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‡Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 24 

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI 25 

contributed to the design and implementation of ADNI and/or provided data but did not participate 26 

in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 27 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 28 

 29 

Abstract 30 

Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced 31 

in humans, with important implications for brain function and disease. However, many prior 32 

studies have confounded asymmetries due to size with those due to shape. Here, we introduce a 33 

novel approach to characterize asymmetries of the whole cortical shape, independent of size, 34 

across different spatial frequencies using magnetic resonance imaging data in three independent 35 

datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a 36 

cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as 37 

cortical thickness and surface area, or measures of inter-regional functional coupling of brain 38 

activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and 39 

shape asymmetries show scale-specific associations with sex and cognition, but not handedness. 40 

While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm 41 

wavelength), shape asymmetries are determined primarily by subject-specific environmental 42 

effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked 43 

to individual differences in cognition, and are primarily driven by stochastic environmental 44 

influences. 45 

 46 
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Introduction 47 

Asymmetries in brain structure and function are found throughout the animal kingdom (1-4) and 48 

can be discerned at multiple spatial scales, ranging from differences in the size and shape of the 49 

cerebral hemispheres through measures of regional morphometry and connectivity to cellular and 50 

molecular organization (2, 4, 5). At the coarsest scale, the most salient feature of anatomical 51 

asymmetry in the human brain is cerebral torque, in which the right hemisphere appears to be 52 

warped in the rostral direction relative to the left hemisphere (6-8). More fine-grained asymmetries 53 

of specific sulci/gyri (9) and brain regions (10, 11) have also been investigated. For example, the 54 

superior temporal sulcus, which is adjacent to the Wernicke’s area, shows a leftward asymmetry 55 

in length (12).  56 

Asymmetries in brain organization are often considered at an average level across a 57 

population of individuals (7, 10, 13-15). These population-based asymmetry features have been 58 

studied extensively and are thought to have important implications for both functional 59 

lateralization and abnormal brain function in a wide range of psychiatric and neurological diseases 60 

(5, 11, 15-17). For example, the planum temporale of the left hemisphere, which encompasses 61 

Wernicke’s area, has been consistently shown to be larger than the right for most healthy 62 

individuals (2, 7, 18, 19), and patients with schizophrenia often show reduced leftward asymmetry 63 

in planum temporale compared to healthy individuals (20-22). However, many findings with 64 

respect to asymmetries of specific brain regions have been inconsistent in terms of the directions 65 

and magnitudes of asymmetry observed (10, 11, 13). The correlates of these asymmetries are also 66 

unclear (4, 11, 13, 23, 24). For example, two fundamental characteristics often examined in 67 

relation to cerebral asymmetry are sex and handedness. Some studies have found that the surface 68 

area (10), shape (24-26), volume (27), and torque (8) of cortical structures in males are more 69 
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asymmetric than in females, whereas other studies have found no sex differences (19, 28). 70 

Similarly, some studies have found associations between cerebral asymmetry and handedness (8, 71 

14, 29), with others reporting no such effect (10, 11, 25, 28, 30-32).  72 

Some of these inconsistencies may arise from the disparate methodologies and the 73 

heterogeneous nature of the brain asymmetries across the population (7, 10, 12-15). Despite some 74 

consistent asymmetry features across the population (2, 7, 18, 19), there is also considerable 75 

individual variability around population means, with many people often showing little or even 76 

reversed asymmetries relative to the prevalent pattern of the population (sometimes also referred 77 

to as anti-symmetry)  (3, 12, 33, 34). The distinction between population-level and individual-78 

specific asymmetries is essential, as they are thought to arise from distinct mechanisms (34, 35). 79 

Populational-level asymmetries are hypothesized to have a genetic basis (8, 10, 33-39), whereas 80 

individual-specific asymmetries, which describe the way in  which a given individual departs from 81 

the population mean, may reflect environmental influences, developmental plasticity, or 82 

individual-specific genetic perturbations (33-38, 40). Notably, cortical asymmetries of the human 83 

brain are more variable across individuals than other primates, at both regional and global 84 

hemispheric levels (12, 33). The variability is most evident in regions of heteromodal association 85 

cortex, leading some to conclude that high levels of variability in asymmetry may have emerged 86 

in line with the evolution of human-specific cognition (12), although the relationship between the 87 

asymmetries of the human brain and individual differences in cognition are still largely unknown. 88 

Traditional analysis methods, which rely on standard image processing techniques such as image 89 

registration and spatial smoothing, minimize individual variation and thus have limited sensitivity 90 

for studying individual-specific asymmetries (41, 42). Moreover, most past studies have focused 91 

on morphological properties related to the size of specific brain regions, such as estimates of grey 92 
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matter volume, cortical thickness, or surface area, often measured at fine-grained resolutions, such 93 

as individual voxels or the vertices of cortical surface mesh models (16, 19, 23, 30, 32, 43, 44). 94 

Many of the most obvious features of cerebral asymmetry arise from variations in brain shape, 95 

which are not captured by size-related descriptors (25, 45). Indeed, it is possible for two objects to 96 

have identical volume but have very different shapes (45, 46). In addition, shape variations can 97 

occur at different spatial resolution scales, from the presence and configuration of specific sulci at 98 

fine scales to more global patterns such as cerebral petalia at coarser scales. Conventional analyses 99 

only consider the finest resolvable scale (i.e., point-wise differences) and have limited sensitivity 100 

for identifying important morphological variations that occur over large swathes of cortical tissue.  101 

A comprehensive, multiscale description of cortical shape, from the finest to coarsest scales, 102 

can be derived through a spectral analysis of cortical geometry based on solutions to the Helmholtz 103 

equation (25, 45, 47), which is fundamental in many branches of physics, engineering, chemistry, 104 

and biology (51). The equation can be solved by formulating it as an eigenfunction-eigenvalue 105 

problem of the Laplace-Beltrami operator (LBO) (see Materials and methods). Importantly, the 106 

characteristics of the eigenfunctions and eigenvalues depend on the cortical shape for which the 107 

equation is solved (47, 48), and thus, the spectral analysis provides a comprehensive description 108 

of the intrinsic geometry of a given object, akin to a “Shape-DNA” (see Materials and methods). 109 

(47). The application of such Shape-DNA analysis to human magnetic resonance imaging (MRI) 110 

data has shown that shape properties of cortical and subcortical structures have superior sensitivity 111 

compared to traditional, size-based measures for identifying individual subjects (25), for 112 

classifying and predicting the progress of psychiatric and neurological diseases (42, 49), and for 113 

detecting genetic influences on brain structure (46, 50). However, a detailed characterization of 114 

individual-specific asymmetries in cerebral shape is lacking.  115 
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Here, we introduce methods for constructing an individual-specific measure of cortical 116 

asymmetry, called the shape asymmetry signature (SAS; see Materials and methods). The SAS 117 

characterizes pure shape asymmetries of the whole cortical surface, independent of variations in 118 

size, across a spectrum of spatial scales. We apply this methodology to three independent 119 

longitudinal datasets to test the hypothesis that cortical shape asymmetry is a highly personalized 120 

and robust feature that can identify individuals, akin to a cortical asymmetry fingerprint. We then 121 

use the identifiability values to identify optimal spatial scales at which robust individual 122 

differences are most salient. We also compare the identifiability of the SAS and shape descriptors 123 

of individual hemispheres, asymmetries in traditional size-based descriptors, or patterns of inter-124 

regional functional connectivity (so-called connectome fingerprinting (51)) to test the hypothesis 125 

that the SAS is a more individually unique property of brain organization than unihemispheric and 126 

functional properties. We further elucidate the relationships between the SAS and sex, handedness, 127 

as well as cognitive performance across multiple tasks. Finally, we test the hypothesis that 128 

individual-specific asymmetry features are largely driven by environmental influences using 129 

classical heritability modelling of twin data. 130 

Results  131 

Cortical shape asymmetries are individually unique 132 

To understand how cortical shape asymmetries vary across individuals, we examined the degree 133 

to which different cortical shape descriptors (defined below) can be used to identify individual 134 

brains from a large sample of T1-weighted magnetic resonance images (MRIs). We analyzed 135 

healthy subjects from three open-source datasets – the latest Open Access Series of Imaging 136 

Studies (OASIS-3 (52)), the Human Connectome Project (HCP (53)), and the Alzheimer’s Disease 137 

Neuroimaging Initiative (ADNI; https://ida.loni.usc.edu/) – in which individuals had at least two 138 
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anatomical MRI scans acquired at different time points (separated by one day to several years; see 139 

Materials and methods). For each dataset, we asked whether the shape descriptors for an individual 140 

estimated from the first scan could accurately identify the same participant’s second scan. Within 141 

each dataset, the shape descriptor was calculated from the cortical surfaces at the white and grey 142 

matter boundary estimated either from FreeSurfer (54) (OASIS-3 and ADNI) or FreeSurfer-HCP 143 

(HCP), which is a FreeSurfer (54) pipeline with some HCP-specific enhancements (55). Shape-144 

DNA (45, 47) analysis was employed to obtain multidimensional shape descriptors for each 145 

hemisphere that quantify the shape of each individual’s cortex, as defined by the eigenvalue 146 

spectrum of the LBO (Figure 1, A and B; see Materials and methods). Each eigenvalue is 147 

associated with a corresponding eigenfunction, which describes shape variations at a particular 148 

spatial wavelength, ordered from coarse to fine-grained scales (Figure 1B). These eigenfunctions 149 

are orthogonal by construction and thus represent a basis set for cortical shape variations much 150 

like the sinusoidal basis used in Fourier decomposition of signals, with the corresponding 151 

eigenvalue being analogous to the wave frequency at each spatial scale. Critically, we normalized 152 

the surface area (45) of the meshes prior to Shape-DNA analysis to ensure that the resulting 153 

eigenvalue spectra were independent of individual differences in brain size (see Materials and 154 

methods). 155 

To investigate the uniqueness of these shape descriptors to individual brains, we performed 156 

an identifiability analysis (56, 57), where identifiability was quantified as the degree to which the 157 

surface eigenvalue spectrum of an individual at scan time 1 was more similar to the same person’s 158 

spectrum at time 2, relative to other people’s time 2 spectra (Figure 1C; see also Materials and 159 

methods). To determine whether identifiability is maximized at any specific scales, we repeated 160 

the analysis multiple times, initially by taking only the first two eigenvalues, which describe shape 161 
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variations at the coarsest scale, and then incrementally adding eigenvalues representing more fine-162 

grained features to a maximum of 1000. Plotting the identifiability score as a function of the 163 

number of eigenvalues allows us to identify characteristic spatial scales at which the identifiability 164 

score is maximized (Figure 1D). In other words, it allows us to identify the scales at which 165 

individual-specific shape features are most pronounced. We repeated this procedure using the 166 

eigenvalue spectra for the left and right hemispheres alone, the combination of both (which 167 

describes the shape of both hemispheres), and for the SAS, which quantifies shape asymmetries as 168 

the difference between the left and right hemisphere eigenvalue spectra (see Figure 2 for details). 169 

