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ABSTRACT8

Biophysical models that attempt to infer real-world quantities from data usually have many9

free parameters. This over-parameterisation can result in degeneracies in model inversion and10

render parameter estimation ill-posed. However, in many applications, we are not interested11

in quantifying the parameters per se, but rather in identifying changes in parameters between12

experimental conditions (e.g. patients vs controls). Here we present a Bayesian framework to13

make inference on changes in the parameters of biophysical models even when model inversion is14

degenerate, which we refer to as Bayesian EstimatioN of CHange (BENCH).15

We infer the parameter changes in two steps; First, we train models that can estimate the pattern16

of change in the measurements given any hypothetical direction of change in the parameters using17

simulations. Next, for any pair of real data sets, we use these pre-trained models to estimate the18

probability that an observed difference in the data can be explained by each model of change.19

BENCH is applicable to any type of data and models and particularly useful for biophysical20

models with parameter degeneracies, where we can assume the change is sparse. In this paper,21

we apply the approach in the context of microstructural modelling of diffusion MRI data, where22

the models are usually over-parameterised and not invertible without injecting strong assumptions.23
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Using simulations, we show that in the context of the standard model of white matter our approach24

is able to identify changes in microstructural parameters from conventional multi-shell diffusion25

MRI data. We also apply our approach to a subset of subjects from the UK-Biobank Imaging to26

identify the dominant standard model parameter change in areas of white matter hyperintensities27

under the assumption that the standard model holds in white matter hyperintensities.28

INTRODUCTION29

Modelling diffusion MRI (dMRI) data comes in two flavours. Phenomenological models,30

such as diffusion tensor imaging (DTI) (Basser et al. 1994) and diffusion kurtosis imaging (DKI)31

(Jensen et al. 2005)) attempt to describe the diffusion signal in a structured mathematical form,while32

(bio)physical models such as the standard model (Novikov et al. 2019a), NODDI (Zhang et al. 2012),33

Ball and Rackets (Sotiropoulos et al. 2012) and AxCaliber (Assaf et al. 2008)) attempt to infer34

properties of the tissue microstructure given the data. This active field of research relies on the35

inversion of biophysical forward models, but it is also notoriously difficult to overcome model36

degeneracies (Jelescu et al. 2016). To resolve these degeneracies, the conventional approach is to37

constrain a subset of the parameters and only make inferences on the remaining parameters (Zhang38

et al. 2012). However, when the assumptions are not accurate (e.g., in diseased tissue), they will39

bias the estimated model parameters and cause errors in interpretation. As a result, not only is there40

a limit to the number of microstructural parameters that can be estimated, but the reliability of the41

estimated parameters can also be questionable (Jelescu et al. 2016; Reisert et al. 2017; Lampinen42

et al. 2019).43

It is worth mentioning that there are efforts on acquiring complementary information using44

for example multiple diffusion encoding (Reisert et al. 2019; Coelho et al. 2019; Lampinen et al.45

2020), as well as introducing more biophysically informed priors to limit the search space, to46

provide enough constraints to uniquely estimate the parameters of the standard model. However,47

here we adopt the standard model of white matter fitted to conventional multi-shell diffusion MRI48

data as a well-studied degenerate model merely as a toy example to illustrate the concept.49

However, in many real-world applications, the model parameters may not be of direct interest.50
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Figure 1. Illustration of the inversion-free inference on change (BENCH). Consider a toy model with two parameters
and two measurements M(𝑣1, 𝑣2) = [𝑚1, 𝑚2]. Each oval in the parameter space (left) corresponds to a single point in
the measurement space (right) with the same color; meaning that there is a one to many mapping from measurements
to parameters (i.e., the model is degenerate). Despite the degeneracies we are able to estimate which of the parameters
best explains the change in the measurements. We do so by comparing the observed change (Δ𝑦) with the expected
change in the measurements (𝜇1, 𝜇2) as a result of each hypothesised pattern of change ( ˆΔ𝑣1, ˆΔ𝑣2).

Rather, we are often interested in the “change” in the parameters under different experimental51

conditions. For example, to study mechanisms underlying a disease one might compare the52

parameter estimates of biophysical models between patient and control groups. However, the53

parameter estimation is only tractable when the model of interest is invertible given the data. This54

limits one to simple biophysical models or requires injection of prior assumptions.55

In this work, we show that we can make precise inferences on the change in model parameters56

even in complex degenerate models. We argue that, using a sparsity assumption on the pattern57

of change, we can limit the hypothesis space, and so circumvent the degeneracy in the parameter58

estimation (see Figure 1, also refer to A for more details about directly inferring changes). Our59

approach proceeds in two steps: First, we use simulated data generated from a forward model to60

train models that calculate how each parameter affects the measurements. Once these models of61

change have been trained for all hypothetical patterns of change, we use them to infer the posterior62

probability of which pattern of change in parameter(s) can best explain the change between real63

datasets. We call this approach BENCH, which stands for Bayesian EstimatioN of CHange.64

When confronted with a degenerate biophysical model, BENCH makes a different set of65
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assumptions from the traditional approach of fixing some parameters and identifying any change66

in the remaining free parameters. When comparing patients and controls, the traditional approach67

assumes that the prior values for the fixed parameters hold across the region of interest in both68

groups. Hence, any change of signal across the region of interest between the two groups is assumed69

to be fully explained by the predetermined set of free parameters. In contrast, by not relying on70

model inversion, BENCH can work directly with the degenerate biophysical model without fixing71

any parameters. However, this comes at the price of limiting the change to some predetermined set72

of possible patterns set by the user (e.g., parameter A could change, or parameter B increases by73

the same amount as parameter C decreases). While the number of such proposed microstructural74

changes can be large, each of them has to be sparse (i.e., they have a fewer degrees of freedom than75

the number of free parameters that could be estimated using the conventional approach). In this76

work, we will limit ourselves to changes of just one parameter at a time for the sake of simplicity77

of explanation.78

BENCH is applicable to any situation where we are interested in comparing parameters of79

a generative (bio)physical model across different conditions. Here we apply the framework to80

diffusion MRI microstructure modelling. As an example use case, we studied microstructural81

changes in White Matter Hyperintensities (WMH), which are extra bright regions that are commonly82

seen in T2-weighted images at specific brain regions in elderly people. Despite the abundance83

and clinical implications of WMHs (Prins and Scheltens 2015; Debette and Markus 2010), the84

underlying changes in the histopathology and microstructure remain unknown (Wardlaw et al.85

2013; Gouw et al. 2011).86

The structure of this paper is as follows. In the Theory section, we present the general inference87

method and how we train the models of change. In the Methods section, we cover the diffusion-88

specific materials including the computation of summary measurements that are used to represent89

diffusion data and the microstructural model for diffusion MRI. In the Results section, we first90

demonstrate the ability of our model in detecting the underlying parameter changes using simulated91

data. We then apply the method to study microstructural changes in white matter hyperintensities92
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as an example application. In the Discussion section, the potential applications, limitations, and93

possible future directions of this work are presented.94

THEORY95

Inference on change in parameters96

Given a baseline measurement (y), an observed change in the measurement (Δ𝑦), and a gen-97

erative biophysical model (M), we aim to investigate what pattern of change (Δ̂𝑣) in the model98

parameters (𝑣) can best explain this observed change in the measurements (Figure 1). A pattern99

of change is a unit vector in the parameter space, e.g. it can be a change in a single parameter, or100

any linear combination of the model parameters. For simplicity of the explanations and notation,101

we only assume a single parameter change in the rest of paper, but all the equations apply to any102

linear combination of the parameters. If the model is invertible, we may directly estimate Δ𝑣 by103

inverting the model on y and 𝑦 +Δ𝑦 to get the corresponding parameter estimates and calculate the104

differences. Alternatively, in BENCH we estimate 𝑃(Δ̂𝑣 | 𝑦,Δ𝑦), that is the posterior probability105

for the pattern of change Δ̂𝑣 conditioned on the observed baseline (𝑦) and change in the data(Δ𝑦).106

