

# Identifying Microstructural Changes in Diffusion MRI; How to Circumvent Parameter Degeneracy

Hossein Rafipoor<sup>1</sup>, Ying-Qiu Zheng<sup>1</sup>, Ludovica Griffanti<sup>1,2</sup>, Saad Jbabdi<sup>1</sup>, and Michiel Cottaar<sup>1</sup>

<sup>1</sup>Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK

<sup>2</sup>Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK

## ABSTRACT

Biophysical models that attempt to infer real-world quantities from data usually have many free parameters. This over-parameterisation can result in degeneracies in model inversion and render parameter estimation ill-posed. However, in many applications, we are not interested in quantifying the parameters *per se*, but rather in identifying changes in parameters between experimental conditions (e.g. patients vs controls). Here we present a Bayesian framework to make inference on changes in the parameters of biophysical models even when model inversion is degenerate, which we refer to as Bayesian EstimatioN of CHange (BENCH).

We infer the parameter changes in two steps; First, we train models that can estimate the pattern of change in the measurements given any hypothetical direction of change in the parameters using simulations. Next, for any pair of real data sets, we use these pre-trained models to estimate the probability that an observed difference in the data can be explained by each model of change.

BENCH is applicable to any type of data and models and particularly useful for biophysical models with parameter degeneracies, where we can assume the change is sparse. In this paper, we apply the approach in the context of microstructural modelling of diffusion MRI data, where the models are usually over-parameterised and not invertible without injecting strong assumptions.

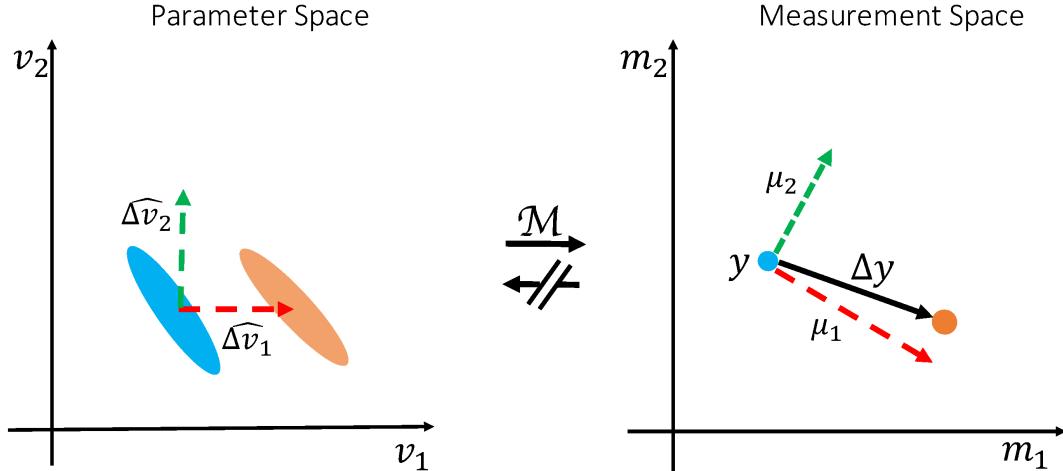
24 Using simulations, we show that in the context of the standard model of white matter our approach  
25 is able to identify changes in microstructural parameters from conventional multi-shell diffusion  
26 MRI data. We also apply our approach to a subset of subjects from the UK-Biobank Imaging to  
27 identify the dominant standard model parameter change in areas of white matter hyperintensities  
28 under the assumption that the standard model holds in white matter hyperintensities.

29 **INTRODUCTION**

30 Modelling diffusion MRI (dMRI) data comes in two flavours. Phenomenological models,  
31 such as diffusion tensor imaging (DTI) (Basser et al. 1994) and diffusion kurtosis imaging (DKI)  
32 (Jensen et al. 2005)) attempt to describe the diffusion signal in a structured mathematical form, while  
33 (bio)physical models such as the standard model (Novikov et al. 2019a), NODDI (Zhang et al. 2012),  
34 Ball and Rackets (Sotropoulos et al. 2012) and AxCaliber (Assaf et al. 2008)) attempt to infer  
35 properties of the tissue microstructure given the data. This active field of research relies on the  
36 inversion of biophysical forward models, but it is also notoriously difficult to overcome model  
37 degeneracies (Jelescu et al. 2016). To resolve these degeneracies, the conventional approach is to  
38 constrain a subset of the parameters and only make inferences on the remaining parameters (Zhang  
39 et al. 2012). However, when the assumptions are not accurate (e.g., in diseased tissue), they will  
40 bias the estimated model parameters and cause errors in interpretation. As a result, not only is there  
41 a limit to the number of microstructural parameters that can be estimated, but the reliability of the  
42 estimated parameters can also be questionable (Jelescu et al. 2016; Reisert et al. 2017; Lampinen  
43 et al. 2019).

44 It is worth mentioning that there are efforts on acquiring complementary information using  
45 for example multiple diffusion encoding (Reisert et al. 2019; Coelho et al. 2019; Lampinen et al.  
46 2020), as well as introducing more biophysically informed priors to limit the search space, to  
47 provide enough constraints to uniquely estimate the parameters of the standard model. However,  
48 here we adopt the standard model of white matter fitted to conventional multi-shell diffusion MRI  
49 data as a well-studied degenerate model merely as a toy example to illustrate the concept.

50 However, in many real-world applications, the model parameters may not be of direct interest.



**Figure 1. Illustration of the inversion-free inference on change (BENCH).** Consider a toy model with two parameters and two measurements  $\mathcal{M}(v_1, v_2) = [m_1, m_2]$ . Each oval in the parameter space (left) corresponds to a single point in the measurement space (right) with the same color; meaning that there is a one to many mapping from measurements to parameters (i.e., the model is degenerate). Despite the degeneracies we are able to estimate which of the parameters best explains the change in the measurements. We do so by comparing the observed change ( $\Delta y$ ) with the expected change in the measurements ( $\mu_1, \mu_2$ ) as a result of each hypothesised pattern of change ( $\Delta \hat{v}_1, \Delta \hat{v}_2$ ).

51 Rather, we are often interested in the “change” in the parameters under different experimental  
 52 conditions. For example, to study mechanisms underlying a disease one might compare the  
 53 parameter estimates of biophysical models between patient and control groups. However, the  
 54 parameter estimation is only tractable when the model of interest is invertible given the data. This  
 55 limits one to simple biophysical models or requires injection of prior assumptions.

56 In this work, we show that we can make precise inferences on the change in model parameters  
 57 even in complex degenerate models. We argue that, using a sparsity assumption on the pattern  
 58 of change, we can limit the hypothesis space, and so circumvent the degeneracy in the parameter  
 59 estimation (see Figure 1, also refer to A for more details about directly inferring changes). Our  
 60 approach proceeds in two steps: First, we use simulated data generated from a forward model to  
 61 train models that calculate how each parameter affects the measurements. Once these models of  
 62 change have been trained for all hypothetical patterns of change, we use them to infer the posterior  
 63 probability of which pattern of change in parameter(s) can best explain the change between real  
 64 datasets. We call this approach BENCH, which stands for Bayesian EstimatioN of CHange.

65 When confronted with a degenerate biophysical model, BENCH makes a different set of

66 assumptions from the traditional approach of fixing some parameters and identifying any change  
67 in the remaining free parameters. When comparing patients and controls, the traditional approach  
68 assumes that the prior values for the fixed parameters hold across the region of interest in both  
69 groups. Hence, any change of signal across the region of interest between the two groups is assumed  
70 to be fully explained by the predetermined set of free parameters. In contrast, by not relying on  
71 model inversion, BENCH can work directly with the degenerate biophysical model without fixing  
72 any parameters. However, this comes at the price of limiting the change to some predetermined set  
73 of possible patterns set by the user (e.g., parameter A could change, or parameter B increases by  
74 the same amount as parameter C decreases). While the number of such proposed microstructural  
75 changes can be large, each of them has to be sparse (i.e., they have a fewer degrees of freedom than  
76 the number of free parameters that could be estimated using the conventional approach). In this  
77 work, we will limit ourselves to changes of just one parameter at a time for the sake of simplicity  
78 of explanation.

79 BENCH is applicable to any situation where we are interested in comparing parameters of  
80 a generative (bio)physical model across different conditions. Here we apply the framework to  
81 diffusion MRI microstructure modelling. As an example use case, we studied microstructural  
82 changes in White Matter Hyperintensities (WMH), which are extra bright regions that are commonly  
83 seen in T2-weighted images at specific brain regions in elderly people. Despite the abundance  
84 and clinical implications of WMHs (Prins and Scheltens 2015; Debette and Markus 2010), the  
85 underlying changes in the histopathology and microstructure remain unknown (Wardlaw et al.  
86 2013; Gouw et al. 2011).

87 The structure of this paper is as follows. In the Theory section, we present the general inference  
88 method and how we train the models of change. In the Methods section, we cover the diffusion-  
89 specific materials including the computation of summary measurements that are used to represent  
90 diffusion data and the microstructural model for diffusion MRI. In the Results section, we first  
91 demonstrate the ability of our model in detecting the underlying parameter changes using simulated  
92 data. We then apply the method to study microstructural changes in white matter hyperintensities

93 as an example application. In the Discussion section, the potential applications, limitations, and  
94 possible future directions of this work are presented.

95 **THEORY**

96 **Inference on change in parameters**

97 Given a baseline measurement ( $y$ ), an observed change in the measurement ( $\Delta y$ ), and a gen-  
98 erative biophysical model ( $M$ ), we aim to investigate what pattern of change ( $\hat{\Delta v}$ ) in the model  
99 parameters ( $v$ ) can best explain this observed change in the measurements (Figure 1). A pattern  
100 of change is a unit vector in the parameter space, e.g. it can be a change in a single parameter, or  
101 any linear combination of the model parameters. For simplicity of the explanations and notation,  
102 we only assume a single parameter change in the rest of paper, but all the equations apply to any  
103 linear combination of the parameters. If the model is invertible, we may directly estimate  $\Delta v$  by  
104 inverting the model on  $y$  and  $y + \Delta y$  to get the corresponding parameter estimates and calculate the  
105 differences. Alternatively, in BENCH we estimate  $P(\hat{\Delta v} | y, \Delta y)$ , that is the posterior probability  
106 for the pattern of change  $\hat{\Delta v}$  conditioned on the observed baseline ( $y$ ) and change in the data( $\Delta y$ ).  
107 Using Bayes' rule:

$$P(\hat{\Delta v} | y, \Delta y) = \frac{P(\Delta y | y, \hat{\Delta v})P(\hat{\Delta v} | y)}{\sum_{\hat{\Delta v}'} P(\Delta y | y, \hat{\Delta v}')P(\hat{\Delta v}' | y)} \quad (1)$$

109 We assume no prior preference between the patterns of change given the baseline measure-  
110 ments(i.e.  $P(\hat{\Delta v} | y)$  is uniform), so to estimate the posterior probabilities we only need to estimate  
111 the likelihood term  $P(\Delta y | y, \hat{\Delta v})$ . The pattern of change  $\hat{\Delta v}$  represents the direction but not the  
112 amount of the change in the parameters. We therefore marginalize the likelihood with respect to  
113 the amount of change ( $|\Delta v|$ ):

$$P(\Delta y | y, \hat{\Delta v}) = \int P(|\Delta v|)P(\Delta y | y, \hat{\Delta v}, |\Delta v|)d|\Delta v| \quad (2)$$

115 We assume that the prior distribution for the amount of change follows a log-normal pdf with a  
116 fixed mean and scale parameter (adjustable hyper parameters). A log-normal PDF is chosen to  
117 allow for changes across several order of magnitudes.

118 The likelihood term inside the integral,  $P(\Delta y|y, \hat{\Delta v}, |\Delta v|)$ , defines how the measurements change  
119 as a result of a fully characterised vector of change in the parameters with the given direction ( $\hat{\Delta v}$ )  
120 and amount ( $|\Delta v|$ ). To relate this parameter change to a change in data one also needs to know the  
121 baseline parameters ( $v$ ), as

122 
$$\Delta y = \mathcal{M}(v + |\Delta v| \hat{\Delta v}) - \mathcal{M}(v) + \epsilon \quad (3)$$

123 where  $\epsilon$  is the measurement noise. However, for a degenerate biophysical model, we cannot  
124 estimate a unique set of baseline parameters  $v$  for which to estimate equation 3. While, one could  
125 integrate over all possible values of  $v$ , this is a very high-dimensional integral, which would be very  
126 computationally expensive. Instead, we propose an alternative way to avoid the need of estimating  
127 the baseline parameters to estimate the likelihood.

128 Assuming that  $|\Delta v|$  is reasonably small, and  $\mathcal{M}$  is behaving smoothly w.r.t  $v$ , using a Taylor  
129 expansion we can express  $\Delta y$  as:

130 
$$\Delta y = \nabla_{\hat{\Delta v}} \mathcal{M}(v) |\Delta v| + \epsilon \quad (4)$$

131 Where  $\nabla_{\hat{\Delta v}} \mathcal{M}(v)$  is the gradient of  $\mathcal{M}$  in the direction of  $\hat{\Delta v}$  at point  $v$ , and  $\epsilon$  is the measurement  
132 noise. Given the baseline measurements ( $y$ ), but not the baseline parameters ( $v$ ), there can be an  
133 infinite number of  $\nabla_{\hat{\Delta v}} \mathcal{M}(v)$  for a degenerate model (Figure 2). To account for all instances of the  
134 gradient, we model  $\nabla_{\hat{\Delta v}} \mathcal{M}$  given  $y$  as a random variable that follows a normal distribution with  
135 hyperparameters  $\mu(y)$  and  $\Sigma(y)$ , i.e.

