

1 **Molecular and cellular adaptations in hippocampal parvalbumin neurons mediate**
2 **behavioral responses to chronic social stress**

3

4 **Authors:** Dionnet L. Bhatti^{a,b}, Lucian Medrihan^a, Michelle X. Chen^a, Junghee Jin^a, Kathryn
5 McCabe^a, Wei Wang^{a,c}, Estefania P. Azevedo^d, Jose H. Ledo^a, and Yong Kim^{a,e,f,*}

6

7 **Affiliations:** ^a Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University,
8 New York, New York 10065, USA

9 ^b Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA

10 ^c Bioinformatics Resource Center, The Rockefeller University, New York, New York 10065, USA

11 ^d Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065,
12 USA

13 ^e Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University,
14 Piscataway, NJ, 08854, USA

15 ^f Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA

16 *Address correspondence to Yong Kim, Ph.D

17 Mailing address: 661 Hoes Ln W, Piscataway, NJ, 08854, USA;

18 Phone: 732-507-3431

19 Email: yk539@rwjms.rutgers.edu

20

21 Running title: Hippocampal adaptations to chronic social stress

22 Keywords: chronic social defeat stress, susceptibility, resilience, dentate gyrus, parvalbumin-
23 positive interneurons, Ahnak

24

25

26

27 **ABSTRACT**

28 Parvalbumin-expressing interneurons (PV neurons) maintain inhibitory control of local
29 circuits implicated in behavioral responses to environmental stressors. However, the roles of
30 molecular and cellular adaptations in PV neurons in stress susceptibility or resilience have not
31 been clearly established. Here, we show behavioral outcomes of chronic social defeat stress
32 (CSDS) are mediated by differential neuronal activity and gene expression in hippocampal PV
33 neurons in mice. Using *in vivo* electrophysiology and chemogenetics, we find increased PV
34 neuronal activity in the ventral dentate gyrus is required and sufficient for behavioral
35 susceptibility to CSDS. PV neuron-selective translational profiling indicates mitochondrial
36 oxidative phosphorylation is the most significantly altered pathway in stress-susceptible versus
37 resilient mice. Among differentially expressed genes associated with stress-susceptibility and
38 resilience, we find Ahnak, an endogenous regulator of L-type calcium channels which are
39 implicated in the regulation of mitochondrial function and gene expression. Notably, Ahnak
40 deletion in PV neurons impedes behavioral susceptibility to CSDS. Altogether, these findings
41 indicate behavioral effects of chronic stress can be controlled by selective modulation of PV
42 neuronal activity or a regulator of L-type calcium signaling in PV neurons.

43 **INTRODUCTION**

44 Stress can enhance motivational drives that promote evolutionarily favorable behaviors
45 critical for survival (1). However, stressful life events or chronic exposure to unavoidable stress
46 can lead to maladaptive cellular and behavioral responses and contribute to the etiology of
47 neuropsychiatric disease such as major depressive disorder (MDD) (2-6). Many stress-related
48 mental disorders are characterized by altered behavioral and physiological states detrimental to
49 an individual. However, while stress exposure can render some individuals susceptible to
50 developing MDD, others are resilient and often remain healthy (7). Several animal models
51 including 'learned helplessness', chronic unpredictable stress, restraint stress and chronic social
52 defeat stress (CSDS) have been used for the studies of stress susceptibility and resilience (8-
53 10). Among them, the CSDS paradigm has been widely used and led to studies that attribute
54 this individual divergence to molecular and cellular adaptations in multiple brain regions (11,
55 12). Nonetheless, the key molecular and cellular targets responsible for behavioral responses to
56 stress are not fully understood.

57 Alterations of ventral hippocampus are highly implicated in stress and emotional
58 responses (13, 14). Particularly, multiple neuronal types including granule cells, mossy cells and
59 interneurons in the dentate gyrus (DG) have been studied in regard to depression-like behavior
60 and antidepressant action (15-18). Previously, we found that molecular alterations selectively in
61 parvalbumin (PV)-expressing GABAergic interneurons could modulate depression-like behavior
62 (19, 20). However, whether adaptations in neuronal firing and molecular expression in PV
63 neurons mediate individual differences in stress vulnerability has not been elucidated.

64 In this study, we find that susceptibility to CSDS is driven by increased PV neuronal
65 activity in the ventral dentate gyrus (PV^{vDG}). Furthermore, PV neuron-selective RNA sequencing
66 revealed that CSDS alters multiple molecular pathways regulating mitochondrial function,
67 protein synthesis and synaptogenesis, which could underlie differences in neuronal activity.
68 Among the dysregulated transcripts in hippocampal PV neurons was mRNA for Ahnak.

69 Previously, Ahnak was characterized as an endogenous regulator of L-type voltage-gated
70 calcium channels in PV neurons (20), cardiomyocytes (21) and T cells(22). L-type calcium
71 signaling is highly implicated in mitochondrial function (23, 24), gene expression (25, 26) and
72 neuronal plasticity (27). Importantly, Ahnak expression in the ventral dentate gyrus and in PV
73 neurons is also required for behavioral susceptibility. Together, this study reveals that molecular
74 and cellular adaptations in hippocampal PV neurons incurred by social stress mediate
75 behavioral susceptibility or resilience.

76

77 **METHODS AND MATERIALS**

78 **Animals**

79 All experiments involving animals were approved by The Rockefeller University Institutional
80 Animal Care and Use Committee and were in accordance with the National Institutes of Health
81 guidelines. Floxed Ahnak mice were generated and maintained at The Rockefeller University as
82 described previously (20). Floxed Ahnak mice were crossed with PV-Cre mice (stock no:
83 008069, The Jackson Laboratory) to generate PV neuron-selective Ahnak KO line. Cre-
84 dependent EGFP-L10a mice (stock no: 024750, The Jackson Laboratory, Bar Harbor, ME) were
85 crossed with PV-Cre mice to generate PV neuron-selective EGFP-L10a line for translating
86 ribosomal affinity purification (TRAP). We produced the progeny of floxed Ahnak, PV-Cre, PV-
87 selective EGFP-L10a and PV-selective Ahnak KO lines by *in vitro* fertilization (IVF) and embryo
88 transfer techniques (Transgenic and Reproductive Technology Center, The Rockefeller
89 University) to provide genotype- and age-matched animals. All mice are male and of C57BL/6
90 background except CD1 aggressors (strain 022, Charles River, Kingston, NY) used for CSDS.
91 Mice were housed 3–5 per cage with a 12:12-h light/dark cycle and *ad lib* access to food and
92 water. *In vivo* recordings were performed with anesthetized mice. All behavioral tests were
93 performed during the light cycle. All behavioral experiments commenced with male mice aged 8-
94 12 weeks old. Transgenic mice were assigned randomly to experimental stress conditions

95 based on their genotype. For AAV-mediated gene delivery experiments, transgenic mice were
96 randomly assigned to experimental virus groups and then later to experimental stress
97 conditions. Experimenters were not blinded to genotype when conducting or analyzing the
98 experiments except during biochemistry experiments, but mice from each group were evenly
99 assigned to equipment and run in parallel during behavioral tests.

100

101 **Stereotaxic surgery**

102 All stereotaxic surgeries were performed on an Angle Two Small Animal Stereotaxic Instrument
103 (Leica Biosystems, Buffalo Grove, IL) with a microinjection syringe pump (UMP3
104 UltraMicroPump, World Precision Instruments, Sarasota, FL). Male mice (7-8 weeks of age)
105 were anesthetized with a mix of ketamine (100 mg/ml) and xylazine (10 mg/ml). AAV5-hSyn-
106 GFP and AAV5-hSyn-Cre-GFP were obtained from UNC Vector Core, and AAV5-hSyn-DIO-
107 mCherry (50459), AAV5-hSyn-DIO-hM4D(Gi)-mCherry (44362) and AAV5-hSyn-DIO-
108 hM3D(Gq)-mCherry (44361) were purchased from Addgene. Viruses (500 μ l/side) were injected
109 bilaterally into the vDG (AP -2.7 ML+/- 2.0 DV -2.2, mm relative to bregma) with a 2 mL
110 Hamilton Neuros syringe at a speed of 0.1 μ l/min. The needle was left for an additional 10 min
111 and then slowly withdrawn. The stereotaxic injections were confirmed by immunohistochemistry
112 and animals with infection outside of vDG or no infection in the vDG were excluded from data
113 analysis. Mice were monitored for 48 h to ensure full recovery from the surgery. Experiments
114 commenced 3 weeks after stereotaxic surgery to allow optimal expression of AAV viruses.
115 Previous studies indicate that a single low dose of ketamine has a long-lasting antidepressant-
116 like effects up to 8 days in rodents (28-30). In this study, we used ketamine as anesthesia for
117 stereotaxic surgeries and AAV-mediated gene delivery. Because we performed experiments 3
118 weeks after stereotaxic surgery, we believe any potential effect of ketamine had waned down
119 before the commencing the experiments. Importantly, all control groups in Figure 2 and Figure
120 5A-E underwent the same anesthetic procedure and stereotaxic injection of control AAV,

121 suggesting that the outcome we observed are due to DREADD (designer receptor exclusively
122 activated by designer drugs)-mediated inhibition or activation (Figure 2) or Ahnak KO and not
123 influenced by ketamine.

124

125 **Chronic social defeat stress**

126 Chronic social defeat stress (CSDS) was carried out as described previously (31). Retired male
127 breeder CD-1 mice were screened over three consecutive days and aggressors were selected
128 according to the following criteria: (i) the latency to the initial attack was under 60 s and (ii) the
129 screener mouse was attacked for 2 consecutive days. For ten consecutive days, the
130 experimental mice were placed in the home cage of a prescreened CD-1 aggressor for 5-min of
131 physical attack and then separated by a perforated divider for the remaining 24 h until the next
132 defeat 24 h later. Each experimental mouse was exposed to a different aggressor each day. In
133 parallel, stress-naïve control mice were placed in pairs within an identical home cage setup
134 separated by a perforated divider for the duration of the defeat sessions. They were never in
135 physical or sensory contact with CD-1 mice. After 10 days of social defeat, all aggressors and
136 experimental mice were separated and singly housed. The SI test was performed 24□h later.

137

138 **Subthreshold social defeat stress**

139 Subthreshold social defeat stress (SSDS) was carried out as described previously (32).
140 Experimental mice were placed in the home cage of a prescreened CD-1 aggressor for 5-min of
141 physical attack. 15 min later, the experimental mice were introduced to another 5-min physical
142 attack by a novel CD-1 aggressor. This was repeated once more for a total of three defeat
143 sessions. The SI test was performed 24□h later.

144

145 **Social Interaction Test**

146 Social interaction (SI) test was carried out as described previously (31). The test was
147 composed of two phases, each consisting of 150 seconds, where the experimental mice were
148 allowed to explore an open field (42 cm x 42 cm x 42 cm) with a wire mesh enclosure (10 cm
149 wide x 6.5 cm deep x 42 cm high). In the first phase, the wire mesh enclosure was empty. In the
150 second phase, a novel CD-1 aggressor mouse was placed inside the wire mesh. The amount of
151 time the experimental mice spent in the interaction zone surrounding the wire mesh enclosure
152 was collected and analyzed by the video-tracking apparatus and software EthoVision XT 7
153 (Noldus Information Technology, Leesburg, VA). SI ratio was calculated by dividing the amount
154 of time the experimental mice spent in the interaction zone in phase two by the time in phase
155 one [SI Ratio = (phase 2 time)/(phase 1 time)]. Susceptible mice were defined by a SI ratio
156 under 1, whereas resilient mice were defined by a SI ratio greater than 1 (31).

157

158 **Sucrose Preference Test**

159 Sucrose Preference Test (SPT) was adapted from previous studies (20). During the 1-day
160 habituation period, mice were given a choice of two water bottles. The following day, bottles
161 were replaced with new bottles containing either water or 2% sucrose solution. The
162 consumption of water and sucrose solution was measured at different timepoints (0 and 4 h for
163 acute CNO experiment or 24 h for chronic CNO and genetic knockout experiments). The
164 sucrose preference was represented as percent preference for sucrose ((sucrose consumed/
165 (water+sucrose consumed)) X 100).

166

167 **Drug Administration**

168 For *in vivo* electrophysiology experiments, susceptible mice were selected after the SI test.
169 Ketamine administration (10 mg/kg, i.p., k2753, Sigma-Aldrich) occurred 24 h after the SI test
170 and 1 day before the *in vivo* recording experiment.

171 For all Gi and Gq DREADD experiments, CNO (3 mg/kg, i.p., C0832, Sigma-Aldrich)
172 (33) was administered. For chronic CNO administration in h4MDi animals during CSDS (Figure
173 4c), CNO was administered 30 min prior to each defeat for all 10 days of defeat. SI test was
174 performed drug-free. For CNO administration in hM4Di animals after CSDS (Figure 4h), CNO
175 was administered 30 min prior to the SI test and SPT. For CNO administration in hM3Dq
176 animals during SSDS (Figure 4m), CNO was administered 30 min prior to the first subthreshold
177 defeat session. SI-1 test was performed drug-free. For chronic CNO administration in h3MDq
178 animals (Figure 4M), CNO was administered once each day for 10 days beginning the day after
179 the acute administration and SI-1 test. SI-2 test was performed drug-free.

