptors labelled as active, inactive,
549 and intermediate, respectively (Isberg et al., 2015; Shahraki et al., 2021). All figures were generated
550 with PyMOL v2.1.0. To estimate water accessibilities to the internal cavity of the receptors, and sodium
551 ion accessibilities to the ASP79^{2x50}, we calculated averaged water and sodium ion densities. Time
552 averaged three-dimensional water and sodium ion density maps were calculated with GROmaps
553 (Briones, Blau, Kutzner, de Groot, & Aponte-Santamaría, 2019)

554 **Analysis of Contact Changes Within Molecular Dynamics Simulation Trajectories**

555 Frames of MD simulation trajectories were selected from 0ns to 500ns with 50ns gaps for each trajectory
556 and replicate for a mutation. Including the frame at t=0ns, for a replicate we obtained 11 frames to
557 represent the whole trajectory. We have applied the same strategy for all 7 active-state replicates and
558 obtained 77 frames for WT and mutated MD trajectories. For each frame, we calculated RRCSSs for
559 every residue pair and identified statistically significant ($p < 0.05$) differences between WT and mutated
560 trajectories by applying a two-sided t-test. For the inactive simulations, we had only two replicates,
561 therefore we compared 22 mutated frames with 22 WT frames.

562 After applying t-test, we intersected the significant contact changes we observed for each mutational
563 state to observe the common change due to the absence of glycine. In total, we identified 135 common
564 changes for active-state simulations and 83 common changes for inactive-state simulations. We used
565 Cytoscape (Shannon et al., 2003) to visualize the changes as a network. PyMOL was used to visualize
566 the identified pathway on protein structures.

567 **Data and Materials Availability**

568 The open-source code and supplementary data are available at our GitHub repository:
569 <https://github.com/CompGenomeLab/GPCR-coupling-selectivity>

570 The MD trajectories are available at:
571 <https://doi.org/10.5281/zenodo.5763490>.

572

573 References

574 Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS:
575 High performance molecular simulations through multi-level parallelism from laptops to
576 supercomputers. *SoftwareX*, 1-2, 19-25. doi:10.1016/j.softx.2015.06.001

577 Adebali, O., Reznik, A. O., Ory, D. S., & Zhulin, I. B. (2016). Establishing the precise evolutionary
578 history of a gene improves prediction of disease-causing missense mutations. *Genetics in*
579 *Medicine*, 18(10), 1029-1036. doi:10.1038/gim.2015.208

580 Arakawa, M., Chakraborty, R., Upadhyaya, J., Eilers, M., Reeves, P. J., Smith, S. O., & Chelikani, P.
581 (2011). Structural and functional roles of small group-conserved amino acids present on
582 helix-H7 in the β (2)-adrenergic receptor. *Biochim Biophys Acta*, 1808(4), 1170-1178.
583 doi:10.1016/j.bbamem.2011.01.012

584 Avet, C., Mancini, A., Breton, B., Le Gouill, C., Hauser, A. S., Normand, C., . . . Bouvier, M. (2020).
585 Selectivity Landscape of 100 Therapeutically Relevant GPCR Profiled by an Effector
586 Translocation-Based BRET Platform. *bioRxiv*, 2020.2004.2020.052027.
587 doi:10.1101/2020.04.20.052027

588 Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular
589 dynamics with coupling to an external bath. *The Journal of Chemical Physics*, 81(8), 3684-
590 3690. doi:10.1063/1.448118

591 Briones, R., Blau, C., Kutzner, C., de Groot, B. L., & Aponte-Santamaría, C. (2019). GROMaps: A
592 GROMACS-Based Toolset to Analyze Density Maps Derived from Molecular Dynamics
593 Simulations. *Biophys J*, 116(1), 4-11. doi:10.1016/j.bpj.2018.11.3126

594 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009).
595 BLAST+: architecture and applications. *BMC Bioinformatics*, 10(1), 421. doi:10.1186/1471-
596 2105-10-421

597 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for automated
598 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15), 1972-1973.