136 
$$\nabla_{\hat{\Delta v}} \mathcal{M}(y) \sim N(\mu_{\hat{\Delta v}}(y), \Sigma_{\hat{\Delta v}}(y)) \quad (5)$$

137 where  $\mu_{\hat{\Delta v}}$  represents the average expected change in the measurements as a result of change in  
138 parameters in the direction  $\hat{\Delta v}$ ,  $\Sigma_{\hat{\Delta v}}$  represents the uncertainty around this expectation due to the  
139 unknown baseline parameters (Figure 2), and  $N(m, C)$  represents a Gaussian PDF with mean  $m$  and  
140 covariance  $C$ . This formulation allows us to transfer the uncertainty in the baseline parameters to an

141 uncertainty in the measurement space, which we can model and predict. In the next section we will  
142 describe a method for estimating  $\mu_{\hat{\Delta}v}(y)$  and  $\Sigma_{\hat{\Delta}v}(y)$  by training regression models using simulated  
143 data. Once we compute these hyperparameters, by inserting equation 5 back into equation 4 we  
144 can compute the likelihood term inside the integral by

145 
$$P(\Delta y \mid y, \hat{\Delta}v, |\Delta v|) = N(|\Delta v| \mu_{\hat{\Delta}v}(y), |\Delta v|^2 \Sigma_{\hat{\Delta}v}(y) + \Sigma_n) \quad (6)$$

146 where  $\Sigma_n$  is the noise covariance matrix.

147 Finally, by computing the integral over the size of the parameter change in equation 2 numer-  
148 ically, we are able to approximate the likelihood function  $P(\Delta y \mid y, \hat{\Delta}v)$  which we can then use  
149 in equation (1) yielding the desired posterior distribution on the change in parameters. Moreover,  
150 using the approximation of the likelihood function in equation 6 the posterior probability of the  
151 amount of change for each direction is proportional to

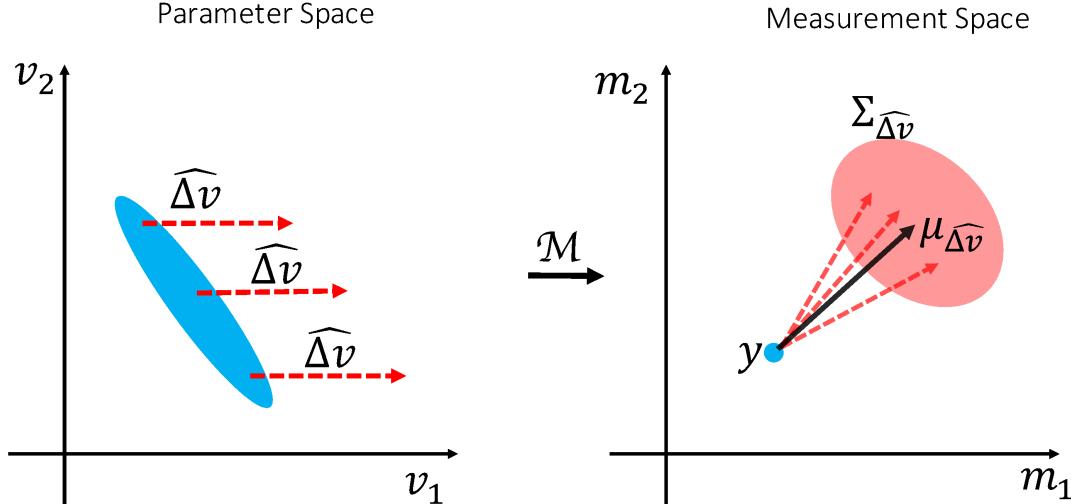
152 
$$P(|\Delta v| \mid \Delta y, y, \hat{\Delta}v) \propto P(\Delta y \mid y, \hat{\Delta}v, |\Delta v|)P(|\Delta v|) \quad (7)$$

153 Note that this likelihood function is unnormalized so a high or low values doesn't necessarily reflect  
154 the quality of the change vector in explaining the data. For such measure please refer to appendix B.  
155 We can still estimate the most likely amount of change in the parameter given the measurements by  
156 finding the  $|\Delta v|$  that maximizes the above posterior probability (maximum a posteriori estimation).  
157 Alternatively, we can estimate the expected value of the amount of change by integrating this  
158 posterior probability distribution multiplied by  $|\Delta v|$  over  $|\Delta v|$ .

159 **Training models of change**

160 In this section we describe how to train a regression model to estimate the hyperparameters of  
161 the distribution of  $\nabla_{\hat{\Delta}v} \mathcal{M}(v)$ , namely the average ( $\mu_{\hat{\Delta}v}(y)$ ) and uncertainty ( $\Sigma_{\hat{\Delta}v}(y)$ ) of change in  
162 the measurement ( $y$ ) for a parameter change ( $\hat{\Delta}v$ ).

163 Given some baseline parameters ( $v$ ) one can calculate the baseline measurements as  $y = \mathcal{M}(v)$



**Figure 2. Distribution of gradients.** The way measurements change as a result of a particular change in the parameters can only be calculated if we know the baseline parameters. When we are only given the measurements, there are several instances of equally likely gradient directions depending on the underlying baseline parameters. We model all of these gradients given the baseline measurements as a random variable with a presumed distribution. This allows us to transfer the uncertainty due to the inverse model degeneracy into the measurement space. The blue oval in the parameter space (left) represents all the parameter settings that map onto the same blue point in measurement space (right). Each of these parameter settings can produce a different gradient direction in the measurements space. The collection of such gradients of change  $\hat{\Delta}v$  for the measurement  $y$  are modelled as a Gaussian distribution with mean  $\mu_{\hat{\Delta}v}(y)$  and covariance  $\Sigma_{\hat{\Delta}v}(y)$ .

164 and approximate the gradient in direction  $\hat{\Delta}v$  using

165

$$\nabla_{\hat{\Delta}v} \mathcal{M}(v) \approx \lim_{t \rightarrow 0} \frac{\mathcal{M}(v + t\hat{\Delta}v) - \mathcal{M}(v)}{t} \quad (8)$$

166 Therefore, by sampling  $v$  from the parameter space using a prior distribution, we generate a  
167 simulated dataset of pairs  $[y, \nabla_{\hat{\Delta}v} \mathcal{M}]$  that we use for training regression models.

168 We use a regression model parameterised by  $w_{\mu_{\hat{\Delta}v}}$  to estimate  $\mu_{\hat{\Delta}v}$  as:

169

$$\mu_{\hat{\Delta}v}(y; w_{\mu_{\hat{\Delta}v}}) = F(y) \cdot w_{\mu_{\hat{\Delta}v}} \quad (9)$$

170 where  $F(y)$  is the design matrix, which depends on arbitrary affine or non-linear transformations of  
171  $y$ . Note that the subscript  $\mu_{\hat{\Delta}v}$  of the weights indicates that each pattern of change in the parameters  
172 has its own set of weights.

173 We also employ a regression model for the uncertainty hyperparameter  $\Sigma_{\hat{\Delta}_v}$  parameterised

174 by  $w_{\Sigma_{\hat{\Delta}_v}}$ . However,  $\Sigma_{\hat{\Delta}_v}$  must be positive definite, which would not be guaranteed when directly

175 estimating  $\Sigma_{\hat{\Delta}_v}$  by training an element-wise regression model. To account for the positive definite

176 nature of  $\Sigma_{\hat{\Delta}_v}$ , we instead train regression models for elements of the lower triangular matrix of its

177 Cholesky decomposition ( $L$ ). Also, since the diagonal elements of the lower-triangular matrix in

178 Cholesky decomposition must be non-negative, we use their log-transform in the regression model.

179 Hence

$$180 \Sigma_{\hat{\Delta}_v}(y; w_{\Sigma_{\hat{\Delta}_v}}) = \mathcal{T}(F(y).w_{\Sigma_{\hat{\Delta}_v}}) \quad (10)$$

181 where  $\mathcal{T}$  denotes the transformation of the regressed vector to the full covariance matrix that includes

182 the arrangement of elements, exponentiation of the diagonals, and the matrix multiplication for

183 inverse Cholesky decomposition.

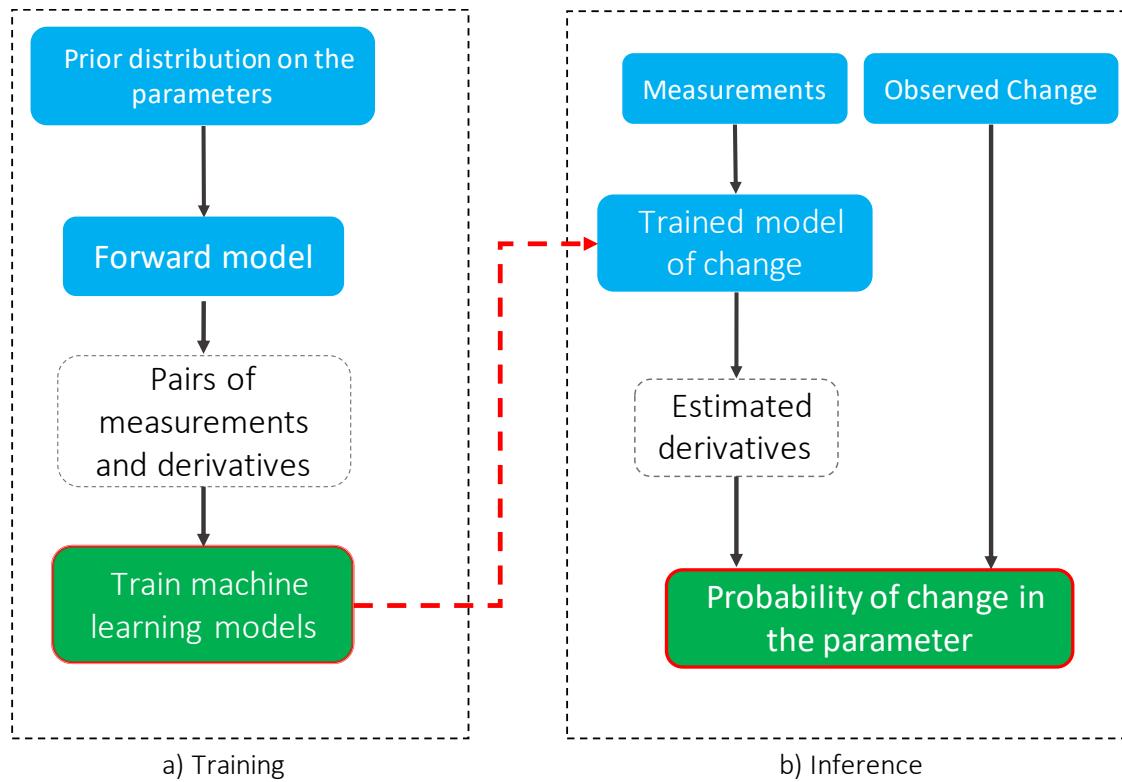
184 Putting back the above regression models into equation 5 the likelihood of observing pairs of  
185 baseline measurements and gradients in terms of the parameters of regression models is:

$$186 L(w_{\mu_{\hat{\Delta}_v}}, w_{\Sigma_{\hat{\Delta}_v}}) = \prod_i N(\nabla_{\hat{\Delta}_v} \mathcal{M}_i; F(y_i).w_{\mu_{\hat{\Delta}_v}}, \mathcal{T}(F(y_i).w_{\Sigma_{\hat{\Delta}_v}})) \quad (11)$$

187 Accordingly, we estimate the optimal weights  $w_{\mu_{\hat{\Delta}_v}}, w_{\Sigma_{\hat{\Delta}_v}}$  by maximizing the above likelihood  
188 function for the simulated pairs of  $[y_i, \nabla_{\hat{\Delta}_v} \mathcal{M}_i]$  using a combination of the BFGS and Nelder-Mead  
189 methods as implemented in SciPy (Virtanen et al. 2020).

190 This procedure is repeated for each hypothetical pattern of change, yielding two sets of weights  
191 for the average and uncertainty of change, which we refer to as a “change model”. Once we estimated  
192 these weights, for any given baseline measurement we use the regression models in equations 9 and  
193 10 to estimate the distribution of derivatives and then the desired probability distributions. Figure  
194 3 shows a schematic overview of the inputs, outputs and steps that are required to train a change  
195 model, as well as how to use them to infer the change in parameters.

196 In this work, we used a second degree polynomial function of the data for the regression  
197 models that estimate the mean change ( $\mu_{\hat{\Delta}_v}$ ) from the baseline measurements. For the uncertainty



**Figure 3. Schematic flowchart for training and inference using change models.** The blue, white and green blocks indicate user defined inputs, intermediate variables and outputs respectively. In the training phase for each parameter change, samples that are drawn from the provided prior distribution are passed through the forward model to estimate pairs of measurements and derivatives. Then, regression models are trained to estimate the distribution of derivatives given the measurements using a maximum likelihood estimation. This phase does not require real data and needs to be done only once. In the inference stage using these trained models we estimate the distribution of the derivatives for any given baseline measurements. We then calculate the posterior probability that change in each parameter caused the change in the measurements using the derivative distributions.

198 parameter ( $\Sigma_{\Delta\nu}$ ) a first degree (linear) model is chosen as we expect less variability across samples  
 199 for this hyperparameter. The weights for the regression models were estimated using a maximum  
 200 likelihood optimization and a training dataset with 100,000 simulated samples.

## 201 Biophysical model of diffusion

202 In this section we explain the biophysical model of diffusion that we used to model brain  
 203 microstructure with diffusion MRI data. The diffusion signal  $S$  in the brain is conventionally  
 204 modelled as the sum of signals from multiple compartments. We will here adopt the three-  
 205 compartment standard model (Novikov et al. 2019a) consisting of an isotropic free water (denoted

206 by the subscript “iso”), an intra-axonal (“in”), and an extra-axonal (“ex”) compartment:

207 
$$S = S_{iso}A_{iso} + S_{in}A_{in} + S_{ex}A_{ex} \quad (12)$$

208 where  $S_i$  represents the baseline signal contribution (at  $b = 0$ ), and  $A_i$  represents the signal  
209 attenuation due to the diffusion weighting in each compartment (Figure 4).

210 The attenuation for the isotropic compartment is modelled as an exponential decay:

211 
$$A_{iso} = e^{-bd_{iso}} \quad (13)$$

212 where  $d_{iso}$  is the diffusion coefficient of free water.

213 The intra-axonal compartment is modelled as a set of dispersed identical sticks with no per-  
214 perpendicular diffusivity. The stick response function for gradient direction  $g$  and b-value  $b$  is given  
215 by

216 
$$R(b, g; \mu, d_{in,a}) = e^{-bd_{in,a}(\mu^T g)^2} \quad (14)$$

217 where  $d_{in,a}$  is the diffusion coefficient along the orientation of the stick  $\mu$ .