180

181 ***In Vivo Electrophysiology***

182 Animals were anesthetized by injection of urethane (1mg/kg, i.p.). For craniotomy, mice were
183 mounted in a stereotaxic frame (David Kopf Instruments, CA), in which the head of the animal
184 was fixed with a pair of ear bars and a perpendicular tooth bar. Body temperature was
185 continuously monitored by a rectal thermometer and maintained at 33 ± 1 °C by placing the
186 animal on a heating pad. Measurements were obtained from the ventral hippocampus.
187 Stereotaxic coordinates (in mm, anterioposterior [-2.92] measured from bregma; lateral [± 2.00]
188 specified from midline; dorsoventral [-2.20] from surface of the brain) were set according to the
189 Franklin and Paxinos Mouse Brain atlas (3rd edition). High density silicon probes with 4 shanks
190 were used (Buzsaki32, NeuroNexus Inc., MI). The shanks were 250 μ m apart from each other
191 and bore 8 recording sites each (160 μ m diameter for each site; 1-3 M Ω impedance) arranged
192 in a staggered configuration with 20 μ m vertical separation. The probes were connected to a
193 RHD 2132 amplifier board with 32 channels (Intan Technologies, CA), mounted on a
194 micromanipulator (Luigs & Neumann, Germany) and were gently inserted in the craniotomy
195 window targeting the granule cell layer of the dentate gyrus in ventral hippocampus (AP –2.9
196 mm, L 2 mm, DV –2.2 mm). Data were sampled at 20 KHz.

197 For the spike detection, we employed a fully automated approach with the MountainSort
198 clustering software (publically available at <https://github.com/flatironinstitute/mountainlab>).
199 Spikes were verified using the MountainView software, available in the same package, and the
200 various parameters were imported in Matlab for the spike sorting procedure (Matlab Signal
201 Processing Toolbox, Mathworks, MA). For the spike sorting procedure, two features of the spike
202 were initially computed: trough-to-peak latency and the bursting behavior. Narrow waveform
203 neurons, likely putative parvalbumin-positive basket cells (34), were classified as neurons with
204 trough-to-peak smaller than 0.4ms; wide waveforms were classified as neurons with half peaks
205 longer than 0.4ms. For the bursting behavior, a bursting index was calculated from the ratio of
206 the frequency distribution of inter-spike intervals at 0-10 ms to that of the frequency distribution
207 of inter-spike intervals at 200-300 ms. Neurons with a bursting index higher than 1.8 were
208 considered excitatory neurons (35). To further separate the excitatory neurons, we took
209 advantage of our own previous experience with intracellular recording with mossy cells and
210 granule cells (36). The total number of neurons detected in all analyzed animals in the study
211 (n=772) went through a first stage classification based on the through-to-peak latency and burst
212 index (BI). Three divisions were classified: putative excitatory cells (black dots, n = 336, BI >
213 1.8), narrow-waveform (red dots, n = 142, latency \leq 0.4 ms) and wide-waveform (green dots, n
214 = 294, latency > 0.4 ms) putative interneurons. Based on the bimodal distribution of the
215 afterhyperpolarization (AHP) current, measured from the first derivative of the spike, excitatory
216 neurons were further classified in putative mossy cells (n=133, AHP < 70) and putative granule
217 cells (n=203, AHP > 70). In patch-clamp experiments, the intracellular action potentials of
218 mossy cells show a significantly smaller AHP when compared to the mossy cells (L.M.,
219 unpublished data). To analyze the AHP in our experiments, we used the first derivative of the
220 excitatory spikes ($dx=dV/ds$) in order to avoid the possible errors induced by the variable
221 distance of the respective cells to the recording electrode. This approach also maximizes the
222 differences in AHP induced by the potentially different dynamics between the ion channel

223 conductances in the two neuronal types. We noticed a bimodal distribution of AHP in the
224 excitatory neurons and according to it, we set a threshold of 70 (μV/ms) as a separation
225 between mossy cells (< 70) and granule cells (>70).

226

227 **Slice Electrophysiology**

228 4-week-old mice were euthanized with CO₂. Following decapitation and removal of the brains,
229 transversal slices (400 μm thickness) were cut using a Vibratome 1000 Plus (Leica
230 Microsystems, IL) at 2 °C in a cutting solution containing (in mM): 87 NaCl, 25 NaHCO₃, 2.5
231 KCl, 0.5 CaCl₂, 7 MgCl₂, 25 glucose, 75 sucrose and saturated with 95% O₂ and 5% CO₂. After
232 cutting, the slices were left to recover for 30–45 min at 35 °C and then for 1 h at room
233 temperature in recording solution (aCSF). The aCSF solution contained (in mM): 125 NaCl, 25
234 NaHCO₃, 2.5 KCl, 1.25 NaH₂PO₄, 2 CaCl₂, 1 MgCl₂ and 25 glucose (bubbled with 95% O₂ and
235 5% CO₂). Whole-cell patch-clamp recordings were performed with a Multiclamp
236 700B/Digidata1550A system (Molecular Devices, CA) and an upright Olympus BX51WI
237 microscope (Olympus, Japan). An individual slice was placed in a recording chamber (RC-27L,
238 Warner Instruments, USA) and constantly perfused with oxygenated aCSF at 24 °C (TC-324B,
239 Warner Instruments, USA) at a rate of 1.5–2.0 ml/min. Whole-cell patch-clamp recordings were
240 obtained from PV neurons identified based on their size, shape and position in the subgranular
241 layer using recording pipettes (Glass type 8250, King Precision Glass, Inc., CA) that were pulled
242 in a horizontal pipette puller (Narishige, NY) to a resistance of 3–4 MΩ and filled with an internal
243 solution containing (in mM): 126 K-gluconate, 4 NaCl, 1 MgSO₄, 0.02 CaCl₂, 0.1 BAPTA, 15
244 glucose, 5 HEPES, 3 ATP, 0.1 GTP (pH 7.3). In order to measure the firing of the PV neurons,
245 steps of 100 pA current were injected from a set starting membrane potential of -70 mV.
246 Properties of the single action potentials were measured from the first action potential induced
247 by the steps of injected current. Data were acquired at a sampling frequency of 50 kHz and
248 filtered at 1 kHz and analyzed offline using pClamp10 software (Molecular Devices, CA).

249

250 **Translating Ribosome Affinity Purification (TRAP)**

251 TRAP was conducted as previously described (37, 38). Briefly, PV neuron-selective TRAP mice
252 were subjected to CSDS. Hippocampi from PV-TRAP mice were freshly harvested.
253 Hippocampal homogenates of non-defeat, resilient and susceptible mice were used for
254 immunoprecipitation of EGFP-tagged polysomes from PV neurons, and polysome-attached
255 mRNAs were isolated and RNA was further purified using RNeasy Micro Kit (Qiagen, Hilden,
256 Germany). All RNA samples were validated for high quality using Bioanalyzer RNA 6000 Pico
257 Kit (Agilent, San Diego, CA). 1 ng of total RNA was used to generate full length cDNA using
258 Clontech's SMART-Seq v4 Ultra Low Input RNA Kit. 1 ng of cDNA was then used to prepare
259 libraries using Illumina Nextera XT DNA sample preparation kit. Libraries with unique barcodes
260 were pooled at equal molar ratios and sequenced on Illumina NextSeq 500 sequencer to
261 generate 150 bp single reads, following manufacturer's protocol. Raw data can be found in the
262 Nation Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)
263 database (GSE184027).

264

265 **Bioinformatics analysis**

266 Following sequencing, adapter and low-quality bases were trimmed by fastp (39) from the raw
267 sequencing files in FASTQ format. Cleaned reads were aligned to the *Mus musculus* assembly
268 10 reference genome using STAR version 2.7.1a (40). After alignment, the Fragments Per
269 Kilobase of transcript per Million mapped reads (FPKM) for all genes in each sample were
270 calculated with R package edgeR(41). To analyze differential gene expression between
271 samples, DESeq2(42) was used, applying the standard comparison mode between two
272 experimental groups. P values were calculated in DESeq2 adjusted for multiple testing using the
273 Benjamini-Hochberg procedure. Ingenuity Pathway Analysis was used to analyze cellular
274 pathways with differentially expressed genes. The P values for DEGs were then uploaded to

275 Ingenuity Pathway Analysis (Qiagen), which was used to analyze the cellular pathways
276 determined by the differentially expressed genes.

277

278 **Quantitative PCR (qPCR)**

279 2.5 ng/2 μ l of resulting cDNA from TRAP library preparation was used for each qPCR reaction
280 with 10 μ l TaqMan Fast Advanced Master Mix (Applied Biosystems), 1 μ l of Ahnak Prime Time
281 qPCR primer (Integrated DNA Technologies, Mm.PT.56a.13518996) or 1 μ l of Actb Prime Time
282 qPCR primer (IDTDNA, Mm.PT.58.28904620.g), and 7 μ l of water. Samples were heated to 50
283 °C for 2 min, 95 °C for 10s, followed by 40 cycles of 95 °C for 15s, 60 °C for 1 min. Samples
284 were normalized to Actb as a housekeeping gene. mRNA levels were expressed using the
285 2 $-\Delta\Delta Ct$ method (43).

286

287 **Immunohistochemistry**

288 Animals were deeply anesthetized using CO₂ and transcardially perfused with PBS, followed by
289 4% paraformaldehyde (PFA) in PBS. Brains were post-fixed in 4% PFA overnight at 4°C, and
290 then cryoprotected using 30% sucrose in PBS for at least 24 h, followed by freezing and
291 embedding in Tissue Tek OCT medium (Sakura Finetek USA Inc., CA). A cryostat was used to
292 collect 40- μ m-thick coronal sections. All staining between groups used the same master solution
293 mix of blocking buffer and antibodies. Immunohistochemistry was performed side by side
294 between groups. Free-floating sections were washed in PBS and subsequently incubated in
295 blocking buffer (0.5% Triton X-100, 5% normal goat serum, in PBS) for ~2 h at room
296 temperature. Sections were then incubated overnight (~16 h) at 4°C in the primary antibodies
297 diluted in blocking buffer. The primary antibodies were as follows: anti-eGFP (chicken
298 polyclonal, GFP-1020, Aves, 1:1,000), anti-Cre recombinase (mouse monoclonal, MAB3120,
299 Millipore, 1:200), anti-parvalbumin (mouse monoclonal, PV235, Swant, 1:1,000 or guinea pig
300 polyclonal, GP72, Swant, 1:1,000) and anti-mCherry (mouse monoclonal, 3A11, DSHB

301 (UIOWA), 1:500). After incubation, sections were washed three times in PBS and incubated with
302 Alexa-fluor-conjugated secondary antibodies (goat anti-guinea pig, A-11073, Invitrogen,
303 1:5,000; goat anti-rabbit (31460) and goat anti-mouse (31430), Thermo Fisher Scientific,
304 1:5,000). After secondary incubation, sections were washed in PBS three times and mounted on
305 glass slides with hard set Vectashield (Vector Labs, CA) for microscopy. Confocal images were
306 obtained on a Zeiss LSM 710 confocal imaging system (Carl Zeiss Microscopy, Thornwood, NY)
307 using a 20 \times /0.8 N.A. air or a 100 \times /1.4 N.A. oil-immersion objectives (Carl Zeiss
308 Microscopy, Thornwood, NY). Gain, exposure time, and all other related settings were constant
309 throughout each experiment. All image groups were processed in parallel using Fiji.

310

311 **Western Blot**

312 Mouse hippocampal tissues were lysed with a lysis buffer (Pierce IP Lysis Buffer, 87788,
313 Thermo Fisher Scientific) supplemented with a protease and phosphatase inhibitor cocktail
314 (78442, Thermo Fisher Scientific). The tissue lysates were homogenized with a Tissue Grinder
315 (10 strokes, 02-911-529, Thermo Fisher Scientific) and centrifuged at 800 \times g for 5 min.
316 Protein levels in the supernatant were measured by the BCA method. The samples were mixed
317 with the standard protein sample buffer and boiled on a hot plate for 2 min, and subjected to
318 SDS-PAGE with 4–20% Novex Tris-Glycine gels (Sigma-Aldrich), followed by protein transfer
319 onto a nitrocellulose membrane. The membranes were Immunoblotted with incubation of anti-
320 Ahnak (rabbit polyclonal, RU2024, 1:5,000) or Anti-Gapdh (mouse monoclonal, MAB374,
321 Millipore, 1:5,000) primary antibody followed by incubation of horseradish peroxidase-linked
322 goat anti-rabbit or anti-mouse secondary antibody (1: 5,000, Thermo Fisher Scientific). Antibody
323 binding was detected using the enhanced chemiluminescence immunoblotting detection system
324 (Perkin Elmer LLC WESTERN LIGHTNING PLUS-ECL, Thermo Fisher Scientific) and Kodak
325 autoradiography film. The bands were quantified by densitometry using NIH Image 1.63
326 software.