Using Bayes’ rule:107

𝑃(Δ̂𝑣 | 𝑦,Δ𝑦) = 𝑃(Δ𝑦 | 𝑦, Δ̂𝑣)𝑃(Δ̂𝑣 | 𝑦)∑
Δ̂𝑣

′ 𝑃(Δ𝑦 | 𝑦, Δ̂𝑣′)𝑃(Δ̂𝑣′ | 𝑦)
(1)108

We assume no prior preference between the patterns of change given the baseline measure-109

ments(i.e. 𝑃(Δ̂𝑣 | 𝑦) is uniform), so to estimate the posterior probabilities we only need to estimate110

the likelihood term 𝑃(Δ𝑦 |𝑦, Δ̂𝑣). The pattern of change Δ̂𝑣 represents the direction but not the111

amount of the change in the parameters. We therefore marginalize the likelihood with respect to112

the amount of change ( |Δ𝑣 |):113

𝑃(Δ𝑦 | 𝑦, Δ̂𝑣) =
∫

𝑃(|Δ𝑣 |)𝑃(Δ𝑦 | 𝑦, Δ̂𝑣,|Δ𝑣 |)𝑑 |Δ𝑣 | (2)114

We assume that the prior distribution for the amount of change follows a log-normal pdf with a115

fixed mean and scale parameter (adjustable hyper parameters). A log-normal PDF is chosen to116

allow for changes across several order of magnitudes.117
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The likelihood term inside the integral, 𝑃(Δ𝑦 |𝑦, Δ̂𝑣,|Δ𝑣 |), defines how the measurements change118

as a result of a fully characterised vector of change in the parameters with the given direction (Δ̂𝑣)119

and amount (|Δ𝑣 |). To relate this parameter change to a change in data one also needs to know the120

baseline parameters (𝑣), as121

Δ𝑦 = M(𝑣 +|Δ𝑣 | Δ̂𝑣) −M(𝑣) + 𝜖 (3)122

where 𝜖 is the measurement noise. However, for a degenerate biophysical model, we cannot123

estimate a unique set of baseline parameters 𝑣 for which to estimate equation 3. While, one could124

integrate over all possible values of 𝑣, this is a very high-dimensional integral, which would be very125

computationally expensive. Instead, we propose an alternative way to avoid the need of estimating126

the baseline parameters to estimate the likelihood.127

Assuming that |Δ𝑣 | is reasonably small, and M is behaving smoothly w.r.t 𝑣, using a Taylor128

expansion we can express Δ𝑦 as:129

Δ𝑦 = ∇Δ̂𝑣M(𝑣) |Δ𝑣 | + 𝜖 (4)130

Where ∇Δ̂𝑣M(𝑣) is the gradient of M in the direction of Δ̂𝑣 at point 𝑣, and 𝜖 is the measurement131

noise. Given the baseline measurements (𝑦), but not the baseline parameters (𝑣), there can be an132

infinite number of ∇Δ̂𝑣M(𝑣) for a degenerate model (Figure 2). To account for all instances of the133

gradient, we model ∇Δ̂𝑣M given 𝑦 as a random variable that follows a normal distribution with134

hyperparameters 𝜇(𝑦) and Σ(𝑦), i.e.135

∇Δ̂𝑣M(𝑦) ∼ 𝑁 (𝜇Δ̂𝑣 (𝑦), ΣΔ̂𝑣 (𝑦)) (5)136

where 𝜇Δ̂𝑣 represents the average expected change in the measurements as a result of change in137

parameters in the direction Δ̂𝑣, ΣΔ̂𝑣 represents the uncertainty around this expectation due to the138

unknown baseline parameters (Figure 2), and 𝑁 (𝑚,𝐶) represents a Gaussian PDF with mean 𝑚 and139

covariance𝐶. This formulation allows us to transfer the uncertainty in the baseline parameters to an140
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uncertainty in the measurement space, which we can model and predict. In the next section we will141

describe a method for estimating 𝜇Δ̂𝑣 (𝑦) and ΣΔ̂𝑣 (𝑦) by training regression models using simulated142

data. Once we compute these hyperparameters, by inserting equation 5 back into equation 4 we143

can compute the likelihood term inside the integral by144

𝑃(Δ𝑦 | 𝑦, Δ̂𝑣,|Δ𝑣 |) = 𝑁 (|Δ𝑣 | 𝜇Δ̂𝑣 (𝑦),|Δ𝑣 |
2 ΣΔ̂𝑣 (𝑦) + Σ𝑛) (6)145

where Σ𝑛 is the noise covariance matrix.146

Finally, by computing the integral over the size of the parameter change in equation 2 numer-147

ically, we are able to approximate the likelihood function 𝑃(Δ𝑦 | 𝑦, Δ̂𝑣) which we can then use148

in equation (1) yielding the desired posterior distribution on the change in parameters. Moreover,149

using the approximation of the likelihood function in equation 6 the posterior probability of the150

amount of change for each direction is proportional to151

𝑃(|Δ𝑣 | | Δ𝑦, 𝑦, Δ̂𝑣) ∝ 𝑃(Δ𝑦 | 𝑦, Δ̂𝑣,|Δ𝑣 |)𝑃(|Δ𝑣 |) (7)152

Note that this likelihood function is unnormalized so a high or low values doesn’t necessarily reflect153

the quality of the change vector in explaining the data. For such measure please refer to appendix B.154

We can still estimate the most likely amount of change in the parameter given the measurements by155

finding the |Δ𝑣 | that maximizes the above posterior probability (maximum a posteriori estimation).156

Alternatively, we can estimate the expected value of the amount of change by integrating this157

posterior probability distribution multiplied by |Δ𝑣 | over |Δ𝑣 |.158

Training models of change159

In this section we describe how to train a regression model to estimate the hyperparameters of160

the distribution of ∇Δ̂𝑣M(𝑣), namely the average (𝜇Δ̂𝑣 (𝑦)) and uncertainty (ΣΔ̂𝑣 (𝑦)) of change in161

the measurement (𝑦) for a parameter change (Δ̂𝑣).162

Given some baseline parameters (𝑣) one can calculate the baseline measurements as 𝑦 = M(𝑣)163
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Figure 2. Distribution of gradients. The way measurements change as a result of a particular change in the parameters
can only be calculated if we know the baseline parameters. When we are only given the measurements, there are several
instances of equally likely gradient directions depending on the underlying baseline parameters. We model all of these
gradients given the baseline measurements as a random variable with a presumed distribution. This allows us to transfer
the uncertainty due to the inverse model degeneracy into the measurement space. The blue oval in the parameter space
(left) represents all the parameter settings that map onto the same blue point in measurement space(right). Each
of these parameter settings can produce a different gradient direction in the measurements space. The collection of
such gradients of change Δ̂𝑣 for the measurement 𝑦 are modelled as a Gaussian distribution with mean 𝜇Δ̂𝑣 (𝑦) and
covariance ΣΔ̂𝑣 (𝑦).

and approximate the gradient in direction Δ̂𝑣 using164

∇Δ̂𝑣M(𝑣) ≈ lim
𝑡→0

M(𝑣 + 𝑡Δ̂𝑣) −M(𝑣)
𝑡

(8)165

Therefore, by sampling 𝑣 from the parameter space using a prior distribution, we generate a166

simulated dataset of pairs [𝑦,∇Δ̂𝑣M] that we use for training regression models.167

We use a regression model parameterised by 𝑤𝜇Δ̂𝑣
to estimate 𝜇Δ̂𝑣 as:168

𝜇Δ̂𝑣 (𝑦;𝑤𝜇Δ̂𝑣
) = 𝐹 (𝑦).𝑤𝜇Δ̂𝑣

(9)169

where 𝐹 (𝑦) is the design matrix, which depends on arbitrary affine or non-linear transformations of170

𝑦. Note that the subscript 𝜇Δ̂𝑣 of the weights indicates that each pattern of change in the parameters171

has its own set of weights.172
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We also employ a regression model for the uncertainty hyperparameter ΣΔ̂𝑣 parameterised173

by 𝑤ΣΔ̂𝑣
. However, ΣΔ̂𝑣 must be positive definite, which would not be guaranteed when directly174

estimating ΣΔ̂𝑣 by training an element-wise regression model. To account for the positive definite175

nature of ΣΔ̂𝑣, we instead train regression models for elements of the lower triangular matrix of its176