599 Catapano, L. A., & Manji, H. K. (2007). G protein-coupled receptors in major psychiatric disorders.
600 *Biochimica et Biophysica Acta (BBA) - Biomembranes*, 1768(4), 976-993.
601 doi:10.1016/j.bbamem.2006.09.025

602 Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., . . .
603 Stevens, R. C. (2007). High-Resolution Crystal Structure of an Engineered Human 2-
604 Adrenergic G Protein-Coupled Receptor. *Science*, 318(5854), 1258-1265.
605 doi:10.1126/science.1150577

606 Chien, E. Y. T., Liu, W., Zhao, Q., Katritch, V., Won Han, G., Hanson, M. A., . . . Stevens, R. C. (2010).
607 Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective
608 Antagonist. *Science*, 330(6007), 1091-1095. doi:10.1126/science.1197410

609 Chung, K. Y., Rasmussen, S. G. F., Liu, T., Li, S., Devree, B. T., Chae, P. S., . . . Sunahara, R. K. (2011).
610 Conformational changes in the G protein Gs induced by the β 2 adrenergic receptor. *Nature*,
611 477(7366), 611-615. doi:10.1038/nature10488

612 Du, Y., Duc, N. M., Rasmussen, S. G. F., Hilger, D., Kubiak, X., Wang, L., . . . Chung, K. Y. (2019).
613 Assembly of a GPCR-G Protein Complex. *Cell*, 177(5), 1232-1242.e1211.
614 doi:10.1016/j.cell.2019.04.022

615 Fan, L., Tan, L., Chen, Z., Qi, J., Nie, F., Luo, Z., . . . Wang, S. (2020). Haloperidol bound D2 dopamine
616 receptor structure inspired the discovery of subtype selective ligands. *Nature*
617 *Communications*, 11(1). doi:10.1038/s41467-020-14884-y

618 Flock, T., Hauser, A. S., Lund, N., Gloriam, D. E., Balaji, S., & Babu, M. M. (2017). Selectivity
619 determinants of GPCR-G-protein binding. *Nature*, 545(7654), 317-322.
620 doi:10.1038/nature22070

621 Fredriksson, R., Lagerström, M. C., Lundin, L.-G., & Schiöth, H. B. (2003). The G-protein-coupled
622 receptors in the human genome form five main families. *Phylogenetic analysis, paralogon*
623 *groups, and fingerprints. Molecular pharmacology*, 63(6), 1256-1272.

624 García-Nafría, J., Nehmé, R., Edwards, P. C., & Tate, C. G. (2018). Cryo-EM structure of the serotonin
625 5-HT1B receptor coupled to heterotrimeric Go. *Nature*, 558(7711), 620-623.
626 doi:10.1038/s41586-018-0241-9

627 Haga, K., Kruse, A. C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., . . . Kobayashi, T.
628 (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an
629 antagonist. *Nature*, 482(7386), 547-551. doi:10.1038/nature10753

630 Hoover, W. G. (1986). Constant-pressure equations of motion. *Physical Review A*, 34(3), 2499-2500.
631 doi:10.1103/PhysRevA.34.2499

632 Huang, C.-Y., Olieric, V., Ma, P., Howe, N., Vogeley, L., Liu, X., . . . Caffrey, M. (2016). In meso in
633 situserial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures.
634 *Acta Crystallographica Section D Structural Biology*, 72(1), 93-112.
635 doi:10.1107/s2059798315021683

636 Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., . . . Mackerell, A. D. (2017).
637 CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
638 *Nature Methods*, 14(1), 71-73. doi:10.1038/nmeth.4067

639 Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, Analysis, and Visualization of
640 Phylogenomic Data. *Molecular biology and evolution*, 33(6), 1635-1638.
641 doi:10.1093/molbev/msw046

