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Abstract

Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced
in humans, with important implications for brain function and disease. However, many prior
studies have confounded asymmetries due to size with those due to shape. Here, we introduce a
novel approach to characterize asymmetries of the whole cortical shape, independent of size,
across different spatial frequencies using magnetic resonance imaging data in three independent
datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a
cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as
cortical thickness and surface area, or measures of inter-regional functional coupling of brain
activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and
shape asymmetries show scale-specific associations with sex and cognition, but not handedness.
While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm
wavelength), shape asymmetries are determined primarily by subject-specific environmental
effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked
to individual differences in cognition, and are primarily driven by stochastic environmental

influences.
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Introduction

Asymmetries in brain structure and function are found throughout the animal kingdom (1-4) and
can be discerned at multiple spatial scales, ranging from differences in the size and shape of the
cerebral hemispheres through measures of regional morphometry and connectivity to cellular and
molecular organization (2, 4, 5). At the coarsest scale, the most salient feature of anatomical
asymmetry in the human brain is cerebral torque, in which the right hemisphere appears to be
warped in the rostral direction relative to the left hemisphere (6-8). More fine-grained asymmetries
of specific sulci/gyri (9) and brain regions (10, 11) have also been investigated. For example, the
superior temporal sulcus, which is adjacent to the Wernicke’s area, shows a leftward asymmetry
in length (12).

Asymmetries in brain organization are often considered at an average level across a
population of individuals (7, 10, 13-15). These population-based asymmetry features have been
studied extensively and are thought to have important implications for both functional
lateralization and abnormal brain function in a wide range of psychiatric and neurological diseases
(5, 11, 15-17). For example, the planum temporale of the left hemisphere, which encompasses
Wernicke’s area, has been consistently shown to be larger than the right for most healthy
individuals (2, 7, 18, 19), and patients with schizophrenia often show reduced leftward asymmetry
in planum temporale compared to healthy individuals (20-22). However, many findings with
respect to asymmetries of specific brain regions have been inconsistent in terms of the directions
and magnitudes of asymmetry observed (10, 11, 13). The correlates of these asymmetries are also
unclear (4, 11, 13, 23, 24). For example, two fundamental characteristics often examined in
relation to cerebral asymmetry are sex and handedness. Some studies have found that the surface

area (10), shape (24-26), volume (27), and torque (8) of cortical structures in males are more
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asymmetric than in females, whereas other studies have found no sex differences (19, 28).
Similarly, some studies have found associations between cerebral asymmetry and handedness (8,
14, 29), with others reporting no such effect (10, 11, 25, 28, 30-32).

Some of these inconsistencies may arise from the disparate methodologies and the
heterogeneous nature of the brain asymmetries across the population (7, 10, 12-15). Despite some
consistent asymmetry features across the population (2, 7, 18, 19), there is also considerable
individual variability around population means, with many people often showing little or even
reversed asymmetries relative to the prevalent pattern of the population (sometimes also referred
to as anti-symmetry) (3, 12, 33, 34). The distinction between population-level and individual-
specific asymmetries is essential, as they are thought to arise from distinct mechanisms (34, 35).
Populational-level asymmetries are hypothesized to have a genetic basis (8, 10, 33-39), whereas
individual-specific asymmetries, which describe the way in which a given individual departs from
the population mean, may reflect environmental influences, developmental plasticity, or
individual-specific genetic perturbations (33-38, 40). Notably, cortical asymmetries of the human
brain are more variable across individuals than other primates, at both regional and global
hemispheric levels (12, 33). The variability is most evident in regions of heteromodal association
cortex, leading some to conclude that high levels of variability in asymmetry may have emerged
in line with the evolution of human-specific cognition (12), although the relationship between the
asymmetries of the human brain and individual differences in cognition are still largely unknown.
Traditional analysis methods, which rely on standard image processing techniques such as image
registration and spatial smoothing, minimize individual variation and thus have limited sensitivity
for studying individual-specific asymmetries (41, 42). Moreover, most past studies have focused

on morphological properties related to the size of specific brain regions, such as estimates of grey
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93  matter volume, cortical thickness, or surface area, often measured at fine-grained resolutions, such
94 as individual voxels or the vertices of cortical surface mesh models (16, 19, 23, 30, 32, 43, 44).
95  Many of the most obvious features of cerebral asymmetry arise from variations in brain shape,
96  which are not captured by size-related descriptors (25, 45). Indeed, it is possible for two objects to
97  have identical volume but have very different shapes (45, 46). In addition, shape variations can
98  occur at different spatial resolution scales, from the presence and configuration of specific sulci at
99 fine scales to more global patterns such as cerebral petalia at coarser scales. Conventional analyses
100  only consider the finest resolvable scale (i.e., point-wise differences) and have limited sensitivity
101  for identifying important morphological variations that occur over large swathes of cortical tissue.
102 A comprehensive, multiscale description of cortical shape, from the finest to coarsest scales,
103  can be derived through a spectral analysis of cortical geometry based on solutions to the Helmholtz
104  equation (25, 45, 47), which is fundamental in many branches of physics, engineering, chemistry,
105  and biology (51). The equation can be solved by formulating it as an eigenfunction-eigenvalue
106  problem of the Laplace-Beltrami operator (LBO) (see Materials and methods). Importantly, the
107  characteristics of the eigenfunctions and eigenvalues depend on the cortical shape for which the
108  equation is solved (47, 48), and thus, the spectral analysis provides a comprehensive description
109  of the intrinsic geometry of a given object, akin to a “Shape-DNA” (see Materials and methods).
110  (47). The application of such Shape-DNA analysis to human magnetic resonance imaging (MRI)
111  data has shown that shape properties of cortical and subcortical structures have superior sensitivity
112 compared to traditional, size-based measures for identifying individual subjects (25), for
113  classifying and predicting the progress of psychiatric and neurological diseases (42, 49), and for
114  detecting genetic influences on brain structure (46, 50). However, a detailed characterization of

115  individual-specific asymmetries in cerebral shape is lacking.
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116 Here, we introduce methods for constructing an individual-specific measure of cortical
117  asymmetry, called the shape asymmetry signature (SAS; see Materials and methods). The SAS
118  characterizes pure shape asymmetries of the whole cortical surface, independent of variations in
119  size, across a spectrum of spatial scales. We apply this methodology to three independent
120  longitudinal datasets to test the hypothesis that cortical shape asymmetry is a highly personalized
121  and robust feature that can identify individuals, akin to a cortical asymmetry fingerprint. We then
122 use the identifiability values to identify optimal spatial scales at which robust individual
123 differences are most salient. We also compare the identifiability of the SAS and shape descriptors
124  of individual hemispheres, asymmetries in traditional size-based descriptors, or patterns of inter-
125  regional functional connectivity (so-called connectome fingerprinting (51)) to test the hypothesis
126  that the SAS is a more individually unique property of brain organization than unihemispheric and
127  functional properties. We further elucidate the relationships between the SAS and sex, handedness,
128 as well as cognitive performance across multiple tasks. Finally, we test the hypothesis that
129  individual-specific asymmetry features are largely driven by environmental influences using

130  classical heritability modelling of twin data.

131 Results

132 Cortical shape asymmetries are individually unique

133 To understand how cortical shape asymmetries vary across individuals, we examined the degree
134  to which different cortical shape descriptors (defined below) can be used to identify individual
135  brains from a large sample of T1-weighted magnetic resonance images (MRIs). We analyzed
136  healthy subjects from three open-source datasets — the latest Open Access Series of Imaging
137  Studies (OASIS-3 (52)), the Human Connectome Project (HCP (53)), and the Alzheimer’s Disease

138  Neuroimaging Initiative (ADNI; https://ida.loni.usc.edu/) — in which individuals had at least two
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139  anatomical MRI scans acquired at different time points (separated by one day to several years; see
140  Materials and methods). For each dataset, we asked whether the shape descriptors for an individual
141  estimated from the first scan could accurately identify the same participant’s second scan. Within
142  each dataset, the shape descriptor was calculated from the cortical surfaces at the white and grey
143 matter boundary estimated either from FreeSurfer (54) (OASIS-3 and ADNI) or FreeSurfer-HCP
144  (HCP), which is a FreeSurfer (54) pipeline with some HCP-specific enhancements (55). Shape-
145 DNA (45, 47) analysis was employed to obtain multidimensional shape descriptors for each
146 hemisphere that quantify the shape of each individual’s cortex, as defined by the eigenvalue
147  spectrum of the LBO (Figure 1, A and B; see Materials and methods). Each eigenvalue is
148  associated with a corresponding eigenfunction, which describes shape variations at a particular
149  spatial wavelength, ordered from coarse to fine-grained scales (Figure 1B). These eigenfunctions
150  are orthogonal by construction and thus represent a basis set for cortical shape variations much
151  like the sinusoidal basis used in Fourier decomposition of signals, with the corresponding
152  eigenvalue being analogous to the wave frequency at each spatial scale. Critically, we normalized
153  the surface area (45) of the meshes prior to Shape-DNA analysis to ensure that the resulting
154  eigenvalue spectra were independent of individual differences in brain size (see Materials and
155  methods).