Cholesky decomposition (𝐿). Also, since the diagonal elements of the lower-triangular matrix in177

Cholesky decomposition must be non-negative, we use their log-transform in the regression model.178

Hence179

ΣΔ̂𝑣 (𝑦;𝑤ΣΔ̂𝑣
) = T (𝐹 (𝑦).𝑤ΣΔ̂𝑣

) (10)180

whereT denotes the transformation of the regressed vector to the full covariance matrix that includes181

the arrangement of elements, exponentiation of the diagonals, and the matrix multiplication for182

inverse Cholesky decomposition.183

Putting back the above regression models into equation 5 the likelihood of observing pairs of184

baseline measurements and gradients in terms of the parameters of regression models is:185

𝐿 (𝑤𝜇Δ̂𝑣
, 𝑤ΣΔ̂𝑣

) =
∏
𝑖

𝑁 (∇Δ̂𝑣M𝑖; 𝐹 (𝑦𝑖).𝑤𝜇Δ̂𝑣
,T (𝐹 (𝑦𝑖).𝑤ΣΔ̂𝑣

)) (11)186

Accordingly, we estimate the optimal weights 𝑤𝜇Δ̂𝑣
, 𝑤ΣΔ̂𝑣

by maximizing the above likelihood187

function for the simulated pairs of [𝑦𝑖,∇Δ̂𝑣M𝑖] using a combination of the BFGS and Nelder-Mead188

methods as implemented in SciPy (Virtanen et al. 2020).189

This procedure is repeated for each hypothetical pattern of change, yielding two sets of weights190

for the average and uncertainty of change, which we refer to as a “ change model”. Once we estimated191

these weights, for any given baseline measurement we use the regression models in equations 9 and192

10 to estimate the distribution of derivatives and then the desired probability distributions. Figure193

3 shows a schematic overview of the inputs, outputs and steps that are required to train a change194

model, as well as how to use them to infer the change in parameters.195

In this work, we used a second degree polynomial function of the data for the regression196

models that estimate the mean change (𝜇Δ̂𝑣) from the baseline measurements. For the uncertainty197
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Figure 3. Schematic flowchart for training and inference using change models. The blue, white and green blocks
indicate user defined inputs, intermediate variables and outputs respectively. In the training phase for each parameter
change, samples that are drawn from the provided prior distribution are passed through the forward model to estimate
pairs of measurements and derivatives. Then, regression models are trained to estimate the distribution of derivatives
given the measurements using a maximum likelihood estimation. This phase does not require real data and needs to
be done only once. In the inference stage using these trained models we estimate the distribution of the derivatives for
any given baseline measurements. We then calculate the posterior probability that change in each parameter caused
the change in the measurements using the derivative distributions.

parameter (ΣΔ̂𝑣) a first degree (linear) model is chosen as we expect less variability across samples198

for this hyperparameter. The weights for the regression models were estimated using a maximum199

likelihood optimization and a training dataset with 100,000 simulated samples.200

Biophysical model of diffusion201

In this section we explain the biophysical model of diffusion that we used to model brain202

microstructure with diffusion MRI data. The diffusion signal 𝑆 in the brain is conventionally203

modelled as the sum of signals from multiple compartments. We will here adopt the three-204

compartment standard model (Novikov et al. 2019a) consisting of an isotropic free water (denoted205
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by the subscript “iso”), an intra-axonal ( “in”), and an extra-axonal ( “ex”) compartment:206

𝑆 = 𝑆𝑖𝑠𝑜𝐴𝑖𝑠𝑜 + 𝑆𝑖𝑛𝐴𝑖𝑛 + 𝑆𝑒𝑥𝐴𝑒𝑥 (12)207

where 𝑆𝑖 represents the baseline signal contribution (at 𝑏 = 0), and 𝐴𝑖 represents the signal208

attenuation due to the diffusion weighting in each compartment (Figure 4).209

The attenuation for the isotropic compartment is modelled as an exponential decay:210

𝐴𝑖𝑠𝑜 = 𝑒−𝑏𝑑𝑖𝑠𝑜 (13)211

where 𝑑𝑖𝑠𝑜 is the diffusion coefficient of free water.212

The intra-axonal compartment is modelled as a set of dispersed identical sticks with no per-213

pendicular diffusivity. The stick response function for gradient direction 𝑔 and b-value 𝑏 is given214

by215

𝑅(𝑏, 𝑔; 𝜇, 𝑑𝑖𝑛,𝑎) = 𝑒−𝑏𝑑𝑖𝑛,𝑎 (𝜇
𝑇𝑔)2 (14)216

where 𝑑𝑖𝑛,𝑎 is the diffusion coefficient along the orientation of the stick 𝜇.217

The fibre Orientation Distribution Function (fODF) is modelled with a Watson distribution,218

which is defined as219

𝑓 (𝑥) = 1
𝑐
𝑒𝜅(𝜇

𝑇𝑥)2 (15)220

where 𝜇 is the average orientation, 𝜅 is the concentration coefficient and 𝑐 is a normalization221

constant. To assimilate the dispersion coefficient to the notion of variance and limit it to a222

bounded range, we use the change of variable from 𝜅 to Orientation Dispersion Index (ODI) as223

𝑂𝐷𝐼 = 2
𝜋 arctan( 1

𝜅 ). Unlike 𝜅 which is unbounded, 𝑂𝐷𝐼 is limited to the range (0, 1), where higher224

𝑂𝐷𝐼 values correspond to more dispersion. So, the diffusion signal for this compartment is the225

spherical convolution of the fiber response function with the Watson ODF:226

𝐴𝑖𝑛 =
∬

𝑆2
𝑒−𝑏𝑑𝑖𝑛,𝑎 (𝑔

𝑇𝑛)2 1
𝑐
𝑒

2
𝜋 𝑡𝑎𝑛

−1 (𝑂𝐷𝐼) (𝜇𝑇𝑛)2𝑑𝑛 (16)227
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where the integral is over the surface of the unit sphere 𝑆2 representing all possible fibre orientations228

in 3D.229

The extra-axonal compartment is modelled similar to the intra-axonal compartment, with the230

addition of a non-zero diffusion perpendicular to the fiber orientation. The fiber response function231

in this case is given by232

𝑅 = 𝑒−𝑏[𝑑𝑒𝑥,𝑎 (𝜇
𝑇𝑔)2+𝑑𝑒𝑥,𝑟 (1−(𝜇𝑇𝑔)2)] (17)233

where 𝑑𝑒𝑥,𝑟 ≤ 𝑑𝑒𝑥,𝑎 are the radial and axial diffusion coefficients. To avoid this dependence between234

the diffusivity parameters, the parameter 𝜏 defined as the ratio of perpendicular to parallel diffusivity235

is used as a substitute to 𝑑𝑒𝑥,𝑟 . The free parameter 𝜏 - subject to 𝜏 ∈ [0, 1] to maintain the inequality236

constraint for the diffusivities - can be considered as a measure of tortuosity as it measures the237

extent to which water diffusion perpendicular to the fibre orientation is hindered with respect to the238

parallel diffusion. Therefore, the fiber response function for the extra axonal compartment is239

𝑅 = 𝑒−𝑏𝑑𝑒𝑥,𝑎 [(𝜇
𝑇𝑔)2+𝜏(1−(𝜇𝑇𝑔)2)] (18)240

As the compartments share the same geometry, the same fibre orientation distribution is used.241

Accordingly, the signal attenuation for extra-axonal compartment is given by242

𝐴𝑒𝑥 =
∬

𝑆2
𝑒−𝑏𝑑𝑒𝑥,𝑎 [(𝜇

𝑇𝑔)2+𝜏(1−(𝜇𝑇𝑔)2)] 1
𝑐
𝑒

2
𝜋 𝑡𝑎𝑛

−1 (𝑂𝐷𝐼)(𝜇𝑇𝑛)2𝑑𝑛 (19)243

We use the confluent hypergeometric function of the first kind with matrix argument to compute244

the integrals for both intra and extra axonal compartments similar to (Sotiropoulos et al. 2012).245