Finally, we utilized the spatial scales with maximum identifiability (Figure 1D) to examine the 170 

relationships between the SAS and sex, handedness, cognition, and heritability. In general, a brain 171 

with a higher degree of shape asymmetry has SAS values that more strongly depart from zero 172 

(Figure 1—figure supplement 1). 173 
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 174 

Figure 1. Schematic of our analysis workflow. (A) The shapes of the left and right hemispheres  175 

are independently analyzed using the Laplace-Beltrami Operator (LBO) via the Shape-DNA 176 

algorithm (45, 47). (B)  Eigenfunctions of the LBO are obtained by solving the Helmholtz 177 

equation on the surface, given by ∆݂ =  where ݂ is corresponds to a distinct eigenfunction,  178 ,݂ߣ−

and ߣ is the corresponding eigenvalue. Each eigenvalue ߣ௜ , ݅ = 1, 2, … , 1000, quantifies the 179 

degree to which a given eigenfunction is expressed in the intrinsic geometry of the cortex. 180 
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Higher-order eigenvalues describe shape variations at finer spatial scales. (C) The Shape  181 

Asymmetry Signature (SAS) is quantified as the difference in the left and right hemisphere  182 

eigenvalue spectra, providing a summary measure of multiscale cortical shape asymmetries. To  183 

investigate the identifiability of the SAS, we use Pearson’s correlation to calculate the similarity  184 

between the SAS vectors obtained for the time 1 (t1) and time 2 (t2) 2 scans from the same  185 

individuals (diagonal elements of the matrices) as well as the correlation between t1 and t2 scans  186 

between different subjects (off-diagonal elements). We estimate identifiability by first  187 

correlating the initial two eigenvalues, then the initial three eigenvalues, and so on to a maximum  188 

of 1000 eigenvalues. Here, we show examples of correlation matrices obtained when using the  189 

first 10, 50, 144, and 1000 eigenvalues, and the cortical surface reconstructions show the shape  190 

variations captured by corresponding spatial scales. (D) Repeating the identifiability analysis up  191 

to a maximum of 1000 eigenvalues yields a curve with a clear peak, representing the scale at  192 

which individual differences in cortical shape are maximal. For the SAS, this peak occurs when  193 

the first 144 eigenvalues are used (black dashed line), which offers a fairly coarse description of  194 

shape variations (see panel (C)). We then use a similar analysis approach to investigate  195 

associations between scale-specific shape variations and sex, handedness, cognitive functions  196 

as well as heritability. The data in this figure are from the OASIS-3 (n = 233) cohort, and the  197 

cortical surfaces are from a population-based template (fsaverage in FreeSurfer). 198 

Figure supplement 1. Higher degrees of cortical asymmetry are associated with SAS values that  199 

depart from zero. 200 

Figure 2A–C shows the identifiability scores obtained for the different shape descriptors. 201 

In all three datasets, across a broad range of spatial scales, identifiability was highest for the SAS, 202 

followed by the combination of left and right hemisphere eigenvalues, and then each hemisphere 203 
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alone. This result indicates that individual variability in the asymmetry of cortical shape is greater 204 

than the variability of shape across the whole cortex or within each hemisphere alone. Figure 2A–205 

C also shows identifiability scores obtained when trying to identify an individual’s left hemisphere 206 

using right hemisphere shape descriptors obtained at the same time point. These scores are very 207 

low, indicating that shape variations between the two hemispheres are largely independent of each 208 

other and lack a consistent pattern amongst subjects. In other words, for any given person, the 209 

shape of one hemisphere offers little individually unique information about the shape of the other 210 

hemisphere. 211 
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 212 

Figure 2. Identifiability of different shape descriptors at different spatial scales. (A) to (C)  213 

Identifiability scores for shape features across eigenvalue indices. The identifiability scores of  214 

the shape asymmetry signature (SAS) are generally higher than the scores for shape descriptors  215 

of individual hemispheres or scores obtained when concatenating both hemispheres across three  216 

datasets (OASIS-3: n = 233; ADNI: n = 208; HCP: n = 45). The SAS scores are also much higher  217 

than the scores obtained by randomly shuffling the order of the subjects at time 2 (shaded area  218 

represents mean ± 2 SDs). (D) to (F) The cumulative mean identifiability scores for each  219 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2022. ; https://doi.org/10.1101/2021.09.14.460242doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460242
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

eigenvalue group, derived from correspondence with spherical harmonics (58). The peak mean  220 

identifiability occurs at the 11th eigenvalue group for the OASIS-3 (D) and ADNI data (E),  221 

representing the first 144 eigenvalues. The curve of the mean identifiability score for the HCP  222 

data (F) flattens after the 11th group and peaks at the 16th group. (G) Cortical surfaces reconstructed  223 

at different spatial scales, starting with only the first eigen-group (E1) and incrementally adding  224 

more groups to a maximum of the first 12 eigen-groups (E12). (H) Overhead view of the spatial  225 

scale corresponding to the eigen-group at which identifiability is maximal in the OASIS-3 and  226 

ADNI datasets (i.e., the first 11 eigen-groups, corresponding to the first 144 eigenvalues).  227 

Figure supplement 1. Understanding the identifiability score. 228 

Figure supplement 2. Higher inter-session differences occur at finer spatial scales. 229 

Figure supplement 3. Subject identifiability scores re-calculated for data from MRI sessions  230 

with the longest inter-sessional interval. 231 

Individually unique variations of cortical shape asymmetry are maximal at coarse spatial 232 

scales 233 

We next investigated the scale-specificity of SAS identifiability. Figure 2A–C shows that SAS 234 

identifiability sharply increases to a peak as we use more eigenvalues to characterize the surface 235 

shape at finer scales (i.e., as we add more shape information from finer spatial scales), before 236 

gradually falling again. This peak identifies a characteristic spatial scale in which individual 237 

differences in shape asymmetries are maximally unique (see also Figure 2—figure supplement 1).  238 

Peak SAS identifiability was observed using the first 126 and 122 eigenvalues for the 239 

OASIS-3 (Figure 2A) and ADNI (Figure 2B) data, respectively. At these scales, the subject 240 

identifiability scores were 4.93 (P = 0; estimated by permutation; see Statistical analysis section 241 

in Materials and methods for details) for OASIS-3 and 5.03 (P = 0) for ADNI. For the HCP data, 242 
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peak SAS identifiability was observed when using the first 268 eigenvalues (identifiability score 243 

= 6.74; P = 0; Figure 2C), but the identification curve flattened after the first 137 eigenvalues 244 

(identifiability score = 6.56), which is closely aligned with the OASIS-3 and ADNI datasets. 245 

In the case of a perfect sphere, the shape spectral analysis yields subsets of degenerate 246 

eigenvalues with equal magnitude (58), within which the corresponding eigenfunctions represent 247 

orthogonal rotations of the same spatial pattern at a given scale. For example, eigenfunctions 2–4 248 

of a sphere represent coarse-scale gradients in the anterior-posterior, inferior-superior, and left-249 

right axes. As the cortex is topologically equivalent to a sphere, the spherical eigen-groups offer a 250 

natural way to identify characteristic spatial scales, to more succinctly summarize cortical shape 251 

variations (58), and to smooth out eigenvalue-specific fluctuations at a given scale (see Materials 252 

and methods). We averaged the identifiability scores for each harmonic group and plotted these as 253 

a function of the group index in Figure 2D–F. The group mean identifiability score peaks at the 254 

11th eigenvalue group for the OASIS-3 (mean identifiability score = 4.93) and ADNI (mean 255 

identifiability score = 5.06) datasets, which is comprised of the first 144 eigenvalues. Identifiability 256 

also reaches a near-plateau at the 11th group for the HCP data (mean identifiability score = 6.47), 257 

with an additional marginal increase observed at the 16th group (mean identifiability score = 6.69). 258 

Thus, the first 144 eigenvalues represent a stable and robust characteristic scale at which individual 259 

uniqueness in cortical shape asymmetry is strongest. The 11th group corresponds to a wavelength 260 

of approximately 37 mm in the case of the population-based template (fsaverage in FreeSurfer; 261 

Supplementary File 1 shows the corresponding wavelengths of the first 14 eigen–groups; Figure 262 

2G shows the spatial scales corresponding to the cumulative eigen-groups). A reconstruction of 263 

the cortical surface using the first 144 eigenfunctions is shown in Figure 2H.  264 
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The reconstruction captures shape variations at a coarse scale, representing major primary 265 

and secondary sulci, but with minimal additional details. If we include additional eigenfunctions 266 

to capture more fine-scale anatomical variations, inter-session image differences increase, 267 

suggesting that finer spatial scales may be capturing dynamic aspects of brain structure that are 268 

more susceptible to increased measurement noise (Figure 2—figure supplement 2). This same 269 

characteristic scale was obtained after repeating the identifiability analysis over the longest inter-270 

scan intervals in the ADNI and OASIS-3 datasets (Figure 2—figure supplement 3), indicating that 271 

our results are robust over time windows ranging from one day to more than six years. 272 