156 To investigate the uniqueness of these shape descriptors to individual brains, we performed
157  an identifiability analysis (56, 57), where identifiability was quantified as the degree to which the
158  surface eigenvalue spectrum of an individual at scan time 1 was more similar to the same person’s
159  spectrum at time 2, relative to other people’s time 2 spectra (Figure 1C; see also Materials and
160  methods). To determine whether identifiability is maximized at any specific scales, we repeated

161  the analysis multiple times, initially by taking only the first two eigenvalues, which describe shape
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162  variations at the coarsest scale, and then incrementally adding eigenvalues representing more fine-
163  grained features to a maximum of 1000. Plotting the identifiability score as a function of the
164  number of eigenvalues allows us to identify characteristic spatial scales at which the identifiability
165  score is maximized (Figure 1D). In other words, it allows us to identify the scales at which
166  individual-specific shape features are most pronounced. We repeated this procedure using the
167  eigenvalue spectra for the left and right hemispheres alone, the combination of both (which
168  describes the shape of both hemispheres), and for the SAS, which quantifies shape asymmetries as
169 the difference between the left and right hemisphere eigenvalue spectra (see Figure 2 for details).
170  Finally, we utilized the spatial scales with maximum identifiability (Figure 1D) to examine the
171  relationships between the SAS and sex, handedness, cognition, and heritability. In general, a brain
172 with a higher degree of shape asymmetry has SAS values that more strongly depart from zero

173 (Figure 1—figure supplement 1).
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Figure 1. Schematic of our analysis workflow. (A) The shapes of the left and right hemispheres
are independently analyzed using the Laplace-Beltrami Operator (LBO) via the Shape-DNA
algorithm (45, 47). (B) Eigenfunctions of the LBO are obtained by solving the Helmholtz
equation on the surface, given by Af = —Af, where f is corresponds to a distinct eigenfunction,
and 1 is the corresponding eigenvalue. Each eigenvalue A%,i = 1,2,...,1000, quantifies the

degree to which a given eigenfunction is expressed in the intrinsic geometry of the cortex.
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181  Higher-order eigenvalues describe shape variations at finer spatial scales. (C) The Shape
182  Asymmetry Signature (SAS) is quantified as the difference in the left and right hemisphere
183  eigenvalue spectra, providing a summary measure of multiscale cortical shape asymmetries. To
184  investigate the identifiability of the SAS, we use Pearson’s correlation to calculate the similarity
185  between the SAS vectors obtained for the time 1 (t1) and time 2 (t2) 2 scans from the same
186  individuals (diagonal elements of the matrices) as well as the correlation between t1 and t2 scans
187 between different subjects (off-diagonal elements). We estimate identifiability by first
188  correlating the initial two eigenvalues, then the initial three eigenvalues, and so on to a maximum
189  of 1000 eigenvalues. Here, we show examples of correlation matrices obtained when using the
190  first 10, 50, 144, and 1000 eigenvalues, and the cortical surface reconstructions show the shape
191  variations captured by corresponding spatial scales. (D) Repeating the identifiability analysis up
192  to a maximum of 1000 eigenvalues yields a curve with a clear peak, representing the scale at
193  which individual differences in cortical shape are maximal. For the SAS, this peak occurs when
194  the first 144 eigenvalues are used (black dashed line), which offers a fairly coarse description of
195 shape variations (see panel (C)). We then use a similar analysis approach to investigate
196  associations between scale-specific shape variations and sex, handedness, cognitive functions
197  as well as heritability. The data in this figure are from the OASIS-3 (n = 233) cohort, and the
198  cortical surfaces are from a population-based template (fsaverage in FreeSurfer).

199  Figure supplement 1. Higher degrees of cortical asymmetry are associated with SAS values that

200  depart from zero.

201 Figure 2A—C shows the identifiability scores obtained for the different shape descriptors.
202  In all three datasets, across a broad range of spatial scales, identifiability was highest for the SAS,

203  followed by the combination of left and right hemisphere eigenvalues, and then each hemisphere

10
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alone. This result indicates that individual variability in the asymmetry of cortical shape is greater
than the variability of shape across the whole cortex or within each hemisphere alone. Figure 2A—
C also shows identifiability scores obtained when trying to identify an individual’s left hemisphere
using right hemisphere shape descriptors obtained at the same time point. These scores are very
low, indicating that shape variations between the two hemispheres are largely independent of each
other and lack a consistent pattern amongst subjects. In other words, for any given person, the
shape of one hemisphere offers little individually unique information about the shape of the other

hemisphere.

11
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Figure 2. Identifiability of different shape descriptors at different spatial scales. (A) to (C)
Identifiability scores for shape features across eigenvalue indices. The identifiability scores of
the shape asymmetry signature (SAS) are generally higher than the scores for shape descriptors
of individual hemispheres or scores obtained when concatenating both hemispheres across three
datasets (OASIS-3: n =233; ADNI: n =208; HCP: n =45). The SAS scores are also much higher
than the scores obtained by randomly shuffling the order of the subjects at time 2 (shaded area

represents mean + 2 SDs). (D) to (F) The cumulative mean identifiability scores for each
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220  eigenvalue group, derived from correspondence with spherical harmonics (58). The peak mean
221  identifiability occurs at the 11™ eigenvalue group for the OASIS-3 (D) and ADNI data (E),
222  representing the first 144 eigenvalues. The curve of the mean identifiability score for the HCP
223 data (F) flattens after the 11™ group and peaks at the 16" group. (G) Cortical surfaces reconstructed
224  at different spatial scales, starting with only the first eigen-group (E1) and incrementally adding
225  more groups to a maximum of the first 12 eigen-groups (E12). (H) Overhead view of the spatial
226  scale corresponding to the eigen-group at which identifiability is maximal in the OASIS-3 and
227  ADNI datasets (i.e., the first 11 eigen-groups, corresponding to the first 144 eigenvalues).

228  Figure supplement 1. Understanding the identifiability score.

229  Figure supplement 2. Higher inter-session differences occur at finer spatial scales.

230  Figure supplement 3. Subject identifiability scores re-calculated for data from MRI sessions

231  with the longest inter-sessional interval.

232 Individually unique variations of cortical shape asymmetry are maximal at coarse spatial
233 scales

234  We next investigated the scale-specificity of SAS identifiability. Figure 2A—C shows that SAS
235 identifiability sharply increases to a peak as we use more eigenvalues to characterize the surface
236  shape at finer scales (i.e., as we add more shape information from finer spatial scales), before
237  gradually falling again. This peak identifies a characteristic spatial scale in which individual
238  differences in shape asymmetries are maximally unique (see also Figure 2—figure supplement 1).
239 Peak SAS identifiability was observed using the first 126 and 122 eigenvalues for the
240  OASIS-3 (Figure 2A) and ADNI (Figure 2B) data, respectively. At these scales, the subject
241  identifiability scores were 4.93 (P = 0; estimated by permutation; see Statistical analysis section

242  in Materials and methods for details) for OASIS-3 and 5.03 (P = 0) for ADNI. For the HCP data,

13
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243  peak SAS identifiability was observed when using the first 268 eigenvalues (identifiability score
244 = 6.74; P = 0; Figure 2C), but the identification curve flattened after the first 137 eigenvalues
245  (identifiability score = 6.56), which is closely aligned with the OASIS-3 and ADNI datasets.

246 In the case of a perfect sphere, the shape spectral analysis yields subsets of degenerate
247  eigenvalues with equal magnitude (58), within which the corresponding eigenfunctions represent
248  orthogonal rotations of the same spatial pattern at a given scale. For example, eigenfunctions 2—4
249  of a sphere represent coarse-scale gradients in the anterior-posterior, inferior-superior, and left-
250 right axes. As the cortex is topologically equivalent to a sphere, the spherical eigen-groups offer a
251  natural way to identify characteristic spatial scales, to more succinctly summarize cortical shape
252 variations (58), and to smooth out eigenvalue-specific fluctuations at a given scale (see Materials
253  and methods). We averaged the identifiability scores for each harmonic group and plotted these as
254  a function of the group index in Figure 2D—F. The group mean identifiability score peaks at the
255  11™ eigenvalue group for the OASIS-3 (mean identifiability score = 4.93) and ADNI (mean
256  identifiability score = 5.06) datasets, which is comprised of the first 144 eigenvalues. Identifiability
257  also reaches a near-plateau at the 11" group for the HCP data (mean identifiability score = 6.47),
258  with an additional marginal increase observed at the 16™ group (mean identifiability score = 6.69).
259  Thus, the first 144 eigenvalues represent a stable and robust characteristic scale at which individual
260  uniqueness in cortical shape asymmetry is strongest. The 11" group corresponds to a wavelength
261  of approximately 37 mm in the case of the population-based template (fsaverage in FreeSurfer;
262 Supplementary File 1 shows the corresponding wavelengths of the first 14 eigen—groups; Figure
263  2G shows the spatial scales corresponding to the cumulative eigen-groups). A reconstruction of

264  the cortical surface using the first 144 eigenfunctions is shown in Figure 2H.
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265 The reconstruction captures shape variations at a coarse scale, representing major primary
266  and secondary sulci, but with minimal additional details. If we include additional eigenfunctions
267 to capture more fine-scale anatomical variations, inter-session image differences increase,
268  suggesting that finer spatial scales may be capturing dynamic aspects of brain structure that are
269  more susceptible to increased measurement noise (Figure 2—figure supplement 2). This same
270  characteristic scale was obtained after repeating the identifiability analysis over the longest inter-
271 scan intervals in the ADNI and OASIS-3 datasets (Figure 2—figure supplement 3), indicating that

272 our results are robust over time windows ranging from one day to more than six years.