218 The fibre Orientation Distribution Function (fODF) is modelled with a Watson distribution,  
219 which is defined as

220 
$$f(x) = \frac{1}{c} e^{\kappa(\mu^T x)^2} \quad (15)$$

221 where  $\mu$  is the average orientation,  $\kappa$  is the concentration coefficient and  $c$  is a normalization  
222 constant. To assimilate the dispersion coefficient to the notion of variance and limit it to a  
223 bounded range, we use the change of variable from  $\kappa$  to Orientation Dispersion Index (ODI) as  
224  $ODI = \frac{2}{\pi} \arctan(\frac{1}{\kappa})$ . Unlike  $\kappa$  which is unbounded,  $ODI$  is limited to the range  $(0, 1)$ , where higher  
225  $ODI$  values correspond to more dispersion. So, the diffusion signal for this compartment is the  
226 spherical convolution of the fiber response function with the Watson ODF:

227 
$$A_{in} = \iint_{S^2} e^{-bd_{in,a}(g^T n)^2} \frac{1}{c} e^{\frac{2}{\pi} \tan^{-1}(ODI)(\mu^T n)^2} dn \quad (16)$$

228 where the integral is over the surface of the unit sphere  $S^2$  representing all possible fibre orientations  
229 in 3D.

230 The extra-axonal compartment is modelled similar to the intra-axonal compartment, with the  
231 addition of a non-zero diffusion perpendicular to the fiber orientation. The fiber response function  
232 in this case is given by

233 
$$R = e^{-b[d_{ex,a}(\mu^T g)^2 + d_{ex,r}(1 - (\mu^T g)^2)]} \quad (17)$$

234 where  $d_{ex,r} \leq d_{ex,a}$  are the radial and axial diffusion coefficients. To avoid this dependence between  
235 the diffusivity parameters, the parameter  $\tau$  defined as the ratio of perpendicular to parallel diffusivity  
236 is used as a substitute to  $d_{ex,r}$ . The free parameter  $\tau$  - subject to  $\tau \in [0, 1]$  to maintain the inequality  
237 constraint for the diffusivities - can be considered as a measure of tortuosity as it measures the  
238 extent to which water diffusion perpendicular to the fibre orientation is hindered with respect to the  
239 parallel diffusion. Therefore, the fiber response function for the extra axonal compartment is

240 
$$R = e^{-bd_{ex,a}[(\mu^T g)^2 + \tau(1 - (\mu^T g)^2)]} \quad (18)$$

241 As the compartments share the same geometry, the same fibre orientation distribution is used.  
242 Accordingly, the signal attenuation for extra-axonal compartment is given by

243 
$$A_{ex} = \iint_{S^2} e^{-bd_{ex,a}[(\mu^T g)^2 + \tau(1 - (\mu^T g)^2)]} \frac{1}{c} e^{\frac{2}{\pi} \tan^{-1}(ODI)(\mu^T n)^2} dn \quad (19)$$

244 We use the confluent hypergeometric function of the first kind with matrix argument to compute  
245 the integrals for both intra and extra axonal compartments similar to (Sotropoulos et al. 2012).

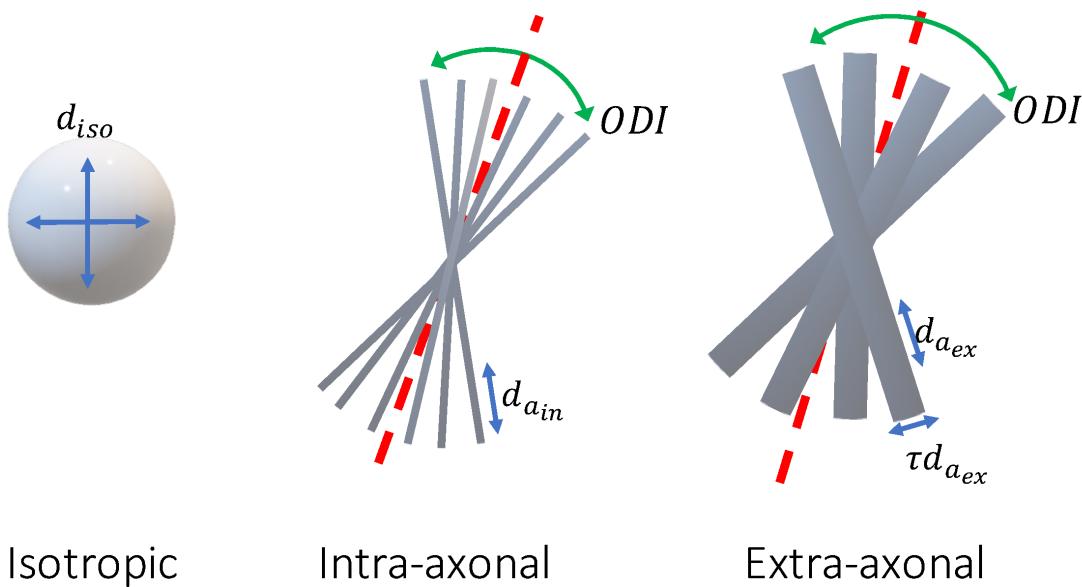
246 Table 1 summarises all the free parameters of the described biophysical model along with their  
247 valid range.

248 **Summary measurements**

249 Diffusion MRI data are usually measured in multiple shells to capture tissue properties that are  
250 sensitive to diffusion of water molecules at various spatial scales. Within each shell, gradients are

| Parameter  | Description                                                        | Range         |
|------------|--------------------------------------------------------------------|---------------|
| $s_{iso}$  | Signal fraction for isotropic (free water) diffusion compartment   | $[0, 1]$      |
| $s_{in}$   | Signal fraction for intra-axonal compartment                       | $[0, 1]$      |
| $s_{ex}$   | Signal fraction for extra-axonal compartment                       | $[0, 1]$      |
| $d_{iso}$  | Isotropic (free water) diffusivity coefficient                     | $[0, \infty]$ |
| $d_{in,a}$ | Parallel diffusivity for the intra-axonal compartment              | $[0, \infty]$ |
| $d_{ex,a}$ | Parallel diffusivity for the extra-axonal compartment              | $[0, \infty]$ |
| $\tau$     | radial to axial diffusivity ratio for the extra-axonal compartment | $[0, 1]$      |
| $ODI$      | Orientation dispersion index                                       | $[0, 1)$      |

TABLE 1. Microstructural parameters of the diffusion model. All diffusion coefficients are in  $\mu\text{m}^2/\text{ms}$



**Figure 4.** Compartments of the diffusion model. We use a three compartment model that can describe diffusion MRI signals from various brain tissues namely CSF, white matter and gray matter. The isotropic compartment models unrestricted diffusion of water molecules outside of tissue (CSF) with a single free parameter  $d_{iso}$ . The intra-axonal compartment models the diffusion of water within axons as several sticks with identical parallel diffusivity parameter  $d_{in,a}$ , and zero radial diffusivity, that are dispersed by a Watson distribution with orientation dispersion index  $ODI$ . The extra-axonal compartment is also a Watson dispersed zeppelin with parallel diffusivity  $d_{ex,a}$  and perpendicular diffusivity  $d_{ex,r} = \tau d_{ex,a}$ . Including the signal fraction parameters ( $s_{iso}, s_{in}, s_{ex}$ ) this model has 8 free parameters, which are more than that can be fitted to a conventional dMRI data.

251 applied in several directions to measure the geometrical structure of the tissue. However, since  
 252 we are only interested in the microstructural characteristics, any orientation-related information  
 253 is irrelevant. We therefore need summary measurements from each shell that are invariant to  
 254 orientations. We create these summary measurements using real spherical harmonics, which are

255 analogous to the Fourier transform for the spherical domain.

256 Spherical harmonics are a complete set of orthonormal functions over the surface of a unit  
257 sphere. That is to say, any bounded real function that is defined over the unit sphere can be  
258 represented by a unique linear combination of these functions with real coefficients. Each real  
259 spherical harmonic is denoted by  $Y_{l,m}(\theta, \phi)$  where  $l = 0, 1, 2, \dots$  is the degree and  $m = -l, \dots, l$  is  
260 the order, and  $\theta \in [0, \pi]$ ,  $\phi \in [-\pi, \pi]$  are the polar and longitudinal angles in standard spherical  
261 coordinate system respectively. The diffusion signal at each shell is decomposed as:

262

$$S(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^l C_{l,m} Y_{l,m}(\theta, \phi) \quad (20)$$

263 Since the harmonics are a linear basis, one can easily calculate the coefficients for the signal in each  
264 shell by inverting the design matrix formed by the harmonics sampled at the gradient directions.

265 The coefficients are not orientationally invariant. However, the total power in each degree,  
266 which is defined as the vector norm of all the corresponding coefficients, is rotationally invariant  
267 (Kazhdan et al. 2003; Zucchelli et al. 2020; Novikova et al. 2018). Also, since the diffusion signal  
268 is symmetric around the origin and the harmonics of odd degree are odd functions (anti-symmetric  
269 w.r.t origin), all odd degrees have zero coefficients.

270 Consequently, for each shell of diffusion data, we calculate the mean squares of all coefficients  
271 for degrees  $l = 0, 2, 4, \dots$  as the orientationally-invariant summary measurements.

272

$$y_l = \frac{1}{2l+1} \sum_{m=-l}^l C_{l,m}^2 \quad (21)$$

273 The mean is chosen over the norm to make the scale equal across all degrees. For the case of  
274  $l = 0$ , we simply use the only coefficient (without the square), so that it represents the mean signal.  
275 The higher order summary measurements quantify the signal anisotropy; with greater  $l$  being more  
276 sensitive to sharper changes. We used a logarithm transformation on the power of the coefficients  
277 to make the distribution of the measurements for real data closer to a Gaussian and also being more  
278 sensitive to smaller changes.

279 **METHODS**

280 **Simulations**

281 For all the simulations we used the acquisition protocol conducted by the UK Biobank (UKB)  
282 (Miller et al. 2016; Alfaro-Almagro et al. 2018) which includes two shells of diffusion ( $b = 1, 2 \frac{\text{ms}}{\mu\text{m}^2}$ )  
283 with linear diffusion encoding. Each shell consists of 50 gradient directions distributed uniformly  
284 over the surface of the unit sphere, in addition to 5 acquisitions with  $b = 0$ , yielding a total of 105  
285 measurements.

286 We used the rotationally invariant summary measurements computed from spherical harmonics  
287 for signal representation. The summary measurements for each shell are norms of coefficients at  
288  $l = 0$  (absolute value) and  $l = 2$  (log mean squared). This produces 5 rotational invariant summary  
289 measurements from a diffusion data, namely *b0-mean*, *b1-mean*, *b1-l2*, *b2-mean*, and *b2-l2*.

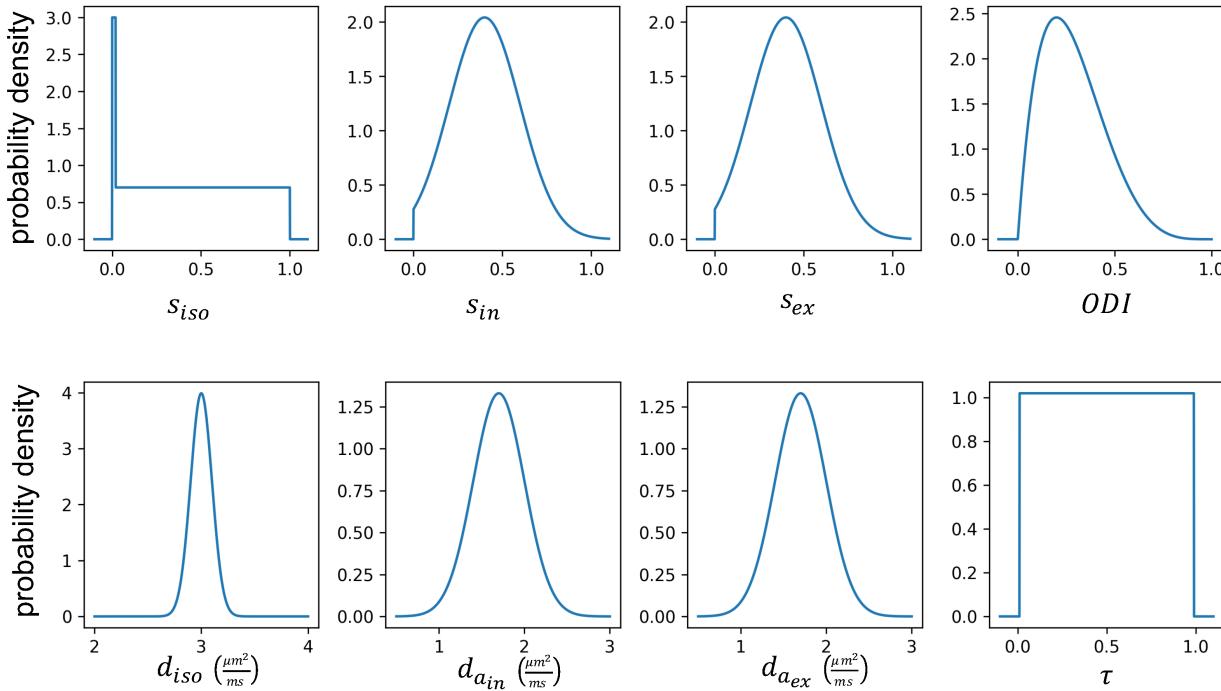
290 The described standard model for diffusion is used for both simulated test data and for training  
291 models of change. The prior distributions for the parameters are shown in figure 5. We note that  
292 these priors are not used for constraining the model parameters but rather they are used to generate  
293 training samples for the regression models. The choice of the prior distributions is arbitrary as long  
294 as they can reflect all hypothetical parameter combinations that can produce measurements similar  
295 to real data.