Shape asymmetries are more identifiable than classical morphological and functional 273 

measures 274 

We next compared the identifiability of the SAS to scores obtained using asymmetries in classical 275 

morphological descriptors such as regional surface area, cortical thickness and grey matter volume, 276 

and measures of inter-regional functional connectivity (Figure 3), which have previously been 277 

shown to yield high identifiability (51, 56). Identifiability scores obtained with the SAS were much 278 

higher than those obtained by regional asymmetries in size-related morphological measures with 279 

the HCP-MMP1 atlas (59) (Figure 3, A and B). We also found that SAS identifiability was higher 280 

when using our surface area normalization procedure compared to the SAS computed without this 281 

procedure (Figure 3—figure supplement 1; see Materials and methods). Since the normalization 282 

isolates the pure effects of shape independent of brain size, the results converge to indicate that 283 

individual variability in brain anatomy is higher when considering asymmetries in cortical shape 284 

compared to more traditional size-based morphological descriptors. 285 

Figure 3C–F compares the identifiability scores obtained from SAS to those obtained using 286 

inter-regional functional connectivity (see Materials and methods), within the HCP test-retest data. 287 
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Functional connectivity was quantified for the entire cortex using four different regional 288 

parcellations defined at different spatial scales (Schafer 100, Schaefer 300, Schaefer 900 (60), and 289 

HCP-MMP1 (59) atlas). The SAS outperformed all functional identifiability scores, indicating that 290 

cortical shape shows greater specificity to an individual than patterns of functional connectivity. 291 
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 292 

Figure 3. Cortical shape asymmetries are more identifiable than size-related descriptors or  293 

functional connectivity. (A) Identifiability scores for the SAS are higher than those obtained for  294 
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asymmetries based on cortical surface area (identifiability score = 0.81), volume (identifiability  295 

score = 0.66), and thickness (identifiability score = 0.33) for the OASIS-3 dataset (n = 232; see  296 

Materials and methods). (B) Matrices of the Pearson correlation coefficients for shape asymmetry  297 

signatures and size-based morphological asymmetries from MRI scans taken at different time  298 

points (t1 and t2) of the OASIS-3 subjects. (C) SAS identifiability is higher than the identifiability 299 

based on functional connectivity, assessed with parcellations at different resolution scales in the 300 

HCP test-retest dataset (n = 44). (D) Matrix of the Pearson correlation coefficients for shape 301 

asymmetry signatures of the HCP subjects. (E) Four resolution scales of parcellations used in the 302 

functional connectivity analysis (shown on an inflated fsaverage surface in FreeSurfer). (F) 303 

Matrices of the Pearson correlation coefficients for functional connectivity using the Schaefer 100 304 

(identifiability score = 1.57), HCP-MMP1 (identifiability score = 2.06), Schaefer 300 305 

(identifiability score = 2.11), and Schaefer 900 (identifiability score = 2.69) parcellations. 306 

Figure supplement 1. Comparing identifiability scores between the shape asymmetry signature 307 

(SAS) with either native eigenvalues or volume-normalized eigenvalues. 308 

Cortical shape asymmetries are related to sex but not handedness  309 

Sex and handedness are two characteristics that have frequently been examined with brain 310 

asymmetry (2, 7, 10, 11, 25, 27, 28, 30, 61). We used a general linear model (GLM) with 311 

permutation testing and accounting for familial structure (62, 63) of the HCP data to evaluate the 312 

association between these two characteristics and the SAS defined at each eigenvalue ranging 313 

between the 2nd and 144th. After FDR correction, males and females showed significant differences 314 

in asymmetry scores for the 2nd (PFDR = 0.037),  6th (PFDR = 0.037), 8th (PFDR = 0.039), 52nd (PFDR 315 

= 0.030), and 84th (PFDR = 0.037) eigenvalues (Figure 4A), where female brains showed more 316 

rightward asymmetric than males in these eigenvalues. These five eigenvalues come from four 317 
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different eigen-groups, and the corresponding spatial scales of these eigenvalues are shown in 318 

Figure 4B. These eigenvalues relate to shape variations over coarse scales. For instance, for the 319 

2nd eigenvalue (L = 1; see Materials and methods for the definition of L), the wavelength is of 320 

order 300 mm, which is about half the circumference of the brain; for the most-fine grained 321 

eigenvalue, the 84th eigenvalue  (L = 9), the wavelength is about 44 mm. We note however that the 322 

sex differences are small, with considerable overlap between male and female distributions (Figure 323 

4A). No such effects of handedness on the SAS surpassed the FDR-corrected threshold. We also 324 

found that the overall asymmetry level (i.e., the sum of the SAS) was not correlated with either 325 

handedness or sex.  326 

 327 
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Figure 4. Sex differences in eigenvalue asymmetries. (A) Smoothed distributions and boxplots 328 

with mean and interquartile range (64) of the eigenvalues among males (n = 504) and females (n 329 

= 602). Under these five spatial scales, female brains show a greater rightward asymmetry than 330 

males. The p-values are FDR-corrected values of the correlation between sex and SAS, obtained 331 

via a GLM. The d values are effect sizes (Cohen’s d). L denotes eigen-group. (B) The 332 

corresponding eigenfunction of each eigenvalue in panel (A) that shows the gradients of spatial 333 

variation on a population-based template.  334 

Individual differences in cortical shape asymmetry correlate with cognitive functions 335 

We used canonical correlation analysis (CCA) (65) to examine associations between the SAS and 336 

13 cognitive measures from the HCP dataset (n = 1094; see Materials and methods) selected to 337 

represent a wide range of cognitive functions ((66); see Materials and methods for details). To 338 

reduce the dimensionality of the SAS measures and ensure equivalent representation of 339 

asymmetries at each spatial scale, we took the mean SAS value for each of the 1st to 11th eigen-340 

groups, spanning the 2nd to 144th eigenvalues. To minimize collinearity of the cognitive variables, 341 

we applied principal component analysis (PCA) to the 13 cognitive measures and retained the first 342 

four principal components (PCs), which explained 80% of the variance. The analysis revealed a 343 

single statistically significant canonical mode (CCA r = 0.187; PFWER = 0.032; Figure 5A). Figure 344 

5B shows that the mode has significant positive loadings from mean SAS scores in eigen-groups 345 

2, 4, 5, and 11, and significant negative loadings from eigen-groups 3, 6, 7, 10. Figure 5C indicates 346 

that 12 of the 13 cognitive measures showed significant positive correlations with the canonical 347 

variate, indicating that it captures covariance with general cognitive ability. Thus, our findings 348 

identify strong scale-specificity of associations between cortical shape asymmetry and cognition, 349 

with a greater leftward asymmetry in scales captured by eigen-groups 2 (~170 mm wavelength), 4 350 
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(~95 mm wavelength), 5 (~75 mm wavelength), and 11 (~37 mm wavelength) being associated 351 

with better performance across most cognitive measures, and a greater leftward asymmetry in 352 

scales captured by eigen-groups 3 (~120 mm wavelength), 6 (~65 mm wavelength), 7 (~55 mm 353 

wavelength), and 10 (~40 mm wavelength) being associated with poorer cognitive performance. 354 

 355 

Figure 5. Individual differences in cortical shape asymmetry correlate with general cognitive 356 

ability. (A) Scatterplot of the association between the cognitive and SAS canonical variates with 357 

the corresponding least-squares regression line in black. (B) Canonical variate loadings of each 358 

eigen-group. (C) Correlations between the original cognitive measures and the cognitive canonical 359 

variate. Error bars show ± 2 bootstrapped standard errors (SE). Asterisks denote bootstrapped 360 

PFDR < 0.05. 361 

Cortical shape asymmetries are primarily driven by unique environmental influences 362 

To characterize genetic and environmental effects on cortical shape and its asymmetry, we 363 

calculated the heritability of each eigenvalue within the left and right hemispheres, as well as for 364 

the SAS. We used data from 138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 365 

160 of their non-twin siblings drawn from the HCP dataset (53) (see Materials and methods for 366 

details). Uni-hemispheric shape descriptors demonstrated strong heritability at very coarse spatial 367 
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scales and moderate heritability at slightly finer scales. For instance, the heritability of the 1st 368 

eigen-group (2nd to 4th eigenvalues) of both hemispheres ranged between 0.52 < h2  < 0.69 (all 369 

PFDR < 0.05; Figure 6, A and B). These eigenvalues are related to shape variations on the coarsest 370 

scale that does not include any sulcal or gyral features (the corresponding wavelength is 371 

approximately 170 mm). Beyond the 2nd eigen-group, heritability estimates dropped to below 0.5 372 

(PFDR < 0.05 for most eigenvalues), and beyond the 4th eigen-group they dropped below 0.3. Most 373 

eigenvalues with statistically significant heritability estimates were confined to the first six eigen-374 

groups, which correspond to wavelengths greater than or equal to approximately 65 mm (Figure 375 

6, A and B insets). These results indicate that genetic influences on the shape of each cortical 376 

hemisphere are expressed over very coarse scales at which only primary cortical folds such as the 377 

Sylvian and central sulci are apparent. Estimates of common environmental influence on both 378 

hemispheres were uniformly low across the 2nd to 144th eigenvalues (range 0–0.20).  379 

 380 

Figure 6. Heritability of cortical shape. (A) and (B) Heritability of the eigenvalues of the left (A)  381 

and right (B) hemispheres. The insets show the corresponding spatial scales by reconstructing the  382 

surfaces using the first six eigen-groups. (C) Heritability of the SAS. The inset shows the  383 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2022. ; https://doi.org/10.1101/2021.09.14.460242doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460242
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

corresponding spatial scale with some level of genetic influence, obtained by reconstructing the  384 

surface using the first five eigen-groups. (D) Unique environmental influences to the SAS at  385 

each eigenvalue. Statistical significance is evaluated after FDR-correction. Note that significance  386 

is not estimated for unique environmental effects as this represents the reference model against  387 

which other genetically informed models are compared. We use 79 same-sex DZ twin pairs, 138  388 

MZ twin pairs, and 160 of their non-twin siblings. 389 

Figure supplement 1. Heritability of cortical shape with volume normalization but without  390 

normalizing the surface area. 391 

Figure supplement 2. Heritability estimates of regional volumes of individual hemispheres across 392 

four parcellation resolutions. 393 

In contrast to unihemispheric shape variations, all the heritability estimates of the SAS 394 

were low (<0.28; Figure 6C), with only four eigenvalues (2, 3, 16, and 28) showing statistically 395 

significant heritability after FDR correction (PFDR = 0.004 to 0.022) and no heritability estimates 396 

exceeding 0.30. Thus, at any given scale, genes account for less than one-third of the phenotypic 397 

variance in the SAS. These four eigenvalues are confined to the first five eigen-groups, with 398 

corresponding wavelengths greater than or equal to approximately 75 mm (Figure 6C inset). 399 