273  Shape asymmetries are more identifiable than classical morphological and functional
274  measures

275  We next compared the identifiability of the SAS to scores obtained using asymmetries in classical
276  morphological descriptors such as regional surface area, cortical thickness and grey matter volume,
277  and measures of inter-regional functional connectivity (Figure 3), which have previously been
278  shown to yield high identifiability (51, 56). Identifiability scores obtained with the SAS were much
279  higher than those obtained by regional asymmetries in size-related morphological measures with
280 the HCP-MMPI atlas (59) (Figure 3, A and B). We also found that SAS identifiability was higher
281  when using our surface area normalization procedure compared to the SAS computed without this
282  procedure (Figure 3—figure supplement 1; see Materials and methods). Since the normalization
283  isolates the pure effects of shape independent of brain size, the results converge to indicate that
284  individual variability in brain anatomy is higher when considering asymmetries in cortical shape
285  compared to more traditional size-based morphological descriptors.

286 Figure 3C—F compares the identifiability scores obtained from SAS to those obtained using

287  inter-regional functional connectivity (see Materials and methods), within the HCP test-retest data.
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288  Functional connectivity was quantified for the entire cortex using four different regional
289  parcellations defined at different spatial scales (Schafer 100, Schaefer 300, Schaefer 900 (60), and
290 HCP-MMPI (59) atlas). The SAS outperformed all functional identifiability scores, indicating that

291  cortical shape shows greater specificity to an individual than patterns of functional connectivity.
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Figure 3. Cortical shape asymmetries are more identifiable than size-related descriptors or

functional connectivity. (A) Identifiability scores for the SAS are higher than those obtained for
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295  asymmetries based on cortical surface area (identifiability score = 0.81), volume (identifiability
296  score = 0.66), and thickness (identifiability score = 0.33) for the OASIS-3 dataset (n = 232; see
297  Materials and methods). (B) Matrices of the Pearson correlation coefficients for shape asymmetry
298  signatures and size-based morphological asymmetries from MRI scans taken at different time
299  points (t1 and t2) of the OASIS-3 subjects. (C) SAS identifiability is higher than the identifiability
300 based on functional connectivity, assessed with parcellations at different resolution scales in the
301 HCP test-retest dataset (n = 44). (D) Matrix of the Pearson correlation coefficients for shape
302  asymmetry signatures of the HCP subjects. (E) Four resolution scales of parcellations used in the
303 functional connectivity analysis (shown on an inflated fsaverage surface in FreeSurfer). (F)
304  Matrices of the Pearson correlation coefficients for functional connectivity using the Schaefer 100
305 (identifiability score = 1.57), HCP-MMP1 (identifiability score = 2.06), Schaefer 300
306 (identifiability score = 2.11), and Schaefer 900 (identifiability score = 2.69) parcellations.
307 Figure supplement 1. Comparing identifiability scores between the shape asymmetry signature

308  (SAS) with either native eigenvalues or volume-normalized eigenvalues.

309 Cortical shape asymmetries are related to sex but not handedness

310 Sex and handedness are two characteristics that have frequently been examined with brain
311  asymmetry (2, 7, 10, 11, 25, 27, 28, 30, 61). We used a general linear model (GLM) with
312 permutation testing and accounting for familial structure (62, 63) of the HCP data to evaluate the
313  association between these two characteristics and the SAS defined at each eigenvalue ranging
314  between the 2™ and 144", After FDR correction, males and females showed significant differences
315  in asymmetry scores for the 2™ (Prpr = 0.037), 60 (Prpr = 0.037), 8™ (Prpr = 0.039), 52" (Prpr
316 = 0.030), and 84" (Prpr = 0.037) eigenvalues (Figure 4A), where female brains showed more

317  rightward asymmetric than males in these eigenvalues. These five eigenvalues come from four
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318  different eigen-groups, and the corresponding spatial scales of these eigenvalues are shown in
319  Figure 4B. These eigenvalues relate to shape variations over coarse scales. For instance, for the
320 2" eigenvalue (L = 1; see Materials and methods for the definition of L), the wavelength is of
321  order 300 mm, which is about half the circumference of the brain; for the most-fine grained
322 eigenvalue, the 84" eigenvalue (L =9), the wavelength is about 44 mm. We note however that the
323 sex differences are small, with considerable overlap between male and female distributions (Figure
324  4A). No such effects of handedness on the SAS surpassed the FDR-corrected threshold. We also
325  found that the overall asymmetry level (i.e., the sum of the SAS) was not correlated with either

326  handedness or sex.
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328  Figure 4. Sex differences in eigenvalue asymmetries. (A) Smoothed distributions and boxplots
329  with mean and interquartile range (64) of the eigenvalues among males (n = 504) and females (n
330 = 602). Under these five spatial scales, female brains show a greater rightward asymmetry than
331  males. The p-values are FDR-corrected values of the correlation between sex and SAS, obtained
332 via a GLM. The d values are effect sizes (Cohen’s d). L denotes eigen-group. (B) The
333  corresponding eigenfunction of each eigenvalue in panel (A) that shows the gradients of spatial

334  variation on a population-based template.

335 Individual differences in cortical shape asymmetry correlate with cognitive functions

336  We used canonical correlation analysis (CCA) (65) to examine associations between the SAS and
337 13 cognitive measures from the HCP dataset (n = 1094; see Materials and methods) selected to
338 represent a wide range of cognitive functions ((66); see Materials and methods for details). To
339 reduce the dimensionality of the SAS measures and ensure equivalent representation of

340  asymmetries at each spatial scale, we took the mean SAS value for each of the 1% to 11™

eigen-
341  groups, spanning the 2™ to 144" eigenvalues. To minimize collinearity of the cognitive variables,
342  we applied principal component analysis (PCA) to the 13 cognitive measures and retained the first
343  four principal components (PCs), which explained 80% of the variance. The analysis revealed a
344  single statistically significant canonical mode (CCA r = 0.187; Prwer = 0.032; Figure 5A). Figure
345 5B shows that the mode has significant positive loadings from mean SAS scores in eigen-groups
346  2,4,5,and 11, and significant negative loadings from eigen-groups 3, 6, 7, 10. Figure 5C indicates
347  that 12 of the 13 cognitive measures showed significant positive correlations with the canonical
348  variate, indicating that it captures covariance with general cognitive ability. Thus, our findings

349 identify strong scale-specificity of associations between cortical shape asymmetry and cognition,

350  with a greater leftward asymmetry in scales captured by eigen-groups 2 (~170 mm wavelength), 4
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351  (~95 mm wavelength), 5 (~75 mm wavelength), and 11 (~37 mm wavelength) being associated
352  with better performance across most cognitive measures, and a greater leftward asymmetry in
353  scales captured by eigen-groups 3 (~120 mm wavelength), 6 (~65 mm wavelength), 7 (~55 mm

354  wavelength), and 10 (~40 mm wavelength) being associated with poorer cognitive performance.
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356  Figure S. Individual differences in cortical shape asymmetry correlate with general cognitive
357  ability. (A) Scatterplot of the association between the cognitive and SAS canonical variates with
358 the corresponding least-squares regression line in black. (B) Canonical variate loadings of each
359  eigen-group. (C) Correlations between the original cognitive measures and the cognitive canonical
360 variate. Error bars show + 2 bootstrapped standard errors (SE). Asterisks denote bootstrapped

361  Prpr<0.05.

362  Cortical shape asymmetries are primarily driven by unique environmental influences

363 To characterize genetic and environmental effects on cortical shape and its asymmetry, we
364  calculated the heritability of each eigenvalue within the left and right hemispheres, as well as for
365 the SAS. We used data from 138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and
366 160 of their non-twin siblings drawn from the HCP dataset (53) (see Materials and methods for

367  details). Uni-hemispheric shape descriptors demonstrated strong heritability at very coarse spatial
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368  scales and moderate heritability at slightly finer scales. For instance, the heritability of the 1*
369  eigen-group (2" to 4™ eigenvalues) of both hemispheres ranged between 0.52 < 4? < 0.69 (all
370  Prpr<0.05; Figure 6, A and B). These eigenvalues are related to shape variations on the coarsest
371  scale that does not include any sulcal or gyral features (the corresponding wavelength is
372 approximately 170 mm). Beyond the 2" eigen-group, heritability estimates dropped to below 0.5
373 (Prpr <0.05 for most eigenvalues), and beyond the 4™ eigen-group they dropped below 0.3. Most
374  eigenvalues with statistically significant heritability estimates were confined to the first six eigen-
375  groups, which correspond to wavelengths greater than or equal to approximately 65 mm (Figure
376 6, A and B insets). These results indicate that genetic influences on the shape of each cortical
377  hemisphere are expressed over very coarse scales at which only primary cortical folds such as the
378  Sylvian and central sulci are apparent. Estimates of common environmental influence on both

379  hemispheres were uniformly low across the 2™ to 144" eigenvalues (range 0-0.20).
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381  Figure 6. Heritability of cortical shape. (A) and (B) Heritability of the eigenvalues of the left (A)
382  and right (B) hemispheres. The insets show the corresponding spatial scales by reconstructing the

383  surfaces using the first six eigen-groups. (C) Heritability of the SAS. The inset shows the
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384  corresponding spatial scale with some level of genetic influence, obtained by reconstructing the
385  surface using the first five eigen-groups. (D) Unique environmental influences to the SAS at
386  each eigenvalue. Statistical significance is evaluated after FDR-correction. Note that significance
387 s not estimated for unique environmental effects as this represents the reference model against
388  which other genetically informed models are compared. We use 79 same-sex DZ twin pairs, 138
389  MZ twin pairs, and 160 of their non-twin siblings.