327

328 **RNAscope**

329 One day following SI tests, animals were anesthetized and rapidly decapitated. Brains were
330 quickly removed and fresh frozen in dry ice. Sections were cut at 20 μ m, mounted on slides, and
331 stored at -80°C. Sections were fixed in 4% PFA for 15 min, dehydrated in serial ethanol
332 concentrations (50%, 70%, and 100%) and processed with the RNAscope Multiplex Fluorescent
333 assay (320293, RNAscope, Advanced Cell Diagnostics, Inc., CA). Sections were hybridized
334 with a mixture of selective probes for parvalbumin (Mm-Pvalb, 421931) and Ahnak (Mm-Ahnak,
335 576971). Sections were then counterstained with DAPI and coverslipped. Confocal images were
336 obtained on a Zeiss LSM 710 confocal imaging system using a 100 \times /1.40 N.A. oil-immersion
337 objective (Carl Zeiss Microscopy). Because each image contained only a few cells, multiple
338 stack images were taken of each vDG and treated independently. Z-stacks were taken at 1 μ m
339 step size. Gain, exposure time, and all other related settings were constant for each quantified
340 image. To generate a projection image for each PV cell, each set of stack projections was z-
341 stacked with maximum intensity using Fiji. Circular ROIs were drawn around all PV-expressing
342 cells in the vDG. These ROIs were then used for puncta and cell count analysis using Fiji. Total
343 n=73-102 PV cells in vDG were analyzed per group. 2-3 sections per mouse and total 3-4 mice
344 per group were analyzed.

345

346 **Statistics**

347 All data are expressed as means \pm SEM except violin plots and pie charts. Sample sizes for
348 biochemistry, electrophysiology and CSDS were determined based on our empirical data
349 accumulated in the laboratory and previous studies using CSDS (10, 44, 45). Sample sizes and
350 statistical methods are provided in each figure legend. Statistical analysis was performed using
351 the two-tailed unpaired Student's t-test, one-way ANOVA, two-way ANOVA or repeated-
352 measures two-way ANOVA (see Summary of statistical analysis in Supplementary Table 1).

353 ANOVAs of paired Gaussian distributions were followed with Bonferroni's post-hoc test. The
354 D'Agostino-Pearson omnibus normality test was used to determine normality. For non-Gaussian
355 distributions of multiple groups, the Kruskal-Wallis test followed by Dunn's multiple comparisons
356 post-hoc test was used. GraphPad Prism 6 or 8 was used for statistical analysis and graphical
357 preparations. $p < 0.05$ was considered the cutoff for statistical significance. Statistical
358 significance is shown as * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$, otherwise indicated in
359 figures or figure legends.

360

361 **RESULTS**

362 **PV neuron activity in vDG is associated with behavioral responses to CSDS**

363 The vDG is involved in mood control, stress responses, and antidepressant actions (18, 46, 47).
364 To assess the role of vDG neurons in stress-induced behavioral outcomes, we recorded vDG
365 neuronal activity in mice that underwent CSDS (Figure 1A). The CSDS paradigm uses
366 ethologically relevant stressors including physical defeat by and sensory contact with aggressor
367 mice for 10 days to evoke social avoidance and anhedonic-like behavior, as measured by social
368 interaction (SI) with a novel aggressor mouse and sucrose consumption (10, 31). The SI test
369 produces an SI ratio of the time spent in the interaction zone in the presence or the absence of
370 a novel aggressor to identify susceptible (SI ratio below 1) and resilient (SI ratio equal to and
371 greater than 1) groups (Figure 1B, C, Supplemental Figure S1). Non-defeated control mice
372 remained housed in pairs without social defeat or contact with aggressors and display SI ratios
373 similar to resilient mice.

374 To examine whether CSDS elicited adaptations in basal neuronal activity within the vDG,
375 we recorded vDG neurons using *in vivo* high-density silicon probe recordings in anesthetized
376 animals. Harnessing known characteristics of firing dynamics, we classified and separated
377 discrete neuron classes. For example, neurons were classified on the basis of the width
378 (through-to-peak latency) of the waveform of their spikes (Figure 1D. see Methods and

379 Materials section) into ‘narrow’ and ‘wide’ waveform neurons to separate putative fast-spiking
380 PV-positive neurons from other cell classes in the hippocampus (34). Additionally, the analysis
381 of bursting, a marker of internal firing dynamics that distinguishes wide waveform putative
382 excitatory from inhibitory neurons in the vDG, further separated the neurons into wide-inhibitory
383 neurons and excitatory neurons (35). Furthermore, mossy cells have a small AHP current
384 following an action potential (48) compared to granule cells (see Methods) and, based on the
385 bimodal distribution of the amplitude of the AHP current, we further separated the excitatory
386 neurons in putative mossy cells and putative granule cells (Figure 1E).

387 Our results showed that, in susceptible mice, the firing frequency of putative PV neurons
388 was significantly increased in susceptible mice compared to non-defeated or resilient mice
389 (Figure 1F). In contrast, the firing frequency of putative granule cells was significantly decreased
390 in susceptible mice compared to the frequency in non-defeated or resilient mice (Figure 1G). No
391 difference, however, was found in the firing frequency of mossy cells between non-defeated,
392 susceptible, or resilient groups (Figure 1H). To examine whether CSDS-induced adaptations in
393 neuron activity could be reversed by known fast-acting antidepressants (49), we administered
394 ketamine in susceptible mice and recorded neuronal activity. Ketamine ameliorated the increase
395 in firing frequency of putative PV neurons and restored them to comparable levels to non-
396 defeated or resilient mice (Figure 1F). In addition, ketamine treatment increased firing rates in
397 putative granule and mossy cells (Figure 1G, H). However, the firing frequency of other
398 inhibitory neurons (CCK, SOM etc.) remained unchanged in resilient and susceptible mice with
399 or without ketamine treatment as compared to control mice (Figure 1I). Together, these data
400 suggest that CSDS-induced neuron activity changes of PV^{vDG} and granule cells (GC^{vDG}) may
401 play a critical role in divergent behavioral responses to stress. The opposing directionality in
402 CSDS-induced changes in PV neurons and GCs likely arise from the perisomatic inhibition onto
403 large GC populations by PV neurons (50, 51). Our previous studies suggested that inhibition of
404 calcium signaling or neuronal activity selectively in PV neurons induces an antidepressant-like

405 behavioral phenotype (19, 20), and this notion is also supported by the reduction of PV^{vDG}
406 neuron activity by ketamine (Figure 1F). We thus sought to determine whether inhibition or
407 activation of PV^{vDG} was capable of conferring or suppressing resilience to CSDS, respectively.

408

409 **PV activity in vDG mediates behavioral responsivity to CSDS**

410 To evaluate whether PV^{vDG} neuronal activity mediates behavioral responses to CSDS, we
411 employed the use of DREADDs (designer receptor exclusively activated by designer drugs) (52)
412 to manipulate PV^{vDG} neuronal activity *in vivo*. The vDG of PV-Cre mice were bilaterally injected
413 with Cre-dependent hM4Di-mCherry or empty vector mCherry (Figure 2A) to selectively express
414 hM4Di-mCherry in PV^{vDG} (Figure 2B). First, we assessed whether repeated chemogenetic
415 inhibition of PV neurons concurrent with CSDS would affect behavioral divergence. Mice
416 expressing hM4Di or mCherry in PV^{vDG} underwent CSDS, during which the DREADD
417 agonist clozapine N-oxide (CNO) was administered 30 minutes prior to each defeat session to
418 suppress neuronal activity during and after each social stress encounter (Figure 2C).
419 Interestingly, repeated inhibition of PV^{vDG} neuronal activity promoted resilience evident from an
420 increased SI ratio (Figure 2D, E, Supplementary Figure 2A). Additionally, repeated CNO-
421 treatment resulted in mitigated stress-induced anhedonic-like behavior in the sucrose
422 preference test (SPT) (10) in mice expressing hM4Di in PV^{vDG} compared to mCherry (Figure
423 2F).

424 Given that stress-susceptible mice administered with ketamine displayed PV^{vDG} firing
425 rates similar to non-defeated and stress-resilient mice (Figure 1F), we questioned whether acute
426 inhibition of PV^{vDG} might be sufficient to reverse social avoidance and anhedonic-like behavior in
427 stress-susceptible mice. To address this, mice were exposed to CSDS to generate susceptible
428 mice expressing either hM4Di or empty vector mCherry as a control. 48 hours after the initial SI
429 test (SI-1), only susceptible mice (SI ratio<1.0) were administered with CNO 30 minutes before
430 a subsequent SI-test (SI-2) (Figure 2G). Remarkably, acute CNO administration was capable of

431 attenuating susceptibility as evident by an increased SI ratio (Figure 2H) and time spent in the
432 interaction zone with the aggressor (Supplementary Figure 2B). This amelioration of social
433 avoidance returned to SI scores similar to those in SI-1 when tested another 48-hours later (SI-
434 3) before which CNO was not administered (Figure 2H). To test whether acute inhibition of
435 PV^{vDG} can reverse stress-induced anhedonic-like behavior, we administered CNO during SPT.
436 Indeed, acute administration of CNO increased sucrose preference in mice expressing hM4Di
437 compared to mCherry control mice (Figure 2I).

438 We next evaluated whether chemogenetic activation of PV^{vDG} would be sufficient to
439 produce stress susceptibility. We bilaterally injected Cre-dependent AAV expressing hM3Dq-
440 mCherry or empty vector mCherry into the vDG of PV-Cre mice (Figure 2J) to selectively
441 express hM3Dq-mCherry in PV^{vDG} (Figure 2K). We adopted a subthreshold social defeat stress
442 (SSDS) paradigm that uses 3 social stress sessions in 1 day (32) and tested the effect of acute
443 activation of PV^{vDG} by CNO during SSDS or repeated activation after SSDS on behavior (Figure
444 2L). While acute CNO treatment during SSDS did not cause any significant difference between
445 hM3Dq mice and mCherry control mice (Supplementary Figure 2C, D), subsequent repeated
446 daily activation of PV^{vDG} neurons after SSDS resulted in behavioral susceptibility indicated by a
447 decreased SI ratio (Figure 2M, N, Supplementary Figure 2E) and reduced sucrose preference
448 (Figure 2O). Repeated CNO administration in hM3Dq mice naïve to previous stressors,
449 however, failed to elicit this decrease (Supplementary Figure 2F-H). These data suggest that
450 while repeated or acute inhibition is sufficient to drive resilience to social stress, activation of
451 these neurons must occur repeatedly over the course of many days to drive stress-
452 susceptibility, potentially indicative of what occurs during CSDS.

453

454 **Molecular adaptations in hippocampal PV neurons are associated with divergent**
455 **behavioral consequences after CSDS.**

456 To determine whether molecular adaptations in hippocampal PV neurons were associated with
457 resilience or susceptibility to CSDS, we generated PV neuron-specific expression profiles using
458 the TRAP/RNA-seq approach(53). We used a Cre recombinase-dependent TRAP line crossed
459 with PV-Cre line to express the ribosomal protein L10a fused to enhanced green fluorescent
460 protein (EGFP) selectively in PV neurons (Figure 3A). After CSDS, mouse hippocampal
461 homogenates of non-defeated, resilient, and susceptible mice were used for
462 immunoprecipitation of EGFP-tagged polysomes from PV neurons, and polysome-attached
463 mRNAs were isolated and sequenced (Figure 3B). Importantly, PV-neuron specific TRAP
464 revealed high selectivity, evident by high enrichment of PV mRNA, but not markers of other
465 neuronal types, neuroglia and cell types in blood vessels, suggesting tight selectivity (Figure 3C).

466 RNA-seq revealed 458 differentially expressed genes (DEGs) between non-defeated
467 and resilient mice, 1976 DEGs in non-defeated and susceptible mice, and 3475 DEGs in
468 resilient and susceptible mice (Figure 3D-G). Pathway-analysis with DEGs was performed
469 (Figures 3H-J), and between resilient and susceptible mice or non-defeated, genes associated
470 with oxidative phosphorylation (Figure 3K), mitochondrial dysfunction (Supplementary Figure
471 3B), EF2 signaling (Figure 3L) or mTOR signaling (Supplementary Figure 3B) were differentially
472 expressed. In contrast, changes in expression of genes associated with synaptogenesis were
473 most divergent between non-defeated and susceptible mice (Figure 3J, M). These results
474 suggest that alterations of mitochondrial, protein synthesis, cell metabolism and synaptic
475 pathways in hippocampal PV neurons may drive adaptive changes in PV^{VG} neuronal activity
476 and behavioral responses to CSDS.

477

478 **Chronic stress alters expression of Ahnak in the hippocampus**

479 Our previous study identified Ahnak as a regulator of 'depressive'-like behavior, potentially in
480 part due to its role in trafficking L-type VGCCs to the surface, positioning Ahnak to regulate
481 neuronal activity responses (20). Remarkably, we find that susceptible mice have increased

482 Ahnak mRNA in our TRAP/RNAseq dataset ($p=0.0399$, Supplementary Table 2). To confirm
483 whether behavioral responses to CSDS are associated with changes in Ahnak expression, we
484 subjected mice to CSDS followed by SI-test and brain tissue collection (Figure 4A). First, we
485 performed immunoblotting for Ahnak protein in the whole hippocampus. Ahnak protein levels
486 were reduced in the hippocampus of resilient mice but increased in the hippocampus of
487 susceptible mice, compared to non-defeated control mice (Figure 4B-C). Hippocampal Ahnak
488 levels were also inversely correlated with SI ratio (Figure 4D) and time spent in the interaction
489 zone containing an aggressor mouse (Supplementary Figure 4A). These data indicate that
490 CSDS induces alterations of hippocampal expression of Ahnak in opposing directions,
491 depending on the behavioral response of individual mice.