296 The standard model is not invertible given a conventional multishell diffusion data with linear  
297 diffusion encoding (Novikov et al. 2019a; Jelescu et al. 2016) . Typically, additional constraints  
298 are imposed to render the model invertible, e.g. in NODDI (Zhang et al. 2012), the diffusion  
299 coefficients are fixed to a prior value as follows:

$$d_{iso} = 3 \frac{\mu\text{m}^2}{\text{ms}}, d_{in,a} = d_{ex,a} = 1.7 \frac{\mu\text{m}^2}{\text{ms}}$$

296 Additionally, the tortuosity parameter  $\tau$  is coupled to the signal fractions:

$$\tau = \frac{s_{in}}{s_{in} + s_{ex}} \tag{22}$$



**Figure 5. Prior distributions for the parameters of the standard model.** These priors are used for generating pairs of measurements and gradients for training the models of change. Also, the same priors are used for simulating test datasets. The priors are chosen such that they contain all probable parameter combinations that can produce measurements similar to real data. The delta function along with uniform distribution in the isotropic signal fraction is used to model pure tissue types as well as partial volume effect. In the training phase, the signal fractions are normalized to sum up to 1. A beta (shape parameters  $\alpha = 2, \beta = 5$ ) distribution is used for *ODI* to impose a nearly uniform distribution for effective fibre dispersion. The prior for isotropic and axial diffusivities are normal distributions with mean 3 and  $1.7 \text{ } (\frac{\mu\text{m}^2}{\text{ms}})$  and standard deviation 0.1 and 0.3 respectively; as we expect faster diffusion as well as less variability in the free water component.

Accordingly, this constrained model has four free parameters:  $s_{iso}$ ,  $s_{in}$ ,  $s_{ex}$  and *ODI*.

For both the constrained and unconstrained models, we generated a test dataset containing pairs of simulated diffusion signals, such that in each pair at most one microstructural parameter is different. To generate each pair, we sample a baseline parameter setting from the prior distributions and change one of the parameters by an effect size of 0.1. We also generate pairs of data where no parameter changes and the difference between the two samples is only due to the addition of noise. We then apply the forward model to both parameter settings to produce diffusion MRI signals. Gaussian noise with standard deviation  $\sigma_n = 0.01$  (SNR=100) is added to all diffusion signals.

The signal fraction parameters are constrained to sum up to 1 for training models of change. Note that whilst this imposes a constraint that the *b0-mean* for the baseline measurement is equal

308 to 1, it does not constrain a *change* in that summary measurement. Accordingly, all the summary  
309 measurements (both in the baseline and the change) are normalized by the *b0-mean* of the baseline  
310 measurement for any real data. This differs from the parameterization in conventional NODDI,  
311 where there is a constraint on the signal fractions to sum up to 1, and add a separate b0 parameter  
312 that is directly estimated from b0 signal. Instead, here we assume all the signal fraction parameters  
313 can change independently.

314 For the direct inversion approach, a maximum a posteriori algorithm is employed to estimate  
315 the parameters of the constrained model from each diffusion signal separately. Then using a z-test  
316 across the parameter estimates in each pair, we calculate a p-value for the change in each parameter  
317 (corrected for multiple comparisons across parameters). The parameter with the minimum p-value  
318 is identified as the changed parameter. All the cases with minimum  $p > 0.05$  are identified as no  
319 change.

320 We also used BENCH for identifying change on the same dataset. To estimate the noise  
321 covariance in the summary measurements  $\Sigma_n$ , 100 noisy instances of signals were generated, and  
322 the sample covariance of the difference between summary measurements in each pair was estimated.  
323 We then estimated the posterior probability of change in each parameter using the trained models  
324 of change. The *no change* model has a zero mean and covariance  $\Sigma_n$  everywhere. The change  
325 model with the maximum posterior probability is selected as the predicted change.

### 326 White matter hyperintensities

327 We investigate the possible microstructural changes in white matter hyperintensities (WMH)  
328 using BENCH and model inversion. In this experiment, we used diffusion MRI of 3000 randomly  
329 selected subjects from the UK biobank dataset. To account for the variability in overall intensity  
330 across subjects, we divided each subject's diffusion data by the average intensity of the b0 image  
331 across the brain's white and grey matter extracted using FSL FAST (Zhang et al. 2000). We then  
332 computed the spherical harmonics-based summary measurements from the diffusion MRI data  
333 for each subject and interpolated these measures into the standard MNI space using non-linear  
334 transformations estimated by FSL FNIRT (Woolrich et al. 2009; Andersson et al. 2019).

335      Segmentations of the WMHs were generated from T2 FLAIR images using FSL's BIANCA  
336      ([Griffanti et al. 2016](#)) as part of the UK Biobank pipeline ([Miller et al. 2016](#)). We computed the  
337      average summary measurements for Normally Appearing White Matter (NAWM) that are voxels  
338      within the white matter mask not classified as WMH and the WMHs for all voxels that included  
339      more than 10 subjects with WMH. For each voxel, subjects were split into two groups according  
340      to whether the voxel has been classified as WMH or not. Averaging the summary measures within  
341      groups provides us with the baseline measurement ( $y$ ) and the observed change ( $\Delta y$ ) related to  
342      WMH. The noise covariance ( $\Sigma_n$ ) in each voxel was estimated using the within group covariance  
343      matrix divided by the number of subjects in the normal appearing white matter group.

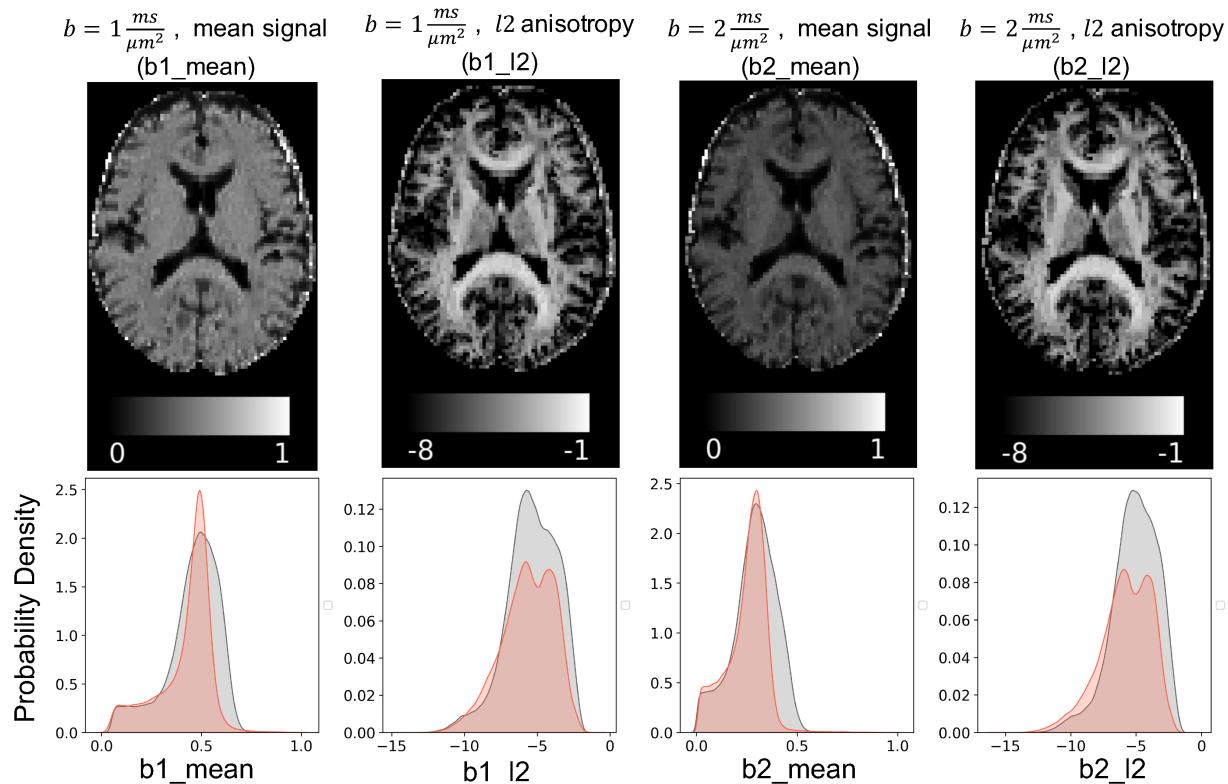
344      **RESULTS**

345      **Summary measurements**

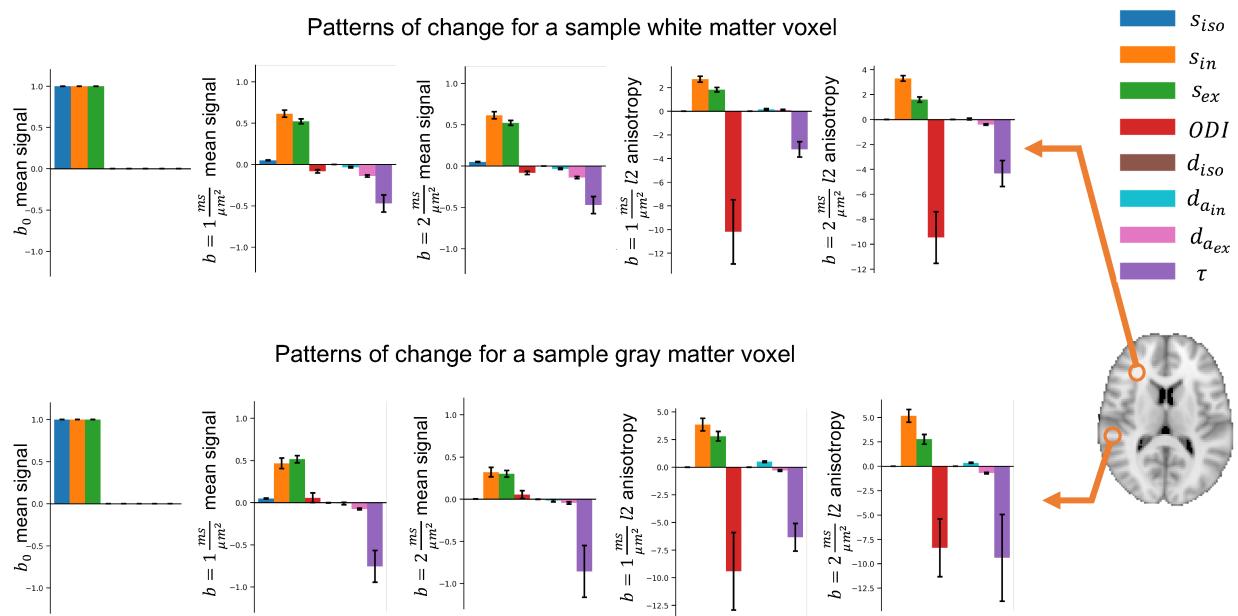
346      A representative axial slice of the normalized summary measurements from a single subject are  
347      shown in Figure 6. The "*mean*" summary measures represent the normalised average signal. The  
348       $l2$  measures quantify the anisotropy in each voxel (similar to Fractional Anisotropy maps in DTI).

349      The bottom panels of Figure 6 show histograms of the summary measurements across the brain  
350      for the same subject, as well as distributions of simulated data based on prior distributions over the  
351      model parameters. The distribution for the generated samples fully covers the range of the data  
352      and follows a very similar density distribution. This verifies that the prior distributions are wide  
353      enough to capture the full range of real data.

354      Figure 7 shows estimated derivatives of the summary measurements at baseline data repre-  
355      sentative of putative voxels in the white matter and grey matter. The error bars show estimated  
356      standard deviations of the derivatives (the square root of diagonals of the estimated covariance  
357      matrix). This variance is reflecting the uncertainty in the underlying parameters that can generate  
358      these measurements, as well as residuals of the regression model for the mean.



**Figure 6.** Maps of the summary measurements for a sample subject in the UK biobank dataset (top) and their histogram (bottom). The mean summary measurements is reflecting the average (across directions) diffusivity in each shell. The  $l2$  summary measurements estimate the anisotropy, which is similar to the fractional anisotropy (FA), but computed with a linear transformation of the signal. Histograms show the distribution of these measurements across the brain; as well as the distribution of simulated data using the standard model and provided prior distributions. This shows that the simulations capture the full range of the summary measures from real data.



**Figure 7.** The estimated amount of change in the summary measurements as a result of a unit change in each parameter ( $\mu_{\Delta\hat{\nu}}$ ) for a sample white matter and grey matter voxel. The error bars show the estimated standard deviation of change. Colors correspond to parameters and columns indicate summary measurements. Due to differences in the baseline, each voxel can have a different change vector for the same parameter change. This added degree of freedom can model the variability of parameters (e.g. diffusivities) across the brain, which is not considered in constrained models; e.g. NODDI.

359

## Validation

360

We first employed simulated data to evaluate the performance of the proposed approach in inferring microstructural changes from diffusion MRI data. The details of experiment parameters are provided in the methods section.

361

362

363

### *Comparison with model inversion*

364

365

Figure 8a shows the confusion matrix using model inversion (left), and our inversion-free approach (right) for an invertible model with only 4 free parameters. Each element of these matrices represents the percentage of times a change in the parameter represented at the corresponding column is identified as a change in the corresponding row. Both approaches were able to detect the true parameter change in most of the cases.

366

367

368

369

For the standard model with all 8 free parameters, Figure 8b shows the confusion matrices using the direct model inversion (left) and change estimation (right). Since the uncertainties of the parameter estimates are very large due to the model degeneracies, almost all of the changes are confused with *no change* when using direct inversion. However, the inversion-free approach is able to identify changes in  $s_{iso}$ ,  $s_{in}$ ,  $s_{ex}$  and  $ODI$ . Although, there is confusion between the remaining parameters compared to the restricted model, here we do not make any strong assumptions on the value of those parameters. Also, most of the confusions for these parameters are between them, meaning that we are able to distinguish a change in those parameters (e.g. the diffusivity parameters) from others. Change in isotropic diffusivity is mostly confused with the *no change* model. This is due to the  $b$ -values in the UKB protocol which are too high for this parameter; a change in this parameter has minimal effect on the signal.