390 Figure supplement 1. Heritability of cortical shape with volume normalization but without
391  normalizing the surface area.

392  Figure supplement 2. Heritability estimates of regional volumes of individual hemispheres across

393  four parcellation resolutions.

394 In contrast to unihemispheric shape variations, all the heritability estimates of the SAS
395  were low (<0.28; Figure 6C), with only four eigenvalues (2, 3, 16, and 28) showing statistically
396  significant heritability after FDR correction (Prpr = 0.004 to 0.022) and no heritability estimates
397  exceeding 0.30. Thus, at any given scale, genes account for less than one-third of the phenotypic
398  variance in the SAS. These four eigenvalues are confined to the first five eigen-groups, with
399  corresponding wavelengths greater than or equal to approximately 75 mm (Figure 6C inset).
400  Estimates of common environmental influences were uniformly low (range 0-0.14), whereas
401  unique (subject-specific) environmental influences on the SAS were consistently high across the
402  full range of eigenvalues considered, ranging between 0.72 to 1.00 (Figure 6D).

403 Notably, heritability estimates for non-surface area normalized eigenvalues of individual
404  hemispheres, which capture variations in both shape and size, were uniformly high across all

405  scales, and the scale-specific effects were eliminated (Figure 6—figure supplement 1), indicating
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406 that variations in cortical size are under greater genetic influence than cortical shape. The results

407  underscore the importance of controlling for size-related variations in shape analyses.

408 Discussion

409  Asymmetries in brain anatomy are widely viewed as a critical characteristic for understanding
410  brain function. Here, we employed a multiscale approach to quantify individualized shape
411  asymmetries of the human cerebral cortex. We found that cortical shape asymmetries were highly
412 personalized and robust, with shape asymmetries at coarse spatial scales being the most
413  discriminative among individuals, showing differences between males and females, and
414  correlating with individual differences in cognition. Heritability estimates of shape descriptors in
415  individual hemispheres were high at very coarse scales but declined to moderate values at finer
416  scales. By contrast, the heritability of cortical shape asymmetry was low at all scales, with such

417  asymmetries being predominantly influenced by individual-specific environmental factors.

418  Identifiability of cortical shape asymmetry is maximal at coarse scales

419  Cortical asymmetries have traditionally been investigated at fine-scale, voxel or vertex-level
420  resolutions (16, 19, 23, 30, 32, 43, 44). These approaches may ignore meaningful effects (i.e.,
421  properties that are individually unique and correlated with cognition) at coarser spatial scales. Our
422 SAS quantifies these underlying variations across the whole brain and along a spectrum of spatial
423  scales. Our approach is akin to studying seismic waves of earthquakes with different wave
424  frequencies at the global tectonic scale, instead of focusing on a particular city. The ability to assess
425  shape along a spectrum of spatial scales is important, since brain asymmetry is a multidimensional

426  and multivariate phenotype (3, 13, 43).
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427 Few studies have assessed individual variations in shape at coarse scales. Neubauer et al.
428  (33) found that individual-specific asymmetry in endocranial shape is reliable across two time
429  points. The endocranial shape is the imprint of the cortical surface shape but contains only very
430  coarse shape information (33). Moreover, levels of brain torque (both horizontal and vertical) are
431  robust across time (61). Wachinger et al. (25) used shape descriptors at coarse scales derived from
432 the eigenvalues of the LBO for all brain structures to achieve accurate subject identification. Taken
433 together with our findings, these results indicate that coarse features of cortical shape are highly
434  personalized and unique to individuals.

435 It is perhaps surprising that individual differences in cortical shape are most strongly
436  expressed at coarse scales, given the known variability of fine-grained anatomical features such as
437  the presence and trajectories of tertiary sulci. It is possible that local changes in grey matter volume
438  affect fine-scale geometry in such a way that it carries less identifying information, or that such
439  fine scales carry too much measurement noise to be used for the purpose of identification.
440  Traditional analysis methods use smoothing to address the issue of image noise (44), but
441  smoothing can also suppress actual variations at fine scales. Our multiscale approach affords a
442  more comprehensive characterization of shape variations across multiple spatial scales. An
443  important avenue of future work will involve investigating the functional consequences of these

444 pronounced individual differences.

445  Cortical shape, rather than shape asymmetry, is heritable

446  Genetic effects on cortical thickness and surface area are generally bilateral (10, 67-69), resulting
447  in few lateralized effects (10, 70). Accordingly, it has been postulated that individual-specific
448  asymmetries may be largely determined by environmental factors (34-38). In line with this

449  hypothesis, we found that individualized cortical shape asymmetries were associated with low
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450 heritability and were driven mainly by unique environmental effects. These environmental effects
451  are captured by the E parameter of the ACTE heritability model that we used in our analysis; this
452  parameter also includes the contributions of measurement error. However, our effects cannot be
453  explained by the SAS being a noisier descriptor of morphology as it showed the highest
454  identifiability (Figure 2, A to C). That is, a noisy measure will not be able to discriminate between
455  individuals. Thus, taking the findings of our identifiability and heritability analyses together, we
456  can conclude that individual differences in SAS scores are primarily driven by unique
457  environmental influences rather than measurement error. Previous studies have found some
458  evidence of environmental influences on brain asymmetry (2, 4, 5, 71). Early in the intrauterine
459  environment, fetal posture and light may influence brain asymmetry (2, 4, 5); during postnatal
460  maturation, language learning has been linked to specific asymmetry features. For example,
461  bilinguals have stronger rightward asymmetry of cortical thickness of the anterior cingulate than
462  monolinguals (71). However, the mechanisms of how environmental effects shape brain
463  asymmetry are largely unknown, and epigenetics may also play a role (2, 4).

464 In contrast to shape asymmetries, the shape of individual hemispheres showed greater
465  heritability at coarse scales, consistent with results from previous studies on other morphological
466  measurements (10, 39, 43). The scales at which genetic effects on unihemispheric shape were
467  observed captured variations in primary sulci, consistent with evidence that the primary folds,
468  which develop early in life, are less variable across individuals and under greater genetic control
469  than other folds (i.e., secondary and tertiary folds) (43, 72, 73). Previous studies have found that
470  genetic influences on the cerebral thickness, geodesic depth, and surface curvature generally occur
471  along the posterior—anterior and inferior—superior axes (43, 74). These two axes correspond to the

472 second and third eigenvalues of the LBO, which also showed strong heritability in the shapes of
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473  both hemispheres in our results. In addition to these two axes, we found strong heritability at very
474  coarse scales in other directions that have not been described in previous studies. Our approach

475  thus identifies dominant spatial scales and gradients of heritability in shape.

476  Shape asymmetries, sex, and handedness

477  Using our multiscale approach, we did not find a relationship between shape asymmetry and
478  handedness, consistent with numerous studies showing that handedness is unrelated to anatomical
479  brain asymmetry in cortical thickness, volume, surface area, shape, and voxel-based morphometric
480 (VBM) analysis (10, 11, 24, 25, 28, 30, 32).

481 Numerous studies, focusing primarily on size-related descriptions such as grey matter
482  volume and cortical thickness, have found that female brains are more symmetric than male brains
483 (8, 10, 24-27). Our analysis reveals that, although the overall level of shape asymmetry did not
484  differ between male and female brains, female brains displayed a greater rightward shape
485  asymmetry than male brains at certain coarse spatial scales, such as along the anterior-posterior
486  axis. The mechanisms giving rise to these scale-specific sex differences require further

487  investigation.

488  Shape asymmetries are correlated with general cognitive performance

489  We found that individual differences in cortical shape asymmetry are correlated with cognitive
490 performance in a scale-specific way. Specifically, we found that a greater leftward asymmetry
491  across a wide range of spatial scales, corresponding to wavelengths of approximately 37, 75, 95,
492  and 170 mm, and greater rightward asymmetry at wavelengths of approximately 40, 55, 65, and
493 120 mm, are associated with better performance across nearly all cognitive measures considered.

494  Previous studies have found that asymmetries in cortical thickness and surface area are negatively
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495  correlated with cognition (40, 75), but these studies only measured the level of asymmetry and did
496  not consider the direction (i.e., leftward or rightward) of the asymmetry. The scale-specificity of
497  the associations that we find underscore the importance of viewing brain asymmetry as a
498  multiscale rather than a unidimensional trait.

499 The magnitudes of the associations are modest, but they are consistent with effect sizes
500 reported in past research (40, 75). These modest correlations with cognition may reflect a
501 robustness of cognitive abilities to stochastic perturbations of brain morphology, given that our
502  heritability analysis revealed a dominant effect of unique environmental factors in driving

503 individual differences in cortical shape asymmetries.

504 Summary

505  We developed a multiscale approach and found that cortical shape asymmetries are robust and
506  personalized neuroanatomical phenotypes, especially at coarse spatial scales. Some of these coarse
507  scales are more strongly rightward asymmetric in females compared to males. The cortical shape
508 asymmetries also show scale-dependent associations with cognition. Finally, individual-specific
509  cortical shape asymmetries are driven mainly by subject-specific environmental influences rather
510 than by genetics, unlike the shape of individual hemispheres that shows strong heritability at coarse

511  scales.