492 Our previous study showed that PV neuron-selective Ahnak KO mice displayed
493 antidepressant-like behavior (20). However, homogenates used for immunoblotting include
494 protein of all cell types and subregions within the hippocampus. To evaluate whether CSDS
495 induces alterations of Ahnak expression within PV neurons, we turned to evaluating Ahnak
496 mRNA within PV^{VGK} in non-defeated, stress-resilient and -susceptible mouse brains using
497 RNAscope, a fluorescent RNA *in situ* hybridization assay (54). We used a selective probe for
498 Ahnak mRNA together with a selective probe for PV mRNA in order to indicate the location of
499 PV neurons and quantify Ahnak expression in PV^{VGK} (Figure 4E). The number of puncta of
500 Ahnak per PV^{VGK} was significantly increased in susceptible mice as compared to the number in
501 non-defeated controls or resilient mice, while the resilient mice displayed a significant decrease
502 in Ahnak expression compared to non-defeated control mice (Figure 4F). Additionally, Ahnak
503 mRNA in PV^{VGK} is inversely correlated with SI Ratio and interaction zone containing an
504 aggressor mouse (Figure 4G and Supplemental Figure 4B). This result is consistent with a
505 bidirectional change of Ahnak protein in the hippocampal tissues of susceptible versus resilient
506 mice compared to non-defeated control mice. These results altogether indicate that

507 hippocampal Ahnak expression in PV^{VG} neurons is altered by CSDS, particularly upregulated in
508 stress-susceptible mice.

509

510 **Ahnak deletion in vDG or PV neurons confers behavioral resilience to CSDS**

511 To investigate whether Ahnak is required for CSDS-induced behavioral susceptibility,
512 our approach was two-fold: to assess the behavioral consequence of Ahnak deletion 1) in the
513 vDG and 2) selectively in PV neurons. To delete Ahnak in a region-selective manner, we
514 generated Cre-loxP-mediated ventral dentate gyrus (vDG)-specific Ahnak knockout (KO) mice.
515 We used floxed Ahnak mice (20) injected with adeno-associated virus (AAV) expressing Cre
516 recombinase fused to GFP, or empty vector GFP as a control, under a human synapsin
517 promoter into the ventral dentate gyrus (vDG) to selectively delete Ahnak in vDG neurons
518 (cKO^{vDG}) (Figure 5A). Immunohistochemical staining of GFP, Cre recombinase and Ahnak
519 reveal selective KO of Ahnak in neurons infected by AAV-Cre-GFP compared to AAV-GFP
520 (Figure 5B). In response to CSDS, Ahnak cKO^{vDG} resulted in increases of SI ratio (Figure 5C)
521 and time interacting with an aggressor compared to control mice (Supplementary Figure 5A),
522 generating a greater portion of resilient mice (Figure 5D). Additionally, defeated Ahnak cKO^{vDG}
523 mice display mitigated anhedonic-like behavior as measured by increased sucrose consumption
524 compared to defeated control mice (Figure 5E). However, non-defeated Ahnak cKO^{vDG} mice
525 and control mice display comparable behaviors in SI test (Figure 5C and Supplementary Figure
526 5A) and SPT (Figure 5E).

527 We next investigated whether Ahnak deletion selectively in PV neurons affects stress-
528 induced behavioral responses. To delete Ahnak selectively in PV neurons, we generated
529 offspring from crossing floxed Ahnak mice with a PV neuron-specific Cre recombinase line
530 (cKO^{PV}) (Figure 5F), which results in PV-selective Ahnak KO(20) (Figure 5G). We exposed
531 Ahnak cKO^{PV} mice (f/f; Cre-positive) and control mice (f/f; Cre-negative) to CSDS and performed

532 SI test and SPT (Figure 5F). Defeated Ahnak cKO^{PV} mice showed an increased SI ratio
533 compared to the defeated control fl/fl mice (Figure 5H and Supplementary Figure 5B), yielding a
534 greater portion of resilient mice (Figure 5I). Furthermore, defeated Ahnak cKO^{PV} mice display
535 increased sucrose consumption compared to the defeated control group suggesting an
536 attenuation of the CSDS-induced anhedonic-like behavior (Figure 5J). Non-defeated Ahnak
537 cKO^{PV} mice and control mice display comparable behaviors in SI test (Figure 5H,
538 Supplementary Figure 5B) and SPT (Figure 5J). Astoundingly, these results are consistent with
539 those found with conditional deletion of Ahnak in the vDG (cKO^{vDG}). Altogether, these data
540 suggest that the increases in Ahnak expression observed in PV^{vDG} of susceptible mice (Figure
541 4E-G) is required for generating behavioral susceptibility from CSDS.

542 Since Ahnak and increased PV activity are both required for behavioral susceptibility, we
543 next aimed to assess whether Ahnak deletion in PV neurons affects the activity of PV neurons,
544 we performed whole-cell current-clamp recordings of PV^{vDG} using acute hippocampal slices
545 from Ahnak cKO^{PV} and control mice (Supplementary Figure 6A). The firing frequency induced
546 by current injection in PV neurons in Ahnak cKO^{PV} mice was significantly reduced compared to
547 the control group (Supplementary Figure 6B-C), suggesting a role of Ahnak in the modulation of
548 PV firing. Analyses of action potential properties indicate that Ahnak cKO^{PV} does not influence
549 the voltage threshold, action potential amplitude and afterhyperpolarization (AHP), but it
550 increases the half-amplitude width (Supplementary Figure 6D-H). These results implicate that
551 the decrease of excitability of PV neurons by Ahnak deletion may contribute to behavioral
552 resilience or impede susceptibility after CSDS.

553

554 **Discussion**

555 Here, we demonstrate that PV^{vDG} neuronal activity and alterations in hippocampal Ahnak
556 expression are critical for generating susceptibility or resilience to CSDS. Our study

557 complements previous studies using rodent chronic stress paradigms to identify various cellular
558 and molecular adaptations including ion channels, synaptic proteins, transcription factors,
559 microRNAs and epigenetic regulators in key neural circuits regulating stress susceptibility or
560 resilience including amygdalar, thalamic, and hippocampal circuits as well as catecholaminergic
561 circuits (11, 12, 55). In this study, we identified a causal relationship of neuronal activity of PV^{VG}
562 in behavioral susceptibility or resilience to CSDS. We also identified that many divergent gene
563 expression patterns emerged between resilient mice and susceptible mice as compared to non-
564 defeated mice. For instance, DEGs associated with oxidative phosphorylation and EIF2
565 signaling are largely decreased in resilient mice but increased in susceptible mice compared to
566 non-defeated mice (Figure 3K, L). However, DEGs associated with synaptogenesis or mTOR
567 signaling comprised of a mixture of upregulated or downregulated genes across both resilient
568 and susceptible mice (Figure 3M and Supplementary Fig 3B). These results suggest that active
569 molecular changes involved in mitochondrial function, energy metabolism, protein translation
570 and synaptic plasticity underlie adaptations of PV neuronal firing in stress-susceptible and
571 resilient groups. We also identified divergent alterations of Ahnak in hippocampal lysates and
572 PV^{VG} (Figure 4). However, the pattern of firing changes of PV neurons is somewhat different
573 from that of gene changes. PV neuronal firing is increased only in susceptible mice, but the
574 firing rate in resilient mice is comparable to that of non-defeated controls (Figure 1), reminiscent
575 of previous observations in VTA neurons (56-58). Only stress-susceptible mice display
576 increased firing of DA neurons projecting from the VTA to the NAc and decreased firing of DA
577 neurons projecting from the VTA to the mPFC (56, 57). Although significantly more genes are
578 regulated in the VTA and NAc in resilient mice compared with susceptible mice (10), resilient
579 mice display control-level firing activity in both of the aforementioned circuits (58). This
580 adaptation of firing activity in resilient mice has been explained by homeostatic adaptation of
581 intrinsic properties through up-regulated hyperpolarization-activated current as an excitatory
582 driving force in conjunction with upregulation of potassium channels as an inhibitory driving

583 force for intrinsic excitability of neurons (58). Thus, the DEGs observed in resilient mice may
584 evoke a homeostatic control mechanism to similarly maintain the firing of PV neurons at a
585 comparable rate with non-defeated mice.

586 Previously, we identified Ahnak as an endogenous regulator of L-type VGCCs in mice
587 (20). Human genetic studies implicate altered function of L-type VGCCs in the pathophysiology
588 of multiple psychiatric disorders including major depressive disorder, bipolar disorder,
589 schizophrenia and autism spectrum (59-64). L-type VGCCs have been implicated in the rapid
590 antidepressant actions of ketamine (65) and scopolamine (66). These observations raise a
591 potential connection between Ahnak-mediated pathways and stress-induced depression-like
592 behavior and its amelioration by antidepressants. In this study, we have observed that Ahnak
593 level is reduced or elevated in the hippocampal PV neurons selectively in resilient or susceptible
594 mice, respectively (Figure 4), and deletion of Ahnak in PV neurons facilitates behavioral
595 resilience after CSDS (Figure 5). It is possible that these alterations in Ahnak contribute to, at
596 least in part, the regulation of PV neuronal firing. This pivotal role of Ahnak in PV neurons for
597 CSDS-induced behavior is presumably given by its regulation of L-type VGCCs. The N-terminal
598 region of Ahnak binds to $\text{Ca}_v1.2$, an L-type pore-forming $\alpha 1$ subunit, and its C-terminal region
599 scaffolds the β subunit of VGCC and the p11/Anxa2 complex (20). Cell surface expression of
600 $\text{Ca}_v1.2$ and $\text{Ca}_v1.3$ and L-type calcium current were significantly reduced in Ahnak KO neurons
601 compared to wild-type controls (20). Because L-type VGCC-mediated calcium signaling
602 mediates nuclear gene expression, synaptic plasticity and homeostatic control of neuronal
603 circuitry (27), altered levels of Ahnak in PV neurons likely modulate calcium signaling-mediated
604 neuronal adaptations. Notably, gene expression of most L-type VGCC subunits are not altered
605 in comparison between stress groups with the exception of *Cacnb1* gene ($p=0.0244$ for Res vs
606 Sus, Supplementary Table 2). Thus, we suggest a model that Ahnak alterations potentially alter
607 trafficking of L-type VGCCs to the plasma membrane and thereby alter channel activity, possibly

608 resulting in gene alterations relevant to mitochondria, protein synthesis and synaptogenesis
609 pathways.

610 In the brain, Ahnak scaffolds p11, alterations of which is highly implicated in the
611 pathophysiology and antidepressant actions (67). Previously, we observed that proteins, but not
612 mRNA levels, of p11 and Anxa2 were highly destabilized in the absence of Ahnak (20),
613 implicating that the p11-mediated pathways may also be involved in adaptations of PV neurons
614 in response to CSDS. In this study, we have found that p11 mRNA is also significantly
615 increased in susceptible group compared to non-defeat control (mean RPKM 14.810 in Sus vs
616 11.144 in non-defeat, $p = 0.0385$) or resilient mice (mean RPKM 14.810 in Sus vs 10.126 in Res,
617 $p = 0.0058$) in the TRAP dataset (Supplementary Table 2). P11 plays a role in gene expression
618 by regulating SMACA3, a chromatin remodeling factor, and possibly together with Supt6, an
619 RNA polymerase II binding partner and also known as a histone chaperone (16, 68, 69). Thus,
620 nuclear p11 pathways may contribute to the gene alterations associated with mitochondria,
621 protein synthesis and synaptogenesis pathways that we identified in this study. In addition to
622 the nuclear roles, recent studies indicate roles for p11 in intrinsic membrane excitability, which is
623 mediated by gene regulation of Kv3.1 β potassium channels in hippocampal PV neurons (70) or
624 HCN2 channels (hyperpolarization activated cyclic nucleotide gated potassium and sodium
625 channel) in cholinergic interneurons in the nucleus accumbens (32). Importantly, Kv3.1 β
626 inhibition has been suggested to play a role in the therapeutic actions of selective serotonin
627 reuptake inhibitor (SSRI) antidepressants by suppressing PV^{VG} neurons via Gi-coupled
628 signaling (70). Consistent with these observations, we have also observed suppression of PV
629 neuron firing in resilient mice as well as ketamine-treated susceptible mice (Figure 1F). Taken
630 together, these studies altogether suggest the PV inhibition as a common cellular mechanism
631 associated with biological resilience as well as pharmacological actions of two different classes
632 of antidepressants.