Estimates of common environmental influences were uniformly low (range 0–0.14), whereas 400 

unique (subject-specific) environmental influences on the SAS were consistently high across the 401 

full range of eigenvalues considered, ranging between 0.72 to 1.00 (Figure 6D).  402 

Notably, heritability estimates for non-surface area normalized eigenvalues of individual 403 

hemispheres, which capture variations in both shape and size, were uniformly high across all 404 

scales, and the scale-specific effects were eliminated (Figure 6—figure supplement 1), indicating 405 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2022. ; https://doi.org/10.1101/2021.09.14.460242doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460242
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

that variations in cortical size are under greater genetic influence than cortical shape. The results 406 

underscore the importance of controlling for size-related variations in shape analyses. 407 

Discussion  408 

Asymmetries in brain anatomy are widely viewed as a critical characteristic for understanding 409 

brain function. Here, we employed a multiscale approach to quantify individualized shape 410 

asymmetries of the human cerebral cortex. We found that cortical shape asymmetries were highly 411 

personalized and robust, with shape asymmetries at coarse spatial scales being the most 412 

discriminative among individuals, showing differences between males and females, and 413 

correlating with individual differences in cognition. Heritability estimates of shape descriptors in 414 

individual hemispheres were high at very coarse scales but declined to moderate values at finer 415 

scales. By contrast, the heritability of cortical shape asymmetry was low at all scales, with such 416 

asymmetries being predominantly influenced by individual-specific environmental factors. 417 

Identifiability of cortical shape asymmetry is maximal at coarse scales 418 

Cortical asymmetries have traditionally been investigated at fine-scale, voxel or vertex-level 419 

resolutions (16, 19, 23, 30, 32, 43, 44). These approaches may ignore meaningful effects (i.e., 420 

properties that are individually unique and correlated with cognition) at coarser spatial scales. Our 421 

SAS quantifies these underlying variations across the whole brain and along a spectrum of spatial 422 

scales. Our approach is akin to studying seismic waves of earthquakes with different wave 423 

frequencies at the global tectonic scale, instead of focusing on a particular city. The ability to assess 424 

shape along a spectrum of spatial scales is important, since brain asymmetry is a multidimensional 425 

and multivariate phenotype (3, 13, 43). 426 
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Few studies have assessed individual variations in shape at coarse scales. Neubauer et al. 427 

(33) found that individual-specific asymmetry in endocranial shape is reliable across two time 428 

points. The endocranial shape is the imprint of the cortical surface shape but contains only very 429 

coarse shape information (33). Moreover, levels of brain torque (both horizontal and vertical) are 430 

robust across time (61). Wachinger et al. (25) used shape descriptors at coarse scales derived from 431 

the eigenvalues of the LBO for all brain structures to achieve accurate subject identification. Taken 432 

together with our findings, these results indicate that coarse features of cortical shape are highly 433 

personalized and unique to individuals.    434 

It is perhaps surprising that individual differences in cortical shape are most strongly 435 

expressed at coarse scales, given the known variability of fine-grained anatomical features such as 436 

the presence and trajectories of tertiary sulci. It is possible that local changes in grey matter volume 437 

affect fine-scale geometry in such a way that it carries less identifying information, or that such 438 

fine scales carry too much measurement noise to be used for the purpose of identification. 439 

Traditional analysis methods use smoothing to address the issue of image noise (44), but 440 

smoothing can also suppress actual variations at fine scales. Our multiscale approach affords a 441 

more comprehensive characterization of shape variations across multiple spatial scales. An 442 

important avenue of future work will involve investigating the functional consequences of these 443 

pronounced individual differences. 444 

Cortical shape, rather than shape asymmetry, is heritable  445 

Genetic effects on cortical thickness and surface area are generally bilateral (10, 67-69), resulting 446 

in few lateralized effects (10, 70). Accordingly, it has been postulated that individual-specific 447 

asymmetries may be largely determined by environmental factors (34-38). In line with this 448 

hypothesis, we found that individualized cortical shape asymmetries were associated with low 449 
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heritability and were driven mainly by unique environmental effects. These environmental effects 450 

are captured by the E parameter of the ACTE heritability model that we used in our analysis; this 451 

parameter also includes the contributions of measurement error. However, our effects cannot be 452 

explained by the SAS being a noisier descriptor of morphology as it showed the highest 453 

identifiability (Figure 2, A to C). That is, a noisy measure will not be able to discriminate between 454 

individuals. Thus, taking the findings of our identifiability and heritability analyses together, we 455 

can conclude that individual differences in SAS scores are primarily driven by unique 456 

environmental influences rather than measurement error. Previous studies have found some 457 

evidence of environmental influences on brain asymmetry (2, 4, 5, 71). Early in the intrauterine 458 

environment, fetal posture and light may influence brain asymmetry (2, 4, 5); during postnatal 459 

maturation, language learning has been linked to specific asymmetry features. For example, 460 

bilinguals have stronger rightward asymmetry of cortical thickness of the anterior cingulate than 461 

monolinguals (71). However, the mechanisms of how environmental effects shape brain 462 

asymmetry are largely unknown, and epigenetics may also play a role (2, 4). 463 

In contrast to shape asymmetries, the shape of individual hemispheres showed greater 464 

heritability at coarse scales, consistent with results from previous studies on other morphological 465 

measurements (10, 39, 43). The scales at which genetic effects on unihemispheric shape were 466 

observed captured variations in primary sulci, consistent with evidence that the primary folds, 467 

which develop early in life, are less variable across individuals and under greater genetic control 468 

than other folds (i.e., secondary and tertiary folds) (43, 72, 73). Previous studies have found that 469 

genetic influences on the cerebral thickness, geodesic depth, and surface curvature generally occur 470 

along the posterior–anterior and inferior–superior axes (43, 74). These two axes correspond to the 471 

second and third eigenvalues of the LBO, which also showed strong heritability in the shapes of 472 
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both hemispheres in our results. In addition to these two axes, we found strong heritability at very 473 

coarse scales in other directions that have not been described in previous studies. Our approach 474 

thus identifies dominant spatial scales and gradients of heritability in shape. 475 

Shape asymmetries, sex, and handedness 476 

Using our multiscale approach, we did not find a relationship between shape asymmetry and 477 

handedness, consistent with numerous studies showing that handedness is unrelated to anatomical 478 

brain asymmetry in cortical thickness, volume, surface area, shape, and voxel-based morphometric 479 

(VBM) analysis (10, 11, 24, 25, 28, 30, 32).  480 

Numerous studies, focusing primarily on size-related descriptions such as grey matter 481 

volume and cortical thickness, have found that female brains are more symmetric than male brains 482 

(8, 10, 24-27). Our analysis reveals that, although the overall level of shape asymmetry did not 483 

differ between male and female brains, female brains displayed a greater rightward shape 484 

asymmetry than male brains at certain coarse spatial scales, such as along the anterior-posterior 485 

axis. The mechanisms giving rise to these scale-specific sex differences require further 486 

investigation. 487 

Shape asymmetries are correlated with general cognitive performance 488 

We found that individual differences in cortical shape asymmetry are correlated with cognitive 489 

performance in a scale-specific way. Specifically, we found that a greater leftward asymmetry 490 

across a wide range of spatial scales, corresponding to wavelengths of approximately 37, 75, 95, 491 

and 170 mm, and greater rightward asymmetry at wavelengths of approximately 40, 55, 65, and 492 

120 mm, are associated with better performance across nearly all cognitive measures considered. 493 

Previous studies have found that asymmetries in cortical thickness and surface area are negatively 494 
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correlated with cognition (40, 75), but these studies only measured the level of asymmetry and did 495 

not consider the direction (i.e., leftward or rightward) of the asymmetry. The scale-specificity of 496 

the associations that we find underscore the importance of viewing brain asymmetry as a 497 

multiscale rather than a unidimensional trait. 498 

The magnitudes of the associations are modest, but they are consistent with effect sizes 499 

reported in past research (40, 75). These modest correlations with cognition may reflect a 500 

robustness of cognitive abilities to stochastic perturbations of brain morphology, given that our 501 

heritability analysis revealed a dominant effect of unique environmental factors in driving 502 

individual differences in cortical shape asymmetries. 503 

Summary 504 

We developed a multiscale approach and found that cortical shape asymmetries are robust and 505 

personalized neuroanatomical phenotypes, especially at coarse spatial scales. Some of these coarse 506 

scales are more strongly rightward asymmetric in females compared to males. The cortical shape 507 

asymmetries also show scale-dependent associations with cognition. Finally, individual-specific 508 

cortical shape asymmetries are driven mainly by subject-specific environmental influences rather 509 

than by genetics, unlike the shape of individual hemispheres that shows strong heritability at coarse 510 

scales.  511 

Materials and methods 512 

Neuroimaging data 513 

We used healthy subject data from three open-source neuroimaging datasets: the latest Open 514 

Access Series of Imaging Studies (OASIS-3 (52)), the Human Connectome Project (HCP (53)), 515 
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and the Alzheimer's Disease Neuroimaging Initiative (ADNI; https://ida.loni.usc.edu/) to develop 516 

and test our new asymmetry shape measure – the SAS (see below for details). To test for 517 

relationships of sex, handedness, and heritability, we restricted our analysis to the HCP dataset, 518 

which provides twin and non-twin sibling information and handedness measurement as a 519 

continuous variable, as the sample sizes of the left-handers in the other two datasets are too small 520 

(n = 15 in the ADNI data; n = 18 in the OASIS-3 data). 521 

OASIS-3 522 

We used 239 healthy participants with at least two longitudinal MRI sessions using 3T scanners 523 

from the latest release of the Open Access Series of Imaging Studies (OASIS-3) (52). We excluded 524 

six subjects whose SAS was an outlier in at least one of those sessions due to poor image quality 525 

and major errors in image segmentation. These subjects had more than two eigenvalues of the first 526 