512 Materials and methods

513  Neuroimaging data

514  We used healthy subject data from three open-source neuroimaging datasets: the latest Open

515  Access Series of Imaging Studies (OASIS-3 (52)), the Human Connectome Project (HCP (53)),
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516 and the Alzheimer's Disease Neuroimaging Initiative (ADNI; https://ida.loni.usc.edu/) to develop
517 and test our new asymmetry shape measure — the SAS (see below for details). To test for
518 relationships of sex, handedness, and heritability, we restricted our analysis to the HCP dataset,
519  which provides twin and non-twin sibling information and handedness measurement as a
520  continuous variable, as the sample sizes of the left-handers in the other two datasets are too small

521 (n=15in the ADNI data; n = 18 in the OASIS-3 data).

522 OASIS-3

523  We used 239 healthy participants with at least two longitudinal MRI sessions using 3T scanners
524  from the latest release of the Open Access Series of Imaging Studies (OASIS-3) (52). We excluded
525  six subjects whose SAS was an outlier in at least one of those sessions due to poor image quality
526  and major errors in image segmentation. These subjects had more than two eigenvalues of the first
527 200 eigenvalues that departed from the population mean values by more than four standard
528  deviations. The remaining 233 subjects (99 males; 134 females) were aged from 42 to 86 (mean =
529  66.03; standard deviation = 8.81) when they entered the study. We also repeated the analyses using
530 all the subjects including the outliers, and the resulting number of eigenvalues with peak
531 identifiability was identical to the initial analysis that excluded the outliers. For comparing the
532  identifiability of the SAS and the asymmetry from traditional measurements (volume, cortical
533  thickness, and surface area), we further excluded one subject because some of this subject’s files
534  were corrupted and could not be segmented. For subjects with more than two MRI sessions (n =
535 115), our main analysis used the initial session as the time 1 (t1) session and the session closest in
536  time to the initial session as the time 2 (t2) session. The intervals between these two sessions were
537  one to 3151 days (mean = 2.95 years; standard deviation = 1.67 years). To ensure the robustness

538  of our methods, we used sessions with the longest intersession interval (mean interval of 6.24
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539  years; standard deviation of 1.88 years) to re-analyze the subject identifiability. These healthy
540  participants had no history of neurological or psychiatric diseases. We also excluded subjects with
541 a Mini-Mental State Examination (MMSE) score equal to or lower than 26, as this indicates that a
542  subject is at risk of being diagnosed with dementia (76). OASIS-3 (52) provides surface meshes
543  based on the T1-weighted MRI images created by FreeSurfer version 5.3 with the cross-sectional
544  pipeline (i.e., to treat the T1 and T2 sessions independently (54)), including the FreeSurfer patch
545  (10Dec2012) and the Human Connectome Project (HCP) patch
546  (http://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/5.3.0-HCP) (52). A trained lab member of
547  the OASIS project reviewed the image segmentation, and for the images that failed the quality
548  control, TkMedit (http://freesurfer.net/fswiki/TkMedit), a FreeSurfer toolbox, was used to revise
549  the images and re-run the FreeSurfer pipeline (52). After the re-segmentation, the images were
550 excluded if they still failed a quality control process (52). The details of the OASIS-3 dataset can
551  be found in LaMontagne et al. (52) and the OASIS website (https://www.oasis-brains.org/). We

552  used the actual output files provided by the OASIS-3 without any further corrections.

553  HCP

554  We used participants from the Human Connectome Project (HCP) (53) s1200 release
555  (www.humanconnectome.org/), which includes 1113 subjects with T1-weighted MRI. All subjects
556  of the s1200 release were healthy young adults (aged 22—35, mean = 28.80, standard deviation =
557  3.70). The structural images (T1-weighted and T2-weighted scans) of the HCP have a high
558 isotropic resolution (0.7 mm; see (53) for details), and all images underwent the HCP-specific
559  minimal preprocessing pipeline (55). We used native surface meshes created by the FreeSurfer
560  (version 5.3)-HCP pipeline (54, 55, 77, 78) from T1-weighted MRI images using 3T scanners. For

561  subject identification, we employed the test-retest subsample, which consists of 45 healthy subjects
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562 (13 males, 32 females) aged from 22 to 35 (mean = 30.29; standard deviation = 3.34), including
563 17 pairs of monozygotic twins. The intervals between the test session (the tl session in our
564  analysis) and the retest session (t2) were between about one to 11 months (mean interval of 4.7
565  months). To compare the identifiability of the SAS and the resting-state functional connectivity,
566  we further excluded one subject without REST1 data in one session.

567 For analyzing the relationships between SAS and sex as well as handedness, we excluded
568 three subjects with unclear zygosity and four subjects with outlying SAS values (using the same
569  criteria as used in the OASIS-3) from the s1200 release subjects, and general linear modeling
570 (GLM) of sex and handedness effects were applied to cross-sectional data of these remaining 1106
571  subjects (504 males; 602 females). We further excluded 12 subjects who did not have all 13
572 cognitive measures analyzed in our CCA (detailed below). Among the s1200 release subjects were
573 79 same-sex dizygotic twin (DZ) pairs and 138 monozygotic twin (MZ) pairs; 160 of these twin
574  pairs have non-twin sibling imaging data. For twin pairs with more than one non-twin sibling, we
575  selected one sibling at random (79). We used the resulting twin and non-twin siblings data for the

576 heritability analysis.

577  ADNI

578 The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) was
579  launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
580  MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),

581  positron emission tomography (PET), other biological markers, and clinical and
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582  neuropsychological assessment can be combined to measure the progression of mild cognitive
583  impairment (MCI) and early Alzheimer’s disease (AD).

584 Participants in the ADNI sample completed multiple MRI sessions, but the number of
585  sessions was not consistent across subjects. We used 208 healthy control subjects from the ADNI
586 1 who had both the baseline MRI session (the t1 session) and a follow-up MRI session six months
587 later (the t2 session). These subjects comprised 109 males and 99 females aged 60 to 90 (mean =
588  76.21; standard deviation = 5.10) upon study entry. Of these 208 subjects, 135 subjects also had
589  an MRI session three years later from the initial session. To evaluate the stability of our methods,
590 we re-analyzed these 135 subjects using data from the 3-year follow-up as the t2 session. The
591  preprocessing procedure included gradwarping, B1 correction, and/or N3 scaling. We used the
592  ADNI provided surface meshes generated by the cross-sectional FreeSurfer (version 4.3) from T1-
593  weighted MRI image. Detailed descriptions of image acquisition, quality control, and

594  preprocessing are described at http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ and (80).

595  Spectral shape analysis

596  We utilized the eigenvalues of the LBO applied to cortical surface mesh models generated with
597  FreeSurfer (54). The eigendecomposition of each individual's cortical surface was estimated using
598 the Shape-DNA software (25, 45, 47), which provides algorithms that extract and optimize the
599  eigenvalues and eigenfunctions from the LBO based on the intrinsic shape of an object (45, 47).
600  The Shape-DNA software (45, 47) uses the cubic finite element method to solve the Helmholtz

601  equation (Egs. 1), also known as the Laplacian eigenvalue problem:

602 Af = —Af (1)
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603  where A is the LBO; f'is the eigenfunction with corresponding eigenvalue A. The eigenvalues of
604  the Helmholtz equation are a sequence ranging from zero to infinity, i.e., 0 <A* <2< ..< oo, and
605  changes in shape result in changes in the eigenvalue spectrum (47).

606 Spectral shape analysis via LBO is a departure from traditional morphological analyses
607  that focus on either specific locations (i.e., regions defined by a cortical atlas) or global differences
608  (such as total hemispheric volume). Spectral shape analysis focuses instead on differences in the
609  spatial scales of variation. The decomposed spatial scales can be linearly combined to reconstruct
610 the surface via the eigenfunctions and their corresponding coefficients (the contribution of each
611  set of eigenfunctions to the original surface; see Figure 2G for examples of reconstructed surfaces).
612 Importantly, Shape-DNA achieves better results for retrieving object shapes than numerous
613  cutting-edge shape-retrieval methods (81). Shape-DNA compresses the cortical-surface geometry
614  from around 5 mb into only less than 3 kb, making it computationally efficient for further analysis
615  (25). The code for calculating Shape-DNA is written in Python and is freely available
616  (http://reuter.mit.edu/software/shapedna/). We applied the Shape-DNA code to the data and

617  analyzed the resulting eigenvalues using MATLAB.

618 Eigenvalue normalization
619  To account for differences in brain sizes among participants, the eigenvalue spectra from Shape-
620  DNA should be normalized (45). Previous studies (25, 42, 50) have applied volume normalization

621  to normalize the eigenvalue spectrum to unit volume via the following equation (25, 42):

622 XN =v?/P) (2)

623  where v is the Riemannian volume of the manifold, A is the original eigenvalue spectrum (A= [A1,

624  A%,...]), and X’ is the volume normalized eigenvalue spectrum. Although this approach has been
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625 used in the literature, it is still unable to isolate shape properties as it does not control the effect of
626  different surface areas among objects. For example, in Figure 7, each line is the eigenvalue
627  spectrum for the cortical surface of one subject, and these eigenvalue spectra are straight lines
628  (although they are not straight lines if we zoom in these figures) increasing along with the indices:
629  each eigen-spectrum line has its own slope. Specifically, slopes of the native eigenvalue spectra
630 from each subject are different (Figure 7A) and related to the volume of the manifold. Even though
631  volume normalization decreases the differences in the slopes of the eigenvalue spectra, the slopes
632 remain quite different (Figure 7B) and are driven by differences in surface area (45). More

633  specifically,

4Ttn
634 An~ area() 3)

635  where A is the eigenvalue and n is the eigenvalue index. Hence, an appropriate surface area-based
636  normalization is essential to isolate the effects of shape that are distinct from size, particularly
637  given the evidence that the right hemisphere tends to have a greater cortical surface area than the
638 left hemisphere (10). Without surface area normalization, differences between the hemispheres
639  may be primarily driven by differences in the surface area of the two hemispheres.