Table 1 summarises all the free parameters of the described biophysical model along with their246

valid range.247

Summary measurements248

Diffusion MRI data are usually measured in multiple shells to capture tissue properties that are249

sensitive to diffusion of water molecules at various spatial scales. Within each shell, gradients are250
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Parameter Description Range
𝑠𝑖𝑠𝑜 Signal fraction for isotropic (free water) diffusion compartment [0, 1]
𝑠𝑖𝑛 Signal fraction for intra-axonal compartment [0, 1]
𝑠𝑒𝑥 Signal fraction for extra-axonal compartment [0, 1]
𝑑𝑖𝑠𝑜 Isotropic (free water) diffusivity coefficient [0,∞]
𝑑𝑖𝑛,𝑎 Parallel diffusivity for the intra-axonal compartment [0,∞]
𝑑𝑒𝑥,𝑎 Parallel diffusivity for the extra-axonal compartment [0,∞]
𝜏 radial to axial diffusivity ratio for the extra-axonal compartment [0, 1]

𝑂𝐷𝐼 Orientation dispersion index [0, 1)

TABLE 1. Microstructural parameters of the diffusion model. All diffusion coefficients are in 𝜇𝑚2/𝑚𝑠

Figure 4. Compartments of the diffusion model. We use a three compartment model that can describe diffusion MRI
signals from various brain tissues namely CSF, white matter and gray matter. The isotropic compartment models
unrestricted diffusion of water molecules outside of tissue (CSF) with a single free parameter 𝑑𝑖𝑠𝑜. The intra-axonal
compartment models the diffusion of water within axons as several sticks with identical parallel diffusivity parameter
𝑑𝑖𝑛,𝑎, and zero radial diffusivity, that are dispersed by a Watson distribution with orientation dispersion index 𝑂𝐷𝐼.
The extra-axonal compartment is also a Watson dispersed zeppelin with parallel diffusivity 𝑑𝑒𝑥,𝑎 and perpendicular
diffusivity 𝑑𝑒𝑥,𝑟 = 𝜏𝑑𝑒𝑥,𝑎. Including the signal fraction parameters (𝑠𝑖𝑠𝑜, 𝑠𝑖𝑛, 𝑠𝑒𝑥) this model has 8 free parameters,
which are more than that can be fitted to a conventional dMRI data.

applied in several directions to measure the geometrical structure of the tissue. However, since251

we are only interested in the microstructural characteristics, any orientation-related information252

is irrelevant. We therefore need summary measurements from each shell that are invariant to253

orientations. We create these summary measurements using real spherical harmonics, which are254
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analogous to the Fourier transform for the spherical domain.255

Spherical harmonics are a complete set of orthonormal functions over the surface of a unit256

sphere. That is to say, any bounded real function that is defined over the unit sphere can be257

represented by a unique linear combination of these functions with real coefficients. Each real258

spherical harmonic is denoted by 𝑌𝑙,𝑚 (𝜃, 𝜙) where 𝑙 = 0, 1, 2, ... is the degree and 𝑚 = −𝑙, ..., 𝑙 is259

the order, and 𝜃 ∈ [0, 𝜋] , 𝜙 ∈ [−𝜋, 𝜋] are the polar and longitudinal angles in standard spherical260

coordinate system respectively. The diffusion signal at each shell is decomposed as:261

𝑆(𝜃, 𝜙) =
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝐶𝑙,𝑚𝑌𝑙,𝑚 (𝜃, 𝜙) (20)262

Since the harmonics are a linear basis, one can easily calculate the coefficients for the signal in each263

shell by inverting the design matrix formed by the harmonics sampled at the gradient directions.264

The coefficients are not orientationally invariant. However, the total power in each degree,265

which is defined as the vector norm of all the corresponding coefficients, is rotationally invariant266

(Kazhdan et al. 2003; Zucchelli et al. 2020; Novikova et al. 2018). Also, since the diffusion signal267

is symmetric around the origin and the harmonics of odd degree are odd functions (anti-symmetric268

w.r.t origin), all odd degrees have zero coefficients.269

Consequently, for each shell of diffusion data, we calculate the mean squares of all coefficients270

for degrees 𝑙 = 0, 2, 4, ... as the orientationally-invariant summary measurements.271

𝑦𝑙 =
1

2𝑙 + 1

𝑙∑
𝑚=−𝑙

𝐶2
𝑙,𝑚 (21)272

The mean is chosen over the norm to make the scale equal across all degrees. For the case of273

𝑙 = 0, we simply use the only coefficient (without the square), so that it represents the mean signal.274

The higher order summary measurements quantify the signal anisotropy; with greater 𝑙 being more275

sensitive to sharper changes. We used a logarithm transformation on the power of the coefficients276

to make the distribution of the measurements for real data closer to a Gaussian and also being more277

sensitive to smaller changes.278
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METHODS279

Simulations280

For all the simulations we used the acquisition protocol conducted by the UK Biobank (UKB)281

(Miller et al. 2016; Alfaro-Almagro et al. 2018) which includes two shells of diffusion (𝑏 = 1, 2 ms
𝜇m2 )282

with linear diffusion encoding. Each shell consists of 50 gradient directions distributed uniformly283

over the surface of the unit sphere, in addition to 5 acquisitions with 𝑏 = 0, yielding a total of 105284

measurements.285

We used the rotationally invariant summary measurements computed from spherical harmonics286

for signal representation. The summary measurements for each shell are norms of coefficients at287

𝑙 = 0 (absolute value) and 𝑙 = 2 (log mean squared). This produces 5 rotational invariant summary288

measurements from a diffusion data, namely b0-mean, b1-mean, b1-l2, b2-mean, and b2-l2.289

The described standard model for diffusion is used for both simulated test data and for training290

models of change. The prior distributions for the parameters are shown in figure 5. We note that291

these priors are not used for constraining the model parameters but rather they are used to generate292

training samples for the regression models. The choice of the prior distributions is arbitrary as long293

as they can reflect all hypothetical parameter combinations that can produce measurements similar294

to real data.295

The standard model is not invertible given a conventional multishell diffusion data with linear

diffusion encoding (Novikov et al. 2019a; Jelescu et al. 2016) . Typically, additional constraints

are imposed to render the model invertible, e.g. in NODDI (Zhang et al. 2012), the diffusion

coefficients are fixed to a prior value as follows:

𝑑𝑖𝑠𝑜 = 3
𝜇𝑚2

𝑚𝑠
, 𝑑𝑖𝑛,𝑎 = 𝑑𝑒𝑥,𝑎 = 1.7

𝜇𝑚2

𝑚𝑠

Additionally, the tortuosity parameter 𝜏 is coupled to the signal fractions:296

𝜏 =
𝑠𝑖𝑛

𝑠𝑖𝑛 + 𝑠𝑒𝑥
(22)297
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Figure 5. Prior distributions for the parameters of the standard model. These priors are used for generating
pairs of measurements and gradients for training the models of change. Also, the same priors are used for simulating
test datasets. The priors are chosen such that they contain all probable parameter combinations that can produce
measurements similar to real data. The delta function along with uniform distribution in the isotropic signal fraction
is used to model pure tissue types as well as partial volume effect. In the training phase, the signal fractions are
normalized to sum up to 1. A beta (shape parameters 𝛼 = 2, 𝛽 = 5) distribution is used for 𝑂𝐷𝐼 to impose a nearly
uniform distribution for effective fibre dispersion. The prior for isotropic and axial diffusivities are normal distributions
with mean 3 and 1.7 ( 𝜇𝑚

2

𝑚𝑠 ) and standard deviation 0.1 and 0.3 respectively; as we expect faster diffusion as well as less
variability in the free water component.