642 Humphrey, W., Dalke, A., & Schulter, K. (1996). VMD: Visual molecular dynamics. *Journal of*
643 *Molecular Graphics*, 14(1), 33-38. doi:[https://doi.org/10.1016/0263-7855\(96\)00018-5](https://doi.org/10.1016/0263-7855(96)00018-5)

644 Im, D., Inoue, A., Fujiwara, T., Nakane, T., Yamanaka, Y., Uemura, T., . . . Shimamura, T. (2020).
645 Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone.
646 *Nature Communications*, 11(1). doi:10.1038/s41467-020-20221-0

647 Inoue, A., Raimondi, F., Kadji, F. M. N., Singh, G., Kishi, T., Uwamizu, A., . . . Russell, R. B. (2019).
648 Illuminating G-Protein-Coupling Selectivity of GPCRs. *Cell*, 177(7), 1933-1947.e1925.
649 doi:10.1016/j.cell.2019.04.044

650 Isberg, V., De Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., . . . Gloriam, D. E.
651 (2015). Generic GPCR residue numbers – aligning topology maps while minding the gaps.
652 *Trends in Pharmacological Sciences*, 36(1), 22-31. doi:10.1016/j.tips.2014.11.001

653 Ishchenko, A., Stauch, B., Han, G. W., Batyuk, A., Shiriaeva, A., Li, C., . . . Cherezov, V. (2019). Toward
654 G protein-coupled receptor structure-based drug design using X-ray lasers. *IUCrJ*, 6(6), 1106-
655 1119. doi:10.1107/s2052252519013137

656 Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for
657 CHARMM. *Journal of Computational Chemistry*, 29(11), 1859-1865. doi:10.1002/jcc.20945

658 Jones, E. M., Lubock, N. B., Venkatakrishnan, A., Wang, J., Tseng, A. M., Paggi, J. M., . . . Kosuri, S.
659 (2020). Structural and functional characterization of G protein-coupled receptors with deep
660 mutational scanning. *eLife*, 9. doi:10.7554/elife.54895

661 Kang, Y., Kuybeda, O., de Waal, P. W., Mukherjee, S., Van Eps, N., Dutka, P., . . . Xu, H. E. (2018). Cryo-
662 EM structure of human rhodopsin bound to an inhibitory G protein. *Nature*, 558(7711), 553-
663 558. doi:10.1038/s41586-018-0215-y

664 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
665 improvements in performance and usability. *Molecular biology and evolution*, 30(4), 772-
666 780.

667 Katritch, V., Fenalti, G., Abola, E. E., Roth, B. L., Cherezov, V., & Stevens, R. C. (2014). Allosteric
668 sodium in class A GPCR signaling. *Trends in Biochemical Sciences*, 39(5), 233-244.
669 doi:10.1016/j.tibs.2014.03.002

670 Kim, K., Che, T., Panova, O., DiBerto, J. F., Lyu, J., Krumm, B. E., . . . Roth, B. L. (2020). Structure of a
671 Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. *Cell*, 182(6), 1574-
672 1588.e1519. doi:<https://doi.org/10.1016/j.cell.2020.08.024>