640 To perform surface area normalization, we obtained the unit surface area by dividing the

641  vertex coordinates on each axis by the square root of the total surface area (Eqs. 4).

r Vx . r Vy . " Vz
642 Vx' = Jarea(M)’ Vy - Jarea(M)’ vz Jarea(M) (4)

643  where Vx, Vy, Vz are the coordinates of all vertices on the X-axis, Y-axis, and Z-axis, respectively;
644  area (M) is the surface area of object M; Vx’, Vy’, Vz’ are the coordinates of transformed vertices

645  on the X-axis, Y-axis, and Z-axis respectively. Surface area normalization is stricter than volume
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646  normalization for spectral alignment, and the eigenvalue spectra with surface area normalization

647  have a nearly-identical slope (45) (Figure 7C).

A B C
Volume Surface Area
Native Normalization Normalization
E E g
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648

649  Figure 7. Eigenvalue spectra with and without normalization. (A) Native eigenvalue spectra. (B)
650 FEigenvalue spectra with volume normalization. (C) Eigenvalue spectra with surface area
651  normalization. All of these results are from the left white surfaces of 233 subjects from the OASIS-
652 3 data. Each line represents a subject. The slopes of the spectra in (A) and (B) differ among subjects,

653  whereas those in (C) are almost identical.

654  The shape asymmetry signature

655 The LBO eigenvalues measure the intrinsic geometry of an object and are isometry invariant.
656  Hence, the eigenvalue spectra are identical regardless of object positions, rotations, and mirroring
657  (i.e., perfect projection from the brain structure of the right hemisphere to the left does not change
658  the eigenvalue spectrum) (25, 47). Therefore, brain asymmetry can be calculated directly from the
659  eigenvalue spectra of the two hemispheres (25, 42) without image registration or smoothing (25,
660  47). In this study, after calculating the eigenvalues with surface area normalization, we subtracted

661  the eigenvalue spectra of the right hemisphere from those of the left hemisphere in the same subject
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662  at each spatial scale (each eigenvalue index) to define the shape asymmetry signature (SAS).

663  Formally, the SAS for subject i is given by

664 A =2 — 2% (5)

665  where A is the eigenvalue spectrum A = (A1, A2, ..., A") from the left (L) and right (R) hemispheres,
666  each of which represents a certain spatial scale. There are other possible asymmetry indices (10,
667  82), but those indices are not appropriate for a surface area-normalized eigenvalue analysis, as our
668  normalization already accounts for size effects.

669 Moodie et al. (82) proposed subtracting the mean of the asymmetry values across subjects
670  from the individual asymmetry values to represent the asymmetry. We tested this approach with
671  our method, and the results were generally the same, as the eigenvalues were normalized before
672  calculating the asymmetry. For simplicity, we defined the SAS using Egs. 5 to represent the
673  individual-specific asymmetry.

674 To further check the possible influence of image quality on the SAS, we first took the mean
675  of the Euler number of the left and right hemispheres using FreeSurfer, which is widely used as an
676  index of image quality (83-85), and then calculated the Pearson’s correlation between the mean
677  Euler number and the SAS across the first 200 eigenvalues. For the HCP s1200 dataset, the
678  correlations were all below 0.07 (Prpr > 0.05). For the OASIS-3, the correlations were all below
679  0.18 (Prpr > 0.05) at either time 1 or time 2 MRI session. These results indicate that image quality
680  does not strongly influence the SAS, which is in line with past findings that the eigenvalues and

681  eigenfunctions of the Laplace-Beltrami Operator are robust to image noise (86).
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682  Subject Identification

683  Our first aim was to validate the SAS as a useful and robust measure of individual-specific
684  asymmetry. We, therefore, evaluated the extent to which the SAS of each individual subject
685  measured at time 1 (t1) could be used to identify the same person at time 2 (t2) in the longitudinal
686  data, akin to a neuromorphological fingerprint. The t1 — t2 Pearson correlations were then
687  estimated between all pairs of N individuals, resulting in an N X N correlation matrix. Amico and
688  Goni (56) defined identifiability as the difference between the mean of within-subject correlations
689  (diagonal elements of the Pearson correlation matrix in Figure 1C) and the mean of between-
690  subject correlations (off-diagonal elements of the Pearson correlation matrix in Figure 1C). This
691  approach allows for a more quantitative and finer-grained comparison of the identifiability of
692  different metrics compared to other approaches that just rely on binary identification accuracy
693  (e.g., Finn et al. (51)) (56, 57). However, this approach does not take into account the variance of
694  the observations. To examine the within- and between- subject similarities, we utilized the Glass’s
695 A, which is the standardized difference between the mean values of two categories of observations,
696  normalized by the standard deviation of a control group (87), which is the between-subject group
697  in our case. Our analysis thus examines how the within-subject correlations differ from between-
698  subject correlations. The Glass’s A has been recommended when the standard deviations of the
699  two groups are substantially different (87, 88), which is the case for the between- and within-
700  subject groups. Thus, our identifiability score was given by

mean(ry)— mean(rj)
SD (rij)

701  Identifiability score =

(6)

702 where SD is the standard deviation. Higher scores indicate a greater capacity to discriminate

703  between individuals. We also tested the pooled standard deviation of the two groups (57), as the
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704  Cohen’s d, and the results were generally consistent to those using the Glass’s A. We also evaluated
705 the identifiability performance of the SAS with respect to unihemispheric descriptors of either
706  combining size and shape or shape alone: namely the eigenvalues (native, volume-normalized, or
707  surface area-normalized) from the same hemispheres between time 1 and time 2 follow-up;
708  concatenating eigenvalues of both left and right hemispheres between time 1 and time 2; and
709  identifying the shape of one hemisphere from the shape of the other hemisphere both at time 1 or
710  both at time 2. We also compared the identifiability score of the SAS to the asymmetry based on
711 commonly used size-related measures (i.e., volume, cortical thickness, and surface area), and

712 resting-state functional connectivity.

713  Identifying spatial scales for optimum subject identifiability

714  Given a surface of N vertices, spectral shape analysis yields up to N eigenvalues, raising the
715  question of how many eigenvalues constitute a sufficient description of cortical shape. Is a full
716  representation of the entire surface necessary for optimal subject identifiability, or can this be
717  achieved using a more compact set of eigenvalues? If so, the specific number of eigenvalues
718  required would define the relevant spatial scale of shape differences that characterize the
719  individual-specific asymmetry at which individual differences are most prevalent.

720 To address this question, we decompose the cortical surface and use an increasing number
721 of eigenvalues, from the first two eigenvalues (A1, A?) to the first 1000 eigenvalues (A1, A%, 23, ...,
722 A1009) each time computing the SAS and evaluating subject identifiability. For example, we first
723 quantified the shape of cortical surface using only A! and A%, thus capturing the coarsest scales of
724  cortical shape. We then quantified the surface using A* through A3, then A through A*, and so on.
725  If there is a specific spatial scale that is optimal for this subject identifiability, we expect to see a

726  peak in the identifiability score as a function of the truncation number, k. This peak not only
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727  defines the spatial scale at which individual variability, and thus individual-specific asymmetry, is
728  most strongly expressed, but it also identifies a meaningful point at which to define a compressed

729  summary of individual-specific asymmetry using the eigenvalue spectrum.

730  Cortical shape harmonics

731 The cerebral cortex is topologically equivalent to a sphere. Solving the Helmholtz equation for a
732 sphere yields groups of eigenfunctions with the same eigenvalues and spatial wavelength,
733 progressing along orthogonal axes (58). These groups in the solutions to the idealized spherical
734  case are known as the spherical harmonics. The zeroth group (L = 0) is comprised of the first
735  eigenvalue; the first group (L = 1) is comprised of the 2™, 3™, and 4™ eigenvalues; the second
736 group (L = 2) is comprised of the 5™ to 9" eigenvalues, and so on. That is, there are 2 (L + 1) — 1
737  eigenvalues in the L™ group. Robinson et al. (58) showed that while the eigenvalues between the
738  cortical surface and sphere are different, the spherical grouping provides a rough division of the
739  convoluted cortical surface. This is a useful grouping approach to investigate eigenfunctions and
740  eigenvalues as the constituents of each group have roughly the same spatial wavelength. By
741  averaging over several eigenvalues with similar spatial scales, we can also increase the stability of
742 the truncation number across datasets. For example, the peak SAS identifiability appeared at the
743 first 126 and 122 eigenvalues for the OASIS-3 and ADNI data, respectively, and these eigenvalues
744 are all within the 11" eigen-group (L = 11).

745 To estimate the corresponding wavelength of each eigen-group, we used an approximation

746  of the spatial wavelength in the spherical case:

2TRs
747 W = Nao) (7
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748  where Rs is the equivalent sphere of the original object (for the fsaverage case, Rs is about 67 mm)
749  and L is the index of the eigen-group. We used the population-based template (fsaverage) as an

750  example to show the wavelengths of the first 14 eigen-groups in Supplementary File 1.