Accordingly, this constrained model has four free parameters: 𝑠𝑖𝑠𝑜, 𝑠𝑖𝑛, 𝑠𝑒𝑥 and 𝑂𝐷𝐼.298

For both the constrained and unconstrained models, we generated a test dataset containing299

pairs of simulated diffusion signals, such that in each pair at most one microstructural parameter is300

different. To generate each pair, we sample a baseline parameter setting from the prior distributions301

and change one of the parameters by an effect size of 0.1. We also generate pairs of data where no302

parameter changes and the difference between the two samples is only due to the addition of noise.303

We then apply the forward model to both parameter settings to produce diffusion MRI signals.304

Gaussian noise with standard deviation 𝜎𝑛 = 0.01 (SNR=100) is added to all diffusion signals.305

The signal fraction parameters are constrained to sum up to 1 for training models of change.306

Note that whilst this imposes a constraint that the b0-mean for the baseline measurement is equal307
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to 1, it does not constrain a change in that summary measurement. Accordingly, all the summary308

measurements (both in the baseline and the change) are normalized by the b0-mean of the baseline309

measurement for any real data. This differs from the parameterization in conventional NODDI,310

where there is a constraint on the signal fractions to sum up to 1, and add a separate b0 parameter311

that is directly estimated from b0 signal. Instead, here we assume all the signal fraction parameters312

can change independently.313

For the direct inversion approach, a maximum a posteriori algorithm is employed to estimate314

the parameters of the constrained model from each diffusion signal separately. Then using a z-test315

across the parameter estimates in each pair, we calculate a p-value for the change in each parameter316

(corrected for multiple comparisons across parameters). The parameter with the minimum p-value317

is identified as the changed parameter. All the cases with minimum 𝑝 > 0.05 are identified as no318

change.319

We also used BENCH for identifying change on the same dataset. To estimate the noise320

covariance in the summary measurements Σ𝑛, 100 noisy instances of signals were generated, and321

the sample covariance of the difference between summary measurements in each pair was estimated.322

We then estimated the posterior probability of change in each parameter using the trained models323

of change. The no change model has a zero mean and covariance Σ𝑛 everywhere. The change324

model with the maximum posterior probability is selected as the predicted change.325

White matter hyperintensities326

We investigate the possible microstructural changes in white matter hyperintensities (WMH)327

using BENCH and model inversion. In this experiment, we used diffusion MRI of 3000 randomly328

selected subjects from the UK biobank dataset. To account for the variability in overall intensity329

across subjects, we divided each subject’s diffusion data by the average intensity of the b0 image330

across the brain’s white and grey matter extracted using FSL FAST (Zhang et al. 2000). We then331

computed the spherical harmonics-based summary measurements from the diffusion MRI data332

for each subject and interpolated these measures into the standard MNI space using non-linear333

transformations estimated by FSL FNIRT (Woolrich et al. 2009; Andersson et al. 2019).334
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Segmentations of the WMHs were generated from T2 FLAIR images using FSL’s BIANCA335

(Griffanti et al. 2016) as part of the UK Biobank pipeline (Miller et al. 2016). We computed the336

average summary measurements for Normally Appearing White Matter (NAWM) that are voxels337

within the white matter mask not classified as WMH and the WMHs for all voxels that included338

more than 10 subjects with WMH. For each voxel, subjects were split into two groups according339

to whether the voxel has been classified as WMH or not. Averaging the summary measures within340

groups provides us with the baseline measurement (𝑦) and the observed change (Δ𝑦) related to341

WMH. The noise covariance (Σ𝑛) in each voxel was estimated using the within group covariance342

matrix divided by the number of subjects in the normal appearing white matter group.343

RESULTS344

Summary measurements345

A representative axial slice of the normalized summary measurements from a single subject are346

shown in Figure 6. The "mean" summary measures represent the normalised average signal. The347

𝑙2 measures quantify the anisotropy in each voxel (similar to Fractional Anisotropy maps in DTI).348

The bottom panels of Figure 6 show histograms of the summary measurements across the brain349

for the same subject, as well as distributions of simulated data based on prior distributions over the350

model parameters. The distribution for the generated samples fully covers the range of the data351

and follows a very similar density distribution. This verifies that the prior distributions are wide352

enough to capture the full range of real data.353

Figure 7 shows estimated derivatives of the summary measurements at baseline data repre-354

sentative of putative voxels in the white matter and grey matter. The error bars show estimated355

standard deviations of the derivatives (the square root of diagonals of the estimated covariance356

matrix). This variance is reflecting the uncertainty in the underlying parameters that can generate357

these measurements, as well as residuals of the regression model for the mean.358
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Figure 6. Maps of the summary measurements for a sample subject in the UK biobank dataset (top) and their histogram
(bottom). The mean summary measurements is reflecting the average (across directions) diffusivity in each shell. The
𝑙2 summary measurements estimate the anisotropy, which is similar to the fractional anisotropy (FA), but computed
with a linear transformation of the signal. Histograms show the distribution of these measurements across the brain;
as well as the distribution of simulated data using the standard model and provided prior distributions. This shows that
the simulations capture the full range of the summary measures from real data.
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Figure 7. The estimated amount of change in the summary measurements as a result of a unit change in each parameter
(𝜇Δ̂𝑣) for a sample white matter and grey matter voxel. The error bars show the estimated standard deviation of change.
Colors correspond to parameters and columns indicate summary measurements. Due to differences in the baseline,
each voxel can have a different change vector for the same parameter change. This added degree of freedom can model
the variability of parameters (e.g. diffusivities) across the brain, which is not considered in constrained models; e.g.
NODDI.
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Validation359

We first employed simulated data to evaluate the performance of the proposed approach in360

inferring microstructural changes from diffusion MRI data. The details of experiment parameters361

are provided in the methods section.362

Comparison with model inversion363

Figure 8a shows the confusion matrix using model inversion (left), and our inversion-free364

approach (right) for an invertible model with only 4 free parameters. Each element of these matrices365

represents the percentage of times a change in the parameter represented at the corresponding366

column is identified as a change in the corresponding row. Both approaches were able to detect the367

true parameter change in most of the cases.368

For the standard model with all 8 free parameters, Figure 8b shows the confusion matrices369

using the direct model inversion (left) and change estimation (right). Since the uncertainties of the370

parameter estimates are very large due to the model degeneracies, almost all of the changes are371

confused with no change when using direct inversion. However, the inversion-free approach is able372

to identify changes in 𝑠𝑖𝑠𝑜, 𝑠𝑖𝑛, 𝑠𝑒𝑥 and 𝑂𝐷𝐼. Although, there is confusion between the remaining373

parameters compared to the restricted model, here we do not make any strong assumptions on374

the value of those parameters. Also, most of the confusions for these parameters are between375

them, meaning that we are able to distinguish a change in those parameters (e.g. the diffusivity376

parameters) from others. Change in isotropic diffusivity is mostly confused with the no change377

model. This is due to the 𝑏-values in the UKB protocol which are too high for this parameter; a378

change in this parameter has minimal effect on the signal.379
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(a) Confusion matrices for the constrained model using parameter estimation and BENCH.

(b) Confusion matrices for the full model using parameter estimation and change estimation.

Figure 8. a) The numbers indicate the percentage of time a change in the corresponding column is identified as a
change in the corresponding row. The diagonal elements show the accuracy in identifying true change. a) Both of
the approaches performed near to ideal in detecting the true change in the case of constrained model. The change
estimation has more false positives, but unlike the inversion approach, we did not explicitly define a false positive rate
threshold. b) Given diffusion data at few shells, the full model is not invertible, i.e. the parameter estimates have a high
variance. Therefore, almost no significant change is detected using parameter estimates. On the other hand, the change
estimation approach can still identify changes in all the parameters of the restricted model. Although there remains
confusion between a subset of the parameters since these have similar effects on the diffusion signal.
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Sensitivity to change in each parameter380

To evaluate the sensitivity of the approach to the amount of change in each parameter, we381

generated test datasets with variable effect sizes starting from 0 to 0.1 with step sizes of 0.01.382

Figure 9a shows the average posterior probability of change in each parameter versus the effect383

size. In all types of change, at very small effect sizes (< 0.01 ) the change is confused with no384

change, but as the effect size increases the probability of identifying the true change (red curves)385

increases. Changes in all signal fraction parameters and in the fibre dispersion are identified with386

high accuracy even at very small effect sizes. However, changes in diffusivity parameters are387

confused with each other (but not with signal fraction parameters) even at larger effect sizes. It is388

worth mentioning that effect size and SNR are two important factors (both unknown in real data)389

that affect the performance of detection in a similar way. So, when SNR is lower (resp. higher) the390

approach can be more (resp. less) sensitive to the change. Here we show the results for SNR=100.391

Estimating the amount of change392

So far we have only examined the posterior probabilities relating to the identity of the parameters393

that can best explain a change. However our framework also allows us to estimate the posterior394

probability on the amount of change for each parameter 𝑃(|Δ𝑣 | | 𝑦, 𝑑𝑦, Δ̂𝑣) (eq.7). Figure 9b395

shows the estimated (maximum a posteriori estimation) versus actual change in each parameter for396

different effect sizes.397
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(a) Estimated probability of change in each parameter.