673 Kimura, K. T., Asada, H., Inoue, A., Kadji, F. M. N., Im, D., Mori, C., . . . Shimamura, T. (2019).
674 Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and
675 zotepine. *Nature Structural & Molecular Biology*, 26(2), 121-128. doi:10.1038/s41594-018-
676 0180-z
677 Kooistra, A. J., Mordalski, S., Pády-Szekeres, G., Esguerra, M., Mamyrbekov, A., Munk, C., . . . David.
678 (2021). GPCRdb in 2021: integrating GPCR sequence, structure and function. *Nucleic Acids
679 Research*, 49(D1), D335-D343. doi:10.1093/nar/gkaa1080
680 Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: a fast, scalable
681 and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics*, 35(21),
682 4453-4455. doi:10.1093/bioinformatics/btz305
683 Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., . . . Im, W. (2016).
684 CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and
685 CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. *Journal of
686 Chemical Theory and Computation*, 12(1), 405-413. doi:10.1021/acs.jctc.5b00935
687 Liu, X., Xu, X., Hilger, D., Aschauer, P., Tiemann, J. K. S., Du, Y., . . . Kobilka, B. K. (2019). Structural
688 Insights into the Process of GPCR-G Protein Complex Formation. *Cell*, 177(5), 1243-
689 1251.e1212. doi:10.1016/j.cell.2019.04.021
690 Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and
691 PPM web server: resources for positioning of proteins in membranes. *Nucleic Acids Research*,
692 40(D1), D370-D376. doi:10.1093/nar/gkr703
693 MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., . . . Karplus, M.
694 (1998). All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of
695 Proteins. *The Journal of Physical Chemistry B*, 102(18), 3586-3616. doi:10.1021/jp973084f
696 Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G., & Kobilka, B. K. (2019). Structures of the M1 and M2
697 muscarinic acetylcholine receptor/G-protein complexes. *Science*, 364(6440), 552-557.
698 doi:10.1126/science.aaw5188
699 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., &
700 Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference
701 in the Genomic Era. *Molecular biology and evolution*, 37(5), 1530-1534.
702 doi:10.1093/molbev/msaa015
703 Miyagi, H., Asada, H., Suzuki, M., Takahashi, Y., Yasunaga, M., Suno, C., . . . Saito, J.-I. (2020). The
704 discovery of a new antibody for BRIL-fused GPCR structure determination. *Scientific Reports*,
705 10(1). doi:10.1038/s41598-020-68355-x
706 Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems.
707 *Molecular Physics*, 50(5), 1055-1076. doi:10.1080/00268978300102851
708 Okashah, N., Wan, Q., Ghosh, S., Sandhu, M., Inoue, A., Vaidehi, N., & Lambert, N. A. (2019). Variable
709 G protein determinants of GPCR coupling selectivity. *Proceedings of the National Academy of
710 Sciences*, 201905993. doi:10.1073/pnas.1905993116
711 Pády-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsøe, K., Hauser, A. S., . . . Gloriam, D.
712 E. (2018). GPCRdb in 2018: adding GPCR structure models and ligands. *Nucleic Acids
713 Research*, 46(D1), D440-D446. doi:10.1093/nar/gkx1109
714 Park, H., Lee, G. R., Heo, L., & Seok, C. (2014). Protein Loop Modeling Using a New Hybrid Energy
715 Function and Its Application to Modeling in Inaccurate Structural Environments. *PLoS ONE*,
716 9(11), e113811. doi:10.1371/journal.pone.0113811
717 Parrinello, M., & Rahman, A. (1980). Crystal Structure and Pair Potentials: A Molecular-Dynamics
718 Study. *Physical Review Letters*, 45(14), 1196-1199. doi:10.1103/PhysRevLett.45.1196
719 Rasmussen, S. G. F., Devree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., . . . Kobilka, B. K.
720 (2011). Crystal structure of the β 2 adrenergic receptor–Gs protein complex. *Nature*,
721 477(7366), 549-555. doi:10.1038/nature10361
722 Rose, A. S., Elgeti, M., Zachariae, U., Grubmüller, H., Hofmann, K. P., Scheerer, P., & Hildebrand, P. W.
723 (2014). Position of Transmembrane Helix 6 Determines Receptor G Protein Coupling

724 Specificity. *Journal of the American Chemical Society*, 136(32), 11244-11247.
725 doi:10.1021/ja5055109

726 Rosenbaum, D. M., Rasmussen, S. G. F., & Kobilka, B. K. (2009). The structure and function of G-
727 protein-coupled receptors. *Nature*, 459(7245), 356-363. doi:10.1038/nature08144