751  Cortical segmentation

752 We applied the HCP-MMP1 atlas (59) to segment the cortical regions for accessing size-related
753  morphological asymmetry, functional connectivity, and regional volume heritability. This atlas is
754  based on the surface alignment approach, which aligns the images using cortical folding patterns
755 and minimizes the spatial smoothness (59, 89), and thus offers more accurate inter-subject
756  registration than volume-based registration (59). Moreover, regions in the left and right
757  hemispheres of the HCP-MMP1 atlas are corresponding and thus can be used for accessing cortical
758  asymmetry. In addition to the HCP-MMP1 atlas, we also employed the Schaefer atlas (Schaefer
759 100, 300, and 900) (60) for constructing functional connectivity (FC) and regional volume
760  heritability. The Schaefer atlas has superior functional homogeneity of a parcellation and has
761  different parcellation scales (60); therefore, it can be used for comparing the identifiability of the
762 FC and estimating regional volume heritability at different scales. Specifically, each hemisphere
763 has 50 regions in the Schaefer 100 atlas, 150 regions in the Schaefer 300 atlas, and 450 regions in
764  the Schaefer 900 atlas (60). However, regions in the left and right hemispheres of the Schaefer

765 atlas are not corresponding; therefore, the atlas cannot be used for accessing brain asymmetry.

766  Non-shape descriptors of brain anatomical asymmetry
767  To compare identifiability scores obtained with SAS to asymmetries using size-related descriptors,

768  including volume, cortical thickness, and surface area, we had to ensure that the asymmetry values
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769  were purely from the asymmetry effect and were not affected by the effect of total brain size. A

770  traditional asymmetry index (13, 23, 39) is:

(8

771 A5t =—~—~_ "1
0.5(Pf"+Pg")

®)

772 where AIS' is the asymmetry index for parcellation S of subject i. PLS’i is the value of the

773 morphological measurement from parcellation S from subject i’s left hemisphere; and PRS’i is from
774  the right hemisphere. However, this asymmetry index is unable to entirely eliminate the effect of
775  total brain size. Here, we use cortical volume as an example. We suppose the total brain volume
776  effect (o) exists, and the effects of each ROI-based volume of the left (Egs. 9) and right (Egs. 10)

777  hemispheres are:
778 VP =6V + ai 9)
779 VI = 6LV 4 ai (10)

780  where V} and V! are the volumes of region i in the left and right hemispheres, respectively, 6} and
781 &} are the scaling coefficients, and ai is the effect of total brain volume on region i. Thus, VLF’i and

782 Vlf ! are the overall effects of volume on region i. We can apply VLF’i and Vlf ' to the traditional

783  asymmetry index as in Egs. 8 to get

R T
Jga yi = L@V — RV + )]
Al iyFi, i iy Fi i

0.5[ (8L + ol )+ (8Va" + o]

ey

785 By re-arranging this equation, we obtain
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i, Fi i, Fi
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0'56LVL +0'56RVR +a

(12)

787  which shows that the total volume effect ai still remains in the denominator and is not removed by
788  the traditional asymmetry index defined in Egs. 8.

789 In this study, we adjusted the asymmetry index for the mean of each morphological
790 measurement, such as the asymmetry of cortical thickness, volume, and surface area. Specifically,
791  we revised the traditional asymmetry index by subtracting the mean value of the measurement
792 across all parcellations of each subject before calculating the asymmetry index defined in Egs. 8.
793  This revised asymmetry measure RAIS* explicitly calculated as:

(Pf'i—Mi)—(Pg'i—Mi)

(e D) 3

794 RAIS' =

795  where M! is the mean value of the measurement across all regions in parcellation of subject i. We
796  note that this is an important point, as without this correction, the asymmetry measure is dependent
797  on the mean value.

798 We employed a multi-modal parcellation, HCP-MMP1 version 1.0 (59) on the OASIS-3
799  subjects. We excluded one subject whose cortical surfaces could not be segmented by the HCP-
800 MMPI atlas. There are 180 regions in each hemisphere of the HCP-MMP1 atlas, including the
801  hippocampus that was excluded in our analysis. We created one vector per size-related measure
802 that quantified the asymmetry-index per subject and then used these asymmetry indices in the

803  subject identifiability analyses.
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804  Functional connectivity

805  We used the resting-state FC from the first session (REST1) in the test sample as the first FC time
806  point (t1) and FC from the first session in the retest session as the second FC time point (t2). We
807  utilized the fMRI signals that were preprocessed by the HCP functional and ICA-FIX pipelines
808  (55). We did not apply any spatial smoothing on the signals. FC was calculated using the upper
809 triangle entries of the Pearson correlation matrix between nodes from the atlas (51). To compare
810 the identifiability of the SAS and the FC across different parcellation scales and atlas, we repeated
811  the FC analysis with the Schaefer 100, 300, and 900 atlas (60) and the HCP-MMP1 atlas (59) from
812  the subjects in the HCP test-retest subsample (n = 44; we excluded one subject without REST1

813  data in one session).

814  Relationships with sex and handedness.

815  Sex and handedness are two common characteristics that have been widely examined in the
816  asymmetry literature (3, 4, 7, 10, 11, 13, 14, 24, 25, 28-32, 61). We used a GLM to analyze
817  relationships between each eigenvalue with sex and handedness on 1106 HCP subjects (see HCP
818  section). The HCP dataset provides the handedness preference measured by the Edinburgh
819  Handedness Inventory (EHI) (90). EHI is the most widely used handedness inventory (91, 92),
820  with resulting scores range from -100 (complete left-handedness) to 100 (complete right-
821  handedness) (90). Handedness preference is not a bimodal phenomenon (93), and cut-off scores to
822  categorize the handedness are still arbitrary. We therefore used the EHI score as a continuous
823  variable in our main analysis, which is a widely used approach (32, 61). To further confirm the
824  robustness of the relationship between handedness and the SAS, we tested two thresholds to
825  categorize handedness. First, right-handed (EHI: 71-100), left-handed (EHI: -100 to-71), and

826  ambidextrous (EHI: -70 to 70) (14, 28, 93); second, right-handed (EHI: 50 to 100), left-handed
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827  (EHI: -100 to-50), and ambidextrous (EHI: -49 to 49) (91, 94). Regardless of the threshold, the

828  categorized handedness variable was still unrelated to the SAS (2 to 144 eigenvalues).

829  Relationships with cognition

830 We followed Kong et al. (66) and used 13 cognitive measures in the HCP data dictionary that
831 represent a wide range of cognitive functions: namely, (1) Visual Episodic Memory
832  (PicSeq Unadj); (2) Cognitive Flexibility (CardSort Unadj); (3) Inhibition (Flanker Unadj); (4)
833  Fluid Intelligence (PMAT24 A CR); (5) Reading (ReadEng Unadj); (6) Vocabulary
834  (PicVocab Unadj); (7) Processing Speed (ProcSpeed Unadj); (8) Delay Discounting
835 (DDisc_ AUC 40K); (9) Spatial Orientation (VSPLOT TC); (10) Sustained Attention — Sens
836 (SCPT_SEN); (11) Sustained Attention — Spec (SCPT_SPEC); (12) Verbal Episodic Memory
837 (IWRD TOT); and (13) Working Memory (ListSort Unadj). We used PCA to reduce
838  dimensionality and minimize collinearity in the CCA. The first four principal components (PCs)
839  explained 80% of the variance and were retained for our primary analysis. Similarly, we reduced
840 the dimensionality of the SAS measures and ensured equal representation across different spatial
841  scales by taking the mean of the SAS across each eigen-group (from 1% to 11™ groups). These 11
842  mean SAS values and the first four cognitive PCs were then subjected to CCA to identify linear
843  combinations of SAS and cognitive measures that maximally covary with each other (95).
844  Inference on the resulting canonical variates was performed using a permutation-based procedure
845  (65), and robust estimates of canonical loadings were obtained using bootstrapping (96), as

846  described below in the Statistical analysis section.

847  Heritability of brain shape
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848  We used monozygotic (MZ) and same-sex dizygotic (DZ) twin pairs and their non-twin siblings
849  to calculate the heritability of brain shape and cortical volume. For twin pairs with more than one
850 non-twin sibling, we selected one sibling at random. We estimated the heritability of each
851  eigenvalue from individual hemispheres and the SAS. To emphasize the importance of properly
852  controlling surface area, we show the heritability of eigenvalues with volume normalization (but
853  without surface area normalization; Figure 6—figure supplement 1). We also calculated the
854  heritability from ROI-based volumes of individual hemispheres (Figure 6—figure supplement 2).
855  Regional cortical volumes of individual hemispheres were estimated for each region of the
856  Schaefer 100, 300, and 900 atlas (60) as well as the HCP-MMP1 atlas (59).

857 Under the assumption that MZ twins are genetically identical whereas DZ twins on average
858  share half of their DNA, structural equation modeling (SEM) can be used to decompose the
859  phenotypic variance of a trait into additive genetic (A), common environmental (C), and unique
860  (subject-specific) environmental (E) factors (79). Twins raised together are likely to share a more
861 common environment compared to their non-twin siblings; therefore, including a set of non-twin
862  siblings into the analysis allows us to additionally separate common environmental contributions
863  into twin-specific (T) and twin non-specific common environmental factors (C). The heritability
864  analyses of brain shape and volume were performed independently using standard SEM
865 implemented in OpenMx software (97, 98) in R. For each eigenvalue and parcellated volume,
866  outlying values were first excluded using the boxplot function in R keeping data points (v) in a
867 range QI-1.5 x IQR < v < Q3+1.5 x IQR, where QI and Q3 are the first and third quartiles
868  respectively, and IQR is the interquartile range (79). For each phenotype, we then fitted a set of
869  biometric models — ACTE, ACE, ATE, CTE, TE, CE, E — using age and sex as covariates, where

870 the letters indicate the factors present in the model. The goodness of fit between the models was
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871  compared using the Akaike information criterion (AIC) (99), and the best-fitting model for each
872  measure was selected based on the lowest AIC value. Consequently, the heritability for each
873  measure was derived from the best-fitting model, corresponding to the best model that balances
874  the ability to explain data with model complexity. To ensure that the general heritability pattern
875  was not dependent on the model selection, we also calculated the heritability estimates from the
876  full ACTE model (without model selection) at each eigenvalue (with surface area normalization)
877  of individual hemispheres as well as the SAS. The heritability estimates were highly correlated

878  with those with model selection (Pearson correlation » = 0.92—0.96).