370

371

372

373

374

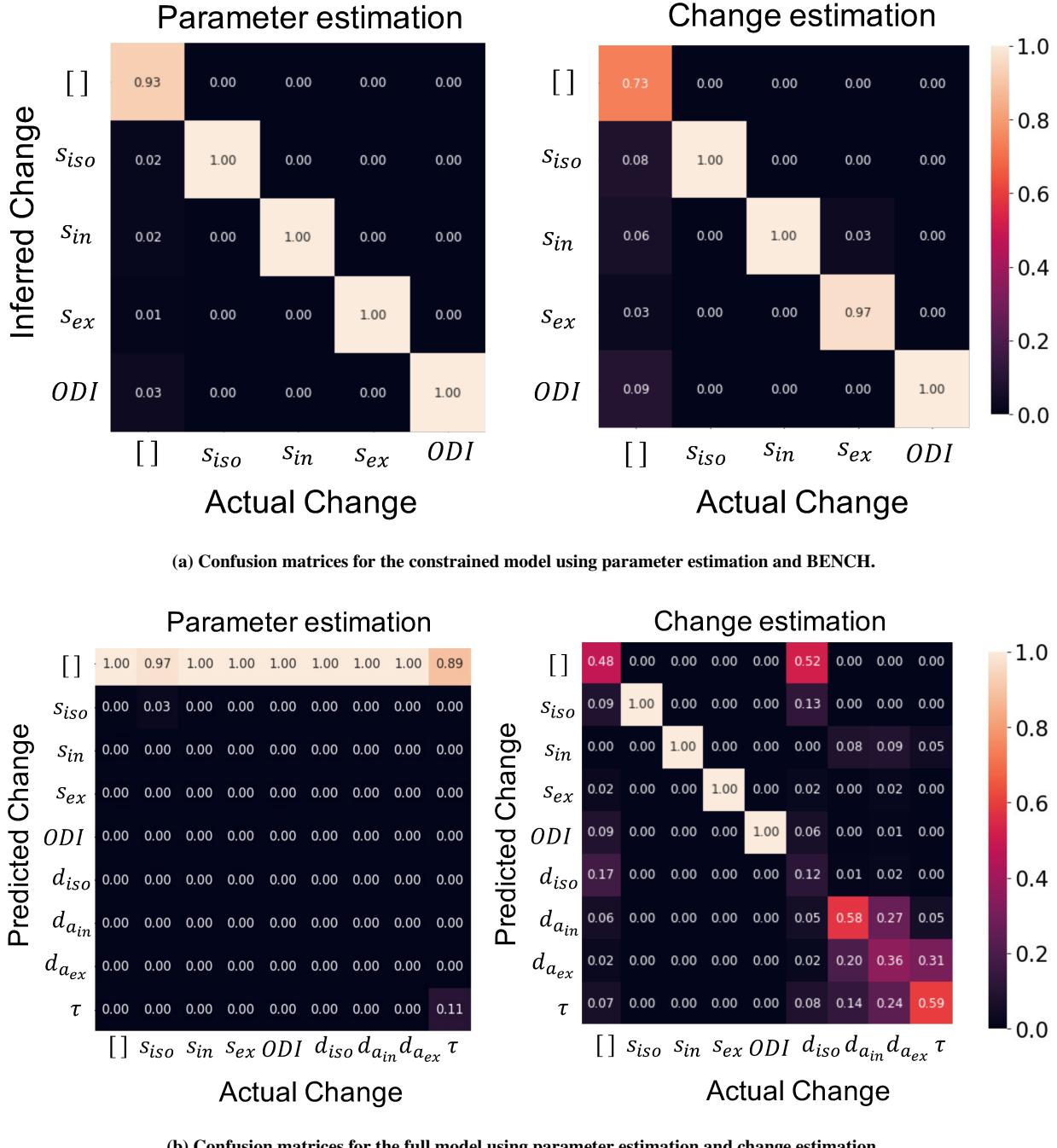
375

376

377

378

379



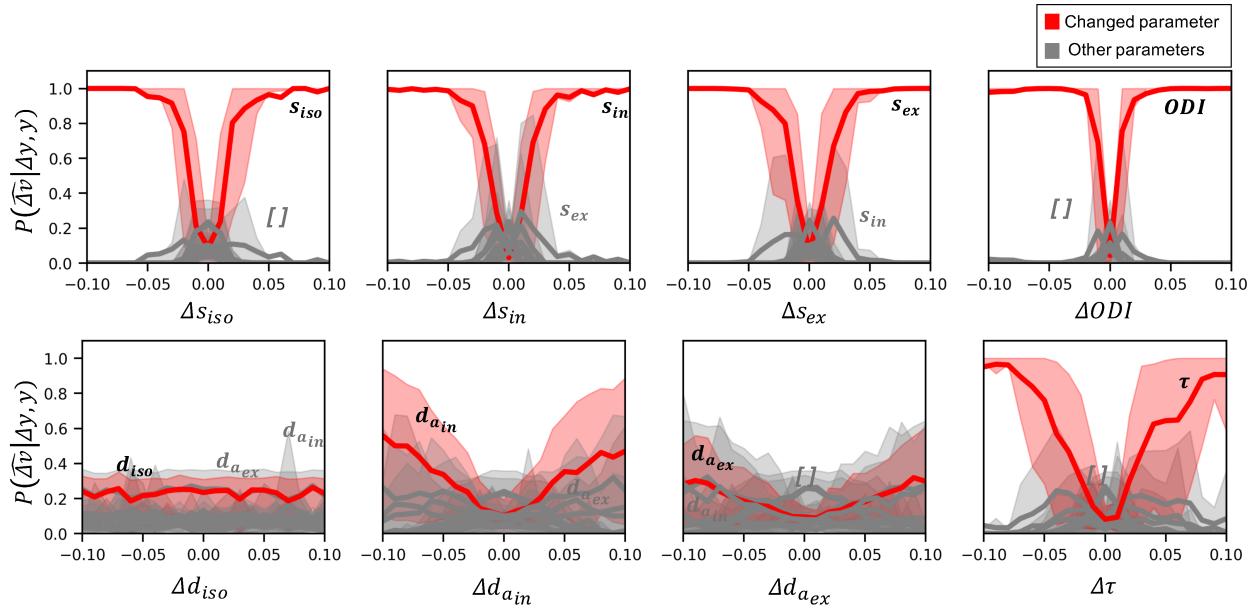
**Figure 8.** a) The numbers indicate the percentage of time a change in the corresponding column is identified as a change in the corresponding row. The diagonal elements show the accuracy in identifying true change. a) Both of the approaches performed near to ideal in detecting the true change in the case of constrained model. The change estimation has more false positives, but unlike the inversion approach, we did not explicitly define a false positive rate threshold. b) Given diffusion data at few shells, the full model is not invertible, i.e. the parameter estimates have a high variance. Therefore, almost no significant change is detected using parameter estimates. On the other hand, the change estimation approach can still identify changes in all the parameters of the restricted model. Although there remains confusion between a subset of the parameters since these have similar effects on the diffusion signal.

380 *Sensitivity to change in each parameter*

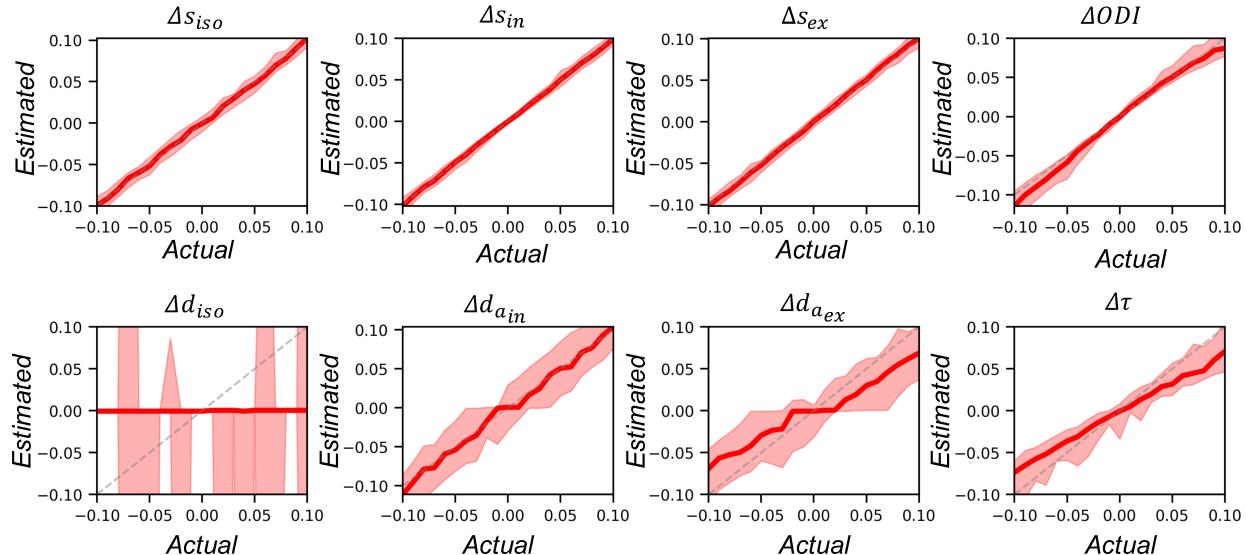
381 To evaluate the sensitivity of the approach to the amount of change in each parameter, we  
382 generated test datasets with variable effect sizes starting from 0 to 0.1 with step sizes of 0.01.  
383 Figure 9a shows the average posterior probability of change in each parameter versus the effect  
384 size. In all types of change, at very small effect sizes (< 0.01) the change is confused with no  
385 change, but as the effect size increases the probability of identifying the true change (red curves)  
386 increases. Changes in all signal fraction parameters and in the fibre dispersion are identified with  
387 high accuracy even at very small effect sizes. However, changes in diffusivity parameters are  
388 confused with each other (but not with signal fraction parameters) even at larger effect sizes. It is  
389 worth mentioning that effect size and SNR are two important factors (both unknown in real data)  
390 that affect the performance of detection in a similar way. So, when SNR is lower (resp. higher) the  
391 approach can be more (resp. less) sensitive to the change. Here we show the results for SNR=100.

392 *Estimating the amount of change*

393 So far we have only examined the posterior probabilities relating to the identity of the parameters  
394 that can best explain a change. However our framework also allows us to estimate the posterior  
395 probability on the *amount* of change for each parameter  $P(|\Delta v| \mid y, dy, \hat{\Delta v})$  (eq.7). Figure 9b  
396 shows the estimated (maximum a posteriori estimation) versus actual change in each parameter for  
397 different effect sizes.



(a) Estimated probability of change in each parameter.



(b) Estimated amount of change in each parameter.

**Figure 9. a)** Each plot shows the estimated probabilities when the corresponding parameter on the  $x$ -axis has changed between two datasets. Red curves show the average posterior probability of change in the actually changed parameter versus the amount of change. The gray curves show the probability for other parameters. Shaded areas show the 10 to 90 percentile range. Larger absolute amount of change results in higher posterior probability for the true parameter change. Change in the signal fraction parameters and  $ODI$  is distinguishable for effect sizes as small as 0.05. However, changes in diffusivity parameters even at very large effect sizes is cluttered with other parameters. **b)** Each plot shows the maximum a posteriori estimation of the amount of change vs the actual change in the parameter. The shaded areas show the 10 to 90 interval. The estimated change in the signal fractions follow the identity line (dashed gray line). The estimated change in  $d_{iso}$  is mostly around zero with a high variance as the posterior distribution is very flat and symmetric around zero. The change in  $d_{ex,a}\tau$  and  $ODI$  is systematically biased at higher effect sizes.

398 **White matter hyperintensities**

399 *Model Inversion*

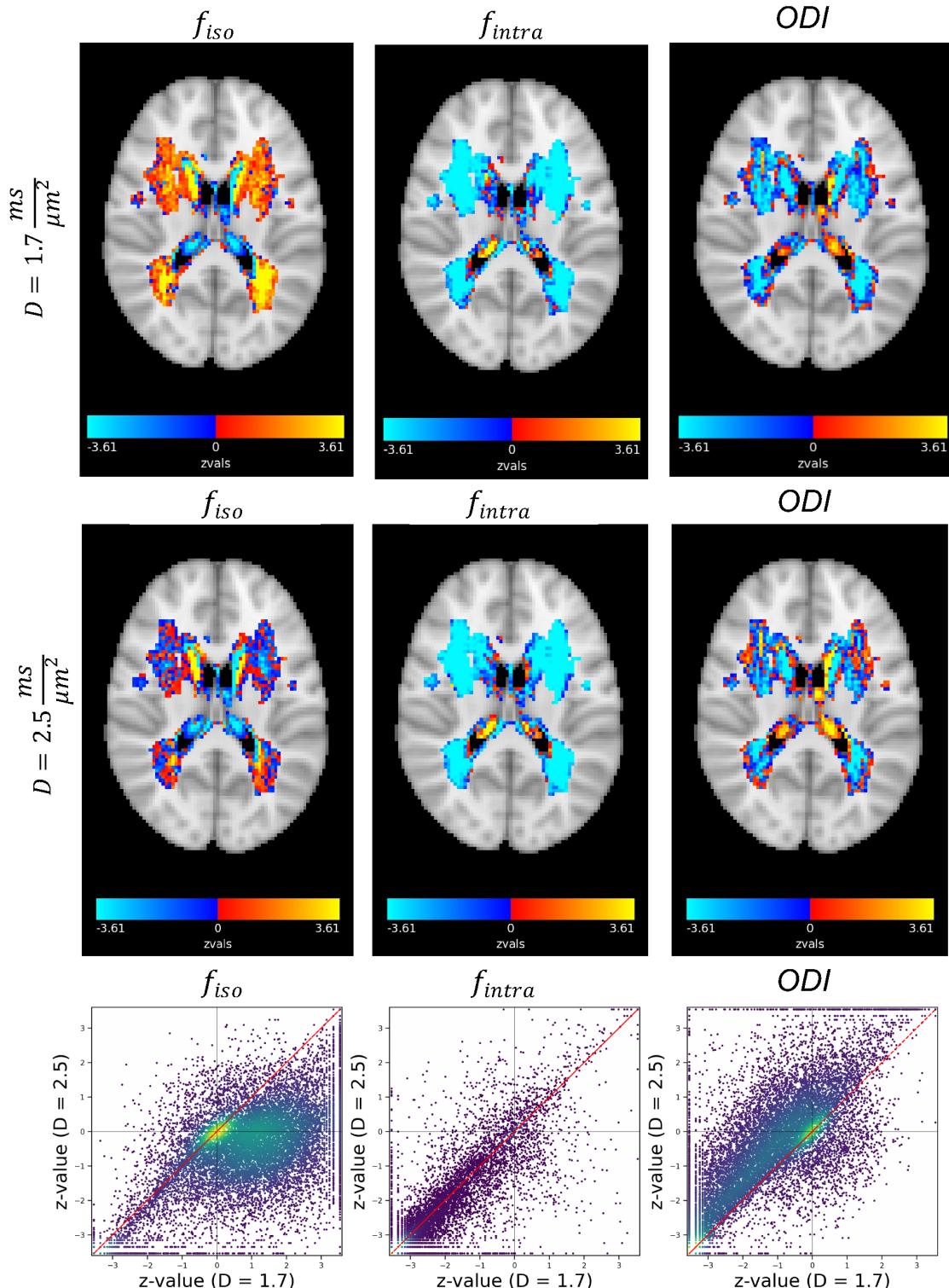
400 We inverted the NODDI model using non-linear fit implemented in DMIPY (Fick et al. 2019) in  
401 all subjects and ran a voxel wise glm to estimate the differences between white matter hyperinten-  
402 sities and normally appearing white matter (NAWM). Unlike in BENCH, NODDI requires fixing  
403 the diffusivity parameters. Usually, they are fixed to  $d_{a,in} = d_{a,ex} = 1.7 \frac{\mu\text{m}^2}{\text{ms}}$  (and  $d_{iso} = 3.0 \frac{\mu\text{m}^2}{\text{ms}}$ ).  
404 However, it has been recently suggested that the axial diffusivity should be higher based on several  
405 studies attempting to directly measure their value (Howard et al. 2020; Kunz et al. 2018). We have  
406 therefore run the same analysis also with  $d_{a,in} = d_{a,ex} = 2.5 \frac{\mu\text{m}^2}{\text{ms}}$ .