728 Semack, A., Sandhu, M., Malik, R. U., Vaidehi, N., & Sivaramakrishnan, S. (2016). Structural Elements
729 in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR)
730 Signaling. *Journal of Biological Chemistry*, 291(34), 17929-17940.
731 doi:10.1074/jbc.m116.735720

732 Senese, N. B., Rasenick, M. M., & Traynor, J. R. (2018). The Role of G-proteins and G-protein
733 Regulating Proteins in Depressive Disorders. *Frontiers in Pharmacology*, 9.
734 doi:10.3389/fphar.2018.01289

735 Shahraki, A., İşbilir, A., Dogan, B., Lohse, M. J., Durdagi, S., & Birgul-İyison, N. (2021). Structural and
736 Functional Characterization of Allatostatin Receptor Type-C of Thaumetopoea pityocampa, a
737 Potential Target for Next-Generation Pest Control Agents. *Journal of Chemical Information
738 and Modeling*, 61(2), 715-728. doi:10.1021/acs.jcim.0c00985

739 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., . . . Ideker, T. (2003).
740 Cytoscape: a software environment for integrated models of biomolecular interaction
741 networks. *Genome Res*, 13(11), 2498-2504. doi:10.1101/gr.1239303

742 Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., . . . Iwata, S. (2011).
743 Structure of the human histamine H1 receptor complex with doxepin. *Nature*, 475(7354), 65-
744 70. doi:10.1038/nature10236

745 Suno, R., Lee, S., Maeda, S., Yasuda, S., Yamashita, K., Hirata, K., . . . Kobayashi, T. (2018). Structural
746 insights into the subtype-selective antagonist binding to the M2 muscarinic receptor. *Nature
747 Chemical Biology*, 14(12), 1150-1158. doi:10.1038/s41589-018-0152-y

748 UniProt: a worldwide hub of protein knowledge. (2019). *Nucleic Acids Research*, 47(D1), D506-D515.
749 doi:10.1093/nar/gky1049

750 Van Eps, N., Altenbach, C., Caro, L. N., Latorraca, N. R., Hollingsworth, S. A., Dror, R. O., . . . Hubbell,
751 W. L. (2018). G(i)- and G(s)-coupled GPCRs show different modes of G-protein binding.
752 *Proceedings of the National Academy of Sciences of the United States of America*, 115(10),
753 2383-2388. doi:10.1073/pnas.1721896115

754 Vass, M., Podlewska, S., De Esch, I. J. P., Bojarski, A. J., Leurs, R., Kooistra, A. J., & De Graaf, C. (2019).
755 Aminergic GPCR–Ligand Interactions: A Chemical and Structural Map of Receptor Mutation
756 Data. *Journal of Medicinal Chemistry*, 62(8), 3784-3839. doi:10.1021/acs.jmedchem.8b00836

757 Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., . . . Xu, H. E. (2013). Structural Basis for
758 Molecular Recognition at Serotonin Receptors. *Science*, 340(6132), 610-614.
759 doi:10.1126/science.1232807

760 Wang, J., Gareri, C., & Rockman, H. A. (2018). G-Protein–Coupled Receptors in Heart Disease.
761 *Circulation Research*, 123(6), 716-735. doi:10.1161/circresaha.118.311403

762 Wang, J., & Miao, Y. (2019). Mechanistic Insights into Specific G Protein Interactions with Adenosine
763 Receptors. *The Journal of Physical Chemistry B*, 123(30), 6462-6473.
764 doi:10.1021/acs.jpcb.9b04867

765 Wang, S., Che, T., Levit, A., Shoichet, B. K., Wacker, D., & Roth, B. L. (2018). Structure of the D2
766 dopamine receptor bound to the atypical antipsychotic drug risperidone. *Nature*, 555(7695),
767 269-273. doi:10.1038/nature25758

768 Wess, J. (1998). Molecular basis of receptor/G-protein-coupling selectivity. *Pharmacology &
769 therapeutics*, 80(3), 231-264.