200 eigenvalues that departed from the population mean values by more than four standard 527 

deviations. The remaining 233 subjects (99 males; 134 females) were aged from 42 to 86 (mean = 528 

66.03; standard deviation = 8.81) when they entered the study. We also repeated the analyses using 529 

all the subjects including the outliers, and the resulting number of eigenvalues with peak 530 

identifiability was identical to the initial analysis that excluded the outliers. For comparing the 531 

identifiability of the SAS and the asymmetry from traditional measurements (volume, cortical 532 

thickness, and surface area), we further excluded one subject because some of this subject’s files 533 

were corrupted and could not be segmented. For subjects with more than two MRI sessions (n = 534 

115), our main analysis used the initial session as the time 1 (t1) session and the session closest in 535 

time to the initial session as the time 2 (t2) session. The intervals between these two sessions were 536 

one to 3151 days (mean = 2.95 years; standard deviation = 1.67 years). To ensure the robustness 537 

of our methods, we used sessions with the longest intersession interval (mean interval of 6.24 538 
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years; standard deviation of 1.88 years) to re-analyze the subject identifiability. These healthy 539 

participants had no history of neurological or psychiatric diseases. We also excluded subjects with 540 

a Mini-Mental State Examination (MMSE) score equal to or lower than 26, as this indicates that a 541 

subject is at risk of being diagnosed with dementia (76). OASIS-3 (52) provides surface meshes 542 

based on the T1-weighted MRI images created by FreeSurfer version 5.3 with the cross-sectional 543 

pipeline (i.e., to treat the T1 and T2 sessions independently (54)), including the FreeSurfer patch 544 

(10Dec2012) and the Human Connectome Project (HCP) patch 545 

(http://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/5.3.0-HCP) (52). A trained lab member of 546 

the OASIS project reviewed the image segmentation, and for the images that failed the quality 547 

control, TkMedit (http://freesurfer.net/fswiki/TkMedit), a FreeSurfer toolbox, was used to revise 548 

the images and re-run the FreeSurfer pipeline (52). After the re-segmentation, the images were 549 

excluded if they still failed a quality control process (52). The details of the OASIS-3 dataset can 550 

be found in LaMontagne et al. (52) and the OASIS website (https://www.oasis-brains.org/). We 551 

used the actual output files provided by the OASIS-3 without any further corrections. 552 

HCP 553 

We used participants from the Human Connectome Project (HCP) (53) s1200 release 554 

(www.humanconnectome.org/), which includes 1113 subjects with T1-weighted MRI. All subjects 555 

of the s1200 release were healthy young adults (aged 22–35, mean = 28.80, standard deviation = 556 

3.70). The structural images (T1-weighted and T2-weighted scans) of the HCP have a high 557 

isotropic resolution (0.7 mm; see (53) for details), and all images underwent the HCP-specific 558 

minimal preprocessing pipeline (55). We used native surface meshes created by the FreeSurfer 559 

(version 5.3)-HCP pipeline (54, 55, 77, 78) from T1-weighted MRI images using 3T scanners. For 560 

subject identification, we employed the test-retest subsample, which consists of 45 healthy subjects 561 
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(13 males, 32 females) aged from 22 to 35 (mean = 30.29; standard deviation = 3.34), including 562 

17 pairs of monozygotic twins. The intervals between the test session (the t1 session in our 563 

analysis) and the retest session (t2) were between about one to 11 months (mean interval of 4.7 564 

months). To compare the identifiability of the SAS and the resting-state functional connectivity, 565 

we further excluded one subject without REST1 data in one session. 566 

For analyzing the relationships between SAS and sex as well as handedness, we excluded 567 

three subjects with unclear zygosity and four subjects with outlying SAS values (using the same 568 

criteria as used in the OASIS-3) from the s1200 release subjects, and general linear modeling 569 

(GLM) of sex and handedness effects were applied to cross-sectional data of these remaining 1106 570 

subjects (504 males; 602 females). We further excluded 12 subjects who did not have all 13 571 

cognitive measures analyzed in our CCA (detailed below). Among the s1200 release subjects were 572 

79 same-sex dizygotic twin (DZ) pairs and 138 monozygotic twin (MZ) pairs; 160 of these twin 573 

pairs have non-twin sibling imaging data. For twin pairs with more than one non-twin sibling, we 574 

selected one sibling at random (79). We used the resulting twin and non-twin siblings data for the 575 

heritability analysis. 576 

ADNI   577 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) was 578 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 579 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 580 

positron emission tomography (PET), other biological markers, and clinical and 581 
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neuropsychological assessment can be combined to measure the progression of mild cognitive 582 

impairment (MCI) and early Alzheimer’s disease (AD). 583 

Participants in the ADNI sample completed multiple MRI sessions, but the number of 584 

sessions was not consistent across subjects. We used 208 healthy control subjects from the ADNI 585 

1 who had both the baseline MRI session (the t1 session) and a follow-up MRI session six months 586 

later (the t2 session). These subjects comprised 109 males and 99 females aged 60 to 90 (mean = 587 

76.21; standard deviation = 5.10) upon study entry. Of these 208 subjects, 135 subjects also had 588 

an MRI session three years later from the initial session. To evaluate the stability of our methods, 589 

we re-analyzed these 135 subjects using data from the 3-year follow-up as the t2 session. The 590 

preprocessing procedure included gradwarping, B1 correction, and/or N3 scaling. We used the 591 

ADNI provided surface meshes generated by the cross-sectional FreeSurfer (version 4.3) from T1-592 

weighted MRI image. Detailed descriptions of image acquisition, quality control, and 593 

preprocessing are described at http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ and (80).  594 

Spectral shape analysis 595 

We utilized the eigenvalues of the LBO applied to cortical surface mesh models generated with 596 

FreeSurfer (54). The eigendecomposition of each individual's cortical surface was estimated using 597 

the Shape-DNA software (25, 45, 47), which provides algorithms that extract and optimize the 598 

eigenvalues and eigenfunctions from the LBO based on the intrinsic shape of an object (45, 47). 599 

The Shape-DNA software (45, 47) uses the cubic finite element method to solve the Helmholtz 600 

equation (Eqs. 1), also known as the Laplacian eigenvalue problem: 601 

∆݂ =  602 (1)            ݂ߣ−
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where ∆ is the LBO; f is the eigenfunction with corresponding eigenvalue ߣ. The eigenvalues of 603 

the Helmholtz equation are a sequence ranging from zero to infinity, i.e., 0 ≤ ߣଵ ≤ ߣଶ≤ ...< ∞, and 604 

changes in shape result in changes in the eigenvalue spectrum (47).  605 

Spectral shape analysis via LBO is a departure from traditional morphological analyses 606 

that focus on either specific locations (i.e., regions defined by a cortical atlas) or global differences 607 

(such as total hemispheric volume). Spectral shape analysis focuses instead on differences in the 608 

spatial scales of variation. The decomposed spatial scales can be linearly combined to reconstruct 609 

the surface via the eigenfunctions and their corresponding coefficients (the contribution of each 610 

set of eigenfunctions to the original surface; see Figure 2G for examples of reconstructed surfaces).  611 

Importantly, Shape-DNA achieves better results for retrieving object shapes than numerous 612 

cutting-edge shape-retrieval methods (81). Shape-DNA compresses the cortical-surface geometry 613 

from around 5 mb into only less than 3  kb, making it computationally efficient for further analysis 614 

(25). The code for calculating Shape-DNA is written in Python and is freely available 615 

(http://reuter.mit.edu/software/shapedna/). We applied the Shape-DNA code to the data and 616 

analyzed the resulting eigenvalues using MATLAB. 617 

Eigenvalue normalization  618 

To account for differences in brain sizes among participants, the eigenvalue spectra from Shape-619 

DNA should be normalized (45). Previous studies (25, 42, 50) have applied volume normalization 620 

to normalize the eigenvalue spectrum to unit volume via the following equation (25, 42): 621 

λ’ =  ଶ/஽λ           (2) 622ݒ

where ݒ is the Riemannian volume of the manifold, λ is the original eigenvalue spectrum (ߣ] =ߣଵ, 623 

 ଶ,…]), and λ’ is the volume normalized eigenvalue spectrum. Although this approach has been 624ߣ
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used in the literature, it is still unable to isolate shape properties as it does not control the effect of 625 

different surface areas among objects. For example, in Figure 7, each line is the eigenvalue 626 

spectrum for the cortical surface of one subject, and these eigenvalue spectra are straight lines 627 

(although they are not straight lines if we zoom in these figures) increasing along with the indices: 628 

each eigen-spectrum line has its own slope. Specifically, slopes of the native eigenvalue spectra 629 

from each subject are different (Figure 7A) and related to the volume of the manifold. Even though 630 

volume normalization decreases the differences in the slopes of the eigenvalue spectra, the slopes 631 

remain quite different (Figure 7B) and are driven by differences in surface area (45). More 632 

specifically,  633 

ସగ௡ ~ ݊ߣ
ୟ୰ୣୟ(ெ)

           (3) 634 

where ߣ is the eigenvalue and ݊ is the eigenvalue index. Hence, an appropriate surface area-based 635 

normalization is essential to isolate the effects of shape that are distinct from size, particularly 636 

given the evidence that the right hemisphere tends to have a greater cortical surface area than the 637 

left hemisphere (10). Without surface area normalization, differences between the hemispheres 638 

may be primarily driven by differences in the surface area of the two hemispheres. 639 

To perform surface area normalization, we obtained the unit surface area by dividing the 640 

vertex coordinates on each axis by the square root of the total surface area (Eqs. 4). 641 

Vxᇱ = ୚୶
ඥ௔௥௘௔(ெ)

;  Vyᇱ = ୚୷
ඥ௔௥௘௔(ெ)

;  Vzᇱ = ୚୸
ඥ௔௥௘௔(ெ)