(b) Estimated amount of change in each parameter.

Figure 9. a)Each plot shows the estimated probabilities when the corresponding parameter on the 𝑥−𝑎𝑥𝑖𝑠 has changed
between two datasets. Red curves show the average posterior probability of change in the actually changed parameter
versus the amount of change. The gray curves show the probability for other parameters. Shaded areas show the 10
to 90 percentile range. Larger absolute amount of change results in higher posterior probability for the true parameter
change. Change in the signal fraction parameters and𝑂𝐷𝐼 is distinguishable for effect sizes as small as 0.05. However,
changes in diffusivity parameters even at very large effect sizes is cluttered with other parameters. b) Each plot shows
the maximum a posteriori estimation of the amount of change vs the actual change in the parameter. The shaded areas
show the 10 to 90 interval. The estimated change in the signal fractions follow the identity line (dashed gray line).
The estimated change in 𝑑𝑖𝑠𝑜 is mostly around zero with a high variance as the posterior distribution is very flat and
symmetric around zero. The change in 𝑑𝑒𝑥,𝑎𝜏 and 𝑂𝐷𝐼 is systematically biased at higher effect sizes.
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White matter hyperintensities398

Model Inversion399

We inverted the NODDI model using non-linear fit implemented in DMIPY (Fick et al. 2019) in400

all subjects and ran a voxel wise glm to estimate the differences between white matter hyperinten-401

sities and normally appearing white matter (NAWM). Unlike in BENCH, NODDI requires fixing402

the diffusivity parameters. Usually, they are fixed to 𝑑𝑎,𝑖𝑛 = 𝑑𝑎,𝑒𝑥 = 1.7 𝜇𝑚2

𝑚𝑠 (and 𝑑𝑖𝑠𝑜 = 3.0 𝜇𝑚2

𝑚𝑠 ).403

However, it has been recently suggested that the axial diffusivity should be higher based on several404

studies attempting to directly measure their value (Howard et al. 2020; Kunz et al. 2018). We have405

therefore run the same analysis also with 𝑑𝑎,𝑖𝑛 = 𝑑𝑎,𝑒𝑥 = 2.5 𝜇𝑚2

𝑚𝑠 .406

The z-maps for the contrast of WMH vs the baseline for all the parameters are shown in Figure407

10. The strongest changes are seen in 𝑓𝑖𝑛𝑡𝑟𝑎 and it is consistent in both high and low diffusivity408

regimes. The direct inversion also suggests changes in the other two parameters ( 𝑓𝑖𝑠𝑜 and 𝑂𝐷𝐼).409

However, interestingly, changing the pre-specified diffusivities in NODDI alters the story for 𝑓𝑖𝑠𝑜410

and 𝑂𝐷𝐼 which go in opposite directions(see scatter plots in 10 many points(voxels) lie in the 2nd411

or 4th quarter). These results demonstrate that the choice of fixed parameter values can affect the412

inferred change in other parameters.413

BENCH414

We used the trained models of change on the parameters of the full (standard) model to infer415

changes in WMH. Figure 11a shows the observed change in the summary measurements (normalized416

by b0 mean of the baseline) in white matter hyperintensities (dashed line) as well as predictions417

from each model of change(colored bars) for average data from a small patch of white matter. For418

each parameter, the best amount of change given the baseline, the observed change and the noise419

covariance is estimated using equation 3. In other words, the bars indicate the closest change in the420

measurements that can be produced when only that parameter has changed.421

This plot suggest that the observed change in WMH is an increase in the b0_mean and b1_mean422

as well as an increase in anisotropy for the b1 shell. This pattern of change is better aligned with a423

positive change in 𝑠𝑒𝑥 than in any other parameter.424
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Figure 10. NODDI parameter estimates. Top) z-maps for the difference between WMH and normally appearing
white matter with the assumption 𝑑𝑖𝑛𝑡𝑟𝑎 = 𝑑𝑒𝑥𝑡𝑟𝑎 = 𝐷 = 1.7 𝜇𝑚2

𝑚𝑠 . Middle) The same maps with the assumption
𝑑𝑖𝑛𝑡𝑟𝑎 = 𝑑𝑒𝑥𝑡𝑟𝑎 = 𝐷 = 2.5 𝜇𝑚2

𝑚𝑠 . Bottom) Scatter plot of the z-values for the two cases. The results show the assumed
fixed value for the diffusivity significantly affects the estimated change between WMH and normal tissue for 𝑓𝑖𝑠𝑜 and
𝑂𝐷𝐼. However, the observed decrease in 𝑓𝑖𝑛𝑡𝑟𝑎 is fairly robust to the difference in diffusivities, and this is inline with
the results from BENCH.
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(a) The observed change in WMH and predicted change vectors.

(b) Estimated probability of change in each parameter of the standard model 𝑃 (Δ̂𝑣 | Δ𝑦, 𝑦) .

Figure 11. a) Each panel shows the estimated amount of change in the measurements if only the corresponding
parameter changes, along with the actual observed change in hyperintensities for a patch of voxels in white matter.
Each bar is scaled with the best estimated amount of change for that parameter. The observed change in WMH is an
increase in the mean-b0 and, to a lesser extent, and increase in mean-b1, and a positive change in the l2 measurements.
This is best aligned with the pattern of change that an increase in 𝑠𝑒𝑥 can produce. b) Each map shows the estimated
probability that change in the corresponding parameter can explain the observed change in the summary measurements
between WMH and NAWM at a single axial slice of the brain. The no change model represents the null hypothesis
that the change is better explained by noise rather than a change in any one of these parameters. In the majority of the
voxels, the change model for 𝑠𝑒𝑥 has a probability around 1 (yellow) and the remaining parameters are nearly zero(red).
This means that a change in 𝑠𝑒𝑥 is more likely to explain the observed change than any other single parameter change.

Figure 11b shows the estimated probability of change 𝑃(Δ̂𝑣 | Δ𝑦, 𝑦) for each parameter of425

the standard model for an axial slice of the brain in voxels that included more than 10 WMH426

samples(subjects). These probabilities are normalized to sum up to 1 for each voxel. The colors427
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indicate the probability that a change in the corresponding parameter can explain the observed428

changes in WMHs.429

Figure 12a shows the best explaining model of change in each voxel in a few axial slices of the430

brain. To check for the reproducibility of the results, we have divided subjects in two batches of431

equal size (1500 each) and repeated the whole pipeline. The inferred changes were highly similar432

in the two batches with average error of 0.4% in the estimated probability of change.433

In more than 65% of the voxels, that are mostly in deep white matter, the best model is a change434

in 𝑠𝑒𝑥 . However, in voxels adjacent to the ventricles, all other models compete and there is not435

a dominantly winning model. This might be due to a true difference in microstructure in these436

periventricular voxels, or may be caused by high variability across subjects due to CSF partial437

volume effects.438

Figure 12b shows the estimated amount of change in 𝑠𝑒𝑥 in voxels where this was the most439

probable parameter. In most of the voxels an increase in 𝑠𝑒𝑥 between 0 and 0.4 explains the440

observed change in WMH. The bottom right panel shows that the amount of change increases with441

distance from the ventricles, whereas in deep white matter the average amount of change remains442

relatively constant.443
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(a) Best explaining model of change in each voxel.

(b) Estimated amount of change in 𝑠𝑒𝑥 .