407 The z-maps for the contrast of WMH vs the baseline for all the parameters are shown in Figure  
408 10. The strongest changes are seen in  $f_{intra}$  and it is consistent in both high and low diffusivity  
409 regimes. The direct inversion also suggests changes in the other two parameters ( $f_{iso}$  and  $ODI$ ).  
410 However, interestingly, changing the pre-specified diffusivities in NODDI alters the story for  $f_{iso}$   
411 and  $ODI$  which go in opposite directions (see scatter plots in 10 many points(voxels) lie in the 2nd  
412 or 4th quarter). These results demonstrate that the choice of fixed parameter values can affect the  
413 inferred change in other parameters.

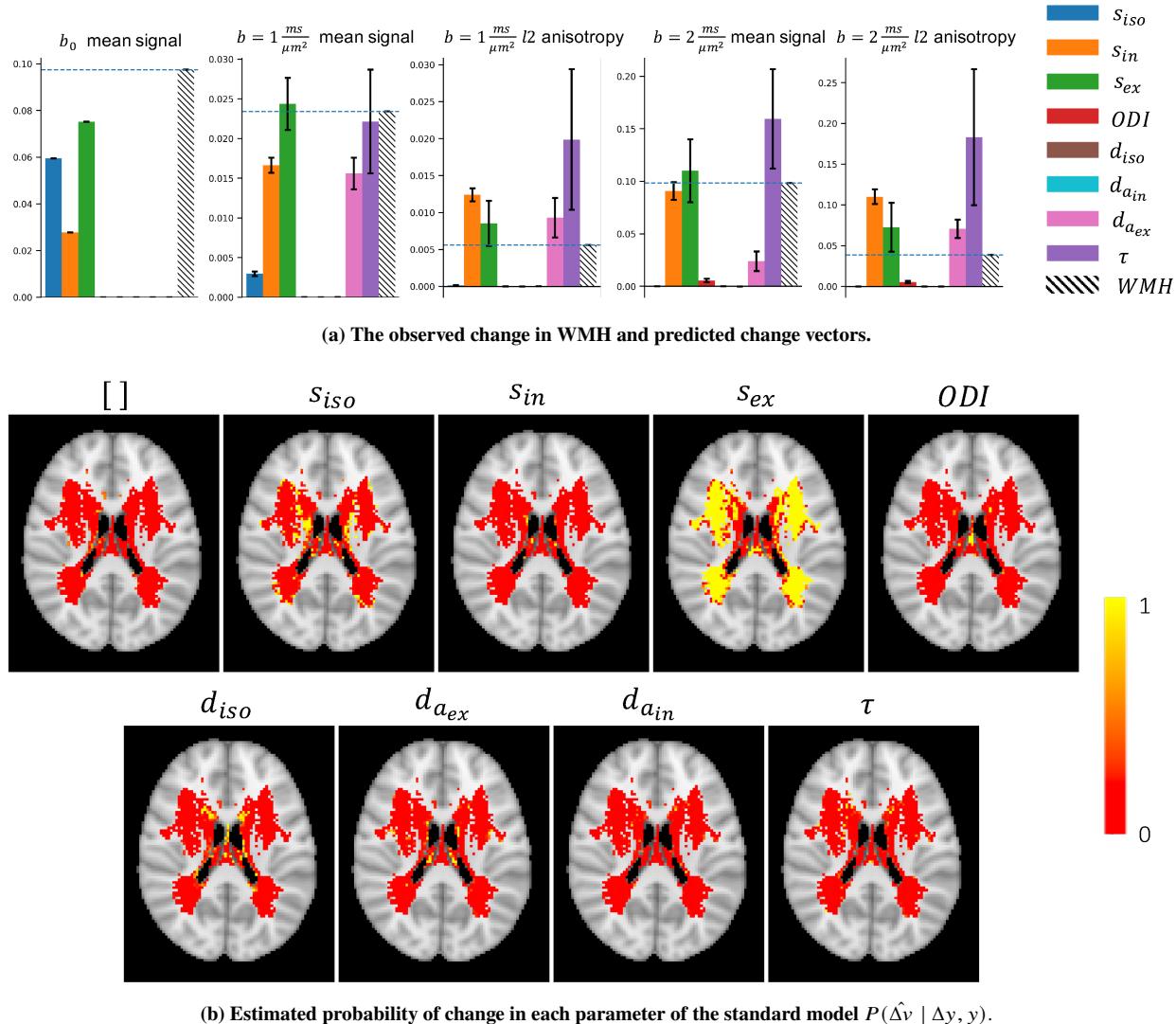
414 *BENCH*

415 We used the trained models of change on the parameters of the full (standard) model to infer  
416 changes in WMH. Figure 11a shows the observed change in the summary measurements (normalized  
417 by b0 mean of the baseline) in white matter hyperintensities (dashed line) as well as predictions  
418 from each model of change (colored bars) for average data from a small patch of white matter. For  
419 each parameter, the best amount of change given the baseline, the observed change and the noise  
420 covariance is estimated using equation 3. In other words, the bars indicate the closest change in the  
421 measurements that can be produced when only that parameter has changed.

422 This plot suggest that the observed change in WMH is an increase in the  $b0\_mean$  and  $b1\_mean$   
423 as well as an increase in anisotropy for the b1 shell. This pattern of change is better aligned with a  
424 positive change in  $s_{ex}$  than in any other parameter.



**Figure 10. NODDI parameter estimates.** **Top)** z-maps for the difference between WMH and normally appearing white matter with the assumption  $d_{intra} = d_{extra} = D = 1.7 \frac{\mu m^2}{ms}$ . **Middle)** The same maps with the assumption  $d_{intra} = d_{extra} = D = 2.5 \frac{\mu m^2}{ms}$ . **Bottom)** Scatter plot of the z-values for the two cases. The results show the assumed fixed value for the diffusivity significantly affects the estimated change between WMH and normal tissue for  $f_{iso}$  and  $ODI$ . However, the observed decrease in  $f_{intra}$  is fairly robust to the difference in diffusivities, and this is inline with the results from BENCH.



**Figure 11.** **a)** Each panel shows the estimated amount of change in the measurements if only the corresponding parameter changes, along with the actual observed change in hyperintensities for a patch of voxels in white matter. Each bar is scaled with the best estimated amount of change for that parameter. The observed change in WMH is an increase in the *mean-b0* and, to a lesser extent, and increase in *mean-b1*, and a positive change in the l2 measurements. This is best aligned with the pattern of change that an increase in  $s_{ex}$  can produce. **b)** Each map shows the estimated probability that change in the corresponding parameter can explain the observed change in the summary measurements between WMH and NAWM at a single axial slice of the brain. The no change model represents the null hypothesis that the change is better explained by noise rather than a change in any one of these parameters. In the majority of the voxels, the change model for  $s_{ex}$  has a probability around 1 (yellow) and the remaining parameters are nearly zero(red). This means that a change in  $s_{ex}$  is more likely to explain the observed change than any other single parameter change.

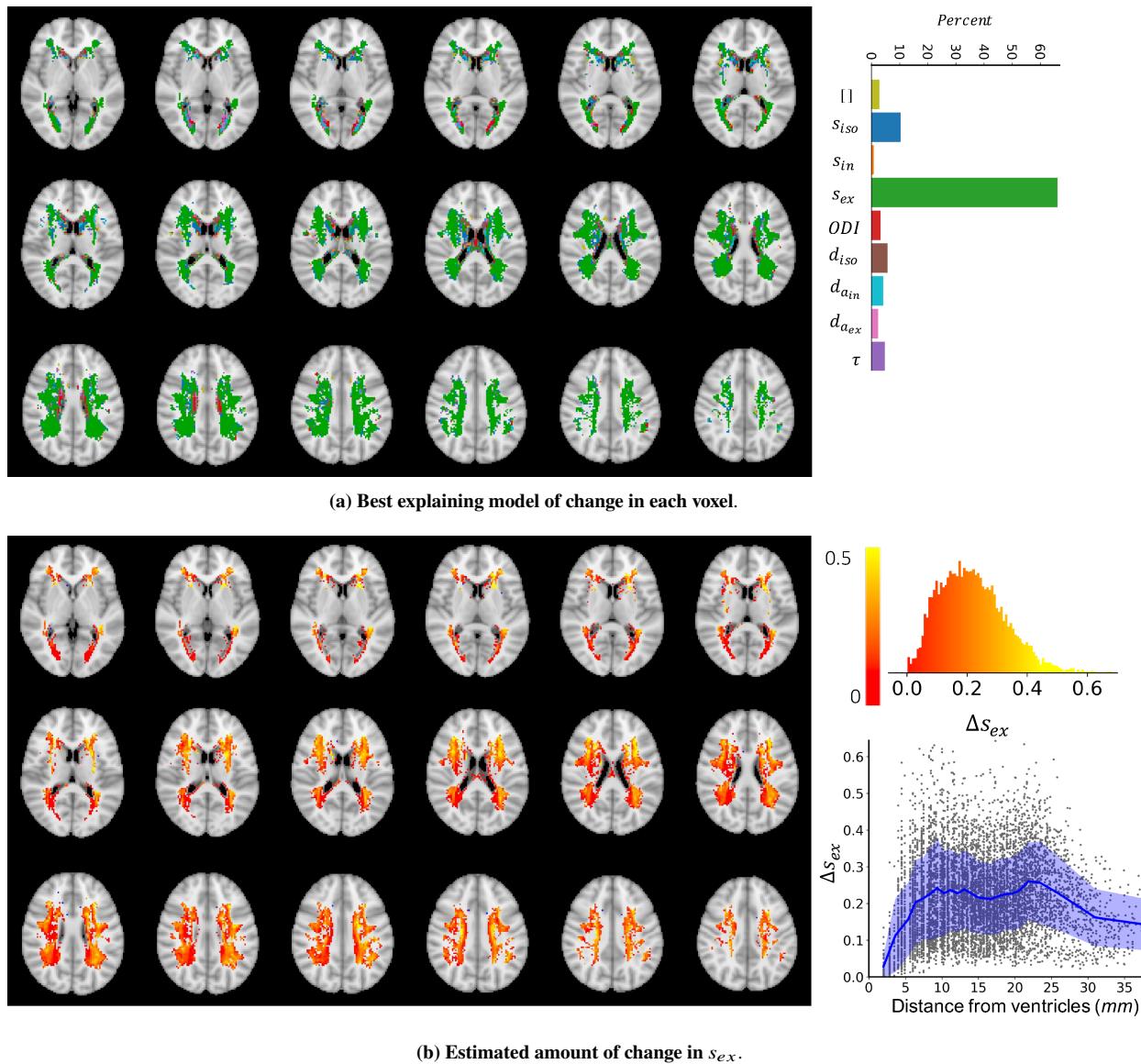
425        Figure 11b shows the estimated probability of change  $P(\hat{\Delta}v \mid \Delta y, y)$  for each parameter of  
 426        the standard model for an axial slice of the brain in voxels that included more than 10 WMH  
 427        samples(subjects). These probabilities are normalized to sum up to 1 for each voxel. The colors

428 indicate the probability that a change in the corresponding parameter can explain the observed  
429 changes in WMHs.

430 Figure 12a shows the best explaining model of change in each voxel in a few axial slices of the  
431 brain. To check for the reproducibility of the results, we have divided subjects in two batches of  
432 equal size (1500 each) and repeated the whole pipeline. The inferred changes were highly similar  
433 in the two batches with average error of 0.4% in the estimated probability of change.

434 In more than 65% of the voxels, that are mostly in deep white matter, the best model is a change  
435 in  $s_{ex}$ . However, in voxels adjacent to the ventricles, all other models compete and there is not  
436 a dominantly winning model. This might be due to a true difference in microstructure in these  
437 periventricular voxels, or may be caused by high variability across subjects due to CSF partial  
438 volume effects.

439 Figure 12b shows the estimated amount of change in  $s_{ex}$  in voxels where this was the most  
440 probable parameter. In most of the voxels an increase in  $s_{ex}$  between 0 and 0.4 explains the  
441 observed change in WMH. The bottom right panel shows that the amount of change increases with  
442 distance from the ventricles, whereas in deep white matter the average amount of change remains  
443 relatively constant.