633 Interestingly, a recent study by Medrihan et al. suggested that decreased Kv3.1 channel
634 and p11 function in PV^{vDG} would confer susceptibility after stress (71). Although Ahnak cKO^{PV}
635 mice show resilience after CSDS (Figure 5F-J), p11 cKO^{PV} mice show stress-susceptibility after
636 SSDS(71), likely through many other binding partners of p11 in PV^{vDG} including mGluR5,
637 SMARCA3, Supt6 and 5-HT5A (16, 19, 70). Additionally, the timing of modulation of PV^{vDG} or
638 vDG network activity prior, during, and after stress likely affect behavioral outcome. We show in
639 this study that inhibition each day of chronic stress (Figure 2A-D), as well as acute inhibition
640 after stress (Figure 2E-G), results in stress-resilience. However, Medrihan et al. observed that
641 acute chemogenetic inhibition of vDG^{PV} during SSDS increased stress-susceptibility in the
642 social interaction test. Further studies monitoring the activity of PV^{vDG} neurons during CSDS are
643 necessary to fully understand their involvement in CSDS-induced behavioral responses.
644 Importantly, most CSDS studies thus far primarily use male mice, limiting the implications
645 arising from these studies. In recent years, however, CSDS models have been adapted for use
646 in female mice (72-75). Because of gender differences in the prevalence of mood disorders (76,
647 77), the use of these newer models and testing our findings in females is warranted.

648 It was recently discovered that increased adult hippocampal neurogenesis inhibits a
649 population of stress responsive GC in vDG, conferring stress resilience (47). Interestingly,
650 Ahnak deletion promotes hippocampal neurogenesis (78). CSDS-induced hippocampal Ahnak
651 reductions might promote hippocampal neurogenesis as an alternative mechanism for stress
652 resilience. Notably, ~25% reduction of Ahnak protein in hippocampal lysates in resilient mice
653 (Figure 4C) cannot be explained solely by Ahnak reduction in PV interneurons, which
654 constitutes at best ~ 5% of total hippocampal neurons (79). Thus, our findings do not eliminate
655 a potential involvement of Ahnak expressed in other neuronal types or non-neuronal cells in
656 stress resilience. In fact, Ahnak is highly expressed in endothelial cells in blood vessels in the
657 hippocampus (20, 80), and tight junctions therein provide the property of the blood-brain barrier
658 (81). Intriguingly, endothelial cells have been implicated as a target of CSDS, and CSDS-

659 induced dysfunction of the BBB has been suggested as a mechanism underlying stress
660 susceptibility (45). Thus, further understanding of the function of Ahnak in other cell types will
661 advance our understanding of stress resilience. Altogether, our study establishes a foundation
662 supporting Ahnak and PV interneurons as potential targets for manipulation of stress-related
663 hippocampal physiology or neuropsychiatric disorders such as MDD.

664

665 **Acknowledgements**

666 We greatly appreciate Dr. Paul Greengard for his generous support for our research program.
667 We thank Claire Song for technical assistance and Elizabeth Griggs for graphic presentation.
668 We also thank Rada Norinsky and The Rockefeller University Transgenic and Reproductive
669 Technology Center for their excellent *in vitro* fertilization and embryo transfer services. This
670 work was supported by the National Institute of Mental Health of the National Institutes of Health
671 under Award Number R01MH121763 (to Y.K.), the Black Family foundation, and the Fisher
672 Center for Alzheimer's Research Foundation.

673

674 **Author contributions:** D.L.B. and Y.K. conceptualized and designed the entire study. L.M.
675 performed and analyzed *in vivo* electrophysiological experiments. L.M. and K.M. performed and
676 analyzed *ex vivo* electrophysiological experiments. D.L.B. and M.X.C. performed and analyzed
677 all behavioral experiments. D.L.B. performed all stereotaxic surgeries. D.L.B., M.X.C., and J.J.
678 performed and analyzed all immunoblotting experiments. D.L.B. and M.X.C. performed and
679 analyzed all RNAscope experiments. M.X.C., J.L., and E.P.A. performed tissue collection for
680 TRAP. M.X.C., J.L., and W.W. performed analysis for TRAP experiments. D.L.B. and Y.K. wrote
681 the manuscript and designed figures with collective input from all authors. Y.K. supervised the
682 entire study.

683

684 **Data and materials availability:** RNA-seq data from Figure 3 have been deposited and are
685 available from GEO (accession number: GSE184027). Additional data related to this paper may
686 be requested from the authors.

687

688 **Conflict of Interest:** The authors report no biomedical financial interests or potential conflicts of
689 interest.

690

691

692

693

694 **Figure legends**

695

696 **Figure 1. PV^{vDG} neuron activity is altered by CSDS and associated with behavioral**
697 **outcome. (A)** Diagram and timeline of CSDS and intra-vDG electrophysiological recordings. **(B)**
698 Representative animals depicting separation of animals into non-defeated control (ND), resilient
699 (Res, SI ratio ≥ 1), and susceptible (Sus, SI ratio < 1) groups (one-way ANOVA, Non-defeated
700 (n=23), Res (n=23) and Sus (n=15)). **(C)** Example heatmaps displaying time spent in the SI
701 arena with caged aggressor. **(D)** All neurons detected (n=772) went through a first stage
702 classification based on the through-to-peak latency and burst index (BI) to distinguish putative
703 excitatory cells (black dots, n = 336, BI > 1.8), narrow-waveform putative PV neurons (red dots,
704 n = 142, latency ≤ 0.4 ms) and wide-waveform putative interneurons (green dots, n = 294,
705 latency > 0.4 ms). Scale bars for the representative waveforms represent 1 ms. **(E)** Excitatory
706 neurons were further classified in putative mossy cells (n=133, AHP < 70) and putative granule
707 cells (n=203, AHP > 70) based on the bimodal distribution of the AHP current, measured from
708 the first derivative of the spike. **(F-I)** Histograms show frequency (mean \pm SEM) of the putative
709 neuronal types analyzed in the respective experimental groups. Each black dot represents a
710 neuron. **(F)** Susceptibility is associated with a decrease in PV neuron spike frequency that is
711 reversed by Ketamine (n = 31/7 (neurons/mice) ND mice; 36/7 resilient mice, 37/5 susceptible
712 mice, and 38/3 for susceptible mice treated with ketamine). **(G)** Susceptibility is associated with
713 decreases in GC spike frequency that is reversed by Ketamine (n = 61/7 (neurons/mice) ND
714 mice, 47/7 resilient mice, 41/5 susceptible mice, and 54/3 susceptible mice treated with
715 ketamine). **(H)** Ketamine increases MC spike frequency (n = 31/7 (neurons/mice) ND mice, 49/7
716 for the resilient mice, 27/5 for the susceptible mice, and 26/3 susceptible mice treated with
717 ketamine). **(I)** CSDS or Ketamine did not alter spike frequency in other inhibitory neurons (n =
718 85/7 (neurons/mice) ND mice, 97/7 resilient mice, 62/5 susceptible mice and 50/3 susceptible

719 mice treated with ketamine). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, one-way ANOVA with
720 Bonferroni's *post hoc* comparison.

721

722 **Figure 2. PV neuron activity in the vDG mediates resilience or susceptibility to CSDS. (A)**

723 Viral injection strategy for expression of hM4Di-mCherry or mCherry in vDG of PV-Cre mice. **(B)**

724 Representative images showing hM4Di-mCherry expression in the vDG (left image; scale bar,

725 200 μ m) and high magnification images of a dotted rectangular region showing selective

726 expression of hM4Di-mCherry in PV neurons (right images; scale bar, 50 μ m). **(C)** Timeline of

727 repeated CNO treatments during CSDS and behavioral experiments. **(D)** Repeated CNO-

728 treatment resulted in increased SI ratio (two-way ANOVA, Non-defeat (ND): mCherry (n=8) and

729 hM4Di (n=12), Defeated: mCherry (n=15) and hM4Di (n=14)). **(E)** Pie charts showing the

730 number of resilient and susceptible animals after repeated injections of CNO during CSDS. **(F)**

731 Chronic-CNO treatment during CSDS resulted in hM4Di mice displaying increased sucrose

732 compared to mCherry controls (two-way ANOVA, Non-defeat: mCherry (n=8) and hM4Di

733 (n=12), Defeated: mCherry (n=16) and hM4Di (n=16)). **(G)** Timeline of CSDS, acute CNO

734 treatments and behavioral experiments. **(H)** Acute CNO-treatment resulted in increased SI ratio

735 only in hM4Di but not in mCherry control group during SI-2 test (two-way repeated measures

736 ANOVA, mCherry (n=6) and hM4Di (n=9)). **(I)** After acute-CNO treatment, hM4Di group

737 displayed increased sucrose preference in SPT compared to mCherry control group (unpaired

738 two-tailed t-test, mCherry (n=6) and hM4Di (n=10)). **(J)** Viral injection strategy for expression of

739 hM3Dq-mCherry or mCherry in vDG of PV-Cre mice. **(K)** Representative images showing

740 hM3Dq-mCherry expression in the vDG (left image; scale bar, 200 μ m) and high magnification

741 images of a dotted rectangular region showing selective expression of hM3Dq-mCherry in PV

742 neurons (right images; scale bar, 50 μ m). **(L)** Timeline of SSDS, CNO treatments and

743 behavioral experiments, and diagram of SSDS. **(M)** Comparison of SI ratio obtained from SI-1

744 (tested after an acute injection of CNO immediately followed by SSDS) versus SI-2 (tested after

745 repeated daily injections of CNO for 10 days). After chronic injections of CNO, hM3Dq mice
746 displayed increased social avoidance compared to mCherry controls (two-way repeated
747 measures ANOVA, mCherry (n=12) and hM3Dq (n=15)). **(N)** Pie charts showing the number of
748 resilient and susceptible animals resulting from repeated injections of CNO after SSDS. **(O)**
749 After repeated injections of CNO, hM3Dq mice displayed decreased sucrose preference
750 compared to mCherry controls in SPT (unpaired two-tailed *t*-test, mCherry (n=12) and hM3Dq
751 (n=15)). Data are expressed as mean \pm SEM, and individual data points are depicted. *Post-hoc*
752 Bonferroni's multiple comparisons were used for ANOVA. * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

753

754 **Figure 3. Molecular adaptations in hippocampal PV neurons are associated with**
755 **divergent behavioral consequences after CSDS. (A)** Diagram of transgenic PV-specific
756 EGFP-L10a line for TRAP. Representative images showing EGFP-L10a expression in the vDG
757 (left image; scale bar, 200 μ m) and high magnification images of a dotted rectangular region
758 showing selective expression of EGFP-L10a in PV neurons (right images; scale bar, 50 μ m). **(B)**
759 Timeline of CSDS and subsequent hippocampal dissection, TRAP and RNAseq. **(C)** Enrichment
760 of marker genes in TRAP/RNAseq data. **(D-F)** Volcano plots of DEGs in Non-defeated (ND) vs
761 Res (D), ND vs Sus (E) and Res vs Sus (F) comparisons. **(G)** Venn diagram for DEGs (cutoff,
762 $p< 0.05$). **(H-J)** Top 4 pathways significantly altered in Res vs Sus (H), ND vs Res (I), ND vs Sus
763 (J) and comparisons. **(K-M)** Heat maps of DEGs in the top pathway in each comparison. Mean
764 value of gene expression was used (ND (n=4), Res (n=4) and Sus (n=3)).

765

766 **Figure 4 Chronic social stress alters Ahnak expression in the hippocampus. (A)** Diagram
767 and timeline of CSDS and tissue collection. **(B-D)** Immunoblotting of Ahnak protein using
768 hippocampal lysates. **(B)** Representative images of immunoblotting of Ahnak and Gapdh as a
769 control. **(C)** Quantification of immunoblots (one-way ANOVA, Non-defeated (n=23 mice), Res
770 (n=23 mice) and Sus (n=15 mice)). **(D)** Hippocampal Ahnak is inversely correlated with SI ratio

771 (pearson r : $r = -0.4172$, $p=0.0008$, $n=61$ mice) **(E)** Representative images PV and Ahnak
772 mRNA expression using RNAScope. Scale bar, 5 μ m. **(F)** Ahnak mRNA expression in vDG PV
773 neurons from Non-defeat, Res and Sus groups (Kruskal-Wallis test with *post hoc* Dunn's
774 multiple comparisons: Non-defeated ($n=102$ cells), Res ($n=94$ cells) and Sus ($n=73$ cells). **(G)**
775 Ahnak mRNA expression in vDG PV neurons is inversely correlated with SI ratio (pearson r : $r =$
776 -0.8401 , $p=0.0240$, $n=10$ mice). All data were normalized to ND group. * $p<0.05$, ** $p<0.01$,
777 *** $p<0.001$, **** $p<0.0001$.