      (4) 642 

where Vx, Vy, Vz are the coordinates of all vertices on the X-axis, Y-axis, and Z-axis, respectively; 643 

area (ܯ) is the surface area of object ܯ; Vx’, Vy’, Vz’ are the coordinates of transformed vertices 644 

on the X-axis, Y-axis, and Z-axis respectively. Surface area normalization is stricter than volume 645 
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normalization for spectral alignment, and the eigenvalue spectra with surface area normalization 646 

have a nearly-identical slope (45) (Figure 7C). 647 

 648 

Figure 7. Eigenvalue spectra with and without normalization. (A) Native eigenvalue spectra. (B) 649 

Eigenvalue spectra with volume normalization. (C) Eigenvalue spectra with surface area 650 

normalization. All of these results are from the left white surfaces of 233 subjects from the OASIS-     651 

3 data. Each line represents a subject. The slopes of the spectra in (A) and (B) differ among subjects, 652 

whereas those in (C) are almost identical.   653 

The shape asymmetry signature 654 

The LBO eigenvalues measure the intrinsic geometry of an object and are isometry invariant. 655 

Hence, the eigenvalue spectra are identical regardless of object positions, rotations, and mirroring 656 

(i.e., perfect projection from the brain structure of the right hemisphere to the left does not change 657 

the eigenvalue spectrum) (25, 47). Therefore, brain asymmetry can be calculated directly from the 658 

eigenvalue spectra of the two hemispheres (25, 42) without image registration or smoothing (25, 659 

47). In this study, after calculating the eigenvalues with surface area normalization, we subtracted 660 

the eigenvalue spectra of the right hemisphere from those of the left hemisphere in the same subject 661 
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at each spatial scale (each eigenvalue index) to define the shape asymmetry signature (SAS). 662 

Formally, the SAS for subject i is given by 663 

Λ௜  = ௅௜ߣ −  ோߣ
௜            (5) 664 

where λ is the eigenvalue spectrum λ = (ߣଵ, ߣଶ, . . . , ߣ௡) from the left (L) and right (R) hemispheres, 665 

each of which represents a certain spatial scale. There are other possible asymmetry indices (10, 666 

82), but those indices are not appropriate for a surface area-normalized eigenvalue analysis, as our 667 

normalization already accounts for size effects.  668 

Moodie et al. (82) proposed subtracting the mean of the asymmetry values across subjects 669 

from the individual asymmetry values to represent the asymmetry. We tested this approach with 670 

our method, and the results were generally the same, as the eigenvalues were normalized before 671 

calculating the asymmetry. For simplicity, we defined the SAS using Eqs. 5 to represent the 672 

individual-specific asymmetry. 673 

To further check the possible influence of image quality on the SAS, we first took the mean 674 

of the Euler number of the left and right hemispheres using FreeSurfer, which is widely used as an 675 

index of image quality (83-85), and then calculated the Pearson’s correlation between the mean 676 

Euler number and the SAS across the first 200 eigenvalues. For the HCP s1200 dataset, the 677 

correlations were all below 0.07 (PFDR > 0.05). For the OASIS-3, the correlations were all below 678 

0.18 (PFDR > 0.05) at either time 1 or time 2 MRI session. These results indicate that image quality 679 

does not strongly influence the SAS, which is in line with past findings that the eigenvalues and 680 

eigenfunctions of the Laplace-Beltrami Operator are robust to image noise (86).  681 
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Subject Identification 682 

Our first aim was to validate the SAS as a useful and robust measure of individual-specific 683 

asymmetry. We, therefore, evaluated the extent to which the SAS of each individual subject 684 

measured at time 1 (t1) could be used to identify the same person at time 2 (t2) in the longitudinal 685 

data, akin to a neuromorphological fingerprint. The t1 – t2 Pearson correlations were then 686 

estimated between all pairs of ܰ individuals, resulting in an ܰ × ܰ correlation matrix. Amico and 687 

Goni (56) defined identifiability as the difference between the mean of within-subject correlations 688 

(diagonal elements of the Pearson correlation matrix in Figure 1C) and the mean of between-689 

subject correlations (off-diagonal elements of the Pearson correlation matrix in Figure 1C). This 690 

approach allows for a more quantitative and finer-grained comparison of the identifiability of 691 

different metrics compared to other approaches that just rely on binary identification accuracy 692 

(e.g., Finn et al. (51)) (56, 57). However, this approach does not take into account the variance of 693 

the observations. To examine the within- and between- subject similarities, we utilized the Glass’s 694 

∆, which is the standardized difference between the mean values of two categories of observations, 695 

normalized by the standard deviation of a control group (87), which is the between-subject group 696 

in our case. Our analysis thus examines how the within-subject correlations differ from between-697 

subject correlations. The Glass’s ∆ has been recommended when the standard deviations of the 698 

two groups are substantially different (87, 88), which is the case for the between- and within- 699 

subject groups. Thus, our identifiability score was given by 700 

݁ݎ݋ܿݏ ݕݐ݈ܾ݂݅݅ܽ݅݅ݐ݊݁݀ܫ = ௠௘௔௡(௥೔೔)ି ௠௘௔௡(௥೔ೕ)
ௌ஽൫௥೔ೕ൯

         (6)  701 

where SD is the standard deviation. Higher scores indicate a greater capacity to discriminate 702 

between individuals. We also tested the pooled standard deviation of the two groups (57), as the 703 
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Cohen’s d, and the results were generally consistent to those using the Glass’s ∆. We also evaluated 704 

the identifiability performance of the SAS with respect to unihemispheric descriptors of either 705 

combining size and shape or shape alone: namely the eigenvalues (native, volume-normalized, or 706 

surface area-normalized) from the same hemispheres between time 1 and time 2 follow-up; 707 

concatenating eigenvalues of both left and right hemispheres between time 1 and time 2; and 708 

identifying the shape of one hemisphere from the shape of the other hemisphere both at time 1 or 709 

both at time 2. We also compared the identifiability score of the SAS to the asymmetry based on 710 

commonly used size-related measures (i.e., volume, cortical thickness, and surface area), and 711 

resting-state functional connectivity.  712 

Identifying spatial scales for optimum subject identifiability 713 

Given a surface of N vertices, spectral shape analysis yields up to N eigenvalues, raising the 714 

question of how many eigenvalues constitute a sufficient description of cortical shape. Is a full 715 

representation of the entire surface necessary for optimal subject identifiability, or can this be 716 

achieved using a more compact set of eigenvalues? If so, the specific number of eigenvalues 717 

required would define the relevant spatial scale of shape differences that characterize the 718 

individual-specific asymmetry at which individual differences are most prevalent.  719 

To address this question, we decompose the cortical surface and use an increasing number 720 

of eigenvalues, from the first two eigenvalues (ߣଵ, ߣଶ) to the first 1000 eigenvalues (ߣଵ, ߣଶ, ߣଷ, …, 721 

 ଵ଴଴଴), each time computing the SAS and evaluating subject identifiability. For example, we first 722ߣ

quantified the shape of cortical surface using only ߣଵ and ߣଶ, thus capturing the coarsest scales of 723 

cortical shape. We then quantified the surface using ߣଵ through ߣଷ, then ߣଵ through ߣସ, and so on. 724 

If there is a specific spatial scale that is optimal for this subject identifiability, we expect to see a 725 

peak in the identifiability score as a function of the truncation number, ݇. This peak not only 726 
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defines the spatial scale at which individual variability, and thus individual-specific asymmetry, is 727 

most strongly expressed, but it also identifies a meaningful point at which to define a compressed 728 

summary of individual-specific asymmetry using the eigenvalue spectrum.   729 

Cortical shape harmonics 730 

The cerebral cortex is topologically equivalent to a sphere. Solving the Helmholtz equation for a 731 

sphere yields groups of eigenfunctions with the same eigenvalues and spatial wavelength, 732 

progressing along orthogonal axes (58). These groups in the solutions to the idealized spherical 733 

case are known as the spherical harmonics. The zeroth group (L = 0) is comprised of the first 734 

eigenvalue; the first group (L = 1) is comprised of the 2nd, 3rd, and 4th eigenvalues; the second 735 

group (L = 2) is comprised of the 5th to 9th eigenvalues, and so on. That is, there are 2 (L + 1) − 1 736 

eigenvalues in the Lth group. Robinson et al. (58) showed that while the eigenvalues between the 737 

cortical surface and sphere are different, the spherical grouping provides a rough division of the 738 

convoluted cortical surface. This is a useful grouping approach to investigate eigenfunctions and 739 

eigenvalues as the constituents of each group have roughly the same spatial wavelength. By 740 

averaging over several eigenvalues with similar spatial scales, we can also increase the stability of 741 

the truncation number across datasets. For example, the peak SAS identifiability appeared at the 742 

first 126 and 122 eigenvalues for the OASIS-3 and ADNI data, respectively, and these eigenvalues 743 

are all within the 11th eigen-group (L = 11). 744 

To estimate the corresponding wavelength of each eigen-group, we used an approximation 745 

of the spatial wavelength in the spherical case: 746 

ܹ = ଶగோ௦
ඥ௅(௅ାଵ)

           (7) 747 
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where Rs is the equivalent sphere of the original object (for the fsaverage case, Rs is about 67 mm) 748 

and L is the index of the eigen-group. We used the population-based template (fsaverage) as an 749 

example to show the wavelengths of the first 14 eigen-groups in Supplementary File 1.  750 

Cortical segmentation 751 

We applied the HCP-MMP1 atlas (59) to segment the cortical regions for accessing size-related 752 

morphological asymmetry, functional connectivity, and regional volume heritability. This atlas is 753 

based on the surface alignment approach, which aligns the images using cortical folding patterns 754 

and minimizes the spatial smoothness (59, 89), and thus offers more accurate inter-subject 755 

registration than volume-based registration (59). Moreover, regions in the left and right 756 

hemispheres of the HCP-MMP1 atlas are corresponding and thus can be used for accessing cortical 757 

asymmetry. In addition to the HCP-MMP1 atlas, we also employed the Schaefer atlas (Schaefer 758 

100, 300, and 900) (60) for constructing functional connectivity (FC) and regional volume 759 

heritability. The Schaefer atlas has superior functional homogeneity of a parcellation and has 760 

different parcellation scales (60); therefore, it can be used for comparing the identifiability of the 761 