**Figure 12. a)** The colors indicate which model of change could best explain, i.e. had the highest posterior probability given the observed change in the summary measurements between WMH and NAWM. In the majority of voxels (65%) a change in  $s_{ex}$  explained the data better than any other model. However, in the regions very close to the ventricles there is no major winning model. This can be either because of high between subject variability or a different type of change that is not captured by the trained models of change. **b)** The maps show the estimated amount of change in  $s_{ex}$  in voxels where  $s_{ex}$  was the best model using a maximum a posteriori estimation  $\Delta s_{ex} = \underset{\Delta v}{\operatorname{argmax}} P(\Delta v \mid y, \Delta y, \Delta \hat{s}_{ex})$ .

At most of the voxels the estimated amount of change is positive, meaning that an increase in  $s_{ex}$  can explain the change in the summary measurements observed in the WMH voxels. The top right panel shows the distribution of estimated amount of change at the voxels where change in  $s_{ex}$  was the best model. Most of the estimated changes are between 0 and 0.4. The bottom right panel shows the amount of change vs the distance (in millimeters) from the ventricles.

444

## DISCUSSION

445 We presented a Bayesian framework to directly infer changes in parameters of a biophysical

446 model from observed changes in a set of measurements. We applied the method to microstructural  
447 modelling of diffusion MRI, where biophysical models usually require many free parameters and  
448 are often degenerate.

449 **Comparison with model inversion**

450 The traditional approach to overcome these degeneracies is to constrain some of the parameters  
451 to biologically plausible values so that other parameters can be estimated using a conventional  
452 measurement (e.g., fixing the diffusivities in NODDI, (Zhang et al. 2012)). Such assumptions  
453 reduce the full model parameter space to a restricted subspace, where the model is invertible. This  
454 direct inversion approach has the advantage that it gives parameter estimates and that it can model  
455 any parameter change in this restricted subspace. However, violation of these assumptions can  
456 significantly bias the parameter estimates.

457 Our proposed approach allows the initial set of parameters to lie anywhere within the full model  
458 parameter space (restricted only by broad user-defined priors); and any of these parameters might  
459 change. This extra flexibility comes at the price that the parameter changes are assumed to lie along  
460 1D lines in parameter space defined by the user-provided patterns of change  $\hat{\Delta}v$ . For each of these  
461 hypothesized 1D change models, we estimate the posterior probability of such a change as well as  
462 the most likely amount given the baseline data and the change in it.

463 To compare this assumption with that made by direct inversion, let us consider a biophysical  
464 model with 8 free parameters. Let us further assume that, due to the limited degrees of freedom  
465 in our model, we can only fit 3 out of these 8 parameters. In this case direct inversion would  
466 require assuming that the microstructural change is limited to a subset of three parameters, i.e., a  
467 3-dimensional subspace of the full 8-dimensional parameter space. In contrast, BENCH assumes  
468 by default that the change is caused by one out of the 8 parameters, which corresponds to the  
469 microstructural change lying in one of 8 one-dimensional lines in parameter space. This suggests  
470 that if one has prior knowledge of which microstructural parameters are likely to change, it might  
471 make sense to use direct inversion with those parameters as free parameters. BENCH would have  
472 the advantage in a more exploratory approach, where any of the underlying parameters might have

473 changed. However note that this comparison between approaches is complicated by the fact that  
474 using model inversion requires setting a subset of the parameters to some fixed value, which might  
475 cause a bias in the free parameters if inaccurately fixed (Jelescu et al. 2016; Novikov et al. 2019b).

476 It is important to note that the user-defined prior distributions for parameters do not directly  
477 imply a prior value for the parameters. These priors are used to train the regression models and  
478 are required to be wide enough to capture all possible underlying parameter settings. Nevertheless,  
479 using broader priors only requires more complex machine learning models that can capture the  
480 variation in the relation between the measurements and their derivatives.

481 In the proposed approach we train the models with simulated data once (without requiring any  
482 real data) and use the trained models to estimate the desired probabilities for any real data with the  
483 same acquisition protocol. This precomputation saves one from having to integrate over all possible  
484 initial parameters when inferring the parameter change in each voxel. Therefore, the inference on  
485 real data which only consist of a few 1d integrations for each voxel, runs much faster than the  
486 non-linear optimizations in alternative inversion approaches.

487 The results from simulations suggest that we are able to identify changes in signal fraction  
488 accurately for the given brain-like measurement. However, there is a considerable confusion in the  
489 diffusivities, meaning that the change in these parameters is not distinguishable from one another.  
490 In simulations, we have only accounted for measurement noise, but in real data, particularly in  
491 cross-sectional studies, between-subject variability also contributes to noise. Hence, the reported  
492 performances and sensitivity to changes in parameters in the simulations section are more reliable  
493 when the between-subject variability is less important, for instance, in longitudinal studies. These  
494 accuracy values depend on the baseline measurements, underlying parameters, and the nature of  
495 how each parameter affects the measurements. Nevertheless, an important point is even in the  
496 case of full confusion in diffusivities, the results from the proposed approach is more reliable  
497 compared to the model inversion with fixed parameters. That is because a wrong prior for the fixed  
498 parameters can bias the estimates for other parameters, while in the proposed approach we avoid  
499 such assumptions. For example, in NODDI any changes in the B0 signal are usually ignored (as a

500 result of the sum constraint on the signal fractions), but in our approach we allow changes in the  
501 b0 signal to inform which microstructural parameter might have changed.

502 In this paper we showed that setting a different value for diffusivities in NODDI can result  
503 in contradictory inference about changed parameters in white matter hyper intensities. The only  
504 consistent change was a decrease in the ratio of intra and extra axonal signal fractions which is  
505 in line with the results of BENCH (an increase in  $s_{ex}$  with no change in  $s_{in}$ ). This analysis thus  
506 illustrates one of the main benefits of using BENCH: the results do not depend on some prespecified  
507 value of a parameter as we integrate over all possible values for the parameters rather than fixing  
508 them. Another advantage is that BENCH can provide a more specific explanation for the change,  
509 e.g. in this case as opposed to NODDI that only identifies a change in the ratio of the signal  
510 fractions, BENCH can specifically tell if it is a change in the extra axonal signal fraction.

511 The fact that the approach doesn't require the models to be invertible makes it applicable to  
512 studying changes in over-parameterised models or models without closed form analytical solution,  
513 e.g. simulation-based models. Such simulation-based models provide the opportunity to explore  
514 more complex and realistic models of diffusion in a tissue. There is no limitation in the number of  
515 parameters as long as they affect the observed data in some way. If several parameters cause the  
516 data to change in the same (or very similar way), this approach will give a list of possible parameters  
517 underlying the observed change with a probability associated with each. The resulting probability  
518 estimates can be used to eliminate unlikely change scenarios.

519 We utilized the trained models of change for the parameters of the “standard” model for diffusion  
520 to investigate which microstructural changes can explain white matter hyperintensities. The results  
521 suggest that the change can be associated with an increase in the extracellular signal. This is in  
522 line with other findings using more complex diffusion encodings (Lampinen et al. 2019), who  
523 found an increase in the extracellular T2, which would lead to an increase in the extracellular  
524 signal contribution. Comparing with the inversion approach, here we did not assume diffusivities  
525 are fixed in various brain regions, but we assumed only one of the parameters has changed as a  
526 result of white matter hyperintensity. However, it is possible that simultaneous changes in multiple

527 parameters can better explain the change in the data, which could be tested in the same framework  
528 with the extended models of change. For example, a model with combination of the parameters  
529 might be able to explain a positive change in *b0\_mean* and a negative change in *b2\_mean* as it was  
530 observed in some voxels. Furthermore, we are limited to detect any changes within the constraints  
531 of the “standard” model. Hence, any changes in the signal in the white matter hyperintensities due  
532 to phenomena not within the “standard model” (e.g., exchange or non-Gaussian diffusion) would  
533 be misinterpreted as changes in the “standard” model parameters.

### 534 **Summary measures**

535 The choice of summary measurements to train change models is arbitrary, but this choice can  
536 affect the performance of the model. It is essential that the summary measurements are able to  
537 capture enough information from the data such that they are sensitive to changes in the parameters  
538 of interest and insensitive to other changes that are not part of the model parameters. For example,  
539 in our simulations we did not include the fibre orientation parameters as part of the free parameters,  
540 and therefore we required the summary measures to be rotationally invariant. Hence the choice  
541 of decomposing the signals in each shell into spherical harmonics to extract rotationally invariant  
542 summary measurements. Of course one can instead use other signal representations, such as  
543 measures derived from the diffusion tensor model, or the kurtosis tensor model, etc, to compute  
544 the summary measurements. We chose spherical harmonics over other choices as they are fast to  
545 calculate, and the bases are orthogonal which leads to summary measures that capture different  
546 aspects of the data.

### 547 **Future developments**

548 While in the examples shown here these patterns of change only altered a single parameter at a  
549 time, in the current framework the pattern of change can be any vector in parameter space. In the  
550 future we plan to extend this framework to allow for parameter changes in 2D or 3D hyperplanes  
551 rather than just along 1D lines (see Appendix A for the feasibility of this extension). However,  
552 the dimensionality of these hyperplanes will always be lower than that of the restricted parameter  
553 subspace in which parameters can freely change with the direct inversion approach. Note that

554 computing posterior probabilities in a full Bayesian framework allows for comparison between  
555 models of change with different complexities without the need for arbitrary regularisation.

556 In addition, the model of change can be extended to study continuous changes (e.g. ageing), as  
557 opposed to discrete group differences as shown in this work. To do so, one first needs to compute the  
558 gradient of change in the measurements with respect to the independent variable, e.g. time, using a  
559 regression model. Then one can use the chain rule to relate the rate of change in the measurements  
560 to the rate of change in the parameters. Such an approach makes modelling continuous change a  
561 straightforward extension of this framework.

562 Although here we mostly show how our method can be applied to detect changes in parameters  
563 given the data, our framework can also be used to optimize data acquisition protocols for detecting  
564 changes in particular parameters of interest. For example, in the simulations we show that it is  
565 difficult to detect a change in the free-diffusion parameter. Our framework can be used to extend  
566 the acquisition (e.g. by adding lower bvalues) and, using the output confusion matrices, establish  
567 an optimal set of b-shells to enable detection of change in free diffusion.

568 Finally, while we applied the framework to the specific problem of studying microstructural  
569 changes using diffusion MRI in the brain, the framework is general meaning that it can be applied  
570 in any field where biophysical models are available. For example, the same approach as described  
571 in this paper can be applied to dynamical causal models (DCM) (Friston et al. 2003) for fMRI or  
572 MEG/EEG. These are notoriously over-parameterised, but often, are applied in a context where  
573 the values of the inferred parameters is of lesser interest than the change in the parameters under  
574 different experimental conditions, and its reasonable to assume the change is sparse; the ideal  
575 scenario for BENCH.

## 576 **SOFTWARE**

577 BENCH is an open source software implemented in python and available at [https://git.  
578 fmrib.ox.ac.uk/hossein/bench](https://git.fmrib.ox.ac.uk/hossein/bench).

## 579 **ACKNOWLEDGEMENTS**

580 SJ is supported by a Wellcome Senior Fellowship (221933/Z/20/Z), MC and SJ by a Wellcome

581 Collaborative Award (215573/Z/19/Z). The Wellcome Centre for Integrative Neuroimaging is  
582 supported by core funding from the Wellcome Trust (203139/Z/16/Z). LG is supported by the  
583 National Institute for Health Research (NIHR) Oxford Health Biomedical Research Centre (BRC).  
584 UK Biobank Resource under Application 8107 is used in this research. We are grateful to UK  
585 Biobank for making the data available, and to all the participants, who made this resource possible  
586 by donating their time. The computations were carried out using the Oxford Biomedical Research  
587 Computing (BMRC) facilities; a joint development between the Wellcome Centre for Human  
588 Genetics and the Big Data Institute that is supported by Health Data Research UK and the NIHR  
589 Oxford Biomedical Research Centre. We additionally thank Amy Howard, Paul McCarthy, Mark  
590 Woolrich, Karla Miller, Mauro Zucchelli, and Markus Nilsson for their helpful discussions.

591 **APPENDIX A. TOY EXAMPLE: INFERRING CHANGES IN 2D**

592 Consider the forward model

593 
$$f(x) = ax^3 + bx^2 + cx + d \quad (23)$$

594 The model has 4 free parameters  $(a, b, c, d)$ . Given 3 measurements this model is degenerate,  
595 i.e., one cannot estimate all the parameters uniquely. Now consider two instances of this model  
596 with parameters  $(a_1, b_1, c_1, d_1)$  and  $(a_2, b_2, c_2, d_2)$  with 3 measurements for each. Obviously, this  
597 system is degenerate and parameter estimation is ill posed. However, if we are only interested in  
598 comparing two model instances, we can still infer changes by assuming that the change is sparse.  
599 This is the premise of BENCH.

600 Now we will demonstrate that despite the model degeneracy, we can not only detect changes  
601 in a single parameter, but also infer simultaneous changes in pairs of parameters. Consider  
602  $(a_1 = 1, b_1 = 1, c_1 = 1, d_1 = 1)$  and  $(a_2 = 1.2, b_2 = 0.8, c_2 = 1, d_2 = 1)$ , i.e.,  $\Delta a = +0.2, \Delta b =$   
603  $-0.2, \Delta c = \Delta d = 0$ .

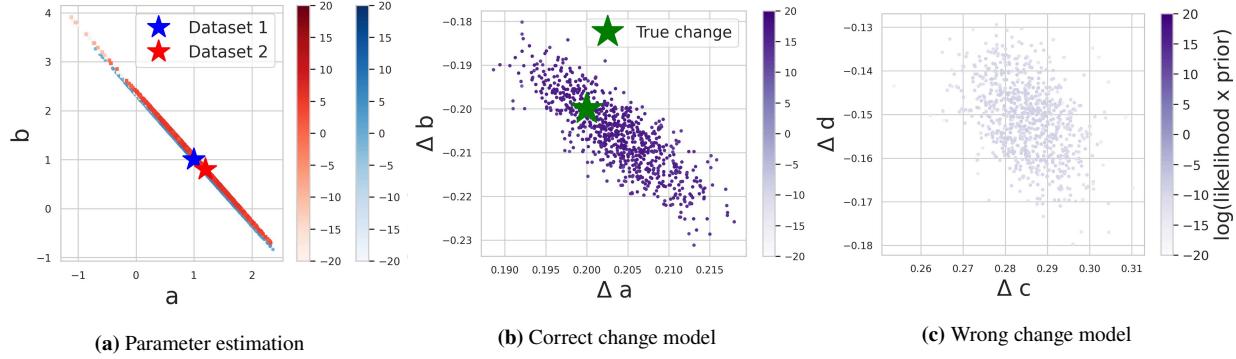
604 When using Monte Carlo simulations to infer parameters for each model given three independent  
605 measurements, the posterior distribution is clearly degenerate as shown in Figure 13a. In this figure,

606 the blue (resp. red) distribution shows the parameter estimates for (a, b) for the first (resp. second)  
607 data set. The intensity of each point encodes the log posterior probability for the estimated  
608 parameters. The stars show the true parameter values. The plot demonstrates that parameter  
609 estimates are highly correlated (i.e. the model is degenerate).