879  Statistical analysis

880  We applied a permutation test to evaluate the statistical significance of a given identifiability score
881  for a given number of eigenvalues. We randomly shuffled the subject order of the SAS of the t2
882  session 50,000 times and then compared the original identifiability score with all the permuted
883  peak identifiability score truncated at each iteration independently to calculate the P-value.
884  Statistical inference for models evaluating associations between SAS and sex and handedness was
885  also performed using a permutation test with 100,000 iterations by randomly shuffled the subjects’
886  sex and handedness data. When analyzing associations between the SAS and cognition, we used a
887  recently-developed permutation-based procedure for CCA inference (65) with 50,000 iterations.
888  The P-values of the canonical modes were controlled over family-wise error rate (FWER; FWER
889  corrected P-values are denoted Prwer), which is more appropriate than the false discovery rate
890 (FDR) when measuring the significant canonical mode (65). The results were consistent when
891  controlling for age and sex as confounding variables. To identify reliable loadings of each SAS
892  eigen-group on the canonical variate, we used bootstrapping with 1000 iterations of the correlation

893  between each SAS eigen-group and the SAS canonical variate. The resulting standard errors were

46


https://doi.org/10.1101/2021.09.14.460242
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460242; this version posted July 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

894  used to estimate z-scores for each loading by dividing the original correlation by the standard
895 errors, and then the z-scores were used to compute two-tailed p-values. We then used FDR (g =
896  0.05) to correct for multiple comparisons of P-values of all the eigen-groups. We also used the
897 same approach to identify reliable correlations of cognitive measures on the corresponding
898  canonical variate. Due to the family structure of the HCP data, we kept the subjects’ family
899  structures intact when shuffling or bootstrapping the subjects using the Permutation Analysis of
900 Linear Models (PALM) software package (62, 63).

901 The statistical significance of the heritability estimates was evaluated through model
902  comparison between models with and without parameter A. For example, if the ACE model was
903 the best-fitting model, the P-value was derived by comparing the ACE and CE models; if the best
904 fitting model was CE, we compared this model with the ACE model to get the P-value for the A
905 parameter. We also used the same approach for measuring the statistical significance of the
906 common environmental factor (C). FDR (g = 0.05) was used to correct for multiple comparisons
907 (corrected P values are denoted Prpr) in all analyses except for the CCA, where FWER was
908 controlled using a permutation-based procedure (65).

909

910  Data availability

911 All code and dependent toolboxes wused in this study can be found at:
912  https://github.com/cyctbdbw/Shape-Asymmetry-Signature. The code of shape-DNA can be found
913  at: http:/reuter.mit.edu/software/shapedna/. The OASIS-3 dataset is available under
914  https://www.oasis-brains.org/. The ADNI dataset is available under https://adni.loni.usc.edu. The
915  HCP dataset is available under https://db.humanconnectome.org/.

916
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1201 Figure supplement and supplementary file Legends

1202  Figure 1—figure supplement 1. Higher SAS values characterize brains with stronger cortical
1203  shape asymmetries. Panels (A), (B), and (C) show left and right cortical surface reconstructions
1204  for three individuals showing varying levels of the SAS, from perfectly symmetric (panel A) to
1205  highly asymmetric (panel C). The left panel shows reconstructions at a coarse spatial scale
1206  corresponding to the first seven eigen-groups with a wavelength of about 55 mm. The right panel
1207  shows a reconstruction at the optimal scale for SAS identifiability, corresponding to the first 11
1208  eigen-groups and a wavelength of about 37 mm. The perfectly symmetric brain in panel A was
1209  created by projecting the left hemisphere to the right hemisphere using the population-based
1210 template (fsaverage). The SAS value is zero for this case. The surfaces in panels (B) and (C)
1211 correspond to individual participants with moderate (B) and strong (C) asymmetry. The gradations
1212 of asymmetry can be appreciated visually. As expected, the participant in panel C has a higher

1213 SAS than the participant in panel B. The SAS values shown here are the absolute mean values.

1214

1215  Figure 2—figure supplement 1. Understanding the identifiability score. Here, we use the shape
1216  asymmetry signatures from the OASIS-3 subjects (n = 233) as an example. (A) The mean of both
1217  within- and between- subject correlations decrease at finer scales, but the between-subject
1218  correlations are lower and decline faster than the within-subject correlations. (B) The same subject
1219  at time 1 (tl1) and time 2 (t2) with different numbers of eigenvalues. (C) Pearson correlation
1220  matrices using different numbers of eigenvalues. The diagonal elements are the within-subject
1221 correlations, and the off-diagonal elements are the between-subject correlations. Both within- and

1222  between- subject correlations are high from the very coarse scales (e.g., 9 eigenvalues in panel
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1223 (C)); both correlations are low if fine scales are involved (e.g., 961 eigenvalues in panel (C)). The
1224  number of eigenvalues with peak identifiability score (144 eigenvalues; L = 11) maximizes the
1225  difference between the between-subject and within-subject correlations. (D) Cortical surfaces

1226  reconstructed at spatial scales correspond to the eigen-groups in panel (C).

1227

1228  Figure 2—figure supplement 2. Inter-session variability in cortical shape is higher at more fine-
1229  grained spatial scales. Panels (A) and (B) show the white surface of one participant from the
1230  OASIS-3 dataset reconstructed at three spatial scales (i.e., using 144 eigenmodes, 1000
1231  eigenmodes, and the full cortical surface) for time 1 and time 2 sessions, respectively. Panels (C)
1232 and (D) map the Euclidean distance of mesh vertices between time 1 and time 2 at each spatial
1233 scale. The inter-session distances increase at finer scales (i.e., the original surface at the right

1234  panel). The images are registered on the fsaverage template.

1235

1236  Figure 2—figure supplement 3. Subject identifiability scores re-calculated for data from MRI
1237  sessions with the longest inter-sessional interval. The optimal spatial scales determined by eigen-
1238  groups are identical to the initial analysis using the shortest inter-sessional interval. (A) The peak
1239  subject identifiability score occurs at the combination of the first 136 and 139 eigenvalues in the
1240  OASIS-3 (n = 115) and ADNI (n = 135) data, respectively. (B) The peak mean subject
1241  identifiability score occurs at the first 11™ eigen-groups, representing the first 144 eigenvalues, in

1242  both the OASIS-3 and ADNI data. (C) Pearson correlation matrices calculated using the first 144
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1243  eigenvalues for the OASIS-3 and ADNI data by using both the shortest (OASIS-3: n=233; ADNI:

1244  n = 208) and longest inter-sessional intervals.

1245

1246  Figure 3—figure supplement 1. Comparing identifiability scores between the shape asymmetry
1247  signature (SAS) with either native eigenvalues or volume-normalized eigenvalues. The
1248  identifiability scores calculated from the surface area normalized SAS are generally higher than
1249  the scores calculated using native eigenvalues and eigenvalues with volume normalization (but
1250  without surface area normalization) for individual hemispheres, the combination of both
1251  hemispheres, and asymmetry across three datasets (OASIS-3: n = 233; ADNI: n =208; HCP: n=
1252 45). (A) identifiability scores calculated from native eigenvalues (except the blue lines, which are
1253  the SAS); (B) identifiability scores calculated from eigenvalues with volume normalization (except

1254  the blue lines, which are the SAS).

1255

1256  Figure 6—figure supplement 1. Heritability of cortical shape with volume normalization but
1257  without normalizing the surface area. (A) and (B) The heritability of the eigenvalues from the left
1258  (A) and right (B) hemispheres are uniformly high across all eigenvalues, and the scale-specific
1259  effects are eliminated. The heritability estimates are very close to the heritability of the mean of
1260 the cortical volumes across all regions of the MMP1 atlas (h? = 0.77 for the left hemisphere and
1261  h? = 0.76 for the right hemisphere). This result indicates that even normalizing the cortical
1262  volume, the heritability estimates are still highly influenced by the volume rather than purely by

1263  the shape. (C) Heritability estimates of the asymmetry are lower than that of the individual
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hemispheres but still have no scale effects. Statistical significance is evaluated after FDR-
correction. We use 79 same-sex dizygotic twin pairs, 138 monozygotic twin pairs, and 160 of their

non-twin siblings.

Figure 6—figure supplement 2. Heritability estimates of regional volumes of individual
hemispheres across four parcellation resolutions: Schaefer 100, Schaefer 300, HCP-MMP1, and
Schaefer 900 (top to bottom panels). Generally, heritability estimates are higher at coarser (upper
panels) than finer parcellation resolutions (lower panels). (A) and (D) are the distributions of the
regional heritability estimates of the left (A) and right (D) hemispheres. (B) and (C) are heritability

estimates of each region of the left (B) and right (C) hemispheres.

Supplementary File 1. Wavelength and eigenvalue indices of each eigen-group.
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