Figure 12. a) The colors indicate which model of change could best explain, i.e. had the highest posterior probability
given the observed change in the summary measurements between WMH and NAWM. In the majority of voxels ( 65%)
a change in 𝑠𝑒𝑥 explained the data better than any other model. However, in the regions very close to the ventricles
there is no major winning model. This can be either because of high between subject variability or a different type of
change that is not captured by the trained models of change. b) The maps show the estimated amount of change in 𝑠𝑒𝑥
in voxels where 𝑠𝑒𝑥 was the best model using a maximum a posteriori estimation Δ𝑠𝑒𝑥 = argmax

Δ𝑣
𝑃(Δ𝑣 | 𝑦,Δ𝑦, ˆΔ𝑠𝑒𝑥).

At most of the voxels the estimated amount of change is positive, meaning that an increase in 𝑠𝑒𝑥 can explain the change
in the summary measurements observed in the WMH voxels. The top right panel shows the distribution of estimated
amount of change at the voxels where change in 𝑠𝑒𝑥 was the best model. Most of the estimated changes are between 0
and 0.4. The bottom right panel shows the amount of change vs the distance (in millimeters) from the ventricles.

DISCUSSION444

We presented a Bayesian framework to directly infer changes in parameters of a biophysical445
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model from observed changes in a set of measurements. We applied the method to microstructural446

modelling of diffusion MRI, where biophysical models usually require many free parameters and447

are often degenerate.448

Comparison with model inversion449

The traditional approach to overcome these degeneracies is to constrain some of the parameters450

to biologically plausible values so that other parameters can be estimated using a conventional451

measurement (e.g., fixing the diffusivities in NODDI, (Zhang et al. 2012)). Such assumptions452

reduce the full model parameter space to a restricted subspace, where the model is invertible. This453

direct inversion approach has the advantage that it gives parameter estimates and that it can model454

any parameter change in this restricted subspace. However, violation of these assumptions can455

significantly bias the parameter estimates.456

Our proposed approach allows the initial set of parameters to lie anywhere within the full model457

parameter space (restricted only by broad user-defined priors); and any of these parameters might458

change. This extra flexibility comes at the price that the parameter changes are assumed to lie along459

1D lines in parameter space defined by the user-provided patterns of change Δ̂𝑣. For each of these460

hypothesized 1D change models, we estimate the posterior probability of such a change as well as461

the most likely amount given the baseline data and the change in it.462

To compare this assumption with that made by direct inversion, let us consider a biophysical463

model with 8 free parameters. Let us further assume that, due to the limited degrees of freedom464

in our model, we can only fit 3 out of these 8 parameters. In this case direct inversion would465

require assuming that the microstructural change is limited to a subset of three parameters, i.e., a466

3-dimensional subspace of the full 8-dimensional parameter space. In contrast, BENCH assumes467

by default that the change is caused by one out of the 8 parameters, which corresponds to the468

microstructural change lying in one of 8 one-dimensional lines in parameter space. This suggests469

that if one has prior knowledge of which microstructural parameters are likely to change, it might470

make sense to use direct inversion with those parameters as free parameters. BENCH would have471

the advantage in a more exploratory approach, where any of the underlying parameters might have472
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changed. However note that this comparison between approaches is complicated by the fact that473

using model inversion requires setting a subset of the parameters to some fixed value, which might474

cause a bias in the free parameters if inaccurately fixed (Jelescu et al. 2016; Novikov et al. 2019b).475

It is important to note that the user-defined prior distributions for parameters do not directly476

imply a prior value for the parameters. These priors are used to train the regression models and477

are required to be wide enough to capture all possible underlying parameter settings. Nevertheless,478

using broader priors only requires more complex machine learning models that can capture the479

variation in the relation between the measurements and their derivatives.480

In the proposed approach we train the models with simulated data once (without requiring any481

real data) and use the trained models to estimate the desired probabilities for any real data with the482

same acquisition protocol. This precomputation saves one from having to integrate over all possible483

initial parameters when inferring the parameter change in each voxel. Therefore, the inference on484

real data which only consist of a few 1d integrations for each voxel, runs much faster than the485

non-linear optimizations in alternative inversion approaches.486

The results from simulations suggest that we are able to identify changes in signal fraction487

accurately for the given brain-like measurement. However, there is a considerable confusion in the488

diffusivities, meaning that the change in these parameters is not distinguishable from one another.489

In simulations, we have only accounted for measurement noise, but in real data, particularly in490

cross-sectional studies, between-subject variability also contributes to noise. Hence, the reported491

performances and sensitivity to changes in parameters in the simulations section are more reliable492

when the between-subject variability is less important, for instance, in longitudinal studies. These493

accuracy values depend on the baseline measurements, underlying parameters, and the nature of494

how each parameter affects the measurements. Nevertheless, an important point is even in the495

case of full confusion in diffusivities, the results from the proposed approach is more reliable496

compared to the model inversion with fixed parameters. That is because a wrong prior for the fixed497

parameters can bias the estimates for other parameters, while in the proposed approach we avoid498

such assumptions. For example, in NODDI any changes in the B0 signal are usually ignored (as a499
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result of the sum constraint on the signal fractions), but in our approach we allow changes in the500

b0 signal to inform which microstructural parameter might have changed.501

In this paper we showed that setting a different value for diffusivities in NODDI can result502

in contradictory inference about changed parameters in white matter hyper intensities. The only503

consistent change was a decrease in the ratio of intra and extra axonal signal fractions which is504

in line with the results of BENCH (an increase in 𝑠𝑒𝑥 with no change in 𝑠𝑖𝑛). This analysis thus505

illustrates one of the main benefits of using BENCH: the results do not depend on some prespecified506

value of a parameter as we integrate over all possible values for the parameters rather than fixing507

them. Another advantage is that BENCH can provide a more specific explanation for the change,508

e.g. in this case as opposed to NODDI that only identifies a change in the ratio of the signal509

fractions, BENCH can specifically tell if it is a change in the extra axonal signal fraction.510

The fact that the approach doesn’t require the models to be invertible makes it applicable to511

studying changes in over-parameterised models or models without closed form analytical solution,512

e.g. simulation-based models. Such simulation-based models provide the opportunity to explore513

more complex and realistic models of diffusion in a tissue. There is no limitation in the number of514

parameters as long as they affect the observed data in some way. If several parameters cause the515

data to change in the same (or very similar way), this approach will give a list of possible parameters516

underlying the observed change with a probability associated with each. The resulting probability517

estimates can be used to eliminate unlikely change scenarios.518

We utilized the trained models of change for the parameters of the “standard” model for diffusion519

to investigate which microstructural changes can explain white matter hyperintensities. The results520

suggest that the change can be associated with an increase in the extracellular signal. This is in521

line with other findings using more complex diffusion encodings (Lampinen et al. 2019), who522

found an increase in the extracellular T2, which would lead to an increase in the extracellular523

signal contribution. Comparing with the inversion approach, here we did not assume diffusivities524

are fixed in various brain regions, but we assumed only one of the parameters has changed as a525

result of white matter hyperintensity. However, it is possible that simultaneous changes in multiple526
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parameters can better explain the change in the data, which could be tested in the same framework527

with the extended models of change. For example, a model with combination of the parameters528

might be able to explain a positive change in b0_mean and a negative change in b2_mean as it was529

observed in some voxels. Furthermore, we are limited to detect any changes within the constraints530

of the “standard” model. Hence, any changes in the signal in the white matter hyperintensities due531

to phenomena not within the “standard model” (e.g., exchange or non-Gaussian diffusion) would532

be misinterpreted as changes in the “standard” model parameters.533

Summary measures534

The choice of summary measurements to train change models is arbitrary, but this choice can535

affect the performance of the model. It is essential that the summary measurements are able to536

capture enough information from the data such that they are sensitive to changes in the parameters537

of interest and insensitive to other changes that are not part of the model parameters. For example,538

in our simulations we did not include the fibre orientation parameters as part of the free parameters,539

and therefore we required the summary measures to be rotationally invariant. Hence the choice540

of decomposing the signals in each shell into spherical harmonics to extract rotationally invariant541

summary measurements. Of course one can instead use other signal representations, such as542

measures derived from the diffusion tensor model, or the kurtosis tensor model, etc, to compute543

the summary measurements. We chose spherical harmonics over other choices as they are fast to544

calculate, and the bases are orthogonal which leads to summary measures that capture different545

aspects of the data.546

Future developments547

While in the examples shown here these patterns of change only altered a single parameter at a548

time, in the current framework the pattern of change can be any vector in parameter space. In the549

future we plan to extend this framework to allow for parameter changes in 2D or 3D hyperplanes550

rather than just along 1D lines (see Appendix A for the feasibility of this extension). However,551

the dimensionality of these hyperplanes will always be lower than that of the restricted parameter552

subspace in which parameters can freely change with the direct inversion approach. Note that553
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computing posterior probabilities in a full Bayesian framework allows for comparison between554

models of change with different complexities without the need for arbitrary regularisation.555