610 In contrast, figure 13b shows Monte Carlo samples for  $\Delta a$  and  $\Delta b$  for the change model. The  
611 plot demonstrates that the estimated parameter changes are distributed around the true change value  
612 and each sample has a comparatively high posterior probability value. It is therefore possible to  
613 infer the true, 2-dimensional change.

614 We also considered an alternative change model where a and b are fixed and c and d can  
615 change. The estimated samples for  $\Delta c$  and  $\Delta d$  are shown in Figure 13c. In this case the estimated  
616 samples have much lower posterior probabilities (lower intensities) than the a,b change model.  
617 Thus, we can use the change model to assess not only the amount of change in 2D, but also which  
618 pair of parameters best explains these changes. The changes are still sparse, but not necessarily  
619 1-dimensional.

620 In BENCH we integrate the approximations of this unnormalized posterior probabilities to  
621 compute the the desired probabilities for each model of change in Eq. 1. Hence, it this example  
622 BENCH (once extended to allow multi-dimensional changes) would correctly infer that it was the  
623 parameters a and b that changed, and not the parameters c and d.



**Figure 13.** a) Parameter estimation. Each set of dots shows parameter estimates for one instance of the model using MCMC and intensities represent the log posterior probability. The parameter estimates for each data set are highly correlated and all of the points on the lines explain the data equally well, i.e. the models are degenerate and it is not possible to directly compare the parameter estimates. B) Inferred change with the correct model. We ran MCMC with the assumption that change has a particular shape (only  $a$  and  $b$  changed). The estimated values for  $\Delta a$  and  $\Delta b$  are centred around the correct change (green star) and the unnormalized posterior probabilities are comparatively high. C) Inferred change using a wrong model. We run a similar MCMC but this time assuming  $c$  and  $d$  can change. In this case the estimated posterior probabilities are much smaller compared to the previous change model, i.e. this model of change cannot explain the change in the measurements as well as the model in (b).

## APPENDIX B. ESTIMATING QUALITY OF FIT

The estimated probability in Eq.1 tells how well each model explains the observed change compared to all other defined change models, but it doesn't necessarily reflect to what extent the observed and predicted change are matched. In other words, a model with a poor quality of fit to the data can get a high probability value because its prediction is the closest to data compared to all other models. Also, it is possible that more than one change model predict the data accurately and hence all get low probabilities in Eq.1.

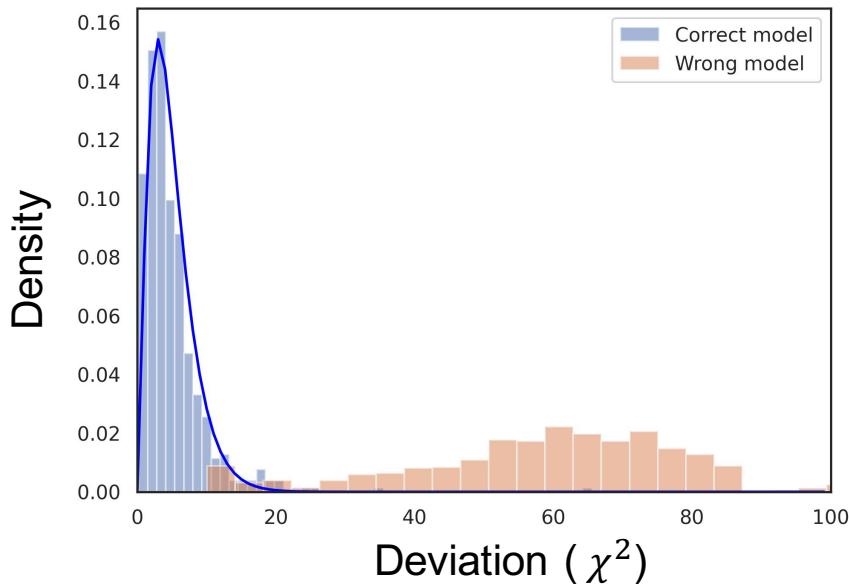
To estimate how well a change model can explain the change in data one can look at the chi-squared distance between the predictions of the change model and the measured change:

$$d = (\Delta y - \mu)^T \Sigma^{-1} (\Delta y - \mu) \quad (24)$$

In the above expression,  $\Delta y$  is the observed change in the data, and  $\mu$  and  $\Sigma$  are the mean and covariance of change in the measurements predicted by the best model. This statistic follows a chi-squared distribution and a higher  $d$  means more discrepancy between the observed change and

637 the predicted change.

638 Figure 14 shows the distribution of  $d$  for the case of one parameter change that is explained by  
639 the correct model (blue) and the case of two parameter change that is mistakenly identified as a  
640 single parameter change (orange). Accordingly, our recommendation when the discrepancy is high  
641 is to consider revising the change models, as the winning model is poorly explaining the observed  
642 change. For example, one can define biologically feasible linear combinations of the parameters as  
643 change directions.



**Figure 14. Distribution of distance for the correct change model (blue) and a wrong model (orange).** Given a baseline measurement ( $y$ ) and a change ( $\Delta y$ ), we estimate the most likely change in the parameters as well as the most likely amount of change in that direction using our trained change models. These estimates can then be used to predict the distribution of expected change in the measurements. Using the discrepancy between this prediction and the actual observed change, we can determine the quality of the change model in explaining the data. The histograms are showing the Mahalanobis distance (i.e., the offset normalised by the covariance matrix as defined in 24) between the actual and the predicted change in the measurement when the correct change model is used (blue) and when a wrong change model is used (orange) for several instances of simulated data. The blue curve shows the pdf of  $\chi^2$  distribution with  $df =$  the number of measurements.

644 **REFERENCES**

645 Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L., Griffanti, L., Douaud, G., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M., Vallee, E., et al. (2018). “Image processing and quality control for the first 10,000 brain imaging datasets from uk biobank.” *Neuroimage*, 166, 400–424.

646 647 648

649 Andersson, J. L., Jenkinson, M., and Smith, S. (2019). “High resolution nonlinear registration with simultaneous modelling of intensities.” *BioRxiv*, 646802.

650 651 652

653 Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., and Basser, P. J. (2008). “Axcaliber: a method for measuring axon diameter distribution from diffusion mri.” *Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine*, 59(6), 1347–1354.

654 655 656

657 Basser, P. J., Mattiello, J., and LeBihan, D. (1994). “Estimation of the effective self-diffusion tensor from the nmr spin echo.” *Journal of Magnetic Resonance, Series B*, 103(3), 247–254.

658 659

660 Coelho, S., Pozo, J. M., Jespersen, S. N., Jones, D. K., and Frangi, A. F. (2019). “Resolving degeneracy in diffusion mri biophysical model parameter estimation using double diffusion encoding.” *Magnetic resonance in medicine*, 82(1), 395–410.

661 662 663

664 Debette, S. and Markus, H. (2010). “The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis.” *Bmj*, 341.

665 666

667 Fick, R. H. J., Wassermann, D., and Deriche, R. (2019). “The dmipy toolbox: Diffusion mri multi-compartment modeling and microstructure recovery made easy.” *Frontiers in Neuroinformatics*, 13, 64.

668 669

670 Friston, K. J., Harrison, L., and Penny, W. (2003). “Dynamic causal modelling.” *Neuroimage*, 19(4), 1273–1302.

671 672 673

674 Gouw, A. A., Seewann, A., van der Flier, W. M., Barkhof, F., Rozemuller, A. M., Scheltens, P., and Geurts, J. J. G. (2011). “Heterogeneity of small vessel disease: a systematic review of mri and histopathology correlations.” *Journal of Neurology, Neurosurgery & Psychiatry*, 82(2), 126–135.

671 Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V., Schulz, U. G., Kuker,  
672 W., Battaglini, M., Rothwell, P. M., and Jenkinson, M. (2016). “BIANCA (Brain Intensity  
673 AbNormality Classification Algorithm): A new tool for automated segmentation of white matter  
674 hyperintensities.” *NeuroImage*, 141, 191–205.

675 Howard, A. F., Lange, F. J., Mollink, J., Cottaar, M., Drakesmith, M., Umesh Rudrapatna, S.,  
676 Jones, D. K., Miller, K. L., and Jbabdi, S. (2020). “Estimating intra-axonal axial diffusivity in  
677 the presence of fibre orientation dispersion.” *bioRxiv*.

678 Jelescu, I. O., Veraart, J., Fieremans, E., and Novikov, D. S. (2016). “Degeneracy in model parameter  
679 estimation for multi-compartmental diffusion in neuronal tissue.” *NMR in biomedicine*, 29(1),  
680 33.

681 Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., and Kaczynski, K. (2005). “Diffusional kurtosis  
682 imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance  
683 imaging.” *Magnetic Resonance in Medicine: An Official Journal of the International Society for  
684 Magnetic Resonance in Medicine*, 53(6), 1432–1440.

685 Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003). “Rotation invariant spherical harmonic  
686 representation of 3 d shape descriptors.” *Symposium on geometry processing*, Vol. 6, 156–164.

687 Kunz, N., da Silva, A. R., and Jelescu, I. O. (2018). “Intra-and extra-axonal axial diffusivities in  
688 the white matter: Which one is faster?.” *Neuroimage*, 181, 314–322.

689 Lampinen, B., Szczepankiewicz, F., Mårtensson, J., van Westen, D., Hansson, O., Westin, C.-  
690 F., and Nilsson, M. (2020). “Towards unconstrained compartment modeling in white matter  
691 using diffusion-relaxation mri with tensor-valued diffusion encoding.” *Magnetic resonance in  
692 medicine*, 84(3), 1605–1623.

693 Lampinen, B., Szczepankiewicz, F., Novén, M., van Westen, D., Hansson, O., Englund, E.,  
694 Mårtensson, J., Westin, C.-F., and Nilsson, M. (2019). “Searching for the neurite density with  
695 diffusion mri: Challenges for biophysical modeling.” *Human brain mapping*, 40(8), 2529–2545.

696 Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., Bartsch,  
697 A. J., Jbabdi, S., Sotiroopoulos, S. N., Andersson, J. L. R., Griffanti, L., Douaud, G., Okell, T. W.,

698 Weale, P., Dragonu, I., Garratt, S., Hudson, S., Collins, R., Jenkinson, M., Matthews, P. M.,  
699 and Smith, S. M. (2016). “Multimodal population brain imaging in the UK Biobank prospective  
700 epidemiological study.” *Nature Neuroscience*, 19(11), 1523–1536.

701 Novikov, D. S., Fieremans, E., Jespersen, S. N., and Kiselev, V. G. (2019a). “Quantifying brain  
702 microstructure with diffusion MRI: Theory and parameter estimation.” *NMR in Biomedicine*,  
703 32(4) Publisher: John Wiley & Sons, Ltd.

704 Novikov, D. S., Fieremans, E., Jespersen, S. N., and Kiselev, V. G. (2019b). “Quantifying brain  
705 microstructure with diffusion mri: Theory and parameter estimation.” *NMR in Biomedicine*,  
706 32(4), e3998.

707 Novikova, D. S., Veraarta, J., Ileana O. Jelescu, and and Els Fieremans (2018). “Rotationally-  
708 invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion  
709 MRI.” *NeuroImage*, 174, 518–538.

710 Prins, N. D. and Scheltens, P. (2015). “White matter hyperintensities, cognitive impairment and  
711 dementia: an update.” *Nature Reviews Neurology*, 11(3), 157–165.

712 Reisert, M., Kellner, E., and Kiselev, V. G. (2017). “Disentangling micro from mesostructure by  
713 diffusion MRI: A Bayesian approach.” *NeuroImage*, 147, 964–975 Publisher: Academic Press.

714 Reisert, M., Kiselev, V. G., and Dhital, B. (2019). “A unique analytical solution of the white matter  
715 standard model using linear and planar encodings.” *Magnetic Resonance in Medicine*, 81(6),  
716 3819–3825.

717 Sotropoulos, S. N., Behrens, T. E., and Jbabdi, S. (2012). “Ball and rackets: inferring fiber fanning  
718 from diffusion-weighted mri.” *Neuroimage*, 60(2), 1412–1425.

719 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,  
720 Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,  
721 Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y.,  
722 Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,  
723 E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and  
724 SciPy 1.0 Contributors (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing

725 in Python.” *Nature Methods*, 17, 261–272.

726 Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley,  
727 R. I., T O’Brien, J., Barkhof, F., Benavente, O. R., et al. (2013). “Neuroimaging standards for  
728 research into small vessel disease and its contribution to ageing and neurodegeneration.” *The  
729 Lancet Neurology*, 12(8), 822–838.

730 Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann,  
731 C., Jenkinson, M., and Smith, S. M. (2009). “Bayesian analysis of neuroimaging data in fsl.”  
732 *Neuroimage*, 45(1), S173–S186.

733 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., and Alexander, D. C. (2012). “NODDI: Practi-  
734 cal in vivo neurite orientation dispersion and density imaging of the human brain.” *NeuroImage*,  
735 61(4), 1000–1016.

736 Zhang, Y., Brady, J. M., and Smith, S. (2000). “Hidden markov random field model for segmentation  
737 of brain mr image.” *Medical Imaging 2000: Image Processing*, Vol. 3979, International Society  
738 for Optics and Photonics, 1126–1137.

739 Zucchelli, M., Deslauriers-Gauthier, S., and Deriche, R. (2020). “A computational Framework  
740 for generating rotation invariant features and its application in diffusion MRI.” *Medical Image  
741 Analysis*, 60, 101597.