778

779 **Figure 5. Ahnak deletion in vDG or PV neurons confers resilience to CSDS. (A)** Diagram
780 and timeline for conditional knockout approach using stereotaxic AAV injections of AAV-Cre-
781 GFP or AAV-GFP control. **(B)** Representative confocal image of coronal brain section stained
782 for GFP and Ahnak, depicting deletion of Ahnak selectively in vDG neurons. Scale Bar, 500 μ m
783 (left), 50 μ m (right). **(C)** Ahnak cKO^{vDG} mice display a higher SI ratio than GFP-controls (Cont)
784 (two-way ANOVA, Non-defeat (ND): Cont ($n=16$) and cKO^{vDG} ($n=17$), Defeated: Cont ($n=19$)
785 and cKO^{vDG} ($n=18$)). **(D)** Pie charts showing the number of resilient and susceptible animals
786 resulting after CSDS. **(E)** Ahnak cKO^{vDG} mice display decreased stress-induced anhedonic-like
787 behavior in the sucrose preference test after CSDS (two-way ANOVA, ND: Cont ($n=6$) and
788 cKO^{vDG} ($n=6$), Defeated: Cont ($n=9$) and cKO^{vDG} ($n=10$)). **(F)** Behavioral timeline and diagram of
789 conditional knockout approach for Ahnak cKO^{PV}. **(G)** Confocal images showing absence of
790 Ahnak mRNA in PV^{vDG} neurons in mice with a conditional deletion in PV neurons (cKO^{PV}). **(H)**
791 After CSDS, cKO^{PV} mice display a higher SI ratio compared to control mice (fl/fl) (two-way
792 ANOVA, ND: fl/fl ($n=12$) and cKO^{PV} ($n=12$), Defeated: fl/fl ($n=21$) and cKO^{PV} ($n=19$)). **(I)** Pie
793 charts showing the number of resilient and susceptible animals resulting after CSDS. **(J)** Ahnak
794 cKO^{PV} mice display increased sucrose preference after CSDS compared to controls (two-way
795 ANOVA, ND: fl/fl ($n=12$) and cKO^{PV} ($n=12$), Defeated: fl/fl ($n=10$) and cKO^{PV} ($n=13$)). Data are

796 expressed as mean \pm SEM and individual data points are depicted. *Post-hoc* Bonferroni's
797 multiple comparisons were used for ANOVA. * p < 0.05, ** p < 0.01 and ns, nonsignificant.

798

799 **Supplementary Figure 1. Interaction time in non-defeated control, resilient and**
800 **susceptible groups after CSDS.** Time spent in the interaction zone without (-) and with (+)
801 aggressor (two-way repeated measures ANOVA, Non-defeated (ND) (n=23), Resilient (Res)
802 (n=23) and Susceptible (Sus) (n=15)).

803

804 **Supplementary Figure 2. Chemogenetic modulation of PV^{vDG} predispose divergent**
805 **behavioral outcome in response to social defeat stress. (A, B)** Gi DREADD experiments.

806 **(A)** Repeated CNO-treatment during CSDS resulted in increased time in the interaction zone
807 with the aggressor compared to time in the empty interaction zone in hM4Di mice, while no
808 difference was seen in mCherry controls (two-way repeated measures ANOVA, Non-defeat:
809 mCherry (n=8) and hM4Di (n=12), Defeated: mCherry (n=15) and hM4Di (n=14)). **(B)** Acute
810 CNO-treatment in susceptible mice resulted in increased time in the interaction zone with
811 aggressor in hM4Di mice compared to mCherry controls and to treatment-free SI-tests (SI-1 and
812 SI-3) (two-way repeated measures ANOVA, mCherry (n=6) and h4MDi (n=9)).

813 **(C-H)** Gq
814 DREADD experiments. **(C, D)** Acute activation during SSDS does not alter SI ratio (C) or time
815 spent in the interaction zone (D) in hM3Dq or mCherry control mice (two-way repeated
816 measures ANOVA, Non-defeat: mCherry (n=8) and h3MDq (n=10), Defeated: mCherry (n=13)
817 and h3MDq (n=18)). **(E)** A trend of decreased time spent in the interaction zone in hM3Dq mice
818 compared to mCherry controls was found after repeated injections of CNO post-SSDS (two-way
819 repeated measures ANOVA, mCherry (n=12) and hM3Dq (n=15)). **(F, G)** Non-SSDS mice
820 (social defeat-free) had no alterations in SI ratio (F) or time spent in the interaction zone (G)
821 before or after repeated injections of CNO (two-way repeated measures ANOVA, mCherry
(n=8) and hM3Dq (n=10)). **(H)** Repeated injections of CNO did not alter sucrose preference in

822 non-SSDS mice (unpaired two-tailed t-test, mCherry (n=8) and hM3Dq (n=9)). Data are
823 expressed as mean \pm SEM, and individual data points are depicted. *Post-hoc* Bonferroni's
824 multiple comparisons were used for ANOVA. * $p<0.05$, ** $p<0.01$.

825

826 **Supplementary Figure 3. Molecules associated with mitochondrial dysfunction and**
827 **mTOR signaling are altered in hippocampal PV neurons in divergently behaving mouse**
828 **groups after CSDS. (A, B)** Heat maps of DEGs involved in mitochondrial dysfunction and
829 mTOR signaling. Mean value of gene expression was used (Non-defeated (n=4), Res (n=4) and
830 Sus (n=3)).

831

832 **Supplementary Figure 4. Chronic stress induces alterations of Ahnak expression in the**
833 **hippocampus. (A)** Hippocampal Ahnak is inversely correlated with time spent in interaction
834 zone with aggressor mouse (pearson r : $r = -0.5071$, $p<0.0001$, $n=61$ mice) **(B)** Ahnak mRNA
835 RNAScope puncta is inversely correlated with time in interaction zone with aggressor (pearson r
836 : $r = -0.5071$, $p<0.0001$, $n=10$ mice).

837

838 **Supplementary Figure 5. Ahnak deletion in vDG or PV neurons confers resilience to**
839 **CSDS. (A)** In non-defeated conditions, both control and Ahnak cKO^{vDG} groups display higher
840 amount of time spent in the interaction zone with an aggressor compared to the time without
841 aggressor. After CSDS, control mice display significantly lower amount of time spent in the
842 interaction zone with an aggressor compared to the time without aggressor, but Ahnak cKO^{vDG}
843 mice display equal amounts of time in the interaction zone with or without an aggressor (two-
844 way repeated measures ANOVA, Non-defeat: Control (n=15) and cKO^{vDG} (n=17), Defeated:
845 Control (n=18) and KO^{vDG} (n=18)). **(B)** CSDS induces decreased interaction time during the
846 aggressor session compared to empty-cage session in control group (floxed Ahnak mice, fl/fl),
847 while the effect of CSDS on interaction time with an aggressor is abolished in Ahnak cKO^{PV}

848 mice (two-way repeated measures ANOVA, Non-defeat: fl/fl (n=12) and cKO^{PV} (n=12),
849 Defeated: fl/fl (n=21) and cKO^{PV} (n=19)). Data are expressed as mean \pm SEM, and individual
850 data points are depicted. *Post-hoc* Bonferroni's multiple comparisons were used for ANOVA.
851 * $p<0.05$, ** $p<0.001$, *** $p<0.0001$ and ns, nonsignificant.

852

853 **Supplementary Figure 6. The effect of PV neuron-selective Ahnak deletion on**
854 **physiological properties of PV neurons in the vDG. (A)** Schematic of whole-cell patch
855 clamp. **(B)** Representative traces from whole-cell current-clamped PV neurons in the vDG of fl/fl
856 and Ahnak cKO^{PV} mice showing the action potential (AP) firing of the cells in response to a 500
857 pA step of injected current. **(C)** AP frequency of PV neurons in the vDG is reduced in Ahnak
858 cKO^{PV} mice at incremental steps of injected current (two-way ANOVA, fl/fl (n=10 neurons/4
859 mice) and cKO^{PV} (n=9 neurons/4 mice)). Data are expressed as mean \pm SEM. *Post-hoc*
860 Bonferroni's multiple comparisons were used for ANOVA. **(D)** Representative single APs in
861 PV^{vDG} neurons from control (fl/fl, black) and Ahnak cKO^{PV} (green) mice. **(E-H)** AP properties of
862 PV^{vDG} neurons in Ahnak cKO^{PV} and control mice. Ahnak cKO^{PV} does not influence the voltage
863 threshold (**E**), AP amplitude (**F**), Afterhyperpolarization (**H**) but increases the half-amplitude
864 width (**G**). Two-tailed unpaired *t*-test, 8 neurons/4 mice for control (fl/fl) and 9 neurons/mice for
865 cKO^{PV} for each experiment). Data are expressed as mean \pm SEM, and individual data points are
866 depicted. * $p<0.05$, ** $p<0.01$ and ns, nonsignificant.

867

868 **References**

869

870 1. Hollon NG, Burgeno LM, Phillips PE (2015): Stress effects on the neural substrates of
871 motivated behavior. *Nature neuroscience*. 18:1405-1412.

872 2. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002):
873 Neurobiology of depression. *Neuron*. 34:13-25.

874 3. Kendler KS, Karkowski LM, Prescott CA (1999): Causal relationship between stressful
875 life events and the onset of major depression. *American journal of psychiatry*. 156:837-841.

876 4. Kessler RC (1997): The effects of stressful life events on depression. *Annu Rev Psychol*.
877 48:191-214.

878 5. Syed SA, Nemeroff CB (2017): Early Life Stress, Mood, and Anxiety Disorders. *Chronic*
879 *Stress (Thousand Oaks)*. 1:1-16.

880 6. McEwen BS (2012): Brain on stress: how the social environment gets under the skin.
881 *Proc Natl Acad Sci U S A*. 109 Suppl 2:17180-17185.

882 7. Southwick SM, Vythilingam M, Charney DS (2005): The psychobiology of depression
883 and resilience to stress: implications for prevention and treatment. *Annu Rev Clin Psychol*.
884 1:255-291.

885 8. Cryan JF, Mombereau C (2004): In search of a depressed mouse: utility of models for
886 studying depression-related behavior in genetically modified mice. *Mol Psychiatry*. 9:326-357.

887 9. Nasca C, Bigio B, Zelli D, Nicoletti F, McEwen BS (2015): Mind the gap:
888 glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress
889 susceptibility. *Mol Psychiatry*. 20:755-763.

890 10. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. (2007):
891 Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward
892 regions. *Cell*. 131:391-404.

893 11. Han MH, Nestler EJ (2017): Neural Substrates of Depression and Resilience.
894 *Neurotherapeutics*. 14:677-686.

895 12. Cathomas F, Murrough JW, Nestler EJ, Han MH, Russo SJ (2019): Neurobiology of
896 Resilience: Interface Between Mind and Body. *Biol Psychiatry*. 86:410-420.

897 13. Campbell S, Macqueen G (2004): The role of the hippocampus in the pathophysiology of
898 major depression. *Journal of psychiatry & neuroscience : JPN*. 29:417-426.

899 14. Fanselow MS, Dong HW (2010): Are the dorsal and ventral hippocampus functionally
900 distinct structures? *Neuron*. 65:7-19.

901 15. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000): Chronic antidepressant treatment
902 increases neurogenesis in adult rat hippocampus. *The Journal of neuroscience : the official*
903 *journal of the Society for Neuroscience*. 20:9104-9110.

904 16. Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, et al. (2013): SMARCA3, a
905 chromatin-remodeling factor, is required for p11-dependent antidepressant action. *Cell*. 152:831-
906 843.

907 17. Umschweif G, Greengard P, Sagi Y (2021): The dentate gyrus in depression. *Eur J*
908 *Neurosci*. 53:39-64.

909 18. Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, et al. (2020):
910 Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a
911 selective serotonin reuptake inhibitor, fluoxetine. *Mol Psychiatry*. 25:1229-1244.

912 19. Lee KW, Westin L, Kim J, Chang JC, Oh YS, Amreen B, et al. (2015): Alteration by p11
913 of mGluR5 localization regulates depression-like behaviors. *Mol Psychiatry*. 20:1546-1556.

914 20. Jin J, Bhatti DL, Lee KW, Medrihan L, Cheng J, Wei J, et al. (2020): Ahnak scaffolds
915 p11/Anxa2 complex and L-type voltage-gated calcium channel and modulates depressive
916 behavior. *Mol Psychiatry*. 25:1035-1049.

917 21. Haase H, Alvarez J, Petzhold D, Doller A, Behlke J, Erdmann J, et al. (2005): Ahnak is
918 critical for cardiac Ca(V)1.2 calcium channel function and its beta-adrenergic regulation. *FASEB J.* 19:1969-1977.

919 22. Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, et al.
920 (2008): A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation.
921 *Immunity*. 28:64-74.

922 23. Hotka M, Cagalinec M, Hilber K, Hool L, Boehm S, Kubista H (2020): L-type Ca(2+)
923 channel-mediated Ca(2+) influx adjusts neuronal mitochondrial function to physiological and
924 pathophysiological conditions. *Sci Signal*. 13.

925 24. Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, et al. (2018):
926 Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. *J Clin
927 Invest*. 128:2266-2280.

928 25. D'Arco M, Dolphin AC (2012): L-type calcium channels: on the fast track to nuclear
929 signaling. *Sci Signal*. 5:pe34.

930 26. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001): Signaling to the
931 nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway.
932 *Science*. 294:333-339.

933 27. Simms BA, Zamponi GW (2014): Neuronal voltage-gated calcium channels: structure,
934 function, and dysfunction. *Neuron*. 82:24-45.

935 28. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. (2011): NMDA
936 receptor blockade at rest triggers rapid behavioural antidepressant responses. *Nature*. 475:91-95.

937 29. Ma XC, Dang YH, Jia M, Ma R, Wang F, Wu J, et al. (2013): Long-lasting
938 antidepressant action of ketamine, but not glycogen synthase kinase-3 inhibitor SB216763, in the
939 chronic mild stress model of mice. *PLoS One*. 8:e56053.

940 30. Kim JW, Autry AE, Na ES, Adachi M, Bjorkholm C, Kavalali ET, et al. (2021):
941 Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2
942 phosphorylation. *Nature neuroscience*. 24:1100-1109.

943 31. Golden SA, Covington HE, 3rd, Berton O, Russo SJ (2011): A standardized protocol for
944 repeated social defeat stress in mice. *Nat Protoc*. 6:1183-1191.