In addition, the model of change can be extended to study continuous changes (e.g. ageing), as556

opposed to discrete group differences as shown in this work. To do so, one first needs to compute the557

gradient of change in the measurements with respect to the independent variable, e.g. time, using a558

regression model. Then one can use the chain rule to relate the rate of change in the measurements559

to the rate of change in the parameters. Such an approach makes modelling continuous change a560

straightforward extension of this framework.561

Although here we mostly show how our method can be applied to detect changes in parameters562

given the data, our framework can also be used to optimize data acquisition protocols for detecting563

changes in particular parameters of interest. For example, in the simulations we show that it is564

difficult to detect a change in the free-diffusion parameter. Our framework can be used to extend565

the acquisition (e.g. by adding lower bvalues) and, using the output confusion matrices, establish566

an optimal set of b-shells to enable detection of change in free diffusion.567

Finally, while we applied the framework to the specific problem of studying microstructural568

changes using diffusion MRI in the brain, the framework is general meaning that it can be applied569

in any field where biophysical models are available. For example, the same approach as described570

in this paper can be applied to dynamical causal models (DCM) (Friston et al. 2003) for fMRI or571

MEG/EEG. These are notoriously over-parameterised, but often, are applied in a context where572

the values of the inferred parameters is of lesser interest than the change in the parameters under573

different experimental conditions, and its reasonable to assume the change is sparse; the ideal574

scenario for BENCH.575

SOFTWARE576

BENCH is an open source software implemented in python and available at https://git.577

fmrib.ox.ac.uk/hossein/bench.578
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APPENDIX A. TOY EXAMPLE: INFERRING CHANGES IN 2D591

Consider the forward model592

𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 (23)593

The model has 4 free parameters (𝑎, 𝑏, 𝑐, 𝑑). Given 3 measurements this model is degenerate,594

i.e., one cannot estimate all the parameters uniquely. Now consider two instances of this model595

with parameters (𝑎1, 𝑏1, 𝑐1, 𝑑1) and (𝑎2, 𝑏2, 𝑐2, 𝑑2) with 3 measurements for each. Obviously, this596

system is degenerate and parameter estimation is ill posed. However, if we are only interested in597

comparing two model instances, we can still infer changes by assuming that the change is sparse.598

This is the premise of BENCH.599

Now we will demonstrate that despite the model degeneracy, we can not only detect changes600

in a single parameter, but also infer simultaneous changes in pairs of parameters. Consider601

(𝑎1 = 1, 𝑏1 = 1, 𝑐1 = 1, 𝑑1 = 1) and (𝑎2 = 1.2, 𝑏2 = 0.8, 𝑐2 = 1, 𝑑2 = 1), i.e., Δ𝑎 = +0.2,Δ𝑏 =602

−0.2,Δ𝑐 = Δ𝑑 = 0.603

When using Monte Carlo simulations to infer parameters for each model given three independent604

measurements, the posterior distribution is clearly degenerate as shown in Figure 13a. In this figure,605
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the blue (resp. red) distribution shows the parameter estimates for (a, b) for the first (resp. second)606

data set. The intensity of each point encodes the log posterior probability for the estimated607

parameters. The stars show the true parameter values. The plot demonstrates that parameter608

estimates are highly correlated (i.e. the model is degenerate).609

In contrast, figure 13b shows Monte Carlo samples for Δ𝑎 and Δ𝑏 for the change model. The610

plot demonstrates that the estimated parameter changes are distributed around the true change value611

and each sample has a comparatively high posterior probability value. It is therefore possible to612

infer the true, 2-dimensional change.613

We also considered an alternative change model where a and b are fixed and c and d can614

change. The estimated samples for Δ𝑐 and Δ𝑑 are shown in Figure 13c. In this case the estimated615

samples have much lower posterior probabilities (lower intensities) than the a,b change model.616

Thus, we can use the change model to assess not only the amount of change in 2D, but also which617

pair of parameters best explains these changes. The changes are still sparse, but not necessarily618

1-dimensional.619

In BENCH we integrate the approximations of this unnormalized posterior probabilities to620

compute the the desired probabilities for each model of change in Eq. 1. Hence, it this example621

BENCH (once extended to allow multi-dimensional changes) would correctly infer that it was the622

parameters a and b that changed, and not the parameters c and d.623
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(a) Parameter estimation (b) Correct change model (c) Wrong change model

Figure 13. a) Parameter estimation. Each set of dots shows parameter estimates for one instance of the model using
MCMC and intensities represent the log posterior probability. The parameter estimates for each data set are highly
correlated and all of the points on the lines explain the data equally well, i.e. the models are degenerate and it is not
possible to directly compare the parameter estimates. B) Inferred change with the correct model. We ran MCMC with
the assumption that change has a particular shape (only a and b changed). The estimated values for Δ𝑎 and Δ𝑏 are
centred around the correct change (green star) and the unnormalized posterior probabilities are comparatively high. C)
Inferred change using a wrong model. We run a similar MCMC but this time assuming 𝑐 and 𝑑 can change. In this
case the estimated posterior probabilities are much smaller compared to the previous change model, i.e. this model of
change cannot explain the change in the measurements as well as the model in (b).

APPENDIX B. ESTIMATING QUALITY OF FIT624

The estimated probability in Eq.1 tells how well each model explains the observed change625

compared to all other defined change models, but it doesn’t necessarily reflect to what extent the626

observed and predicted change are matched. In other words, a model with a poor quality of fit to627

the data can get a high probability value because its prediction is the closest to data compared to628

all other models. Also, it is possible that more than one change model predict the data accurately629

and hence all get low probabilities in Eq.1.630

To estimate how well a change model can explain the change in data one can look at the631

chi-squared distance between the predictions of the change model and the measured change:632

𝑑 = (Δ𝑦 − 𝜇)𝑇Σ−1(Δ𝑦 − 𝜇) (24)633

In the above expression, Δ𝑦 is the observed change in the data, and 𝜇 and Σ are the mean and634

covariance of change in the measurements predicted by the best model. This statistic follows a635

chi-squared distribution and a higher 𝑑 means more discrepancy between the observed change and636
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the predicted change.637

Figure 14 shows the distribution of 𝑑 for the case of one parameter change that is explained by638

the correct model (blue) and the case of two parameter change that is mistakenly identified as a639

single parameter change (orange). Accordingly, our recommendation when the discrepancy is high640

is to consider revising the change models, as the winning model is poorly explaining the observed641

change. For example, one can define biologically feasible linear combinations of the parameters as642

change directions.643
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Figure 14. Distribution of distance for the correct change model (blue) and a wrong model(orange). Given
a baseline measurement (𝑦) and a change (Δ𝑦), we estimate the most likely change in the parameters as well as the
most likely amount of change in that direction using our trained change models. These estimates can then be used to
predict the distribution of expected change in the measurements. Using the discrepancy between this prediction and the
actual observed change, we can determine the quality of the change model in explaining the data. The histograms are
showing the Mahalanobis distance (i.e., the offset normalised by the covariance matrix as defined in 24) between the
actual and the predicted change in the measurement when the correct change model is used (blue) and when a wrong
change model is used (orange) for several instances of simulated data. The blue curve shows the pdf of 𝜒2 distribution
with 𝑑𝑓 = the number of measurements.
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