770 Wess, J. (2021). Designer GPCRs as Novel Tools to Identify Metabolically Important Signaling
771 Pathways. *Frontiers in Endocrinology*, 12(798). doi:10.3389/fendo.2021.706957

772 Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific
773 functions. *Physiological reviews*, 85(4), 1159-1204.

774 Wong, S. K. F. (2003). G Protein Selectivity Is Regulated by Multiple Intracellular Regions of GPCRs.
775 *Neurosignals*, 12(1), 1-12. doi:10.1159/000068914

776 Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., . . . Im, W. (2014). CHARMM-
777 GUIMembrane Buildertoward realistic biological membrane simulations. *Journal of*
778 *Computational Chemistry*, 35(27), 1997-2004. doi:10.1002/jcc.23702

779 Xia, R., Wang, N., Xu, Z., Lu, Y., Song, J., Zhang, A., . . . He, Y. (2021). Cryo-EM structure of the human
780 histamine H1 receptor/Gq complex. *Nature Communications*, 12(1). doi:10.1038/s41467-
781 021-22427-2

782 Xiao, P., Yan, W., Gou, L., Zhong, Y. N., Kong, L., Wu, C., . . . Shao, Z. (2021). Ligand recognition and
783 allosteric regulation of DRD1-Gs signaling complexes. *Cell*, 184(4), 943-956.e918.
784 doi:10.1016/j.cell.2021.01.028

785 Xu, P., Huang, S., Mao, C., Krumm, B. E., Zhou, X. E., Tan, Y., . . . Xu, H. E. (2021). Structures of the
786 human dopamine D3 receptor-Gi complexes. *Molecular Cell*, 81(6), 1147-1159.e1144.
787 doi:<https://doi.org/10.1016/j.molcel.2021.01.003>

788 Yang, F., Ling, S., Zhou, Y., Zhang, Y., Lv, P., Liu, S., . . . Tian, C. (2020). Different conformational
789 responses of the β 2-adrenergic receptor-Gs complex upon binding of the partial agonist
790 salbutamol or the full agonist isoprenaline. *National Science Review*.
791 doi:10.1093/nsr/nwaa284

792 Yin, J., Chen, K.-Y. M., Clark, M. J., Hijazi, M., Kumari, P., Bai, X.-C., . . . Rosenbaum, D. M. (2020).
793 Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane. *Nature*,
794 584(7819), 125-129. doi:10.1038/s41586-020-2379-5

795 Yin, W., Zhou, X. E., Yang, D., de Waal, P. W., Wang, M., Dai, A., . . . Jiang, Y. (2018). Crystal structure
796 of the human 5-HT(1B) serotonin receptor bound to an inverse agonist. *Cell discovery*, 4, 12-
797 12. doi:10.1038/s41421-018-0009-2

798 Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., . . . Zhao, S. (2019). Common activation
799 mechanism of class A GPCRs. *eLife*, 8. doi:10.7554/elife.50279

800 Zhuang, Y., Krumm, B., Zhang, H., Zhou, X. E., Wang, Y., Huang, X.-P., . . . Xu, H. E. (2021). *Mechanism*
801 *of dopamine binding and allosteric modulation of the human D1 dopamine receptor*. Cold
802 Spring Harbor Laboratory. Retrieved from <https://dx.doi.org/10.1101/2021.02.07.430101>

803 Zhuang, Y., Xu, P., Mao, C., Wang, L., Krumm, B., Zhou, X. E., . . . Huang, X.-P. (2021). Structural
804 insights into the human D1 and D2 dopamine receptor signaling complexes. *Cell*, 184(4), 931-
805 942. e918.

806 Zou, Y., Weis, W. I., & Kobilka, B. K. (2012). N-Terminal T4 Lysozyme Fusion Facilitates Crystallization
807 of a G Protein Coupled Receptor. *PLoS ONE*, 7(10), e46039.
808 doi:10.1371/journal.pone.0046039

809