945 32. Cheng J, Umschweif G, Leung J, Sagi Y, Greengard P (2019): HCN2 Channels in
946 Cholinergic Interneurons of Nucleus Accumbens Shell Regulate Depressive Behaviors. *Neuron*.
947 101:662-672 e665.

948 33. Medrihan L, Sagi Y, Inde Z, Krupa O, Daniels C, Peyrache A, et al. (2017): Initiation of
949 Behavioral Response to Antidepressants by Cholecystokinin Neurons of the Dentate Gyrus.
950 *Neuron*. 95:564-576 e564.

951 34. Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G (2013): Inhibition-
952 induced theta resonance in cortical circuits. *Neuron*. 80:1263-1276.

953 35. Senzai Y, Buzsaki G (2017): Physiological Properties and Behavioral Correlates of
954 Hippocampal Granule Cells and Mossy Cells. *Neuron*. 93:691-704 e695.

955 36. Toader O, Forte N, Orlando M, Ferrea E, Raimondi A, Baldelli P, et al. (2013): Dentate
956 gyrus network dysfunctions precede the symptomatic phase in a genetic mouse model of
957 seizures. *Front Cell Neurosci*. 7:138.

959 37. Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014): Cell type-specific
960 mRNA purification by translating ribosome affinity purification (TRAP). *Nat Protoc.* 9:1282-
961 1291.

962 38. Roussarie JP, Yao V, Rodriguez-Rodriguez P, Oughtred R, Rust J, Plautz Z, et al. (2020):
963 Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis. *Neuron.*
964 107:821-835 e812.

965 39. Chen S, Zhou Y, Chen Y, Gu J (2018): fastp: an ultra-fast all-in-one FASTQ
966 preprocessor. *Bioinformatics.* 34:i884-i890.

967 40. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. (2013): STAR:
968 ultrafast universal RNA-seq aligner. *Bioinformatics.* 29:15-21.

969 41. McCarthy DJ, Chen Y, Smyth GK (2012): Differential expression analysis of multifactor
970 RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res.* 40:4288-4297.

971 42. Love MI, Huber W, Anders S (2014): Moderated estimation of fold change and
972 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15:550.

973 43. Schmittgen TD, Livak KJ (2008): Analyzing real-time PCR data by the comparative C(T)
974 method. *Nat Protoc.* 3:1101-1108.

975 44. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. (2006):
976 Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. *Science.*
977 311:864-868.

978 45. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. (2017): Social
979 stress induces neurovascular pathology promoting depression. *Nature neuroscience.* 20:1752-
980 1760.

981 46. Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, et al.
982 (2013): Differential control of learning and anxiety along the dorsoventral axis of the dentate
983 gyrus. *Neuron.* 77:955-968.

984 47. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. (2018):
985 Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus.
986 *Nature.* 559:98-102.

987 48. Scharfman HE, Myers CE (2012): Hilar mossy cells of the dentate gyrus: a historical
988 perspective. *Front Neural Circuits.* 6:106.

989 49. Kim J, Farchione T, Potter A, Chen Q, Temple R (2019): Esketamine for Treatment-
990 Resistant Depression - First FDA-Approved Antidepressant in a New Class. *New England
991 journal of medicine.* 381:1-4.

992 50. Kraushaar U, Jonas P (2000): Efficacy and stability of quantal GABA release at a
993 hippocampal interneuron-principal neuron synapse. *The Journal of neuroscience : the official
994 journal of the Society for Neuroscience.* 20:5594-5607.

995 51. Strüber M, Jonas P, Bartos M (2015): Strength and duration of perisomatic GABAergic
996 inhibition depend on distance between synaptically connected cells. *Proceedings of the National
997 Academy of Sciences of the United States of America.* 112:1220-1225.

998 52. Roth BL (2016): DREADDs for Neuroscientists. *Neuron.* 89:683-694.

999 53. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. (2008): A
1000 translational profiling approach for the molecular characterization of CNS cell types. *Cell.*
1001 135:738-748.

1002 54. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. (2012): RNAscope: a novel
1003 in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. *J Mol Diagn.*
1004 14:22-29.

1005 55. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ (2012): Neurobiology of
1006 resilience. *Nature neuroscience*. 15:1475-1484.

1007 56. Cao JL, Covington HE, 3rd, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, et al.
1008 (2010): Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social
1009 defeat and antidepressant action. *Journal of Neuroscience*. 30:16453-16458.

1010 57. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. (2013): Rapid
1011 regulation of depression-related behaviours by control of midbrain dopamine neurons. *Nature*.
1012 493:532-536.

1013 58. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, et al. (2014):
1014 Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic
1015 resilience. *Science*. 344:313-319.

1016 59. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, et al. (2010): The bipolar
1017 disorder risk allele at CACNA1C also confers risk of recurrent major depression and of
1018 schizophrenia. *Mol Psychiatry*. 15:1016-1022.

1019 60. (2013): Identification of risk loci with shared effects on five major psychiatric disorders:
1020 a genome-wide analysis. *Lancet*. 381:1371-1379.

1021 61. Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, et al. (2012):
1022 CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. *Progress in neurobiology*.
1023 99:1-14.

1024 62. Pinggera A, Lieb A, Benedetti B, Lampert M, Monteleone S, Liedl KR, et al. (2015):
1025 CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium
1026 channels. *Biological psychiatry*. 77:816-822.

1027 63. Schizophrenia Working Group of the Psychiatric Genomics C (2014): Biological insights
1028 from 108 schizophrenia-associated genetic loci. *Nature*. 511:421-427.

1029 64. Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, et al. (2011):
1030 Meta-analysis of genome-wide association data of bipolar disorder and major depressive
1031 disorder. *Mol Psychiatry*. 16:2-4.

1032 65. Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS (2016): Fast-acting antidepressants
1033 rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures.
1034 *Neuropharmacology*. 111:242-252.

1035 66. Yu H, Li M, Shen X, Lv D, Sun X, Wang J, et al. (2018): The Requirement of L-Type
1036 Voltage-Dependent Calcium Channel (L-VDCC) in the Rapid-Acting Antidepressant-Like
1037 Effects of Scopolamine in Mice. *The international journal of neuropsychopharmacology*.
1038 21:175-186.

1039 67. Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P (2013): p11 and its role
1040 in depression and therapeutic responses to antidepressants. *Nat Rev Neurosci*. 14:673-680.

1041 68. Lu H, Xie Y, Tran L, Lan J, Yang Y, Murugan NL, et al. (2020): Chemotherapy-induced
1042 S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. *J Clin Invest*.
1043 130:4607-4623.

1044 69. Umschweif G, Medrihan L, McCabe KA, Sagi Y, Greengard P (2021): Activation of the
1045 p11/SMARCA3/Neurensin-2 pathway in parvalbumin interneurons mediates the response to
1046 chronic antidepressants. *Mol Psychiatry*. 26:3350-3362.

1047 70. Sagi Y, Medrihan L, George K, Barney M, McCabe KA, Greengard P (2020): Emergence
1048 of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. *Mol
1049 Psychiatry*. 25:1191-1201.

1050 71. Medrihan L, Umschweif G, Sinha A, Reed S, Lee J, Gindinova K, et al. (2020): Reduced
1051 Kv3.1 Activity in Dentate Gyrus Parvalbumin Cells Induces Vulnerability to Depression.
1052 *Biological psychiatry*. 88:405-414.

1053 72. Yohn CN, Dieterich A, Bazer AS, Maita I, Giedraitis M, Samuels BA (2019): Chronic
1054 non-discriminatory social defeat is an effective chronic stress paradigm for both male and female
1055 mice. *Neuropsychopharmacology*. 44:2220-2229.

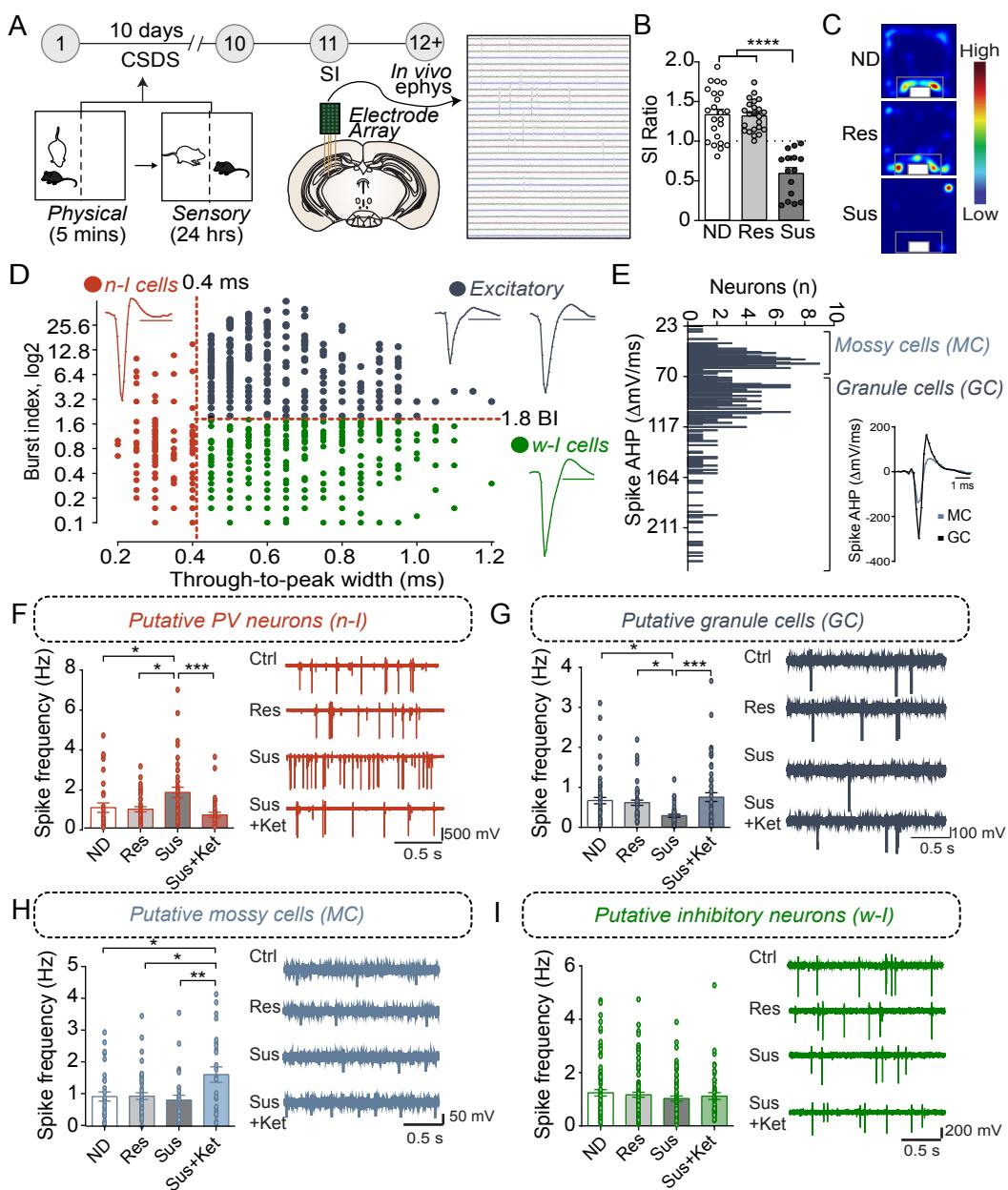
1056 73. Takahashi A, Chung JR, Zhang S, Zhang H, Grossman Y, Aleyasin H, et al. (2017):
1057 Establishment of a repeated social defeat stress model in female mice. *Sci Rep*. 7:12838.

1058 74. Harris AZ, Atsak P, Bretton ZH, Holt ES, Alam R, Morton MP, et al. (2018): A Novel
1059 Method for Chronic Social Defeat Stress in Female Mice. *Neuropsychopharmacology*. 43:1276-
1060 1283.