FC and estimating regional volume heritability at different scales. Specifically, each hemisphere 762 

has 50 regions in the Schaefer 100 atlas, 150 regions in the Schaefer 300 atlas, and 450 regions in 763 

the Schaefer 900 atlas (60). However, regions in the left and right hemispheres of the Schaefer 764 

atlas are not corresponding; therefore, the atlas cannot be used for accessing brain asymmetry.  765 

Non-shape descriptors of brain anatomical asymmetry 766 

To compare identifiability scores obtained with SAS to asymmetries using size-related descriptors, 767 

including volume, cortical thickness, and surface area, we had to ensure that the asymmetry values 768 
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were purely from the asymmetry effect and were not affected by the effect of total brain size. A 769 

traditional asymmetry index (13, 23, 39) is: 770 

ௌ,௜ܫܣ =
ቀ௉ಽ

ೄ,೔ି௉ೃ
ೄ,೔ቁ

଴.ହቀ௉ಽ
ೄ,೔ା௉ೃ

ೄ,೔ቁ
          (8) 771 

where ܫܣௌ,௜  is the asymmetry index for parcellation S of subject i. ௅ܲ
ௌ,௜  is the value of the 772 

morphological measurement from parcellation S from subject i’s left hemisphere; and ோܲ
ௌ,௜ is from 773 

the right hemisphere. However, this asymmetry index is unable to entirely eliminate the effect of 774 

total brain size. Here, we use cortical volume as an example. We suppose the total brain volume 775 

effect (α) exists, and the effects of each ROI-based volume of the left (Eqs. 9) and right (Eqs. 10) 776 

hemispheres are: 777 

௅ܸ
ி,௜ = ௅௜ߜ ௅ܸ

௜ +  778 (9)           ݅ߙ 

ோܸ
ி,௜ = ோ௜ߜ ோܸ

௜  +  779 (10)          ݅ߙ 

where ௅ܸ
௜ and ோܸ

௜  are the volumes of region i in the left and right hemispheres, respectively, ߜ௅௜  and 780 

௅௜ߜ  are the scaling coefficients, and αi is the effect of total brain volume on region i. Thus, ௅ܸ
ி,௜ and 781 

ோܸ
ி,௜ are the overall effects of volume on region i. We can apply ௅ܸ

ி,௜ and ோܸ
ி,௜ to the traditional 782 

asymmetry index as in Eqs. 8 to get  783 

஺ܸூ
௜ = [(ఋಽ

೔ ௏ಽ
ಷ,೔ା ஑೔) ି (ఋೃ

೔ ௏ೃ
ಷ,೔ା ஑೔)]

଴.ହቂ (ఋಽ
೔ ௏ಽ

ಷ,೔ା ஑೔ቁା (ఋೃ
೔ ௏ೃ

ಷ,೔ ା ஑೔)]
        (11) 784 

By re-arranging this equation, we obtain  785 
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஺ܸூ
௜ = ఋಽ

೔ ௏ಽ
ಷ,೔ି ఋೃ

೔ ௏ೃ
ಷ,೔

଴.ହఋಽ
೔ ௏ಽ

ಷ,೔ା ଴.ହఋೃ
೔ ௏ೃ

ಷ,೔ ା ஑೔
                                                                                         (12) 786 

which shows that the total volume effect αi still remains in the denominator and is not removed by 787 

the traditional asymmetry index defined in Eqs. 8. 788 

In this study, we adjusted the asymmetry index for the mean of each morphological 789 

measurement, such as the asymmetry of cortical thickness, volume, and surface area. Specifically, 790 

we revised the traditional asymmetry index by subtracting the mean value of the measurement 791 

across all parcellations of each subject before calculating the asymmetry index defined in Eqs. 8. 792 

This revised asymmetry measure ܴܫܣௌ,௜ explicitly calculated as: 793 

ௌ,௜ܫܣܴ =
ቀ௉ಽ

ೄ,೔ିெ 
೔ቁିቀ௉ೃ

ೄ,೔ିெ 
೔ቁ

଴.ହቂቀ௉ಽ
ೄ,೔ିெ ೔ቁାቀ௉ೃ

ೄ,೔ିெ ೔ቁቃ
                                                                                  (13) 794 

where ܯ 
௜ is the mean value of the measurement across all regions in parcellation of subject i. We 795 

note that this is an important point, as without this correction, the asymmetry measure is dependent 796 

on the mean value. 797 

We employed a multi-modal parcellation, HCP-MMP1 version 1.0 (59) on the OASIS-3 798 

subjects. We excluded one subject whose cortical surfaces could not be segmented by the HCP-799 

MMP1 atlas. There are 180 regions in each hemisphere of the HCP-MMP1 atlas, including the 800 

hippocampus that was excluded in our analysis. We created one vector per size-related measure 801 

that quantified the asymmetry-index per subject and then used these asymmetry indices in the 802 

subject identifiability analyses.  803 
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Functional connectivity 804 

We used the resting-state FC from the first session (REST1) in the test sample as the first FC time 805 

point (t1) and FC from the first session in the retest session as the second FC time point (t2). We 806 

utilized the fMRI signals that were preprocessed by the HCP functional and ICA-FIX pipelines 807 

(55). We did not apply any spatial smoothing on the signals. FC was calculated using the upper 808 

triangle entries of the Pearson correlation matrix between nodes from the atlas (51). To compare 809 

the identifiability of the SAS and the FC across different parcellation scales and atlas, we repeated 810 

the FC analysis with the Schaefer 100, 300, and 900 atlas (60) and the HCP-MMP1 atlas (59) from 811 

the subjects in the HCP test-retest subsample (n = 44; we excluded one subject without REST1 812 

data in one session). 813 

Relationships with sex and handedness. 814 

Sex and handedness are two common characteristics that have been widely examined in the 815 

asymmetry literature (3, 4, 7, 10, 11, 13, 14, 24, 25, 28-32, 61). We used a GLM to analyze 816 

relationships between each eigenvalue with sex and handedness on 1106 HCP subjects (see HCP 817 

section). The HCP dataset provides the handedness preference measured by the Edinburgh 818 

Handedness Inventory (EHI) (90). EHI is the most widely used handedness inventory (91, 92),  819 

with resulting scores range from -100 (complete left-handedness) to 100 (complete right-820 

handedness) (90). Handedness preference is not a bimodal phenomenon (93), and cut-off scores to 821 

categorize the handedness are still arbitrary. We therefore used the EHI score as a continuous 822 

variable in our main analysis, which is a widely used approach (32, 61). To further confirm the 823 

robustness of the relationship between handedness and the SAS, we tested two thresholds to 824 

categorize handedness. First, right-handed (EHI: 71-100), left-handed (EHI: -100 to-71), and 825 

ambidextrous (EHI: -70 to 70) (14, 28, 93); second, right-handed (EHI: 50 to 100), left-handed 826 
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(EHI: -100 to-50), and ambidextrous (EHI: -49 to 49) (91, 94). Regardless of the threshold, the 827 

categorized handedness variable was still unrelated to the SAS (2 to 144 eigenvalues). 828 

Relationships with cognition 829 

We followed Kong et al. (66) and used 13 cognitive measures in the HCP data dictionary that 830 

represent a wide range of cognitive functions: namely, (1) Visual Episodic Memory 831 

(PicSeq_Unadj); (2) Cognitive Flexibility (CardSort_Unadj); (3) Inhibition (Flanker_Unadj); (4) 832 

Fluid Intelligence (PMAT24_A_CR); (5) Reading (ReadEng_Unadj); (6) Vocabulary 833 

(PicVocab_Unadj); (7) Processing Speed (ProcSpeed_Unadj); (8) Delay Discounting 834 

(DDisc_AUC_40K); (9) Spatial Orientation (VSPLOT_TC); (10) Sustained Attention – Sens 835 

(SCPT_SEN); (11) Sustained Attention – Spec (SCPT_SPEC); (12) Verbal Episodic Memory 836 

(IWRD_TOT); and (13) Working Memory (ListSort_Unadj). We used PCA to reduce 837 

dimensionality and minimize collinearity in the CCA. The first four principal components (PCs) 838 

explained 80% of the variance and were retained for our primary analysis. Similarly, we reduced 839 

the dimensionality of the SAS measures and ensured equal representation across different spatial 840 

scales by taking the mean of the SAS across each eigen-group (from 1st to 11th groups). These 11 841 

mean SAS values and the first four cognitive PCs were then subjected to CCA to identify linear 842 

combinations of SAS and cognitive measures that maximally covary with each other (95). 843 

Inference on the resulting canonical variates was performed using a permutation-based procedure 844 

(65), and robust estimates of canonical loadings were obtained using bootstrapping (96), as 845 

described below in the Statistical analysis section. 846 

Heritability of brain shape 847 
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We used monozygotic (MZ) and same-sex dizygotic (DZ) twin pairs and their non-twin siblings 848 

to calculate the heritability of brain shape and cortical volume. For twin pairs with more than one 849 

non-twin sibling, we selected one sibling at random. We estimated the heritability of each 850 

eigenvalue from individual hemispheres and the SAS. To emphasize the importance of properly 851 

controlling surface area, we show the heritability of eigenvalues with volume normalization (but 852 

without surface area normalization; Figure 6—figure supplement 1). We also calculated the 853 

heritability from ROI-based volumes of individual hemispheres (Figure 6—figure supplement 2). 854 

Regional cortical volumes of individual hemispheres were estimated for each region of the 855 

Schaefer 100, 300, and 900 atlas (60) as well as the HCP-MMP1 atlas (59).  856 

Under the assumption that MZ twins are genetically identical whereas DZ twins on average 857 

share half of their DNA, structural equation modeling (SEM) can be used to decompose the 858 

phenotypic variance of a trait into additive genetic (A), common environmental (C), and unique 859 