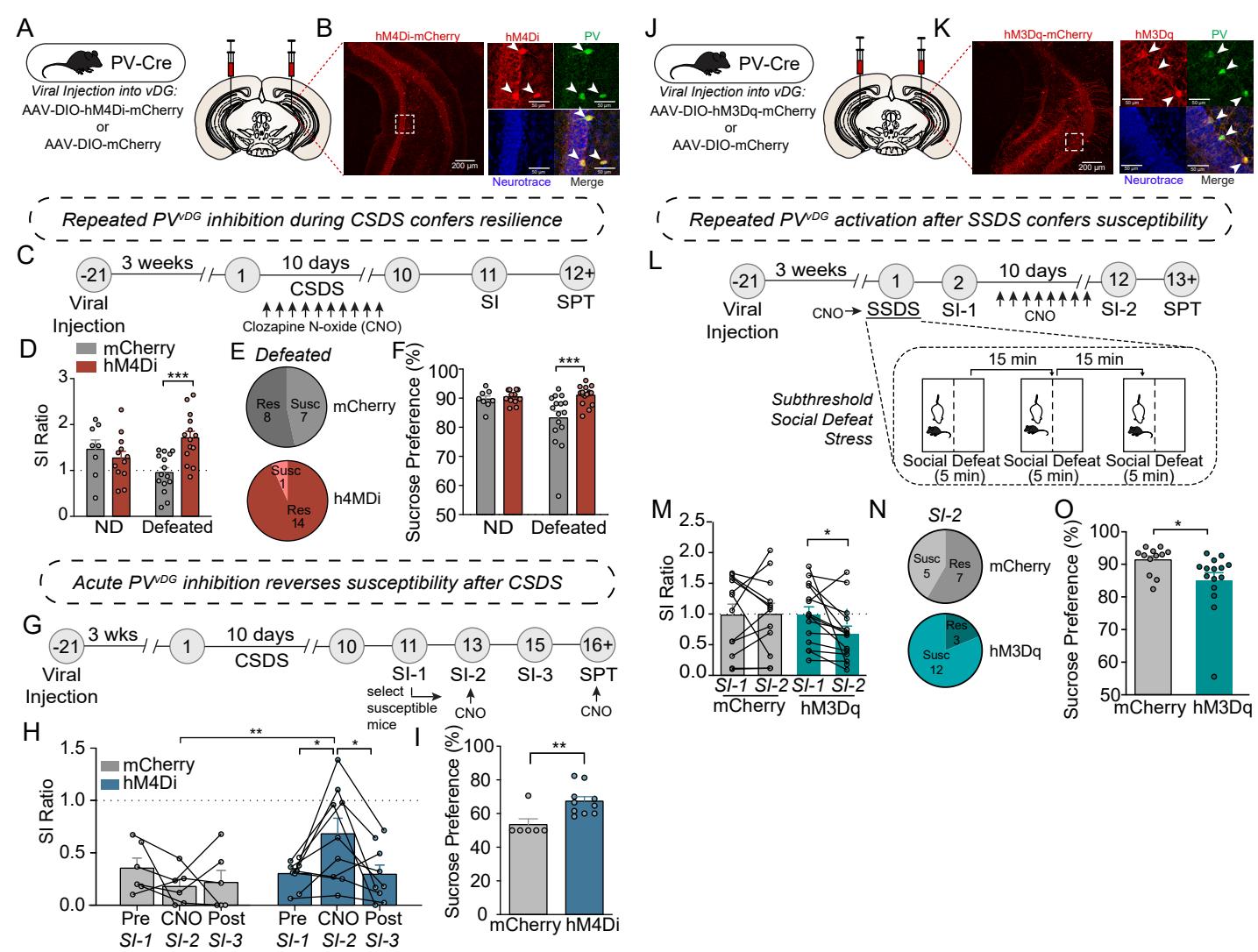
1061 75. Newman EL, Covington HE, 3rd, Suh J, Bicakci MB, Ressler KJ, DeBold JF, et al.
1062 (2019): Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in
1063 Female Mice. *Biological psychiatry*. 86:657-668.

1064 76. Riecher-Rossler A (2017): Sex and gender differences in mental disorders. *Lancet
1065 Psychiatry*. 4:8-9.

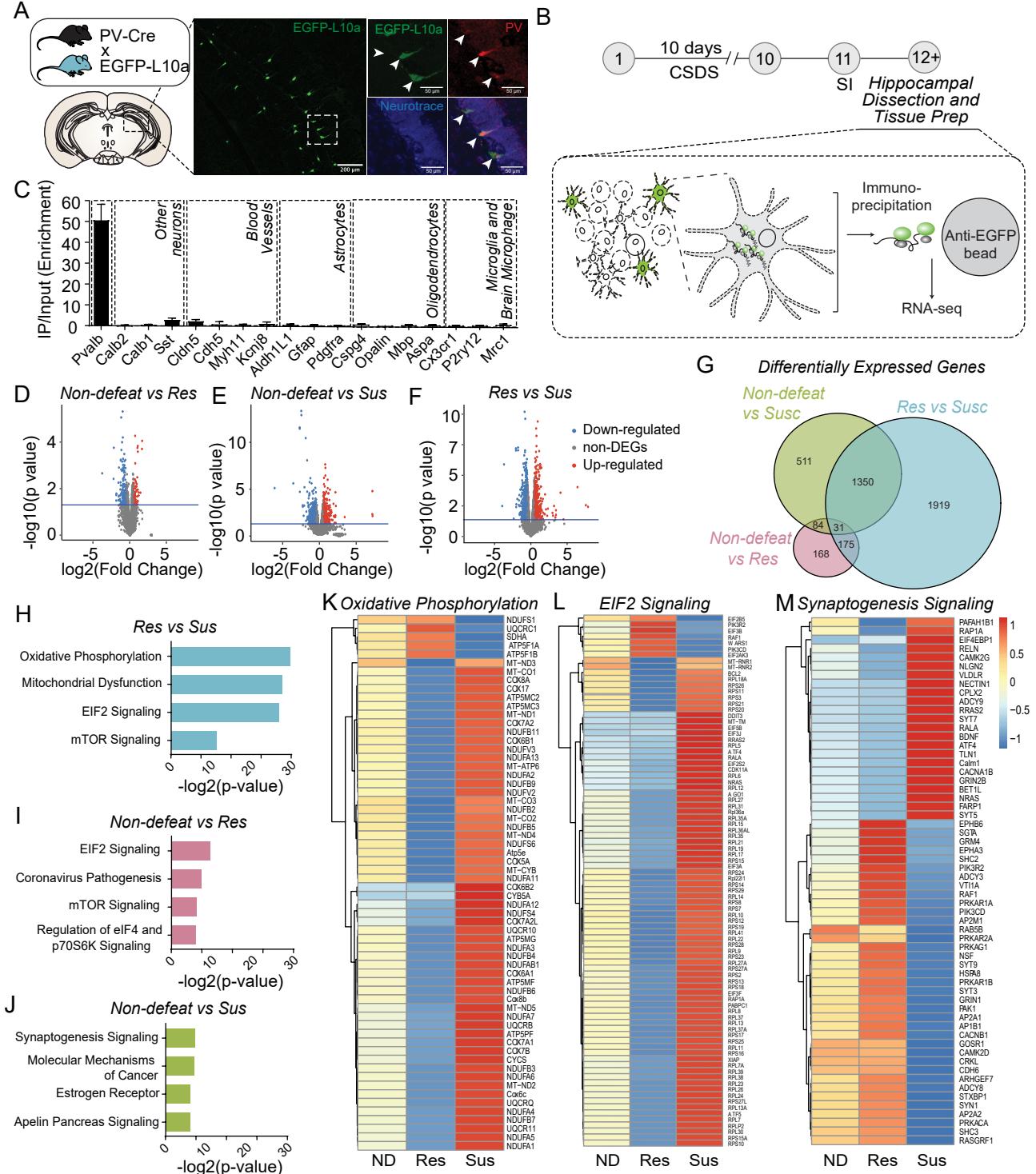
1066 77. Seney ML, Sibille E (2014): Sex differences in mood disorders: perspectives from
1067 humans and rodent models. *Biol Sex Differ*. 5:17.


1068 78. Shin JH, Kim YN, Kim IY, Choi DH, Yi SS, Seong JK (2015): Increased Cell
1069 Proliferations and Neurogenesis in the Hippocampal Dentate Gyrus of Ahnak Deficient Mice.
1070 *Neurochemical research*. 40:1457-1462.

1071 79. Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ (2017):
1072 Hippocampal GABAergic Inhibitory Interneurons. *Physiological reviews*. 97:1619-1747.


1073 80. Gentil BJ, Benaud C, Delphin C, Remy C, Berezowski V, Cecchelli R, et al. (2005):
1074 Specific AHNAK expression in brain endothelial cells with barrier properties. *Journal of cellular
1075 physiology*. 203:362-371.

1076 81. Daneman R, Prat A (2015): The blood-brain barrier. *Cold Spring Harb Perspect Biol*.
1077 7:a020412.


1078

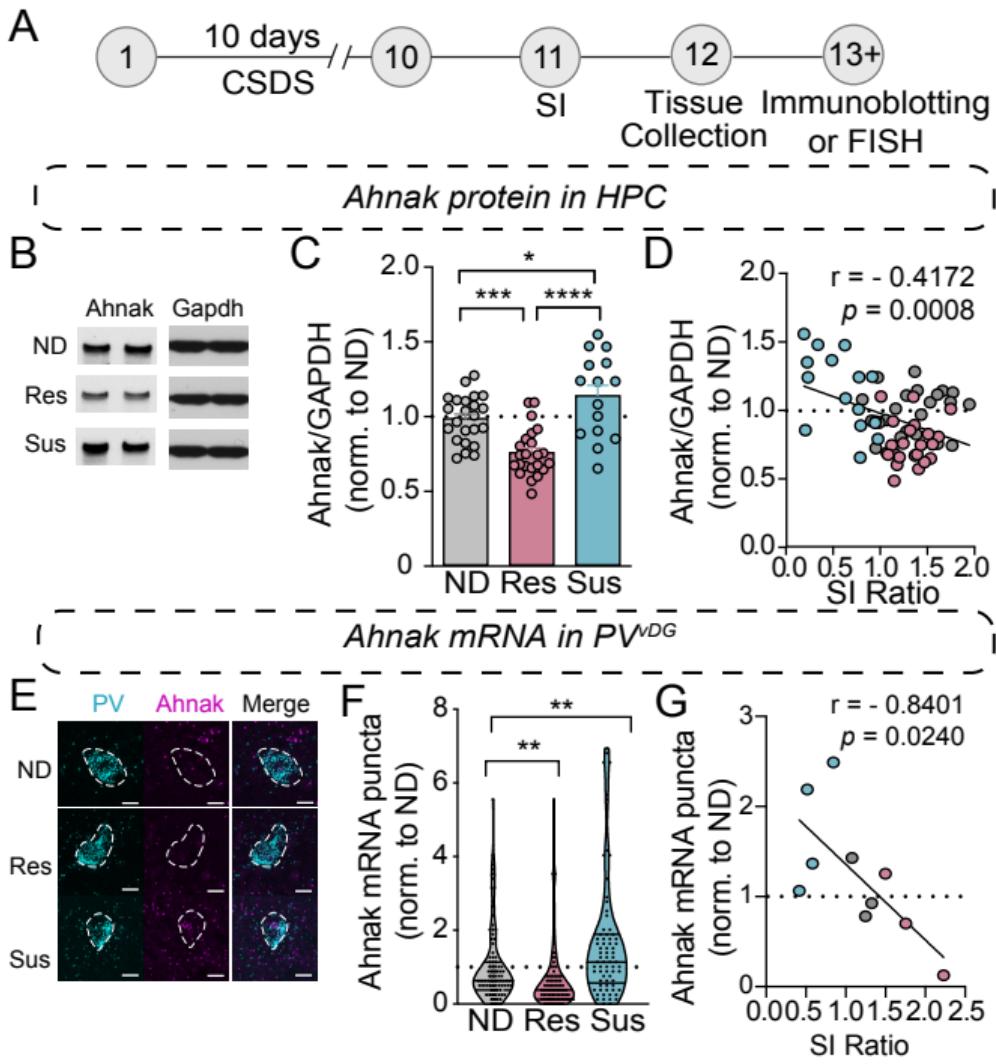

Figure 1

Figure 2

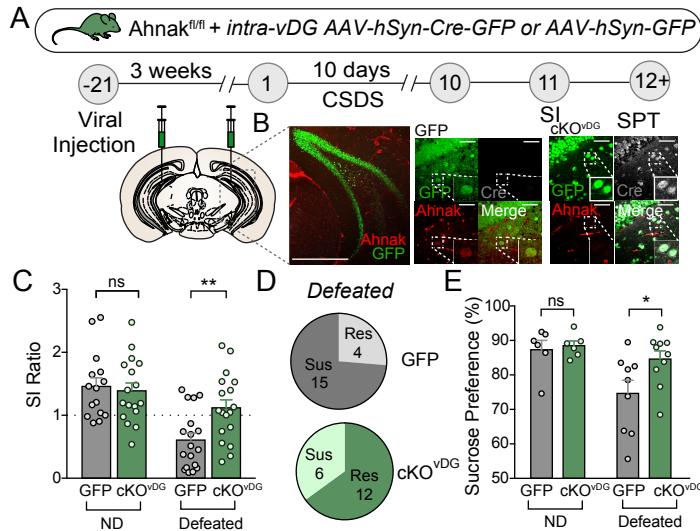


Figure 3

Figure 4

Ahnak deletion in vDG confers resilience

Ahnak deletion in PV neurons confers resilience

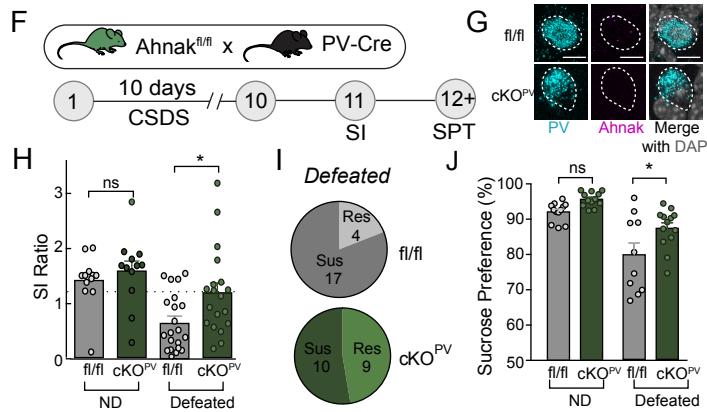


Figure 5