(subject-specific) environmental (E) factors (79). Twins raised together are likely to share a more 860 

common environment compared to their non-twin siblings; therefore, including a set of non-twin 861 

siblings into the analysis allows us to additionally separate common environmental contributions 862 

into twin-specific (T) and twin non-specific common environmental factors (C). The heritability 863 

analyses of brain shape and volume were performed independently using standard SEM 864 

implemented in OpenMx software (97, 98) in R. For each eigenvalue and parcellated volume, 865 

outlying values were first excluded using the boxplot function in R keeping data points (v) in a 866 

range Q1−1.5 x IQR < v < Q3+1.5 x IQR, where Q1 and Q3 are the first and third quartiles 867 

respectively, and IQR is the interquartile range (79). For each phenotype, we then fitted a set of 868 

biometric models – ACTE, ACE, ATE, CTE, TE, CE, E – using age and sex as covariates, where 869 

the letters indicate the factors present in the model. The goodness of fit between the models was 870 
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compared using the Akaike information criterion (AIC) (99), and the best-fitting model for each 871 

measure was selected based on the lowest AIC value. Consequently, the heritability for each 872 

measure was derived from the best-fitting model, corresponding to the best model that balances 873 

the ability to explain data with model complexity. To ensure that the general heritability pattern 874 

was not dependent on the model selection, we also calculated the heritability estimates from the 875 

full ACTE model (without model selection) at each eigenvalue (with surface area normalization) 876 

of individual hemispheres as well as the SAS. The heritability estimates were highly correlated 877 

with those with model selection (Pearson correlation r = 0.92−0.96). 878 

Statistical analysis 879 

We applied a permutation test to evaluate the statistical significance of a given identifiability score 880 

for a given number of eigenvalues. We randomly shuffled the subject order of the SAS of the t2 881 

session 50,000 times and then compared the original identifiability score with all the permuted 882 

peak identifiability score truncated at each iteration independently to calculate the P-value. 883 

Statistical inference for models evaluating associations between SAS and sex and handedness was 884 

also performed using a permutation test with 100,000 iterations by randomly shuffled the subjects’ 885 

sex and handedness data. When analyzing associations between the SAS and cognition, we used a 886 

recently-developed permutation-based procedure for CCA inference (65) with 50,000 iterations. 887 

The P-values of the canonical modes were controlled over family-wise error rate (FWER; FWER 888 

corrected P-values are denoted PFWER), which is more appropriate than the false discovery rate 889 

(FDR) when measuring the significant canonical mode (65). The results were consistent when 890 

controlling for age and sex as confounding variables. To identify reliable loadings of each SAS 891 

eigen-group on the canonical variate, we used bootstrapping with 1000 iterations of the correlation 892 

between each SAS eigen-group and the SAS canonical variate. The resulting standard errors were 893 
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used to estimate z-scores for each loading by dividing the original correlation by the standard 894 

errors, and then the z-scores were used to compute two-tailed p-values. We then used FDR (q = 895 

0.05) to correct for multiple comparisons of P-values of all the eigen-groups. We also used the 896 

same approach to identify reliable correlations of cognitive measures on the corresponding 897 

canonical variate. Due to the family structure of the HCP data, we kept the subjects’ family 898 

structures intact when shuffling or bootstrapping the subjects using the Permutation Analysis of 899 

Linear Models (PALM) software package (62, 63).  900 

The statistical significance of the heritability estimates was evaluated through model 901 

comparison between models with and without parameter A. For example, if the ACE model was 902 

the best-fitting model, the P-value was derived by comparing the ACE and CE models; if the best 903 

fitting model was CE, we compared this model with the ACE model to get the P-value for the A 904 

parameter. We also used the same approach for measuring the statistical significance of the 905 

common environmental factor (C). FDR (q = 0.05) was used to correct for multiple comparisons 906 

(corrected P values are denoted PFDR) in all analyses except for the CCA, where FWER was 907 

controlled using a permutation-based procedure (65). 908 

 909 

Data availability 910 

All code and dependent toolboxes used in this study can be found at: 911 

https://github.com/cyctbdbw/Shape-Asymmetry-Signature. The code of shape-DNA can be found 912 

at: http://reuter.mit.edu/software/shapedna/. The OASIS-3 dataset is available under 913 

https://www.oasis-brains.org/. The ADNI dataset is available under https://adni.loni.usc.edu. The 914 

HCP dataset is available under https://db.humanconnectome.org/. 915 

 916 
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Figure supplement and supplementary file Legends 1201 

Figure 1—figure supplement 1. Higher SAS values characterize brains with stronger cortical 1202 

shape asymmetries. Panels (A), (B), and (C) show left and right cortical surface reconstructions 1203 

for three individuals showing varying levels of the SAS, from perfectly symmetric (panel A) to 1204 

highly asymmetric (panel C). The left panel shows reconstructions at a coarse spatial scale 1205 

corresponding to the first seven eigen-groups with a wavelength of about 55 mm. The right panel 1206 

shows a reconstruction at the optimal scale for SAS identifiability, corresponding to the first 11 1207 

eigen-groups and a wavelength of about 37 mm. The perfectly symmetric brain in panel A was 1208 

created by projecting the left hemisphere to the right hemisphere using the population-based 1209 

template (fsaverage). The SAS value is zero for this case. The surfaces in panels (B) and (C) 1210 

correspond to individual participants with moderate (B) and strong (C) asymmetry. The gradations 1211 

of asymmetry can be appreciated visually. As expected, the participant in panel C has a higher 1212 

SAS than the participant in panel B. The SAS values shown here are the absolute mean values. 1213 

 1214 

Figure 2—figure supplement 1. Understanding the identifiability score. Here, we use the shape 1215 

asymmetry signatures from the OASIS-3 subjects (n = 233) as an example. (A) The mean of both 1216 

within- and between- subject correlations decrease at finer scales, but the between-subject 1217 

correlations are lower and decline faster than the within-subject correlations. (B) The same subject 1218 

at time 1 (t1) and time 2 (t2) with different numbers of eigenvalues. (C) Pearson correlation 1219 

matrices using different numbers of eigenvalues. The diagonal elements are the within-subject 1220 

correlations, and the off-diagonal elements are the between-subject correlations. Both within- and 1221 

between- subject correlations are high from the very coarse scales (e.g., 9 eigenvalues in panel 1222 
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(C)); both correlations are low if fine scales are involved (e.g., 961 eigenvalues in panel (C)). The 1223 

number of eigenvalues with peak identifiability score (144 eigenvalues; L = 11) maximizes the 1224 

difference between the between-subject and within-subject correlations. (D) Cortical surfaces 1225 

reconstructed at spatial scales correspond to the eigen-groups in panel (C). 1226 

 1227 

Figure 2—figure supplement 2. Inter-session variability in cortical shape is higher at more fine-1228 

grained spatial scales. Panels (A) and (B) show the white surface of one participant from the 1229 

OASIS-3 dataset reconstructed at three spatial scales (i.e., using 144 eigenmodes, 1000 1230 

eigenmodes, and the full cortical surface) for time 1 and time 2 sessions, respectively. Panels (C) 1231 

and (D) map the Euclidean distance of mesh vertices between time 1 and time 2 at each spatial 1232 

scale. The inter-session distances increase at finer scales (i.e., the original surface at the right 1233 

panel). The images are registered on the fsaverage template.  1234 

 1235 

Figure 2—figure supplement 3. Subject identifiability scores re-calculated for data from MRI 1236 

sessions with the longest inter-sessional interval. The optimal spatial scales determined by eigen-1237 

groups are identical to the initial analysis using the shortest inter-sessional interval. (A) The peak 1238 

subject identifiability score occurs at the combination of the first 136 and 139 eigenvalues in the 1239 

OASIS-3 (n = 115) and ADNI (n = 135) data, respectively. (B) The peak mean subject 1240 

identifiability score occurs at the first 11th eigen-groups, representing the first 144 eigenvalues, in 1241 

both the OASIS-3 and ADNI data. (C) Pearson correlation matrices calculated using the first 144 1242 
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eigenvalues for the OASIS-3 and ADNI data by using both the shortest (OASIS-3: n = 233; ADNI: 1243 

n = 208) and longest inter-sessional intervals. 1244 

 1245 

Figure 3—figure supplement 1.  Comparing identifiability scores between the shape asymmetry 1246 

signature (SAS) with either native eigenvalues or volume-normalized eigenvalues. The 1247 

identifiability scores calculated from the surface area normalized SAS are generally higher than 1248 

the scores calculated using native eigenvalues and eigenvalues with volume normalization (but 1249 

without surface area normalization) for individual hemispheres, the combination of both 1250 

hemispheres, and asymmetry across three datasets (OASIS-3: n = 233; ADNI: n = 208; HCP: n = 1251 

45). (A) identifiability scores calculated from native eigenvalues (except the blue lines, which are 1252 

the SAS); (B) identifiability scores calculated from eigenvalues with volume normalization (except 1253 

the blue lines, which are the SAS). 1254 

 1255 

Figure 6—figure supplement 1. Heritability of cortical shape with volume normalization but 1256 

without normalizing the surface area. (A) and (B) The heritability of the eigenvalues from the left 1257 

(A) and right (B) hemispheres are uniformly high across all eigenvalues, and the scale-specific 1258 

effects are eliminated. The heritability estimates are very close to the heritability of the mean of 1259 

the cortical volumes across all regions of the MMP1 atlas (ℎଶ = 0.77 for the left hemisphere and 1260 

ℎଶ = 0.76  for the right hemisphere). This result indicates that even normalizing the cortical 1261 

volume, the heritability estimates are still highly influenced by the volume rather than purely by 1262 

the shape. (C) Heritability estimates of the asymmetry are lower than that of the individual 1263 
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hemispheres but still have no scale effects. Statistical significance is evaluated after FDR-1264 

correction. We use 79 same-sex dizygotic twin pairs, 138 monozygotic twin pairs, and 160 of their 1265 

non-twin siblings. 1266 

 1267 

Figure 6—figure supplement 2. Heritability estimates of regional volumes of individual 1268 

hemispheres across four parcellation resolutions: Schaefer 100, Schaefer 300, HCP-MMP1, and 1269 

Schaefer 900 (top to bottom panels). Generally, heritability estimates are higher at coarser (upper 1270 

panels) than finer parcellation resolutions (lower panels). (A) and (D) are the distributions of the 1271 

regional heritability estimates of the left (A) and right (D) hemispheres. (B) and (C) are heritability 1272 

estimates of each region of the left (B) and right (C) hemispheres. 1273 

 1274 

Supplementary File 1. Wavelength and eigenvalue indices of each eigen-group. 1275 
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